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The Oxytocin–vasopressin Pathway 
in the Context of Love and Fear
C. Sue Carter*

Kinsey Institute and Department of Biology, Indiana University, Bloomington, IN, United States

Vasopressin (VP) and oxytocin (OT) are distinct molecules; these peptides and their 
receptors [OT receptor (OTR) and V1a receptor (V1aR)] also are evolved components 
of an integrated and adaptive system, here described as the OT–VP pathway. The 
more ancient peptide, VP, and the V1aRs support individual survival and play a role in 
defensive behaviors, including mobilization and aggression. OT and OTRs have been 
associated with positive social behaviors and may function as a biological metaphor for 
social attachment or “love.” However, complex behavioral functions, including selective 
sexual behaviors, social bonds, and parenting require combined activities of OT and VP. 
The behavioral effects of OT and VP vary depending on perceived emotional context 
and the history of the individual. Paradoxical or contextual actions of OT also may reflect 
differential interactions with the OTR and V1aR. Adding to the complexity of this pathway 
is the fact that OT and VP receptors are variable, across species, individuals, and brain 
region, and these receptors are capable of being epigenetically tuned. This variation may 
help to explain experience-related individual and sex differences in behaviors that are 
regulated by these peptides, including the capacity to form social attachments and the 
emotional consequences of these attachments.

Keywords: oxytocin, vasopressin, oxytocin receptor, vasopressin receptor subtype 1a, love, attachment, prairie 
voles, aggression

There is no fear in love: but perfect love casteth out fear. (1 John 4: 18)

iNTRODUCTiON

Oxytocin (OT) and vasopressin (VP) are ancient peptide molecules with many behavioral and physi-
ological functions. These pleotropic peptides evolved from a single genetic source (1). OT and VP, 
with their receptors, function as an integrated, adaptive system, allowing the mammalian body to 
survive, maintain homeostasis, and reproduce in an ever-changing world. However, OT- and VP-like 
molecules were co-opted for other functions many times over the course of evolution (2).

Vasopressin is considered the more ancient molecule, with a central role in defense. OT, especially 
in a context of safety, may override the defensive functions of VP helping to facilitate the evolution 
of the complex cognition and selective sociality associated with human behavior, including social 
attachment and love (3, 4) (Figure 1).

Sources of individual differences in OT and VP and the sensitivity of their receptors include 
gender and basic genetic differences (6, 7). For example, some species, including humans and other 
socially monogamous mammals, such as prairie voles and dogs, have high levels of OT (8, 9) and 
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FiGURe 2 | Oxytocin (OT) and vasopressin (VP) are components of an 
integrated pathway. OT and VP interact dynamically with receptors [including 
the OT receptor (OTR) or V1a receptor (V1aR)] to influence social 
engagement and defensive behaviors. In many cases, OT acts in conjunction 
with VP, via the V1aR or through effects on both the OTR and V1aR, thus 
regulating the capacity to form selective social behaviors. OT rarely acts 
alone but, especially under nonthreatening or “safe” conditions, may facilitate 
features of “love,” including social engagement, and social reward, and 
“immobility without fear” (36).

FiGURe 1 | The oxytocin (OT) and vasopressin (VP) pathway includes the OT receptor (OTR) and the V1a receptor (V1aR). We hypothesize that in a context of 
perceived safety, OT predominately acts on the OTR, facilitating “immobility without fear,” including high levels of social engagement, social bonds, and social 
reward; these behaviors are at the heart of mammalian reproduction and “love.” VP and the V1aR are more ancient and probably become dominant under 
conditions of anxiety or trauma. In a context of anxiety or fear, OT may function primarily through effects on the V1aR; under these conditions both OT and VP may 
act, via the V1aR, to induce additional anxiety, social avoidance, defensiveness, aggression, and fear. We hypothesize that under extreme conditions, fear and the 
V1aR may dominate leaving the individual vulnerable to “immobility with fear,” which may lead to freezing and cognitive and emotional dissociation. These responses 
are mediated in part by interactive effects of OT and VP on the sympathetic nervous system and the parasympathetic nervous system, including the ventral vagal 
complex (necessary for social engagement) and the dorsal vagal complex (functioning to conserve energy and protect against shutting down in the face of trauma) 
(5). Other components of this adaptive system including the V1bR, and many other molecules or receptors, including those regulated by CRH, dopamine, opioids, 
GABA, and serotonin, play a role in the expression of social and defensive behaviors. The differential actions of OT and VP are dose, time, and brain-region 
dependent. The OT and V1a receptors are affected by genetics and epigenetic tuning, especially in early life.
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an apparent dependence on OT to allow the expression of high 
sociality and attention to positive social cues. The OT receptor 
(OTR) and V1a receptor (V1aR) also can be epigenetically tuned 
by experience (10–14), increasing the capacity of OT and VP to 
have complex adaptive functions.

Behavioral work in this field has focused on the neurobiol-
ogy of OT in social behavior and the management of stressful 
experiences (3, 4, 15, 16). The systems necessary for actions of OT 
involve extensive neural networks through the brain and auto-
nomic nervous system. Many recent reviews describe the neural 
and behavioral roles of these peptides (4, 17–25). Furthermore, 
these networks are capable of dynamically changing (20, 26, 27), 
especially in early life (26, 27). Those reviews will not be dupli-
cated here, but in conjunction with primary sources are used as 
background for a discussion of functional interactions between 
OT and VP and their receptors in the context of evolution and 
mammalian social behavior.

The OT and vP Pathway
Current knowledge concerning OT and VP and their receptors 
indicate that these are interactive components of an evolved and 
integrated system—here termed the OT–VP pathway (Figure 2). 
It has long been known that both peptides can bind to both the 
OT and VP receptors in vitro (28–32). Accumulating evidence 
dealing with diverse outcomes and from various species supports 
the hypothesis that when looking at the whole organism OT and 

VP tend to affect more than one receptor and several types of 
behavioral functions (7, 20, 33–35). In general in the behavioral 
literature, OT has received more attention than VP.

http://www.frontiersin.org/Endocrinology/
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FiGURe 3 | Perceived context and the intensity of challenge can regulate the 
release or effects of oxytocin (OT) and vasopressin (VP). Under conditions of 
safety, the actions of OT may dominate, supporting high levels of sociality. In 
response to an acute stressor, both OT and VP increase, supporting 
mobilization and escape, followed in some cases by increases in social 
behavior especially toward “safe” conspecifics. Following intense or traumatic 
stressors, initial responses would include mobilization and anxiety. However, 
following a traumatic experience, individuals may vacillate between 
mobilization and immobilization with fear or revert to the more primitive 
response of shutting down. These patterns differ between males and females 
and as a function of individual life histories.
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The OT–VP pathway allows the body to adapt to highly 
emotional situations and develop selective attachments. Such 
experiences require the presence of both peptides (37), as well 
as molecules associated with reinforcement, such as dopamine 
(38–40). Conditions under which both OT and VP are necessary 
for normal behavior include selective social behaviors and emo-
tionally intense experiences, such as sexual behavior, parental 
behavior, and pair bond formation, as well as regulation of the 
autonomic nervous system (18, 41, 42).

Until recently OT and VP, and their receptors, were typically 
treated as independent systems. This is especially true in human 
studies of the effects of exogenous hormones (43–45). For a 
notable exception see studies by Rilling and associates, in which 
both peptides are being studied (46, 47).

Properties of OT and vP
Oxytocin and VP are small peptides that are similar in structure. 
Both consist of nine amino acids in a six amino acid ring, formed 
by cysteine bonds, and a three amino acid tail with a terminal 
amine group. The precursors for OT and VP consist of 12 amino 
acids and are synthesized and released in conjunction with car-
rier proteins (neurophysin 1 and 2, respectively). The precursors 
are later cleaved into the “mature” forms of these peptides. It is 
also possible that precursors and fragments of OT and VP have 
unidentified functions (29, 48); although not well studied, it is 
likely that these forms and the binding of OT and VP in blood 
and other tissues play a role in the functional interactions of OT 
and VP (49).

Oxytocin and AVP are primarily synthesized in brain regions 
that are critical to behavioral and physiological homeostasis. 
Different cells in specific brain regions produce these two pep-
tides, including the supraoptic nucleus (SON) and paraventricular 
nucleus (PVN) of the hypothalamus (20). Anatomical studies in 
rodents indicate that OT and VP are synthesized in discrete areas 
and in separate cells within the PVN and SON; these cells also 
produce a network of neural projections reaching throughout the 
brain and spinal cord (50). For additional details of specific neural 
targets for OT and VP, see reviews such as those from Wang and 
his associates (39, 51).

Research using brain slices (25) indicates that in other brain 
regions, including the amygdala and the bed nucleus of the stria 
terminalis, both OT and VP containing cells and projections lie 
adjacent to each other. These OT–VP associations form local 
functional units, capable of rapid and often opposite interac-
tions—for example, in brain regions associated with fear versus 
fear reduction. Fear responses are mediated by V1aRs in the 
amygdala, while OT may act to inhibit fear, depending on context 
(Figure 3) and gender (52).

Oxytocin and VP are synthesized and stored in the pituitary 
gland, where these peptides are thought to remain in vesicles until 
released as the nine amino acid forms. However, these molecules 
also may be released from axons within the CNS (20), as well as 
from the neuronal soma and dendrites or by diffusion within the 
brain (50). In addition, OT and VP are made throughout the body 
with local effects on diverse tissues, including the uterus, testes, 
digestive system, kidney, and thymus (53, 54). The dynamic 

nature of the OT–VP pathway not only makes this system exciting 
but also limits research in this field.

Sex differences are adaptive and commonly seen in studies of 
actions of OT, and especially VP. Sex differences are not always 
explored, but when they are, males and females frequently differ 
(52); this is especially true with reference to reactions to treat-
ments involving stressors (3). Most of these studies suggest that 
males have either more VP (55) or are more sensitive to the effects 
of VP (56). For example, in a quantitative study of 22 subregions 
in the forebrain “social behavioral neural network” in rats, VP 
immunoreactivity show marked regional variation between 
males and females and as a function of age (57). These differ-
ences were particularly apparent in the medial amygdala, bed 
nucleus of the stria terminalis, and lateral septum—brain regions 
previously implicated in androgen-dependent sex differences and 
in defensive aggression. OT immunoreactivity did not show this 
pattern of variation in rats.

Receptors for OT and vP
The gene (OXTR) for the OTR is found on human chromosome 3. 
The same OTR located in breast, uterus, and neural tissue also is 
present in many other bodily tissues. Three VP receptor subtypes 
are expressed in different tissues, and their genes are located on 
separate chromosomes. The V1aR is found in nervous system 
and throughout the cardiovascular system with a broad set of 
behavioral functions. The VP V1b receptor is not only found in 
the pituitary but also in brain areas with a role in the management 
of stress and aggression (58, 59). The VP V2 receptor is localized 
primarily to the kidney with a classical role in fluid balance.

The V1aR evolved from and is homologous with the vasotocin 
receptor (2). There is a high level of homology among the OTR 
and the three VP receptors, especially in the extracellular binding 
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domain which allows OT and VP to bind to each other’s receptors 
(30, 32, 60). The pharmacological tools available for identifying, 
stimulating, or blocking receptors for OT and VP often have not 
been sufficiently selective to allow easy identification or manipu-
lations of these receptors (61).

In mammals, receptors for OT and/or VP are typically abundant 
in areas of the nervous system that regulate social, emotional, and 
adaptive behaviors and reward (17). Among the regions with high 
levels of OTR or V1aR are various parts of the amygdala, the bed 
nucleus of the stria terminalis, the nucleus accumbens, brainstem 
source nuclei for the autonomic nervous system (25, 39, 62), and 
systems that regulate the hypothalamic–pituitary–adrenal (HPA) 
axis. OTRs also are found in cortex and hippocampus; these are 
highly variable among species and individuals, with possible 
consequences for neural and behavioral plasticity (63–66). In the 
cortex and in the spinal cord, both the V1aR (67) and OTR are 
present, allowing the possibility for interactions in processes such 
as social cognition and pain (68).

Expressions of the OTR and V1aR in the nervous system are 
highly variable even within species; for example, brain regions 
and individual differences are related to functional and adaptive 
patterns of sociality and aggression (6, 12, 24, 62, 69, 70). VP and 
OT and in some cases their receptors may differ between males 
and females, and across the lifespan (7, 39, 51, 52, 71, 72). The 
receptor variation characteristic of this system, and especially of 
VP has been associated with species and individual variation in 
behavior and brain function. Although sometimes overlooked 
in behavioral research, both peptides can have regulatory effects 
throughout the entire body, including the autonomic nervous 
system (42) and the immune system (53, 73–75) with effects on 
inflammation and healing.

Initially, it was assumed that only one primary receptor existed 
for OT (76). Genes for the OXTR and the three VP receptors code 
for separate G-protein coupled receptors, each with a seven trans-
membrane domain. Peptides binding to these receptors trigger 
subcellular cascades. The subcellular signaling pathways are not 
identical for these different receptors. In addition, the capacity of 
OT or VP to activate a given receptor subcellular signaling pathway 
may differ according to the concentrations of the peptides and the 
regional location of receptors in the nervous system (20, 25, 61). 
These subcellular differences may help to explain the capacity of 
OT and VP to have different functions in various processes, such 
as birth (77), social behavior (17, 34), and reactivity to stressors 
(13, 16, 25). Further adding to the complexity of this system is the 
possibility that receptors for OT and VP can form heterodimers 
with unknown consequences for peptide binding (20).

evolution and Sociality
Oxytocin and VP are genetic and biochemical siblings. Both 
originated from a single ancestral gene that produced vasotocin 
(1, 2). Vasotocin is found in reptiles and other vertebrates and 
can be measured in the mammalian fetus. OT and VP differ from 
vasotocin by one amino acid and from each other by two amino 
acids. It is estimated that the ancestral peptides arose over 500 
million years ago, that VP evolved approximately 200 million 
years ago and OT approximately 100 million years ago, originally 
through gene duplication (1). The genes for OT and VP reside 

near each other on human chromosome 20, lying in opposite 
transcriptional orientations (48).

Compared with OT, VP is the more primitive molecule and 
closer in function to vasotocin (1, 2, 23). However, other OT-like 
peptides, including mesotocin and isotocin, have functions 
that resemble those of OT. Animals that evolved from reptiles, 
including mammals and birds may be particularly dependent on 
selective social behaviors and OT-like peptides for reproduction 
and survival.

Vasopressin-like molecules are critical to adaptation and water 
balance under difficult environmental conditions. VP can sup-
port sympathetic arousal, mobilization (flight–flight responses) 
or in more extreme cases a metabolically conservative, shutdown 
response (5). Thus, under conditions of extreme stress or trauma, 
VP may take precedent over OT and over survival strategies that 
are more prosocial or mobilized (Figure 3). However, the benefits 
of either sociality or OT also may be most easily detected in the 
presence of a stressor or of VP (3, 37).

Combined Actions of OT and vP
At the core of positive social behaviors are neurobiological sys-
tems that regulate fear and threats versus safety (Figures 1–3). 
OT typically supports immobilization without fear, necessary in 
interactions with family and friendly associates (36). VP supports 
mobilization, and in some cases defensive aggression and protec-
tion of social boundaries. By contrast, VP, in conjunction with 
CRH, dopamine and many other molecules, may support active 
and mobilized coping strategies (3, 71, 78). However, as with 
many features of the OT–VP pathway, exceptions exist—possibly 
because of the capacity of OT and VP to interact with each other’s 
receptors (Figure 1).

Increasing evidence suggests that the actions of OT on the 
V1aR, versus the OTR, vary depending on the behavior and con-
text being examined (7, 17) (Figure 1). In hamsters, fear-based 
or aggressive effects of OT rely on the V1aR and social reward 
on the OTR (34, 79, 80). The capacity of OT and VP to bind to 
each other’s receptors adds complexity to attempts to understand 
both peptides. However, OT–VP interactions also are adaptive, 
increasing the capacity for a small number of peptides and recep-
tors to regulate various processes across different tissues.

Both OT and VP are responsive to environmental and social 
demands, although in somewhat different ways (3, 16). These 
peptides—presumably via interactions with their receptors—may 
have diverse physiological and behavioral properties. Regional 
effects of OT and VP are expected and need to be investigated 
to fully understand the functional consequences for these pep-
tides. Dynamic interactions either on specific receptors, due to 
brain region-specific actions, or due to relative availability of the 
peptides to a receptor (20) could help to explain the behavioral 
properties of these two molecules. In addition, refined behavioral 
studies are necessary, since the effects of OT and VP on various 
behaviors change across time and as behavioral context changes.

As detailed below, a number of studies have attempted to sepa-
rate the effects of OT versus VP on reproduction, social behavior, 
and aggression (7, 17). In general, it appears that OT plus VP 
may be especially critical to allow selective social experiences 
that involve awareness the individual identity of a partner and 
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the experience of a social reward (18, 37). These behaviors also 
may require alternating between behavioral mobilization and 
immobilization, which is seen after trauma (36) (Figure 3).

Methodological Limitations and “Cross 
Talk” Between OT and vP
The evolved properties of OT and VP permit “cross talk” between 
these peptides and their receptors (7, 17, 20, 31, 33, 77) (Figure 1). 
Unexpected outcomes are sometimes reported when exogenous 
OT or VP is given or when a peptide or specific receptor is 
inactivated. This work initially depended on pharmacological 
agonists or antagonists, often using drugs that were relatively 
non-specific. More recently research, primarily in rodents, has 
used genetic manipulations including rodents with mutations 
(81) or optogenetic methods for silencing or activating genes for 
peptides or receptors (40, 82).

Early evidence for cross talk between VP and the OTR came 
from research in OT knockout (OTKO) mice (31). For example, 
single-unit recording from tissue slices from the ventromedial 
hypothalamus from OTKO mice revealed that VP was capable of 
stimulating this brain region. Moreover, whether findings from 
mutant mice can be generalized to wild-type animals remains 
unclear. For example, OTKO mice showed increased sensitivity 
to VP. This important finding suggested that the absence of OT 
across the lifespan could sensitize animals to later VP exposure. 
The molecular basis of this process remains to be discovered. 
Components of some functions, such as birth and maternal behav-
ior, continue to be observed in OTKO mice (83, 84). However, 
upon careful examination, these behaviors often lack the full 
range of behavioral expression typical of wild-type animals (81).

Similar methodology also has been used to study the OTR. 
Reductions in social behavior and cognitive flexibility and 
increases in aggression and seizure susceptibility are seen in 
OTR-null mice (85). These behaviors in OTR-deficient mice can 
be rescued not only by OT but also by VP treatments. This may 
be another expression of the capacity of the nervous system to 
adapt to changes in the peptidergic systems. However, studies of 
animals that are missing only one allele for the gene regulating 
the OTR show selective deficiencies in social behaviors, but not 
aggression (85). This study further supports the hypothesis that 
positive social behaviors may be especially sensitive to the reduc-
tions in OTR activity, while more defensive and perhaps more 
primitive processes are preserved.

Interactions among OT and VP and their receptors allow 
adaptive functions in time frames that are both short term and 
long term. Studies comparing the short-term versus long-term 
interactions between OT and VP are rare. However, those studies 
that do exist suggest that acute versus chronic actions of OT and 
VP can be very different (Figure 3), and sometimes opposite in 
function (86). Based on the behavioral patterns that are seen fol-
lowing acute versus chronic exposure to exogenous OT, we can 
hypothesize that the long-term effects of OT, and possibly the 
effects of very high levels of OT may involve stimulation of the 
V1aR (Figure 1).

Behavioral studies dealing with OT’s capacity to affect VP 
receptors have focused on OT’s effects on the V1aR or combined 

effects of OT and VP on the OTR and/or the V1aR (Figure 2). 
In general, the combined effects of OT plus VP are associated 
with highly rewarding experiences including some components 
of sexual behavior, parental behavior, and pair bond formation. 
At present, only a very limited number of studies seem to sup-
port the notion that OT functions primarily at the OTR without 
the participation of the V1aR (7, 82). Among the functions that 
seem especially dependent on OT are comparatively “modern” 
mammalian functions including lactation, reversal learning, and 
behavioral plasticity (33, 34, 61). Whether VP can stimulate the 
OTR in vivo has received less attention (80).

iNTeRACTive FUNCTiONS OF OT AND vP

Caveats
Examples of specific studies of functional interactions within the 
OT–VP pathway are described below. In some cases, only a por-
tion of the possible interactions only a portion has been tested. In 
most, but not all cases, OT has been shown to have the capacity to 
affect the V1aR. In cases deliberately involving a stressor, effects 
of OT or VP that were not otherwise detected may emerge.  
A possible role for the VP V1bR is beyond the scope of this 
review, but effects of stress and OT on the VP V1bR also are pos-
sible (81). Among the many other molecules of importance to the 
regulation of OT and VP are CRH (87), GABA (88), dopamine 
(38), and serotonin (89, 90); these molecules also play roles in 
the modulation of stress and coping. Brain region- and cell type-
specific changes are another source of variation that is relevant to 
understanding how OT and VP interact. New technologies, such 
as optogenetics, are allowing more specificity in neural circuitry 
but are currently limited to comparatively simple behaviors or 
components of behavioral patterns. There is increasing evidence 
that the OT–VP receptor pathway is epigenetically tuned by 
experience, including gonadal hormones, stressors, and probably 
peptides as well (10, 11, 13, 14, 75). Although not reviewed here, 
processes such as methylation may be of particular relevance to 
explaining the role of context and experience in the regulation of 
social behavior.

Lactation
Lactation is a defining feature of mammals, and contraction of 
breast tissue and milk ejection requires stimulation of the OTR. 
Lactation arose in conjunction with the evolution of mammals 
and is one of the comparatively few reproductive functions that 
do not continue in the absence of OT or the OTR (81, 83, 84). 
Immature mammalian offspring depend for varying periods of 
time after birth on their mother’s milk. Conservation of fluids is 
necessary for lactation and effects of VP on the kidney and blood 
pressure probably support normal milk production, but this is 
presumably under separate control from milk ejection.

Birth and Uterine Contractions
Observations at the beginning of the twentieth century offered 
early evidence that OT and VP interactions are components of 
the normal functions of these peptides. Research conducted by 
Sir Henry Dale in 1906 showed that an extract from the human 
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posterior pituitary gland was capable of producing contractions 
in the uterus of a pregnant cat. The pituitary gland contains both 
OT and VP and the effects of pituitary extracts probably reflected 
the effects of both peptides and possibly other hormones (91).

In his Nobel Lecture, describing the functions of the first “poly-
peptide,” Vincent du Vigneaud mentions two assays used to test 
the biological activity of OT. In that research, du Vigneaud (Nobel 
Lectures, 1955, p. 461) used rat uterine strips, but also noted that 
he used the “chicken vasopressor method of Coon, which utilizes 
the property of OT to lower the blood pressure of the fowl and has 
been adopted by the United States Pharmacopeia as the method 
for assay for OT.” The use of a vasopressor response to assay OT, 
indirectly acknowledged the capacity of OT to stimulate the VP 
system. This was one of the first of what would eventually be many 
lines of research documenting interactions between OT and VP.

In large mammals, OT adopts a central role in reproduction 
by helping, in some cases, to expel the big-brained baby from the 
uterus (4, 18). However, in mice and presumably other mammals, 
birth can occur without OT (81, 83, 84). Egg laying, which is the 
precursor to birth, appeared long before the evolution of mam-
mals, and thus may rely on more ancient hormones, including 
VP or vasotocin.

Although OT has been assumed to play a fundamental role in 
birth, current evidence suggests that OT alone acting on the OTR 
is NOT capable of inducing normal labor and blocking only the 
OTR does NOT prevent premature birth. Rather both OT and 
VP and both the OTR and V1aR regulate uterine contractions  
(60, 92). Thus, it is not surprising that female mice made mutant 
for OT or the OTR remain capable of giving birth (83, 84). In fact, 
especially under conditions of stress, VP is likely to have a much 
greater role in birth than has been acknowledged. VP’s effects on 
the uterus, although functionally different from OT, may help to 
explain premature labor and preeclampsia, which are associated 
with adversity or stress across the life span (77, 91).

Parental Behavior
Early research on OT revealed consequences for maternal 
behavior (93) and filial bonding (94). Although, a role for OT in 
maternal behavior is now widely accepted, this work was initially 
controversial (95). Apparent discrepancies regarding the necessity 
of OT to maternal behavior may have been due to experimental 
differences related to the role of stress in mothering. Effects of 
acute OT seem to be most apparent in the face of novelty, acute 
stressors or against a background of elevated HPA axis activity 
(96, 97). In the presence of OT, avoidance or fear of the infant 
may be replaced by approach and positive emotional states (3). 
Whether this is due to competitive inhibition of VP or more 
specific actions of OT on the HPA axis deserves additional study.

A functional role for VP in maternal behavior cannot be 
excluded. Pedersen and colleagues found that centrally adminis-
tered VP increased maternal behavior in rats, although the effects 
of VP took longer to appear than those seen after OT. OTKO mice 
remain maternal to some extent, but their behavioral patterns are 
not identical to those in wild-type mice (81). The role of OT in 
maternal behavior may depend in part on the capacity of OT to 
directly or indirectly override the defensive effects of VP and 
reduce fear in the presence of young animals. VP, in conjunction 

with OT, also supports the capacity to protect offspring, in the 
form of postpartum maternal or paternal aggression in rodents 
(98, 99).

Threatening environments and 
Aggression
Vasopressin and the V1aR may be of critical importance in the 
capacity for physical and emotional adaption in the presence of 
stressful experiences (3, 16, 24, 25). VP is involved, synergizing 
with CRH (78), in hypothalamic regulation of the pituitary, 
supporting the release of glucocorticoids and mobilized defense 
strategies against various physical and emotional stressors or 
threats (25). OT also can be released during stressful experiences 
and is sometimes considered a “stress-coping” molecule.

Vasopressin also plays a protective role in the behavioral 
defense of self and the family (3, 100). Various forms of aggres-
sion and territoriality have been related to stimulation of the 
V1aR in both males and females (7, 101, 102). However, at least in 
golden hamsters the mediation of dominance and aggression was 
associated with increases in hypothalamic VP in males (but not 
in females). By contrast, serotonin, acting in the dorsal raphe, was 
associated with increased aggression in females, and decreased 
aggression in males (90).

Avoidance of Danger and Anxiety
A growing literature associates increased central VP in the 
development of memory necessary for the avoidance of danger 
or survival (24). Psychological processes associated with anxiety 
and obsessions also may rely on VP (7, 103, 104). VP, in the con-
text of other centrally active molecules, such as CRH, dopamine, 
and serotonin, regulates emotional states, including anxiety 
(Figure 3). Anxiety in turn can reduce the capacity to use cogni-
tive or “top down” strategies to manage stressful experiences. 
VP and CRH can amplify the effects of each other on aggression 
and anxiety, especially during circumstances involving intense 
challenges (101, 103).

Increased activity in the central VP system may lower thresh-
olds to impulsive forms of aggression, possibly by reducing 
cortical inhibition (105). The actions of VP also help to explain 
the association of anxiety and ruminations with cardiovascular 
risk (106). VP plays a central role in circadian rhythms and is 
likely to be important in sleep disturbances or elevations in blood 
pressure, which are also common following stress and considered 
defining features of posttraumatic stress (PTS) disorders. In 
human males, high blood levels of VP have been correlated with 
emotional dysregulation and aggression (107).

Vasopressin is associated with physical and emotional mobi-
lization and helps support vigilance and behaviors needed for 
guarding a partner or territory (3), as well as other forms of adap-
tive self-defense (103). Prairie voles have provided a useful model 
for examining the importance of peptides in selective aggression 
(108). In this species, immediately after mating males became 
lethally aggressive toward strangers, but not familiar partners or 
family members; this response was blocked by antagonists for the 
V1aR (109). The formation of partner preferences and pair bonds 
requires access not only to the V1aR but also the OTR (37). Mate 
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guarding and parental aggression offer examples, among several, 
suggesting the importance of both OT and VP and their receptors 
in behaviors that are socially selective (Figure 2).

Non-Selective versus Selective  
Social Behaviors
Oxytocin’s role in social behaviors has been documented in 
many species, including humans (4, 18, 110, 111). Based primar-
ily on work in nonhuman animals, in many, but not all cases, 
the effects of OT are mediated via VP receptors. This seems to 
be the case in behaviors that are non-selective, such as a general 
tendency toward sociality or gregarious behavior (Figure  2). 
This may include behavioral patterns involving social recogni-
tion (56, 112). Among other examples, in which both OT and 
VP receptors were examined, are social contact, including lying 
adjacent to another member of the same species (113) and hud-
dling with conspecifics in the presence of the odor of a predator 
(114); these were facilitated by OT but only when the V1aR was 
accessible. In another example, in golden hamsters the effects 
of OT on social reward required access to the OTR (80). By 
contrast, in hamsters for OT to affect aggression, activation of 
the V1aR was necessary (79).

Research, initially conducted in prairie voles, demonstrated 
the capacity of OT to increase social contact between adults (115). 
This work led to studies showing a role for OT and the OTR in 
the formation of selective social bonds (116). However, in studies 
in which either the OTR or VP V1a were blocked, both OT and 
VP receptors were necessary for pair bond formation (37). When 
both OTR and the V1aR were blocked animals showed very low 
levels of contact behavior. In pair bond formation, OT and VP 
interact with motivational and reward systems and may enhance 
or otherwise amplify the effects of other molecules including 
dopamine and opioids in specific brain regions, including those 
that have been implicated in both maternal behavior and social 
bonding (38, 81, 117).

Social Learning and Conditioning
Research on the behavioral effects of the OT–AVP system began 
with studies of memory, including avoidance learning (118) and 
social recognition (56, 112). These continue to be major topics in 
studies of the functions of the OT–VP pathway (24, 33). Learning 
of context and cues, as well social salience, may be affected by 
access to the OTR. There is an increasing tendency to direct atten-
tion to specific brain regions. In rodents, brain systems involved 
in reinforcement and reward, including the nucleus accumbens 
and ventral tegmental area, have high levels of both OTR and 
dopamine. OT-related sociality, probably in conjunction with the 
actions of dopamine, is reinforcing (40, 82). Only a few studies 
have suggested functions in which OT acts solely via the OTR, 
without access to the V1aR. For example, in mice, exogenous OT 
is capable of modulating fear conditioning following treatments 
directed at the lateral septum (119). OT in the lateral septum 
reduced fear following a positive social encounter but facilitated 
fear conditioning after a prior negative social encounter (120). In 
rats, fear conditioning also was enhanced by OT administered in 
the bed nucleus of the stria terminalis; blocking access to the OTR 

eliminated conditioned fear responses, while non-conditioned 
fear responses were not affected (121). In addition, in rats, 
effects of peripherally administered OT on neural activation in 
the central amygdala (indexed by cFos expression) continued 
to be present even following treatment with a V1aR antagonist. 
OT may act to increase sociality in the face of fear or challenge, 
including effects of exogenous OT measured by regional change 
in cFos in other brain areas. As one example, neural activation 
by OT in the hypothalamus and brain stem did require V1aR 
stimulation; among the other brain regions in which cFos was 
increased by OT and blocked by a V1aR antagonist were the SON, 
PVN, locus coeruleus, and nucleus tractus solitarius (35). The lat-
ter brain areas have many functions, including regulation of the 
autonomic nervous system and HPA axis, which are necessary for 
the optimal expression of social behavior (5).

Dose-Dependent effects of OT:  
More is Rarely Better
When infant prairie voles received a low dose of exogenous OT 
immediately following birth, they showed as adults increased 
OT in the CNS and an increased tendency to form a pair bond. 
However, when higher doses of OT were administered, a single 
exposure to OT in early life disrupted the later capacity to pair 
bond. Females exposed neonatally to a high dose of OT later 
preferred a stranger. Stranger preference in prairie voles is very 
atypical (122, 123) and, especially in males, is most commonly 
associated with stressful experiences or stress hormones includ-
ing CRH and cortisol (87, 124).

These and many other experiments suggest that the effects of 
OT are dose dependent. Low doses may appear to be beneficial, 
while higher doses of OT can have detrimental behavioral conse-
quences and in some cases may stimulate the VP receptor. Low to 
moderate doses of OT, especially as acute treatments may reduce 
anxiety in the face of a challenge or stressor. By contrast, larger 
amounts of OT, especially if given as a chronical treatment may 
no longer be anxiolytic, and can have the opposite effect. Chronic 
or very high levels of OT can reduce the capacity to respond to 
OT possibly by reducing OTR or binding to the OTR, while also 
allowing OT to activate VP receptors (86). In another example, 
when male mice were tested in a social stress paradigm, chronic 
and high levels of OT (given centrally) were associated with an 
increase in anxiety-like behaviors; in that study OTR binding 
was also reduced in the amygdala and septum (125). Perhaps 
in individuals primed by negative experience, small amounts of 
OT are capable of activating VP receptors, further supporting 
mobilization and potentially defensive emotional or behavioral 
responses. Based on data from OTKO mice, in which the VP sys-
tem was sensitized (31), we also can hypothesize that individuals 
(including humans) with low levels of endogenous OT might be 
more likely to experience increased VP-like activities even when 
given OT.

Studies of OT, and less commonly VP, using intranasal infu-
sions have generated an increased interest in the behavioral effects 
of these peptides. The intent is to non-invasively deliver peptides 
to the brain and there is increasing evidence that this is possible  
(126, 127). However, it is useful to note, based on imaging studies in 
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rodents, that the tissues activated by exogenous peripheral versus 
central applications of OT are not identical (128). Furthermore, 
the concentrations chosen for most human studies are generally 
arbitrary and based on doses of OT medically available as an 
intranasal “lactational aid.” Studies using different amounts of 
OT are needed to examine possible threshold differences among 
individuals as a function of gender, experience, and emotional 
lability (129). Different doses of a given peptide can produce dif-
ferent effects, and dose–response curves are only just appearing 
in this literature (130).

Are There Unique Functions for OT?
In mammals, we have argued that under optimal conditions OT 
appears to serve as a physiological metaphor for “safety” (18). OT 
is of special relevance to physical and mental protective adapta-
tions that involve high levels of sociality, a sense of psychological 
safety within a family or familiar social group, as well as emotional 
regulation that is necessary for mental health and higher levels of 
rational cognition (4). At least in rodents, OT seems to play an 
important role in cortical functions necessary for social cognition 
(24) and social reward (79).

Oxytocin also promotes autonomic flexibility in the face of 
threats (42). Parental care and social support in a safe context are 
particularly important in species of mammals adapted to live in 
extended families or groups, including humans and prairie voles 
(131). Social contact between adults or adults and offspring is a 
defining feature of most families. However, social contact, neces-
sary for mating, parental behavior and nursing, can be dangerous 
and requires a physiological and autonomic state that permits 
“immobilization without fear” (36). This behavioral response 
may be especially adaptive in females but also may leave females 
more sensitive than males to the consequences of traumatic 
experiences and symptoms of PTS.

Mammals, with their comparatively large brains, are par-
ticularly vulnerable to the need for oxygen, and under extreme 
conditions the functions of OT may shift from social behavior to 
survival and protection of the cortex, including dissociation or 
even loss of consciousness (4) (Figure 3). In mice, exogenous OT 
elicited a transient activation of cortical regions and a sustained 
activation of hippocampal and forebrain regions. It is interesting 
to note that in mice intranasal VP produced a sustain deactiva-
tion of pathways associated with cortical function. Many effects of 
VP still existed when OTRs were genetically deleted, presumably 
reflecting the capacity of VP to activate cortico-parietal, thalamic, 
and mesolimbic regions via VP V1aRs (105). Whether V1aRs, 
possibly responding to OT, can assume such roles in primates 
needs additional study (62).

Does OT Act Alone?
Many important functions including birth and selective social 
behaviors, another form of learned behavior, appear to rely on 
both OT and VP and their receptors. It is uncommon to find 
evidence that OT functions solely via the OTR. Lactation is one 
comparatively “modern” function of OT (81). Social reward may 
be another OT–OTR based function (79, 80), perhaps requiring a 
co-activation of localized dopaminergic systems (17).

Under circumstances of acute stress or prolonged isolation 
OT (in females) can be released (132) (Figure  3). If acting on 
the OTR or the V1aR this OT could allow stress coping (16). 
However, especially after early-life adversity, epigenetic sensitiza-
tion or upregulation of VP (133) and V1aR (11) can occur. Under 
these conditions, OT may no longer be sufficient to be protective. 
Furthermore, OT may stimulate VP receptors. Thus, although OT 
is normally protective against stress, if it acts on the VP receptor 
system the effects may be seen as exacerbation of stress reactivity 
or anxiety. This may be a particular problem in individuals with 
a history of trauma and neglect, for whom the effects of exog-
enous OT have been reported as socially negative or “antisocial”  
(110, 134, 135).

Mechanisms for OT–vP interactions
The mechanisms underlying OT–VP interactions in vivo remain 
largely to be understood. In the face of a challenge, the interactive 
effects of OT and VP appear to be hierarchical. The more modern 
peptide, OT, may act via the presumably older V1aR either as 
an agonist or perhaps as a competitive antagonist (Figure  1). 
Furthermore, the functions of OT and VP may be regulated by 
various other processes, including differential availability of OT 
or VP (or their receptors) which may be regulated locally in the 
nervous system (20).

The Paradox—why Are the Social effects 
of OT Unpredictable?
As data have accumulated, apparent inconsistencies or “para-
doxical” effects of OT have emerged (44, 45). For example, a 
tendency toward parochial behavior and “outgroup” rejection 
was described in some human studies after intranasal OT  
(45, 134, 135). Treatment with OT also has been implicated in 
increased aggressive tendencies in certain kinds of computer 
games, an effect that was attributed to an OT-induced increase 
in social salience (136). These responses may be adaptive but also 
could reflect the kind of receptor “cross talk” described in studies 
in nonhuman animals.

In mice (86, 137) and voles (138), chronic OT exposure has 
been either relatively ineffective or even had negative effects on 
social behavior. When OT levels are high or chronically elevated 
their effects may be primarily due to stimulation of VP receptors 
with a concomitant downregulation of the OTR. This pattern of 
exposure to either exogenous or endogenous OT might support 
mobilization and potentially defensive responses, rather than 
positive sociality and a reduction in anxiety (Figure 3).

The history of the individual, including prior exposure to 
early-life stress, also can influence the response to OT. Early 
maltreatment also has been associated with an increase in 
endogenous OT (27, 139). In another example, individuals who 
described themselves are relatively lonely were less likely to show 
an OT-associated increase in parasympathetic activity (140). 
Perceived loneliness, isolation in early life or maltreatment might 
alter thresholds for physiological consequences of exogenous OT, 
also possibly by upregulating VP receptors and/or downregulat-
ing the OTR.
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In the presence of a challenge or a negative environment (141), 
OT of either endogenous or exogenous origins, perhaps acting 
on VP receptors, could support arousal, including activation of 
CRH, the sympathetic nervous system and other components of 
the HPA and autonomic nervous system (5, 140). The interactive 
effects of OT and VP, including actions on the V1aR may help to 
explain the observation that treatment with OT has frequently 
been associated with antisocial behaviors, especially in a context 
of fear or danger.

SUMMARY

Across the lifespan, the effects of OT and VP dynamically interact 
to adjust to and influence the perception of fear and safety. VP 
is the evolutionarily older molecule with presumably the older 
receptors. VP is implicated in mobilized behaviors including 
defense of self and the family. Among the patterns of behavior 
for which both OT and VP may be necessary are sexual behavior 
(142), paternal behavior, and pair bonding (18). OT is of special 
relevance to adaptations that involve high levels of sociality, a 
sense of psychological safety within a family or familiar social 
group, as well as emotional regulation and higher levels of 
rational cognition (4). Furthermore, working together OT and 
VP, and their receptors, create a biological and genetic pathway 
that regulates attachment and bonding, which in turn may be 
protective against threats or other forms of challenge.

The nature of interactions of OT and VP at their receptors 
needs further study, especially in vivo and the epigenetic context of 
development (26). There is considerable interest in using OT-like 

molecules as therapeutics. However, the evolved and dynamic 
features of the OT–VP pathway create difficulties for attempts 
to study OT and VP independently. These also pose challenges 
for the usefulness of drugs based on this system, including those 
commonly used around the time of birth, such as synthetic forms 
of OT, which may affect both the OT and VP receptors.
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