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Abstract

Distributed Inference and Data Sketching for High Dimensional Spatial

Regression Models

by

Laura N. Baracaldo

Modeling spatial data with flexible statistical models has become an enormously

active area of research over the last decade in many disciplines. This work fo-

cuses on scaling MC computations for large-scale Bayesian inference in complex

spatial models with adequate point estimation and uncertainty in inference and

prediction. We first derive a three-step distributed Bayesian inferential framework

for multivariate spatial generalized linear mixed effect models (MVspGLMMs) for

big data. The proposed approach delivers fully model-based Bayesian parameter

inference based on the construction of the “meta posterior” as the Wasserstein

Barycenter of pseudo posterior distributions obtained from the partition of the

data into independent subsets.

We introduce Bayesian data sketching for spatially varying coefficient regres-

sion models (SVCM) to obviate computational challenges presented by large num-

bers of spatial locations. To address the challenges of analyzing very large spatial

data, we compress spatially oriented data by a random linear transformation to

achieve dimension reduction and conduct inference on the compressed data. We

establish posterior contraction rates for estimating the spatially varying coeffi-

cients and predicting the outcome at new locations under the randomly com-

pressed data model.

Finally, we present a novel idea that employs data sketching for distributed

Bayesian inference. The proposed model takes advantage of parallel computation

ix



by performing Bayesian inference built on the aggregation of “sketched subset

posteriors". This approach addresses spatial variable selection in SVCMs with big

data without developing fundamentally new models or algorithms or making use

of any specialized computational hardware. The models are empirically illustrated

by simulation experiments and by conducting a spatial analysis of remote sensed

vegetation data.
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Chapter 1

Introduction

The growing capabilities of Geographical Information Systems (GIS) and as-

sociated software have effectuated unprecedented access to spatial data. Statis-

ticians today routinely encounter geographically referenced datasets containing a

large number of irregularly located observations on multiple variables. This has,

in turn, fueled considerable interest in statistical modeling for location-referenced

spatial data; see, for example, the books by Schabenberger and Gotway (2004),

Gelfand et al. (2010a), Cressie and Wikle (2015) and Banerjee et al. (2014a) for

a variety of methods and applications. The need to model spatially-referenced

outcomes, perhaps vector-valued, across large domains is ripe in many fields, such

as environmental and health sciences.

Gaussian processes and their variants are often used to model the complex

spatial dependence between variables. For example, regression between different

spatially geocoded variables are often performed using spatial varying coefficient

models, where the coefficients corresponding to every spatially varying predictor is

also assumed to be spatially varying, and a stochastic process prior, most often a

Gaussian process prior, is assigned on these spatially varying coefficients. Details

on this topic is available in chapter 2. While posterior Monte Carlo (MC; Markov
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chain or sequential Monte Carlo) computations in high-dimensional linear models

have received significant attention, computations in even state-of-the-art spatial

models with stochastic process priors on spatially varying functions are limited

to sample sizes that are much smaller than the realistic ones. This prohibits

applications of hierarchical nonparametric spatial Bayesian models in massive data

settings unless restrictive assumptions are imposed or the accuracy of inference

is compromised. Indeed, computational bottlenecks are a major barrier in the

application of nonparametric Bayesian models to massive spatial databases in the

environmental and health sciences, respectively.

Developing computationally tractable Bayesian spatial models is an active area

of research. Structured approximations are the most common tools adopted to

resolve the intractability of Bayesian methods. Optimization-based methods are

efficient in obtaining an analytic approximation of the true posterior distribution,

with Laplace approximation, variational Bayes, and expectation propagation be-

ing the most common techniques. Optimization, however, can be nontrivial for

complex likelihoods frequently used in nonparametric Bayesian models based on

stochastic processes. It is also known that variational Bayes and expectation

propagation can often be highly biased in the estimation of posterior uncertainty

and dependence. The literature on a sampling-based approach to posterior in-

ference with large data has exploded in the last two decades, with a majority of

methods largely falling into a few categories. First, there are model-based so-

lutions which replace Gaussian process or any other computationally prohibitive

stochastic process by their computationally efficient variants. Second, there are

likelihood approximation techniques which replace the computationally cumber-

some likelihood for the correlated spatial data with their computationally efficient

versions, mainly by ignoring dependence between random variables at some level.

2



There are also algorithmic approaches to solve to computational bottleneck in MC

computation of large data. For example, there are subsampling-based methods

which obtain posterior samples conditioned on a small fraction of the data. Fre-

quently, sampling is coupled with modified Hamiltonian or Langevin Dynamics

for improved posterior exploration. Some MC methods replace the exact Markov

transition kernel by an approximation that significantly reduces the time required

to finish an iteration of the sampler. Another approach proposes dividing the

data into a large number of subsets, draw inference on data subsets to construct

subset posteriors, followed by combining subset posteriors using a notion of geo-

metric center in the space of distributions. These methods are referred to as the

divide-and-conquer strategy which has gained attention in the last few years. On

the divide-and-conquer front, there is recent literature on exploiting this strategy

to draw scalable inference in parametric models or non-parametric spatial process

models with Gaussian errors. However, no effort has been undertaken as of yet

to develop divide-and-conquer methods for scalable inference with non-Gaussian

spatial data.

This thesis has proposed divide-and-conquer methodology for non-Gaussian

multivariate spatial data. The core to the divide-and-conquer algorithm is com-

bining subset posteriors through their geometric center in the distribution space.

To this end, we will employ Wasserstein Barycenter of order 2 for subset posteri-

ors which is conceptual similarity with an ordinary mean of scalar quantities. We

provide a brief overview of Wasserstein Barycenter in the next section.

1.1 Wasserstein Barycenter of Distributions

This section provides a brief description of Wasserstein barycenter. Let (X , ρ)

be a complete separable metric space and F(X ) be the space of all probability

3



measures on X . The Wasserstein space of order 2 is a set of probability distribu-

tions defined as F2(X ) = {F ∈ F(X ) :
∫

X ρ
2(α, α0)F (dα) < ∞}, where α0 ∈ X

is arbitrary and F2(X ) does not depend on the choice of α0. The Wasserstein

distance of order 2, denoted as W2, is a metric on F2(X ). Let F1, F2 be two prob-

ability measures in F2(X ) and Π(F1, F2) be the set of all probability measures on

X ×X with marginals F1 and F2, then W2 distance between F1 and F2 is defined as

W2(F1, F2) = { inf
π∈Π(F1,F2)

∫
X ×X ρ

2(x, y) dπ(x, y)}1/2. Let ν1, . . . , νK ∈ F2(X ), then

the Wasserstein barycenter of ν1, . . . , νK is defined as

ν = arg min
ν∈F2(X )

1
K

K∑
k=1

W 2
2 (ν, νk), (1.1)

which can be viewed as the geometric center of the probability measures ν1, . . . , νK .

It is known that ν exists and is unique (Agueh and Carlier, 2011a).

In the one-dimensional case, the Wasserstein barycenter has an explicit relation

with the K probability measures. Let F−1(u) = inf {x : F (x) ≥ u} be the quantile

function of a generic univariate distribution function F (x). Let F1 and F2 be two

univariate distributions in F2(X ), with quantile functions F−1
1 (u) and F−1

2 (u), for

any u ∈ (0, 1), respectively. Then the W2 distance between F1 and F2 has an

explicit expression by Lemma 8.2 of Bickel and Freedman (1981)

W2(F1, F2) =
[∫ 1

0

{
F−1

1 (u) − F−1
2 (u)

}2
du
]1/2

. (1.2)

(1.2) provides an explicit expression for the Wasserstein barycenter as given by

the following lemma.

Lemma 1.1.1. For one dimensional case, Wasserstein barycenter ν for ν1, ..., νK

satisfies ν−1(u) = 1
K

∑K
k=1 ν

−1
k (u), for all u ∈ (0, 1).

Proof. We will show that α−1(u) = 1
K

∑K
k=1 ν

−1
k (u) minimizes ∑K

k=1 W
2
2 (ν, νk) over

4



all ν ∈ F2(X ). For any ν ∈ F2(X ),

K∑
k=1

W 2
2 (ν, νk) =

K∑
k=1

∫ 1

0

(
ν−1(u) − ν−1

k (u)
)2
du

=
K∑
k=1

∫ 1

0

((
ν−1(u) − α−1(u)

)
−
(
ν−1
k (u) − α−1(u)

))2
du

=
K∑
k=1

W 2
2 (ν, α) +

K∑
k=1

W 2
2 (α, νk) −

K∑
k=1

∫ 1

0
2
(
α−1(u) − ν−1(u)

) (
α−1(u) − ν−1

k (u)
)
du

Note that, for every u ∈ (0, 1), ∑K
k=1(α−1(u) − ν−1

k (u)) = 0, by the definition of

α−1(u). Thus,

K∑
k=1

∫ 1

0
2
(
α−1(u) − ν−1(u)

) (
α−1(u) − ν−1

k (u)
)
du

=
∫ 1

0
2
(
α−1(u) − ν−1(u)

) K∑
k=1

(
α−1(u) − ν−1

k (u)
)
du = 0,

since both α−1(u) and ν−1(u) can be taken outside of the summation. Therefore,∑K
k=1 W

2
2 (ν, νk) = ∑K

k=1 W
2
2 (ν, α)+∑K

k=1 W
2
2 (α, νk). As W 2

2 (ν, α) ≥ 0, this implies

that ν−1(u) = α−1(u), which proves the theorem.

Therefore ν in (1.1) is related to ν1, . . . , νK by

ν−1(u) = 1
K

K∑
k=1

ν−1
k (u), (1.3)

where ν−1
k (u) and ν−1(u) are the quantile functions of νk and ν, respectively. This

expression for the one-dimensional W2 barycenter has been derived in Agueh and

Carlier (2011b) from an optimal transport perspective. The relation indicates that

for a scalar functional, the average of subset posterior quantiles produces another

quantile function that corresponds exactly to the one-dimensional Wasserstein

posterior.
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1.2 Data Sketching Algorithms

This thesis also proposes a new idea of data sketching to address the computa-

tional issue in spatial models with massive data. Sketching is a probabilistic data

compression technique that has been largely explored and developed in Computer

Science,(Cormode et al. (2011)) to address the challenges of storing and process-

ing massive data sets. The advantages of data sketching approaches include less

memory consumption, faster implementation of algorithms, and reduced band-

width requirements in distributed computing environments.

The domain of sketching algorithms has been extended to a wide range, in-

cluding processing massive data streams with low memory footprint, “compressed

sensing” (Candes and Tao (2005); Donoho (2006)) for irreversible compression

of signals with few linear measurements, and dimensionality reduction or “ran-

dom projection” methods for speedups in large-scale linear algebra algorithms

(Braverman et al. (2010); Dasgupta et al. (2010); Kane and Nelson (2010)) , and

high-dimensional computational geometry (Clarkson and Woodruff (2017); Meng

and Mahoney (2013); Nelson and Nguyên (2013)).

A sketch (Broder (1997)) is defined as a small-space data structure which acts

as a compact representation of a much larger data set and that allows the execution

of a set of pre-specified tasks. More specifically, we consider the case where the

data can be expressed as a high-dimensional vector y ∈ RN and the linear sketch

of y is obtained by some randomized linear mapping y 7→ Φy, where Φ denotes

a M × N compression matrix, with M << N . The construction of sketching

algorithms is based on the idea that the sketching matrix Φ is an ϵ-subspace

embedding (Woodruff (2014), Meng and Mahoney (2013), Yang et al. (2015)) for

the source data-set. Broadly speaking, an ϵ-subspace embedding preserves the

linear structure of the source up to some multiplicative (1 ± ϵ) factor. When ϵ

6



is small, the linear mapping Φ preserves the covariance structure of the original

data set, therefore, the compressed data serves as a surrogate of the full data.

Formally, for a given N ×P matrix X, we call a M ×N matrix Φ and ϵ-subspace

embedding for X, if for all vectors z ∈ RP

(1 − ϵ)∥Xz∥2
2 ≤ ∥ΦXz∥2

2 ≤ (1 + ϵ)∥Xz∥2
2 (1.4)

There are two broad classes of distributions for the random matrix Φ, data

aware random projections and data oblivious random projections. While data

aware random projections use information from the source data y, data oblivious

random projections can be obtained without any knowledge on y. The former

category is linked to finite population sampling methods, and the later category

is related to dimension reduction techniques such as multidimensional scaling as

these matrices are designed to offer a ϵ-subspace embedding for an arbitrary data

collection with high probability.

The idea of data sketching has been prevalent in computer science and machine

learning literature, mainly in unsupervised models, ordinary linear regressions and

high dimensional penalized linear regressions. However, the usage of data com-

pression to address challenges in high dimensional Bayesian inference, especially

in spatial regression models with big data has not been explored. An important

contribution of this thesis is to introduce these concepts in the realm of high di-

mensional spatial models under the Bayesian framework. Please refer to Chapter

3 and 4 for more details.

7



1.3 Roadmap

In Chapter 2, we investigate the three step divide-and-conquer Bayesian infer-

ential framework to enhance scalability of multivariate spatial generalized linear

mixed models (spGLMMs) for multivariate binary spatial data, where multivari-

ate spatial Gaussian processes employ linear model co-regionalization (LMC) to

account for correlation between multivariate spatial observations. The approach is

conceptually simple, yields parametric inference with uncertainty and seamlessly

scales with big data due to the distributed framework which avoids storage and

computation of subsets of the data in different processors, and minimizes com-

munication between different processors. We provide empirical illustration that

reveals inferential accuracy of our approach on multivariate binary observations.

In chapter 3, we introduce data sketching within the framework of Bayesian

spatially varying coefficient regression models to obviate computational challenges

that arise from the analysis of large numbers of spatial locations. We start by re-

viewing current developments in the implementation of data sketching in the con-

text of ordinary linear regression and penalized linear regression models. Then,

the model based on data sketching is proposed. We adapt results from random ma-

trix theory and develop new theoretical results to establish posterior contraction

rates for estimating the spatially varying coefficients and predicting the outcome

at new locations under the randomly compressed data model. Finally, we present

some simulation experiments and conduct a spatial analysis of remote sensed veg-

etation data to empirically illustrate the inferential and computational efficiency

of our approach.

In chapter 4, we propose a three-stage strategy built on the idea of Bayesian

data sketching to simultaneously perform variable selection and coefficient esti-

mation in non-parametric spatially varying coefficient models (SVCMs). This

8



scheme, which incorporates data compression within the divide and conquer ar-

chitecture, takes advantage of parallel computation by independently fitting the

model across data sketches to obtain “sketched subset posteriors” for varying co-

efficients, which are combined through an aggregation algorithm with the purpose

of delivering fully model-based Bayesian inference and prediction. The proposed

approach solves the issue of sensitivity due to subset selection in the divide-and-

conquer Bayesian inference for spatial data. Simulation studies and geo-statistical

analysis of a remote sensing data validate our approach. Finally, Chapter 5 con-

cludes the thesis with a brief discussion on future work. Proofs of the theorems

are available in Appendix A.
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Chapter 2

Distributed Inference for

Multivariate Spatial Generalized

Linear Models

2.1 Introduction

With the rapid development of Geographical Information Systems (GIS), along

with related software, statisticians today routinely encounter large spatial datasets

containing multiple spatially correlated variables observed across thousands of lo-

cations. This chapter is motivated by applications where spatially correlated

variables are binary and model fitting becomes necessary for binary non-Gaussian

spatially correlated datasets. To this end, multivariate spatial generalized lin-

ear mixed effect models (spGLMMs) offer a remarkably flexible class of models

that uses multivariate spatial random effects to capture space-varying associa-

tion between responses, and enables interpolating observations across a contin-

uous spatial domain. We focus on scenarios where spGLMMs are applied for
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point-referenced/geo-spatial data where the correlation between random effects

are captured using multivariate Gaussian process priors or their variants (Baner-

jee et al., 2014b; Cressie and Wikle, 2015). However, such models implemented

with the Markov Chain Monte Carlo (MCMC) algorithm involves matrix decom-

positions whose complexity increases as O(N3Q3) in the number of observations,

N , and the outcome dimensions Q, at every iteration of the MCMC algorithm.

These computationally intensive matrix calculations limit inference with multi-

variate binary spatial Gaussian process models to even moderately large datasets

(Cressie and Wikle, 2015; Banerjee et al., 2014b).

There is a burgeoning literature on the analysis of large spatial datasets mainly

in the context of univariate spatial data. Briefly, these methods are based on ap-

proximating Gaussian process models with a low-rank model or with a sparse

model. Low-rank processes are usually derived from expressing the Gaussian pro-

cess using basis functions (Cressie and Johannesson, 2008; Banerjee et al., 2008;

Finley et al., 2009; Guhaniyogi et al., 2011). Scalability for low-rank models are

further enhanced by fitting them into multiple resolutions, where the resolutions

at finer scales capture local variation of the response (Guhaniyogi and Sansó,

2018; Katzfuss and Guinness, 2021). In contrast, sparse models assume that spa-

tial correlation between two distantly located observations is nearly zero, so little

information is lost by assuming conditional independence given the intermediate

locations. A few important classes of sparse models have emerged recently, such

as models based on covariance tapering (e.g., Furrer et al. (2006), Kaufman et al.

(2008), Du et al. (2009), Shaby and Ruppert (2012)), composite likelihoods (e.g.,

Eidsvik et al. (2014)) or nearest neighbor models (e.g., Vecchia (1988a); Rue et al.

(2009); Stein et al. (2004); Datta et al. (2016a)). Another class of approaches di-

vide the domain into subdomains and fit stochastic process models in different
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subdomains while stiching inferences in subdomains together with another layer

of Markov random fields (Gramacy and Lee, 2008; Peruzzi et al., 2020). Recent

articles extend low-rank or sparse processes to enhance scalability of multivariate

spatial data (Banerjee et al., 2010; Guhaniyogi et al., 2013; Guhaniyogi, 2017).

While multivariate spatial modeling of big data with Gaussian errors have re-

ceived attention, considerably less attention has been given in the literature to

boost scalability of multivariate spGLMMs for big data, except for a few recent

articles such as Guan and Haran (2018) which discuss scalability for big data but

struggle to scale beyond a few thousand observations. While the authors discuss

the strategy to bring this approach under the INLA (Rue et al., 2009; Lindgren

et al., 2011) framework to accrue additional computational gain, it is likely to face

significant challenges in terms of accurately estimating spatial surface.

This chapter proposes a three step distributed Bayesian inferential approach

for multivariate spGLMMs with multivariate binary spatial data to address the

computational issue. The first step of the algorithm constructs K subsets by ran-

domly sampling M data points without replacement from the full data of size N ,

where K is large and posterior computations with M data points is tractable.

The second step fits the spGLMM for the binary spatial data in K subsets in par-

allel to obtain MCMC based approximation of the full data posterior from each

subset. We only retain the posterior samples from each subset which are saved

in a CPU dedicated to itself. The posteriors from various subsets (also known

as “subset posteriors”) are then combined optimally in the third step to yield a

single posterior distribution (the “meta-posterior”) for the model parameters that

substitutes the full posterior distribution for all inferential tasks. To combine sub-

set posteriors, we adapt the notion of Wasserstein barycenter of subset posteriors

(see, e.g., Guhaniyogi et al. (2020b); Guhaniyogi et al. (2020a)). Though the
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idea has been proposed in the context of predictive models for independent data

(Srivastava et al., 2015), for scaling univariate (Guhaniyogi et al., 2020b) and mul-

tivariate spatial models (Guhaniyogi et al., 2020a) with continuous response, this

chapter proposes to employ this technique to enhance scalability for spGLMMs

with binary multivariate spatial data. The approach simply demands obtaining

posterior samples for the process parameters from a multivariate spatial model

fitted on multiple subsets in parallel, followed by deriving the meta-posterior. We

emphasize that the third step of combining subset posteriors is agnostic to the

specific spGLMM used in the second step of the algorithm; hence the algorithm

offers a general framework for distributed inference with spGLMMs.

The remainder of the chapter evolves as follows. Section 2.2 discusses the

divide-and-conquer framework for spGLMMs with binary data, while Section 2.3

demonstrates its empirical performance with a brief simulation study. Finally,

Section 2.5 concludes the chapter with some discussion and general conclusions.

2.2 Distributed Bayesian Inference with Mul-

tivariate Spatial Generalized Linear Mixed

Effect Models with Binary Data

Let D ⊂ ℜ2 be the spatial domain of interest and let s be a generic point in

D. Let y(s) = (y1(s), ..., yQ(s))T denote the response and X(s) denote a Q × P

predictor matrix at location s ∈ D ⊆ R2 with its l-th row given by xl(s)T . The

relationship between y(s) and X(s) is expressed using a spatial generalized linear

mixed effect model (spGLMM) given by,

g(E[y(s)|β, w(s)]) = X(s)β + w(s), (2.1)
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where g(·) is an appropriate link function, β ∈ RP is the P × 1 coefficient vector

corresponding to the predictor matrix X(s) and w(s) = (w1(s), ..., wQ(s))T is a

Q×1 vector of spatial process, modeling local patterns with structured dependence

to the mean. The model specification suggests that conditional on the unknown

function w(·) at two locations s and t, y(s) and y(t) are independent of each other.

Here on, we will focus on a popular example for spGLMMs on spatial binary data,

the binary response being modeled by a Bernoulli distribution with the logit link.

Therefore, when yl(s) ∈ {0, 1}, (2.1) with g(·) as the logit link function becomes

p(yl(s)|β, wl(s)) = exp(yl(s)(xl(s)Tβ + wl(s)))
1 + exp(xl(s)Tβ + wl(s))

, l = 1, ..., Q. (2.2)

Although our approach is illustrated based on (2.2) from the class of spGLMMs,

the approach presented in this article generalizes to other link functions and ob-

servation models, and to the cases where an additional nugget term is present in

(2.1) (Berrett and Calder, 2016).

The customary process specification for w(s) is a zero-centeredQ-variate Gaus-

sian process. The process w(s) is completely specified by its cross-covariance

function Cw(s, t; θ), which, for any pair of locations s and t, is a Q × Q matrix

with cov{wl1(s), wl2(t)} as its (l1, l2)-th element and θ is a collection of process pa-

rameters. Therefore, Cw(s, s; θ) is precisely the variance-covariance matrix for the

elements of w(s) within site s. While this chapter considers one popular way to

construct the cross-covariance matrix by linear model co-regionalization (LMC)

as described below, we refer to Gelfand et al. (2010b); Gneiting et al. (2010);

Guhaniyogi et al. (2013) for versatile constructions of valid cross-covariance ma-

trix functions.

Assume, v(s) = (v1(s), ..., vQ(s))T is a Q-variate vector with its components

vl(s)’s are following independent univariate Gaussian processes with mean 0 and
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covariance function α(s, t; ∆l). The LMC approach (Gelfand et al., 2004) models

correlation between components of w(s) by assuming w(s) = Γv(s), which yields

a structured cross-covariance function given by,

Cw(s, t; θ) = ΓCv(s, t; ∆)ΓT =
Q∑
l=1

γlγ
T
l α(s, t; ∆l) , (2.3)

where γl is the l-th column of Γ, ∆ = {∆1, ...,∆Q} (in univariate case ∆ = ∆1)

and θ is the collection of all ∆1, ..,∆Q and Γ. One natural choice of α(·, ·) comes

from the class of Matérn correlation functions,

α(s, t; ∆l) = 1
2ξ2,l−1Γ(ξ2,l)

(||s−t||ξ1,l)ξ2,lKξ2,l(||s−t||; ξ1,l); ξ1,l > 0, ξ2,l > 0, (2.4)

Where Kν is a modified Bessel function of the second kind of order ν, and ξ1,l,

ξ2,l are the decay and smoothness parameters respectively; ∆l = (ξ1,l, ξ2,l). This

implies that for any finite set of n locations, say S = {s1, s2, . . . , sN}, the NQ× 1

vector of realizations, w = (w(s1)T , w(s2)T , . . . , w(sN)T )T follows a multivariate

normal distribution with zero mean and a NQ × NQ blocked covariance matrix

Cw(θ) whose (i, j)-th block is given by the Q×Q matrix Cw(si, sj; θ).

2.2.1 Challenges in Posterior Computation in spGLMMs

with Big Data

With y(s) and X(s) observed at a set of locations S = {si : i = 1, 2, . . . , N},

(2.2) does not allow full conditional posterior distributions of parameters in closed

forms. However, the posterior computation is enormously simplified using the data

augmentation approach based on the result, eaψ

(1+eψ)b = 2−beκψ
∫∞

0 e−ωψ2/2pω(ω)dω

(Theorem 1 in Polson et al. (2013)), where pω(ω) stands for a Polya-Gamma dis-

tribution with parameters 0 and b, denoted as PG(b, 0), κ = a− b/2. Introducing
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a latent variable ωi,l corresponding to the lth component of the ith observation,

(2.2) can be equivalently written as

p(yl(si)|ωi,l, β, wl(si)) ∝ exp{−ωi,l(xl(si)Tβ − κi,l/ωi,l)2/2}, ωi,l ∼ PG(1, 0),

κi,l = yl(si) − 1/2. (2.5)

Assume that z = (zT1 , ..., zTN)T and Ω = diag(ω1, ..., ωN), where zi = (κi,1/ωi,1, ..., κi,Q/ωi,Q)T

and ωi = (ωi,1, ..., ωi,Q)T . Then (2.2) leads to the hierarchical mixed model frame-

work

z = Xβ + w + ϵ, ϵ ∼ N(0,Ω−1), ωi,l ∼ PG(1, 0), (2.6)

where X is the NQ×P matrix of regressors (P < N) with X(si) as its i-th block

row of dimension Q × P . We specify β ∼ N(µβ,Σβ) as the prior distribution

for the slope vector, where µβ and Σβ are assumed fixed, and θ is assigned a

proper prior distribution p(θ). Bayesian inference proceeds, customarily, by sam-

pling Θ = {β, θ} from (2.6) using Markov chain Monte Carlo (MCMC) methods.

Irrespective of the specific parametrization or estimation algorithm, model fit-

ting usually involves matrix decompositions for Cw(θ) requiring ∼ (NQ)3 floating

point operations (flops) and ∼ (NQ)2 memory units in storage. These become

prohibitive for large N since Cw(θ), in general, has no exploitable structure.

2.2.2 Distributed Inference with the Meta Kriging Ap-

proach

Let S be partitioned intoK exhaustive and mutually exclusive subsets S1, ...,SK .

Let {yh, Xh} be the corresponding data partitions, for h = 1, 2, . . . , K, where yh is

an NhQ×1 vector and Xh is an NhQ×P matrix. This chapter assumes all subsets
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are equal sized and each of them contains M = N/K data points. Assume that

we are able to obtain posterior samples for Θ from (2.6) applied independently

to each of K subsets of the data. Let Π(Θ|yh, Xh) be the posterior distribution

of Θ from the hth subset, referred to as the hth subset posterior. Assume that

Θh,1, ...,Θh,F are the F post burn-in posterior samples from Π(Θ|yh, Xh). Follow-

ing Guhaniyogi et al. (2020a), we propose to combine Π(Θ|yh, Xh)’s to arrive at

a legitimate probability density ΠM(Θ|y,X), referred to as the “meta-posterior”.

For notational simplicity, we denote Π(Θ | yh, Xh) by Πh. We define the “meta

posterior” as the Wasserstein barycenter ΠM as in (1.1), which provides a general

notion of obtaining the mean of K possibly dependent subset posterior distribu-

tions in the space of distributions. While the posterior distribution Π(Θ|y,X)

obtained from the full data are analytically intractable and computationally pro-

hibitive, it can be well approximated by the meta posterior. Given the MCMC

samples of Θ from subset posteriors are available, one can conveniently estimate

the empirical version of the meta posterior. Since the primary interest often lies

in the Bayesian inference of one dimensional functionals of the model parame-

ters, we adopt the algorithm outlined in Li et al. (2017) and Guhaniyogi et al.

(2020b) following the general discussion in Section 1.1 of Chapter 1 to compute

Wasserstein barycenter of the posterior distributions of one-dimensional parame-

ters. More specifically, if Θ is one-dimensional and Θh,(q∗) denotes the q∗-th empir-

ical quantile of Θ obtained from Πh, h = 1, ..., K, then Θq∗ = (1/K)∑K
h=1 Θh,(q∗),

q∗ = 1, ..., Q∗, denotes the q∗th empirical quantile of ΠM . We choose Q∗ = 104

and compute quantiles on an equi-spaced grid of size Q∗ on (0, 1).

While, for empirical illustration, we employ the algorithm leading to compu-

tation of Wasserstein barycenter for one-dimensional parameters, it is possible to

utilize the existing literature focusing on combination of distributions for multi-
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variate parameters. For example, one can efficiently solve a sparse linear program

as described in Cuturi and Doucet (2014); Srivastava et al. (2018) to compute

Wasserstein barycenter when Θ is multivariate. Alternatively, we can follow com-

bination algorithm outlined in Guhaniyogi et al. (2020a) to compute an empirical

approximation to the meta posterior. It has been shown that for independent

data, the Wasserstein barycenter is a preferable choice to several other combina-

tion methods; for example, directly averaging over many subset posterior densities

with different means can usually result in an undesirable multimodal meta poste-

rior distribution, but the Wasserstein barycenter does not have this problem and

can recover a unimodal posterior (Srivastava et al., 2018). Besides, it does not

rely on the asymptotic normality of the subset posterior distributions as in other

approaches, such as consensus Monte Carlo (Scott et al., 2016).

Choice of K: One important ingredient in the distributed inference is the choice

of subsets K. While choosing K small will not be useful for computational effi-

ciency, choice of K to be large will yield less accurate inference. Thus, K needs

to be chosen by striking a balance between inferential accuracy and computa-

tional efficiency. There is existing literature that studies theoretically the “opti-

mal choice of K” depending on N and the smoothness of the spatial surface for

spatial Gaussian process model (Guhaniyogi et al., 2020b) and spatio-temporal

varying coefficient models (Guhaniyogi et al., 2020a) with continuous outcomes.

In absence of an analogous theoretical results for spGLMMs we choose K to be

moderately large and ensure that subset posteriors are not very different from each

other by calculating the KL-divergence between the subset posteriors empirically.

We plan to explore this topic theoretically in more detail elsewhere.
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2.3 Empirical Study

This section presents empirical performance of the proposed distributed frame-

work for spGLMMs with a simulated multivariate spatial binary data. In our

simulation example the data is randomly divided into K exhaustive and mutu-

ally exclusive subsets. Our approach is implemented in R, with foreach and

doParallel packages are used for multicore parallelization. A detailed imple-

mentation with open source codes can be found in the GitHub page https:

//github.com/LauraBaracaldo/Spatial-Meta-Kriging-for-Distributed-I

nference-for-Binary-Response.

To illustrate the performance, we set Q = 2 and simulate N = 10, 000 bivariate

observations within a unit square domain from model (2.2). The covariate matrix

X(s) at any location is taken to be a 2 × 4 matrix with the first row x1(s)T =

(1, u1(s), 0, 0), and the second row x2(s)T = (0, 0, 1, u2(s)) where u1(s), u2(s) are

drawn i.i.d from N(0,1), and the corresponding coefficient β = (β01, β11, β02, β12)T .

An exponential spatial correlation function was assumed for all spatial processes,

i.e., ξ2,l was fixed at 0.5 in (2.4) for l = 1, 2. For the sake of identifiability of each

element of Γ, we assume Γ =

 γ11 0

γ21 γ22

, with γ11 > 0. The column labeled

True in Table 2.1 depicts the true parameter values used to generate the data.

We simulate 10 datasets with the true parameter values.

We fit our distributed approach for K = 10, 20 to assess how the inference

improves as K decreases. For estimating the LMC model in each subset, we assign

a flat prior to each component of the intercept β and γ21, and Jeffrey’s prior on γ11

and γ22. The decay parameters ξ1,1 and ξ1,2 in the exponential correlation functions

are assigned U(2, 12) prior that gives fairly wide support for range parameters

given that the maximum inter-location distance in the generated data is 1.34.
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Table 2.1: The median and 95% Bayesian credible intervals of parameters for dis-
tributed multivariate spGLMM (dmv-spGLMM) for K = 10, 20. We also present
True Positive Rate (TPR) and True Negative Rate (TNR) for out of sample clas-
sification performance. Computation time in minutes are also presented.

True dmv-spGLMM (K = 20) dmv-spGLMM (K = 10)
β01 1 1.24 (0.83, 1.48) 1.09 (0.75 , 1.43)
β11 -1 -0.94 (-1.22, 0.76) -0.91 (-1.16, -0.67)
β02 -1 -1.42 (-1.75, -0.89) -1.26 (-1.62 , -0.92)
β12 1 1.05 (0.77, 1.39) 0.97 (0.73,1.23)
γ11 1 1.14 (0.71, 1.72) 0.81 (0.34, 1.54)
γ12 -0.9 -1.10 (-1.58, -0.79) -1.11 (-1.77, -0.55)
γ22 1 1.19 (0.84, 2.01) 0.75 (0.41, 1.22)
ξ1,1 5 7.25 (4.49, 11.35) 6.97 (4.32, 10.96)
ξ1,2 6 7.79 (4.01, 11.56) 7.99 (4.29, 11.79)
TPR – 0.72 0.74
TNR – 0.71 0.76
Time(in min) – 22.46 84.21

Given that γ’s and ξ1,l’s, for l = 1, 2, are not strongly identifiable together (Zhang,

2004), it is a common practice to propose a uniform prior with bounded support

on ξ1,l’s. Further, by moderately perturbing the range of the uniform distribution,

we do not observe any significant change in the performance.

Table 2.1 presents posterior medians along with 95% credible intervals for all

the parameters for a reprersentative simulated data. All parameters are estimated

accurately by our distributed approach, both for K = 10, 20. For both K = 10, 20,

the point estimates are close to the truth and the 95% credible intervals of all

parameters have covered the truth. However, the point estimates seem to be little

more accurate corresponding to K = 10 than K = 20. On a similar note, the

95% credible intervals corresponding to all parameters are narrower for K = 10,

suggesting improved uncertainty quantification for the parameters as the number

of subsets decreases. Overall, we find pretty robust parameter estimation when

the number of subsets varies within a certain range. Also, the inference turns out
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to be similar across all ten simulated datasets.

We also compute True Positive Rate (TPR) and True Negative Rate (TNR)

for predictive classification with our meta-approach at 100 out of sample observa-

tions. Table 2.1 presents the TPR and TNR values averaged over all ten simulated

datasets. Since TPR and TNR vary between 0 and 1 with values close to 1 indicate

excellent classification performance, the results show reasonably good predictive

classification performance with our approach. As expected, the classification per-

formance is marginally improved when the number of subsets in reduced from

K = 20 to K = 10.

Finally, we note that the computation complexity of our approach is domi-

nated by (MQ)3 floating point operations which leads to manageable run times

even with a non-optimized implementation in R. In fact, full Bayesian computation

of the model requires less than two hours for both K = 10, 20 with 10, 000 data

points. We emphasize that the computation can be further enhanced by replac-

ing multivariate Gaussian processes on w(s) with their computationally efficient

variants. However, we plan to explore it elsewhere.

2.3.1 Sensitivity Analysis

In order to asses the impact of the prior choice in the posterior inference and

prediction, we carry out a sensitivity analysis for four different scenarios. The first

scenario contemplates a non informative choice for the priors, so that, p(β) has

a flat prior p(β) ∝ 1, Γ is Inverse-Wishart with degrees of freedom df = q = 2,

which leads to high uncertainty about the information in the scale matrix Ψ,

Γ ∼ IW (df = q,Ψ = 0.1I) and ξ1,1, ξ1,2 are set to be uniform over a wide positive

interval; ξ1,1, ξ1,2 ∼ Unif(3, 15). Scenario 2, keeps the same priors as in scenario

1, except for β which is multivariate normal β ∼ N(0, I). On the other hand,
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scenario 3, contemplates the same priors as in scenario 1 except for Γ, which follows

and Inverse-Wishart but with df = q + 3, which makes it more informative over

the scale parameter Ψ. Lastly, scenario 4 specifies a flat distribution for β, a non-

informative prior on Γ but with different scale matrix, IW (df = q+1,Ψ = I), and

ξ1,1, ξ1,2 are chosen to be uniform over a narrower interval ξ1,1, ξ1,2 ∼ Unif(4, 7).

Table 2.2 presents the results in terms of point-wise and interval estimation

for all parameters, as well as predictive classification performance. As we observe,

although results are fairly similar overall, there exist some variations throughout

different scenarios, which indicates that the model fitting is subject to the prior

choice. We conclude that in general, scenario 1 provides the most robust results.

n = 10, 000, (k = 10) n = 10, 000, (k = 20)
True Case 1 Case 2 Case 3 Case 4

β01 1 1.08 (0.75, 1.43) 0.44 (-0.27, 0.96) 0.38 (0.19, 0.76) 0.60 (0.16, 1.11)
β11 -1 -0.91 (-1.16,-0.67) -1.01 (-1.39,-0.66) -0.52 (-0.87,-0.23) -0.43( -0.79, 0.01)
β02 -1 -1.26 (-1.62,-0.92) -0.32 (-0.73,0.07) -0.57 (-0.83, -0.29) -0.72 (-1.18,-0.25)
β12 1 0.97 (0.73, 1.23) 0.93 (0.59,1.30) 0.51 (0.25,0.95) 0.22 (0.18 ,0.46)
γ11 1 0.81 (0.34, 1.54) 0.98 (0.54,1.75) 0.28 (0.04,0.49) 0.79(0.30,2.24)
γ21 -1 -1.11 (-1.77,-0.55) -0.88 (-1.51,-0.47) -0.36 (-0.72,-0.02) -0.49 (-1.29,0.01)
γ22 1 0.79 (0.41, 1.22) 1.21 (0.68, 2.22) 0.49 (0.14,0.78) 0.82(0.33,2.07)
ξ1,1 5 6.54 (4.32, 10.96) 6.32 (3.51,9.56) 6.22 (3.36,9.68) 5.46 (4.57,6.44)
ξ1,2 6 6.99 (4.29, 11.79) 6.69 (3.34,9.80) 6.24 (3.29,9.74) 5.49 (4.61,6.74)
TPR - 0.74 0.69 0.67 0.68
TNR - 0.76 0.73 0.65 0.66

Table 2.2: Sensitivity analysis for four prior set-ups: Case 1. Non informative
priors: p(β) ∝ 1, Γ ∼ IW (df = q,Ψ = 0.1I), ξ1,1, ξ1,2 ∼ Unif(3, 15); Case 2.
β ∼ N(0, I); Case 3. Informative for Γ ∼ IW (df = q + 3,Ψ = 0.1I); Case 4.
ξ1,1, ξ1,2 ∼ Unif(4, 7), Γ ∼ IW (df = q + 1,Ψ = I)

2.4 Real Data Application

This section is motivated by the study of Biogeochemical cycles (BGC) and

its association to the biome, which corresponds to a distinctive classification of

large areas based on its dominant plant and vegetation formations. These cycles
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describe the natural pathways by which essential chemical substances such as car-

bon, phosphorus and nitrogen circulate through the biosphere, and demonstrate

the way in which the energy is used.

In this application we seek to predict the presence or absence of certain ter-

restrial vegetation. Among the different modeling techniques available, the most

relevant prediction methods are the dynamic global vegetation models (Pren-

tice et al. (1992); Kucharik et al. (2000)) and the ecological niche or biocli-

matic/environmental envelope models (Guisan and Zimmermann (2000); Peterson

et al. (2011); Araújo and Peterson (2012)). The former considers physiological

characteristics of biomes or plant functional types, that respond to the environ-

ment in terms of phenology, and carbon stocks, among other predictors (Harrison

et al. (2010)). Other techniques involve the use of Random forest regression and

neural networks, which do not consider a structure of spatial correlation (Wes-

sels et al. (2011), Sato and Ise (2022)). The purpose of our work was to model

the annual grass vegetation y1(s) = 1AGV (s) and evergreen needleleaf vegeta-

tion y2(s) = 1ENV (s), based on energy storage measurements such as red light

reflectance and latent heat flux. Annual grass vegetation is dominated by herba-

ceous annuals including cereal croplands, whereas evergreen needleleaf vegetation

is characterized by evergreen conifer trees and shrubs, with a percentage of woody

vegetation cover of over 10%.

We model the bi-variate response y(s) = (y1(s), y2(s))T at locations s =

1, . . . , N which are projected on a sinusoidal grid, located on the western coast of

the United States, between 30◦N to 40◦N latitude and 104◦W to 130◦W longi-

tude. The covariance matrix X(s) at any location is set to be a 2 × 4 matrix with

the first row x1(s)T = (1, u1(s), 0, 0), and the second row x2(s)T = (0, 0, 1, u2(s)),

where u1(s) and u2(s) are defined in table 2.3. The corresponding vector of coef-
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ficients is defined as β = (β01, β11, β02, β12)T , so that β01, β02 represent intercept

effects, and β11, β12 represent the effect of variables u1(s) and u2(s) respectively.

Our analysis was focused on a data set with 51000 locations where variables

y1(s), y2(s), u1(s) and u2(s) were observed. For the model fitting process we kept

N = 50000 locations randomly chosen, whereas the remaining N∗ = 1000 obser-

vations were held out for prediction assessment. Further, we ran the distributed

approach based on K exhaustive and mutually exclusive subsets, for K = 20, 50

with the purpose of studying differences in estimation and prediction performance

based on distinct number of cores.

As in section 2.3, we model the spatial processes through a exponential correla-

tion kernel. The prior specification of all parameters is set to be non informative,

so that we assigned a flat prior for coefficients β, a uniform distribution over the

interval (3, 15) for decay parameters ξ1,1 and ξ1,2, and Γ ∼ IW (df = 2,Φ = 0.1I).

Table 2.4 offers posterior medians for all parameters along with their corre-

sponding 95% credible intervals. Point-wise estimation resulted similar for both

values of K = 20, 50, however, we observe that K = 20 yields to narrower cred-

ible intervals for all parameters, in comparison to K = 50, which results in an

improvement in terms of estimation precision. Additionally, we present (TPR)

and (TNR) which measure the sensitivity and specificity of the predictive classi-

fication respectively, based on N∗ = 1000 out of the sample observations. The

results show fairly good classification performance, with a marginal improvement

when the number of subsets is lowered to K = 20.

Variable Definition
AGV y1(s) Presence of Annual grass Vegetation.
ENV y2(s) Presence of Evergreen Needleleaf Vegetation.
RED u1(s) % of red light reflectance.
LE u2(s) Latent heat flux.

Table 2.3: Data description.
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Table 2.4: The median and 95% Bayesian credible intervals of parameters for dis-
tributed multivariate spGLMM (dmv-spGLMM) for K = 20, 50. We also present
True Positive Rate (TPR) and True Negative Rate (TNR) for out of sample clas-
sification performance. Computation time in minutes are also presented.

dmv-spGLMM (K = 50) dmv-spGLMM (K = 20)
Intercept1 0.075(-0.236, 0.389) 0.021(-0.288, 0.291)
RED -8.555(-10.270, -6.817) -8.481(-10.261,-6.769)
Intercept2 2.059(1.658, 2.475) 2.112(1.706, 2.491)
LE -0.375(-0.446, -0.308) -0.390(-0.461, -0.309)
γ11 4.721(3.976, 5.643) 6.081(4.835, 7.696)
γ12 -5.327(-6.202, -4.537) -8.241(-9.791, -6.823)
γ22 6.433(5.390, 7.835) 9.235(8.304, 10.401)
ξ1,1 8.386(7.065, 8.963) 8.438(7.031, 8.971)
ξ1,2 4.399(2.162,7.636) 4.614(2.487, 7.501)
TPR 0.712 0.739
TNR 0.817 0.819
Runtime(in min) 248.9 445.8

2.5 Summary

Many scientific applications encounter large spatial data with multivariate bi-

nary observations. Fitting spGLMMs to such data is computationally expensive.

We propose a three-step divide-and-conquer approach wherein we first partition

the data, fit multivariate spGLMMs with spatial random effects modeled through

multivariate Gaussian processes to each subset, and finally combine inferences

from subsets. The proposed idea offers a theoretically justifiable framework to

scale multivariate spGLMMs with binary responses to large number of observa-

tions in manageable computation time. Our empirical investigation shows satis-

factory estimation of model parameters by the proposed framework.
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Chapter 3

Bayesian Data Sketching for

Spatial Regression Models

In this chapter, we develop an inferential framework for spatial data analysis

using Bayesian data sketching to achieve scalable inference for massive spatial

data sets. “Data sketching” (Vempala, 2005; Halko et al., 2011; Mahoney, 2011;

Woodruff, 2014; Guhaniyogi and Dunson, 2015, 2016) is a method of compression

that is being increasingly employed for analysing massive amounts of data. The

entire data set is compressed before being analysed for computational efficiency.

Data sketching proceeds by transforming the original data through a random lin-

ear transformation to produce a much smaller number of data samples and we

conduct the analysis on the compressed data thereby achieving dimension reduc-

tion. Furthermore, the original data is neither accessed nor exactly recoverable

from the compressed data, which preserves data confidentiality.

While such developments have primarily focused on ordinary linear regression

and penalised linear regression (Zhang et al., 2013; Chen et al., 2015; Dobriban

and Liu, 2018; Drineas et al., 2011; Ahfock et al., 2017; Huang, 2018), our inno-

vation lies in developing such methods for spatial regression models. The primary
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challenge distinguishing the current chapter from existing data sketching meth-

ods is our pursuit of inference for the underlying spatial effects in the context

of spatially-varying regression models. While bearing some similarities, our cur-

rent contribution differs from compressed sensing (Donoho, 2006; Ji et al., 2008;

Candes and Tao, 2006; Eldar and Kutyniok, 2012; Yuan et al., 2014) in the in-

ferential objectives. Specifically, compressed sensing solves an inverse problem

by “nearly” recovering a sparse vector of responses from a smaller set of random

linear transformations. In contrast, our spatially referenced response vector is not

necessarily sparse. Also, we do not seek to (approximately) recover the response

vector, so our method is applicable to situations where preserving confidentiality

of the response (and predictors) is important.

We consider a spatially-varying regression model with response y(s) ∈ Y ⊆ R

and P predictors x1(s), ..., xP (s) ∈ X ⊆ R, s ∈ D ⊆ R2 related according to the

model

y(s) =
P∑
j=1

xj(s)βj +
P̃∑
j=1

x̃j(s)wj(s) + ϵ(s) = x(s)Tβ + x̃(s)Tw(s) + ϵ(s) , (3.1)

where β = (β1, β2, . . . , βP )T is a P × 1 vector of spatially static coefficients,

x̃(s) = (x̃1(s), x̃2(s), . . . , x̃P̃ (s))T is a P̃ × 1 vector comprising a subset of pre-

dictors from x(s) (so P̃ ≤ P ), w(s) = (w1(s), w2(s), . . . , wP̃ (s))T is the P̃ × 1

vector of spatially varying regression slopes, and ϵ(s) iid∼ N(0, σ2) captures mea-

surement error variation at location s. Such spatially-varying regression coef-

ficient models are effective tools for estimating the spatially varying impact of

predictors on the response over space (see, e.g., Gelfand et al., 2003; Wheeler

and Calder, 2007; Finley et al., 2011; Guhaniyogi et al., 2013; Kim and Wang,

2021, and references therein). Customary geostatistical regression models with

only a spatially-varying intercept emerge if the first column of x(s) is the inter-
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cept and P̃ = 1 with x̃1(s) = 1. Spatially-varying coefficient models also offer a

process-based alternative to widely used geographically weighted regression (see,

e.g., Brunsdon et al., 1996) for modelling nonstationary behaviour in the mean.

Finley (2011) offers a comparative analysis and highlights the richness of (3.1) in

ecological applications.

Bayesian inference for (3.1) is computationally expensive for large spatial data

sets, as are commonplace today, due to the presence of the high-dimensional spa-

tial covariance matrix introduced by w(s) in (3.1). High-dimensional spatial mod-

elling has been attracting significant interest and the burgeoning literature on

diverse aspects of scalable methods is too vast to be comprehensively reviewed

here (see, e.g., Banerjee, 2017; Heaton et al., 2019, for reviews). Briefly, model-

based dimension reduction in spatial models have proceeded from low-rank or fixed

rank representations (e.g., Cressie and Johannesson, 2008; Banerjee et al., 2008;

Wikle, 2010), multi-resolution approaches (e.g., Nychka et al., 2015; Katzfuss,

2017; Guhaniyogi and Sansó, 2018), sparsity-inducing processes (e.g., Vecchia,

1988b; Datta et al., 2016b; Katzfuss and Guinness, 2021; Peruzzi et al., 2020) and

divide-and-conquer approaches such as meta-kriging (Guhaniyogi and Banerjee,

2018; Guhaniyogi et al., 2020b). While most of the aforementioned methods entail

new classes of models and approximations, or very specialised high-performance

computing architectures, Bayesian data sketching has the advantage that cus-

tomary exploratory data analysis tools, well-established methods and well-tested

available algorithms for implementing (3.1) can be applied to the sketched data

set without recourse to new algorithmic or software development.

We pursue fully model-based Bayesian data sketching, where inference pro-

ceeds from a hierarchical model (Cressie and Wikle, 2015; Banerjee et al., 2014a).

The hierarchical approach to spatial data analysis is widely employed for inferring
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on model parameters that may be weakly identified from the likelihood alone and,

more relevantly for substantive inference, for estimating the latent spatial process

over the domain of interest. For analytic tractability we model the varying coef-

ficients using basis expansions (Wikle, 2010; Wang et al., 2008; Wang and Xia,

2009; Bai et al., 2019) rather than Gaussian processes. We exploit and adapt some

recent developments in theory of random matrices to relate the inference from the

compressed data with the full scale spatial model. We establish consistency of the

posterior distributions of the spatially varying coefficients and analyse the pre-

dictive efficiency of our models based upon the compressed data. Posterior con-

traction of varying coefficient (VC) models have been investigated by a few recent

articles. For example, Guhaniyogi et al. (2020a) derive minimax-optimal posterior

contraction rates for Bayesian VC models under GP priors when the number of

predictors P is fixed. Deshpande et al. (2020) also derived near-optimal posterior

contraction rates under BART priors, and Bai et al. (2019) showed asymptoti-

cally optimal rate of estimation for varying coefficients with a variable selection

prior on varying coefficients. We address these questions in the context of data

compression, which has largely remained unexplored.

3.1 Bayesian Compressed Spatially Varying Co-

efficient Models

We model each spatially varying coefficient wj(s) in (3.1) as

wj(s) =
H∑
h=1

Bjh(s)γjh , j = 1, ..., P̃ , (3.2)

where each Bjh(s) is a basis function evaluated at location s for h = 1, ..., H, and

γjh’s are the corresponding basis coefficients. The distribution of these γjh’s yields

29



a multivariate process with cov(wi(s), wj(s′)) = Bi(s)Tcov(γi, γj)Bj(s), where

Bi(s) and γi are H×1 with elements Bih(s) and γih, respectively, for h = 1, . . . , H.

Appropriate choices for basis functions can produce appropriate classes of mul-

tivariate spatial processes. A number of choices are available. For example, Biller

and Fahrmeir (2001) and Huang et al. (2015) use splines to model the Bjh(s)’s

and place Gaussian priors on the basis coefficients γjh. Li et al. (2015) propose a

scale-mixture of multivariate normal distributions to shrink groups of basis coeffi-

cients towards zero. More recently, Bai et al. (2019) proposed using B-spline basis

functions and multivariate spike-and-slab discrete mixture prior distributions on

basis coefficients to aid functional variable selection. Other popular choices for ba-

sis functions include the wavelet basis (Vidakovic, 2009; Cressie and Wikle, 2015),

radial basis (Bliznyuk et al., 2008) and locally bi-square (Cressie and Johannesson,

2008) or elliptical basis functions (Lemos and Sansó, 2009). Alternatively, a basis

representation of wj(s) can be constructed by envisioning wj(s) as the projection of

a Gaussian process wj(s) onto a set of reference locations, or “knots”, which yields

predictive processes and other variants (Banerjee et al., 2008; Guhaniyogi et al.,

2013). More generally, each wj(s) can also be modelled using multi-resolution

analogues to the aforesaid models to carefully capture global variations at the

lower resolution and local variations at the higher resolutions (Katzfuss, 2017;

Guhaniyogi and Sansó, 2018).

Let {y(si), x(si)} be observations at N spatial locations S = {s1, s2, . . . , sN}.

Using (3.2) in (3.1) yields the Gaussian linear mixed model

y = Xβ + X̃Bγ + ϵ , ϵ ∼ N(0, σ2IN) . (3.3)

where y = (y(s1), y(s2), . . . , y(sN))T and ϵ = (ϵ(s1), ϵ(s2), . . . , ϵ(sN))T are N × 1

vectors of responses and errors, respectively, X is N×P with n-th row x(sn)T, X̃ is
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the N ×NP̃ block-diagonal matrix with (n, n)-th block x̃(sn)T, B = (B(s1)T, . . . ,

B(sN)T)T is NP̃ × HP̃ with B(sn) a block-diagonal P̃ × HP̃ matrix whose j-th

diagonal block is (Bj1(sn), . . . , BjH(sn)). The coefficient γ = (γT
1 , ..., γ

T
P̃

)T is HP̃×

1 with each γj = (γj1, . . . , γjH)T being H × 1. Bayesian methods for estimating

(3.3) typically employ a multivariate normal prior (Biller and Fahrmeir, 2001;

Huang et al., 2015) or its scale-mixture (discrete as well as continuous) variants

(Li et al., 2015; Bai et al., 2019) on γ.

Working with (3.3) will be expensive for large N . Instead, we consider data

compression or sketching using a random linear mapping to reduce the size of

the dataset from N to M observations. For this, we use M one-dimensional

linear mappings of the data encoded by an M × N compression matrix Φ with

M << N . This compression matrix is applied to y, X and X̃ to construct the

M × 1 compressed response vector yΦ = Φy and the matrices XΦ = ΦX and

X̃Φ = ΦX̃. We will return to the specification of Φ, which, of course, will be

crucial for relating the inference from the compressed data with the full model.

For now assuming that we have fixed Φ, we construct a Bayesian hierarchical

model for the compressed data

p(ψ, β, γ, σ2 | yΦ,Φ) ∝ p(ψ, σ2, β, γ) ×N(yΦ |XΦβ + X̃ΦBγ, σ
2IM) , (3.4)

where ψ denotes additional parameters specifying the prior distributions on either

γ or β. For example, a customary specification is

p(ψ, σ2, β, γ) =
P̃∏
i=1

IG(τ 2
i | aτ , bτ ) × IG(σ2 | aσ, bσ) ×N(β |µβ, Vβ) ×N(γ | 0,∆ψ) ,

(3.5)

where ψ = {τ 2
1 , ..., τ

2
P̃

} and ∆ is HP̃ × HP̃ block-diagonal with j-th block given

by τ 2
j IH , for j = 1, ..., P̃ . While (4.8) is a convenient choice for empirical in-
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vestigations due to conjugate full conditional distributions, our method applies

broadly to any basis function and any discrete or continuous mixture of Gaussian

priors on the basis coefficients. In applications where the associations among the

latent regression slopes is of importance, one could, for instance, adopt p(ψ, γ) =

IW (ψ | r,Ω) ×N(γ | 0, ψ) with ψ as the HP̃ ×HP̃ covariance matrix for γ. Our

current focus is not, however, on such multivariate models, so we do not discuss

them further except to note that (3.4) accommodates such extensions.

The likelihood in (3.4) is different from that by applying Φ to (3.3) because the

error distribution in (3.4) is retained as the usual noise distribution without any

effect of Φ. Hence, the model in (3.4) is a model analogous to (3.3) but applied

to the new compressed data set {yΦ, XΦ, X̃Φ}. Working with a Φ-transformed

model (3.3), where the distribution of the noise will be transformed according Φϵ,

will not deliver the computational benefits, and is somewhat detrimental to the

cause of data confidentiality (as in that case, the analyst need to know Φ) that

are provided by (3.4).

For specifying Φ we pursue the idea of data oblivious Gaussian sketching (Sar-

los, 2006), where we draw the elements of Φ = (Φij) independently from N(0, 1/N)

and fix them. The dominant computational operations for obtaining the sketched

data using Gaussian sketches is O(MN2P̃ ). While alternative computationally

efficient data oblivious options such as the Hadamard sketch (Ailon and Chazelle,

2009) and the Clarkson-Woodruff sketch (Clarkson and Woodruff, 2017) are avail-

able for Φ, it is less pertinent in Bayesian settings since computation time of (3.4)

far exceeds that for the sketching matrix. The compressed data serves as a surro-

gate for the Bayesian regression analysis with spatially varying coefficients. Since

the number of compressed records is much smaller than the number of records

in the uncompressed data matrix, spatial model fitting becomes computationally
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efficient and economical in terms of storage as well as the number of floating point

operations (flops). Importantly, original data are not recoverable from the com-

pressed data, and the compressed data effectively reveal no more information than

would be revealed by a completely new sample (Zhou et al., 2008). In fact, the

original uncompressed data does not need to be stored or accessed at any stage

in the course of the analysis.

3.1.1 Efficient Posterior Computation & Approximate Pre-

dictive Inference

In what follows, we discuss efficient computation offered by the data sketching

framework. With prior distributions on parameters specified as in (3.5), poste-

rior computation requires drawing Markov chain Monte Carlo (MCMC) samples

sequentially from the full conditional posterior distributions of γ|−, β|−, σ2|−

and τ 2
j |−, j = 1, . . . , P̃ . To this end, σ2|− ∼ IG(aσ + M/2, bσ + ||yΦ − XΦβ −

X̃ΦBγ||2/2), β|− ∼ N
(
(XT

ΦXΦ/σ
2 + I)−1

XT
Φ(yΦ − X̃ΦBγ)/σ2, (XT

ΦXΦ/σ
2 + I)−1)

and τ 2
j |− ∼ IG(aτ +H/2, bτ + ||γj||2/2) do not present any computational obsta-

cles. The main computational bottleneck lies with γ|−,

N

(BTX̃T
ΦX̃ΦB

σ2 + ∆−1
)−1

BTX̃T
Φ

(yΦ −XΦβ)
σ2 , (BTX̃T

ΦX̃ΦB/σ
2 + ∆−1)−1

 .
(3.6)

Efficient sampling of γ relies upon the Cholesky decomposition of the matrix(
BTX̃T

ΦX̃ΦB/σ
2 + ∆−1

)
and solves triangular linear systems to draw a sample

from (3.6). While numerically robust for small to moderately large H, computing

and storing the Cholesky factor of this matrix involves O((HP̃ )3) and O((HP̃ )2)

floating point operations, respectively (Golub and Van Loan, 2012). This results
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in computational and memory bottlenecks for a large number of basis functions,

which may be required to estimate the spatial surface with sufficient local varia-

tion.

To achieve computational efficiency, we adapt a recent algorithm proposed in

Bhattacharya et al. (2016) (in the context of ordinary linear regression with un-

compressed data and small sample size) to our setting: (i) draw γ̃1 ∼ N(0,∆) and

γ̃2 ∼ N(0, IM); (ii) set γ̃3 = X̃ΦBγ̃1/σ+ γ̃2; (iii) solve (X̃ΦB∆BTX̃T
Φ/σ

2 +IM)γ̃4 =

((yΦ −XΦβ) /σ − γ̃3); and (iv) set γ̃5 = γ̃1 + ∆BTX̃T
Φγ̃4/σ. The resulting γ̃5 is

a draw from the full conditional posterior distribution of γ. The computation is

dominated by step (iii), which comprises O(M3+M2HP̃ ). Finally, note that when

basis functions involve parameters, they are updated using Metropolis-Hastings

steps since no closed form full conditionals are generally available for them.

Predictive inference on y(s0) will proceed from the posterior predictive distri-

bution

E[p(y(s0) | yΦ, β, γ, σ
2)] =

∫
p(y(s0) | yΦ, β, γ, σ

2)p(β, γ, σ2 | yΦ,Φ)dβdγdσ2 ,

(3.7)

where E[·] is the expectation with respect to the posterior distribution in (3.4).

This is easily achieved by drawing y(s0)(l) ∼ N(∑P
p=1 xp(s0)β(l)

p +∑P̃
j=1 x̃j(s0)wj(s0)(l), σ2(l))

for each posterior sample {β(l), γ(l), σ2(l)} drawn from (3.4), where wj(s0)(l) is ob-

tained from γ(l) using (3.2) and l = 1, 2, . . . , L indexes the L (post-convergence)

posterior samples. The next section offers theoretical results related to the large

sample consistency of the posterior distribution from the compressed varying coef-

ficients model (3.4) and the posterior predictive distribution in (3.7) with respect

to the probability law for the uncompressed oracle model in (3.1).
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3.2 Posterior contraction from data sketching

3.2.1 Definitions and Notations

This section proves the posterior contraction properties of varying coefficients

under the proposed framework. In what follows, we add a subscript N to the

compressed response vector yΦ,N , compressed predictor matrix X̃Φ,N , dimension

of the compression matrix MN and the number of basis functions HN to indicate

that all of them increase with the sample size N . Naturally, the dimension of the

basis coefficient vector γ and the compression matrix Φ are also functions of N ,

though we keep this dependence implicit. Since we do not assume a functional

variable selection framework, we keep P fixed throughout, and not a function of

N . We assume that s1, ..., sN follow i.i.d. distribution G on D with G having

a Lebesgue density g, which is bounded away from zero and infinity uniformly

over D. The true regression function is also given by (3.1), with the true varying

coefficients w∗
1(s), ..., w∗

P̃
(s) belonging to the class of functions

Fξ(D) = {f : f ∈ L2(D) ∩ Cξ(D), ES [|f |] < ∞}, (3.8)

where L2(D) is the set of all square integrable functions on D, Cξ(D) is the class

of at least ξ-times continuously differentiable functions in D and ES denotes the

expectation under the density of g. The probability and expectation under the

true data generating model are denoted by P ∗ and E∗, respectively. For algebraic

simplicity, we make a few simplifying assumptions in the model. To be more

specific, we assume that β = 0 and σ2 = σ∗2 is known and fixed at 1. The first

assumption is mild since P does not vary with N and we do not consider variable

selection. The second assumption is also customary in asymptotic studies (Vaart

and Zanten, 2011). Furthermore, the theoretical results obtained by assuming σ2
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as a fixed value is equivalent to those obtained by assigning a prior with a bounded

support on σ2 (Van der Vaart et al., 2009).

For a vector v = (v1, ..., vN)T, we let || · ||1, || · ||2 and || · ||∞ denote the L1, L2

and L∞ norms, respectively, defined as ||v||2 = (∑N
n=1 v

2
n)1/2, ||v||1 = ∑N

n=1 |vn|

and ||v||∞ = maxn=1,..,N |vn|, respectively. The number of nonzero elements in a

vector is given by || · ||0. In the case of a square integrable function f(s) on D,

we denote the integrated L2−norm of f by ||f ||2 = (
∫

D f(s)2g(s)ds)1/2 and the

sup-norm of f by ||f ||∞ = sups∈D |f(s)|. Thus || · ||∞ and || · ||2 are used both

for vectors and functions, and they should be interpreted based on the context.

Finally, emin(A) and emax(A), respectively, represent the minimum and maximum

eigenvalues of the square matrix A. The Frobenius norm of the matrix A is

given by ||A||F =
√

tr(ATA). For two nonnegative sequences {aN} and {bN},

we write aN ≍ bN to denote 0 < lim infN→∞ aN/bN ≤ lim supN→∞ aN/bN < ∞.

If limN→∞ aN/bN = 0, we write aN = o(bN) or aN ≺ bN . We use aN ≲ bN or

aN = O(bN) to denote that for sufficiently large N , there exists a constant C > 0

independent of N such that aN ≤ CbN .

3.2.2 Assumption, Framework and Main Results

For simplicity, we assume ∆ = I and that the random covariates xp(s),

p = 1, ..., P follow distributions which are independent of the distribution of the

idiosyncratic error ϵ. We now state the following assumptions on the basis func-

tions, HN ,MN , covariates and the sketching or compression matrix.

(A) For any w∗
j (s) ∈ Fξ(D), there exists γ∗

j such that ||w∗
j−BT

j γ
∗
j ||∞ = sup

s∈D
|w∗

j (s)−∑HN
h=1 Bjh(s)γ∗

jh| = O(H−ξ
N ), for j = 1, ..., P̃ , and ||γ∗||22 ≺ M

1/(1+ξ)
N .

(B) N,MN , HN satisfy MN = o(N) and HN ≍ M
1/(2ξ+2)
N .
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(C) ||ΦΦT − IMN
||F ≤ C ′

√
MN/N , for some constant C ′ > 0, for all large N .

(D) The random covariate xp(s) are uniformly bounded for all s ∈ D, and w.l.g.,

|xp(s)| ≤ 1, for all p = 1, ..., P and for all s ∈ D.

(E) There exists a sequence κN such that ||X̃Φ,Nα||2 ≍ κN ||X̃Nα||2, such that

1 ≺ NκN ≺ MN for any vector α ∈ RNP̃ .

Assumption (A) holds for orthogonal Legendre polynomials, Fourier series, B-

splines and wavelets (Shen and Ghosal, 2015). Assumption (B) provides an upper

bound on the growth of MN and HN as a function of N . Assumption (C) is a

mild assumption based on the theory of random matrices and occurs with prob-

ability at least 1 − e−C′′MN when Φ is constructed using the Gaussian sketching

for a constant C ′′ > 0 (see Lemma 5.36 and Remark 5.40 of Vershynin (2010)).

Assumption (D) is a technical condition customarily used in functional regres-

sion analysis (Bai et al., 2019). Finally, Assumption (E) characterises the class

of feasible compression matrices, roughly explaining how the linear structure of

the columns of the original predictor matrix is related to that of the compressed

predictor matrix. Such an assumption is reasonable for the set of random com-

pression matrices for a sequence κN depending on N , MN and P̃ (Ahfock et al.,

2017).

Let w(s) = (w1(s), ..., wP̃ (s))T and w∗(s) = (w∗
1(s), ..., w∗

P̃
(s))T be the P̃ -

dimensional fitted and true varying coefficients. Let ∥w−w∗∥2 = ∑P̃
j=1 ∥wj −w∗

j∥2

denote the sum of integrated L2 distances between the true and the fitted varying

coefficients. Define the set CN =
{
w : ||w − w∗||2 > C̃θN

}
, for some constant C̃

and some sequence θN → 0 and MNθ
2
N → ∞. Further suppose πN(·) and ΠN(·)

are the prior and posterior densities of w with N observations, respectively. From

equation (3.2), the prior distribution on w is governed by the prior distribution
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on γ, so that the posterior probability of CN can be expressed as,

ΠN(CN |yΦ,N , X̃Φ,N) =
∫

CN f(yΦ,N |X̃Φ,N , γ)πN(γ)∫
f(yΦ,N |X̃Φ,N , γ)πN(γ)

,

where f(yΦ,N |X̃Φ,N , γ) is the joint density of yΦ,N under model (3.4). We begin

with the following important result from the random matrix theory.

Lemma 3.2.1. Consider the MN ×N compression matrix Φ with each entry being

drawn independently from N(0, 1/N). Then, almost surely

(
√
N −

√
MN − o(

√
N))2/N ≤ emin(ΦΦT) ≤ emax(ΦΦT) ≤ (

√
N +

√
MN + o(

√
N))2/N,

(3.9)

when both MN , N → ∞.

Proof. This is a consequence of Theorem 5.31 and Corollary 5.35 of Vershynin

(2010).

The inequalities in (3.9) is used to derive the following two results, which we

present as Lemma 3.2.2 and 3.2.3.

Lemma 3.2.2. Let P ∗ denote the true probability distribution of yN and f ∗(yΦ,N |γ∗)

denotes the density of yΦ,N (omitting explicit dependence on X̃Φ,N) under the true

data generating model. Define

AN =
{
y :

∫
{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)} πN(γ)dγ ≤ exp(−CMNθ

2
N)
}
. (3.10)

Then P ∗(AN) → 0 as MN , N → ∞ for any constant C > 0.

Proof. See Appendix A.
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Lemma 3.2.3. Let γ∗ be any fixed vector in the support of γ and let BN = {γ :

||γ−γ∗||2 ≤ C2wθNH
1/2
N } for some constant C2w > 0. Then there exists a sequence

ζN of random variables depending on {yΦ,N , XΦ,N} and taking values in (0, 1) such

that

E∗(ζN) ≲ exp(−MNθ
2
N) and sup

γ∈BcN
Eγ(1 − ζN) ≲ exp(−MNθ

2
N), (3.11)

where Eγ and E∗ denote the expectations under the distributions f(· | γ) and f ∗(· | γ∗),

respectively.

Proof. See Appendix A.

We use the above results to establish the posterior contraction result for the

proposed model.

Theorem 3.2.4. Under Assumptions (A)-(E), our proposed model (3.4) satisfies

maxj=1,...,P̃ supw∗
j∈Fξ(D) E∗ΠN(CN | yΦ,N , X̃Φ,N) → 0, as N,MN → ∞ and with the

posterior contraction rate θN ≍ M
−ξ/(2ξ+2)
N .

Proof. See Appendix A.

Since θN → 0 as N → ∞, the model consistently estimates the true varying

coefficients under the integrated L2-norm. Further, data compression decreases

the effective sample size from N to MN , hence, the contraction rate θN obtained

in Theorem 3.2.4 is optimal and adaptive to the smoothness of the true varying

coefficients. Our next theorem justifies the two-stage prediction strategy described

in Section 3.1.1.

Theorem 3.2.5. For any location s0 drawn randomly with the density g and corre-

sponding predictors x̃1(s0), . . . , x̃P̃ (s0), let fu be the predictive density p(y(s0) | x̃1(s0),

. . . , x̃P̃ (s0), w(s0)) derived from (3.1) without data compression. Let f ∗ be the
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true data generating model (i.e., (3.1) with w(s0) fixed at w∗(s0)). Given s0 and

x̃1(s0), . . . , x̃P̃ (s0), define h(fu, f ∗) =
∫
(
√
fu −

√
f ∗)2 as the Hellinger distance

between the densities fu and f ∗. Then

E∗EES [h(fu, f ∗) | X̃Φ,N , yΦ,N ] → 0, as N,MN → ∞, (3.12)

where ES , E and E∗ stand for expectations with respect to the density g, the

posterior density ΠN(·|X̃Φ,N , yΦ,N) and the true data generating distribution, re-

spectively.

Proof. See Appendix A.

The theorem states that the predictive density of the VCM model in (3.1) is

arbitrarily close to the true predictive density even when we plug-in inference on

parameters from (3.4).

3.3 Simulation Results

3.3.1 Inferential performance

We empirically validate our proposed approach using (3.4), henceforth ab-

breviated as geoS, by comparing its inferential performance and computational

efficiency with the uncompressed model (3.3) on some simulated data. We sim-

ulate data by using a fixed set of spatial locations s1, . . . , sN that were drawn

uniformly over the domain D = [0, 1] × [0, 1]. We set P̃ = P = 3 and assume

β = 0, i.e., all predictors have purely space-varying coefficients. We set x̃1(si) = 1,

for all i = 1, . . . , N , while the values of x̃j(s1), . . . , x̃j(sN) for j = 2, 3 were set to

independently values from N(0, 1). For each n = 1, . . . , N , the response y(sn) is

drawn independently from N(w∗
1(sn)+w∗

2(sn)x̃2(sn)+w∗
3(sn)x̃3(sn), σ∗2) following
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(3.3), where σ∗2 is set to be 0.1. The true space-varying coefficients (w∗
j (s)s) are

simulated from a Gaussian process with mean 0 and covariance kernel C(·, ·; θj),

i.e., (w∗
j (s1), ..., w∗

j (sN))T is drawn from N(0, C∗(θj)), for each j = 1, . . . , P̃ , where

C∗(θj) is an N × N matrix with the (n, n′)th element C(sn, sn′ ; θj). We set the

covariance kernel C(·, ·; θj) to be the exponential covariance function given by

C(s, s′; θj) = δ2
j exp

{
−1

2

(
||s− s′||
ϕj

)}
, j = 1, 2, 3, (3.13)

with the true values of δ2
1, δ

2
2, δ

2
3 set to 1, 0.8, 1.1, respectively. We fix the true

values of ϕ1, ϕ2, ϕ3 at 1, 1.25, 2, respectively.

While fitting geoS and its uncompressed analogue (3.3), the varying coefficients

are modelled through the linear combination ofH basis functions as in (3.2), where

these basis functions are chosen as the tensor-product of B-spline bases of order

q = 4 (Shen and Ghosal, 2015). More specifically, for s = (s(1), s(2)), the j-th

varying coefficient is modelled as

wj(s) =
H1∑
h1=1

H2∑
h2=1

B
(1)
jh1(s(1))B(2)

jh2(s(2))γjh1h2 , (3.14)

where the marginal B-splines B(1)
jh1 , B(2)

jh2 are defined on sets of H1 and H2 knots,

respectively. The knots are chosen to be equally-spaced so the entire set of H =

H1H2 knots is uniformly spaced over the domain D. We complete the hierarchical

specification by assigning independent IG(2, 0.1) priors (mean 0.1 with infinite

variance) for σ2 and τ 2
j for each j = 1, . . . , P .

We implemented our models in the R statistical computing environment on a

Dell XPS 13 PC with Intel Core i7-8550U CPU @ 4.00GHz processors at 16 GB of

RAM. For each of our simulation datasets we ran a single-threaded MCMC chain

for 5000 iterations. Posterior inference was based upon 2000 samples retained
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after adequate convergence was diagnosed using Monte Carlo standard errors and

effective sample sizes (ESS) using the mcmcse package in R. All source codes for

these experiments are available from https://github.com/LauraBaracaldo/Baye

sian-Data-Sketching-in-Spatial-Regression-Models.

Table 3.1 summarises the estimates of varying coefficients and the predictive

performance for geoS in comparison to the uncompressed model. We applied these

models to data generated with N = 5000 (case 1) and N = 10000 (case 2). For

both cases the compressed dimension is taken to be M ≈ 10
√
N which seems to

be effective from empirical considerations in our simulations. We provide further

empirical justification for this choice in Section 3.3.2. Our geoS approach com-

presses the sample sizes to M = 700 and M = 1000 in cases 1 and 2, respectively.

The number of fitted basis functions in cases 1 & 2 are H = 225, 256, respectively.

Figures 3.1 and 3.2 present the estimated varying coefficients by geoS and the

uncompressed data model for cases 1 and 2, respectively. These figures reveal

similar point estimation offered by geoS and the uncompressed model. The mean

squared error of estimating varying coefficients, defined as ∑3
j=1

∑N
n=1(ŵj(sn) −

w∗
j (sn))2/(3N) (where ŵj(sn) is the posterior median of wj(sn)), also confirms

very similar point estimates offered by the compressed and uncompressed models

(see Table 3.1). Further, geoS offers close to nominal coverage for 95% credible

intervals for varying coefficients, with little wider credible intervals compared to

uncompressed data model. This can be explained by the smaller sample size for

the geoS model, though the difference turns out to be minimal. We also carry out

predictive inference using geoS (Section 3.1.1). Table 3.1 presents mean squared

predictive error (MSPE), average length and coverage for the 95% predictive in-

tervals, based on N∗ = 500 out of the sample observations. We find geoS delivers

posterior predictive estimates and predictive coverage that are very consistent
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with the uncompressed model, perhaps with marginally wider predictive intervals

than those without compression.

Finally, the computational efficiency of both models are computed based on the

metric log2(ESS/Computation Time), where ESS denotes the effective sample

size averaged over the MCMC samples of all parameters. We find geoS is almost

270% and 223% more efficient than the uncompressed model for N = 5, 000 and

N = 10, 000, respectively, while delivering almost indistinguishable substantive

inference on the spatial effects.

N = 5000, H = 225 N = 10000, H = 256
(geoS) M = 700 Uncompressed (geoS) M = 1000 Uncompressed

MSE (SVC) 0.0474 0.0168 0.0429 0.0178
95% CI length 0.8368 0.6182 0.7222 0.5531
95% CI Coverage 0.9448 0.9322 0.9153 0.9026
MSPE 0.2574 0.1833 0.2283 0.1605
95% PI length 1.9717 1.5168 1.8613 1.5148
95% PI coverage 0.936 0.925 0.954 0.930
Computation efficiency 2.2050 0.8079 0.9755 0.4356

Table 3.1: Results for simulation cases 1 & 2 for the compressed geoS and
uncompressed models. Mean Squared Error (MSE), length and coverage of 95%
CI for the spatially varying coefficients. We also present mean squared prediction
error (MSPE), coverage and length of 95% predictive intervals for the competing
models. Computation efficiency for the geoS with the uncompressed data model
is also recorded.

3.3.2 Choice of the dimension of the compression matrix

We present investigations into the choice of the appropriate compression ma-

trix size M . For simulated data with sample size N = 10000, we ran our model

for different values of M = k
√
N , k = 1, . . . , 20. Figure 3.3 shows the variations

in point-wise and interval prediction reflected in the MSPE and 95% predicted

interval coverage and length, respectively. Unsurprisingly, as M increases the

MSPE drops with a diminished rate of decline until the k ∼ 10. In terms of in-
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Figure 3.1: Simulation case 1: (N,H) = (5000, 225). Two-dimensional true and
predicted surfaces over the unit square D = [0, 1] × [0, 1]. First row corresponds
to the surfaces of true space-varying coefficients β∗

p(s), p = 1, 2, 3. Rows 2 and
3 correspond to the predicted 50% quantile surfaces for the uncompressed and
compressed geoS models respectively.
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Figure 3.2: Simulation case 2: (N,H) = (10000, 256). Two-dimensional true and
predicted surfaces over the unit square D = [0, 1] × [0, 1]. First row corresponds
to the surfaces of true space-varying coefficients β∗

p(s), p = 1, 2, 3. Rows 2 and
3 correspond to the predicted 50% quantile surfaces for the uncompressed and
compressed geoS models respectively.
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terval prediction, predictive coverage seems to oscillate within the narrow interval

(0.9, 0.97) for all values of M , but the length of the predictive interval improves

as M increases and starts to stabilise at around k ∼ 10. We observe that the

choice of M ∼ 10
√
N leads to good performance across various simulations and

real data analysis.

(a) (b)

Figure 3.3: (a) MSPE, (b) 95% predictive interval coverage and length for dif-
ferent choices of M

3.4 Vegetation Data Analysis

We implement geoS to analyse vegetation data gathered through the Moderate

Resolution Imaging Spectroradiometer (MODIS), which resides aboard the Terra

and Aqua platforms on NASA spacecrafts. MODIS vegetation indices, produced

on 16-day intervals and at multiple spatial resolutions, provide consistent infor-

mation on the spatial distribution of vegetation canopy greenness, a composite

property of leaf area, chlorophyll and canopy structure. The variable of interest

will be the Normalised Difference Vegetation Index (NDVI), which quantifies the

relative vegetation density for each pixel in a satellite image, by measuring the

difference between the reflection in the near-infrared spectrum (NIR) and the red

46



light reflection (RED): NDV I = NIR−RED
NIR+RED . High NDVI values, ranging between

0.6 and 0.9 indicate high density of green leaves and healthy vegetation, whereas

low values, 0.1 or below, correspond to low or absence of vegetation as in the

case of urbanised areas. When analysed over different locations, NDVI can reveal

changes in vegetation due to human activities such as deforestation and natural

phenomena such as wild fires and floods.

Our analysis will be focused on geographical data that was mapped on a si-

nusoidal (SIN) projected grid, located on the western coast of the United States,

more precisely zone h08v05, between 30◦N to 40◦N latitude and 104◦W to 130◦W

longitude (see Figure 3.4(a)). The data set, which was downloaded using the R

package MODIS, comprises 133, 000 observed locations where the response was

measured through the MODIS tool over a 16-day period in April, 2016. We re-

tained N = 113, 000 observations (randomly chosen) for model fitting and held

out the rest for prediction. In order to fit (3.1), we set y(sn) to be the transformed

NDVI (log(NDV I) + 1), P = P̃ = 2 and consider the P × 1 vector of predictors

that includes an intercept and a binary index of urban area, both with fixed ef-

fects and spatially varying coefficients, i.e., x(sn) = x̃(sn) = (1, x2(sn))T, with

x2(sn) = 1U(sn), where U denotes an urban area.

As in Section 3.3, we fit geoS with M ∼ 10
√
N = 2300 and its uncompressed

counterpart (4.3), by modelling the varying coefficients through a linear combina-

tion of basis functions constructed using the tensor-product of B-splines of order

q = 4 as in (4.12). We set the number of knots H = H1H2 = 392 = 1521 to

be uniformly distributed over the domain D, which results in HP = 3042 ba-

sis coefficients γjh that are estimated. Specification of priors are identical to the

simulation studies for σ2, and τ 2
j , j = 1, ..., P ; for βj, j = 1, ..., P we set a flat

prior.
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We ran an MCMC chain for 5000 iterations and retained 2000 samples for

posterior inference after adequate convergence was diagnosed. The posterior mean

of β1 and β2, along with their estimated 95% credible intervals corresponding

to geoS and the uncompressed model are presented in Table 3.2. Additionally,

Table 3.2 offers predictive inference from both competitors based on N∗ = 20, 000

test observations. According to both models there is a global pattern of relatively

low vegetation density for areas with positive urban index as the estimated slope

coefficient β2 is negative in the compressed geoS and in the uncompressed models.

In terms of point prediction and quantification of predictive uncertainty, the two

competitors offer practically indistinguishable results, as revealed by Table 3.2.

Further, Figure 3.4 shows that the 2.5%, 50% and 97.5% quantiles for the posterior

predictive distribution are almost identical for the two competitors across the

spatial domain, with the exception of neighbourhoods around locations having

lower NDVI values. Notably, geoS offers nominal coverage for 95% prediction

intervals, even with a significant reduction in the sample size from N = 113, 000

toM = 2300. Data sketching to such a scale considerably reduces the computation

time, leading to a much higher computation efficiency of geoS in comparison with

its uncompressed analogue.

(geoS) M = 2300 Uncompressed
β1 0.222 (0.212, 0.230) 0.229 (0.219, 0.237)
β2 -0.060 (-0.074, -0.047) -0.071 (-0.082, -0.059)

MSPE 0.00327 0.00276
95% PI length 0.23445 0.22136

95% PI coverage 0.95250 0.95411
Computation efficiency 3.5424 0.46901

Table 3.2: Median and 95% credible interval of β1, β2 for geoS and its uncom-
pressed analogue are presented for the Vegetation data analysis. We also present
MSPE, coverage and length of 95% predictive intervals for the competing models.
Computational efficiency for the two competing models are also provided.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 3.4: Coloured NDVI images of western United States (zone h08v05). (a)
Satellite image: MODIS/Terra Vegetation Indices 16-Day L3 Global 1 km SIN
Grid - 2016.04.06 to 2016.04.21; (b) True NDVI surface (raw data). Figures (c),
(d) & (e) present NVDI predicted 50%, 2.5% and 97.5% quantiles for the geoS
model. Figures (f), (g) & (h) present NVDI Predicted 50%, 2.5% and 97.5%
quantiles for the uncompressed model.

49



3.5 Summary

We have developed Bayesian sketching for spatially oriented data using spatial

regression models. The method achieves dimension reduction by compressing the

data using a random linear transformation. The approach is different to the

prevalent methods for large spatial data in that no new models or algorithms

need to be developed since those available for existing spatially varying regression

models can be directly applied to the compressed data. We establish attractive

concentration properties of the posterior and posterior predictive distributions

and empirically demonstrate the effectiveness of this method for analysing large

spatial data sets. Access to the values of the response and predictors in the full

data are not required at stage of inference, which preserves data confidentiality

should that be of concern in the application.
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Chapter 4

Distributed Bayesian Inference

with Sketched Data

This chapter extends the data sketching idea proposed in Chapter 3 to develop

a distributed inferential framework using Bayesian data sketching for simultane-

ous variable selection and estimation of varying coefficients in a spatially varying

coefficient model with large spatial data. As discussed in Chapter 3, the core

to data sketching is the usage of random compression matrices, which are em-

ployed to compute random linear transformations of the original data to produce

a much smaller number of transformed data samples. Model fitting and inference

is performed with the transformed data. While data sketching has an extensive

literature in machine learning (please see the introduction of Chapter 3), to the

best of our knowledge, this chapter is the first to study data sketching for effi-

cient Bayesian inference in functional estimation and variable selection for varying

coefficient models with large spatial data.

For this chapter, we consider (3.1) to describe relationship between response

and predictors with all predictors are assumed to have spatially varying coefficients

(P̃ = P ). This assumption is consistent with the recent literature on spatial
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variable selection (Bai et al., 2019). Thus the model can be written as

y(s) =
P∑
j=1

xj(s)βj +
P∑
j=1

xj(s)wj(s) + ϵ(s) = x(s)Tβ + x(s)Tw(s) + ϵ(s) , (4.1)

where y(s) ∈ Y ⊆ R (s ∈ D ⊆ R2) is the spatially varying response function

and x1(s), ..., xP (s) ∈ X ⊆ R are possibly spatially varying predictors, with the

P×1 vector β = (β1, ..., βP )T representing the vector of spatially static coefficients

corresponding to the P predictors, w(s) = (w1(s), w2(s), . . . , wP (s))T corresponds

to the P × 1 vector of spatially varying regression coefficients which capture non-

linear dependence of the response function on the covariates, and ϵ(s) iid∼ N(0, σ2)

captures measurement error variation at location s. The SVCM setup in (4.1) has

advantages over its peers in the literature. For example, the varying coefficients

w(s) provide a more flexible and realistic modeling of responses with spatial in-

dices (see, e.g., Gelfand et al., 2003; Wheeler and Calder, 2007; Finley et al., 2011;

Guhaniyogi et al., 2013; Kim and Wang, 2021, and references therein), so they

perform better in practice than fitting deterministic trends in covariates, such

as polynomial regression (Gelfand et al., 2003). Customary geostatistical regres-

sion models with only a spatially-varying intercept emerge if the first column of

x(s) is the intercept and P = 1. Spatially-varying coefficient models also offer a

process-based alternative to widely used geographically weighted regression (see,

e.g., Brunsdon et al., 1996) for modelling nonstationary behaviour in the mean.

Chapter 3 provides a detailed review of varying coefficient models.

This chapter offers a novel inferential framework to address spatial variable

selection with massive data. Our approach does not entail development of new

class of models and approximations, rather we propose a three-stage framework

that can be applied on well-established and well-tested models to enhance their

scalability by multiple folds. The outline of our framework is as follows. First,

52



we construct a number of (say, K) random matrices each of dimensions M × N ,

where N is the sample size and M << N , and construct K compressed response

vectors and predictor matrices by pre-multiplying the original response vector and

predictor matrix by each random matrix. Second, posterior inference is drawn on

varying coefficients after fitting a Bayesian SVCM, aided with a variable selection

architecture, to the K compressed data in parallel. The K posterior distributions

of model parameters computed in this manner are referred to as the “sketched pos-

teriors." To reduce sensitivity on inference due to the choice of a random matrix in

the second stage, the third stage computes Wasserstein barycenter of sketched pos-

teriors for model parameters to derive “sketched pseudo posterior", that replaces

the computationally expensive full data posterior distribution. For our exposi-

tion, we model the varying coefficients using basis expansions (Wikle, 2010; Wang

et al., 2008; Wang and Xia, 2009; Bai et al., 2019) while computing the sketched

posterior in the second stage, as it offers the most popularly used technique for

variable selection in functional regressions.

Our proposal bears connection with the growing literature on divide-and-

conquer Bayesian inference with large spatial datasets (Guhaniyogi and Banerjee,

2018; Guhaniyogi et al., 2020b,a). This literature advocates dividing the data into

a large number of subsets, fits a spatial model, e.g., an SVCM with each data sub-

set, followed by aggregating subset posteriors through a measure of centrality on

the space of distributions, such as their Wasserstein barycenter. Chapter 2 offers

detailed description of the recently emerging divide-and-conquer methodology in

Bayesian inference. Construction of data subsets is an important ingredient to this

framework as it has been demonstrated that the resulting inference is somewhat

sensitive to the choice of data subsetting strategy, see Guhaniyogi et al. (2020b)

for a discussion on this topic with an empirical illustration of the issue. While our
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proposal follows a similar three-step strategy, it bypasses the construction of data

subsets through the usage of random compression matrices and addresses the sen-

sitivity to the choice of random matrices by computing the Wasserstein barycenter

of sketched posteriors. The proposed framework is significantly different from a

few recent articles (Maillard and Munos, 2009; Fard et al., 2012; Guhaniyogi and

Dunson, 2015, 2016) where the main objective is to facilitate efficient computation

using random compression matrices in ordinary high-dimensional regression with

small sample and large number of predictors.

Our novel contributions to the literature on spatially varying coefficient models

are twofold. Methodologically, the main innovations are developing a three-stage

inferential framework to accomplish variable selection and functional estimation

for big spatial data. No restrictive data- or model-specific assumptions (e.g., the

independence between data subsets or independence between blocks of parame-

ters) and new algorithmic or software development are adopted and the framework

still allows principled Bayesian inference on varying coefficients. The proposal also

has an attractive feature of preserving confidentiality of response and predictor

vectors, as the analysts can only be supplied with the compressed data which

are much lower-dimensional and does not allow recovering the full uncompressed

data.

The rest of the chapter proceeds as following. Section 4.1 discusses the frame-

work for spatial variable selection in spatially varying coefficient models. Sec-

tion 4.2 outlines the three stage distributed Bayesian framework for Bayesian im-

plementation of SVCMs endowed with a functional variable selection architecture.

Section 4.3 and Section 4.4 demonstrate performance of the proposed approach

with simulation examples and a remote sensing data analysis, respectively. Fi-

nally, Section 4.5 summarizes our contribution in this chapter.
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4.1 Bayesian Compressed Spatially Varying Co-

efficient Models

To illustrate our approach, we adopt the basis representation for the spatially

varying coefficients wj(s) in (4.1). More specifically, each wj(s) assumes a basis

representation with respect to H basis functions, given by,

wj(s) =
H∑
h=1

Bjh(s)γjh , j = 1, ..., P. (4.2)

Each Bjh(s) is a basis function evaluated at location s for h = 1, ..., H, and γjh’s

are the corresponding basis coefficients. Detailed discussion on the choice of basis

functions is available in Section 3.1 of Chapter 3.

Suppose y(si) and x(si) represent the data observed at the ith location si,

i = 1, ..., N . Let y be the N dimensional response vector with its ith entry as

y(si), X be an N × P dimensional matrix with its ith row as x(si)T and X̃ be

an N ×NP dimensional block-diagonal matrix with its (i, i)th diagonal block as

x(si)T . Using (4.2) in (4.1) yields the Gaussian linear mixed model

y = Xβ + X̃Bγ + ϵ , ϵ ∼ N(0, σ2IN) . (4.3)

where B = (B(s1)T, . . . , B(sN)T)T is NP ×HP with B(sn) a block-diagonal P ×

HP matrix whose j-th diagonal block is (Bj1(sn), . . . , BjH(sn)). The coefficient

γ = (γT
1 , ..., γ

T
P )T is HP × 1 with each γj = (γj1, . . . , γjH)T being H × 1.

To determine which predictors are influential in explaining the response, we

assign a block spike-and-slab mixture prior (Ishwaran and Rao, 2005; Li et al.,
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2015; Bai et al., 2019) to the basis coefficients corresponding to each predictor,

(βj, γT
j )T|τ 2

j
ind.∼ (1 − π0)N(0, σ2τ 2

j IH+1) + π0δ0,

τ 2
j
i.i.d.∼ Gamma

(
H + 1

2 ,
θ2

2

)
, π0 ∼ Beta(aπ0 , bπ0),

θ2 ∼ Gamma(aθ, bθ), (4.4)

where δ0 is the Dirac-delta function at 0, and the parameter π0 corresponds to

the probability of the zero mixture component. Note that if the jth predictor

is not influential in predicting the response then, a-posteriori, (βj, γT
j )T should

have a high probability being 0. Thus, based on the posterior probability of

the event {(βj, γT
j )T = 0}, it will be possible to identify unimportant spatial

predictors in the regression. The beta prior distribution on π0 ensures multi-

plicity correction in the variable selection framework (Scott and Berger, 2010).

With prior distribution on γ set as a Gaussian scale-mixture distribution from

the class of distributions given by (4.4), posterior computation using a blocked

Metropolis-within-Gibbs algorithm cycles through updating the full conditional

distributions: (a) (βT, γT)T|λ, σ, τ, π0, θ, (b) λ|β, γ, σ, τ, π0, θ, (c) σ|λ, β, γ, τ, π0, θ,

(d) τ |λ, β, γ, σ, π0, θ, (e) π0|λ, β, γ, σ, τ, θ and (f) θ|λ, β, γ, σ, τ, π0 . While updating

(b), (c) (d),(e) and (f) do not face any computational challenge due to big N or

P , full conditional posterior updating of (βT, γT)T|λ, σ, τ has the form given by

(1 − π̃0)N
((
X̃T
BX̃B + ∆−1

)−1
X̃T
By, σ

2(X̃T
BX̃B + ∆−1)−1

)
+ π̃0δ0, (4.5)

where X̃B = [X : X̃B] is anN×(H+1)P matrix, ∆ = σ2diag(τ 2
1 , ..., τ

2
P , τ

2
1 IH , .., τ

2
P IH),

and π̃0 = π0N(y|0, σ2IN)/{π0N(y|0, σ2IN) + (1 − π0)N(y|0, σ2(IN + X̃B∆X̃T
B))}

(N(y|µ,Σ) represents a normal density with mean µ and covariance matrix Σ).
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The most efficient algorithm to sample from (βT, γT)T (Rue, 2001) computes

Cholesky decomposition of
(
X̃T
BX̃B + ∆−1

)
and employs the Cholesky factor to

solve a series of linear systems to draw a sample from (4.5). In absence of any eas-

ily exploitable structure, computing and storing the Cholesky factor of this matrix

involves O((H+1)3P 3) and O((H+1)2P 2) floating point operations, respectively

(Golub and Van Loan, 2012), which leads to computational and storage bottle-

necks with a large P , N and H. The next section proposes a three-step framework

for efficient inference on varying coefficients.

4.2 Efficient Three-Step Bayesian Inference with

Data Sketching

4.2.1 First step: construction of multiple sketched datasets

We construct K matrices Φ1, ...,ΦK , each of dimensions M×N , where M ≤ N

and each entry of Φk is drawn randomly from a distribution G(·). We adopt

the similar choice of G(·) as in Chapter 3 wherein each entry of Φk is drawn

from N(0, 1/N). A desirable choice of M depends on the smoothness of the spa-

tially varying coefficients and the number of unimportant predictors. K is chosen

moderately large, typically of the order of ∼ 20. Each compression matrix, say

Φk, k = 1, ..., K, is applied to y and X̃B to construct the compressed response

vector yΦk = Φky of dimensions M × 1 and the compressed predictor matrix

X̃B,Φk = ΦkX̃B of dimensions M × (H + 1)P . The compressed response vectors

and predictor matrices will be used as surrogates to the uncompressed data for

efficient model fitting of (4.3).
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4.2.2 Second step: construction of sketched posteriors

With the kth compressed data {yΦk , X̃B,Φk}, we propose to fit the varying

coefficient model (4.3) as in Chapter 3,

yΦk = X̃B,Φk(βT, γT)T + ϵ̃ , ϵ̃ ∼ N(0, σ2IM), k = 1, ..., K. (4.6)

In order to fit model (4.6), the analyst only needs to be supplied with the com-

pressed data. The original predictor matrix X̃B is not possible to recover from

X̃B,Φk = ΦkX̃B, since the system of equations are grossly under-determined (even

if ΦK is known), as M << N .

The hierarchical Bayesian model constructed from (4.6) takes the form

p(τ, β, γ, σ2, λ, π0, θ | yΦk , X̃B,Φk) ∝ p(τ, σ2, β, γ, λ, π0, θ)

×N(yΦk | X̃B,Φk(βT, γT)T, σ2IM) , (4.7)

where λ has already been defined earlier as the parameters used to specify the

basis functions, if any. In our context, we have

p(τ, σ2, β, γ, λ, π0) =
P∏
i=1

{(1 − π0)N((βT
i , γ

T
i )T | 0, σ2τ 2IH+1)I[(βT

i , γ
T
i )T ̸= 0] + π0δ0}

×
P∏
i=1

Gamma

(
τ 2
i | H + 1

2 ,
θ2

2

)
×Beta(π0|aπ0 , bπ0)

× IG(σ2 | aσ, bσ) ×Gamma(θ2|aθ, bθ) × p(λ) , (4.8)

The quantity p(τ, σ2, β, γ, λ, π0, θ | yΦk , X̃B,Φk) represents posterior distribution of

the parameters given a specific compressed/sketched data, and is referred to as

the “sketched posterior” distribution of the parameters.

Sketched posterior specified as in (4.8) leads to computational benefits over the
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full data posterior of the parameters. To see this, note that the posterior compu-

tation requires drawing Markov chain Monte Carlo (MCMC) samples sequentially

from the full conditional posterior distributions of (a) (βT, γT)T|λ, τ, σ, π0, θ, (b)

σ2|β, γ, λ, τ, π0, θ, (c) λ|τ, σ, β, γ, π0, θ, (d) π0|τ, σ, β, γ, λ, θ, (e) τ 2
j |λ, β, γ, σ, π0, θ

and θ2|τ, λ, β, γ, σ, π0, j = 1, . . . , P . To this end, we have the following form of

the full conditionals,

σ2|− ∼ IG(aσ +M/2 + (H + 1)P ∗/2,

bσ + ||yΦk − X̃B,Φk(βT, γT)T||2/2 +
P∑
j=1

||(βj, γT
j )||2/(2τ 2

j ))

τ 2
j |− ∼ Gamma((H + 1)/2, θ2/2), if (βj, γTj )T = 0

1/τ 2
j |− ∼ Inv −Gaussian(θσ/||(βj, γT

j )||, θ2) if (βj, γTj )T ̸= 0

θ2|− ∼ Gamma(P (H + 1)/2 + aθ,
P∑
j=1

τ 2
j /2 + bθ)

π0|− ∼ Beta(aπ0 + P0, bπ0 + P − P0)

Where P ∗ is the number of nonzero (βj, γT
j ) ̸= 0, and P0 = P−P ∗. The compu-

tational challenges are presented by the full conditional distribution of (βT, γT)T,

which is given by


N
((
X̃T
B,ΦkX̃B,Φk + ∆−1

)−1
X̃T
B,ΦkyΦk , σ

2(X̃T
B,ΦkX̃B,Φk + ∆−1)−1

)
w.p. (1 − π̃Φk,0)

0 w.p. π̃Φk,0,

(4.9)

where π̃Φk,0 = π0N(yΦk |0, σ2IM)/{π0N(yΦk |0, σ2IM) + (1 − π0)N(yΦk |0, σ2(IM +

X̃B,Φk∆X̃T
B,Φk))}. Computing π̃Φk,0 only requires Cholesky decomposition of the

matrix (IM + X̃B,Φk∆X̃T
B,Φk), incurring ∼ M3 floating point operations and is
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efficient as M << min(N,P ). To achieve computational efficiency in drawing

(βT, γT)T jointly from the distribution

N
((
X̃T
B,ΦkX̃B,Φk + ∆−1

)−1
X̃T
B,ΦkyΦk , σ

2(X̃T
B,ΦkX̃B,Φk + ∆−1)−1

)
, we adapt a re-

cent algorithm proposed in Bhattacharya et al. (2016) (in the context of ordinary

linear regression with uncompressed data and small sample size) to our setting.

More specifically, we follow the steps given as here: (i) draw γ̃1 ∼ N(0,∆) and

γ̃2 ∼ N(0, IM); (ii) set γ̃3 = X̃B,ΦkBγ̃1/σ + γ̃2; (iii) solve (X̃B,Φk∆X̃T
B,Φk/σ

2 +

IM)γ̃4 = (yΦk/σ − γ̃3); and (iv) set γ̃5 = γ̃1 + ∆X̃T
B,Φγ̃4/σ. The resulting γ̃5 is

a draw from the full conditional posterior distribution of γ. The computation is

dominated by step (iii), which incurs ∼ (M3 + M2(H + 1)P ) floating point op-

erations. Finally, note that when basis functions involve parameters λ, they are

updated using Metropolis-Hastings steps since no closed form full conditionals are

generally available for them.

Predictive inference on y(s0), where s0 is a new location, will proceed from the

sketched posterior predictive distribution induced from the sketched posterior of

parameters, given by

p(y(s0) | yΦk , X̃B,Φk) =
∫
p(y(s0) | yΦk , X̃B,Φk , β, γ, σ

2, λ, π0)p(β, γ, σ2, λ, π0 | yΦk , X̃B,Φk)

d(β, γ, σ2, λ, π0). (4.10)

Samples are drawn from the sketched posterior predictive distribution using com-

position sampling. To elaborate on it, for each post burn-in posterior sam-

ples {β(l), γ(l), σ2(l), λ(l), π
(l)
0 }, we draw a sample y(s0)(l) ∼ N(∑P

j=1 xj(s0)β(l)
j +∑P

j=1 xj(s0)wj(s0)(l), σ2(l)) from the SVCM model (4.1), where wj(s0)(l) is obtained

from γ(l) and λ(l) using (4.2) and l = 1, 2, . . . , L indexes the L post burn-in pos-

terior samples. The samples {y(s0)(1), ..., y(s0)(L)} constitute post-convergence

MCMC samples from the sketched posterior predictive distribution.
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4.2.3 Third step: construction of sketched pseudo poste-

rior

The sketched posteriors are combined following the notion of Wasserstein

barycenter, as defined and discussed in Section 1.1 of Chapter 1. In the context

of our framework, we consider ν1, ..., νK as the sketched posteriors corresponding

to the random matrices Φ1, ...,ΦK , respectively, i.e., νk = p(θ|yΦk , XB,Φk), where

θ is a function of model parameters. We define the “sketched pseudo posterior"

as the Wasserstein barycenter ν as in (1.1), which provides a general notion of

obtaining the mean of K possibly dependent sketched posterior distributions in

the space of distributions. While the posterior p(θ|y,X) obtained from the un-

compressed data are analytically intractable and computationally prohibitive, it

is well approximated by the sketched pseudo posterior. Given that the MCMC

samples of θ from sketched posteriors are available from the second step, one can

conveniently estimate the empirical version of the sketched pseudo posterior fol-

lowing the algorithm outlined in Section 1.1 to compute Wasserstein barycenter

of the posterior distributions of one-dimensional parameters. More specifically,

if θ is one-dimensional and θk,q denotes the q-th empirical quantile of θ obtained

from νk, k = 1, ..., K, then θq = (1/k)∑Q
q=1 θk,q, q = 1, ..., Q, denotes the qth

empirical quantile of ν = p(θ). We choose Q = 104 and compute quantiles on an

equi-spaced grid of size Q on (0, 1). To draw predictive inference at a new location

s0, we consider νk = p(y(s0) | yΦk , X̃B,Φk) as the sketched posterior predictive dis-

tribution (4.7) and draw samples from the Wasserstein barycenter of the sketched

posterior predictive distributions, following the same strategy as outlined above.

The three-step approach to construct the sketched pseudo posterior closely

resembles the construction of “meta posterior" in the recent literature on divide-

and-conquer Bayesian inference with large spatial data (Guhaniyogi and Banerjee,
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2018; Guhaniyogi et al., 2020b,a) with an important difference. The current liter-

ature on divide-and-conquer inference in spatial models allows users to construct

the data subsets. Empirical investigation in this literature reveals that the in-

ference is somewhat sensitive to the choice of data subsets (Guhaniyogi et al.,

2020b). In contrast, our approach constructs multiple randomly linear transfor-

mation of the original data and reduces sensitivity of inference to the choice of the

random linear transformations by computing Wasserstein barycenter of sketched

posteriors. The remaining sections will empirically justify our proposed approach

with simulation studies and a real data analysis.

4.3 Simulation Results

4.3.1 Inferential performance

This section empirically illustrates sketched pseudo posterior, by comparing its

inferential and predictive performance, along with computational efficiency with a

number of competitors on simulated data. To simulate the data, a fixed set of spa-

tial locations s1, . . . , sN are drawn uniformly over the domain D = [0, 1]×[0, 1] and

the number of spatially varying predictors is fixed at P = 20. For all i = 1, ..., N ,

we set x1(si) = 1, and simulate xj(si) for j = 2, ..., P independently from N(0, 1).

To facilitate performance of our approach as a tool to spatial variable selection,

we introduce sparsity in the data generation scheme. Specifically, out of P = 20

predictors, only the first P ∗ = 3 spatially varying predictors are assumed to be

related to the response. Since our main focus is on the estimation of purely spa-

tially varying predictor coefficients, our data generation scheme assumes that all

nonzero predictor coefficients are purely spatially varying, i.e., β = 0 in the truth.

Hence the response y(si) is drawn independently from N(∑P ∗

j=1 xj(si)w∗
j (si), σ∗2)

62



following (4.1), where σ∗2 is set to be 0.1. The true spatially varying coefficients

(w∗
j (s), j = 1, . . . , P ∗) are simulated from a Gaussian process with mean 0 and

covariance kernel C(·, ·; θj), i.e., (w∗
j (s1), ..., w∗

j (sN))T is drawn from N(0, C∗(θj)),

for each j = 1, . . . , P ∗, where C∗(θj) is an N × N matrix with the (i, i′)th ele-

ment C(si, si′ ; θj). We set the covariance kernel C(·, ·; θj) to be the exponential

covariance function given by

C(s, s′; θj) = κ2
j exp

{
−1

2

(
||s− s′||
ϕj

)}
, j = 1, .., P ∗, (4.11)

with the true values of κ2
1, . . . , κ

2
P ∗ set to 1, 1.2, 0.8, respectively. We fix the true

values of ϕ1, . . . , ϕP ∗ at 1, 2, 1.25, for simulation case 1; and at 0.2, 0.15 and 0.1

for the simulation case 2 respectively.

While fitting our proposed approach, the varying coefficients are modelled

through the linear combination of H basis functions as in (4.2), where these basis

functions are chosen as the tensor-product of B-spline bases of order ζ = 4 (Shen

and Ghosal, 2015). More specifically, for s = (s(1), s(2)), the j-th varying coefficient

is modelled as

wj(s) =
H1∑
h1=1

H2∑
h2=1

B
(1)
jh1(s(1))B(2)

jh2(s(2))γjh1h2 , (4.12)

where the marginal B-splines B(1)
jh1 , B(2)

jh2 are defined on sets of H1 and H2 knots,

respectively. The knots are chosen to be equally-spaced so the entire set of H =

H1H2 knots is uniformly spaced over the domain D. We complete the hierarchical

specification by assigning independent IG(aσ = 2, bσ = 0.1) priors (mean 0.1

with infinite variance) for σ2, IG(aτ = 2, bτ = 0.1) τ 2
j for each j = 1, . . . , P ,

Beta(aπ0 = 1, bπ0 = 1) for π0.

Two sets of closely related competitors are compared with our approach to
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assess its inferential and predictive performance. The first set of competitors is a

three step approach where the data is divided randomly into K exhaustive subsets

in the first step with each subset having exactly M data points. The second step

fits a spatially varying coefficient model (spSVC) using the R package spBayes

on each data subset (without any variable selection) and the third step combines

subset posteriors using the Wasserstein barycenter of subset posteriors. This

competitor is constructed following the recent literature on divide-and-conquer

(d-&-c) inference on spatial models (Guhaniyogi et al., 2020b), which bears close

connection to our approach as discussed in Section 4.2. We implement d-&-c

spSVC with two different subset construction schemes. in the first scheme, subsets

are constructed randomly, and, in the second scheme the spatial domain is divided

into sub-domains and each subset contains representative samples from each sub-

domain. We refer to the first competitor as the d-&-c spSVC-random and the

second competitor as the d-&-c spSVC-designed. Further, we implement another

competitor that is identical to our approach in fitting (4.6) with different Φk’s,

except for the fact that a standard multivariate normal prior on γ are assigned

without any variable selection framework in each subset, as we do in Chapter 3.

We refer to the second competitor as geostatistical sketching (geoS), with a slight

abuse of nomenclature, which only differs from our proposed approach in terms

of not taking into account variable selection in fitting the sketched posteriors.

We refer to our approach as geostatistical sketching with variable selection (geoS-

VS). Since none of the competitors of geoS-VS addresses spatial variable selection,

comparison with these competitors will show the relative inferential advantage of

adding the variable selection architecture within our framework when the response

variable in true SVCM is only influenced by a subset of predictors. Additionally,

inference from d-&-c spSVC-random and d-&-c spSVC-designed will highlight the
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sensitivity to the choice of subsets in d-&-c Bayesian inference with spatial data,

thereby offering the rationale to employ sketched pseudo posterior which addresses

this issue. All four distributed methods are implemented with different choices of

K = 10, 15, 20.

We applied these competitors to data generated with N = 5000 (case 1) and

N = 10000 (case 2). For both cases the compressed dimension is taken to be

M ≈ 10
√
N which seems to be effective from empirical considerations in our

simulations. We provide further empirical justification for this choice in Sec-

tion 3.3.2. Our approach compresses the sample sizes to M = 700 and M = 1000

in cases 1 and 2, respectively. For a fair comparison, M is kept the same for the

competitors of our approach. The number of fitted basis functions in cases 1 & 2

are H = 225, 256, respectively.

All competing methods run in the R statistical computing environment on a

Dell XPS 13 PC with Intel Core i7-8550U CPU @ 4.00GHz processors at 16 GB

of RAM. 5000 MCMC iterations run for Bayesian inference with data subsets in

d-&-c spSVC methods and for Bayesian inference with sketched posteriors. Pos-

terior inference is based upon 2000 samples retained after adequate convergence

is diagnosed using Monte Carlo standard errors and effective sample sizes (ESS)

using the mcmcse package in R.

Figures 3.1 and 3.2 present the estimated truly nonzero varying coefficients

by the competitors for cases 1 and 2, respectively. Since d-&-c spSVC-random

and d-&-c spSVC-designed yield similar estimation of nonzero varying coeffi-

cients, we just present the estimated map for one of them. The figures show

satisfactory estimation of nonzero varying coefficients by our approach with the

estimated map closely capturing features of the true coefficients. Also, the es-

timated varying coefficients from spSVC undergo more smoothing than our ap-

65



proach. To investigate it further, we present mean squared error of estimat-

ing truly nonzero varying coefficients, defined as MSE0 = ∑P ∗

j=1
∑N
i=1(ŵj(si) −

w∗
j (si))2/(P ∗N) and the mean squared error of estimating all varying coefficients,

defined as MSE = ∑P
j=1

∑N
i=1(ŵj(si) − w∗

j (si))2/(PN) (where ŵj(sn) is the pos-

terior median of wj(sn)) in Table 4.1. The coverage of 95% credible intervals for

varying coefficients are also presented in Table 4.1. The results demonstrate signif-

icantly better performance of our approach geoS-VS over d-&-c-spSVC methods

in terms of offering smallest MSE and MSE0 of estimating the varying coefficients.

Our approach also enjoys superior performance over geoS. Both of this can be at-

tributed to the variable selection architecture embedded in the geoS-VS method.

The results also indicate discrepancy in the performances of d-&-c-spSVC-random

and d-&-c-spSVC-designed in some cases, though the differences are not stark.

To assess the performance of our approach geoS-VS in terms of spatial variable

selection, we present F1 score, defined as 2 ∗ precision ∗ recall/(precision + recall),

for the sketched pseudo posterior. The highest possible value of an F1-score is

1, indicating perfect precision and recall, and the lowest possible value is 0, if

either the precision or the recall is zero. This score is only presented for our

approach since our approach is the only one among competitors which is endowed

with a variable selection framework. Table 4.1 shows perfect F1-score under both

simulation settings and for all choices of K = 10, 15, 20, confirming our approach

being an efficient tool for spatial variable selection.

Table presents mean squared predictive error (MSPE), and coverage for the

95% predictive intervals, based on N∗ = 500 out of the sample observations. Sim-

ilar to the estimation of coefficients, we observe geoS-VS performs significantly

better than d&-c-spSVC methods, and somewhat better over geoS without vari-

able selection. The predictive coverage of all competitors are found to be close to
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nominal.

Finally, the computational efficiency of all competitors are computed based on

the metric log2(ESS/Computation Time), where ESS denotes the effective sam-

ple size averaged over the MCMC samples of all parameters. The data sketching

based approaches geoS and geoS-VS emerge as the two most computationally effi-

cient methods among the competitors, whereas d&-c-spSVC methods yield much

reduced metric for computational efficiency.

Method F1 score MSE MSE0 95%CI CVG 95%CI CV G0 95%PI CVG MSPE C.Eff
N = 5000, H = 225, M = 710

spSVC-rdm (K = 10) - 0.0161 0.0451 0.974 0.924 0.963 0.2037 4.26
spSVC-rdm (K = 15) - 0.0205 0.0628 0.971 0.912 0.960 0.2676 4.68
spSVC-rdm (K = 20) - 0.0216 0.0876 0.983 0.891 0.954 0.3269 4.96
spSVC-dsg (K = 10) - 0.0227 0.0462 0.997 0.938 0.960 0.2123 4.32
spSVC-dsg (K = 15) - 0.0221 0.0655 0.993 0.932 0.964 0.2763 4.89
spSVC-dsg (K = 20) - 0.0216 0.0836 0.996 0.912 0.952 0.3266 4.95
geoS (K = 10) - 0.0032 0.0198 0.965 0.911 0.946 0.1659 7.92
geoS (K = 15) - 0.0026 0.0161 0.971 0.925 0.942 0.1452 7.91
geoS (K = 20) - 0.0025 0.0159 0.963 0.934 0.938 0.1456 7.80
geoS-VS (K = 10) 1 0.0020 0.0138 0.969 0.923 0.976 0.1403 7.95
geoS-VS (K = 15) 1 0.0019 0.0132 0.979 0.939 0.978 0.1393 7.88
geoS-VS (K = 20) 1 0.0020 0.0133 0.962 0.918 0.980 0.1405 7.79
Method F1 score MSE MSE0 95%CI CVG 95%CI CV G0 95%PI CVG MSPE C.Eff

N = 10000, H = 256, M = 1000
spSVC-rdm (K = 10) - 0.0811 0.1351 0.981 0.910 0.958 0.1591 2.35
spSVC-rdm (K = 15) - 0.0973 0.1596 0.990 0.901 0.961 0.1687 3.45
spSVC-rdm (K = 20) - 0.1062 0.1831 0.976 0.903 0.967 0.1793 4.19
spSVC-dsg (K = 10) - 0.0926 0.1478 0.976 0.927 0.959 0.1577 2.32
spSVC-dsg (K = 15) - 0.1329 0.1712 0.971 0.913 0.959 0.1718 3.09
spSVC-dsg (K = 20) - 0.0827 0.1565 0.983 0.918 0.964 0.1789 4.02
geoS (K = 10) - 0.0027 0.0101 0.996 0.932 0.962 0.1523 8.89
geoS (K = 15) - 0.0023 0.0089 0.998 0.943 0.967 0.1522 8.15
geoS (K = 20) - 0.0027 0.0102 0.999 0.936 0.969 0.1547 8.19
geoS-VS (K = 10) 1 0.0021 0.0085 0.996 0.928 0.983 0.1485 8.96
geoS-VS (K = 15) 1 0.0019 0.0076 0.998 0.926 0.983 0.1438 7.93
geoS-VS (K = 20) 1 0.0018 0.0072 0.982 0.941 0.985 0.1370 7.74

Table 4.1: Mean Square Error for estimation of all spatially-varying coefficients
(MSE) and truly nonzero spatially-varying coefficients (MSE0), MSPE, coverage
of 95% predictive intervals for the competing model. Computational efficiency for
all models is also provided.
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Figure 4.1: Simulation case 2: (N,H) = (5000, 225). First row corresponds to
the true surfaces of nonzero space-varying coefficients, second, third and fourth
row present the predicted 50% quantile surfaces for the geoS-VS and spSVC-
designed for different values of K = 10, 15, 20.
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Figure 4.2: Simulation case 2: (N,H) = (10000, 256). First row corresponds to
the true surfaces of nonzero space-varying coefficients, second, third and fourth
row present the predicted 50% quantile surfaces for the geoS-VS and spSVC-
random for different values of K = 10, 15, 20.
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4.3.2 Choice of the dimension of the compression matrix

In this section, we conduct empirical examinations around the choice of the pertinent

compression matrix size M . For simulated data with sample size N = 10000 and number

of servers K = 20, we ran our model for different values of M = k
√

N , k = 1, . . . , 20.

Figure 4.3 shows the variations in point-wise and interval prediction reflected in the

MSPE and 95% predicted interval coverage and length, respectively. Unsurprisingly,

as M increases the MSPE drops with a diminished rate of decline until the k ∼ 10. In

terms of interval prediction, predictive coverage seems to fluctuate within the narrow

interval (0.97, 0.99) for k > 5, whereas the length of the predictive interval improves

as M increases. Throughout several simulations and real data analysis we observe that

the choice of M ∼ 10
√

N leads to good performance.

(a) (b)

Figure 4.3: (a) MSPE, (b) 95% predictive interval coverage and length for dif-
ferent choices of M

4.4 Vegetation Data Analysis

In this section, we present a real data application of our model for the prediction

of the Enhanced Vegetation Index (EVI). As in section 3.4, we consider vegetation in-

dices retrieved from the MODIS sensors aboard Terra and Aqua satellites which are

broadly deployed in all ecosystem, climate, and natural resources management stud-

ies and operational research. EVI, which characterizes the global range of vegetation
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states, offers an alternative vegetation quantification to address some of the shortcom-

ings of the normalized difference vegetation index (NDVI). Although both indices are

derived from atmospherically-corrected reflection factors in the red, near-infrared, and

blue wavebands; EVI is constructed by removing saturation and canopy background

signals, and reducing atmospheric influences (Chen et al. (2005), Deng et al. (2007),

Fensholt (2004), Huete et al. (2002), Huete et al. (1997), Miura et al. (2001), Potithep

et al. (2013)); this ultimately results in a reduction of canopy-soil variations and in

an improvement of sensitivity to changes in canopy structure, including leaf area in-

dex (LAI), and plant phenology and stress over regions of dense vegetation conditions

and high biomass. Due to its robustness, EVI has become an effective index in track-

ing phenological events of crop growth, assessing and monitoring seasonal variations

of crops and evergreen vegetation and quantifying evapotranspiration or water-use ef-

ficiency, which are influential in multiple applications including global biogeochemical

and hydrologic modeling, agricultural monitoring and forecasting and land-use planning

(Gurung et al. (2009), Potgieter et al. (2007), Wardlow et al. (2007)). The enhanced

Vegetation index is calcualted as: EV I = G NIR−RED
NIR+C1∗RED−C2∗BLUE+L , where (NIR),

(RED) and (BLUE) are atmospherically-corrected surface reflectances, C1 and C2 are

the atmospheric correction coefficients of aerosol resistance, L is the canopy background

adjustment that addresses non-linear, differential NIR and red radiant transfer through

a canopy and G is a gain factor. The coefficients adopted in the MODIS-EVI algorithm

are L = 1, C1 = 6, C2 = 7.5, and G = 2.5. Figure 4.4 shows the comparison between

NDVI and EVI. The NDVI image shows a greater area in dark green because NDVI

loses sensitivity to changes in vegetation in areas of higher biomass. The EVI image

keeps a more consistent sensitivity to changes in vegetation and, in this example, has a

more even distribution of vegetation greenness values.

We centered our analysis on geostatistical data that was projected on a sinusoidal

(SIN) grid, located on the western coast of the United States, more precisely zone h08v05,

between 30◦N to 40◦N latitude and 104◦W to 130◦W longitude. The database, which
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(a) (b)

Figure 4.4: (a) MODIS EVI compared to NDVI (b) for western United States
(zone h08v05 ) on August 12, 2001.

is distributed by the United States Geological Survey (USGS) as a standard MODIS

product, is accessible through the R package, MODIStsp. We process a total number

of 130000 observed locations, where all variables were derived over a 16-day period in

April, 2016. For model fitting we kept N = 80000 observations randomly chosen, and

held out the remaining N∗ = 50000 for prediction and model assessment. The variable

of interest y(sn) is the transformed EVI (log(EV I + 1)), which is to be predicted based

on a set of P̃ = 8 predictors, including variables x1(sn), . . . x7(sn) (see table 4.2) and

an intercept. For the sake of identifying relevant spatially varying effects exclusively,

we set β = 0, so that the response is fitted through the model E(y(sn)) = x̃(sn)Tw(sn),

where x̃(sn) = (1, x1(sn), . . . , x7(sn))T .

The large size of the data and limited computational resources at our disposal pre-

clude fitting d-&-c-spSVC methods. Therefore, we only fit geoS-VS with geoS in order

to detect any differences in estimation and predictive performance due to the introduc-

tion of the variable selection scheme. In concordance with 4.3.2, we set the dimension

of the compression matrix to be M ∼ 10
√

N = 2800 for both models. We deploy a

linear combination of basis functions across a set of H = H1H2 = 152 = 225 knots,

distributed over the entire domain D, in order to model the spatially-varying coeffi-

cients {γjh, j = 1, . . . , 8; h = 1, . . . , 225}, which results in HP = 1800 coefficients to be
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estimated. The specification for the basis functions is set to be the tensor-product of

uni-dimensional B-splines of order q = 4.

We ran an MCMC chain for 5000 iterations and retained 2000 samples for posterior

inference after proper convergence was determined. In Tables 4.3 and 4.4, we present

numerical results on variable selection for model geoS-VS and prediction performance for

both models respectively. According to model geoS-VS, only the intercept and variable

ET are deemed to be relevant in explaining the response, as their posterior probabilities

of inclusion are greater that 0.5. While there is some uncertainty regarding URB whose

posterior probability of inclusion is between 10 − 30%, the model shows no uncertainty

about not including the other variables in the set of influential predictors. Further,

Table 4.4 reveals better performance of model geoS-VS over model geoS in terms of

predictive accuracy which is reflected in the mean squared predictive error (MSPE),

and significantly better performance in terms of precision as length of 95% PI from

geoS-VS is notably narrower for all values of K = 5, 10, 15. Further, predictive coverage

for both models are found to be close to nominal. This finding in further corroborated

in Figure 4.5. The figure shows that both models yield excellent point prediction for the

Enhanced Vegetation Index, as both satisfactorily capture global and local variations in

the the response, however, model geoS-VS presents superior precision, which is exhibited

in a lower standard deviation in the prediction (please refer to second and third rows in

the first column). This can be attributed to the variable selection architecture, which

disregards unimportant information leading to a more precise prediction of the response

variable over the domain. Similar to simulation studies, no significant difference is found

in terms of computation efficiency of the two competing methods. Overall, the data

analysis serves as a demonstration for excellent performance of our proposed approach

if offering efficient computation and accurate inference for spatial variable selection with

large data.
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Figure 4.5: Coloured EVI images of western United States (zone h08v05). First
row shows to the true EVI surface, and 50% quantile estimates for geoS-VS and
geoS models respectively. Second row corresponds to the Std Dev, 2.5% and 97.5%
quantiles for the geoS-VS model respectively. Third row presents the Std Dev,
2.5% and 97.5% quantiles for the geoS model respectively.
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Variable Definition
GPP x1(s) Gross primary productivity Vegetation photosynthesis at the ecosystem scale.

LCType4 x2(s) Land Cover Type 4 Categorical. Annual BIOME-Biogeochemical Cycles -
BGC classification. x2(s) ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8}

ET x3(s) Evapotranspiration Water loss occurring by the processes of evaporation and
transpiration.

URB x4(s) Urban area Index Binary. x2(s) = 1U(s), U denotes urban area.
EV x5(s) Evergreen Vegetation Binary. x4(s) = 1E(s), E denotes presence of evergreen

vegetation.
SAA x6(s) Sun azimuth angle Sun’s relative angle along the local horizon.
SZA x7(s) Sun zenith angle Angle between the sun’s rays and the vertical direction

or Sun’s apparent altitude.

Table 4.2: Vegetation data analysis set of predictors.

Predictor K = 5 K = 10 K = 15
Intercept 1 1 1
GPP 0 0 0
LCType4 0 0 0
ET 1 1 1
URB 0.13 0.30 0.22
EV 0 0 0
SAA 0 0 0
SZA 0 0 0

Table 4.3: Posterior probabilities of inclusion for all predictors in geoS-VS with
K = 5, 10, 15.

4.5 Summary

We have developed three-step distributed Bayesian inference for spatially vary-

ing coefficient models equipped with variable selection. The proposed approach

constructs many sketches of the original data, fits spatially varying coefficient

model with variables selection with each data sketch, followed by combining

inferences of parameters obtained from applying the model with different data

sketches. The proposed approach successfully marries two powerful ideas, divide-

and-conquer inference and data sketching using random matrices, for scalable

inference in spatial variable selection problem with big data. While the recently

popular approaches in divide-and-conquer Bayesian inference can be sensitive to

the choice of data subsets, our approach bypasses the sensitivity of distributed

inference due to the choice of data subsets. Further, access to the values of the
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geoS-VS M = 2800 geoS M = 2800

K = 5

MSPE 0.00045 0.00053
95% PI length 0.4411 2.2162

95% PI coverage 0.990 0.991
Runtime (sec) 444.59 367.198

C.Eff 7.9807 8.3501

K = 10

MSPE 0.00048 0.00088
95% PI length 0.4264 2.1111

95% PI coverage 0.990 0.995
Runtime (sec) 394.86 367.19

C.Eff 7.9801 8.0283

K = 15

MSPE 0.00050 0.00065
95% PI length 0.4195 2.311

95% PI coverage 0.988 0.993
Runtime (sec) 531.24 369.22

C.Eff 6.9995 5.4675

Table 4.4: MSPE, coverage and length of 95% predictive intervals for geoS and
geoS-VS are presented. Computational efficiency and computation time for both
models are also provided. The divide and conquer spSVC methods could not be
added due to excess computational burden and limited computational resources
at our disposal.

response and predictors in the full data are not required at stage of inference,

which preserves data confidentiality should that be of concern in the application.
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Chapter 5

Conclusion and Future Work

This dissertation develops novel scalable Bayesian framework for large spatial

data. In Chapter 2, we develop a divide-and-conquer Bayesian inferential tool for

multivariate spatial generalized linear mixed effect models (spGLMMs) with large

data. Scalable computation in spGLMMs is a methodologically challenging prob-

lem with the state-of-the-art approaches struggle to scale with more than ∼ 50000

observations. To this end, we employ a three step approach that divides compu-

tation of the model into multiple processors with smaller subset of data in each

processor. With abundant computational resources, the proposed method can

scale computation of these models at an unprecedented level. Empirical analysis

shows desirable inference with model parameters with the distributed Bayesian

approach.

Chapter 3 discusses another novel concept of achieving scale and accuracy

simultaneously in spatially varying coefficient (SVC) models with big data. In-

stead of fitting SVC models with big data that incurs computational issues, this

chapter proposes fitting SVC models with a few random linear transformations

of the original data. Theoretical results developed in this chapter shows close to

asymptotically optimal rate of estimation of varying coefficients using the pro-
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posed approach. One of the significant novelties of this chapter is that it develops

the theoretical and computational framework for the usage of random compression

matrices in high dimensional Bayesian computation. Furthermore, the proposed

approach requires only a few random linear combination of the original data be re-

vealed to the analyst, thus protecting privacy of data samples. Empirical analysis

shows state-of-the-art performance of the proposed approach.

Chapter 4 borrows strength from ideas developed in both Chapter 2 and 3

to offer a novel divide-and-conquer Bayesian inference with spatially varying co-

efficient models equipped with a functional variable selection framework. SVCs

with functional variable selection architecture is remarkably inefficient in terms

of computation with large spatial data. Extending ideas from Chapter 2 and 3,

we develop a three stage divide-and-conquer framework to solve this problem.

Specifically, we construct multiple random matrices to yield multiple randomly

compressed data, fit SVC with the functional variable selection architecture with

each compressed data, followed by combining inferences from them. Apart from

providing a method for computationally efficient functional variable selection, this

approach also eliminates the sensitivity of inference due to the choice of data

subsets for the divide-and-conquer inferential framework described in Chapter 2.

Empirical analysis shows excellent performance in terms of identifying important

functional variables and the spatial variation of the corresponding coefficients.

A number of future directions emerge from here. While Chapter 2 empirically

validates performance of the divide-and-conquer strategy with spGLMMs, we feel

that it is important to derive theoretical results to assess the number of subsets as

a function of sample size and smoothness of the spatial surface. As an immediate

future work, we plan to build on the existing theoretical framework for divide-and-

conquer strategy on continuous outcome model (Guhaniyogi and Banerjee, 2017;
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Guhaniyogi et al., 2020b,a) to the binary spGLMM framework. As another future

work, we propose to investigate the framework in Chapter 2 when the response

variables are observed over both space and time, and inferential objective lies in

assessing both spatial correlation and the temporal trend of the underlying phys-

ical process. There is also a possibility of enhancing scalability in each subset by

employing computationally efficient variants of multivariate Gaussian processes.

Chapter 3 and 4 of the thesis focuses on application of random compression

idea to facilitate scaling of varying coefficient models in large sample size. Notably,

the use of random compression matrices as demonstrated in these chapters is suffi-

ciently general to be applied to other models. For example, high dimensional mul-

tivariate reduced-rank models face severe computational challenges when number

of predictors and sample size are both large. The Bayesian data sketching idea,

as proposed in Chapters 3 and 4, may offer a solution to this problem. The con-

cept of data sketching also finds application in drawing scalable inference for high

dimensional spatial generalized linear mixed effect models (spGLMMs). Another

future project can evolve from extending the approaches in Chapter 3 and 4 for

large spatio-temporal data. Finally, as discussed in the earlier chapters, the idea

of random compression masks the original data to the analysts leading to privacy

protected Bayesian inference. Notably, there is an extensive and ever growing

literature on differential privacy in computer science which received very little

attention by the Bayesian practitioners. As part of our future exploration, we

seek to rigorously develop the connection between the data compression idea and

differential privacy.
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Appendix A

Theoretical Results

This section contains theoretical results building up to the proofs of Theo-

rems 3.2.4 and 3.2.5. Lemma 3.2.1 states an important result from random matrix

theory that is easily obtained from Theorem 5.31 and Corollary 5.35 of Vershynin

(2010). We prove Lemmas 3.2.2 and 3.2.3. The results in Lemma 3.2.1-3.2.3 are

further used to prove Theorems 3.2.4 and 3.2.5.

Proof of Lemma 3.2.2

Proof. Define

A1N =
{
K(f ∗, f) ≤ MNθ

2
N , V (f ∗, f) ≤ MNθ

2
N

}
. (A.1)

By Lemma 10 in Ghosal et al. (2007), to show (3.10) it is enough to show that

Π(A1N) ≳ exp(−C2MNθ
2
N),

for some constant C2 > 0. Let ek, 1 ≤ k ≤ MN be the ordered eigenvalues of
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(ΦΦT)−1. After some calculations, we derive the following expressions,

K(f ∗, f) = 1
2


MN∑
k=1

(ek − 1 − log(ek)) + ESEX
[
||X̃Φ,NB(γ − γ∗) − X̃Φ,Nη

∗||22
] and

V (f ∗, f) =
MN∑
k=1

(1 − ek)2

2 + ESEX
[
||(ΦΦT)−1(X̃Φ,NB(γ − γ∗) − X̃Φ,Nη

∗)||22
]
,

(A.2)

where η∗ = (η∗(s1)T, ..., η∗(sN)T)T, η∗(s) = (η∗
1(s), . . . , η∗

P̃
(s))T, η∗

j (s) = w∗
j (s) −∑HN

h=1 Bjh(s)γ∗
jh. Expanding log(ek) in the powers of (1 − ek) and using Lemma 1

in Jeong and Ghosal (2020) we find (ek − 1 − log(ek)) ∼ (1 − ek)2/2. Another use

of Lemma 1 in Jeong and Ghosal (2020) yields ∑MN
k=1(1 − ek)2 ≲ ||I − ΦΦT||2F ≲

MN/N ≤ MNθ
2
N . Using Lemma 3.2.1, ek ≍ 1 for all k = 1, ...,MN . Hence, from

(A.2)

Π(A1N) ≳ Π
({
γ : ESEX

[
||X̃Φ,NB(γ − γ∗) − X̃Φ,Nη

∗||22
]
≲MNθ

2
N

})
≥ Π

({
γ : ESEX

[
||X̃Φ,NB(γ − γ∗)||22

]
+ ESEX

[
||X̃Φ,Nη

∗||22
]
≲MNθ

2
N/2

})
,

(A.3)

where we use ||a − b||22 ≤ 2(||a||22 + ||b||22), for all a, b ∈ R. Let Bj(sn) =

(Bj1(sn), ..., BjHN (sn))T, for n = 1, ..., N and j = 1, ..., P̃ . By Assumption (E),

ESEX
[
||X̃Φ,NB(γ − γ∗)||22

]
≍ κNESEX

[
||X̃NB(γ − γ∗)||22

]
= κN(γ − γ∗)TESEX

[
BTX̃T

NX̃NB
]

(γ − γ∗).
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Recalling that BTX̃T
NX̃NB is a HN P̃ ×HN P̃ matrix with the (j, j′)-th block given

by ∑N
n=1 x̃j(sn)Bj(sn)Bj′(sn)Tx̃j′(sn), we obtain

ESEX

[
N∑
n=1

x̃j(sn)Bj(sn)Bj′(sn)Tx̃j′(sn)
]

≍ ES

[
N∑
n=1

Bj(sn)Bj′(sn)T

]

= NES [Bj(s1)Bj′(s1)T] ,

where the last equation follows since s1, ..., sN are i.i.d.. Hence,

ESEX
[
||X̃Φ,NB(γ − γ∗)||22

]
≍ NκNES

[
||B(s1)(γ − γ∗)||22

]
≍ NκN ||γ − γ∗||22/HN ,

(A.4)

where B(s) = [B1(s) : · · · : BP̃ (s)]T. The last expression follows from Lemma A.1

of Huang et al. (2004). From Assumption (E) again,

ESEX
[
||X̃Φ,Nη

∗||22
]

≍ κNESEX
[
||X̃Nη

∗||22
]

= κNESEX

 N∑
n=1

P̃∑
j=1

x̃j(sn)2η∗
j (sn)2


≍ κNES

 N∑
n=1

P̃∑
j=1

η∗
j (sn)2

 ≲ NκNH
−2ξ
N , (A.5)

where the last inequality follows from Assumption (A). From (A.3),

Π(A1N) ≳ Π
(
γ : NκN ||γ − γ∗||22/HN +NκNH

−2ξ
N ≲MNθ

2
N/2

)
≳ Π

(
γ : NκN ||γ − γ∗||22 ≤ MNHNθ

2
N

)
,
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where the last step follows from Assumptions (B) and (E). Using the fact that∫ b
a exp(−x2/2)dx ≥ exp(−(a2 + b2)/2)(b− a), we obtain

Π
(
γ : NκN ||γ − γ∗||22 ≤ MNHNθ

2
N

)
≥

HN ,P̃∏
h,j=1

Π(|γjh − γ∗
jh| ≤ θN/

√
P̃ )

≥ exp(−||γ∗||22 − θ2
NHN)(2θN/

√
P̃ )HN P̃ ≳ exp(−MNθ

2
NC2),

for any C2 > 0, where the first inequality follows from Assumption (E) and the

last inequality follows from HNP log(
√
P̃ /2θN) ≺ MNθ

2
N (since MNθ

2
N ≍ M

1/(1+ξ)
N

while HN ≺ M
1/(1+ξ)
N ).

Proof of Lemma 3.2.3

Proof. Denote X̃Φ,B,N = X̃Φ,NB, γ̂ = (X̃T
Φ,B,NX̃Φ,B,N)−1X̃T

Φ,B,NyΦ,N and a se-

quence of random variables ζN = I(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ
∗||2 ≳ θNM

1/2
N ). Then,

E∗(ζN) = P ∗(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ
∗||2 ≳ θNM

1/2
N )

= P ∗(||PX̃Φ,B,N
X̃Φ,Nη

∗ + PX̃Φ,B,N
ϵ||22 ≳ θ2

NMN)

≤ P ∗(||PX̃Φ,B,N
X̃Φ,Nη

∗||22 + ||PX̃Φ,B,N
ϵ||22 ≳ θ2

NMN),

where PX̃Φ,B,N
denotes the projection matrix corresponding to the matrix X̃Φ,B,N .

Note that

||PX̃Φ,B,N
X̃Φ,Nη

∗||22 ≤ η∗TX̃T
Φ,NPX̃Φ,B,N

X̃Φ,Nη
∗ ≤ ||X̃Φ,Nη

∗||22.
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We then refer to equation (A.5) to see that ESEX ||X̃Φ,Nη
∗||22 ≲ NκNM

−ξ/(ξ+1)
N ≺

MNθ
2
N . The above two facts together conclude that

ESEX [||PX̃Φ,B,N
X̃Φ,Nη

∗||22] ≲ NκNM
−ξ/(ξ+1)
N ≺ MNθ

2
N .

E∗(ζN) ≲ P ∗(||PX̃Φ,B,N
ϵ||22 ≳ θ2

NMN) = P ∗(ϵTPX̃Φ,B,N
ϵ ≳ θ2

NMN).

Note that under P ∗, ϵ ∼ N(0,ΦΦT), and, emax(ΦΦT) ≍ 1 (by Lemma 3.2.1).

Also note that Lemma 1 of Laurent and Massart (2000) can be simplified to

write P ∗(χ2
p∗ > x) ≤ exp(−x/4), for x ≥ 8p∗. Further, ϵTPX̃Φ,B,N

ϵ follows a χ2

distribution with degree of freedom less than equal to HN P̃ ≺ MNθ
2
N = M

1/(1+ξ)
N .

Using all the above facts, we conclude that E∗(ζN) ≲ exp(−MNθ
2
N).

Next, for γ ∈ Bc
N , we show that ESEX ||X̃Φ,B,Nγ − X̃Φ,B,Nγ

∗||22 ≳ MNθ
2
N . To

see this, note that

ESEX ||X̃Φ,B,Nγ − X̃Φ,B,Nγ
∗||22 = ESEX

[
(γ − γ∗)TX̃T

Φ,B,NX̃Φ,B,N(γ − γ∗)
]

≍ κNESEX
[
(γ − γ∗)TBTX̃T

NX̃NB(γ − γ∗)
]

≍ NκN ||γ − γ∗||22/HN ≳MNθ
2
N ,

where the second line follows using similar calculations leading to equation (A.4).

Now, using the fact that ||X̃Φ,B,N γ̂− X̃Φ,B,Nγ||2 ≥ −||X̃Φ,B,N γ̂− X̃Φ,B,Nγ
∗||2 +

||X̃Φ,B,Nγ − X̃Φ,B,Nγ
∗||2, we obtain

Eγ(1 − ζN) = Pγ(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ
∗||2 ≲ θNM

1/2
N )

= Pγ(||X̃Φ,B,N γ̂ − X̃Φ,B,Nγ||2 ≳ θNM
1/2
N )

≤ Pγ(||PX̃Φ,B,N
ϵ||22 ≳ θ2

NMN) ≲ exp(−MNθ
2
N),

where the last inequality follows from simplifying the conclusion for Lemma 1

of Laurent and Massart (2000) (as is done before) and the fact that under Pγ,
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ϵ ∼ N(0, I).

A.0.1 Proof of Lemma 3.2.4

Proof. Note that,

||w − w∗||2 ≤ ||w − w̃∗ + w̃∗ − w∗||2 ≤ ||w − w̃∗||2 + ||w̃∗ − w∗||2 = ||w − w̃∗||2 + ||η∗||2

≲ ||w − w̃∗||2 + P 1/2H−ξ
N ≍ ||γ − γ∗||2H−1/2

N + P 1/2H−ξ
N

≍ ||γ − γ∗||2H−1/2
N + P 1/2M

−ξ/(2ξ+2)
N ,

where w̃∗(s) = (∑HN
h=1 B1h(s)γ∗

1h, . . . ,
∑HN
h=1 BP̃ h(s)γ∗

P̃ h
)T, and the first inequality

in the second line follows from the property of B-splines (Huang et al., 2004).

The second expression in the second line follows from Lemma A.1 of Huang et al.

(2004). Using the fact that P̃ 1/2M
−ξ/(2ξ+2)
N = O(θN), we have

{
w : ||w − w∗||2 ≥ C̃θN

}
⊂{

γ : ||γ − γ∗||2H−1/2
N ≥ C2wθN

}
, for some constant C2w > 0.

Denote BN =
{
γ : ||γ − γ∗||2H−1/2

N ≤ C2wθN
}
. To prove the theorem, it is

enough to establish

E∗Π(||γ − γ∗||2H−1/2
N ≥ C2wθN |yΦ,N , X̃Φ,N) → 0, as N → ∞, (A.6)

Note that,

E∗[Π(Bc
N | yΦ,N , X̃Φ,N)] ≤ E∗ζN + E∗[Π(Bc

N | yΦ,N , X̃Φ,N)(1 − ζN)1yN∈Ac
N

] + P ∗(AN)

= E∗[ζN ] + E∗

1yN∈Ac
N

{
(1 − ζN)

∫
BcN

{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)}πN(γ)dγ
}

{
∫
{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)}πN(γ)dγ}

+ P ∗(AN),

(A.7)

where AN is a set defined in the statement of Lemma 3.2.2 and ζN can be regarded
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as a sequence of random variables as defined in Lemma 3.2.3. By Lemma 3.2.2,

P ∗(AN) → 0, as N,MN → ∞. Also, by Lemma 3.2.3, E∗ζN → 0, as N,MN → ∞.

To show (A.6), it remains to prove that

E∗
[
1yN∈Ac

N

∫
BcN

{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)}πN(γ)dγ
]

[
∫
{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)}πN(γ)dγ] → 0 as N,MN → ∞.

To this end, we have

E∗
[
1yN∈Ac

N

∫
BcN

{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)}πN(γ)dγ
]

≤ sup
γ∈Bcn

Eγ(1 − ζN)Π(Bc
N)

≤ exp(−C2wMNθ
2
N),

where Π(Bc
N) is the prior probability of the set BC

N . The denominator∫
{f(yΦ,N |γ)/f ∗(yΦ,N |γ∗)}π(γ)dγ ≥ exp(−C1MNθ

2
N) on AN , where C1 is chosen so

that C1 < C2w. Thus, E∗Π(Bc
N | yΦ,N , X̃Φ,N)1yN∈Ac

N
≤ exp(−(C2w −C1)MNθ

2
N) →

0, as N,MN → ∞.

A.0.2 Proof of Theorem 3.2.5

Proof. For densities fu and f ∗, we have

h(fu, f ∗) = 1 − exp

−

 P̃∑
j=1

x̃j(s0)wj(s0) −
P̃∑
j=1

x̃j(s0)w∗
j (s0)

2

/8


≤ 1 − exp

−P̃
P̃∑
j=1

(
wj(s0) − w∗

j (s0)
)2
/8


≤ 1 − exp

{
−P̃ ||w(s0) − w∗(s0)||22/8

}
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Then, ES [h(fu, f ∗)] ≤ 1−exp
(
−P̃ ||w − w∗||22/8

)
, by Jensen’s inequality. Further,

E∗EES [h(fu, f ∗)|X̃Φ,N , yΦ,N ] =
{
1 − exp

(
−P̃ C̃2θ2

N/8
)}

+ 2ΠN(||w − w∗||2 ≥ C̃θN),

which implies

E∗EES [h(fu, f ∗)] ≤
{
1 − exp

(
−P̃ C̃2θ2

N/8
)}

+ 2E∗ΠN(||w − w∗||2 ≥ C̃θN) → 0

as N,MN → ∞, where the last expression followed by the conclusion of Theo-

rem 3.2.4 and the fact that θN → 0 as N,MN → ∞.
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