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An Impulse–Regime Switching Game Model
of Vertical Competition

René Aïd Luciano Campi Liangchen Li Mike Ludkovski

June 9, 2020

Abstract

We study a new kind of non-zero-sum stochastic differential game with mixed impulse/switching
controls, motivated by strategic competition in commodity markets. A representative upstream
firm produces a commodity that is used by a representative downstream firm to produce a final
consumption good. Both firms can influence the price of the commodity. By shutting down or
increasing generation capacities, the upstream firm influences the price with impulses. By switching
(or not) to a substitute, the downstream firm influences the drift of the commodity price process.
We study the resulting impulse–regime switching game between the two firms, focusing on explicit
threshold-type equilibria. Remarkably, this class of games naturally gives rise to multiple Nash
equilibria, which we obtain via a verification based approach. We exhibit three types of equilibria
depending on the ultimate number of switches by the downstream firm (zero, one or an infinite
number of switches). We illustrate the diversification effect provided by vertical integration in the
specific case of the crude oil market. Our analysis shows that the diversification gains strongly
depend on the pass-through from the crude price to the gasoline price.
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1 Introduction

Since Hotelling’s (1931) [18] seminal study of commodity prices, considerable efforts have been un-
dertaken to understand the dynamics of the equilibrium price of commodities and in particular, its
long–run properties. The cyclical nature of price dynamics is driven by the substitution effect, whereby
consumers will switch to a different commodity if prices rise too high. In a deterministic setting the
switching time to the substitute is simple to analyze, but with the stochastic economic cycle consumers
face a huge challenge in determining when is the appropriate moment to switch. The succession of
booms and busts of commodity prices complicates the switching timing. In the long–run, production
capacities adapt to demand and make the price oscillate around a long–term equilibrium. Indeed, the
long–run behaviour of commodity prices exhibits super–cycle patterns. The econometric studies in
Leon and Soto (1997) [23], Erten and Ocampo (2012) [12], Jacks (2013) [19] and more recently Stue-
mer (2018) [30], all find the presence of super–cycles of several decades in the price of commodities.
This phenomenon makes one wonder whether it is even necessary for the consumers to ever switch and
whether it is not preferable to just wait for the prices to crash again.

In this paper we design a dynamic model of competition between production and consumption of
a commodity used as an intermediate good, allowing to draw conclusions on the long–run dynamics of
the commodity price. In our model, two factors drive the price of the commodity: on the one hand,
short–term but persistent shocks of demand and/or production, and on the other hand, strategic
decisions of the (representative) upstream production firm and of the (representative) downstream
consumer firm. The upstream producer extracts the commodity at cost cp and sells it for a price X.
The downstream industry buys the commodity and converts it into a final good that has a price P ,
non–decreasing in X. This framework covers a wide range of industries. One might think for example,
of the agricultural sector where soy enters as an input for the food industry to produce a large range
of consumer goods. In the aluminum industry, upstream smelters produce aluminum to be used by
the automotive and transportation industries. In the oil industry, the crude is extracted by production
firms, then transformed into gasoline and kerosene by downstream refineries, and then consumed in
the retail market. For the sake of simplicity, we identify the downstream firm that transforms the
commodity with the final consumer and this downstream firm’s profit with the consumer’s surplus.

We focus on the role of the commodity price X that intrinsically creates competition between the
representative agents of producers and consumers. In a nutshell, producers prefer high price X, while
consumers prefer low price X. This competition is dynamic and manifests itself through strategic
price effects actuated by the two industries. Therefore, X is (partially) jointly controlled by the
producers/consumers, leading to game–theoretic impacts.

On the upstream production side, the producer needs the commodity price X to be high enough
to make a profit margin. We suppose that the dynamics of investment and disinvestment in upstream
production is driven by production capacity shocks that cause jumps in the price X. This assumption
is consistent with the theory of real options that predicts the existence of threshold prices triggering
the decision of entry and the exit from the market (see MacDonald and Siegel (1986) [25] and Dixit
and Pindyck (1994) [11]). It is also consistent with the observations of quick swings in investment and
disinvestement in production, see e.g. the boom and bust of commodity prices in 2008–10.
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On the downstream consumer side, consumers induce a long–term effect on the commodity price
only if they switch to a substitute, and they switch to a substitute only if they anticipate that X will
remain high enough for a long time. The downstream side faces slower dynamics because it involves
the transformation of many local installations using the commodity. To have an example in mind,
one may think of the thousands of adjustments required to change heating systems in buildings, or of
the slow effect of the energy saving programs launched by OECD after the 1970s oil shock. Thus, in
our model, the downstream market for the final good can be in contraction or expansion regime. The
contraction regime corresponds to a decreasing demand for the primary commodity, i.e. the market
is abandoning the use of the commodity for a substitute, while the expansion mode corresponds to
an increasing demand for the commodity. Depending on the state of the downstream retail market,
the drift of the commodity price takes either a constant positive value in the expansion mode or a
negative value in the contraction mode. Because such consumer shifts are slow and expensive, the state
is persistent (i.e. piecewise constant in time) and changing the state of the final good market incurs
heavy switching costs. This toggling of the price trend can be interpreted as endogenous regime-
switching, a common way of modeling commodity prices through the business cycle. Beyond the
impact of producers and consumers decisions, the commodity price is subject to exogenous short–term
stochastic shocks, captured through a Brownian motion driving risk factor.

Our aim is to construct and characterize the dynamic equilibrium in the commodity market due to
this vertical competition. Our major contribution is to provide an endogenous, game-theoretic basis
for two key stylized features of commodity markets: (i) super–cycles that manifest as long–term mean-
reversion; (ii) fundamental impact of supply and demand that maintains the price in a range of values
rather than a single equilibrium value. Furthermore, our model allows for three types of equilibria
depending on the number of demand switches undertaken by the consumer at equilibrium: zero, one,
or an infinite number of switches. All equilibria exhibit the latter qualitative properties. Besides, the
higher the consumer’s switching cost, the more she is compelled to endure an unfavorable range of
prices.

Along the way, we also make mathematical contributions to the literature on non-zero-sum stochas-
tic games (see Martyr and Moriarty (2017) [24], Atard (2018) [4], De Angelis et al. (2018) [13], Aïd
et al. (2020) [1]). To our knowledge ours is the first paper that: (i) considers a mixed impulse-
control/switching-control stochastic game; (ii) explicitly constructs impulse-switching threshold-type
equilibria in non-zero-sum games; provides new verification theorems regarding best-response strategies
for (iii) an impulsing agent in a regime-switching setting and (iv) switching agent with an impulsed
state process. While our solution is non exhaustive in the sense that we a priori focus on a special class
of equilibria (leaving open the question of existence of other equilibrium families), it is highly tractable.
Namely, we are able to provide closed-form description of the dynamic equilibrium, offering precise
quantitative insights regarding the producer and consumer roles and their equilibrium behavior.

To emphasize the latter point, beyond several synthetic examples that illustrate and visualize our
model features, we also present a detailed case-study of the diversification effect provided by vertical
integration in the crude oil market circa 2019, viewed as a competition between crude oil producers
and oil refiners that convert crude into gasoline and other consumer goods. Indeed, the industrial
organization of upstream and downstream segments is an important concern both for the anti-trust
regulators and for the firms themselves. It is reflected in the extensive economic literature on the
subject and in its persistent presence within the political debate (see Lafontaine and Slade (2007)
[20] for a review of the topic). From a firm’s perspective, vertical integration brings multiple virtues,
including the potential to reduce the long–term exposure to commodity price fluctuations. See for
example Helfat and Teece (1987) [16] for an empirical estimation of the hedge procured by vertical
integration in the oil business. In our case study, we consider the generic type of equilibrium and a
small downstream firm asking herself whether she has an interest in getting more vertically integrated.
We show that the gains from integration are directly linked to the pass-through parameter that links
the crude oil price to the retail gasoline price. The higher this pass-through, the higher production
activity dominates the retail activity both in terms of expected rate of profit and the standard deviation
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of rate of profit.
The rest of the paper is organized as follows. Section 2 sets up the competitive producer-consumer

commodity market. Section 3 then constructs the respective threshold-type impulse-switching equi-
libria by considering the producer and consumer best-response strategies. Section 4 illustrates and
discusses the different types of emergent equilibria using toy examples. Section 5 presents the above
vertical integration case study and Section 6 concludes. All the proofs, as well as additional compara-
tive statics, are delegated to Section 7.

2 The model

2.1 Description

We use (Xt) to denote the (pre-equilibrium) commodity price, modeled as a continuous-time stochastic
process. The two players are denoted as producer and consumer. In what follows sub-index p (resp. c)
in the notation will always refer to the producer (resp. consumer). The market involves the original
raw commodity that is being produced and the goods market (e.g. gasoline). The producer extracts
the commodity at cost cp and sells it for price x. The consumer buys it for price x, converts it into a
final good, and sells it for price P .

Profit rates: The price x of the commodity influences the volume of trade, captured by the demand
function Dp(x). A similar phenomenon plays out in the final-good market: the goods price P leads to
sales volume Dc(P ). Since the consumer is in effect the intermediary between the commodity and the
goods market, she will pass some of her input price shocks to the output price P ≡ P (x).

We ignore the players’ fixed costs because they can be considered to be integrated in the investment
costs, and concentrate on the variable costs and revenues that are driven by the respective input/output
prices. Based on the above discussion, the instantaneous profit rate of the producer is

πp(x) := (x− cp)Dp(x). (1)

Let cc be the processing/conversion cost from input commodity to final good and α be the respective
conversion factor, so that one unit of commodity becomes α units of the final good (e.g. barrels of
crude oil, converted into barrels of gasoline). Then the instantaneous profit rate of the consumer is

πc(x) := Dc(P )P − Dc(P )

α
(x+ cc). (2)

We note that while the consumer has market power, he is not the only user of the commodity (e.g. crude
oil is also used by the petrochemical industry), so there is no direct link between production volume and
consumption volume. Thus, while there is a physical link between the consumer input volume Dc(P )/α
and her output volume Dc(P ), there is no direct link between Dc(P )/α and aggregate commodity
demand Dp(x).

We shall consider linear inverse demand

Dp(x) = d0 − d1x.

If we further assume that P (x) = p0 + p1x (the price of the final good is linearly proportional to the
commodity price), and Dc(P ) = d′0−d′1P (final good demand is linearly decreasing in its price P ), the
profit rate of the consumer becomes:

πc(x) = Dc(P (x)) ·
(
P (x)− (x+ cc)

α

)
=
(
d′0 − d′1p0

) (
p0 −

cc
α

)
+

((
d′0 − d′1p0

)(
p1 −

1

α

)
− d′1p1

(
p0 −

cc
α

))
x+ d′1p1

(
1

α
− p1

)
x2

=: γ0 + γ1x+ γ2x
2. (3)
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The consumer profit is concave in the commodity price x, γ2 < 0, if and only if the pass–through
coefficient p1 is higher than the conversion factor 1/α. It means that the final good price increases
faster than the need of the downstream industry to produce one more good, which is a sound economic
condition for having a sustainable downstream industry. To sum up, the profit rates of both producer
and consumer are concave and quadratic in x.

Market conditions: We model the commodity price process (Xt) as a controlled Itô diffusion of the
form

dXt = µtdt+ σdWt − dNt. (4)

The Brownian motion (Wt) captures exogenous price shocks due to random demand or production
fluctuations, or pertinent economic shocks for the industry. In this sense, the model is agnostic in
the reasons why the commodity price fluctuates around its mean trend. The point process Nt :=∑

i≥1 ξi1{τi≤t} captures the producer interventions at times (τi)i≥1 and impulses (ξi)i≥1. A positive
impulse is triggered by an investment phase, and has a negative impact on the price. A negative
impulse is induced by a disinvestment phase and has a positive impact on the price.

The drift process (µt) represents the state of the retail market for the final good. It is either in
expansion or in contraction state. When in expansion, demand is growing faster than the available
production capacity, hence prices tend to rise: µt = µ+ > 0. When in contraction, the demand is
shrinking faster than the production capacity, thus the price tends to decrease, and thus µt = µ− < 0.
This modeling corresponds to an imperfect adjustment of the market as in a sticky price model in
macroeconomics. The drift is fully controlled by the consumer,

µt = µ+

∞∑
i=0

1{σ2i≤t<σ2i+1} + µ−

∞∑
i=1

1{σ2i−1≤t<σ2i}, t ≥ 0,

where σi is the i-th switching instance taken by the consumer in the case µ0− = µ+ (with the convention
σ0 = 0, so that σ1 is the first switching time) and analogously when µ0− = µ− by interchanging odd
and even switching times. Thus, both players influence (Xt), although their actions are of distinct
types, namely impulse control (Nt) by the producer and switching-drift control (µt) by the consumer.
The resulting controlled price dynamics are denoted as X(µ,N).

The quadratic nature of the upstream and downstream profit rate functions πp(·) and πc(·) implies
that each player has their own natural habitat given by the intervals (x1

c , x
2
c) and (x1

p, x
2
p) for commodity

price levels with:

x1
p := min

{
cp,

d0

d1

}
, x2

p := max
{
cp,

d0

d1

}
, (5)

x1
c := min

{p0 − cc/α
1/α− p1

,
d′0 − d′1p0

p1d′1

}
, x2

c := max
{p0 − cc/α

1/α− p1
,
d′0 − d′1p0

p1d′1

}
. (6)

Players make a positive profit only if the price stays in the interval (x1
i , x

2
i ), i ∈ {c, p}. The concavity

of the profit functions implies that players have preferred commodity levels X̄p, X̄c that maximize their
profit rates, namely:

X̄p :=
d0 + cpd1

2d1
, X̄c := − γ1

2γ2
. (7)

Typically, we expect that X̄c < X̄p, so that the preferred commodity price of the consumer is lower
than that of the producer. The stochastic fluctuations coming from (Wt) can generate three different
market conditions:

Xt < X̄c I: abnormally low prices;
X̄c ≤ Xt ≤ X̄p II: vertical competition;

X̄p < Xt III: abnormally high prices.
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In the first and last cases, both players have the same preferences to raise or decrease Xt; in the
intermediate case, they compete against each other. Because both players can in principle push (Xt)
in either direction, the market organization is influenced by their relative gain of doing so, as well as
their action costs. In cases I and III, the players are in waiting mode because of the second–mover
advantage, hoping that the other will act first which allows the second to benefit from the price effect
without paying the cost of (dis-)investment or of switching. In case II they are in preemption mode,
with the player who moves first being able to increase her profits at the expense of the other. These
dynamic shifts between waiting and preemption is an important feature of vertical competition.

Objective functions and admissible strategies: The objective functionals of the players consist
of integrated profit rates π·(x), discounted at constant rate β > 0 and subtracting the control costs
that are paid at respective intervention epochs. We take the investment cost function of the producer
to be some convex function Kp : R → R, and of the consumer as H : {µ−, µ+} → R+. We denote
the latter as H(µ−) = h−, H(µ+) = h+. Depending on the initial drift µ0 being positive/negative the
producer’s objective function is given by:

J±p (x;N,µ) := E
[ ∫ ∞

0
e−β t

(
Xt − cp)Dp(Xt)dt−

∑
i

e−β τiKp(ξi)
∣∣∣µ0 = µ±, X0 = x

]
, (8)

and, similarly, the representative consumer’s objective function is:

J±c (x;N,µ) := E
[ ∫ ∞

0
e−β t

(
γ0 + γ1Xt + γ2X

2
t )dt−

∑
j

e−β σjH(µσj )
∣∣∣µ0 = µ±, X0 = x

]
. (9)

In order for the state variable dynamics and players’ expected payoffs to be well-defined we give the
following definition of admissible strategies. To this end, let (Ω,F , (Ft)t≥0,P) be a probability space
with a filtration satisfying the usual conditions and supporting an (Ft)t≥0-Brownian motion (Wt).

Definition 1 (Admissible strategies). We say that (τi, ξi)i≥1 is an admissible strategy for the producer
if the following properties hold:

1. (τi)i≥1 is a sequence of [0,∞]-valued stopping times such that 0 ≤ τ1 < τ2 < · · · and limi→∞ τi =
∞ a.s., with the convention that τi =∞ for some i ≥ 1 implies τk =∞ for all k ≥ i;

2. (ξi)i≥1 is a sequence of real-valued Fτi-measurable random variables;

3. the sequence (τi, ξi)i≥1 satisfies
∑

i≥1 e
−βτiξi ∈ L2(P).

Similarly, we say that the sequence (σj)j≥1 is an admissible strategy for the consumer if

4. each σj is a [0,∞]-valued stopping time, 0 ≤ σ1 < σ2 < · · · , with the convention that σj = ∞
for some j ≥ 1 implies σk =∞ for all k ≥ j;

5.
∑

j≥1 e
−βσj ∈ L2(P).

The set of all producer’s (resp. consumer’s) admissible strategies is denoted by Ap (resp. Ac).
Remark 1. Observe that the property 1 above implies that the producer intervention times do not
accumulate in finite time, so that for all t > 0 the process Nt =

∑
i≥1 ξi1{τi≤t}, t ≥ 0, is well-defined,

adapted and finite-valued. Moreover, the integrability condition in 5 gives that σj → ∞ (as j → ∞),
i.e. the switching times of the consumer do not accumulate in finite time either, so that the dynamics
of the controlled state variable (4) is well-defined too. Regarding the expected profits of the players,
they are both finite due to integrability properties in 3 and 5 above.

Remark 2. According to the definition of admissibility above, neither player can intervene more than
once at a time. However, simultaneous interventions coming from both of them are not excluded. As
discussed, the dynamics of the intervention in upstream production is much faster than the switching
of the consumption regime for final good. Thus, in case both players try to act simultaneously, we
assume that the producer has priority. This avoids unnecessary technicalities and allows for a consistent
modeling of the vertical competition.
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2.2 Equilibrium

Using this notion of admissible strategies, we give the definition of Nash equilibrium.

Definition 2 (Nash equilibrium). A Nash equilibrium is any pair ((ξi, τi)i≥1, (σj)j≥1) ∈ Ap × Ac
satisfying the following property:

J±p (x;N ′, µ) ≤ J±p (x;N,µ), J±c (x;N,µ′) ≤ J±c (x;N,µ), ∀x ∈ R,

for any other pair of strategies ((ξ′i, τ
′
i)i≥1, (σ

′
j)j≥1) ∈ Ap×Ac, where in the payoffs J−r (x; ·), r ∈ {c, p},

above we have N ′t =
∑

i≥1 ξ
′
i1{τ ′i≤t} and µ

′
t = µ+

∑∞
i=0 1{σ′2i≤t<σ′2i+1}+µ−

∑∞
i=1 1{σ′2i−1≤t<σ′2i} for t ≥ 0,

µ′0− = µ+ and the convention σ′0 = 0 (analogously in the other case µ′0− = µ− by interchanging odd
and even switching times).

In line with the envisioned Markovian structure and in order to maximize tractability, we concen-
trate on a specific class of dynamic equilibria. Namely, we aim to construct threshold-type Feedback
Nash Equilibria which are of the form

τ0 = 0, τi = inf{t > τi−1 : Xt ∈ Γp(t−)}, i ≥ 1, ξi = δ(Xτi , µτi−), (10)

and

σ0 = 0, σj = inf{t > σj−1 : Xt ∈ Γc(t)}, j ≥ 1, (11)

where
Γr(t) = Γ+

r 1{µt=µ+} + Γ−r 1{µt=µ−}, r ∈ {c, p},

for some measurable function δ : R → R and some suitable Borel sets Γ±p ,Γ
±
c ⊂ R. Thus, (10)-

(11) imply that players act based solely on the current price (Xt) and demand regime (µt), ruling out
history-dependent strategies, and moreover the strategies are characterized through fixed action regions
Γ±p ,Γ

±
c and impulse maps δ(·). We will denote by τ ′k the aggregated intervention times coming jointly

from the two players. The fact that in (10) producer’s intervention times τi are defined via Γp(t−)
translates the assumption that in case of simultaneous interventions, the producer plays first and so
her thresholds naturally depend on the drift µt− just before her and consumer’s actions (compare to
Remark 2).

The action regions Γ±p ,Γ
±
c are expected to be as follows. The impulse intervention region of the

upstream production Γ±p = (x±` , x
±
h ) is two-sided: the producer will act whenever Xt reaches x±h

from below or drops to x±` from above. Note that these thresholds x±` , x
±
h are µ-dependent. On the

consumption side, when µt = µ+ (expansion regime), the consumer will switch to µ− if Xt gets too
high: Γ+

c = (yh,∞). Similarly when µt = µ− (contraction regime), she will switch to µ+ if Xt gets
too low Γ−c = (−∞, y`). Finally, when the producer intervenes, he will bring Xt to her impulse level
x±∗r so that the impulse amount is ξ±r = x±r − x±∗r . The natural ordering we expect is the producer
impulses towards X̄p

x±` < x±∗` and x±∗h < x±h , (12)

and the consumer switches towards X̄c,

y` < X̄c < yh, (13)

so that when acting both players try to move X towards their preferred levels. However, the precise
ordering between the impulse thresholds x±r and the switching thresholds y’s is not clear a priori and
will emerge as part of the overall equilibrium construction.
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2.3 Illustration of Competitive Dynamics

To further understand the market evolution under competition of the producer and consumer, we focus
on the case where both players are active. The producer’s strategy is summarized via a 2× 4 matrix
Cp which lists the thresholds x±` , x

±
h and the target levels x±∗` , x±∗h . Thus, the no-intervention regions

are [x±` , x
±
h ] and impulse amounts are x±h − x

±∗
h , x±∗` − x

±
` :

Cp =

[
x+
` , x+∗

` , x+∗
h , x+

h

x−` , x−∗` , x−∗h , x−h

]
. (14)

The consumer has two switching thresholds y`, yh; in a typical setup we expect them to satisfy the
following ordering

x−` < y` < yh < x+
h . (15)

Note that in the expansion regime (drift µ+), we assume that yh < x+
h . Therefore, coming from

below, X∗t hits yh first, causing the consumer to switch into the contraction regime with drift µ−. As
a result, the impulse threshold x+

h is not effective, i.e. it will never get triggered along an equilibrium
path of (Xt). Similar argument implies that x−` is not effective either if x−` < y`. In the left panel of
Fig. 1 we illustrate such threshold-based vertical competition among the two players.

0 5 10 15 20

t

0.5

1

1.5

2

2.5

Figure 1: Left panel: Dynamic competition between producer and consumer. The blue arrows represent
drift-switching controls exercised by the consumer at levels y` and yh, while the red curved arrows
represent impulse controls exercised by the producer at levels x+

` , x
−
h that instantaneously push Xt

to x+∗
` and x−∗h respectively. Right : A sample path of the controlled commodity price (X∗t ) under

competitive equilibrium. Observe that X∗t ∈ [1, 2] for all t.

To illustrate competitive dynamics, the right panel of Fig. 1 shows a sample trajectory of (X∗t ) (the
superscript emphasizing the fact that we are now looking at equilibrium) with producer and consumer
strategies

Cp =

[
1.0, 1.3, 1.7, 2.0
1.0, 1.3, 1.7, 2.0

]
, (y`, yh) = (1.2, 1.8).

According to the above discussion, the effective thresholds are (x+
` , yh) when µt = µ+, or (y`, x

−
h )

when µt = µ−. In other words, in the expansion regime, (Xt) will be between [1.0, 1.8] and in the
contraction regime it will be between [1.2, 2.0]. In Fig. 1 (Right), we start in the contraction regime
with X0 = 1.5 and µ0 = µ−. On this trajectory, (X∗t ) moves down until it touches the consumer’s
threshold y`, where the consumer switches to a positive drift to draw the price up. Nevertheless, the
price keeps decreasing and hits x+

` = 1.0, whereby the producer intervenes and pushes it to x+∗
` = 1.3.

Prices then continue to rise up to yh = 1.8 at which point the consumer switches again and starts
pushing them back down (supposedly she wishes to keep them somewhere around 1.5). This cyclic
behavior continues ad infinitum, yielding a stationary distribution for the pair (X∗t , µ

∗
t ). Note that
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the consumer uses her switching control to keep X∗t from going too high or too low, essentially cycling
between y` and yh. Indeed, starting at X∗t = y`, the consumer switches to expansion which causes
prices to trend up; once they hit yh the consumer switches to contraction, causing prices to trend
down. As a result, µt alternates between µ+, µ− generating a mean-reverting behavior. Throughout,
the producer acts as a “back-up”, explicitly forcing prices from becoming extreme (namely from falling
in the expansion regime, or rising in the contraction regime). These additional interventions by the
producer make the domain of (X∗t ) bounded.

It is also possible that, say, x+
h < yh so that in the expansion regime the producer will act first

both when (X∗t ) falls (impulse threshold x+
` ) and when (X∗t ) rises (x+

h ), making the consumer inactive.
In that case it is plain to see that the drift µt ≡ µ+ will stay positive forever; (Xt) will be forced to a
bounded domain but will not have mean-reverting dynamics since the drift is constant. Instead, it will
experience repeated impulses downward to counteract the upward trend due to ongoing consumption
growth.

3 Best–response functions

To obtain a threshold-type Feedback Nash Equilibrium we view it as a fixed point of the producer
and consumer best–response maps. Therefore, our overall strategy is to (i) characterize threshold–type
switching strategies for the consumer given a pre-specified, threshold–type behavior by the producer;
(ii) characterize threshold–type impulse strategies for the producer who faces a pre-specified regime–
switching behavior of (Xt); (iii) employ tâtonnement, i.e. iteratively apply the best–response controls
alternating between the two players to construct an interior, non-preemptive equilibrium satisfying the
ordering (15).

To analyze best–response strategies, we utilize stochastic control theory, rephrasing the related
dynamic optimization objectives through variational inequalities (VI) for the jump–diffusion dynamics
(4). The competitor thresholds then act as boundary conditions in the VIs. To establish the desired
equilibrium we need to verify that the best response is also of threshold-type and solves the expected
systems of equations. We note that all three pieces above are new and we have not been able to find
precise analogues of the needed verification theorems in the extant literature. Nevertheless, they do
build upon similar single–agent control formulations, so the overall technique is conceptually clear.

3.1 Consumer Best–Response

Fixing impulse thresholds x±r (r = h, l), the consumer faces a two–state switching control problem on
the bounded domain (x±` , x

±
h ). Namely, given a producer’s impulse strategy (τi, ξi)i≥1 with τ = inf{t :

Xt /∈ [x±` , x
±
h ]}, we expect the following stochastic representation for her value functions w±(x) with

x ∈ [x±` , x
±
h ]

w±(x) = sup
σ∈T

Ex,±

[∫ τ∧σ

0
e−βtπc(Xt)dt+ e−βτ1{τ<σ}

(
w±(Xτ − ξ)

)
+ e−βτ1{τ>σ}

(
w∓(Xσ)− h±

)]
,

(16)

where Ex,± denotes expectation with respect to µt ∈ {µ−, µ+} and h± are the fixed intervention costs
of the consumer. The above is a system of two coupled equations, which locally resembles an optimal
stopping problem with running payoff πc(·), reward w∓(·) (last term), and stop–loss payoff (middle
term) w∓(·) due to the producer impulse at τ . This is almost the formulation as considered in [3]
except with two modifications:

• The domain is bounded on both sides (previously there was a one–sided stop–loss region).

• The boundary condition w+(x`) = w+(x+∗
` ) is autonomous but nonlocal. Therefore, the two

stopping–type VIs for the consumer are coupled only through the free boundaries, not through
the stop–loss thresholds as in [3].
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Now, given a producer strategy Cp, if the consumer’s response is such that y` < x−` and x+
h < yh,

the consumer will be stuck forever in the initial regime because the price touches x−` before y` in the
contraction regime and x+

h before yh in the expansion regime. In this case, the price will oscillate
between x−` and x−h if the initial market is in the contraction regime, and between x+

` and x+
h in the

expansion regime.
In the case where the consumer’s response satisfies y` < x−` and yh < x+

h , depending on the initial
state, the consumer will switch once to the expansion regime or will be stuck in the initial expansion
regime. If the initial regime is µ+, the price will touch yh, the regime will switch to contraction, the
price will never touch y` and will oscillate between x−` and x−h . If the initial state is already µ+, no
switch of regime will ever occur. The same reasoning applies for the symmetric case where x−` < y`
and x+

h < yh.
Finally, if the consumer’s response satisfies x−` < y` and yh < x+

h , then whatever the initial regime,
the state (µt) will switch many times between the two regimes.

The best–response of the consumer consists in picking the best response amongst the three possible
ones above. Thus, we distinguish three cases:

(a) No-Switch: The consumer is completely inactive and simply collects her payoff based on the
strategy (x±`,h).

(b) Single-Switch: The consumer always prefers one regime to the other. Then she is inactive (like
in case (a) above) in the preferred regime and faces an optimal stopping (since there is only a
single switch to consider) problem in the other regime.

(c) Multiple-Switch: The consumer switches back and forth between both regimes: the continuation
region is (y`, yh).

Proposition 1 provides the value function of the consumer in case (a). The system (24) characterizes
the game payoff in case (b), and Proposition 2 provides the value function of the consumer in case (c).

3.1.1 No–switch

Regardless of the consumer strategy, in the continuation region, a direct application of the Feynman–
Kac formula on (16) shows that her value function solves the following ordinary differential equation
(ODE)

− βw + µ±wx +
1

2
σ2wxx + πc(x) = 0. (17)

Solving this inhomogeneous second-order ODE, we obtain w±(x) = ω̂±(x) + u±(x), where letting
θ±2 < 0 < θ±1 be the two real roots of the quadratic equation −β + µ±z + 1

2σ
2z2 = 0,

• u±(x) = λ±1 e
θ±1 x + λ±2 e

θ±2 x solves the homogeneous ODE −βu + µ±ux + 1
2σ

2uxx = 0 and λ±i,0,
i = 1, 2 are to be determined from appropriate boundary conditions;

• ω̂±(x) is a particular solution to (17), given by

ω̂±(x) = Ex2 + F±x+G± where

E =
γ2

β
, F± =

1

β

(
γ1 + 2µ±

γ2

β

)
, G± =

1

β

(
γ0 + σ2γ2

β
+ µ±F±

)
. (18)

When the consumer is inactive (denoted by w±0 ), the continuation region is [x±` , x
±
h ] with the

boundary conditions at the impulse levels

w±0 (x±r ) = w±0 (x±∗r ), r ∈ {`, h}. (19)
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From (19) the respective coefficients λ±1,0, λ
±
2,0 are solved from the following uncoupled linear system:

λ±1,0 ·
[
eθ
±
1 x
±
` − eθ

±
1 x
±∗
`
]

+ λ±2,0 ·
[
eθ
±
2 x
±
` − eθ

±
2 x
±∗
`
]

= ω̂±(x±∗` )− ω̂±(x±` ), (20)

λ±1,0 ·
[
eθ
±
1 x
±
h − eθ

±
1 x
±∗
h
]

+ λ±2,0 ·
[
eθ
±
2 x
±
h − eθ

±
2 x
±∗
h
]

= ω̂±(x±∗h )− ω̂±(x±h ). (21)

For x > x±h we take w±0 (x) = w±0 (x±∗h ) and similarly in the contraction regime, we take w±0 (x) =
w±0 (x±∗` ) for x < x±` .

Proposition 1. Let (λ±1,0, λ
±
2,0) ∈ R4 be the solution to the system (20)-(21). Then the functions w±0 (x),

x ∈ [x±` , x
±
h ], are the value functions for an inactive consumer, i.e. w±0 (x) = J±c (x;N,µ±), where N is

the producer impulse strategy associated with the thresholds (x±` , x
±∗
` ;x±h , x

±∗
h ) with x±` < x±h .

The role of w±0 (·) is important for judging the other two cases, and moreover for deciding whether
the best–response ought to be of threshold–type.

3.1.2 Single–switch

We next consider the situation where the payoff in the expansion regime is higher than the contraction
one for any price x, so that the consumer is never incentivized to switch to the contraction regime. We
then expect the consumer’s corresponding best–response to be either a single–switch strategy (to the
preferred regime) or no–switch (if already there). Economically, this corresponds to yh > x+

h so that
as the price rises, the producer impulses (Xt) down, and the consumer is not intervening to decrease
her demand. As a result, the consumer never switches (except perhaps the first time from negative to
positive drift) and limt→∞ µt = µ+. This can be observed when demand switching is very expensive,
so that the producer has full market power and is able to keep prices consistently low. The consumer
is forced to be in the expansion regime forever and she is not able to influence (Xt).

Suppose that the consumer prefers expansion regime (µt = µ+) and adopts threshold-type strate-
gies. Given Cp, her strategy is summarized by

y` > x−` , yh = +∞,

and the resulting contraction–regime value function w− should be a solution to the variational inequal-
ity

sup
{
− βw− + µ−w

−
x +

1

2
σ2w−xx + πc; w

+
0 − h− − w

−} = 0, (22)

where w+
0 is from Proposition 1 and the continuation region is [y`, x

−
h ]. This is a standard optimal

stopping problem. Note that while the above equation for w− depends on w+
0 , the equation for w+

0 is
autonomous—the system of equations becomes decoupled because the two regimes of (µt) no longer
communicate.

To solve (22) we posit that her best–response is of the form

w−(x) =


w+

0 (x)− h−, x ≤ y`,
ω̂−(x) + λ−1 e

θ−1 x + λ−2 e
θ−2 x, y` < x < x−h ,

w−(x−∗h ), x−h ≤ x,
(23)

with the smooth pasting and boundary conditions:
ω̂−(y`) + λ−1 e

θ−1 y` + λ−2 e
θ−2 y` = ω̂+(y`) + λ+

1,0e
θ+1 y` + λ+

2,0e
θ+2 y` − h−, (C0 at y`)

ω̂−(x−h ) + λ−1 e
θ−1 x

−
h + λ−2 e

θ−2 x
−
h = ω̂−(x−∗h ) + λ−1 e

θ−1 x
−∗
h + λ−2 e

θ−2 x
−∗
h , (C0 at x−h )

ω̂−x (y`) + λ−1 θ
−
1 e

θ−1 y` + λ−2 θ
−
2 e

θ−2 y` = ω̂+
x (y`) + λ+

1,0θ
+
1 e

θ+1 y` + λ+
2,0θ

+
2 e

θ+2 y` . (C1 at y`)
(24)
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The system (24) is to be solved for the three unknowns y`, λ−1 , λ
−
2 , while λ

+
1,0, λ

+
2,0 are the coefficients

of the consumer’s payoff associated to the no-switch strategy in the µ+ regime, see previous subsection.
We can re-write it as first solving for λ−1,2 from the linear system[

eθ
−
1 y` eθ

−
2 y`

eθ
−
1 x
−
h − eθ

−
1 x
−∗
h eθ

−
2 x
−
h − eθ

−
2 x
−∗
h

]
·
[
λ−1
λ−2

]
=

[
w+

0 (y`)− ω̂−(y`)− h−
ω̂−(x−∗h )− ω̂−(x−h )

]
(25)

and then determining y` from the smooth pasting C1-regularity

w−x (y`) = w+
0,x(y`). (26)

The case of a single–switch from expansion to contraction regime can be treated analogously in a
symmetric way.

3.1.3 Double–switch

Finally, we consider the main case where the consumer adopts threshold–type switches, i.e. the ordering
in (15) holds. Given Cp, the w± are then supposed to be a solution to the coupled variational inequalities

sup
{
− βw+ + µ+w

+
x +

1

2
σ2w+

xx + πc; max{w− − h+, w
+} − w+

}
= 0, (27)

sup
{
− βw− + µ−w

−
x +

1

2
σ2w−xx + πc; max{w+ − h−, w−} − w−

}
= 0, (28)

where we expect continuation regions of the form (x+
` , yh) and (y`, x

−
h ). To set up a verification

argument for the consumer’s best–response we make the ansatz

w+(x) =


w+(x+∗

` ), x ≤ x+
` ,

ω̂+(x) + λ+
1 e

θ+1 x + λ+
2 e

θ+2 x, x+
` < x < yh,

w−(x)− h+, x ≥ yh,
(29a)

w−(x) =


w+(x)− h−, x ≤ y`,
ω̂−(x) + λ−1 e

θ−1 x + λ−2 e
θ−2 x, y` < x < x−h ,

w−(x−∗h ), x ≥ x−h .
(29b)

This yields 6 equations:

ω̂+(y`) + λ+
1 e

θ+1 y` + λ+
2 e

θ+2 y` − h− = ω̂−(y`) + λ−1 e
θ−1 y` + λ−2 e

θ−2 y` , (C0 at y`)
ω̂+(x+

` ) + λ+
1 e

θ+1 x
+
` + λ+

2 e
θ+2 x

+
` = ω̂+(x+∗

` ) + λ+
1 e

θ+1 x
+∗
` + λ+

2 e
θ+2 x

+∗
` , (C0 at x+

` )

ω̂−(yh) + λ−1 e
θ−1 yh + λ−2 e

θ−2 yh − h+ = ω̂+(yh) + λ+
1 e

θ+1 yh + λ+
2 e

θ+2 yh , (C0 at yh)

ω̂−(x−h ) + λ−1 e
θ−1 x

−
h + λ−2 e

θ−2 x
−
h = ω̂−(x−∗h ) + λ−1 e

θ−1 x
−∗
h + λ−2 e

θ−2 x
−∗
h , (C0 at x−h )

ω̂+
x (y`) + λ+

1 θ
+
1 e

θ+1 y` + λ+
2 θ

+
2 e

θ+2 y` = ω̂−x (y`) + λ−1 θ
−
1 e

θ−1 y` + λ−2 θ
−
2 e

θ−2 y` , (C1 at y`)
ω̂−x (yh) + λ−1 θ

−
1 e

θ−1 yh + λ−2 θ
−
2 e

θ−2 yh = ω̂+
x (yh) + λ+

1 θ
+
1 e

θ+1 yh + λ+
2 θ

+
2 e

θ+2 yh . (C1 at yh)

(30)

The six equations can be split into a linear system for the four coefficients λ±1,2’s
eθ

+
1 y` eθ

+
2 y` −eθ

−
1 y` −eθ

−
2 y`

eθ
+
1 x

+
` − eθ

+
1 x

+∗
` eθ

+
2 x

+
` − eθ

+
2 x

+∗
` 0 0

−eθ
+
1 yh −eθ

+
2 yh eθ

−
1 yh eθ

−
2 yh

0 0 eθ
−
1 x
−
h − eθ

−
1 x
−∗
h eθ

−
2 x
−
h − eθ

−
2 x
−∗
h

 ·

λ+

1

λ+
2

λ−1
λ−2

 =


ω̂−(y`)− ω̂+(y`)− h+

ω̂+(x+∗
` )− ω̂+(x+

` )
ω̂+(yh)− ω̂−(yh)− h−
ω̂−(x−∗h )− ω̂−(x−h )


(31)

and the smooth-pasting conditions determining the two switching thresholds y`,h (viewed as free bound-
aries)

w+
x (yr) = w−x (yr), r ∈ {`, h}. (32)
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Proposition 2. Let the 6-tuple (λ±1 , λ
±
2 , yh, y`) be a solution to the system (31)-(32) such that the order

in (15) is fulfilled. Then, the functions defined in (29) give the best–response payoffs of consumer, and
a best–response strategy is given by (σ̂i)i≥1, where

σ̂0 = 0, σ̂i = inf {t > σ̂i−1 : Xt ∈ Γc(t)} , i ≥ 1,

with Γ+
c = [y`,+∞) and Γ−c = (−∞, yh].

Figure 2 illustrates the shapes of the consumer’s value function in the different case of best–response.
For the strategy given, we have a dominant function in the contraction regime (w−0 ) and a dominant
function in the expansion regime (w+

0 ).
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(a) Cp =

[
1.2, 2.5, 2.6, 4.2
1.5, 3.0, 2.8, 4.5

]

Figure 2: Value functions w±0 , w±1 and w±2 of the consumer given the producer’s strategy (a).

Remark: For comparison purposes, it is also useful to know the continuation region of the consumer
when she alone controls the market price (Xt). As usual, this region is (−∞, yh) in the expansion
regime and (y`,+∞) in the contraction regime, with the natural ordering y` < yh. The value functions
w± satisfy:

sup
{
− βw+ + µ+w

+
x +

1

2
σ2w+

xx + πc; w
− − h+

}
= 0, (33)

sup
{
− βw− + µ−w

−
x +

1

2
σ2w−xx + πc; w

+ − h−
}

= 0. (34)

To set up a verification argument for the consumer’s best–response we make the ansatz

w+(x) =

{
w−(yh)− h+, x ≥ yh,
ω̂+(x) + λ+

1,0e
θ+1 x + λ+

2,0e
θ+2 x, x < yh,

(35a)

w−(x) =

{
ω̂−(x) + λ−1,0e

θ−1 x + λ−2,0e
θ−2 x, x > y`,

w+(y`)− h−, x ≤ y`.
(35b)

Furthermore, in the expansion regime, to keep w+(x) bounded as x → −∞ we must have λ+
2,0 = 0

because θ+
2 < 0. In the contraction regime, a similar argument gives λ−1,0 = 0. We are left with the

four unknowns y`, yh and λp1,0 and λ−2,0 determined from the following smooth pasting conditions:
ω̂−(y`) + λ−2,0e

θ−2 y` = ω̂+(y`) + λ+
1,0e

θ+1 y` − h−, (C0 at y`)
ω̂+(yh) + λ+

1,0e
θ+1 yh = ω̂−(yh) + λ−2,0e

θ−2 yh − h+, (C0 at yh)

ω̂−x (y`) + λ−2,0θ
−
2 e

θ−2 y` = ω̂+
x (y`) + λ+

1,0θ
+
1 e

θ+1 y` , (C1 at y`)
ω̂+
x (yh) + λ+

1,0θ
+
1 e

θ+1 yh = ω̂−x (yh) + λ−2,0θ
−
2 e

θ−2 yh . (C1 at yh)

(36)

2
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3.2 Producer Best Response

We now consider the best–response of the producer, given the consumer’s switching strategy denoted
by Cc := [y`, yh]. Once again, we face three Cases:

1. The producer is a monopolist, i.e. the consumer is completely inactive;

2. The consumer adopts a single–switch strategy;

3. The consumer adopts a double–switch strategy.

3.2.1 Producer as Sole Optimizer

To begin with, we determine the monopoly-like strategy of the producer assuming the consumer adopts
a no–switch strategy. In that case µt is constant throughout and the functions v± of the producer
satisfy the variational inequality (VI):

sup
{
− βv± + µ±v

±
x +

1

2
σ2v±xx + πp , sup

ξ

{
v±(·+ ξ)− v±(·)−Kp(ξ)

}}
= 0. (37)

Note that the two VIs for v+ and v− are autonomous, hence uncoupled from each other. In the
continuation region, the general solution of the ODE

−βv + µ±vx +
1

2
σ2vxx + πp(x) = 0

is of the form v±(x) = v̂±(x) + u±(x), where u± = ν±1 e
θ±1 x + ν±2 e

θ±2 x, with θ±1 , θ
±
2 as before, satisfies

the homogenous ODE −βu+ µ±ux + 1
2σ

2uxx = 0, and v̂±(x) is a particular solution given by

v̂±(x) = Ax2 +B±x+ C±, (38)

where the coefficients A,B±, C± are identified as:

A = −d1

β
, B± =

1

β

(
d0 −

2µ± d1

β
+ cp d1

)
, C± =

1

β

(
µ±B± +Aσ2 − cpd0

)
.

Assuming the producer adopts threshold–type impulse strategies defined by ξ∗(x) in the interven-
tion region, her expected payoff is of the form:

v±(x) =


v±(x±∗h )−Kp(ξ

∗(x)) x ≥ x±h ,
v̂±(x) + ν±1 e

θ±1 x + ν±2 e
θ±2 x, x±` < x < x±h ,

v±(x±∗` )−Kp(ξ
∗(x)) x ≤ x±` .

(39)

When applying the optimal impulse ξ±∗(x) at the threshold x±r , r = `, h, the producer brings Xt

back to the price level x±∗r := x±r − ξ±∗(x±r ).For optimality, the respective impulse amounts satisfy the
first order conditions

v±x (x±∗h ) = −∂ξKp(ξ
∗(x±h )), v±x (x±∗` ) = −∂ξKp(ξ

∗(x±` )). (40)

We reinterpret the above as the equation to be satisfied by ξ∗(x±r ) which are treated temporarily as
unknowns and plugged into further equations. To ensure that the value function is continuous at x±r
we further need

v±(x±r ) = v±(x±∗r )−Kp(ξ
±∗
r ). (41)
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Finally, making the hypothesis that the value function is differentiable at the borders of the intervention
region, we have:

v±x (x±` ) = v±x (x±∗` )− ∂ξKp(ξ
∗(x±` )), (42a)

v±x (x±h ) = v±x (x±∗h )− ∂ξKp(ξ
∗(x±h )). (42b)

We consider two cases of impulse costs: (i) constant Kp(ξ) = κ0 and (ii) linear Kp(ξ) = κ0 + κ1|ξ|.
In case (i), because the impulse cost is independent of the intervention amount there will be an optimal
impulse level x±∗r so that for any x in the intervention region the strategy is to impulse back to x±∗r
which is the same at the two thresholds. In case (ii), ∂ξKp = ±κ1 and all the smooth pasting and
boundary conditions can be gathered in the following system:

v̂±(x±h ) + ν±1 e
θ±1 x

±
h + ν±2 e

θ±2 x
±
h = v̂±(x±∗h ) + ν±1 e

θ±1 x
±∗
h + ν±2 e

θ±2 x
±∗
h − κ0 − κ1(x±h − x

±∗
h ), (C0 at x±h )

v̂±(x±` ) + ν±1 e
θ±1 x

±
` + ν±2 e

θ±2 x
±
` = v̂±(x±∗` ) + ν±1 e

θ±1 x
±∗
` + ν±2 e

θ±2 x
±∗
` − κ0 − κ1(x±∗` − x

±
` ), (C0 at x±` )

v̂±x (x±∗h ) + ν±1 θ
±
1 e

θ±1 x
±∗
h + ν±2 θ

±
2 e

θ±2 x
±∗
h = −κ1 (C1 at x±∗h )

v̂±x (x±∗` ) + ν±1 θ
±
1 e

θ±1 x
±∗
` + ν±2 θ

±
2 e

θ±2 x
±∗
` = κ1, (C1 at x±∗` )

v̂±x (x±h ) + ν±1 θ
±
1 e

θ±1 x
±
h + ν±2 θ

±
2 e

θ±2 x
±
h = v̂±x (x±∗h ) + ν±1 θ

±
1 e

θ±1 x
±∗
h + ν±2 θ

±
2 e

θ±2 x
±∗
h − κ1, (C1 at x±h )

v̂±x (x±` ) + ν±1 θ
±
1 e

θ±1 x
±
` + ν±2 θ

±
2 e

θ±2 x
±
` = v̂±x (x±∗` ) + ν±1 θ

±
1 e

θ±1 x
±∗
` + ν±2 θ

±
2 e

θ±2 x
±∗
` + κ1. (C1 at x±` )

(43)

Note that there are two uncoupled linear systems for v+ and v−. The C0 conditions are from (41), the
first two C1 conditions are from (40) which determines the optimal impulse destination, and the last
two C1 conditions are from (42).

By a standard verification argument, one can show that if both systems above admit solutions ν±1,2
and x±`,h, where the latter satisfy the order condition x±` < x±h , then the functions v±(x) as in (39)
are the value functions of the producer and his optimal strategies are given by the thresholds x±`,h and
impulse amounts ξ∗(x±∗`,h). This can be done by following exactly the arguments in, e.g., [7] (see also
their Remark 2.1), which are very standard in the literature of impulse control problems. Therefore,
details are omitted.

3.2.2 Non-preemptive Response

Suppose the following ordering, which is similar to (15), holds:

x±` < yl < yh < x±h . (44)

We then expect v± to solve the VIs{
sup

{
− βv+ + µ+v

+
x + 1

2σ
2v+
xx + πp ; supξ(v

+(· − ξ)− v+ −Kp(ξ))
}

= 0,

sup
{
− βv− + µ−v

−
x + 1

2σ
2v−xx + πp ; supξ(v

−(· − ξ)− v− −Kp(ξ))
}

= 0.
(45)

To obtain the producer best–response it suffices to identify the two active impulse thresholds x+
` , x

−
h

and the respective target levels x+∗
` , x−∗h . The other two boundary conditions take place at the con-

sumer thresholds y`, yh, so that the strategy (see (47) below) is Cp =

[
x+
` , x+∗

` , −, +∞
−∞, −, x−∗h , x−h

]
. The

game coupling shows up in the additional boundary condition that when the consumer switches, the
producer’s value is unaffected:

v+(y) = v−(y), y ∈ (−∞, y`] ∪ [yh,+∞). (46)
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Accordingly, our ansatz is

v−(x) =


v−(x−∗h )−Kp(ξ

∗(x)), x ≥ x−h ,
v̂−(x) + ν−1 e

θ−1 x + ν−2 e
θ−2 x, y` < x < x−h ,

v+(x), x ≤ y`,
(47a)

v+(x) =


v−(x), x ≥ yh,
v̂+(x) + ν+

1 e
θ+1 x + ν+

2 e
θ+2 x, x+

` < x < yh,

v+(x+∗
` )−Kp(ξ

∗(x)), x ≤ x+
` .

(47b)

To simplify the presentation, let us concentrate on the proportional impulse costs Kp(ξ) = κ0 + κ1|ξ|.
We have the smooth pasting C1 and boundary conditions:

v̂+(y`) + ν+
1 e

θ+1 y` + ν+
2 e

θ+2 y` = v̂−(y`) + ν−1 e
θ−1 y` + ν−2 e

θ−2 y` , (C0 at y`)
v̂−(yh) + ν−1 e

θ−1 yh + ν−2 e
θ−2 yh = v̂+(yh) + ν+

1 e
θ+1 yh + ν+

2 e
θ+2 yh , (C0 at yh)

v̂+(x+
` ) + ν+

1 e
θ+1 x

+
` + ν+

2 e
θ+2 x

+
` = v̂+(x+∗

` ) + ν+
1 e

θ+1 x
+∗
` + ν+

2 e
θ+2 x

+∗
` −Kp(ξ

∗(x+
` )), (C0 at x+

` )

v̂−(x−h ) + ν−1 e
θ−1 x

−
h + ν−2 e

θ−2 x
−
h = v̂−(x−∗h ) + ν−1 e

θ−1 x
−∗
h + ν−2 e

θ−2 x
−∗
h −Kp(ξ

∗(x−h )), (C0 at x−h )

v̂+
x (x+

` ) + ν+
1 θ

+
1 e

θ+1 x
+
` + ν+

2 θ
+
2 e

θ+2 x
+
` = v̂+

x (x+∗
` ) + ν+

1 θ
+
1 e

θ+1 x
+∗
` + ν+

2 θ
+
2 e

θ+2 x
+∗
` −κ1, (C1 at x+

` )

v̂−x (x−h ) + ν−1 θ
−
1 e

θ−1 x
−
h + ν−2 θ

−
2 e

θ−2 x
−
h = v̂−x (x−∗h ) + ν−1 θ

−
1 e

θ−1 x
−∗
h + ν−2 θ

−
2 e

θ−2 x
−∗
h +κ1. (C1 at x−h )

v̂+
x (x+∗

` ) + ν+
1 θ

+
1 e

θ+1 x
+∗
` + ν+

2 θ
+
2 e

θ+2 x
+∗
` = −κ1 (C1 at x+∗

` )

v̂−x (x−∗h ) + ν−1 θ
−
1 e

θ−1 x
−∗
h + ν−2 θ

−
2 e

θ−2 x
−∗
h = κ1, (C1 at x−∗h )

(48)

Unlike the single–agent setting (43), the equations (48) are coupled. The coefficients ν±1,2 are the
solution to the linear system

eθ
+
1 y` eθ

+
2 y` −eθ

−
1 y` −eθ

−
2 y`

eθ
+
1 x

+
` − eθ

+
1 x

+∗
` eθ

+
2 x

+
` − eθ

+
2 x

+∗
` 0 0

−eθ
+
1 yh −eθ

+
2 yh eθ

−
1 yh eθ

−
2 yh

0 0 eθ
−
1 x
−
h − eθ

−
1 x
−∗
h eθ

−
2 x
−
h − eθ

−
2 x
−∗
h

 ·

ν+

1

ν+
2

ν−1
ν−2

 =


v̂−(y`)− v̂+(y`)

v̂+(x+∗
` )− v̂+(x+

` )−Kp

v̂+(yh)− v̂−(yh)
v̂−(x−∗h )− v̂−(x−h )−Kp


(49)

and the thresholds x+
h , x

−
` are determined by the C1 smooth–pasting (recall that x−∗h = x−h − ξ

∗(x−h ),
x+∗
` = x+

` − ξ
∗(x+

` )): {
v−x (x−h ) = v−x (x−∗h ),

v+
x (x+

` ) = v+
x (x+∗

` ),
(50)

and the first order conditions (FOCs) giving the optimal impulses:

v−x (x−∗h ) = −∂ξKp(ξ
∗(x−h )) v+

x (x+∗
` ) = −∂ξKp(ξ

∗(x+
` )). (51)

Proposition 3. Let the 8-tuple (ν±1 , ν
±
2 , x

+
h , x

−
` , x

+∗
h , x−∗` ) be a solution to the system (48), such that

the order in (44) is fulfilled and x+
` < x+∗

` , x−∗h < x−h . Let v
± be defined in (47) and assume

v+
xx(x+∗

` ) < 0, v−xx(x−∗h ) < 0. (52)

Then the functions v± are the best–response payoffs of the producer, and a best–response strategy is
given by

τ∗0 = 0, τ∗i = inf
{
t > τ∗i−1 : X∗t ∈ Γp(t−)

}
, (53)

ξ∗i (x+
` ) = x+∗

` − x
+
` , ξ∗i (x−h ) = x−h − x

−∗
h , i ≥ 1, (54)

with Γp(t) = Γ+
p 1{µt=µ+}+Γ−p 1{µt=µ−}, where Γ+

p = (−∞, x+
` ] and Γ−p = [x−h ,+∞), while (X∗t ) follows

the dynamics corresponding to the consumer’s strategy (σi)i≥1 and the producer’s impulse strategy
(τ∗i , ξ

∗
i )i≥1.
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3.2.3 Preemptive Response

It is possible that the static discounted future profit of the producer satisfies, say, v+(x) ≥ v−(x) for
any x, so that he always prefers expansion regime to contraction regime.

In that case, the consumer switching at yh from expansion to contraction hurts the producer and
one possible strategy for him is to preempt in order to prevent the consumer from switching the drift
to µ−. This situation could be viewed as looking for best x+

h < yh, given yh. In the latter case
the constrained solution could be x+

h = yh−, whereby the system (43) does not hold and the best–
response is to impulse (Xt) right before it hits yh, x+

h = yh−. This strategy is not well-defined (i.e. the
supremum is not achieved on the open interval (x+

` , yh)), but the resulting preemptive best–response
value in the µ+ regime can be obtained by using the ansatz (where we slightly abuse the notation to
write x+∗

h = yh − ξ∗(yh) for the target impulse level at yh)

v+(x) =


v+(x+∗

h )−Kp(ξ
∗(x)), x ≥ yh,

v̂+(x) + ν+
1 e

θ+1 x + ν+
2 e

θ+2 x, x+
` < x < yh,

v+(x+∗
` )−Kp(ξ

∗(x)), x ≤ x+
` ,

(55)

and the boundary conditions for determining the target impulse levels

v+
x (x+∗

h ) = −κ1, v+
x (x+∗

` ) = +κ1. (56)

Note that we now have 5 unknowns, ν+
1,2, x

+
` , x

+∗
` , x+∗

h rather than six as we “fixed” x+
h = yh. This

yields the following system

v̂+(yh) + ν+
1 e

θ+1 yh + ν+
2 e

θ+2 yh = v̂+(x+∗
h ) + ν+

1 e
θ+1 (x+∗h ) + ν+

2 e
θ+2 (x+∗h ) −Kp(ξ

∗(yh)) (C0at yh)

v̂+(x+
` ) + ν+

1 e
θ+1 x

+
` + ν+

2 e
θ+2 x

+
` = v̂+(x+∗

` ) + ν+
1 e

θ+1 x
+∗
` + ν+

2 e
θ+2 x

+∗
` −Kp(ξ

∗(x+
` )) (C0 at x+

` )

v̂+
x (x+

` ) + ν+
1 θ

+
1 e

θ+1 x
+
` + ν+

2 θ
+
2 e

θ+2 x
+
` = v̂+

x (x+∗
` ) + ν+

1 θ
+
1 e

θ+1 x
+∗
` + ν+

2 θ
+
2 e

θ+2 x
+∗
` + κ1 (C1 at x+

` )

v̂+
x (x+∗

h ) + ν+
1 θ

+
1 e

θ+1 x
+∗
h + ν+

2 θ
+
2 e

θ+2 x
+∗
h = −κ1 (C1 at x+∗

h )

v̂+
x (x+∗

` ) + ν+
1 θ

+
1 e

θ+1 x
+∗
` + ν+

2 θ
+
2 e

θ+2 x
+∗
` = κ1. (C1 at x+∗

` )

(57)

Preemption in the contraction regime writes in a symmetric way.
In general, we need to manually verify whether x+

h > yh (the “normal” case) or x+
h = yh (the

preemptive case) whenever we consider the producer best–response. The two situations lead to different
boundary conditions at the upper threshold, and hence cannot be directly compared. Considering the
optimization problem for x+

h , we expect his value function to increase in x+
h on (x+

` , yh) and experience
a positive jump at yh, i.e. conditional on someone acting, the producer prefers the consumer’s switch
to applying his impulse. However, if this is not the case, the consumer action hurts the producer and
assuming the impulse costs are low, the best-response is x+

h = yh. This corner solution arises due to
the underlying discontinuity: on (x+

` , yh) the producer compares the value of waiting to the value of
doing an optimal impulse, but at yh he compares the value of switching to that of doing an optimal
impulse. So it could be that “waiting” > impulsing > switching at yh, leading to pre-emptive impulse
to prevent the worst (for the producer) outcome.

Proposition 4. Assume µ0− = µ+. Let the 5-tuple (ν+
1 , ν

+
2 , x

+
` , x

+∗
` , x+∗

h ) be a solution to the system
(57), such that the order in (44) is fulfilled and x+

` < x+∗
` , x+∗

h < yh. Let v+ be defined as in (55) and
assume

v+
xx(x+∗

` ) < 0, v+
xx(x+∗

h ) < 0. (58)

Then, the function v+ is the best–response payoff of the producer in the expansion regime, and a best–
response strategy is given by

τ∗0 = 0, τ∗i = inf{t > τ∗i−1 : Xt ∈ Γp(t−)}, (59)
ξ∗i (x+

` ) = x+∗
` − x

+
` , ξ∗i (yh) = yh − x+∗

h , i ≥ 1, (60)
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with Γp(t) = Γ+
p (t) = (−∞, x+

` ] ∪ [yh,+∞), while X∗ follows the dynamics corresponding to the
producer’s impulse strategy (τ∗i , ξ

∗
i )i≥1.
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Figure 3: Value functions v±0 , v±1 , and v±pre of the producer given the consumer’s strategy Cc = (3, 4).

Figure 3 illustrates the shapes of the producer’s value function in the different cases of best–
response. For the given consumer strategy, we have a dominant function in the contraction regime
(v−1 ) and a dominant function in the expansion regime (v+

1 ).

4 Equilibria

The best–response functions defined in Section 3 lead to three types of potential market equilibria,
depending on the equilibrium behaviour of the consumer and characterized by the relative positions of
the consumerand producer thresholds:

• Type I – generic: y` ≤ x−h and x+
` ≤ yh.

• Type II – transitory: −∞ = y` ≤ x−` and x+
` ≤ yh; or y` ≤ x

−
h and yh = +∞.

• Type III – preemptive: y` ≤ x−h and x+
` = yh; or y` = x−h and x+

` ≤ yh.

In equilibrium Type I, the consumer switches back and forth forever between the two expansion and
contraction regimes. The optimal policy of the consumer is given by the threshold y` in the contraction
regime and yh in the expansion regime, while the optimal policy of the producer is formed by the pair
(x+
` , x

+,∗
` ) in the expansion regime and symmetrically by the pair (x+,∗,

h x−h ) in the contraction regime.
We anticipate this to be the most common equilibrium type; it was precisely described and illustrated
in Section 4.1.

In equilibrium Type II, the consumer and the producer both prefer a given regime and thus, the
consumer switches at most once when the market is initialized in the opposite regime. Afterwards,
only the producer acts to maintain the price between (x`, xh). Consider the case of a single switch
from expansion to contraction; the consumer’s optimal policy consists then in only one threshold, yh.
The optimal policy of the producer is more complicated: in the expansion regime, it consists of the
pair (x+

` , x
+,∗
` ) and in the contraction regime, it consists of a quadruplet (x−` , x

−,∗
` , x−,∗h , x−h ). The same

reasoning applies in the other single switch case. This equilibrium is described in Section 4.2.
The last type of equilibrium, named Type III, resembles the preceding one in the sense that at

most one switch can be observed. But it differs because here the consumer is stuck forever in a state
she wishes to leave. In that case described in Section 4.3, only the producer acts. Starting in the
expansion regime, for instance, the consumer would like to switch to the contraction regime when the
price reaches a threshold yh. But the producer, who prefers perpetual expansion, preempts the switch
by acting at the threshold y−h , just before the action of the consumer.

Threshold–type equilibria offer analytical tractability to describe the long–run market behavior.
The latter can be summarized by the stationary distribution of the commodity price (X∗t ) and the
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consumer regimes (µ∗t ) as induced by the equilibrium strategies (N∗t , µ
∗
t ). To quantify these effects, we

define an auxiliary discrete–time jump chain (M∗n)∞n=0 which takes values in the state space

E :=
{
S+, S−, I

−
` , I

−
h , I

+
` , I

+
h

}
. (61)

The chain M∗ keeps track of the sequential actions of the players, where S± represents the switches
of the consumer (“S+” stands for the switch µ− → µ+ and “S−” for µ+ → µ−) and I±r the impulses
(up/down at the two impulse boundaries) of the producer. Thus, M∗ summarizes the sequence of
market interventions stored within τi, σi stopping times. Note that states M∗n ∈ {S+, I

+
`h} imply a

positive drift µ+ of X∗, while the rest imply a negative drift µ−. Moreover, if the consumer adopts
a double–switch strategy and the producer adopts a non-preemptive strategy as discussed in Section
4.1, then the thresholds x+

h and x−` will be hit at most once by X∗ and therefore the corresponding
states I+

h and I−` of M∗n are transient.
Because the dynamics of X∗ between interventions are always Brownian motion (BM) with drift,

the transition probabilities of M∗ can be described in terms of hitting probabilities of a BM. This
offers closed-form expressions for the the transition probability matrix P of M∗, and its invariant
distribution denoted by ~Π. Moreover, the sojourn times of M∗ correspond to (X∗t ) hitting the various
thresholds (in terms of the original continuous-time “t”) and are similarly linked to BM first passage
times. Combining the above ideas, we can then derive a complete description of (µ∗t ), namely the
long-run proportion of time that the commodity demand is in expansion/contraction regimes and the
respective expected switching time, see (71).

In the following section otherwise stated, we use the parameter values in Table 1, such that πi(x) =
ai(x−x1

i )(x
2
i−x), i ∈ {c, p}. This yields consumer and producer preferred price levels of X̄c = 3, X̄p = 4.

The same set of parameters yields an equilibrium of each type, showing the non-uniqueness of equilibria
in this model.
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x
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1

1.5
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Figure 4: Producer’s and consumer’s profit rates as a
function of x.

Market Consumer Producer
β 0.1 x1

c 1 x1
p 2

σ 0.25 x2
c 5 x2

p 6
µ+ 0.1 ac 0.75 ap 0.25
µ− −0.1 h± 10 κ0 3

κ1 0

Table 1: Model parameters for Section 4.1.

4.1 Type I – Generic

We look for an interior, non-preemptive equilibrium satisfying the ordering (15), i.e. a pair of consumer
and producer strategies of the form (y∗` , y

∗
h) and (x+

` , x
+∗
` , x−∗h , x−h ). To construct this equilibrium, we

employ tâtonnement, i.e. iteratively apply the best–response controls alternating between the two
players. This corresponds to the interpretation of Nash equilibrium as a fixed point of best–response
maps BR. The equilibrium is obtained using two different fixed–point algorithms. Given strategies C0

p
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Figure 5: A sample path of the controlled market price (X∗t ) under a Type I equilibrium (Left), Type II
(Center) and Type III (Right) together with E

[
X∗t
]
(black solid curve). The colors along the x-axis

indicate the corresponding µ∗t . We start with µ∗0 = µ+.

and C0
c , we have either an asynchronous or synchronous algorithm, namely

Ck+1
p = BR(Ckc ), Ck+1

p = BR(Ckc ),

Ck+1
c = BR(Ck+1

p ), Ck+1
c = BR(Ckp ),

asynchronous synchronous.

The resulting equilibrium found using both algorithms is the same and is

CI,∗
p =

[
2.0, 3.6, −, +∞
−∞, −, 4.5, 6.1

]
, CI,∗

c = [2.2, 4.4]. (62)

The dynamic equilibrium of the commodity price X∗ is illustrated in Figure 5 (Left). The market
starts in the expansion regime, µ∗0 = µ+. We observe that x−∗h is close to y∗h, implying that once the
price has reached the switching level y∗h, it is likely to touch soon thereafter the threshold x−∗h , making
the price drop to x−∗h . The producer “backs up” this mean-reversion by impulsing down if prices rise
too much and impulsing down if they drop too much. Otherwise, she lets the consumer be in charge
via switching control that benefits him as well.

At equilibrium, the price X∗ fluctuates in a range of values where neither the producer nor the
consumer have negative profit rate. If alone in the market, the optimal monopolistic strategies of the
producer and the consumer are

Cmp :=

[
1.9, 3.5, 3.5, 5.6
2.4, 4.5, 4.5, 6.1

]
, Cmc := [1.7, 4.3]. (63)

We see that the equilibrium strategy of the producer CI,∗
p is quite close to what he would have done

if alone in the market. On his side, the consumer-induced equilibrium price range is wider than he
would prefer (2.6 against 2.2 if alone). In equilibrium, it is as if the producer lets the consumer do the
job of bringing back the price to his preferred level X̄p. The producer intervenes only if X∗t drops too
low or gets too high, after the regime switching has occurred. But, in the long–run, the average price
limt→∞ E[X∗t ] is close to 3.5, which is the mid–value between X̄p and X̄c.

The players’ equilibrium strategy profile yields a stationary distribution for the pair (X∗t , µ
∗
t ). The

macro market µ∗ switches between the expansion and the contraction regimes back and forth, while
the jointly controlled price (X∗t ) is bounded in the range [x+

` , x
−
h ] and fluctuates in a mean-reverting

pattern due to alternating signs of its drift. These stylized features can be broadly traced in the world
commodity markets which undergo cyclical Expansion/Contraction patterns.
Dynamics of (X∗t ) in the equilibrium: The dynamics of the commodity price (X∗t ) are less tractable
due to the impulses applied by the producer. Let φ∗(·) denote the long-run (i.e. stationary) distribution
of (X∗t ). In Figure 6, we show φ∗ obtained from an empirical density based on a long trajectory of
(X∗t ), relying on Monte Carlo simulations and the ergodicity of the recurrent, bounded process (X∗t ).
For additional interpretability, we also plot the invariant distributions φ∗± conditional on µt = µ±.

20



1 2 3 4 5 6 7

Price

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(a)

1 2 3 4 5 6 7

Price

0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 6: Estimated long-run densities φ∗ of X∗ in a double–switch and one–sided impulse equilibrium.
Panel (a): overall kernel smoothed φ∗(·). (b): long–run distributions φ∗± ofX∗ conditional on µ(t) = µ+

(resp. µ(t) = µ−). Recall that the domain of X∗t depends on the current regime, so the support of the
two densities differs.

4.2 Type II – Transitory

In another type of equilibrium the consumer switches only in one regime, with the other being absorb-
ing. For this reason, we name it transitory. To fix ideas, suppose that the consumer only switches
from expansion regime to contraction regime. In that case, the producer effectively acts like a profit
maximizing monopoly in the contraction regime with two–sided impulses; in the expansion regime she
will apply a one–sided impulse as in the equilibrium type I.

To solve for such equilibrium, we first compute the producer strategy in the contraction regime
which is a decoupled VI as in (39) leading to the 6 equations in (43) but only for v−, x−r , x−∗r , r ∈ {`, h}.
This solution induces the corresponding no–switch solution ω−0 of the consumer as in (20)-(21). Both
v−, ω−0 are then fixed and act as source terms to solve for the equilibrium in the expansion regime.
For the latter, we need to compute v+(·) and the associated thresholds x+

` , x
+∗
` (only one threshold),

as well as ω+(x) and the switching threshold yh (note that there is no y`). The boundary conditions
are v+(yh) = v−(yh), ω+(yh) = ω−(yh)− h0.

This reasoning leads to the following algorithm. If x+
` and x+,∗

` are fixed, we compute the best–
response of the consumer by solving the variational problem for the consumer value function ω+ such
that:

w+(x) =


w−0 (x)− h0, yh ≤ x,
ω̂+(x) + λ+

1 e
θ+1 x + λ+

2 e
θ+2 x, x+

` < x < yh,

w+(x+,∗
` ), x ≤ x+

` .

This is exactly the best–response in the single–switch case with the solution given by the system (24)
and which provides the consumer’s threshold yh. Now, if we consider that yh is fixed, we can compute
the best–response of the producer by solving a VI for the value function v+ that satisfies

v+(x) =


v−(x), yh ≤ x,
v̂+(x) + ν+

1 e
θ+1 x + ν+

2 e
θ+2 x, x+

` < x < yh,

v+(x+∗
` )− κ0 − κ1(x+,∗

` − x), x ≤ x+
` .

21



The boundary conditions giving the four unknowns (x+
` , x

+,∗
` , ν+

1 , ν
+
2 ) are:

v−(yh) = v̂+(yh) + ν+
1 e

θ+1 yh + ν+
2 e

θ+2 yh , (C0 at yh)

v̂+(x+
` ) + ν+

1 e
θ+1 x

+
` + ν+

2 e
θ+2 x

+
` = v̂+(x+∗

` ) + ν+
1 e

θ+1 x
+∗
` + ν+

2 e
θ+2 x

+∗
` − κ0 − κ1(x+,∗

` − x+
` ), (C0 at x+

` )

v̂+
x (x+

` ) + ν+
1 θ

+
1 e

θ+1 x
+
` + ν+

2 θ
+
2 e

θ+2 x
+
` = v̂+

x (x+∗
` ) + ν+

1 θ
+
1 e

θ+1 x
+∗
` + ν+

2 θ
+
2 e

θ+2 x
+∗
` + κ1, (C1 at x+

` )

v̂+
x (x+∗

` ) + ν+
1 θ

+
1 e

θ+1 x
+∗
` + ν+

2 θ
+
2 e

θ+2 x
+∗
` = κ1. (C1 at x+∗

` )

(64)

Now, we can perform the iterations y0
h → (x

+,(0)
` , x

+,∗(0)
` )→ y1

h → (x
+,(1)
` , x

+,∗(1)
` ) . . ..

We find the following fixed–point of the best–response functions of the producer and the consumer:

CII,∗
p =

[
1.9, 3.6, −, +∞
2.4, 4.5, 4.5, 6.1

]
, CII,∗

c = [−∞, 4.3], (65)

The system starts in the expansion regime, and once the price reaches level X∗t = 4.3, the consumer
switches to contraction and the systems remains in that state for ever. After that, she relies on the
producer to impulse (X∗t ) up/down when prices get too low/too high but never reverts to the Expansion
regime. Thus, in the long-run (X∗t ) is simply a Brownian motion with negative drift µ− that has two
impulse boundaries x−` = 2.4, x−h = 6.1.

Compared to the double–switch equilibrium of the previous section, the above market equilibrium
in (65) has two important differences. First, as t→∞ we have that µ∗t → µ− so that in the long–run
the market will be in the contraction regime and the consumer becomes inactive. Second, because the
producer eventually “takes over”, she will intervene much more frequently (see center panel of Figure 5),
benefiting himself and reducing consumer value.

4.3 Type III – Preemptive

The producer may have an interest to preempt the switch, say, from the expansion regime to the
contraction regime to avoid decline in the consumption of the commodity he produces. In this case,
the equilibrium is a fixed point of the best–response function of the producer described in Section 3.2.3
and the best–response function of the consumer described in Section 3.1.2. We look for an equilibrium
where the consumer would like to switch at yh in the expansion regime, but where the producer makes
yh his own intervention threshold to impulse the price down.

Using the same protocol as in Type I and Type II equilibrium research, we find the following
threshold strategy for the producer and the consumer:

CIII,∗
p :=

[
1.7, 3.1, 3.1, 4.3
−, −, −, −

]
, CIII,∗

c := [−, 4.3]. (66)

In the preemptive equilibrium, the price fluctuates in a narrower range than the other two equilibria.
Here, (X∗t ) oscillates between x+

` = 1.7 and x+
h = yh = 4.3.

4.4 Equilibrium Non-Uniqueness

There are at least three potential equilibria. A natural question is thus whether one of them is
preferable to the others. Figure 7 shows the value functions of the producer and of the consumer in
the two market regimes (expansion and contraction) and for the different equilibria from type I to
type III. We observe that the producer would prefer in both regimes to live in a type I equilibrium.
The function v±1 dominates all the other ones (note that there is no v−3 because in equilibrium type III
contraction never happens). However, the consumer would rather be in the preemptive equilibrium
type III: her value function w+

3 dominates the other two. Intuitively, we may think that the switching
costs she saves by letting the producer do all the work of maintaining the price around its long term
average value compensate for the inconvenience of having prices that are higher than preferred.
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Figure 7: Producer and consumer value functions in the different equilibria.

4.5 Impact of Market Volatility

As one example of comparative statistics that are possible in our model, we investigate the impact of
volatility parameter σ of X on the equilibrium profits and behavior of X∗. In Table 2 we list statistics
of φ∗ for a range of market volatilities σ. We also quantify the profitability of the two players through
their average percentage of optimality (APOO)

APOO :=

∫
D πr(x)φ∗(dx)

πr(X̄r)
,

which is the ratio between average profit rate πr(X∗t ) in equilibrium and the maximum profit that
could be hypothetically obtained at the first–best level πr(X̄r), r ∈ {c, p}.

In all types of equilibria, both players are worse off in terms of expected profit rate as σ increase.
This occurs even though in type I and in type II equilibria the average price E[X∗] increases. However,
that gain is dominated by the losses due to higher Var(X∗) which implies that prices tend to be further
from their preferred levels X̄r decreasing Eφ∗ [πr].

4.6 Effect of consumer’s switching cost

A key parameter that controls which equilibrium type we face is the consumer’s switching cost h0.
Starting from the double–switch situation, as h0 increases (> 0.6), the consumer is less incentivised
to switch from µ+ to µ− and we enter the single–switch scenario of Section 3.1.2. Consequently, she
receives the No–Switch payoff ω+

0 (x) when µt = µ+ and solving for her best–response boils down to
solve for yh only. Once h0 gets very large, her best–response is simply the No–Switch response ω±0 .
Conversely, as h0 ↓ 0 her actions become free. In that situation, we can reduce the producer problem
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σ Eφ∗ [X∗] Varφ∗(X
∗) Eφ∗

[
πp
]

Eφ∗
[
πc
]

Switch (per yr)
Type I 0.25 3.52 0.73 0.81 (80%) 2.4 (80%) 0.021

0.3 3.62 0.80 0.80 (79%) 2.2 (73%) 0.021
0.4 3.77 0.94 0.76 (75%) 1.90 (62%) 0.020

Type II 0.25 3.73 0.68 0.87 (85%) 2.3 (74%) 0.020
0.3 3.76 0.74 0.85 (84%) 2.2 (71%) 0.020
0.4 3.81 0.85 0.81 (80%) 1.95 (64%) 0.020

Type III 0.25 3.41 0.45 0.86 (85%) 2.7 (90%) 0.0
0.3 3.35 0.51 0.83 (82%) 2.7 (90%) 0.0
0.4 3.28 0.61 0.78 (77%) 2.7 (88%) 0.0

Table 2: Long–run mean and variance of X∗, long–run profit rates, and frequency of regime switches
as market volatility σ changes (APOO in parentheses).

to a single, piecewise VI with a free boundary X̃c:

sup
{
− βv(x) + µ−vx +

1

2
σ2vxx + πp(x) ; sup

ξ

{
v(x+ ξ)− v(x)−Kp(ξ)

}}
= 0 x > X̃c, (67)

sup
{
− βv(x) + µ+vx +

1

2
σ2vxx + πp(x) ; sup

ξ

{
v(x+ ξ)− v(x)−Kp(ξ)

}}
= 0 x < X̃c, (68)

with the C0 regularity at X̃c: limx↑X̃c v(x) = limx↓X̃c v(x).

Fig. 8 shows that for low h0, x+∗
h < y` and x+

h is greater but close to yh. Thus, when consumption
switches from expansion to contraction, it is very likely that the price touches x+

h soon thereafter and
is impulsed back to x+∗

h and thus, the regime rapidly switches back to expansion again. When the
switching cost increases, this solution disappears.
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Figure 8: Equilibrium thresholds as a function of consumer switching cost h0 given Table 1 parameter
values. We show the consumer thresholds y`, yh, the producer thresholds x+

` , x
−
h and respective impulse

target levels x∗,+` , x∗,−h .

Remark 3. It is possible for the impulse amounts to be so large as to lead to a double simultaneous
control: producer’s impulse instantaneously followed by the consumer switching. In this setting, the
producer effectively forces the consumer to switch the regime by impulsing X∗ hard enough. This
situation corresponds to x−∗h < y`, so that the impulse in the contraction regime moves X∗ into
the respective switching region (−∞, y`), and as a result the consumer immediately switches to the
expansion regime. This situation occurs if, for instance, the drifts are µ− = 0.01, µ+ = 0.1, so
that the consumer is not able to ever efficiently lower prices. Consequently, the producer is forced
to fully control price reduction. We observe in the above situation the equilibrium thresholds of
x−∗h = 3.04 < y` = 3.69. 2
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5 Case study: diversification effect of vertical integration

The industrial organization of upstream and downstream segments is linked to anti-trust regulations.
From a regulatory perspective, vertical integration could be used to increase market power and foreclose
competitors. For example, see De Fontenay and Gans (2005) [10] who develop a game theoretic model
for the foreclosure effect of vertical concentration and Hasting and Gilbert (2005) [15] for the related
empirical facts in the context of the US retail gasoline market. At the same time, consumers can benefit
from vertical integration of commodity producers; we refer to related analysis of electricity markets
from a market equilibrium point of view (Aïd et al. (2011) [2]) and an empirical point of view (Mansur
(2007) [26]). Another virtue of vertical integration is its potential to reduce the long-term exposure of
the firm to commodity price fluctuations. See Helfat and Teece (1987) [16] for an empirical estimation
of the hedge procured by vertical integration in the oil business.

In this section, we accordingly study whether or not downstream or upstream firms have an interest
in being vertically integrated. To this end we consider a small firm that has no market power regarding
the commodity price X and focus on the case of the market equilibrium type I (generic case). We
then investigate whether the firm can benefit from a diversification effect by having activity both in
the downstream consumer side and the upstream conversion side.

To make the case study concrete, we consider a simplified version of the crude oil and gasoline
markets, the latter a shorthand for refined products, calibrated to the ballpark of the 2019 state of the
world. Currently, world oil consumption is about 100 Mb/d (millions of barrels per day), normalized
to 1 "barrel" per day. We take as a nominal initial price X0 = 50 USD/b and a nominal volatility of
crude σ = 10 USD/b. To calibrate our model, we consider that crude oil producers have a preferred
range of prices that goes from x1

p = 30 USD/b to x2
p = 100 USD/b and that the average cost of oil

extraction is cp = 30 USD/b. This leads to a demand function Dp(x) = 1− 0.01x, which captures the
low sensitivity of the demand of crude to prices. The crude is transformed into gasoline with a small
amount of losses 5%, so that the conversion factor is α = 0.95.

We set the transfer function of crude oil price to average price of gasoline to P (x) = 10 + 1.1x,
where P (x) is also expressed in USD/b. There is evidence that the (pre-tax) price of gasoline is a
linear function of the crude. For instance, using monthly data of the Energy Information Agency of
the US Department of Energy on refined products prices from January 1983 to November 2019 1, we
regressed the US Total gasoline Retail sales by refineries P̂ to the monthly crude oil price X̂ and found
a linear relation

P̂m = 1.2X̂m + 14 + εm

with a regression R2 = 95%. Considering that the basket of refined products includes not just gasoline
(even if it accounts for the largest share), we simplified the relation. Note that the condition p1 ≥ α for
having a downstream convex profit function holds. Furthermore, refinery costs cc are highly variable
between 4 to 10 USD/b. We take the higher value of cc = 10. Finally, we consider that the demand
function for refined products, Dc(P ) = d′0 − d′1P is such that d′0 = 5 b/d of crude equivalent refined
products and d′1 = 0.05. With these parameters, the preferred range of crude prices for the consumer
is between x1

c = 11 and x2
c = 82 USD/b. We consider fixed action costs both for the production firm

and the downstream firm. We consider that the producer and the downstream firm lose two years
of profit at optimal price to change state making κ0 = 2πp(X̄p) and h0 = 2πc(X̄c). Finally, we take
µ± = ±0.15 per year, which implies that it takes 10 years for the crude price to increase by 1.5 USD.

The resulting equilibrium type I producer impulse strategy CI,∗
p and consumer’s switching strategy

CI,∗
c associated to the calibration summarized in Table 3 are given by

CI,∗
p =

[
26, 62, −, +∞
−∞, −, 69, 104

]
, CI,∗

c =
[
22.5, 87

]
. (69)

Thus, in equilibrium, the crude price X∗ fluctuates between 22.5 and 87 USD/b, with potential excur-
sions up to 104 or down to 26 USD/b at which point producers intervene.

1Data available at http://www.eia.gov/dnav/pet/pet_pri_refoth_dcu_nus_m.htm.
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Value Interpretation Units
β 0.1 Discount rate %/year
X0 50 Initial oil price USD/b
d0 1 Demand function for oil: intercept Mb/d
d1 0.01 Demand function for oil: slope Mb/d/(USD/b)
d′0 5 Demand function for gasoline: intercept Mb/d
d′1 0.05 Demand function for gasoline: slope Mb/d/(USD/b)
α 0.95 Transformation rate dimensionless
p0 10 Crude – gasoline price function: intercept USD/b
p1 1.1 Crude – gasoline transfer price function: slope USD/b/(USD/b)
cp 30 Oil production cost USD/b
cc 5 Refining cost USD/b
µ± ± 0.15 Annualized crude drift parameters USD/b
σ 10 Annualized crude volatility USD/b
h0 2πc(X̄c) = 29 Consumption switching cost USD
κ0 2πp(X̄p) = 24.5 Production switching cost: fixed USD
κ1 0 Production switching cost: proportional USD/b

Table 3: Nominal values for model parameters for the crude oil case study.
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Figure 9: Left: Profit rate function of the consumer πc(x) (red) as the pass-through parameter p1 is
varied, as well as the fixed producer profit rate πp(x) (blue). Middle: Respective equilibrium strategy
thresholds y`, yh (red) and x+

` , x
−
h (blue) as a function of p1. We also plot X̄c and Eφ∗ [X∗], shading

the typical commodity price range [Eφ∗ [X∗] ± σφ∗(X∗)]. Right: Risk-minimizing integration level λ∗

as a function of p1.
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Figure 10: The curve λ 7→ (σ(πλ),E
[
πλ
]
) as a function of the pass-through parameter p1.

Now let us consider a small firm engaging in a fraction λ ∈ (0, 1) of activity in the downstream
sector and 1 − λ in the upstream sector. Her profit rate is thus πλ := λπc +

(
1 − λ

)
πp. The firm is

vertically integrated when 0 < λ < 1. Denote by σ(πλ) the standard deviation of her profit rate πλ(·)
integrated against the stationary distribution φ∗ of X∗, and by E

[
πλ
]

=
∫
πλ(x)φ∗(dx) the respective
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expected profit rate. To fix ideas and because the analysis is symmetric, we are interested in situations
where a pure downstream firm (λ = 0) would be better off having part of her activity in the upstream
sector. This will take place when the upstream activity provides a higher expected profit rate and/or a
lower risk as measured by σ(πλ). Figure 10 presents the risk–return curves λ 7→ (σ(πλ),E

[
πλ
]
) as the

pass-through parameter p1 increases from the nominal value of 1.1 to 1.18. We observe that for low
values of p1 diversification gains are limited: expected profit rate goes up but risk also increases. For
moderate p1 a pure downstream firm unambiguously benefits from some upstream activity: she can
achieve the same level of risk with a higher expected profit. For high p1 the upstream sector dominates
completely with lower risk and higher average profit. Figure 9 (Right) shows the critical integration
level λ∗ that minimizes the risk σ(πλ) and captures the “variance–minimal” business model.

We observe that for high enough pass-through values, being a producer (λ = 1) dominates any
other combination of activity. This phenomenon happens even though the maximum profit rate of the
downstream firm πc(X̄c) increases and gets higher than the producer’s maximum profit rate function
πp(X̄p) as shown in the left panel of Figure 9. As shown by the evolution of equilibrium price range
in Figure 9 (Middle), as p1 increases, the equilibrium is getting more and more detrimental to the
downstream firm. The shaded salmon area represents the interval [Eφ∗ [X∗] − σφ∗(X

∗),Eφ∗ [X∗] +
σφ∗(X

∗)] where commodity prices tend to reside. The average commodity price remains stable around
65 USD/b, and its the standard deviation is not affected much by p1 either, while X̄c is steadily
decreasing. Thus, since the expected profit rate of the integrated firm is a function of the expected
price and its standard deviation, it does not change much. But its variance grows as a function of p1 and
thus increases significantly. To conclude, in our model we do observe a diversification effect obtained
by mixing upstream and downstream activities, however the integration gains depend closely on the
pass-through parameter p1 which serves as a transmission channel of the volatility of the commodity
price to the retail price.

6 Conclusion

We showed how a simple model of competition between upstream and downstream representative firms
having different pace of intervention can lead to a rich variety of equilibria, potentially non–unique.
The fact that the upstream firm can impact the price more rapidly than the downstream firm gives
the producer a significant advantage, enabling him to lock the consumer in the producer’s preferred
range of prices. Further, in the case of the crude oil market and its refinery products, we stressed
how the pass-through parameter p1 plays a key role for the diversification effect induced by vertical
integration. Vertical integration is beneficial for low values of p1 while for higher values, production
dominates downstream activity both in terms of expected profit rate and profit standard deviation.

7 Proofs

7.1 Proof of Proposition 1

Proof. The proof is standard, nonetheless we give some detail for the reader’s convenience. To ease
the notation, let us consider only the case µ = µ+, the other case being identical. Let w+

0 (x) =
ω̂+(x) + u+(x), where the parameters (λ+

1,0, λ
+
2,0) ∈ R solve the system (20)-(21). By construction the

function w+
0 is of class C2 everywhere. Hence we can apply Itô’s formula to e−βsw+

0 (Xs) on the time
interval [0, t ∧ ζn), yielding

e−β(t∧ζn)w+
0 (Xt∧ζn) = w+

0 (x) +

∫ t∧ζn

0+
e−βs

[
w+′

0 (Xs−)(µ+ds+ σdWs − dNs)− βw+
0 (Xs−)ds

]
+
σ2

2

∫ t∧ζn

0+
e−βsw+′′

0 (Xs−)ds+
∑

0<s≤t∧ζn

e−βs
[
∆w+

0 (Xs) + w+′
0 (Xs−)∆Ns

]
,
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where (ζn)n≥1 is a localizing sequence of stopping times along which the local martingale part above is
in fact a true martingale. We use the notation ′ and ′′ for, respectively, the first and second derivative
in x. Taking expectations on both sides, using the fact that w+

0 solves the ordinary differential equation
(17) and letting n→∞, we obtain

E
[
e−βtw+

0 (Xt)
]

= w+
0 (x)− E

∫ t

0+
e−βsπc(Xs)ds+

∑
0<s≤t

∆w+
0 (Xs)

 .
Now, notice that on the jumps of X we have ∆w+

0 (Xs) = w+
0 (x+∗

r ) − w+
0 (x+

r ), which is zero by
the boundary conditions (19), hence the jump part in the equation above vanishes. Moreover, being
Xt ∈ [x+

` , x
+
h ] for all t ≥ 0, we have by dominated convergence that E

[
e−βtw+

0 (Xt)
]
→ 0 as t → ∞.

Therefore, letting t→∞ we can conclude that w+
0 (x) = J+

c (x;N,µ+) for all x ∈ [x+
` , x

+
h ].

Fig. 11(a) illustrates the fact that a threshold switching strategy might not be optimal in all
potential situations by considering the shape of w±0 (x). In the right panel, we have comonotonicity
between w+ and w−: the consumer is incentivised to switch to µ+ when Xt is low and to µ− when
Xt is high. In that situation, we expect that a threshold–type strategy is a best response. In contrast,
on the left panel two other cases are illustrated. First, we see that it is possible that w+(·) � w−(·),
in other words the consumer has a strong preference to one regime over the other. In that case, the
expansion regime could be absorbing, i.e. it is optimal to never switch to µ−. In the plot this would
happen if h0 is low (dashed line), whereby w−(x) > w+(x) − h0 and it is optimal to switch to µ− at
any x (therefore µ+ would never be observed in the resulting game evolution). At the same time, we
see that if h0 is moderate (the solid line), then the region where w−0 (x) > w+

0 (x)− h0 is disconnected,
so it is likely that a two–threshold switching strategy is an optimal response.
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Figure 11: No–Switch payoffs ω±0 (x) of the consumer given the producer’s strategy Cp.

7.2 Proof of Proposition 2

Proof of Proposition 2. By construction, the functions w±(x) in (29) solve the system of VIs in (27)-
(28) and satisfy w+ ∈ C2((x+

` , x
+
h ) \ {y`}) ∩ C1((x+

` , x
+
h )) ∩ C0(R) and w− ∈ C2((x−` , x

−
h ) \ {yh}) ∩

C1((x−` , x
−
h )) ∩ C0(R). Let N denote the pure jump component in X’s dynamics associated to the

producer’s strategy with thresholds (x±` , x
±∗
` ;x±h , x

±∗
h ). The proof is structured in two steps.

– Step 1: optimality. The following verification argument proves that such functions coincide with the
best–response payoffs of the consumer and that the switching times σ̂i as in the statement are optimal
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provided they are admissible. First, by an approximation procedure as in the first part of the proof
in [1, Theorem 3.3], we can assume without loss of generality that w+ ∈ C2((x+

` , x
+
h )) ∩ C0(R). Let

µ0− = µ+. Consider two consecutive switching times of any consumer admissible strategy, say σ2i and
σ2i+1, for i ≥ 0 with the convention σ0 = 0, and recall that over [σ2i, σ2i+1) the state process X has
drift µ+. Applying Itô’s formula to e−βtw+(Xt) over the interval [σ2i ∧ T, σ2i+1 ∧ T ), for some finite
T > 0, we obtain

e−β(σ2i+1∧T )w+(Xσ2i+1∧T ) = e−β(σ2i∧T )w+(Xσ2i∧T )

+

∫ σ2i+1∧T

σ2i∧T
e−βs

{
w+
x (Xs)dXs +

σ2

2
ω+
xx(Xs)ds− βXsds

}
+

∑
σ2i∧T<u≤σ2i+1∧T

e−βs
{

∆w+(Xs) + w+
x (Xs)∆Ns

}
.

Using the dynamics dXs = µ+ds + σdWs − dNs between the two switching times above, localizing
the martingale part through a suitable sequence of stopping times ζn and taking expectation on both
sides, we obtain

E
[
e−βζ

2i+1
n,T w+(Xζ2i+1

n,T
)
]

= E
[
e−βζ

2i
n,Tw+(Xζ2in,T

)
]

+ E

[∫ ζ2i+1
n,T

ζ2in,T

e−βs
{
w+
x (Xs)µ+ +

σ2

2
w+
xx(Xs)− βXs

}
ds

]
+ E

 ∑
ζ2in,T≤s<ζ

2i+1
n,T

e−βs∆w+(Xs)

 ,
where we set ζkn,T := σk ∧ ζn ∧ T . Notice first that the third summand above vanishes since between
σ2i and σ2i+1, the state process X can jump only due to the impulses of the producer, hence at any of
such jumps the C0-pasting condition at x+

h yields

∆w+(Xs) = (w+(Xs)− w+(Xs−))1(∆Xs 6=0) = (w+(x∗h)− w+(x+
h ))1(∆Xs 6=0) = 0.

Regarding the second summand, we use the variational inequality (27) so that we can write

E
[
e−βζ

2i+1
n,T w+(Xζ2i+1

n,T
)
]
≤ E

[
e−βζ

2i
n,Tw+(Xζ2in,T

)
]
− E

[∫ ζ2i+1
n,T

ζ2in,T

e−βsπc(Xs)ds

]
.

Now, letting n→∞ we obtain by dominated convergence that

E
[
e−βσ2i+1∧Tw+(Xσ2i+1∧T )

]
≤ E

[
e−βσ2i∧Tw+(Xσ2i∧T )

]
− E

[∫ σ2i+1

σ2i

e−βsπc(Xs∧T )ds

]
, i ≥ 0.

Analogously, we can get the same inequality between the switching times σ2i−1 and σ2i for i ≥ 1 with
w− replacing w+, so summing them all up we have

−E

[∫ (supi σi)∧T

0
πc(Xs)ds

]
≥
∑
i≥0

E
[
e−βσ2i+1∧Tw+(Xσ2i+1∧T )− e−βσ2i∧Tw+(Xσ2i∧T )

]
+
∑
i≥1

E
[
e−βσ2i∧Tw−(Xσ2i∧T )− e−βσ2i−1∧Tw−(Xσ2i−1∧T )

]
.

Note that by admissibility
∑

i≥1 e
−βσi ∈ L2(P), which implies supi≥1 σi = +∞ almost surely. Then,

using the C0-pasting conditions in (30) and letting T →∞, we finally obtain

E
[∫ +∞

0
πc(Xs)ds

]
+
∑
i≥1

E
[
e−βσih0

]
≤ w+(x),
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for any admissible consumer strategy (σi). Applying the same arguments to the sequence (σ̂i) we
would get equalities instead of inequalities everywhere. The proof for the case µ0− = µ− is analogous
and therefore is omitted.

– Step 2: admissibility. To conclude we show that the switching times σ̂i are admissible, i.e. they
belong to the set Ac. To do so, notice first that (σ̂i) is a sequence of [0,∞)-valued stopping times.
Hence, it remains to show that a.s. σ̂i < σ̂i+1 for all i ≥ 0, and

∑
i≥1 e

−βσ̂i ∈ L2(P). The former
follows from y` < yh. For the latter, we can proceed as in the proof of [1, Prop. 4.7], whose main idea
is to write each σi as a sum of independent exit times for some (scaled) Brownian motion with possibly
different drifts and initial conditions. First, let us denote (τ ′k)k≥1 the increasing sequence of stopping
times exhausting the intervention times of both players. Therefore we have

E

∑
i≥1

e−βσi

2 ≤ E

∑
k≥1

e−βτ
′
k

2 ≤ lim
m→∞

2E

 ∑
1≤k≤r≤m

e−β(τ ′r+τ
′
k)


≤ lim

m→∞
2E

 ∑
1≤k≤m

e−2βτ ′k

 = 2E

∑
k≥1

e−2βτ ′k

 ,
hence it suffices to prove that

∑
k≥1 e

−2βτ ′k ∈ L1(P). Now, notice that τ ′k, k ≥ 1, can be represented
as
∑k

r=1 ζr, where ζr is a sequence of independent random variables distributed as the exit time, say
ζz,µ, of one of the processes z + µt+ σWt with

(z, µ) ∈ Z± :=
{

(yh, µ+), (y`, µ−), (x+∗
h , µ+), (x−∗` , µ−)

}
,

from the respective intervals

(−∞, yh), (y`,+∞), (−∞, x+
h ), (x−` ,+∞).

Due to the independence of the sequence ζr we have

E

∑
k≥1

e−2βτ ′k

 =
∑
k≥1

k∏
r=1

E
[
e−2βζr

]
≤
∑
k≥1

(
E
[
e
−2βmin(z,µ)∈Z± ζ

z,µ
])k

,

which is a convergent geometric series, due to β > 0 and the fact that ζz,µ > 0 almost surely for all
(z, µ) ∈ Z±. This shows that sequence of switching times σ̂i is an admissible consumer’s strategy and
concludes the proof.

7.3 Proofs of Propositions 3 and 4

Proof of Proposition 3. Let v : {µ−, µ+} × R → R be the function defined as v(µ±, x) = v±(x),
with v± as in (47). By construction, the functions (v+, v−) solve the system of VIs in (45) and
moreover v± ∈ C2((x+

` , x
−
h )\{y`, yh})∩C0(R), hence not necessarily C1 at the points y`, yh. Recall that

µt = µ+
∑∞

i=0 1{σ2i≤t<σ2i+1} + µ−
∑∞

i=1 1{σ2i−1≤t<σ2i}, t ≥ 0, where without loss of generality we can
assume σi is the i-th switching instance taken by the consumer in the case µ0− = µ+ (remember the
convention σ0 = 0). The other case µ0− = µ− can be treated in a similar way, it is therefore omitted.
We split the rest of the proof in two steps.

– Step 1: optimality. The following verification argument proves that such functions coincide with the
best–response payoffs of the producer and that the impulse strategy as in the statement is optimal
provided it is admissible. First, by an approximation procedure as in the first part of the proof in [1,
Theorem 3.3], we can assume without loss of generality that v± ∈ C2((x+

` , x
−
h ))∩ C0(R). Consider any
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producer admissible strategy (τi, ξi)i≥1 as in the first part of Definition 1. Applying Itô’s formula to
e−βtv(µt, Xt) over the interval [σ2i ∧ T, σ2i+1 ∧ T ), for some finite T > 0, we obtain

e−β(σ2i+1∧T )v(µσ2i+1∧T , Xσ2i+1∧T ) = e−β(σ2i+1∧T )v+(Xσ2i+1∧T )

= e−β(σ2i∧T )v+(Xσ2i∧T )

+

∫ σ2i+1∧T

σ2i∧T
e−βs

{
v+
x (Xs)dXs +

σ2

2
v+
xx(Xs)ds− βv+(Xs)ds

}
+

∑
σ2i∧T<s≤σ2i+1∧T

e−βs
{

∆v+(Xs) + v+
x (Xs)∆Ns

}
,

where the first equality comes from the fact that over [σ2i∧T, σ2i+1∧T ), the drift equals µ+ (remember
that µ0− = µ+). Using the dynamics dXs = µ+ds+ σdWs − dNs, with Nt :=

∑
i≥1 ξi1{τi≤t}, between

the two switching times above, localizing the martingale part through a suitable sequence of stopping
times ζn and taking expectation on both sides, we obtain

E
[
e−βζ

2i+1
n,T v+(Xζ2i+1

n,T
)
]

= E
[
e−βζ

2i
n,T v+(Xζ2in,T

)
]

+ E

[∫ ζ2i+1
n,T

ζ2in,T

e−βs
{
v+
x (Xs)µ+ +

σ2

2
v+
xx(Xs)− βv+(Xs)

}
ds

]
+ E

 ∑
ζ2in,T≤s<ζ

2i+1
n,T

e−βs∆v+(Xs)

 ,
where we set ζkn,T := σk ∧ ζn ∧ T . For the third summand above, notice that between σ2i and σ2i+1,
due to the non-local term in the variational inequality (45), the state process X can jump only due to
the impulses of the producer and at any of such jumps we have

∆v+(Xτi) ≤ −Kp(ξi), i ≥ 0,

implying

E

 ∑
ζ2in,T≤s<ζ

2i+1
n,T

e−βs∆v+(Xs)

 ≤ E

 ∑
j:ζ2in,T≤τj<ζ

2i+1
n,T

e−βsKp(ξj)

 .
Regarding the second summand, we use the variational inequality (45) so that we can write

E
[
e−βζ

2i+1
n,T v+(Xζ2i+1

n,T
)
]
≤E

[
e−βζ

2i
n,T v+(Xζ2in,T

)
]
− E

[∫ ζ2i+1
n,T

ζ2in,T

e−βsπp(Xs)ds

]

+ E

 ∑
j:ζ2in,T≤τj<ζ

2i+1
n,T

e−βsKp(ξj)

 .
Now, due to Xt ∈ [x+

` , x
−
h ] for all t ≥ 0, letting n→∞ we obtain by dominated convergence that

E
[
e−βσ2i+1∧T v+(Xσ2i+1∧T )

]
≤E

[
e−βσ2i∧T v+(Xσ2i∧T )

]
− E

[∫ σ2i+1

σ2i

e−βsπp(Xs∧T )ds

]

+ E

 ∑
j:σ2i≤τj<σ2i+1

e−βsKp(ξj)

 , i ≥ 0.

Analogously, we can get the same inequality between the switching times σ2i−1 and σ2i for i ≥ 1 with
v− replacing v+, so summing them all up we have

−E

[∫ (supi σi)∧T

0
πp(Xs)ds

]
≥
∑
i≥0

E
[
e−βσ2i+1∧T v+(Xσ2i+1∧T )− e−βσ2i∧T v+(Xσ2i∧T )

]
+
∑
i≥1

E
[
e−βσ2i∧T v−(Xσ2i∧T )− e−βσ2i−1∧T v−(Xσ2i−1∧T )

]
. (70)
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Note that by admissibility
∑

i≥1 e
−βσi ∈ L2(P), which implies supi≥0 σi = +∞ almost surely. Then,

using the C0-pasting conditions in (48) and letting T →∞, we finally obtain

E
[∫ +∞

0
πp(Xs)ds

]
+
∑
i≥1

E
[
e−βτiKp(ξi)

]
≤ v+(x),

for any admissible producer’s strategy (τi, ξi)i≥1. Applying the same arguments to the impulse strategy
(τ∗i , ξ

∗
i )i≥1 as in the statement we would get equalities instead of inequalities everywhere. Notice that

the second order conditions (52) guarantee the optimality of the impulses ξ∗i .

– Step 2: admissibility. To conclude the proof, we need to show that the impulse strategy (τ∗i , ξ
∗
i )i≥1

is admissible as in the first part of Definition 1. Property 1 is granted by the dynamics of the state
variable X and the fact that producer’s thresholds satisfy x+

` < x+∗
` , x−∗h < x−h .

Property 2 is obviously satisfied by definition of the optimal impulses ξ∗i as in the statement. Hence,
we are left with showing property 3, i.e.

∑
i≥1 e

−βτ∗i ξ∗i ∈ L2(P). We can proceed once more as in the
proof of [1, Prop. 4.7] and in the second part of Proposition 2’s proof. We provide all details for
reader’s convenience. First, let us denote (τ ′k)k≥1 the increasing sequence of stopping times exhausting
the intervention times of both players. Since the optimal impulses (ξ∗i )i≥1 are uniformly bounded by
some positive constant, say κ, we have

E

∑
i≥1

ξ∗i e
−βτi

2 ≤ κ2E

∑
k≥1

e−βτ
′
k

2 ≤ lim
m→∞

2E

 ∑
1≤k≤r≤m

e−β(τ ′r+τ
′
k)


≤ lim

m→∞
2κ2E

 ∑
1≤k≤m

e−2βτ ′k

 = 2κ2E

∑
k≥1

e−2βτ ′k

 ,
hence it suffices to prove that

∑
k≥1 e

−2βτ ′k ∈ L1(P). Now, notice that τ ′k, k ≥ 1, can be represented
as
∑k

r=1 ζr, where ζr is a sequence of independent random variables distributed as the exit time, say
ζz,µ, of one of the processes z + µt+ σWt with

(z, µ) ∈ Z± := {(yh, µ+), (y`, µ−), (x−∗h , µ−), (x+∗
` , µ+)},

from the respective intervals

(−∞, yh), (y`,+∞), (−∞, x−h ), (x+
` ,+∞).

Due to the independence of the sequence ζr we have

E

∑
k≥1

e−2βτ ′k

 =
∑
k≥1

k∏
r=1

E
[
e−2βζr

]
≤
∑
k≥1

(
E
[
e
−2βmin(z,µ)∈Z± ζ

z,µ
])k

,

which is a convergent geometric series, due to β > 0 and the fact that ζz,µ > 0 almost surely for all
(z, µ) ∈ Z±. This shows that (τ∗i , ξ

∗
i )i≥1 is an admissible producer’s impulse strategy and concludes

the proof.

Proof of Proposition 4. Here, notice that x+
h = yh so that, given producer’s priority in case of simul-

taneous interventions (cf. Remark 2), the drift is always equal to µ+ (recall that we are in the case
µ0− = µ+). Hence, this proof can be performed as the one of Proposition 3, by ignoring the intervals
where the drift is µ− so that the second half in the RHS of inequality (70) is zero. The admissibility
is proved in the same way. The details are therefore omitted.
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7.4 Equilibrium Dynamics Computation

Let (a, b) be an arbitrary interval and x ∈ (a, b) be an interior starting location. We define δ+(x; a, b)
to be the first passage time associated to the interval (a, b) of a Brownian Motion with drift µ+ starting
from x and P+(x; a, b) to be the probability that this BM hits a before b (similarly for δ−(x; a, b) and
P−(x; a, b) associated to drift µ−). These quantities admit explicit expressions, see [6].

The expected time τ− := inf{t : µt = µ−} for µt to switch from µ+ to µ− within a double–switch
and one–sided impulse equilibrium is then

E
[
τ−
]

= E
[
δ+(x0;x+

` , yh)
]

+
P+(x0;x+

` , yh)

PI+h ,S−

E+

[
δ(x+∗

` ;x+
` , yh)

]
, (71)

where P is the transition matrix of M∗n. Above, the first term denotes the time to either reach x+
`

(producer impulses up) or yh (switch to contraction); the second term counts the additional time if x+
`

is reached first multiplied by the respective probability P+(x0;x+
` , yh). Let ~ζ be the resulting vector of

expected sojourn times. Then the long-run proportion of time that X∗ carries a positive drift (µ+) is

ρ+ =
ΠS+ζS+ + ΠI+`

ζI+`
+ ΠI+h

ζI+h
~Π · ~ζ†

, (72)

and similarly the long-run proportion associated to a negative drift (µ−) is ρ− = 1− ρ+.

References

[1] Aïd, R., Basei, M., Callegaro, G., Campi, L., and Vargiolu, T. (2020). Nonzero-sum stochastic
differential games with impulse controls: a verification theorem with applications. Mathematics
of Operations Research, 45(1), 205–232.

[2] Aïd, R., Chemla, G., Porchet, A., Touzi, N. (2011). Hedging and vertical integration in electricity
markets. Management Science, 57(8), 1438–1452.

[3] Aïd, R., Li, L., and Ludkovski, M. (2017). Capacity expansion games with application to com-
petition in power generation investments. Journal of Economic Dynamics and Control, 84, 1–31.

[4] Attard, N. (2018). Nonzero-sum games of optimal stopping for Markov processes. Applied Math-
ematics & Optimization, 77, 567–597.

[5] Barsky, R. B., Kilian, L. (2004). Oil and the macroeconomy since the 1970s. Journal of Economic
Perspectives,18(4), 115–134.

[6] Borodin, A. N., Salminen, P. (2012). Handbook of Brownian motion-facts and formulae.
Birkhäuser.

[7] Cadenillas, A., Lakner, P., and Pinedo, M. (2010). Optimal control of a mean-reverting inventory.
Operations Research, 58, 1697–1710.

[8] Casassus, J., Collin-Dufresne, P., Routledge, B. R., (2018). Equilibrium commodity prices with
irreversible investment and non-linear technologies. Journal of Banking and Finance, 95, 128–147.

[9] Deaton, A. , Laroque, G., (1992). On the behaviour of commodity prices. Rev. Econ. Stud. 59
(1), 1–23.

[10] De Fontenay, C., Gans, J. (2005). Vertical integration in the presence of upstream competition.
The RAND Journal of Economics, 36(3), 544–572.

[11] Dixit, A., Pindyck, R. (1994). Investment Under Uncertainty. Princeton University Press.

33



[12] Erten, B., Ocampo, J. A. (2012). Super cycles of commodity prices since the mid-nineteenth
century. World Development, 44, 14-3-0.

[13] De Angelis, T., Ferrari, G., Moriarty, J. (2018). Nash equilibria of threshold type for two-player
nonzero-sum games of stopping, The Annals of Applied Probability, 28, 12–147.

[14] Giraud, P.-N.(1995). The equilibrium price range of oil: economics, politics and uncertainty in
the formation of oil prices. Energy Policy, 23(1), 35–49.

[15] Hastings, J., Gilbert, R. (2005). Market power, vertical integration and the wholesale price of
gasoline. The Journal of Industrial Economics, 53(4), 469-492.

[16] Helfat, C., Teece, D. (1987). Vertical integration and risk reduction. Journal of Law, Economics,
& Organization, 3(1), 47–67.

[17] Hössinger, R., Link, C., Sonntag, A., & Stark, J. (2017). Estimating the price elasticity of fuel
demand with stated preferences derived from a situational approach. Transportation Research
Part A: Policy and Practice, 103, 154–171.

[18] Hotelling, H. (1931). The economics of exhaustible resources. Journal of Political Economy 39
(2), 137–175.

[19] Jacks, D. S. (2006). From boom to bust: a typology of real commodity prices in the long run.
NBER Working Paper, n. 18714.

[20] Lafontaine, F., and Slade, M. (2007). Vertical Integration, Journal of Economic Literature, 45,
629–685.

[21] Levin, R. C (1981). Vertical integration and profitability in the oil industry. Journal of Economic
Behavior & Organization, 2(3), 215–235.

[22] Levin, L., Lewis, M. S., & Wolak, F. A. (2017). High frequency evidence on the demand for
gasoline. American Economic Journal: Economic Policy, 9(3), 314–47.

[23] Leon, J., Soto, R. (1997). Structural breaks and long–run trends in commodity prices. Journal
of International Development, 9(3), 347–366.

[24] Martyr, R., Moriarty, J. (2017). Nonzero-sum games of optimal stopping and generalised Nash
equilibrium. arXiv:1709.01905.

[25] McDonald, R., Siegel, D.(1986). The value of waiting to invest. The Quarterly Journal of Eco-
nomics, 101(4), 707–727.

[26] Mansur, E.T. (2007). Upstream competition and vertical integration in electricity markets. The
Journal of Law & Economics, 50(1), 125–156.

[27] Mitchell, E. J. (1976). Vertical integration in the oil industry. National Energy Project.

[28] Routledge, B.R. , Seppi, D.J., Spatt, C.S. (2000). Equilibrium forward curves for commodities.
J. Finance 55 (3), 1297–1338.

[29] Scheinkman, J.A. , Schechtman, J. (1983). A simple competitive model with production and
storage. Review of Economic Studies 50, 427–441.

[30] Stuemer, M. (2018). 150 years of boom and bust —What drives mineral commodity prices?.
Macroeconomic Dynamics, 22(3), 702–717.

34

http://arxiv.org/abs/1709.01905

	1 Introduction
	2 The model
	2.1 Description
	2.2 Equilibrium
	2.3 Illustration of Competitive Dynamics

	3 Best–response functions
	3.1 Consumer Best–Response
	3.1.1 No–switch
	3.1.2 Single–switch
	3.1.3 Double–switch

	3.2 Producer Best Response
	3.2.1 Producer as Sole Optimizer
	3.2.2 Non-preemptive Response
	3.2.3 Preemptive Response


	4 Equilibria
	4.1 Type I – Generic
	4.2 Type II – Transitory
	4.3 Type III – Preemptive
	4.4 Equilibrium Non-Uniqueness
	4.5 Impact of Market Volatility
	4.6 Effect of consumer's switching cost

	5 Case study: diversification effect of vertical integration
	6 Conclusion
	7 Proofs
	7.1 Proof of Proposition 1
	7.2 Proof of Proposition 2
	7.3 Proofs of Propositions 3 and 4
	7.4 Equilibrium Dynamics Computation




