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Although robotic locomotion and manipulation have shown some remarkable progress in

the real world, the current locomotion and manipulation algorithms are inefficient in per-

formance. They often only work for relatively simple tasks such as walking and running for

locomotion and pick-and-place in structured environments (e.g., factory) for manipulation.

In contrast, humans can perform quite dexterous tasks through contact as contacts provide

additional dexterity to interact with environments. Hence, understanding the underlying

contact mechanics plays a key role in designing contact-aware planners, controllers, and

estimators for locomotion and manipulation.

However, design for planners, controllers, and estimators is extremely challenging. First,

the number of contact states such as making and breaking contact with environments in-

creases dramatically as the number of contacts increases. Thus, the underlying contact

dynamics become large-scale non-smooth dynamics. As a result, optimization solvers have

difficulties converging due to the non-convexity of the optimization problem.

Second, it is desirable that a robot should be able to interact in unknown environments

during operation, leading to generalizable locomotion and manipulation. However, robust

planning with frictional interaction with uncertain physical properties is very tough as the
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robot might cause undesired unexpected contact events. As a result, a robot might not be

able to complete its desired task.

Third, once uncertainty is quite large, it is indispensable for closed-loop controllers to

stabilize locomotion and manipulation. However, the design of manipulation is quite chal-

lenging as most manipulation systems are underactuated and unobservable with potential

changes in contact states and modes.

In this dissertation, we present a methodology for contact-rich locomotion and planning

using trajectory optimization. We first show that the planner using graph-search planners

with trajectory optimization can be beneficial for decreasing the computation complexity.

Second, we describe our contact-implicit trajectory optimization for planning of multi-limbed

systems for running and climbing. We use decomposition-based optimization techniques to

efficiently design a trajectory for a robot subject to various complicated contact constraints

such as mixed-integer constraints. Then, we present our robust and stochastic trajectory

optimization algorithms for multi-contact systems. We show that our chance-constrained

optimization is applicable for planning multi-limbed robots. We also propose covariance

steering algorithm for contact-rich systems using a particle filter to approximate a distribu-

tion of underlying contact dynamics. Our covariance steering is able to regulate robots’ states

and contact states simultaneously with probabilistic guarantees. Furthermore, utilizing the

underlying structure of contact-rich manipulation, we present robust bilevel trajectory op-

timization for pivoting manipulation under uncertain physical parameters such as friction

coefficients. Our proposed framework is able to design optimal control sequences while im-

proving the worst-case stability margin along the manipulation. Finally, we present our

closed-loop controller framework for tool manipulation using visuo-tactile feedback. Our

approach enables the robot to achieve tool manipulation under unexpected contact events

in closed-loop control fashion with no visual feedback for partially unknown objects.

The perspectives gained from this dissertation provide better insight into developing

a contact-rich planning, estimation, and control framework for dexterous locomotion and

manipulation in highly unstructured environments.
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List of Figures

1.1 We categorize our contributions using two axes. The horizontal axis shows if the

proposed framework considers the change of contact modes (e.g., braking-making

contact. See Fig. 2.1) in the proposed framework. The vertical axis shows if

the framework uses sensor measurements (i.e., open-loop (planner) or closed-loop

control (controller). See Fig. 1.2). . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 We study contact-rich planners and controllers for different contact-rich systems

from multi-limbed robots for climbing to tool manipulation for pivoting. x and u

represent states and control inputs, respectively. The subscripts r, c,m, e repre-

sent reference, command, measurements, and estimates of x and u, respectively.

Planners (e.g., trajectory optimization algorithms in Chapter 3, Chapter 4, Chap-

ter 5, Chapter 6, Chapter 7)) do not use sensor measurements or estimates of the

states. On the other hand, controllers (e.g., covariance steering in Chapter 8 and

MPC in Chapter 9) use sensor measurements or estimates of the states. . . . . 3

2.1 Conceptual drawing of different contact modes. In (a), the robot makes non-zero

contact forces when making contact. Otherwise, it makes zero contact forces. In

(b), the contact does not slip when the contact force is not on the edge of the

friction cones. Otherwise, it slips depending on the direction of the contact force. 9
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3.1 Overview of LTO. Given an initial graph where the true configuration of the robot

and the trajectory are unknown, LTO iteratively solves TO locally to obtain the

true vertex (configuration) and edges (trajectories) in G. Based on the updated

G by TO, GSP performs either expansion of the vertex, gets the true vertex using

TO, or gets the true edge using TO. Assume the vertex P is the current vertex

LTO chooses from an open list. In (a), LTO gets the true configuration of the

vertex C using TO. In (b), it generates the true trajectory from the vertex P to

C using TO. In (c), it expands the vertex C and inserts the vertices A and B into

the open list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The planning procedure by LTO in [0, 1]2 where K = 4, i = 1, r = 1/4. The left

figure shows a graph at the start of planning where each vertex is inside the orange

voxel and each edge is represented as a black dashed line. When LTO intends to

expand the vertex, TO is solved within this voxel. When LTO investigates the

edge, it solves TO within the associated voxels. For instance, when it investigates
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shows the current graph structure after iterations. For simplicity, it does not
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found by TO are shown as the black circles and blue lines, respectively. The

infeasible vertex and edge judged by TO are shown as the red circle and red lines,

respectively. For example, the vertex (e) is removed since TO cannot find the

feasible vertex configuration in the voxel (e). . . . . . . . . . . . . . . . . . . . . 24

xv



3.3 Generated trajectories in R2. The short-horizon TO gets stuck at the local op-
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4.1 We consider motion planning of multi-limbed robots for free-climbing. Our pro-

posed framework efficiently generates trajectories for multi-limbed robots equipped

with multi-finger grippers while considering locomotion, grasping, and contacts.

The left figure shows trajectories of one of the fingers of each gripper while the

robot avoids obstacles. The trajectories around A-E are discussed in Sec 4.4.3.

The right figure shows that our real four-limbed robot executes our planned tra-

jectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Mathematical model of a multi-limbed robot. In this example, nf = 4, nl =

2, C = 4, V = 2. We also visualize two examples of frames ΣW ,Σc=3 where z-

axis of ΣW is perpendicular to the ground and z-axis of the local frame Σc=3 is

perpendicular to the face of the climbing hold and along this axis we have non-

zero z element of m. The spine makes contact with the contact angle (a): ϕ = π
3

and (b): ϕ = π
2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 We propose two decomposition-based optimization based on ADMM specific for

motion planning of limbed robots. (top): Two-block ADMM where MIQP consid-

ers discrete constraints and NLP considers nonlinear constraints so that the plan-

ner effectively solves the MINLP once these two optimization problems achieve

consensus. (bottom): Multi-block ADMM where the planner consists of nl MIQP

problems and one NLP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Evolution of residuals for walking using two- and five-block ADMM. (a): Residual
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4.5 Evolution of residuals for free-climbing using two- and five-block ADMM. We

show residual of (a): body and finger positions, (b): finger forces, (c): body
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4.6 Change of modes as our ADMM proceeds with snapshots of hardware experi-

ments. (top): after 1 iteration of our ADMM, the planner generates a trot gait,

which is physically infeasible since MIQP is not fully influenced by nonlinear con-

straints yet. (bottom): after 6 iterations, the planner finds a physically feasible

one leg gait sequence (1→ 4→ 2→ 3). . . . . . . . . . . . . . . . . . . . . . . . 61
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reaction force in ΣCc is always zero with f i
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5.7 Time history of the consumed power under the different violation probabilities.

The shaded regions are when the robot lifts a specific limb and puts it on the next

position, and white regions are when the robot pushes its body up. The figure

shows that the consumed power of a particular limb decreases when the limb is

in the air, while it increases when the limb is on the wall to generate the normal

force on the wall. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
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6.4 Results with different ∆ for the cartpole with softwalls system. First, the cart

moves in the negative direction to utilize the contact force λ2 because the control

input is bounded. Once the cart obtains enough λ2, the cart is accelerated in the

positive direction. We can observe the effect of our proposed chance constraints

in particular around t ∈ [0, 0.1] and t ∈ [0.4, 0.5]. When t ∈ [0, 0.1], the mode

changes from the "contact on the wall 2" to the "no contact" and the cart tries

to be far from wall 2 to satisfy the CCC. When t ∈ [0.4, 0.5], the trajectories are

farther away from x1 = 0.05 and x2 = 0.15 as ∆ decreases. . . . . . . . . . . . . 109

6.5 Results with different ∆ for the sliding box with friction example. First, the box

is accelerated in the positive direction. Then, the control decreases with time to
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6.7 Simulated trajectories of x2 of the cartpole example over 1000 samples with ∆ =

0.5 for the left column and with ∆ = 0.02 for the right column. The bottom row
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is observed. The red line shows the 99.9 % confidence interval. . . . . . . . . . . 113

6.8 Simulated trajectories of x of sliding box with friction example over 1000 samples

with ∆ = 0.5 for the left column and with ∆ = 0.002 for the right column.
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constraints effect is observed. The red line shows the 99 % confidence interval. . 114
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6.10 Trajectories for the stochastic cartpole system obtained by using 1000 samples

for the uncertain parameters while the control input is set to that computed us-

ing our proposed optimization (6.15) where the uncertainty values correspond to

those used in Section 6.4.2.1. (a): simulated trajectories of x2 with uncertain
1
k1
, 1
k2

for which standard deviations are 10−6. (b): the simulated force trajecto-

ries of λ2 corresponding to (a). (c): simulated trajectories of x2 with uncertain
1
k1
, 1
k2

which standard deviations are 10−4. (d): the simulated force trajectories

of λ2 corresponding to (c). (e): simulated trajectories of x2 with uncertain 1
k1
, 1
k2

which standard deviations are 5 ∗ 10−4. (f): the simulated force trajectories of

λ2 corresponding to (e). We rollout dynamics with the control input u which

was computed (6.15), the blue lines show the optimal x2, λ2 and the rollouts are

shown in grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.11 A schematic of a planar pusher-slider system. State of the system is [x, y, θ, py]
⊤

assuming that the pusher only comes in contact with the left edge as shown in

the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.12 Results of SNMPC. Top left: no mpc (open loop), top right: DMPC, bottom left:

∆ = 0.5, bottom right: ∆ = 0.01. The blue curve shows the reference trajectory

of the center of the box and the green lines show the simulated trajectories. The

red curves show the bounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1 We consider the problem of reorienting parts for assembly using pivoting manip-

ulation primitive. Such reorientation could possibly be required when the parts

being assembled are too big to grasp in the initial pose (such as the gears) or

the parts to be inserted during assembly are not in the desired pose (such as

the pegs). The figure shows some instances during the implementation of our

controller to reorient a gear and a peg. . . . . . . . . . . . . . . . . . . . . . . . 122
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7.2 A schematic showing the free-body diagram of a rigid body during pivoting ma-

nipulation when the relative angle between FW and FS is zero. Point P is the

contact point with a manipulator. The black circle represents the origin of each

frame. The object experiences four forces corresponding to two friction forces

from external contact points A and B, one control input fP from the manipula-

tor at point P , and gravity at point C. . . . . . . . . . . . . . . . . . . . . . . 125

7.3 A schematic showing the frame definition of a rigid body during pivoting manip-

ulation. FW , FS, FO, and FB are the world frame, slope frame, object frame, and

frame at contact location B, respectively. Gravity is defined in FW where the

gravity is parallel to y-axis of FW . Pivoting manipulation happens with extrinsic

contact A and B defined in FS. FO is fixed with CoM of an object. FB is in

parallel to FS with offset BS
x along x-axis of FS. We also show an example of iΣx

and iΣx in Table 7.1. In this example, CB
x and CB

y are illustrated. . . . . . . . . 125

7.4 A schematic showing the free-body diagram of a rigid body during pivoting

manipulation. We consider the stability margin of finger location due to imperfect
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nipulation with patch contact. We approximate patch contact as two point con-
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7.6 Conceptual schematic of our proposed frictional stability and robust trajectory

optimization for pivoting. Due to slipping contact, friction forces at points A,B

lie on the edge of friction cone. Given the nominal trajectory of state and control
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pensated by contacts as frictional stability. The above figure shows the case of
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7.7 This figure illustrates the idea of the proposed contact implicit bilevel optimiza-

tion, CIBO. Given the trajectory of x, u, f , the stability margin over the tra-

jectory can be computed as shown in lower-level optimization problem. Then,

given the computed stability margin over the trajectory ϵ, the upper-level opti-

mization problem maximizes the worst-case stability margin over the trajectory

by optimizing the trajectory of x, u, f . Our CIBO simultaneously optimizes the

lower-level optimization problem and the upper-level optimization problem. In

the right plot, red and blue arrows represent the stability margin along positive

and negative directions, respectively. Our CIBO optimizes the stability margin

for each direction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
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7.11 We show the time history of object angle, finger position, and contact forces

from a manipulator during pivoting of gear 1. The top row shows the result

using CIBO (7.29) considering CoM uncertainty and the bottom one shows the

result using (7.25) (i.e., it does not consider robustness criteria in the formulation

explicitly.). The top row results and the bottom row results are used in visualizing
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7.18 We consider CIBO with uncertain mass on varying angles of slope. (a): Time

history of stability margin, ϵ+. (b) Time history of stability margin, ϵ−. The

case where the object is on the slope whose angle of slope is 20° is illustrated in
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8.6 Simulated trajectories for acrobot using our open- and closed-loop controllers.

Top: closed-loop controller with ∆ = 0.8 and ∆test = 0.771, bottom: open-loop

controller with ∆ = 0.4 and ∆test = 0.366. Red lines show boundaries specified

in chance constraints. The reader should note that open-loop controller solution

was infeasible for ∆ = 0.8, and thus we show results for ∆ = 0.4. . . . . . . . . . 180

9.1 We present tactile tool manipulation where a robot uses an external tool to ma-

nipulate an external object. Usage of an external tool results in multiple contact
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tile estimator which makes use of tactile sensing to estimate pose of the system.

The tactile estimator is used to perform closed-loop control in an MPC fashion.

All hardware experiment videos could be found at https://youtu.be/VsClK04qDhk.183
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9.5 Evaluation of the tactile estimator. We show the time history of error of θO

for 5 trials (a) with the open-loop controller under no disturbance, (b) with the

open-loop controller under disturbance, and (c): with the closed-loop controller

under disturbance. The red line shows the mean of and the blue region shows

the 95% confidence interval. We added disturbance around t = 40 s for (b) and

(c) (see the blue box). For (c), we added another disturbance around t = 150 s
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CHAPTER 1

Introduction

1.1 Motivation

Robotic manipulation and locomotion are a critical aspect of automation that emulates the

human ability to handle and interact with environments in the physical world. Robotic

manipulation and locomotion have shown impressive progress for the past few decades in

a variety of fields such as manufacturing, logistics, healthcare, and inspection [4, 5, 6]. In

particular, for robotic manipulation, it has shown successful capabilities in pick-and-place

tasks where a robot grasps an object often with a two-fingered parallel jaw gripper in highly

structured environments such as factories. Robotic locomotion also has shown remarkable

capabilities in walking and running tasks where a robot can walk and run in various terrains

even including slippy deformable terrains. These capabilities are accomplished thanks to the

rapid advancement of robotic planning, control, estimation, and sophisticated hardware.

However, despite significant progress in robotic manipulation and locomotion, the current

robotic manipulation and locomotion cannot achieve as dexterous and robust tasks as we hu-

mans can do. For example, humans can cut an onion, which is much more complex than the

traditional pick-and-place task since it involves multiple contacts between the robot and the

knife and the knife and the onion. Similarly, humans can do rock climbing by understanding

how to grasp the climbing holds and when to move the legs. There are still many chal-

lenges in robotic manipulation and locomotion to achieve these capabilities. The reason why

robotic manipulation and locomotion have many unique challenges is contact. A robotic

manipulator uses contact between the robot and an object to interact with the object, and a

legged robot uses contact between the robot and environments to traverse in environments.
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Figure 1.1: We categorize our contributions using two axes. The horizontal axis shows if the proposed

framework considers the change of contact modes (e.g., braking-making contact. See Fig. 2.1) in the proposed

framework. The vertical axis shows if the framework uses sensor measurements (i.e., open-loop (planner) or

closed-loop control (controller). See Fig. 1.2).

Therefore, understanding contact is the key to introducing additional dexterity and robust-

ness for achieving human-like dexterous and robust manipulation and locomotion skills. In

this dissertation, we focus on discussing how contact can be useful by understanding the un-

derlying contact mechanics. In particular, we study planning through contact, robust

planning through contact, and closed-loop control through contact.

1.2 Contributions

Toward human-like dexterous and robust manipulation and locomotion, we have the following

contributions as shown in Fig. 1.1. Note that in this dissertation we define a planner as a

feedforward controller which is not updated during operation. In contrast, we define a

controller as a feedback controller which commands control inputs accordingly based on the

sensor measurements. Fig. 1.2 illustrates the pipeline we present in this dissertation.
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Figure 1.2: We study contact-rich planners and controllers for different contact-rich systems from multi-

limbed robots for climbing to tool manipulation for pivoting. x and u represent states and control inputs,

respectively. The subscripts r, c,m, e represent reference, command, measurements, and estimates of x and

u, respectively. Planners (e.g., trajectory optimization algorithms in Chapter 3, Chapter 4, Chapter 5,

Chapter 6, Chapter 7)) do not use sensor measurements or estimates of the states. On the other hand,

controllers (e.g., covariance steering in Chapter 8 and MPC in Chapter 9) use sensor measurements or

estimates of the states.

1.2.1 Contribution 1: Planning through Contact

1.2.1.1 Contribution 1.1: Lazy Trajectory Optimization with Graph-Search

Planning in Cluttered Environments

In this dissertation, we first show our initial work considering trajectory optimization for

multi-limbed robots without considering the change of contact modes although we still con-

sider complex collision avoidance constraints. We present Lazy Trajectory Optimization

(LTO) that unifies local short-horizon TO and global Graph-Search Planning (GSP) to

generate a long-horizon global optimal trajectory. We demonstrate LTO’s performance on

motion planning problems for a 2 DOF free-flying robot and a 21 DOF legged robot, showing

that LTO outperforms existing algorithms in terms of its runtime and reliability.

1.2.1.2 Contribution 1.2: Planning through Contact using Decomposition-based

Optimization for Multi-Limbed Robots

While we do not consider the change of contact modes in Section 1.2.1.1, we here con-

sider the change of contact modes. We consider motion planning for contact-rich robotic

systems, where the robot makes many contacts. We present an efficient motion planning
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framework for simultaneously solving kinematics, dynamics, friction, and contact problems.

To accelerate the planning process, we propose decomposition-based optimization frame-

works based on Alternating Direction Methods of Multipliers (ADMM) to solve the original

large-scale Mixed-Integer NonLinear Programming (MINLP). The resulting frameworks use

Mixed-Integer Quadratic Programming (MIQP) to solve contact and NonLinear Program-

ming (NLP) to solve nonlinear dynamics, which are more computationally tractable and

less sensitive to parameters. Also, we explicitly enforce patch contact constraints from limit

surfaces with micro-spine grippers. We demonstrate our proposed framework in the hard-

ware experiments of robotic climbing, showing that the multi-limbed robot is able to realize

various motions including free-climbing at a slope angle of 45◦ with a much shorter planning

time.

1.2.2 Contribution 2: Robust Planning through Contact

1.2.2.1 Contribution 2.1: Risk-Aware Motion Planning for Multi-Limbed Robots

We present a motion planning algorithm with probabilistic guarantees for multi-limbed

robots with stochastic gripping forces. Our proposed planner enables the robot to simulta-

neously plan its pose and contact force trajectories while considering the risk associated with

the gripping forces. Our planner is formulated as a nonlinear programming problem with

chance constraints, which allows the robot to generate a variety of motions based on different

risk bounds. To model the gripping forces as random variables, we employ Gaussian Process

regression. We validate our proposed motion planning algorithm on an 11.5 kg six-limbed

robot for two-wall climbing. Our results show that our proposed planner generates various

trajectories (e.g., avoiding low friction terrain under the low risk bound, choosing an unsta-

ble but faster gait under the high risk bound) by changing the probability of risk based on

various specifications.
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1.2.2.2 Contribution 2.2: Chance-Constrained Optimization for Contact-Rich

Systems

In Section 1.2.2.1, stochastic contact dynamics is not discussed, which leads to the failure

of the mission. We present a chance-constrained formulation for robust trajectory optimiza-

tion during general contact-rich systems, not limited to quasi-static locomotion as presented

in Section 1.2.2.1. In particular, we present chance-constrained optimization of Stochas-

tic Discrete-time Linear Complementarity Systems (SDLCS). The optimization problem is

formulated as a Mixed-Integer Quadratic Program with Chance Constraints (MIQPCC). In

our formulation, we explicitly consider joint chance constraints for complementarity variables

and states to capture the stochastic evolution of dynamics. Additionally, we demonstrate

the use of our proposed approach for designing a Stochastic Model Predictive Controller

(SMPC) with complementarity constraints for a planar pushing system.

1.2.2.3 Contribution 2.3: Robust Pivoting Manipulation using Contact Implicit

Bilevel Optimization

We study robust optimization for planning of pivoting manipulation in the presence of un-

certainties. We present insights about how friction can be exploited to compensate for

inaccuracies in the estimates of the physical properties during manipulation. Under cer-

tain assumptions, we derive analytical expressions for stability margin provided by friction

during pivoting manipulation. This margin is then used in a Contact Implicit Bilevel Op-

timization (CIBO) framework to optimize a trajectory that maximizes this stability margin

to provide robustness against uncertainty in several physical parameters of the object. We

present analysis of the stability margin with respect to several parameters involved in the

underlying bilevel optimization problem. We demonstrate our proposed method using a 6

DoF manipulator for manipulating several different objects.
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1.2.3 Contribution 3: Closed-Loop Control through Contact

1.2.3.1 Contribution 3.1: Covariance Steering for Uncertain Contact-Rich Sys-

tems

Planning and control for uncertain contact systems is challenging as it is not clear how

to propagate uncertainty for planning. Contact-rich tasks can be modeled efficiently using

complementarity constraints among other techniques. In this paper, we present a stochastic

optimization technique with chance constraints for systems with stochastic complementarity

constraints. We use a particle filter-based approach to propagate moments for stochastic

complementarity system. To circumvent the issues of open-loop chance constrained planning,

we propose a contact-aware controller for covariance steering of the complementarity system.

Our optimization problem is formulated as Non-Linear Programming (NLP) using bilevel

optimization. We present an important-particle algorithm for numerical efficiency for the

underlying control problem. We verify that our contact-aware closed-loop controller is able

to steer the covariance of the states under stochastic contact-rich tasks.

1.2.3.2 Contribution 3.2: Closed-Loop Control for Dexterous Tool Manipula-

tion using Tactile Feedback

We present closed-loop control of a complex manipulation task where a robot uses a tool to

interact with objects. Manipulation using a tool leads to complex kinematics and contact

constraints that need to be satisfied for generating feasible manipulation trajectories. We

first present an open-loop controller design using NLP that satisfies these constraints. In

order to design a closed-loop controller, we present a pose estimator of objects and tools

using tactile sensors. Using our tactile estimator, we design a closed-loop controller based

on Model Predictive Control (MPC). The proposed algorithm is verified using a 6 DoF

manipulator on tasks using a variety of objects and tools. We verify that our closed-loop

controller can successfully perform tool manipulation under several unexpected contacts.
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1.3 Outline of Dissertation

The structure of chapters are arranged as follows:

• Chapter 2 summarizes closely related works in this dissertation.

• Chapter 3 presents Contribution 1.1.

• Chapter 4 presents Contribution 1.2.

• Chapter 5 presents Contribution 2.1.

• Chapter 6 presents Contribution 2.2.

• Chapter 7 presents Contribution 2.3.

• Chapter 8 presents Contribution 3.1.

• Chapter 9 presents Contribution 3.2.

• Chapter 10 summarizes the works presented in this dissertation, discusses the limitation

and the potential future works, and concludes this dissertation by describing our final

thoughts toward robust manipulation and locomotion in the real world.
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CHAPTER 2

Research Challenges and Related Works

In this chapter, we present the technical challenges we try to solve in this dissertation. In

particular, we show three challenges in planning and control for robotic manipulation and

locomotion. We then describe related works for each research challenge.

2.1 Optimization-based Planning through Contact

Planning through contact (aka contact-rich planning, contact-aware planning, or open-loop

control through contact) computes the offline control input trajectory considering the change

of contact such as making and breaking contact relationships and slipping and sticking

contact relationships [7], as illustrated in Fig. 2.1. Contact-rich planner enables the robot

to design various non-intuitive trajectories with the changes in contact modes.

Planning through contact is already quite challenging. First, the computational com-

plexity can increase exponentially easily. Given N contacts, we have 2N contact modes for

breaking-making contact and 3N contact modes for slipping-sticking contact. In planning

through contact, complementarity constraints [8] or mixed-integer constraints [9] are often

used to model these hybrid contact dynamics in trajectory optimization, which leads to

non-convex NonLinear Programming (NLP) or Mixed-Integer Programming (MIP). As N

increases, the computational complexity of NLP and MIP also increases, and thus eventu-

ally the computational complexity becomes intractable. Second, the underlying dynamics

for multi-contact systems are nonlinear and non-smooth dynamics, which makes the design

of an optimization problem extremely difficult because of non-convexity of the optimization

problem. In particular, the non-smooth dynamics make the gradient-based optimization
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(a) Conceptual drawing for making and breaking

contact modes. The blue arrow shows contact force.

(b) Conceptual drawing for sticking and sliding contact modes. The

blue arrows show contact forces and the red arrows show the slip di-

rection. The blue triangles show friction cones.

Figure 2.1: Conceptual drawing of different contact modes. In (a), the robot makes non-zero contact forces

when making contact. Otherwise, it makes zero contact forces. In (b), the contact does not slip when the

contact force is not on the edge of the friction cones. Otherwise, it slips depending on the direction of the

contact force.

solver (e.g., IPOPT [10], SNOPT [11]) face challenges since gradients in one of the contact

modes can be almost zero. Although IPOPT considers the relaxation of complementarity

constraints and considers more strict complementarity constraints over the iteration of the

optimization, the numerical stability decreases with complementarity constraints.

To deal with these challenges, there have been many works in Contact-Implicit Trajec-

tory Optimization (CITO) [12, 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], where the opti-

mizer designs the trajectory of control inputs, states of the system, and contact sequences

simultaneously, without any user-specified contact sequences. Some of those works use com-

plementarity constraints and other works use integer constraints to model contact. For both

approaches, however, the computational complexity increases and it can be challenging to

find feasible solutions as the number of discrete modes increases. Thus, many works solve

the approximated Mixed-Integer NonLinear Programming (MINLP). In [14, 24], the authors

use NLP with phase-based formulations. One drawback is that the order of phases cannot

be changed, which is undesirable for motion planning for limbed robots since the number of

phases limbed robot planners consider is large and it can lead to infeasible solutions. The

authors in [25, 26] use continuous formulation in NLP to represent discrete terrain. In this
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dissertation, we consider fully discrete environments for free-climbing tasks so we cannot

use these techniques. In [27, 28], the authors decouple the MINLP problem as sequential

sub-problems (i.e., hierarchical planning). However, such a formulation cannot guarantee

that the entire planning process is feasible since it does not in general consider all coupling

constraints among sub-problems.

Our work is inspired by distributed optimization such as ADMM [29], which has gathered

attention for large-scale optimization problems [30, 31, 32, 33]. In [30, 31], the authors

introduce an ADMM-based framework to reason centroidal and whole-body dynamics. This

work does not consider whole-body dynamics but considers contact dynamics from grippers

and discrete constraints. ADMM is also employed in Model Predictive Control (MPC) for

linear complementarity problem [32]. The work in [33] proposed an ADMM-based framework

for CITO. We instead consider nonlinear centroidal dynamics and propose a specific splitting

scheme for motion planning of limbed robots.

2.2 Optimization-based Robust Planning through Contact

Robust planning through contact computes the offline control input trajectory considering

the change of contact under uncertainty. In reality, uncertainty always exists such as process

noises, observation noises, and noises in physical parameters such as friction constants. Con-

sidering these uncertainties is very important so that the robot is able to complete its desired

task under uncertainty. In this section, we first describe the comparison between robust and

stochastic optimization. Then, we show the unique challenge of stochastic optimization for

contact-rich systems. Finally, we describe robust optimization techniques for contact-rich

systems.

2.2.1 Robust Optimization and Stochastic Optimization

In order to design a robust open-loop controller, robust planning problems using optimiza-

tion can be categorized into two approaches, stochastic optimization and robust optimization
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[34, 35, 36, 37]. In robust optimization, the planner designs trajectories that guarantee the

feasibility of the motion given the uncertainty bounds. On the other hand, stochastic opti-

mization designs trajectories that guarantee the feasibility of the motion given the Probability

Density Function (PDF): it prevents the probability of violating state constraints (violation

probability) from being higher than a pre-specified probability.

As for risky tasks (e.g., walking on irregular terrain, climbing on slippy terrain), the

stochastic optimization approach has advantages over the robust optimization approach.

Because the robust approach can be very conservative, the planner would be likely to find

infeasible trajectories. In contrast, the risk-bounded method is more aggressive than the

robust approach, leading to a higher probability of finding feasible trajectories through risk-

taking. What is more, the violation probability provides a tuning knob to generate various

motions in diverse environments that suit the need of the task, which is not taken into

account in the current deterministic planning algorithm discussed in Section 2.1.

The key challenge here is it is not clear how to formulate stochastic optimization for

multi-contact systems. Furthermore, it is not trivial to obtain the distribution of stochastic

parameters. In this dissertation, we present our proposed algorithm which can achieve

probabilistic guarantees for motion planning problem of multi-limbed robots for climbing

under uncertain friction parameters with some assumptions.

2.2.2 Stochastic Optimization for Contact-Rich Systems

Although there are many works for planning under uncertainty for continuous dynamical

systems such as autonomous driving and UAV [35, 38, 39, 40], planning with uncertain

contact-rich systems is relatively unexplored. This is primarily because it is not clear how

to propagate uncertainty through the complementarity system for planning. Very recently,

there has been some work done in this area and we describe them next.

Recent work on robust trajectory optimization in contact-rich systems can be found

in [2, 3, 41]. In [2], the authors have utilized the formulation of expected residual min-

imization (ERM) [42] for robust TO. ERM, first introduced in [42] for Stochastic Linear
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Complementarity Problem (SLCP), aims at minimizing the expected error in satisfying the

SLCP. In [2], authors use ERM as an additional penalty term in their TO problem. However,

such a formulation does not consider the stochastic state evolution of the system during op-

timization. A chance-constrained formulation for the stochastic nonlinear complementarity

system is presented in [3]. This method augments the ERM-augmented objective in [2] with

additional chance constraints on satisfying the complementarity constraints. The formula-

tion ignores the stochastic evolution of system state during optimization, and thus borrows

the limitations of [2]. Furthermore, this formulation is incapable of enforcing a constraint vi-

olation probability smaller than 0.5 for any degree of uncertainty. Consequently, this method

is very fragile for trajectories with horizon lengths longer than one (T > 1, T is the time hori-

zon), as the chance of violating the constraints for such trajectories is 0.5T ≥ 1 [43]. In this

dissertation, our formulation addresses these weaknesses under certain simplifying assump-

tions for SDLCS. More recently, there has been another work that makes use of particles

to perform uncertainty propagation in SDLCS [44]. However, the resulting optimization

could become computationally challenging. In contrast, our proposed method formulates a

computationally efficient method at the cost of some simplifying assumptions.

Another line of work that is relevant to our proposed work is related to Chance-Constrained

Optimization (CCO). This has been extensively studied in robotics as well as in the opti-

mization literature [35, 38, 45]. In [35], authors have proposed stochastic optimization for-

mulation for open-loop collision avoidance problems using chance constraints under Gaussian

noise. The authors in [45] use statistical moments of the distribution to handle non-Gaussian

chance constraints. An important point to note here is that in all CC formulation for dy-

namic optimization, one needs to consider the Cumulative Density Function (CDF) function

for the joint probability distribution of all variables. However, such distribution is extremely

challenging to compute. Thus, in general, the joint chance constraint is decomposed into

individual chance constraints using Boole’s inequality (see [35, 45]), which results in very

conservative approximation of the individual constraints. We also utilize Boole’s inequality

to convert the original computationally intractable joint chance constraints into conservative
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but tractable independent chance constraints.

2.2.3 Robust Optimization for Contact-Rich Systems

In this section, we present research challenges and some related works for robust optimization

for contact-rich systems, in particular dexterous manipulation tasks. Robust optimization

for contact-rich systems often considers stability margin and quasi-static stability margin

with multiple point contacts has been widely used in legged locomotion [46, 47, 48, 49].

These works consider the problem of mechanical stability of the legged robot under multiple

contacts by considering the stability polygon defined by the frictional contacts. Then, they

consider min-max trajectory optimization where the optimizer designs the optimal control

sequence while improving the worst-case stability margin along locomotion. The planning

framework for optimizing contact wrench cone margin during locomotion is able to achieve

robust locomotion results [50, 49, 51]. Similar to the concept of these works, we present

the idea of frictional stability which defines the extent to which multiple points of contact

can compensate for unknown forces and moments in the presence of uncertainty in the

mass, Center of Mass (CoM) location, contact location, and frictional parameters. This idea

exploits contact forces to ensure the stability of the object during the two-point pivoting

manipulation.

There are many manipulation planning works showing remarkable results. Here, we show

some of them and highlight the differences between their works and our work presented in

this dissertation. Our work is related to manipulation by shared grasping [52] which discusses

the mechanics of shared grasping and shows impressive demonstrations. In contrast to the

work presented in [52], we present a robust contact-implicit bilevel optimization (CIBO)

framework that can be used to find feasible solutions in the presence of uncertainty during the

pivoting manipulation and avoids consideration of different modes during planning. In [53],

authors consider stabilization of a table-top manipulation task during online control. They

consider a decomposition of the control task in object state control and contact state control.

The contact state was detected using vision-based tactile sensors [54, 55]. As the task
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mostly required sticking contact for stability, the tactile feedback was designed to make

corrections to push the system away from the boundary of the friction cone at the different

contact locations. However, the authors did not consider the problem of designing trajectories

which can provide robustness to uncertainty. Furthermore, the authors only considered

controlled sticking in [53] which is, in general, easier than controlled slipping. Similarly,

in [56], authors design and validate their sliding controller for in-hand tool pivoting. In

[57], the authors extend their sliding controller in [56] such that the sliding controller is

able to achieve adaptive control for friction coefficients using visual and force measurements,

showing impressive demonstrations. Also, authors in [58] consider pivoting manipulation

with a parallel gripper without relying on fast and precise robotic systems. In contrast to

their work in [56, 57, 58], we present the pivoting manipulation with extrinsic contacts, which

introduces additional complexity of the manipulation, and other uncertain parameters such

as mass, CoM location, and robot contact location. The work in [59] discusses dexterous in-

hand manipulation including extrinsic contact. However, the work in [59] does not consider

uncertainty in physical parameters. Other previous works that study stable pivoting also

consider sticking contact during pivoting using multiple points of contact [60]. The problem

in [60] is inherently stable as the object is always in stable grasp. Furthermore, the authors

do not consider any uncertainty during planning. Similarly, authors in [61] present a MIP

formulation to generate contact trajectory given a desired reference trajectory for the object

for several manipulation primitives. In contrast, this work proposes a bilevel optimization

technique which maximizes the minimum margin from instability that the object experiences

during an entire trajectory.

2.3 Closed-Loop Control through Contact

Although robust planning is useful for robots to complete their desired tasks, the robust

planner might not be useful and the robots might not be able to complete their tasks if

uncertainty is too large. Thus, closed-loop control is indispensable. However, obviously,

designing closed-loop control for contact-rich systems is much more challenging than planning
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through contact and there are many challenges. First, it is not clear how to design a control

policy for contact-rich systems because Lyapunov control theory cannot be used for contact-

rich systems. Another challenge is the design of a contact estimator. In order to run closed-

loop control, it is necessary to estimate the contact states, which can be quite challenging

due to the partial observability of the system. In this section, we describe some of the

key research challenges and related works for achieving closed-loop control for contact-rich

systems.

2.3.1 Covariance Steering: Control Policy with Probabilistic Guarantees for

Contact-Rich Systems

Recently, contact-aware feedback controllers for contact-rich systems have been proposed

[19] for linear complementarity systems. The authors designs a piecewise affine linear con-

troller using state and contact force feedback using an optimization problem with a bilinear

matrix inequality. However, it cannot be extended to consider stochastic complementarity

constraints to provide stochastic guarantees. Thus, once the model has uncertainty, the

controller might not work. In this dissertation, we present a stochastic linear feedback con-

troller for stochastic contact-rich systems. Thus, our controller is able to achieve robust

control under uncertain physical parameters such as friction constants.

Using stochastic complementarity constraints for planning robust manipulation is not so

well understood in the literature. Some of the recent work can be found in [2, 26]. However,

the problem with these approaches is that the uncertainty needs to be very small otherwise

the optimization might be infeasible. Consequently, these approaches could fail to pro-

vide robust plans for uncertain contact systems. Furthermore, uncertainty propagation for

stochastic complementarity systems is not properly modeled in these approaches. One of the

reasons is the implicit relationship between contact and state variables in complementarity

constraints. As a consequence, most of the known approaches (e.g., extended Kalman filter

[62], unscented Kalman filter [63], moment-based [64, 40]) for uncertainty propagation can

not be used for stochastic complementarity systems.
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Since open-loop CCO would lead to quite conservative solutions to satisfy chance con-

straints, covariance steering methods have gained attention to deal with long-horizon plan-

ning for uncertain systems [65, 38]. Covariance steering methods are able to design feedfor-

ward and feedback gains simultaneously to satisfy chance constraints. However, these cannot

be directly applied to contact-rich systems since they assume (in general) linear dynamics

with Gaussian additive noises.

2.3.2 Contact Estimation and Control with Visuotactile Sensors for Reactive

Manipulation

Our work is inspired by seminal work on manipulation by shared grasping [52] which dis-

cusses mechanics of shared grasping and shows impressive demonstrations. The task that

we present in this paper is a complex version of shared grasping where the robot uses a

tool instead of a rigid end-effector to manipulate objects. This variation leads to additional

contact formations. These additional constraints make the problem more complicated to

plan, control, and estimate compared to those works.

Model-based planning for tool manipulation was earlier presented in [66]. Learning-based

algorithm of grasping for tool manipulation is presented in [67]. In our work, we consider a

closed-loop controller and estimator in addition to planning for tool manipulation to robustify

the system.

Our work is also closely related to the remarkable previous work on tactile estimation and

reactive manipulation presented in [68, 69, 70, 71, 53, 72, 73, 74]. For estimators, [68] show

a pose estimator for tools, and [69] present tactile localization. Learning-based estimator

for tool manipulation using vision is presented in [70]. In this work, in addition to a tool

through tactile sensors, we try to estimate and control a pose of an object, which introduces

additional extrinsic contact. For reactive manipulation, our work is closely related to the

seminal work presented in [53] where slip detection is used to recompute a new controller

that can stabilize the manipulation task. [72] shows the impressive closed-loop controller

by simultaneous design of controller and estimator. However, the task in [53] is inherently
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stable as the object is always grasped by the robot. Also, the tactile sensors can directly

estimate the pose of the object, which cannot be done for tool manipulation because tactile

sensors are not attached between the object and the end-effector. Compared to [72], which

focuses on regulation of an object using force / torque sensors, we focus on tracking of

tool manipulation using tactile sensors. Furthermore, the current paper considers multiple

contact formations which leads to more complex constraints.
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CHAPTER 3

Lazy Trajectory Optimization

In this chapter, we present our framework that unifies local short-horizon Trajectory Opti-

mization (TO) and global Graph-Search Planning (GSP) to generate a long-horizon global

optimal trajectory. We first motivate why the basic TO cannot work for complex motion

planning problems. Then, we show some closely related works in this chapter. Then, we

present our proposed algorithm with some proof of the computational complexity and sub-

optimality accounting for TO and GSP. Finally, we demonstrate our algorithm for various

robotic systems. Although we do not consider the change of contact modes in this chapter,

this chapter shows that planner just considering nonlinear kinematics, dynamics, and colli-

sion avoidance constraints is already complex and indicates that TO can be more complicated

with the contact constraints which enables the robot to change the contact modes.

This chapter has been partially adapted from one conference paper:

• Y. Shirai, X. Lin, A. Mehta, and D. Hong, "LTO: Lazy Trajectory Optimization with

Graph-Search Planning for High DOF Robots in Cluttered Environments", in Proc.

2021 IEEE Int. Conf. Robot. Auto., pp. 7533-7539, 2021.

3.1 Overview

Trajectory Optimization (TO), such as the ones based on Mixed-Integer Convex Program-

ming (MICP), solves a motion planning problem to generate an optimal trajectory while

satisfying constraints. Since TO can be formulated as long as users acquire constraints and

objective functions, it is widely used in various robotic systems [75], [9]. In particular, one of
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the unique advantages TO has compared with other planning algorithms, such as Sampling-

Based Planning (SBP) (e.g., Rapidly-exploring Random Tree (RRT), Probabilistic RoadMap

(PRM)) and Graph-Search Planning (GSP) (e.g., A*), is to easily formulate a wide variety

of constraints, including equality constraints. Conversely, GSP and SBP take considerable

time in a narrow passage because it is difficult to place a sufficient number of grids or samples

to represent the states present [76]. Reinforcement learning also has difficulty in satisfying

hard constraints in the continuous domain [77].

However, TO has two main drawbacks: expensive computational complexity with a long

horizon and convergence to local optima [26], [78]. Long-horizon TO is indispensable for

generating feasible global trajectories in cluttered environments, but the computation time

grows exponentially as the number of horizons increases. Model Predictive Control (MPC),

TO in receding-horizon fashion, can spend less planning time than the long-horizon TO.

The limitation of MPC is that since it considers relatively short-horizon TO, it has a greater

probability of getting stuck at local optima.

To this end, we address Lazy Trajectory Optimization (LTO) unifying the local short-

horizon TO and the global long-horizon GSP. LTO effectively reasons the same constraints

as the original large-horizon but with the improved time complexity. We also propose a

cost function that considers the computation time of TO to balance the optimality of the

trajectory and the planning time. In particular, we focus on the difficulty of the edge

evaluation instead of the number of edge evaluations. Next, based on Lazy Weighted A*

(LWA*) [79], we improve LWA* by making the vertex generation "lazy". In this work, "lazy"

means that LTO runs TO only when it intends to evaluate the configuration and trajectories.

In other words, LTO does not run TO to generate all configurations and edges in the graph.

Because LTO solves many similar TOs, it employs a warm-start to solve TO, resulting in

less planning time. By employing MICP as a short-horizon TO, we are able to analyze

the computational complexity of LTO in addition to the bounded solution cost. Note that

other TOs can also be incorporated into this framework. Note that our formulation is not

restricted to MICP. Other TOs can also be incorporated into this framework.
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The contributions can be summarized as follows:

1. We propose LTO, a framework incorporating GSP as a high-layer planner and TO as

a low-layer planner, that efficiently generates long-horizon global trajectories.

2. We present the cost function balancing the planning time of TO and the optimality of

the trajectory.

3. We present proofs of the complexity, efficiency, completeness, and optimality of LTO.

4. We demonstrate LTO’s efficiency on motion planning problems of a 2 DOF free-flying

robot and a 21 DOF legged robot.

3.2 Related Works

TO finds a trajectory from dynamic systems that satisfies constraints while minimizing a

cost function. For instance, a long-horizon TO based on nonlinear programming is used

to generate a globally feasible trajectory [26] while a short-horizon TO based on mixed-

integer linear programming is used to generate a locally optimal trajectory [80]. One key

characteristic of TO is that it can directly generate kinodynamic trajectories, which is difficult

for GSP and SBP.

We focus on using MICP as a short-horizon TO for the following reasons. First, MICP

can deal with nonlinear constraints with approximations. For instance, Valenzuela used

piecewise McCormick envelopes to deal with bilinear terms [75]. In addition, MICP can

consider constraints involving discrete decision variables. However, such formulation can

result in extended solving time if the problem has many discrete decision variables and/or

the planner computes the long-horizon problem. We show that LTO can find the global

resolution-optimal trajectory with the decreased planning time by restricting the MICP to

the short-horizon TO.

Another reason is that the worst-case solving time for MICP is bounded theoretically.

MICPs are generally solved by Branch and Bound (B&B) [81], [82], which iteratively solves
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a convex program in a binary search tree while tightening bounds on the best possible

solutions.

Graph-search planning algorithms, such as A* [83], first construct a graph where each

vertex represents a configuration of a robot. Edges in the graph are connected between

vertices if the edge is collision-free. Although A* works well in low-dimensional space, it

takes quite an amount of time in high-dimensional space (the curse of dimensionality).

Several GSPs have been studied to overcome the expensive computation time in high-

dimensional space. LWA* [79] evaluates edges only when the planner uses them. We improve

LWA* to make vertex generations lazy. Typically, GSPs use a pre-computed roadmap, but it

takes an extended amount of time to pre-compute the roadmap for planning problems with

dynamics. Inspired by LWA*, we notice that it is not necessary to pre-compute vertices in

the roadmap, and the planner evaluates the feasible vertex if the planner intends to expand

it. In other words, at the start of planning, LTO does not need to know a priori knowledge

about the roadmap. LTO updates the roadmap by running TO as time passes.

Optimization algorithms can find the optimal solution with decreased computation time

by providing good initial guesses for the problem, which technique is known as a warm-start.

Several works have been proposed to have good warm-starts [84], [85]. For example, SBP

and kinematics-aware trajectory are used as an initial guess [84], [86]. However, because

they do not consider dynamics constrained-trajectories in their initial guesses, they may

not fully achieve a good warm-start for motion planning with dynamics. Bergman uses

dynamics-aware GSP based on motion primitives to generate initial guesses [85]. In this

work, we perform a similar approach. We can regard a roadmap as a set of motion primitives.

Compared with [85], we also use the dynamics trajectory (e.g., force variable) for the warm-

start. Additionally, as our framework collects similar trajectories over time, this information

can enhance the quality of the warm-start for the current trajectory generation.
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3.3 Problem Formulation

This section explains our notation, graph structure, MICP formulation, and warm-start

strategy.

3.3.1 Notation

In this chapter, LTO solve TO with the help of GSP as shown in Fig. 3.1. Let G be a graph.

G = (V,E) consists vertices and edges, where V = (v1, v2, . . .), E = (e(vi ↔ vj)∀i, ∀j). Each

vertex represents the state of a robot, and each edge represents the trajectory of the robot

between the vertices. In addition, we make voxels in the continuous domain, such that each

vertex is in each voxel as shown in Fig. 3.2. At the start of planning, we first connect every

two vertices if their ℓ∞ norm is less than or equal to r. Let K be the number of intervals

along each axis. Let i be the number of voxels along each axis to produce a hypercube region

where LTO solves the edge (see Fig. 3.2).

We explain the benefits of using this graph structure in Section 3.3.2, how we solve TO

within the voxels in Section 3.3.3, and how much we can have dense voxels in Corollary 1.

Since our target is motion planning with dynamics in cluttered environments, it is difficult

for planners to have a feasible graph prior to conducting GSP. Hence, at the start of planning,

LTO does not have any prior knowledge about G, which means LTO does not know the true

configuration associated with the vertex and the true trajectory associated with the edge.

We use 0-step TO to solve V and N -steps TO to solve E, and update them in G while

running GSP.

3.3.2 Graph Structure

We solve TO within associated voxels and only use the constraints within voxels as shown in

Fig. 3.2. It means while we keep the same constraints of kinematics and dynamics and add

additional constraints imposing on start and goal states, we remove several domain-specific

constraints, such as obstacle-avoidance constraints, if they are outside the voxels. Because
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Figure 3.1: Overview of LTO. Given an initial graph where the true configuration of the robot and the

trajectory are unknown, LTO iteratively solves TO locally to obtain the true vertex (configuration) and

edges (trajectories) in G. Based on the updated G by TO, GSP performs either expansion of the vertex,

gets the true vertex using TO, or gets the true edge using TO. Assume the vertex P is the current vertex

LTO chooses from an open list. In (a), LTO gets the true configuration of the vertex C using TO. In (b), it

generates the true trajectory from the vertex P to C using TO. In (c), it expands the vertex C and inserts

the vertices A and B into the open list.

we keep each vertex and edge within the voxels, the constraints outside the voxels do not

have an influence on the generated vertex and edge in voxels. In other words, LTO cuts off

unnecessary constraints from the original TO and only keeps the necessary constraints to

generate vertices and edges in the voxels, resulting in the decreased solving time in TO. If

we have a dense enough roadmap, we effectively solve the same constraints as the original

long-horizon TO.

Here, we describe how we build our graph. At the start of planning, we make voxels in

the continuous domain and place a vertex in each voxel. In this work, we target a complex

motion planning problem. Thus, if we place a vertex to represent the robot’s state without

considering the feasibility of the state, the probability of the state associated with the vertex

being infeasible would be high. In contrast, if we use TO to place a vertex, TO considers

constraints so that LTO can place the vertex in a feasible region. Therefore, during the

planning process, LTO uses TO to get the true configuration associated with the vertex and

update G. To execute TO, LTO associates each grid voxel with a continuous state of the

23



�

�

�

� �

�

� � ��

��

� � ���

Figure 3.2: The planning procedure by LTO in [0, 1]2 where K = 4, i = 1, r = 1/4. The left figure shows a

graph at the start of planning where each vertex is inside the orange voxel and each edge is represented as

a black dashed line. When LTO intends to expand the vertex, TO is solved within this voxel. When LTO

investigates the edge, it solves TO within the associated voxels. For instance, when it investigates the edge

from the vertex (a) to (d), it solves TO in the voxels (a), (b), (c), (d), taking into accout the constraints (e.g.,

obstacles) in the voxels. The right figure shows the current graph structure after iterations. For simplicity,

it does not show the black dashed lines. The true vertex configurations and the true edges found by TO

are shown as the black circles and blue lines, respectively. The infeasible vertex and edge judged by TO are

shown as the red circle and red lines, respectively. For example, the vertex (e) is removed since TO cannot

find the feasible vertex configuration in the voxel (e).

robot as illustrated in Fig. 3.2.

As for edge generation, LTO does not assume that the edge is straight-line since it does

not assume a holonomic robot. Hence, during the planning process, it uses TO to get the

true trajectory associated with the edge and update G. When generating the edge, it solves

TO in the hypercube, consisting of corner points of the voxels where the target vertices are

located.
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3.3.3 Mixed-Integer Convex Programs

The MICP to generate edges in G is given by:

minimize cT (xN , z) +
∑N−1

t=0 ci(xt, z)

subject to fi(xt, z) ≤ 0, t = 0, . . . , N − 1

xmin ≤ xt ≤ xmax, t = 0, . . . , N

x0 = xs, xN = xg

xt ∈ X , t = 0, . . . , N

z ∈ {0, 1}nz

(3.1)

where xt are the states of the robot at time t, z are binary decision variables, cT , ci, fi are

convex functions, and X shows the convex set. When finding the edge in G, we solve (3.1),

where xs, xg are the state of the start vertex and the state of the goal vertex, respectively.

When finding the vertex in G, we solve (3.1) with N = 0 without
∑N−1

t=0 ci (xt, z).

3.3.4 Warm-Start Strategy

We use a warm-start to accelerate the planning process. Let vp and vc be the start and goal

state in the trajectory LTO tries to generate in G. LTO searches the most similar trajectory

in G based on the deviation cost as follows:

dcost = ∥vp − vi∥+ ∥vc − vj∥ (3.2)

where vi and vj are the start and goal of other trajectories in G. We assume that a trajectory

in G with a close start and goal designs a similar trajectory, enabling the robot to be aware

of complex constraints (e.g., dynamics, environment-oriented constraints). Therefore, when

LTO tries to generate an edge that is not investigated by TO yet, it uses the edges that are

already generated by TO as initial guesses for generating the current edge if dcost is lower

than the threshold.

Our strategy of a warm-start has several advantages. First, LTO solves many similar

(almost identical) TOs in G and generates similar edges during the planning process. As
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time passes, LTO solves more edges and this information can enhance the quality of the

warm-start for the current trajectory generation using TO. This feature cannot be provided

if we use a regular TO without running the same problem previously. We can provide an

initial guess, such as straight-line trajectory, to a solver for the regular TO, but it only

works for the relatively straightforward problem. Additionally, we solve TO with dynamic

constraints so that we can provide the value of dynamic variables to the next execution of

TO, which is difficult if we use the trajectory from other planning methods such as SBP,

which typically only considers kinematics.

3.4 Lazy Trajectory Optimization Formulation

We propose LTO that unifies TO and GSP. LTO does not have any prior knowledge about

the vertices and edges in G. We generate the vertex and the edge by running TO. We employ

LWA* as GSP of LTO because it delays an edge generation until the planner intends to use

the edge, resulting in the decreased planning time. However, LWA* has several limitations.

First, it does not consider the difficulty of the edge generation based on TO. To solve this

problem, we propose a new cost function that considers the time complexity (difficulty)

of TO with the guaranteed suboptimality bound. Another limitation is that it assumes

that the robot’s configuration is already known before the planner runs. Since we focus on

the complex planning problem, we cannot figure out the true configuration until TO runs.

Because executing TO for all the voxels to validate the vertices is demanding, we also delay

vertex validation using TO until the planner intends to expand the vertex.

The high-level process of LTO is shown in Fig. 3.1. Roughly speaking, LTO works as

follows. Given a uniform grid graph where LTO does not know the true vertex and edge,

LTO performs an action from three possible actions: an expansion, a vertex validation, and

an edge generation. When the expansion is chosen, LTO expands the state, which means

LTO generates all successors and puts them in an open list. If the vertex validation is chosen,

TO solves the true configuration of the vertex within the voxel. When edge generation is

chosen, TO solves to generate the trajectory between the vertices and update the true edge
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cost.

We use the notation X
+← {x} and X

−← {x} to show the compounding operations

X ← X ∪ x and X ← X \ x, respectively. Qo, Qc are priority queues to maintain the states

discovered but not expanded and the expanded states, respectively. ĝ(v), ĥ(v), and f̂(v) are

estimates of cost-to-come, cost-to-go, and cost from the start to goal through v, respectively.

We use ĥ(v) as follows: ĥ(v) = ∥vi − vgoal∥. TrueVertex and TrueEdge show if a state v

has the true configuration and the true edge cost, respectively. Conf(v) represents the true

configuration of the vertex.

3.4.1 Trajectory Optimization-Aware Cost

We propose the TO-aware cost as follows:

c (v1, v2) = ∥v1 − v2∥

cTO (v1, v2) = (1 + ωni)c (v1, v2)
(3.3)

where c (v1, v2) is the cost of the edge using the Euclidean distance and cTO (v1, v2) is the

inflated cost (i.e., overestimating cost) of the edge considering the time complexity of TO.

ni is the number of discrete decision variables associated with edge generation and we count

ni within the associated voxels. ω is a user-defined inflation factor.

With ωni , cTO can be very large so that LTO may not enthusiastically investigate the

edge in the voxels with many discrete variables. In other words, ω is a tuning knob that

balances the optimality of a trajectory and the planning time. We use cTO as the cost of the

edge if it is not investigated by TO and use c if it is investigated by TO.

While many papers have tried to minimize the number of edge evaluations [87], only a

few papers discuss the "difficulty" of the edge evaluation. By recognizing that the running

time of the edge generation by TO grows exponentially as the number of discrete variables

increases [75], [88], we propose this cost function. In addition, by defining cTO as the inflated

c, we can bound the suboptimality in Theorem 3.5.3.
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Algorithm 1 LTO(G, vstart, vgoal)
1: Qo ← vstart, Qc ← ∅, ĝ (vstart) = 0, ĝ(v)←∞

2: TrueVertex(v)← False,TrueEdge(v)← False

3: TrueVertex(vstart,goal)← True,TrueEdge(vstart)← True

4: while f̂ (vgoal) > minv∈Qo(f̂(v)) do

5: v = argminv∈Qo
(f̂(v)), Qo

−← {v}

6: if v == vgoal then

7: return ReconstructPath(vstart, vgoal)

8: if v ∈ Qc then

9: CONTINUE

10: else if TrueVertex(v) then

11: if TrueEdge(v) then

12: Qo, Qc = Expansion(G, Qo, Qc, v)

13: else

14: G, Qo, Qc = UpdateEdge(G, Qo, Qc, v)

15: else

16: G, Qo, Qc = UpdateVertex(G, Qo, Qc, v)

17: return No Path Exists

3.4.2 Main Loop (Algorithm 1)

Lines 1-7 are typical of A*. We iteratively remove the cheapest state in Qo until the

goal is chosen. Lines 8-9 are from LWA*, showing that a state is not expanded again if it is

already expanded and continues to the next iteration of the while loop. Lines 10-16 are new.

TrueVertex(v) and TrueEdge(v) check if the expanded state v has the true configuration and

the true edge cost, respectively.

3.4.3 Expansion (Algorithm 2)

In Algorithm 2, the expanded state has both the true vertex and the true edge cost so

that LTO puts all successors of v in Qo. GetSuccessors generates a copy of each neighboring
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Algorithm 2 Expansion(Qo, Qc, v)

1: Qc
+← {v}, S = GetSuccessors(v)

2: for all v′ ∈ S do

3: parent(v′) = v

4: if ∃v′′ ∈ (QoorQc)s.t. TrueVertex(v′′) andConf(v′) = Conf(v′′) then

5: ĝ (v′) = ĝ (parent (v′)) + cTO (parent (v′) , v′)

6: TrueVertex (v′) = true

7: else

8: ĝ (v′) = ĝ (parent (v′)) + cx,v (parent (v′) , v′)

9: if ∄v′′ ∈ Qo s.t. Conf (v′′) = Conf (v′) and TrueEdge(v′′) andĝ (v′′) ≤ ĝ (v′)andv′ /∈ Qc

then

10: f̂ (v′) = ĝ (s′) + ĥ (v′), Qo
+← {v′}

11: return Qo, Qc

state to maintain the states from different parents (line 1). The same vertex that originated

from other parent states might have already figured out the true configuration of the vertex

by already running TO. Hence, LTO checks if other versions of the successor state v′ have

the true configuration in Qo, Qc (line 4). If true, we update ĝ(v′) with cTO. Thus, G has

an expensive cost for edges with many integer variables. We also set TrueVertex(v′) to true

(line 6). If another version of the successor state v′ does not have the true configuration, we

use a distance from v to the voxel’s edge where v′ belongs as a cost of the edge to guarantee

the bounded suboptimality (line 8). LTO checks if this version of v′ should be considered for

maintaining in Qo (line 9). If there exists the state v′′ that represents the same configuration

of v′ with the true edge cost and the lower ĝ value, we do not maintain v′.

3.4.4 Edge generation (Algorithm 3)

In Algorithm 3, the state has the true vertex but does not obtain the true edge cost yet.

Let vxy and vzy be the vertices representing the same configuration but originated from different

parents x, z. Here, e(vab ↔ vcd) = e(veb ↔ vfd ). Hence, we do not want to run expensive TO
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Algorithm 3 UpdateEdge(G, Qo, Qc, v)

1: if CheckSamePair(G,parent(v), v) is False then

2: wopt = GetWarmStart(G, parent(v), v)

3: c,G,Edge = RunTO(G,parent(v), v, wopt)

4: else

5: c,G,Edge = GetSamePair(G, parent(v), v)

6: if Edge is feasible then

7: TrueEdge (v) = true, c = CostSamePair(parent(v), v))

8: ĝ(v) = ĝ(parent(v)) + c

9: if ∄v′′ ∈ Qo s.t. Conf (v′′) = Conf (v)and TrueEdge(v′′) andĝ (v′′) ≤ ĝ (v) then

10: f̂ (v) = ĝ (v) + ĥ (v), Qo
+← {v}

11: return G, Qo, Qc

again to get e(vab ↔ vcd) if we already obtain e(veb ↔ vfd ). On line 1, CheckSamePair checks

if we already obtain the same configuration pair from different parents. If true, we get the

same configuration pair (line 5). Line 6 checks if the obtained edge is feasible. If true, we

set TrueEdge(v) to true, get the cost (line 7) and use it to update the ĝ(v) (line 8). We use

c instead of cTO because LTO already figures out the true edge cost, and it does not make

sense for the edge cost to be expensive due to ωni . On lines 9-10, like line 9 in Algorithm 2,

we insert v into Qo if no states exist satisfying the if condition. If false on line 1, LTO

runs TO (line 3) and perform the same action between lines 7-10. On line 2, GetWarmStart

computes the initial guesses wopt of each decision variable.

3.4.5 Vertex Validation (Algorithm 4)

Since the state does not have the true vertex, LTO runs TO and gets the true configu-

ration of v. The structure of Algorithm 4 and Algorithm 3 is essentially the same, but in

Algorithm 4, we use cTO as the cost to avoid the expensive edge generation (line 7).
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Algorithm 4 UpdateVertex(G, Qo, Qc, v)

1: if CheckSameVertex(G, v) is False then

2: G,Configuration = RunTO(G, v)

3: else

4: G,Configuration = GetSameVertex(G, v)

5: if Configuration is feasible then

6: TrueVertex (v) = true

7: g(v) = g(parent(v)) + cTO (parent (v) , v)

8: if ∄v′′ ∈ Qo s.t. Conf (v′′) = Conf (v)and TrueEdge(v′′) andg (v′′) ≤ g (v) then

9: f̂ (v) = ĝ (v) + ĥ (v), Qo
+← {v}

10: return G, Qo, Qc

3.5 Formal Analysis

We prove several essential properties in LTO.

3.5.1 Complexity

Theorem 3.5.1. The running time of LTO is bounded by O(EV 2 log V ), where E, V are

the number of edges, vertices.

Proof. Because LTO maintains the duplicate states, the maximum number of states Qo con-

tains is V 2. In Algorithm 1, the outer loop runs at most V 2, and line 5 is O(log V 2) with pri-

ority queues. Thus, the total running time is: O (V 2 (log V 2 + Alg.2 + Alg.3 + Alg.4)). For

Algorithm 2, the outer loop runs at most |S|, TrueVertex investigates at most V states, line 9

investigates at most V states, and line 10 takes O(log V ). Thus, Alg.2 = O(|S|V log V 2). For

Algorithm 3, CheckSamePair investigates at most V 2, line 9 investigates at most V states,

line 10 takes O(log V 2). We have the same discussion for Algorithm 4.

While this time complexity is worse than that of other algorithms (e.g., A*: O(E log V )),

LTO finds a solution quickly in practice. For planning with expensive edge generation,
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it makes more sense to discuss the time complexity based on TOs. We identify line 3 in

Algorithm 3 and line 2 in Algorithm 4 as the main sources of planning time. Recognizing

this fact, we show the TO-aware time complexity.

Theorem 3.5.2. Let X be the configuration space normalized to [0, 1]d, where d ∈ N. Let

K, r be the number of intervals along each axis and the normalized distance calculated as ℓ∞

(see Fig. 3.2). Then, the TO-aware time complexity is O((2i+ 1)dKd) where i = 0, 1, · · · , K,

r = (1/K)i.

Proof. Fig. 3.2 shows the case where d = 2, K = 4, r = 1/4, i = 1. The total number of

vertices is Kd so TO for finding a vertex is called at most Kd times. Regarding the edge

generation, LTO connects the vertices if the ℓ∞ between the center of the voxel to which one

vertex belongs and the center of the voxel to which the other vertex belongs to is less than

or equal to r. The total number of edges per vertex is ((2i+1)d− 1) (the vertices inside the

green rectangle in Fig. 3.2 except for the vertex (d)). Thus, the total number of TO to find

the edge is ((2i+ 1)d − 1)Kd.

We can even bound K when TO uses MICP.

Corollary 1. K is bounded as: To(2BKd + 2NB(i+1)d((2i + 1)d − 1)) ≤ Tt where B is the

maximum number of integer variables in a voxel, To is the average solving time of convex

programming on a problem domain with no integer variables and N = 0, and Tt is the

acceptable running time.

Proof. When finding a true vertex, the MICP solver using B&B searches at most 2B solutions

and solves the regular convex programming for each solution with relaxed integer constraints.

In the worst-case, it solves convex programs for all voxels and the solving time is 2BKdTo.

Regarding the edge generation, the solver investigates (i+1)d voxels at most for every single

edge. When finding edges, we consider N steps planning problem so that the total number

of integer variables that TO has when finding an edge is NB(i + 1)d. Because the solver

runs at most ((2i+1)d− 1) per a voxel to find an edge, the worst-case solving time for edge

generation is 2NB(i+1)d((2i+ 1)d − 1).
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Given Tt, To, LTO can estimate the computational margin quantitatively by tuning K.

The space complexity in our algorithm is O(V 2 +E) since LTO investigates at most V 2

vertices and E edges.

3.5.2 Efficiency

Line 1 in Algorithm 4 gets the vertices of the same configuration and checks if the vertex

from other parents has the true configuration. If true and the configuration is feasible, line 6

marks the vertex as having true configuration. Once it is marked as true, there are no other

lines to set the vertex marker to false. We have the same discussion for TrueEdge. Therefore,

LTO solves TO at most once for the vertex and edges representing the same configuration.

3.5.3 Completeness and Optimality

LTO is complete. Since it evaluates all the edges in the worst-case, it eventually reduces to

A*, which is complete.

We can bound the cost of the solution as follows:

Theorem 3.5.3. Let ξ∗ be an optimal path. LTO return a path ξ with cost c(ξ) ≤ αc(ξ∗)

with α = (1 + ωM) where M = NB(i+ 1)d.

Proof. If there are no integer variables in the domain, GSP in LTO reduces to A*, resulting in

ĝ(v) ≤ g∗(v), where g∗(v) is the optimal cost-to-come, as shown in Theorem 10 in [89]. Next,

consider the domain with integer variables. We prove that we can bound the suboptimality

with cTO. To prove this, we need to show ĝ(v) ≤ αg∗(v). We use induction. At the start of

planning, ĝ(vstart) = g∗(vstart) ≤ αg∗(vstart) so the base case holds. Next, after some iteration

of Algorithm 1 and assume that ĝ(v) ≤ αg∗(v) holds for all v ∈ ξ so far. Let vp ∈ ξ with

ĝ(vp) > αg∗(vp), resulting in f̂(vp) > α(g∗(vp)) + ĥ(vp). It is obvious that ĝ(v) ≤ αg∗(v)

holds if no such vp exists. Here, we show that LTO will not choose such vp on line 5 in

Algorithm 1 even if vp exists.
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Case 1: A vertex has been expanded beore vp along ξ. In this case, We must have a

va−1 ∈ ξ before vp along ξ with successor va on Qo. If TrueEdge(va) is true:

ĝ(va) ≤ ĝ(va−1) + c(va−1, va)

≤ αg∗(va−1) + c(va−1, va) ≤ αg∗(va)

If TrueEdge(va) is false:

ĝ(va) ≤ ĝ(va−1) + cTO(va−1, va)

≤ ωni(g∗(va−1) + c(va−1, va))

≤ ωM(g∗(va−1) + c(va−1, va)) = αg∗(va)

Hence, the assumption ĝ(v) ≤ αg∗(v) holds true for all iterations. Since for every vertex

αg∗ (vi) + ĥ (vi) ≤ αg∗ (vi+1) + ĥ (vi+1) is true due to the consistency of ĥ,

f̂ (va) = ĝ (va) + ĥ (va) ≤ α(g∗(va)) + ĥ(va)

≤ α(g∗(vp)) + ĥ(vp) < f̂ (vp)

which means that vp will not be chosen.

Case 2: No expanded vertex before vp along ξ. In this case, Qo must contain the start

vertex, where we can apply the same discussion above, resulting in f̂(vstart) < f̂(vp).

Finally, c(ξ) = ĝ(vgoal) ≤ αg∗(vgoal) ≤ αc(ξ∗).

3.6 Numerical Experiments

We validate LTO on two motion planning problems: free-flying robots in R2 and legged

robots in R21. For legged robot problems, we conduct the experiments for three different

environments. We test algorithms with ten trials except for SBP algorithms, which we

evaluate for five trials.

To set up experiments, we evaluate LTO of the different numbers of voxels with/without

the warm-start option. We set r such that a vertex has 15 edges per vertex for the free-flying

robot experiments and 20 edges for the legged robot experiments. We use the Euclidean

distance in configuration space as c. With active warm-start options, LTO employs other

already investigated trajectories by TO if dcost in configuration space is less than 0.1. To
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compare with LTO, we also run the regular TO (i.e., no GSP is embedded), other GSP (i.e.,

weighted A*, LWA*), and SBP (i.e., PRM [90], lazyPRM [91], RRT [92], RG-RRT [93]).

To have a fair comparison, we incorporate TO into GSPs and SBPs. It means that when

the GSP and SBP find a node and connect nodes, it uses TO to figure out if the sampled

configuration and the edge is feasible, just like LTO. In fact, given sufficient planning time,

regular SBP and GSP algorithms (i.e., just sample nodes without TO) do not return any

single feasible trajectory.

We use Gurobi [94] to solve MICP on Intel Core i7-8750H machine and implement all

planning codes in Python.

3.6.1 Free-Flying Robots

We consider a free-flying robot in R2 with multi obstacles. We define pt ∈ R2 as the position

and vt ∈ R2 as the velocity. The state xt = (pt, vt) is controlled by ut ∈ R2. Thus, the robot

solves the following MICP from xstart to xgoal while remaining in the safe region Xsafe [95]:

minimize
∑N−1

τ=0 (xτ − xg)⊤Q (xτ − xg) + u⊤τ uτ

s.t. xt+1 = Axt +But, t = 0, . . . , N − 1

∥ut∥2 ≤ umax, t = 0, . . . , N − 1

xmin ≤ xt ≤ xmax, t = 0, . . . , N

x0 = xstart, xN = xgoal

xt ∈ Xsafe, t = 0, . . . , N

(3.4)

The computationally demanding constraints xt ∈ Xsafe due to integer variables z are rep-

resented using a standard big-M formulation with binary variables [95]. We consider axis-

aligned rectangular obstacles. We run LTO under 1000 and 2000 voxels with the inflation

factor ω = 0, 100 and with/without a warm-start option. We set N = 7 for TO inside LTO.

For TO, we use N = 70, which is the minimum number of N for us to get a feasible trajec-

tory. In this case, the number of continuous variables, binary variables, and constraints is

168, 3360, 4230, respectively. With N < 70, we only get trajectories that get stuck at local

optima. For GSP and SBP, we run at most 5000 samples.
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Goal

Start

Short-horizon TO: 2 s

Long-horizon TO: 9945 s

LTO prioritizing time: 331 s

LTO prioritizing optimality: 1054 s

Figure 3.3: Generated trajectories in R2. The short-horizon TO gets stuck at the local optimum and cannot

find the trajectory from start to goal. The long-horizon TO finds the optimal trajectory but takes an

extended amount of time. LTO prioritizing planning time avoids the area where the time for solving TO is

long due to many integer variables (i.e., obstacles). LTO prioritizing optimality of the trajectory finds the

resolution-optimal solution with less planning time compared with the long-horizon TO.

The solution cost versus planning time is plotted in Fig. 3.4. LTO finds as good solutions

as TO finds with decreased planning time. The generated trajectories are shown in Fig. 3.3.

By navigating the robot to a region with fewer integer variables (i.e., fewer obstacles), LTO

can generate robot trajectories quickly. We also observe that the lower the inflation factor ω

is, the more optimal trajectory LTO generates. It takes more time to design the trajectory

since LTO does not guide the robot to avoid the computationally expensive regions, but it

still quickly generates the trajectory without sacrificing the solution cost so much compared

with the long-horizon TO.

We discuss Fig. 3.4 by comparing the results of LTO with TOs. While the best planner

among LTOs (LTO with 2000 voxels with ω = 0) designs the trajectory that cost is 1.2

% worse than TO with a cost function, it decreases the computation time by about 89 %.

Furthermore, with the warm-start option, LTO decreases the computation time by about 93

%. In addition, TO withN = 70 is the simplest TO we get the feasible global trajectories. We

manually increase N until we get the feasible trajectory. In contrast, since LTO iteratively

performs the short-horizon TO, we do not need to spend time tuning N until we get global
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Figure 3.4: The results of Section 3.6.1. Error bars represent a 95 % confidence interval for a Gaussian

distribution. Note that for some algorithms, the confidence intervals are very small and are not visible.

Compared with TO, LTO prioritizing optimality (i.e., ω = 0) finds the optimal solution about nine times

faster without sacrificing the solution cost much (1.2 % worse).

0 200 400 600 800 1000 1200

computation time [s]
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= 10

= 100 expansion

vertex generation

edge generation

Figure 3.5: Consumed time with 2000 voxels in R2 for LTO. The larger the inflation factor ω is, the less

time LTO spends by avoiding expensive edge generation.

feasible trajectories, resulting in less offline user time consumption. Another advantage of

LTO is that the variance of the planning time of LTOs is much smaller than that of TO as

shown in Fig. 3.4. Recognizing that the solver’s behavior in terms of solving time is more

uncertain for the large-scale optimization problem than for the small-scale problem [96], LTO

employs the small-scale problem (i.e., short-horizon TO) to have the small variance of the

planning time.

We also evaluate our algorithms in terms of parameters. Fig. 3.4 shows that ω provides

a tuning knob to trade off between the solution cost and the planning time. Fig. 3.5 shows

the individual time cost on Algorithm 2-Algorithm 4 within LTO with different ω for 2000
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voxels. It shows that TO for generating an edge spends a large amount of time. It also

indicates that by increasing ω, LTO spends less time to generate edge by navigating the

robot to the region with fewer discrete variables, resulting in less total planning time. As

for the number of voxels, one insight is that LTO with 1000 voxels and ω = 0 designs the

trajectory, resulting in 72 % decreased planning time with the 0.4 % worse solution cost

compared with LTO with 2000 voxels and ω = 0. As a result, we may use the solution from

LTO with 1000 voxels and ω = 0. One future work would be how we balance the number of

vertices and the difficulty of TO: the more vertices, the easier TO is since TO solves within

smaller voxels, but LTO needs to run TO more times. One advantage of LTO is that it does

not require many voxels since TO can find the feasible vertices and edges while satisfying

constraints. Therefore, we can get the optimal grid resolution by balancing the difficulty of

TO and the number of calls to TO.

While LTO and TO have the success rate of 100 %, SBP and GSP have the success rate

of 20 % except for RG-RRT, which has that of 40 %.

3.6.2 Legged Robots

We consider a M -legged robot motion planning problem. We denote the body position as

qt ∈ R3, its orientation as θt ∈ R3, and toe i position as pit ∈ R3. To realize a stable

locomotion, we consider the reaction force f r
it ∈ R3 at foot i. Thus, the robot solves the

following MICP [75]:

minimize
∑N−1

τ=0 (xτ − xg)⊤Q (xτ − xg)

s.t. xmin ≤ xt ≤ xmax, t = 0, . . . , N

|∆xt| ≤ ∆x, t = 1, . . . , N

pit ∈ Ri(qt, θt), t = 0, . . . , N

x0 = xstart, xN = xgoal

xt ∈ Xsafe, t = 0, . . . , N∑M
i=1 f

r
it + Ftot = 0∑M

i=1 (pit × f r
it) +Mtot = 0

(3.5)
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where xt contains kinematics-related decision variables qt, θt, p1t, · · · , pMt. Here, pit ∈ Ri(qt, θt)

shows kinematics constraints.
∑M

i=1 f
r
it+Ftot = 0 and

∑M
i=1 (pit × f r

it)+Mtot = 0 represent the

static equilibrium of force and moment constraints, respectively. For kinematics constraints,

we approximate them as linear constraints [14]. For the static equilibrium of moment con-

taining bilinear terms, we use piecewise McCormick envelopes to relax the bilinear terms

into convex terms, which uses binary variables z to specify the partition in an envelope

[75]. Our current limitation of LTO is that it cannot deal with orientation in a heuristic

with guaranteed suboptimality. To consider orientation, we may utilize the multi-heuristic

approach [97]. To have a fair comparison, we just consider qt, pit for planning. We consider

a six-legged robot with 3 DOF per leg, resulting in 21 DOF planning. We run LTO under

3000 and 6000 voxels with ω = 0, 10 and with/without a warm-start option. We set N = 7

for TO inside LTO. For TO, we use N = 56, 63, 70 from the left to the right environment in

Fig. 3.6, respectively, which are the minimum number of N for us to get a feasible trajectory.

The number of continuous variables is 20220, 23106, 25674, the number of binary variables

is 32400, 14190, 6754, and the number of constraints is 74680, 55827, 48532, from the left to

the right environments, respectively.

The generated trajectories and the solution cost versus planning time are shown in

Fig. 3.6. In the left and middle environments, LTO shows better performance compared

with TO. In Fig. 3.4, TO feasible planning finds the trajectory most quickly, but Fig. 3.6

shows that it spends more time to just find a feasible solution if the planning problem is

more difficult. In the right environment, we observe that TO optimal and LTO shows a

similar result. Because the right environment has fewer discrete variables, we do not observe

the advantage of using LTO. Therefore, LTO works well in environments with many discrete

decision variables like the left and the middle environments.

3.7 Conclusion

We presented LTO for high DOF robots in cluttered environments. Because LTO deeply

unifies TO and GSP algorithms, it can consider the original long-horizon TO problem with
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Figure 3.6: The results of Section 3.6.2 in R21. The red lines in the top figure indicate the body trajectory.

Error bars represent a 95 % confidence interval for a Gaussian distribution. Note that for LTO, the confidence

intervals are very small and are not visible. LTO with 6000 voxels with the warm-start finds the optimal

solution about 11.3, 14.0, 1.4 times faster than TO without degrading the solution cost so much (about 0.33,

0.35, 0.01 % worse), from the left to the right environment, respectively. By increasing the inflation factor

ω, LTO can generate globally suboptimal trajectories faster than TO feasible option.

a decreased planning time. We proposed a TO-aware cost function that considers the diffi-

culty of TO. by recognizing that B&B depends on the number of discrete decision variables.

Furthermore, LTO employs other edges in the graph as a warm-start to accelerate the plan-

ning process. We also presented proofs of the complexity and suboptimality. Finally, we

performed planning experiments of a free-flying robot and a legged robot motion planning

problems, showing that LTO is faster with a small variance of the planning time.

Since LTO has a small variance in planning time, we argue that it would be useful for

safety-critical applications such as autonomous driving. Additionally, it consists of TO and

GSP so that users can use other planning algorithms for each subcomponent according to

their specifications.

Although we consider complex constraints such as kinematics, dynamics and collision

avoidance constraints, the contact mode constraints are not considered, which is discussed
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in the next chapter.
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CHAPTER 4

Planning through Contact using Decomposition-based

Optimization for Multi-Limbed Robots

In this chapter, we present planning through contact for contact-rich robotic systems us-

ing ADMM. In particular, we focus on discussing motion planning of multi-limbed robots

equipped with two-finger grippers for climbing on multiple discrete climbing holds although

the proposed algorithm can be applied to any other contact-rich locomotion and manipula-

tion tasks. In this chapter, we first argue that the current optimization-based planners have

computational bottlenecks as the number of contact constraints increases. Then, we describe

our patch contact model, which is important for the robot to achieve stable climbing. We

present our ADMM-based optimization algorithm. Finally, we show some results including

hardware experiments of climbing, computational complexity, and contact models.

This chapter has been partially adapted from one conference paper:

• Y. Shirai, X. Lin, A. Schperberg, Y. Tanaka, H. Kato, V. Vichathorn, and D. Hong,

"Simultaneous Contact-Rich Grasping and Locomotion via Distributed Optimization

Enabling Free-Climbing for Multi-Limbed Robots", in Proc. 2022 IEEE/RSJ Int.

Conf. Intel. Robot. Syst., pp. 13563-13570, 2022.

4.1 Overview

While legged robots have shown remarkable success in locomotion tasks such as running,

legged robots with dexterous manipulation skills, defined as limbed robots, are relatively

unexplored. There are a number of promising applications for limbed robots such as manip-
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Figure 4.1: We consider motion planning of multi-limbed robots for free-climbing. Our proposed framework

efficiently generates trajectories for multi-limbed robots equipped with multi-finger grippers while considering

locomotion, grasping, and contacts. The left figure shows trajectories of one of the fingers of each gripper

while the robot avoids obstacles. The trajectories around A-E are discussed in Sec 4.4.3. The right figure

shows that our real four-limbed robot executes our planned trajectory.

ulating balls [98], sitting [99], bobbin rolling [100], pushing heavy objects [25], stair-climbing

[27, 101], and free-climbing [102, 103, 104]. In this chapter, we focus on free-climbing tasks of

limbed robots. Free-climbing capabilities would be useful for planetary exploration, inspec-

tion, and so on [105]. These tasks cannot be done by traditional legged robots by dismissing

these problems as locomotion tasks. All of those previous works consider coupling effects

between body stability of legged robots and frictional interaction of manipulators to some

extent. To implement those capabilities in a real limbed robot, a variety of physical con-

straints need to be considered. Thus, motion planning plays a key role to generate physically

feasible trajectories of limbed robots for those non-trivial tasks.

However, motion planning of limbed robots for such tasks is challenging. First, mo-

tion planning can be quite complicated because planners need to solve trajectories of legged

robots, manipulators, or grippers together, which leads to NLP if motion planning is for-

mulated as an optimization problem. Also, it is difficult to identify contact sequences prior
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to motion planning if the task is complicated such as free-climbing. Thus, it is required to

consider locomotion, manipulation, and contacts together for generating trajectories, which

results in computationally intractable MINLP.

Another problem arises when limbed robots interact with environments using patch con-

tacts. With patch contacts, limbed robots can effectively increase friction forces and use

friction torques generated on the patch, which is useful for manipulation tasks and even

free-climbing tasks. However, multi-finger patch contacts are not discussed yet in previous

motion planning works for limbed robots.

In this chapter, we propose a motion planning algorithm that efficiently solves locomo-

tion, grasping, and contact dynamics together. We show that the resulting framework is

computationally more tractable and less sensitive to parameters. Also, we explicitly discuss

the patch contact constraints with micro-spine grippers, which enables the algorithm to re-

alize dexterous multi-finger tasks. Our proposed motion planning is validated on a 9.6 kg

four-limbed robot with spine grippers for free-climbing. To the best of our knowledge, it is

one of the first works that demonstrate dexterous multi-finger grasping enabling free-climbing

on a real multi-limbed robot.

This chapter presents the following contributions:

1. We present an optimization-based motion planning framework that simultaneously

solves constraints from locomotion, grasping and contact dynamics.

2. We accelerate the entire optimization process by formulating the problem as a decomposition-

based optimization.

3. We explicitly formulate patch contact constraints for micro-spine grippers.

4. We validate our framework in hardware experiments.
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4.2 Patch Contact Model with Micro-Spines

In this section, we discuss the patch contact model used in our planner. We extend the

previous works [106, 107, 48] and explicitly incorporate the limit surface in our proposed

planner. As there is a normal force acting on the patch, the limit surface is composed of

the gripper force failure model and the friction failure model. The total available reaction

wrench w = [fx, f y, f z, τx, τ y, τ z] lives in a Minkowski sum of those two models described

by:

w ∈ W , W = {wfr +wsp|wfr ∈ Wfr,wsp ∈ Wsp} (4.1)

where we define z-axis as the direction of normal forces and x- and y-axis consist xy plane

where shear forces exist (e.g., see Σc=3 in Fig. 4.2). wfr = [fx
fr, f

y
fr, f

z
fr, τ

x
fr, τ

y
fr, τ

z
fr] is the friction

wrench and wsp = [fx
sp, f

y
sp, f

z
sp, τ

x
sp, τ

y
sp, τ

z
sp] is the wrench that can be supported by the micro-

spines with the zero normal force. Wfr,Wsp represent a frictional limit surface and a limit

surface from micro-spines, respectively.

4.2.1 Frictional Limit Surface

Previous literature [106] models the friction wrench failure model as a simple 4D ellipsoid

on [fx
fr, f

y
fr, f

z
fr, τ

z
fr] as follows:

Wfr = {wfr ∈ R6|(f
x
fr)

2 + (f y
fr)

2

(µf z
fr)

2
+

(τ zfr)
2

(kµf z
fr)

2
≤ 1, 0 ≤ f z

fr ≤ fmax, τ
x
fr = τ yfr = 0} (4.2)

such that µ is the coefficient of friction, k is an integration constant, fmax is the upper bound

of f z
fr. This work assumes that fingers make circular patch contact under uniform pressure

distribution and thus we use k = 0.67rp where rp is the radius of contact [106].

4.2.2 Limit Surface of Micro-Spines

The authors in [107] construct the limit surface for spine grippers of any contact angles with

the constant µ. If the contact angle ϕ in Fig. 4.2 begins to vary, µ may become a function

of ϕ and requires an independent model. In practice, building such a model requires a large
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amount of data.

This work simplifies the model by assuming that the patch is always perpendicular to the

surface during contact (i.e., ϕ = π
2
). Therefore, µ is constant. We also make the assumption

that the moment τxfr, τ
y
fr are negligible since the size of the patch is relatively small. However,

the moment τ zfr cannot be neglected according to our test data. Thus, we impose a following

3D limit surface on [fx
sp, f

y
sp, τ

z
sp]:

Wsp = {wsp ∈ R6| − f i
max ≤ f i

sp ≤ f i
max, i = {x, y},

f z
sp = 0, τxsp = τ ysp = 0,−τ zmax ≤ τ zsp ≤ τ zmax}

(4.3)

where f i
max, τ

i
max represent the upper bound of each wrench.

4.2.3 Limit Surface for Two-Finger Micro-Spine Grippers

For the two-finger gripper used by our robot, each finger is equipped with a micro-spine patch

with the total available variables w1 = [fx
1 , f

y
1 , f

z
1 , τ

z
1 ] ∈ W and w2 = [fx

2 , f
y
2 , f

z
2 , τ

z
2 ] ∈ W ,

where w1 is for finger 1 and w2 is for finger 2. Since the rotational motion along z-axis

for finger 1 and finger 2 are same and the linear motion along x- and y-axis are same (see

Sec 4.3.1), we assume that the loading shear force and moment between two contact patches

are identical:

f i
1 = f i

2, i = {x, y}, τ z1 = τ z2 (4.4)

This can be justified as there cannot be an additional twisting moment along z-axis from

the object being grasped.

4.3 Simultaneous Contact-Rich Grasping and Locomotion Trajec-

tory Optimization

In this section, we present our proposed optimization formulation which simultaneously solves

grasping and locomotion while considering discrete dynamics such as gait sequence. Then,

we derive the computationally tractable formulation of our proposed formulation based on
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Table 4.1: Notation of variables. C or B indicates the variable is continuous or binary variables, respectively.

In Σ column, we indicate the frame of variables. Subscript t indicates time-step.

Name Description Size C/B Σ

rt body position R3 C W

θt body orientation R3 C W

pi
t i-th finger position R3 C W

qi
t i-th finger orientation R3 C W

di
t l-th gripper distance between fingers R3 C W

λi
t i-th finger reaction force R3 C W

τ i
t i-th finger reaction moment R3 C W

f i,ct i-th finger local force at Cc R3 C c

mi,c
t i-th finger local moment at Cc R3 C c

αi,c
t i-th finger contact at Cc Z1 B

βi,v,h
t i-th finger collision to h-th face of Vv Z1 B

γi,ct direction of z-element of mi,c
t Z1 B

ADMM.

4.3.1 Preliminary

Here, we show our assumptions in our planner:

1. Each finger makes patch contact and follows two different frictional models discussed

in Sec 4.2.

2. The environment consists of rigid static climbing holds whose geometry is modeled as

cuboids.

3. Paired fingers align along the normal direction of fingertips. Paired fingers are in

parallel and rotate only along z-axis in the world frame ΣW .

We define the variables in Table 4.1 and Fig. 4.2. We also denote constants as follows.
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Limb 

Limb 

spine

Figure 4.2: Mathematical model of a multi-limbed robot. In this example, nf = 4, nl = 2, C = 4, V = 2.

We also visualize two examples of frames ΣW ,Σc=3 where z-axis of ΣW is perpendicular to the ground and

z-axis of the local frame Σc=3 is perpendicular to the face of the climbing hold and along this axis we have

non-zero z element of m. The spine makes contact with the contact angle (a): ϕ = π
3 and (b): ϕ = π

2 .

N, nf , nl, C or V represent the time horizon, the total number of fingers, the total number of

limbs, the total number of graspable regions, or the total number of obstacles, respectively.

We denote Cc as the c-th graspable region, associated with a local frame Σc. Each obstacle

Vv has nv faces associated with a local face frame Σvh , h = 1, . . . , nv. For any arbitrary

vector a, the notation ∥a∥2A means a quadratic term with a positive-semi-definite matrix A.

We define the coordinate transformation from frame ΣA to ΣB as A
BT . We denote X =⇒ Y

as a conditional constraint and implement it using a big-M formulation.

4.3.2 Optimal Control Problem for Grasping and Locomotion

We propose the optimal control problem in (4.5). Our planner finds the optimal trajectory

of body pose, limb poses, and wrenches, subject to limb and gripper kinematics, centroidal

dynamics, bound of variables, gait, faces to grasp, collision-avoidance, and our proposed

limit surface constraints.

P1: min
x,u,y,z

N−1∑
t=0

J(xt,ut,yt, zt) (4.5)

subject to:
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1. For time-step t = 0, . . . , N − 1

• Bounds of decision variables (4.7).

• Centroidal dynamics (4.8).

• For fingers i = 1, . . . , nf :

– Kinematics (4.9).

– For graspable regions c = 1, . . . , C:

∗ Contact constraints (4.10).

∗ Wrench transformation (4.13).

– For obstacles v = 1, . . . , V :

∗ Collision-avoidance (4.14).

2. Terminal state constraints.

We define xt = [r⊤t ,θ
⊤
t , ṙ

⊤
t , θ̇

⊤
t ,p

i⊤
t ,q

i⊤
t ,d

l⊤
t ,∀i, l]⊤ as states, ut = [λi⊤

t , τ
i⊤
t ,∀i]⊤ as control

inputs, yt = [f i,c⊤t ,mi,c⊤
t ,∀i, c]⊤ as contact wrenches, and zt = [αi,c⊤

t , βi,v,h⊤
t , γi,c⊤t ,∀i, c, v, h]⊤

as integer variables, where i = 1, . . . , nf , l = 1, . . . , nl, c = 1, . . . , C, v = 1, . . . , V , h =

1, . . . , nv.

4.3.2.1 Cost Function and Bounds

Our cost function is:

J = ∥xt − xg∥2Q + ∥ut∥2R + ζ⊤xt +

nl∑
l=1

ξ⊤l (p
2l
t − p2l−1

t ) + ∥zt+1 − zt∥2S (4.6)

The first term is the cost between the current state and the terminal state xg. The second

term is the control effort cost. We aim to lift each limb as high as possible since potential

hazards (e.g., obstacles) can exist near terrain. However, this capability has not been realized

well. In [7, 13], the generated swing height is almost zero unless the authors give the reference

trajectory. Hence, by assigning a negative value for elements of ζ ∈ Rnx associated with limb

heights in xt, our planner can swing limbs with reasonable heights.
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We observe that the distance between the surface of the climbing hold and each finger

when the robot release the fingers needs to be long enough. Otherwise, due to an imperfect

position controller, the finger can stick to the climbing hold, resulting in the failure of

releasing fingers. Hence, we maximize the distance between paired fingers with a negative

value for elements of each ξl ∈ R3, which indirectly increases the distance between the

graspable region and the finger once the fingers release.

We observe that CITO randomly switches the discrete modes (e.g., contact on-off), which

could lead to instability. By assigning a quadratic term for zt, zt+1 associated with the mode

we do not want to switch frequently, the fifth term in (4.6) prevents mode changes between

t and t+ 1.

We bound the range of desicion varibles as follows:

xt ∈ X ,ut ∈ U ,yt ∈ Y , zt ∈ Z (4.7)

where X ⊆ Rnx , U ⊆ Rnu , and Y ⊆ Rny are convex polytopes consisting of a finite number

of linear inequality constraints. Z ⊆ {0, 1}nz shows range of binary variables.

4.3.2.2 Centroidal Dynamics

The dynamics is given by:

M r̈t =

nf∑
i=1

λi
t +Mg (4.8a)

Iω̇t + ωt × Iωt =

nf∑
i=1

(
rt − pi

t

)
× λi

t + τ i
t (4.8b)

where M, I represent the mass and inertia of the robot. g ∈ R3 is the gravity acceleration,

and ωt is the angular velocity from θt [14]. This work explicitly considers τ i
t to capture the

effect of patch contacts. For implementation, we use the explicit-Euler method with time

interval dt.
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4.3.2.3 Kinematics

Our kinematics constraints are as follows:

|R(θt)(p
i
t − rt)− ai| ≤ bi, |qi

t − ci − θt| ≤ di (4.9a)

p2l
t = dl

t + p2l−1
t ,q2l

t = q2l−1
t (4.9b)

R(θt) is the rotation matrix from ΣW to ΣB where ΣB is the body frame. ai,bi are the

nominal position and acceptable range from the nominal position of i-th finger in ΣB. ci,di

represent the nominal orientation and acceptable range from the nominal orientation of i-th

finger. In (4.9b), one of the paired finger positions is determined by another finger position

and dl
t. Since fingers on the same gripper are parallel, we set the orientation of those paired

fingers as same. Later, we use (4.9) in MIQP and thus conservatively approximate (4.9) by

linearizing R(θt) at a certain angle.

4.3.2.4 Contact Constraints

Contact dynamics is inherently discrete phenomenon and thus it can be given by:

αi,c
t = 1 =⇒

 f i,ct ,mi,c
t ∈ W (µc, kc) ,

ṗi
t, q̇

i
t = 0, cWT

(
pi
t,q

i
t

)
∈ Cc

 (4.10a)

αi,c
t = 0 =⇒ f i,ct ,mi,c

t = 0 (4.10b)
C∑
c=1

αi,c
t ≤ 1 (4.10c)

µc, kc are parameters from (4.2) defined in Cc. The constraints in (4.10a) mean that if the

finger makes contact on Cc, the local wrench f i,ct ,mi,c
t needs to follow the patch constraints

in (4.1) and the finger does not move. c
WT (pi

t,q
i
t) represents the pi

t,q
i
t in Σc. If the finger

is in the air, (4.10b) means that the local wrench is zero. Because the finger can only make

contact on one of the graspable regions, (4.10c) does not allow the finger to make more than

one contact.

Later, we use (4.10) in MIQP and here we approximate (4.10) as linear inequality con-

straints. In particular, the only constraints which need to be approximated are (4.2) inside
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(4.10a). For notation simplicity, we use fx, f y, f z as x, y, z elements of f i,ct , respectively and

mz as a z element of mi,c
t .

|f i| ≤ µcf
z − |m

z|
k

, i = {x, y}, |mz| ≤ kµcf
z (4.11)

The issue in (4.11) is that we need to consider two absolute value of decision variables

|f i|, |mz| simultaneously. We employ a piece-wise linear representation with integer variables

to deal with (4.11) as follows:

γi,ct = 1 =⇒ mz
− = 0, γi,ct = 0 =⇒ mz

+ = 0 (4.12a)

|f i| ≤ µcf
z −

mz
+

k
, |f i| ≤ µcf

z −
mz

−

k
, i = {x, y}, (4.12b)

mz = mz
+ −mz

−,m
z
+ ≥ 0,mz

− ≥ 0, |mz| ≤ kµcf
z (4.12c)

where mz
+,m

z
− are non-negative values and are the moment along z-axis in Σc in the positive

and negative direction. Using (4.12a), we decompose (4.11) into two inequality constraints

in the positive and negative direction of mz.

4.3.2.5 Wrench Transformation

The wrench in ΣW can be obtained from local wrenches:

λi
t =

C∑
c=1

W
c T f

i,c
t , τ i

t =
C∑
c=1

W
c Tm

i,c
t , (4.13)

With constraints (4.10), (4.13) converts a specific local wrench where the finger makes contact

to the wrenches in ΣW .

4.3.2.6 Collision-Avoidance

The constraints in (4.10) could allow the fingers to penetrate into the holds. To avoid the

penetration, the collision-avoidance constraints are given by:

βi,v,h
t = 0 =⇒ vh

WTp
i
t · nvh ≤ svh ,∀h = 1, . . . , nv (4.14a)

nv∑
h=1

βi,v,h
t ≤ nv − 1 (4.14b)
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where nvh is the normal vector to face h of obstacle v in Σvh and svh is a scalar to decide

the location of the plane. vh
WTp

i
t represents pi

t in Σvh . (4.14) means that the finger needs to

be outside at least one face of the obstacle.

4.3.3 Alternating Direction Method of Multipliers (ADMM)

ADMM solves the optimization problem with consensus constraints as follows:

min
η,δ

f(η) + g(δ), s. t. Aη +Bδ = c (4.15)

where η ∈ Rnη , δ ∈ Rnδ , A ∈ Rnϵ×nη , B ∈ Rnϵ×nδ , c ∈ Rnϵ . By decomposing the original

problem with two smaller-scale problems and solving each problem with considering con-

sensus, ADMM effectively solves the original optimization problem with faster convergence

[29].

The augmented Lagrangian of (4.15) can be given by:

Lρ(η, δ, ϵ) = f(η) + g(δ) +
ρ

2
(∥Aη +Bδ − c+ ϵ∥22) (4.16)

with ρ > 0. ϵ ∈ Rnϵ is the dual variable associated with the constraints Aη+Bδ = c. Then,

ADMM finds the solution by taking the following steps recursively:

ηk+1 := argmin
η

Lρ

(
η, δk, ϵk

)
(4.17a)

δk+1 := argmin
δ

Lρ

(
ηk+1, δ, ϵk

)
(4.17b)

ϵk+1 := ϵk + Aηk+1 +Bδk+1 − c (4.17c)

The natural extension of the two-block ADMM is I-block ADMM:

min
1η,2η,...,Iη

I∑
i=1

fi
(
iη
)

s. t. i
jη = G(i,j)δ, ∀(i, j) ∈ G (4.18)

where i
jη is the j-th local decision variable of i-th block optimization problem. gδ = G(i,j)δ is

the h-th element of the global decision variable, δ ∈ RG. G is a bipartite graph formed from

global decision variables and local decision variables where each edge represents a consensus
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MIQP

Contact constraints

Collision avoidance

Approximated kinema�cs

Transforma�on

NLP

Consensus
Nonlinear kinema�cs

Centroidal dynamics
Force dynamics

MIQP
Limb 1

MIQP
Limb

…
NLP

Nonlinear body
centroidal dynamics

Projec�on

Two-Block ADMM for Simultaneous Contact-Rich 
Grasping and Locomo�on

Mul�-Block ADMM for Simultaneous Contact-Rich 
Grasping and Locomo�on

Consensus

Figure 4.3: We propose two decomposition-based optimization based on ADMM specific for motion planning

of limbed robots. (top): Two-block ADMM where MIQP considers discrete constraints and NLP considers

nonlinear constraints so that the planner effectively solves the MINLP once these two optimization problems

achieve consensus. (bottom): Multi-block ADMM where the planner consists of nl MIQP problems and one

NLP.

constraint (see [29]). We also denote N (g) = {i, j|(i, j) ∈ G} as the set of all local variables

connected to gδ. Denote i
jϵ as the dual variable associated with the consensus constraints.

The multi-block consensus problem can be solved as follows:

iηk+1 := argmin
iη

fi(
iη) +

∑
g∈G(i,j)

ρi
2
∥ijη − gδk + i

jϵ
k∥22, (4.19a)

gδk+1 := argmin
gδ

∑
i,j∈N (g)

ρi
2
∥ijηk+1−gδ + i

jϵ
k∥22, (4.19b)

i
jϵ

k+1 := i
jϵ

k + (ijη
k+1−gδk+1),∀(i, j) ∈ G (4.19c)

4.3.4 Decomposition-based Optimal Control Problem

We propose the following decomposition-based optimization framework so that the origi-

nal intractable MINLP problem (P1) becomes tractable. The key idea is that we use an

NLP solver to solve NLP with nonlinear continuous constraints and a MIP solver to solve

MIQP with discrete constraints so that we can employ the strength of each solver. Our pro-

posed decomposition-based optimization from P1 solves the following optimization problems
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recursively (P2):

P2a : min
η,y,z

N−1∑
t=0

J(ηk
t ) +

ρ

2
∥ηk

t − δk
t + ϵkt ∥22 (4.20a)

s.t. {∀t, (4.7), (4.8a)}
⋂
{∀t, i, (4.9)}⋂

{∀t, i, c, (4.10), (4.13)}
⋂
{∀t, i, v, (4.14)}

(4.20b)

P2b : min
δ

N−1∑
t=0

ρ

2
∥ηk+1

t − δk
t + ϵkt ∥22 (4.20c)

s.t. {∀t, (4.7), (4.8)}
⋂
{∀t, i, (4.9)} (4.20d)

P2c : ϵk+1
t ←− ϵkt + ηk+1

t − δk+1
t (4.20e)

where ηk
t = [x⊤k , u

⊤
k ]

⊤,ηk = [ηk⊤
0 , . . . ,ηk⊤

N ]⊤. The indexes in (4.20) are t = 0, . . . , N − 1,

i = 1, . . . , nf , c = 0, . . . , C, v = 1, . . . , V . We create copies of variables ηt as δt and

δk = [δk⊤
0 , . . . , δk⊤

N ]⊤. P2a is MIQP. P2b is continuous NLP. Since both MIQP and NLP can

be efficiently solved using off-the-shelf solvers, our proposed method would converge earlier

than the method solving P1 using MINLP solvers. Also, our method considers all constraints

from grasping, locomotion, and contact once it achieves the consensus between MIQP and

NLP. Thus, it does not suffer from the infeasible issue of hierarchical planning explained in

Sec 2.1.

Remark 1 : In P2, we do not consider the consensus of y, z. For y, u indirectly has

an effect on y via (4.13) so we do not explicitly enforce consensus constraints for y, which

enables more efficient ADMM computation. For z, because it is quite difficult for NLP to

satisfy discrete constraints, we do not enforce consensus between P2a and P2b.

55



4.3.5 Multi-Block Decomposition-based Optimal Control Problem

We propose another option to solve the MINLP which does not involve many difficult con-

straints (e.g., discrete constraints) based on multi-block ADMM as follows (P3):

P3a : min
iη,y,z

N−1∑
t=0

iJ(iηk
t ) +

∑
g∈G(i,j)

ρi
2
∥ijηt − gδkt +

i
jϵ

k
t ∥22

 , (4.21a)

s.t. for MIQP: P2a, for NLP: P2b, (4.21b)

P3b (projection) : min
gδ

N−1∑
t=0

∑
i,j∈N (g)

ρi
2
∥ijηk+1

t −gδt +
i
jϵ

k
t ∥22 (4.21c)

P3c : i
jϵ

k+1 := i
jϵ

k
t + (ijη

k+1
t −gδk+1

t ) (4.21d)

where iηk
t = [ix⊤k ,

iu⊤k ]
⊤. We run P3a with constraints from P2a for each limb to solve

discrete constraints, resulting in total nl MIQP problems in parallel. We run one P3a with

constraints from P2b to solve nonlinear constraints. Then, we run P3b as projection (see

Fig. 4.3).

4.4 Experimental Results

In this section, we validate our proposed methods for two tasks: walking and free-climbing.

Through the experiments, we try to answer the following questions:

1. Can our proposed optimization generate open-loop trajectories efficiently?

2. Can our proposed formulation consider patch contacts with micro-spines explicitly?

3. How do the generated trajectories behave in a real four-limbed robot?

4.4.1 Implementation Details

For optimization settings, we implemented our method using Gurobi [94] for solving MIQP

and ipopt [10] with PYROBOCOP [16] for solving NLP. The optimizations are done on a
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computer with the Intel i7-8565U. The trajectories discussed in this section are from two-

block ADMM and we use the solution from MIQP (P2a).

We implemented the results of our proposed methods on a real four-limbed robot [108,

109] equipped with two-finger grippers [110]. The grippers make patch contact with micro-

spines, which are mechanically constrained such that the patch is always perpendicular to the

surface during contact. This satisfies one of our assumptions in Sec 4.2.2. Each limb consists

of 7 DoF, where 6 DoF are to actuate the joints of the limb and 1 DoF is to actuate the

gripper. The robot weighs 9.6 kg. The admittance control was used to track the reference

wrenches from the planner [111]. Free-climbing experiments were conducted on a rugged

wall with gradient 45◦. Hardware experiments can be viewed in the accompanying video.

Remark 2 : We set dt to the large value and have tight bounds on ṗi
t for free-climbing,

resulting in slow motions in hardware. This is because our robot uses linear actuators to

actuate fingers, whose internal motor velocity is slow.

4.4.2 Computation Results

4.4.2.1 Convergence Analysis

We discuss the convergence of our ADMMs. For walking with point contacts on a flat plane

without, we set dt = 0.08, N = 40, ρ = 1.5, µ = 0.6. For walking, we consider point contacts

(i.e., no fingers). Since we consider a single flat plane walking without obstacles, we set

C = 1, V = 0. For climbing, we set dt = 2.0, N = 40, ρ = 10, µ = 2.2, rp = 0.02 m. This

scenario considers four climbing holds which consists of five faces so we set C = 20, V = 4.

Both cases run ADMM for 10 iterations.

We show the evolution of residual for walking and free-climbing using our two- and five-

block ADMM in Fig. 4.4 and Fig. 4.5. Overall, we observe that our proposed ADMM

converges with small enough norms of residual. We also observe that for free-climbing, our

two-block ADMM shows faster convergence than our five-block ADMM and for walking, both

two- and five-block ADMM shows similar convergence. This is because the problem is so
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Figure 4.4: Evolution of residuals for walking using two- and five-block ADMM. (a): Residual of body and

finger positions, (b): residual of finger forces.

Figure 4.5: Evolution of residuals for free-climbing using two- and five-block ADMM. We show residual of

(a): body and finger positions, (b): finger forces, (c): body rotation, (d): finger moments.
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complicated that it is quite difficult for five-block ADMM to achieve consensus, resulting in

higher norms of residual. In contrast, our two-block ADMM only needs to achieve consensus

for two optimization problems, resulting in lower norms of residuals.

We also discuss the generated trajectories for free-climbing by our two-block ADMM as

shown in Fig. 4.6. The trot gait trajectory is the result of our ADMM after 1 iteration. This

trot gait is physically infeasible (i.e., tumbling) since MIQP is not aware of nonlinear moment

constraints (4.8b). After 6 iterations of our ADMM, our planner generates a physically

feasible one leg gait. Because ADMM converges, MIQP is now aware of (4.8b) so that the

generated trajectory does not make the robot tumble anymore, resulting in physically feasible

trajectories. We do not observe this mode change for the walking task since the walking task

is naturally more stable than the free-climbing task so our ADMM does not face the need

for mode change.

4.4.2.2 Computation Time, Success Rate

We compare our ADMM with the benchmark optimization using NLP with respect to the

computation time and the success rate of finding a feasible solution for walking and climbing

problems. As a benchmark, we solve P1 as NLP using a technique in [1]. We sample

ten feasible initial and terminal states and calculate the average computation time and the

success rate where the optimization could find a solution. We use the same parameters

in Sec 4.4.2.1. Table 4.2 shows that our ADMMs show smaller computation time and a

higher success rate against the benchmark method. For walking, our five-block ADMM

shows smaller computation time and for free-climbing, our two-block ADMM shows smaller

computation time. In other words, if the problem is not so complicated (e.g., walking), our

five-block ADMM can be an option to solve the problem even though it takes more iteration

to converge. This is because our five-block ADMM spends less time for each iteration so

that the total computation time can be small.

Our proposed ADMM does not employ a warm-start. This is because each block on

our ADMM solves a smaller-scale optimization problem, which is less sensitive to initial
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Table 4.2: Comparison of computation time and success rate for walking and climbing problems between

benchmark optimization based on P1 using [1], our two-block ADMM, and our multi-block ADMM. For

ADMMs, the computation time is calculated as the total computation time until the norm of residual for

body and foot positions converge to 0.03 m and the norm of residual for reaction forces converge to within

0.5 N. For computation time, we show the mean time and 99 % confidence interval.

Walking Computation time [s] Success rate [%]

Benchmark 3275 10

Our two-block ADMM 168 ± 50 100

Our five-block ADMM 44 ± 21 100

Climbing

Benchmark N/A 0

Our two-block ADMM 619 ± 99 100

Our five-block ADMM 970 ± 60 90

guesses compared to larger-scale complicated optimization problems (e.g., MINLP). We did

not observe a significant reduction of computation time with our warm-start, but designing

warm-start for consensus constraints would be promising.

4.4.3 Results of Our Generated Trajectories

4.4.3.1 Collision-Avoidance

This scenario focuses on environments with obstacles. We set dt = 2.0, N = 120, ρ = 15,

µ = 2.2, rp = 0.02 m. We consider 16 climbing holds and 3 obstacles and run our two-block

ADMM for 3 iterations.

The generated trajectory with snapshots of the hardware experiment is shown in Fig. 4.1.

Our ADMM successfully generates collision-free trajectories under a number of discrete con-

straints. Here we discuss three points in Fig. 4.1. Around point A, since the height of the

obstacle is not so high, our ADMM generates the trajectory that gets over the obstacle.

Around point B, since the height of the obstacle is high, the robot cannot get over the ob-

60



Trot: infeasible
t = 0 s t = 25 s t = 50 s

One leg gait: feasible

t = 10 s t = 55 s t = 84 s t = 108 s

1
2

4
3

Figure 4.6: Change of modes as our ADMM proceeds with snapshots of hardware experiments. (top): after

1 iteration of our ADMM, the planner generates a trot gait, which is physically infeasible since MIQP is

not fully influenced by nonlinear constraints yet. (bottom): after 6 iterations, the planner finds a physically

feasible one leg gait sequence (1→ 4→ 2→ 3).

stacle. Thus, our ADMM generates the trajectory that takes a detour around the obstacle.

Around point D, limb 4 could directly make contact on D from C, but due to the obstacle,

the robot first makes a contact on E and then goes to D.

4.4.3.2 Slippery Rotated Holds

This scenario shows that our ADMM designs trajectories with varying coefficients of friction

on rotated holds. We set dt = 2.0, N = 40, ρ = 15, rp = 0.02 m. The environment consists

of 8 climbing holds with different orientations along z-axis in ΣW . In Fig. 4.7, each climbing

hold has a µ where the front and back faces are covered by 36-sand papers (µ = 2.2), and

the left and right faces are covered by the material with µ = 0.
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t = 0 s t = 19 s

t = 41 s t = 70 s t = 90 s
𝜇 = 2.2

𝜇 = 0

Figure 4.7: Our planned trajectories on holds with varying coefficients of frictions. The robot grasps the

faces whose coefficients of friction are high.

The generated trajectory with snapshots of experiments is shown in Fig. 4.7, where the

robot grasps the front or back face (high friction). To grasp the front or back face, the

robot rotates the grippers so that the fingers make contacts perpendicular to the faces.

In short, our planner could find feasible trajectories subject to the pose, wrenches, and

contacts together. In contrast, hierarchical planners may only find the infeasible solution

since it cannot consider coupling constraints in general.

4.4.4 Contact Modeling Results

4.4.4.1 Results of Micro-Spine Limit Surface

We force one of the fingers to have zero normal forces during contact (i.e., z element of f i,ct is

set to zero for all c = 1, . . . , C). Since (4.3) enables the planner to generate non-zero shear

forces even under zero normal forces, we expected that our planner can still find feasible

solutions for free-climbing. The result is illustrated in Fig. 4.8. Our planner is able to

generate non-zero shear force trajectories under zero normal forces.
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Figure 4.8: Time history of reaction forces for one finger. Here, we enforce z element of reaction force in

ΣCc
is always zero with f i

max = 4 N in (4.3).

Table 4.3: Comparison of the number of slipping between a generated trajectory with patch constraints

(Traj A) and without patch constraints (Traj B) over 5 samples for each case.

mz = 0.0 Nm mz = 0.3 Nm mz = 0.6 Nm

Traj A 1 / 5 0 / 5 0 / 5

Traj B 2 / 5 5 / 5 5 / 5

4.4.4.2 Results of Frictional Limit Surface

We investigate if our proposed planner can generate physically feasible trajectories under

patch constraints (4.1) in hardware. During free-climbing, the loading shear forces and

moments exist at the tip of the finger, which can lead to instability of the contact state. We

hope that considering (4.12) counteracts these loading shear forces and moments so that the

contact state is stable. Thus, our planner creates two different trajectories, one considering

patch constraints (Traj A) and the other one not considering them (Traj B). To simplify

the analysis, for both cases, the planner set the same constant shear force and the moment

(fx,mz in (4.11)) during contacts. We tested on the box covered by 36-grit sandpapers with

specified fx = 9.0 N and mz = {0, 0.3, 0.6} Nm.

Table 4.3 shows the empirically obtained number of slipping for Traj A is much smaller
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Figure 4.9: Time history of wrench trajectories between the trajectory (a): considering patch constraints

and (b): not considering patch constraints.

than that for Traj B. This is because Traj A generates higher normal forces to avoid slipping

because of patch constraints. We also show the time history of Traj A and B in Fig. 4.9 given

mz = 0.6 Nm, fx = 9.0 N settings. In Fig. 4.9 (a), since our ADMM generates larger normal

forces because of (4.11), the finger does not slip and the admittance controller could track

all wrenches. In contrast, in Fig. 4.9 (b), since our ADMM generates smaller normal forces,

the finger slips, and the controller could not track the wrenches. Therefore, we successfully

verify in hardware that considering (4.12) helps avoid slipping for patch contacts, resulting

in a more stable contact state.

4.5 Discussion

This chapter presents a model-based motion planning algorithm based on decomposition-

based optimization for solving nonlinear contact-rich systems efficiently. We first propose

the complete optimization formulation and extend it to our proposed decomposition-based

formulations. We also discuss the limit surface of two-finger grippers with patch contacts

and micro-spines. We verify the efficiency of our proposed formulation and demonstrate the

generated trajectories in hardware experiments.

One limitation of our ADMM is that the computation is demanding once the number
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of discrete constraints increases. In order to use our framework in MPC, we need to run it

with a much faster runtime. One promising direction is to design heuristics online [112]. We

hope that we can accelerate our framework as ADMM iteration proceeds based on previous

solutions. Another limitation during hardware experiments is that it is important to use

accurate physical parameters. Otherwise, the robot may not be able to execute the planned

trajectory. With this motivation, in the next chapters, we present robust planning algorithms

under uncertain parameters.
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CHAPTER 5

Risk-Aware Motion Planning for Multi-Limbed Robots

In the previous chapter, we present our planning through contact. However, it does not

consider uncertain parameters such as friction coefficients, which are major sources of un-

certainty. Starting in this chapter, we present our contributions for robust planning through

contact. In this chapter, we present a motion planning algorithm with probabilistic guaran-

tees for limbed robots with stochastic gripping forces because of stochastic contact dynamics

between the robot and the environment. This chapter does not discuss the change of contact

modes but focuses on the chance-constrained optimization formulation for motion planning

of multi-limbed robots. We describe why stochastic optimization is useful, why it is chal-

lenging to get stochastic contact model, how we formulate chance-constrained optimization,

how we get stochastic contact model using machine learning, and how well the proposed

algorithm works in hardware experiments.

This chapter has been partially adapted from one journal paper:

• Y. Shirai, X. Lin, Y. Tanaka, A. Mehta, and D. Hong, "Risk-Aware Motion Planning

for a Limbed Robot with Stochastic Gripping Forces Using Nonlinear Programming",

IEEE Robot. Auto. Lett., vol. 5, no. 4, pp. 4994-5001, 2020.

5.1 Overview

Planning complex motions for limbed robots is challenging because planners need to design

footsteps and body trajectories while considering the robot kinematics and reaction forces.

Motion planning for limbed robots has been studied by a number of researchers. Sampling-
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based planning, such as the Probabilistic-Roadmap (PRM), samples the environment and

generates the motion while satisfying static equilibrium and kinematics for a robot [113], [93].

Optimization-based planning, such as MIQP and NLP, solves the solution given constraints

using optimization algorithms such as gradient descent [75, 9].

While many papers discuss motion planning for the robot, few studies have investigated

how planning is affected by stochastic gripping forces. One of the open problems in motion

planning of a limbed robot equipped with grippers is the stochastic nature of gripping [107].

For example, the gripping forces caused by spine grippers depend on the stochastically

distributed asperity strength (Fig. 5.2). Thus, risk results from the randomness of the

gripping force. By considering risk in a probabilistic manner, the planner can design a

variety of trajectories based on various specifications.

In this chapter, we address a motion planning algorithm formulated as NLP for a limbed

robot with stochastic gripping forces. Our proposed planner solves for stable postures and

forces simultaneously with guaranteed bounded risk. In addition, chance constraints are

introduced into the planner that restrict contact forces in a probabilistic manner. We employ

a Gaussian Process (GP), a non-parametric Bayesian regression tool, to acquire the PDF

of the gripping force. Our proposed motion planning algorithm is validated on an 11.5 kg

hexapod robot with spine grippers for multi-surface climbing. While we focus on multi-

surface robotic climbing with spine grippers in this chapter, our proposed planner can be

applied to other robots with any type of grippers for performing any task (e.g., planning of

walking, grasping) as long as the robot has contact points with stochastic models.

The contributions of this paper are as follows:

1. We formulate risk-bounded NLP-based planning that considers the stochasticity of

gripping forces.

2. We employ the Gaussian Process to model gripping forces as random variables.

3. We validate the algorithm in hardware experiments.
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Figure 5.1: A planned trajectory for wall climbing that considers risk arising from slippery terrain.

The black area shows a high friction area, the green area shows a low friction area, and the red area

shows a zero friction area. Blue and red dots show the planned foot positions, and the hexagons

show the body of the robot.

5.2 Problem Formulation

This section describes the friction cone considering maximum gripping forces, model of a

position-controlled limbed robot with multi-contact surfaces, and the modeling process of a

gripping force through GP.

5.2.1 Friction Cone with Stochastic Gripping Forces

With grippers, the friction cone constraint can be relaxed on the contact point. For our

spine-based gripper, even under a zero normal load, the spines insert into the microscopic
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Figure 5.2: Deflection of a multi-limbed robot bracing between walls

gaps on the surface (Fig. 5.2), generating a significant amount of shear force (Fig. 5.6)

[114]. For a magnet-based gripper, the reaction forces include the additional magnetic force

imposed by the gripper itself, offsetting the friction cone as seen by the rest of the robot.

Thus, we modify the regular friction cone, adding in an offset shear force when a normal

force is zero to account for the gripping force. As the normal force increases, the maximal

allowable shear force increase in the same way as a regular frictional force, with a coefficient

of friction λ that is assumed to be a constant only depending on the property of the contact

surface. This contact model is illustrated in Fig. 5.3, where f r is the reaction force between

the surface and the gripper. f g,m is the maximum gripping force from grippers under a zero

normal force. Note that f g,m is measured per gripper as a unit. In general, f g,m can have

both normal and shear components. However, for our spine grippers, the normal component

of f g,m is relatively small, so we assume that the gripper generates only shear adhesion. The

gripper does not slip when f r is within this friction cone, as indicated by the shaded region

in Fig. 5.3. Since the interaction between the micro-spines and the surface is highly random,

f g,m is naturally modeled as a Gaussian random variable. However, the orientation of the

spine and the number of spines in contact with the surface also change as the orientation of

the gripper changes, which leads to a shift of the mean and standard deviation of f g,m. We

learn this model from data by GP. With GP, our proposed planner is able to deal with the

stochastic nature of gripping taking into account the gripper orientation.
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Figure 5.3: Friction cone considering stochastic gripping forces.

5.2.2 Model of Reaction Force Using Limb Compliance

During multi-surface locomotion, the robot leverages the compliance from its motors in order

to squeeze itself between multi-surfaces, as depicted in Fig. 5.2. One difficulty multi-limbed

robots have is that reaction forces are statically indeterminate [115]. Consequently, reaction

forces that cannot be determined by static equilibrium equations when the robot supports

its weight more than three contact points. Hence, in order to calculate the reaction force

under this condition, the deformation of the robotic system should be considered.

From the standard elasticity theory, f r can be described as the spring force using the

Virtual Joint Method [116]:

f r = K (δwall − δCoM) (5.1)

K =
(
Jk−1J⊤)−1

, k = diag(ki), i = 1, . . . , H (5.2)

where K is the stiffness matrix for H degree-of-freedom limb. k is a diagonal matrix that has

ki diagonal elements, and ki is the spring coefficients of the position-controlled servos. J is a

3×H Jacobian matrix. The deflection is imposed by terrain where δwall is the displacement

of the terrain and δCoM is the body deflection, sag-down, due to the compliance as shown in

Fig. 5.2.

5.2.3 Model of Gripping Force Using Gaussian Process Regression

The objective of using GP is to predict the maximum gripping force f g,m in a probabilistic

way.
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Figure 5.4: Mechanical design of the spine gripper

There are many design decisions that go into the formulation of the GP problem, including

choice of kernel, distance metric, and associated weighting between state variables [117]. We

can start with the simplest formulation with all state variables equally weighted under the

Euclidean distance metric using the squared exponential kernel as a starting point. In

practice, this choice was observed to work well enough to not necessitate further design. A

more general characterization of the effects of these hyperparameters can be found in [117].

In this work, we assume that the maximum gripping forces by spine grippers is a function of

the gripper orientation and the coefficient of friction [107], [118], [114], [119]. This is because

with a microscopic view, the spine-asperity interaction is different depending on how a spine

is inclined with respect to the asperity as shown in Fig. 5.2. GP can handle the effects

of other unmodeled parameters by treating them into uncertainty. Hence, the state s is a

four-dimensional vector with s = [α, β, γ, λ]⊤ where α, β, γ are the Euler angles along x, y,

z axis defined in Fig. 5.4.

Here, we assume that the maximum shear force follows Gaussian distribution. Given

a data set S = {s1, · · · , sn} with the measured shear forces yg,m = [yg,m1 , . . . , yg,mn ]⊤, the

maximum shear force f g,m by a gripper can therefore be modeled as:

f g,m(s) ∼ GP(µg,m(s),κg,m(s, s∗)) (5.3)

where, f g,m = [f g,m
1 , . . . , f g,m

n ]⊤. n is the number of samples from a GP. We denote µg,m(s) =

[µg,m
1 (s), . . . , µg,m

n (s)]⊤ as the mean and [κg,m]i,j = κg,m (si, sj) as the covariance matrix,

where κg,m(·, ·) is a positive definite kernel. In this work, we employ the squared exponential
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kernel as follows:

κg,m (si, sj) = σ2
f exp

(
−1

2

|si − sj|2

ℓ2

)
(5.4)

where σ2
f represents the amplitude parameter and l defines the smoothness of the function

f g,m.

Here, let D = [s1, · · · , sn]⊤ be the matrix of the inputs. In order to predict the mean

and variance matrix at D∗, we obtain the predictive mean and variance of the maximum

shear force by assuming that it is jointly Gaussian as follows:

f̂
g,m

= E [f g,m (D∗)] = κ⊤
∗
(
KD + σ2

nI
)−1

yg (5.5)

Σ̂
g,m

= V [f g,m (D∗)] = κ∗∗ − κ⊤
∗
(
KD + σ2

nI
)−1

κ∗ (5.6)

where κ∗ = κg,m (D∗, D), KD = κg,m (D,D), κ∗∗ = κg,m (D∗, D∗), and σ2
n is the variance of

the Gaussian observation noise with zero mean.

Our GP procedure can be generalizable to model other gripping forces as long as the

gripping force changes continuously as the orientation of the gripper changes. For instance,

the GP approach can be used to model the gecko gripper force [120] using the detachment

angle as the state of the GP.

5.2.4 Spine Gripper for Wall Climbing

A three-finger spine-based gripper was designed (Fig. 5.4) using spine cells based on [119].

Each finger consists of a spine cell with 25 machine needles loaded with 5 mN/mm springs,

and a slider mechanism holds the cell with one compliant plastic spring. The diameter of

the needle at the tip is 0.93 mm, and it is made of carbon steel. The gripper center module

includes one spine palm with the same spine configurations as the cells. The attachment

component is fixed at the tip of the robot limb at 37◦ from the limb axis to maximize the

contact area. The finger, center, and attachment members are assembled with a one-slider,

two linkage mechanism (Fig. 5.4). This linkage system is designed to provide a passive micro

grip as the center palm presses up against a wall. The three fingers are located at 120◦ apart

from each other in z-axis and tilted about 15◦ from z-axis.
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Figure 5.5: Experiment setup to evaluate maximum gripping forces on sandpaper

Table 5.1: Varied orientations for collecting datasets of GP

Training α, β = −15◦, 0◦, 15◦, γ = 0◦, 30◦, 60◦, λ = 1.1, 2.3

Testing α = −15◦,−10◦, · · · , 15◦|{β = −15◦, γ = 30◦, λ = 2.3}

β = −15◦,−10◦, · · · , 15◦|{α = −15◦, γ = 30◦, λ = 2.3}

γ = 0◦, 15◦, 30◦, · · · , 60◦|{α = −15◦, β = −15◦, λ = 2.3}

λ = 1.1, 1.4, 1.82, 2.3|{α = 0◦, β = 0◦, γ = 0◦}

5.2.5 Data Collection

To collect a dataset, maximum gripping forces f g,m were evaluated with a minimal normal

force at varied orientations as summarized in Table 5.1. We collected 20 data sequences for

every orientation as a training dataset and 10 data sequences as a testing dataset. The coef-

ficient of friction between spines and environments was measured by loading a constant mass

on the gripper. A small activation force is necessary to compress spine springs and ensure

that the spines are touching the wall, but is assumed to be negligible. These orientations

were selected to cover possible gripper angles during regular wall climbing. The gripper was

fixed to a linear slider at an orientation and pulled by a force gauge on 36-grit and 80-grit

sandpapers that are commonly used to emulate rough surface with microscopic asperities

[119], as shown in Fig. 5.5. The GP hyperparameters were optimized using the BFGS algo-

rithm [121]. The obtained testing data with the predicted PDF of the maximum gripping

force and the PDF of the training data is illustrated in Fig. 5.6. The predicted maximum

gripping force and the training data are displayed as a mean ± with a 95 % confidence

interval. Overall, we show that the GP prediction works well with different states.
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(a) β = −15◦, γ = 30◦, λ = 2.3 (b) α = −15◦, γ = 30◦, λ = 2.3

(c) α = −15◦, β = −15◦, λ = 2.3 (d) α = 0◦, β = 0◦, γ = 0

Figure 5.6: The predicted maximum gripping force PDF from GP, the training data PDF, and the testing

dataset

5.3 Chance-Constrained Nonlinear Programming for Locomotion

In this section, we present a complete risk-aware motion planning algorithm formulated as

(5.8a)-(5.8k). The objective of our proposed planner is to find the optimal trajectory for

the Center of Mass (CoM) position, its orientation, the foot position, and the reaction force

for each foot in order to arrive at the destination while satisfying constraints. Our proposed

planner enables the robot to find feasible trajectories that consider risk from the grippers

under various environments.

We define one round of movement made by a robot when its body and all of its limbs

have moved onto the next footholds. Note that for each round, the planner investigates
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minimize
Γ

Ψtot (5.8a)

s.t., for each round j = 1, . . . , N

and for each limb i = 1, . . . , L

|∆P CoM| ≤ ∆P Th (linear stride) (5.8b)

|∆ΘCoM| ≤ ∆ΘTh (angular stride) (5.8c)

|∆pi| ≤ ∆pTh (foot stride) (5.8d)

pi,j ∈ R(P CoM,j,ΘCoM,j,θi,j) (kinematics) (5.8e)

pi,j ∈ T (contact region) (5.8f)
L∑
i=1

f r
i,j + F tot = 0 (force eqm) (5.8g)

L∑
i=1

(
pi,j × f r

i,j

)
+M tot = 0 (moment eqm) (5.8h)

τ i,j = J (θi,j)
⊤ f r

i,j (joint torque) (5.8i)

∥τ i,j∥2 ≤ τTh (torque limit) (5.8j)

f r
i,j ∈ F

(
λi,j(pi,j),ni,j,f

g,m
i,j

)
(friction cone) (5.8k)

several critical instants between two postures with a pre-defined gait as explained in detail

in Section 5.4. At j-th round, Γ is the decision variables that are given as:

Γ = {pi,j,P CoM,j,ΘCoM,j,θi,j,f
r
i,j, f̂

g,m

i,j , Σ̂
g,m

i,j } (5.7)

where pi,j is the foot i position, P CoM,j is the position of the body, ΘCoM,j is the orientation

of the body, θi,j are the joint angles for the limb i, and f r
i,j is defined in Section 5.2.1. In

this study, f g,m
i,j is treated as a random variable based on the model of GP, which follows

f g,m
i,j ∼ N

(
f̂

g,m

i,j (si,j), Σ̂
g,m

i,j (si,j)
)
. Equation (5.8a) is the cost function that depends on the

robot’s state. Equation (5.8b), (5.8c), and (5.8d) bound the range of travel between rounds.

Equation (5.8e) represents the forward kinematics constraints. In (5.8f), it ensures that pi,j is

within the feasible terrain where the robot is able to put its limb. In this chapter, we assume
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that the robot generates a quasi-static motion. Hence, the planner has the static equilibrium

constraints expressed by (5.8g) and (5.8h), where F tot and M tot is the external force and

moment, respectively. In this work, only gravity is considered as the external force. Equation

(5.8i) and (5.8j) ensure that the motor torque is lower than the maximum motor torque

where J (θi) is a Jacobian matrix. The reaction force f r
i is constrained by (5.8k), which

describes the friction cone constraints to prevent the robot from slipping where λi,j(pi,j)

denotes the coefficient of friction at pi,j. Note that this constraints (5.8k) is also stochastic

constraints due to f r
i . Equation (5.8k) can be converted into deterministic constraints,

which is explained in Section 5.3.2. If a robot is position-controlled, the planner needs to

add additional constraints to compute the control input to the motor to generate the planned

forces, which are defined in (5.1), (5.2).

Compared to sampling-based approaches such as RRT, NLP is able to formulate rela-

tively complicated constraints such as friction cone constraints (5.8k), which are typically

difficult for the sampling-based approaches to handle in terms of computation. In addition,

MICP approaches such as [75], [9], [122] can increase the computation speed by decoupling

the pose state from wrench states. However, they potentially limit the robot’s mobility.

The robot may not choose the trajectory on the low friction terrain in case the planner

first solves the pose problem and then solves the wrench problem later since the pose opti-

mization problem does not consider the wrench information. Although MICP can plan the

trajectories considering both wrench and pose state simultaneously, it needs to sacrifice the

accuracy by assuming an envelope approximation on bilinear terms [75] or allow relatively

expensive computation as the number of the integer variables increases, which is intractable

for high degree-of-freedom (DoF) robots (e.g., our robot has 24 DoF). In contrast, NLP can

simultaneously solve the trajectory reasoning both the pose and the wrench with relatively

less computation [14].
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5.3.1 Deterministic Constraints

Here, we explain two deterministic constraints (5.8e), (5.8f), that are not explicitly shown

in (5.8a)-(5.8k).

5.3.1.1 Kinematics

Forward kinematics (5.8e) is given as:

pi,j = R(ΘCoM,j)p
b
i,j + P CoM,j (5.9)

where R(ΘCoM) is the rotation matrix from the world frame to the body frame, pb
i is the

foot position relative to the body frame.

5.3.1.2 Feasible Contact Regions

We utilize NLP to formulate the planning algorithm so that any nonlinear terrain (i.e., non-

flat terrain), such as tube and curve, can be directly described. Obstacle avoidance can be

realized by defining these constraints, which do not include the obstacle terrain.

If a robot traverses on the flat terrain, the footstep regions are convex polygons as follows:

Crpi,j ≤Dr (5.10)

5.3.2 Chance Constraints

Here, we show that the friction cone constraints in (5.8k) can be expressed using chance

constraints, which allow the planner to convert the stochastic constraints into deterministic

constraints.

One key characteristic of robotic climbing is that climbing is a highly risky operation:

a robot can easily fall without planning its motion correctly. Hence, it needs to restrict

reaction forces using the friction cone constraints given as:

n⊤
i,jf

r
i,j ≥ 0 (5.11)
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∥∥f r
i,j −

(
n⊤

i,jf
r
i,j

)
n⊤

i,j

∥∥
2
≤ λi

(
n⊤

i,jf
r
i,j

)
+f g,m

i,j (5.12)

To decrease the computation of solving for the NLP solver, we simplify the (5.12) by lin-

earizing them as follows: ∣∣ζ⊤
i,jf

r
i,j

∣∣ ≤ λi
(
n⊤

i f
r
i,j

)
+f g,m

i,j (5.13)∣∣ξ⊤i,jf r
i,j

∣∣ ≤ λi
(
n⊤

i f
r
i,j

)
+f g,m

i,j (5.14)

where ζi,j, ξi,j are any tangential direction vectors on the wall plane.

Regarding (5.8k) formulated as (5.11), (5.13), (5.14), we rearrange the equations and the

joint chance constraint is given by:

Pr

( ∧
j=1,...,N

∧
k=1,...,M

αk⊤
i,j f

g,m
i,j ≤ βk

i,j

)
≥ 1−∆ (5.15)

where αk
i,j are coefficient vectors, and βk

i,j are coefficient scalars that consist of the convex

polytopes defined in (5.11), (5.13), (5.14). In (5.15), M denotes the number of constraints

defining the polytopes. ∆ is the user-defined violation probability, where the probability of

violating constraints is under the ∆. We can regard ∆ as relating to the likelihood that

gripper slip will be responsible for the failure of the robot. For example, if ∆ is high, the

planner can explore a larger space because the feasible region expands in optimization. As a

result, the robot tends to plan a trajectory with a high violation probability by assuming that

the gripper generates enough force. For a robotic climbing task, these chance constraints

enable the robot to perform challenging motions that would be infeasible without considering

the gripping force. In contrast, if ∆ is small, the planner tends to generate more conservative

motions because the robot assumes that the gripper does not output enough force to support

the weight of the robot.

Imposing (5.15) is computationally intractable. Thus, using Boole’s inequality, Black-

more [36], showed that the feasible solution to (5.15) is the feasible solution to the following

equations:

Pr
(
αk⊤

i,j f
g,m
i,j ≤ βk

i,j

)
≥ 1−∆j,k (5.16)

N∑
j=1

M∑
k=1

∆j,k ≤ ∆ (5.17)
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for all j = 1, . . . , N, k = 1, . . . ,M . The violation probability for each constraint per round

∆j,k is constrained in (5.17), in order not to exceed the given ∆. Because non-uniform risk

allocation (5.17) is also computationally expensive [123], we use the following relation:

∆j,k =
∆

NM
(5.18)

αk⊤
i,j f

g,m
i,j is a multivariate Gaussian distribution which follows the Gaussian distribution

αk⊤
i,j f

g,m
i,j ∼ N

(
αk⊤

i,j f̂
g,m

i,j ,αi,j,k⊤Σ̂
g,m

i,j αk
i,j

)
. Thus, the stochastic constraints (5.16) can be

then converted into a deterministic constraint as given by:

Pr
(
αk⊤

i,j f
g,m
i,j ≤ βk

i,j

)
= Φ

βk
i,j −αk⊤

i,j f̂
g,m

i,j√
αk⊤

i,j Σ̂
g,m

i,j αk
i,j


≥ 1−∆j,k

(5.19)

where Φ is the cumulative distribution function of the standard normal distribution. It can

be transformed further as follows:

αk⊤
i,j f̂

g,m

i,j +
√

αk⊤
i,j Σ̂

g,m

i,j αk
i,jΦ

−1 (1−∆j,k) ≤ βk
i,j (5.20)

where Φ−1 is the inverse function of Φ.

5.3.3 Cost Function

The cost function consists of intermediate costs and a terminal cost. In this work, the target

mission is to arrive at the destination. Thus, the terminal cost is the distance from the

position of the last pose to the destination.

ΨD = (qN − qD)
⊤WD (qN − qd) (5.21)

where WD is the weighting matrix and qN =
[
p1,N , . . . ,pL,N

]
while qd is the configuration

at the destination. The intermediate costs restrict a large amount of shifting in terms of
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linear and rotational motion of a body and the foot position as follows:

ΨBPos = ∆P⊤
CoMWBPos∆P CoM

ΨFoot =
L∑
i=1

∆p⊤
i WFoot∆pi

ΨBRot = ∆Θ⊤
CoMWBRot∆ΘCoM

(5.22)

where WBPos, WFoot, and WBRot are the weighting matrix.

5.3.4 Two Step Optimization for a Position-Controlled Robot

Although our proposed motion planner works for any limbed robot, there is a drawback

for a position-controlled robot when wall-climbing. For the position-controlled robot, it is

necessary to compute how much δwall is necessary to generate the planned reaction forces.

Therefore, the planner needs to include additional constraints from (5.1), (5.2) to realize the

planned trajectory. However, we observed that the nonlinear solver has a numerical issue

with (5.2), so it is intractable for the solver to solve our proposed NLP in (5.8a)-(5.8k) with

(5.1), (5.2). To avoid this problem, we decouple the optimization problem into two-step
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problems shown in (5.23a)-(5.23l) and (5.24a)-(5.24d):

minimize
Γ

ΨD +
N−1∑
j=1

(ΨBPos +ΨFoot +ΨBRot) (5.23a)

s.t.|P CoM,j+1 − P CoM,j| ≤ ∆P Th (5.23b)

|ΘCoM,j+1 −ΘCoM,j| ≤ ∆ΘTh (5.23c)

|pi,j+1 − pi,j| ≤ ∆pTh (5.23d)

pi,j = R(ΘCoM,j)p
b
i,j + P CoM,j (5.23e)

Crpi,j ≤Dr (5.23f)
L∑
i=1

f r
i,j + F tot = 0 (5.23g)

L∑
i=1

(
pi,j × f r

i,j

)
+M tot = 0 (5.23h)

τ i,j = J (θi,j)
⊤ f r

i,j (5.23i)

∥τ i,j∥2 ≤ ∆τ (5.23j)

αk⊤
i,j f̂

g,m

i,j +
√

αk⊤
i,j Σ̂

g,m

i,j αk
i,jΦ

−1 (1−∆j,k) ≤ βk
i,j (5.23k)

∆j,k =
∆

NM
(5.23l)

find δwall,i,j, δCoM,i,j (5.24a)

s.t. ∥δwall,i,j∥2 ≤ δTh,wall,i,j (5.24b)

f r
i,j = Ki (δwall,i,j − δCoM,i,j) (5.24c)

Ki,j =
(
J (θi,j) k

−1J (θi,j)
⊤
)−1

(5.24d)

the first planner is in charge of the pose and the reaction force of the robot, and the second

planner finds δwall,i,j, δCoM,i,j, which are the control inputs to a position-controlled robot.

In (5.24a)-(5.24d), the constraint (5.24b) ensures that δwall,i,j is bounded under a certain

threshold.

We argue that this decoupling is reasonable because the first planner solves the "essential"
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Table 5.2: NLP specifications for climbing on non-uniform walls

# of rounds N Variables Constraints Average T-solve (Ipopt)

1 1744 779 0.4 minutes

2 3937 1680 6 minutes

4 11761 4994 16 minutes

7 23479 9965 248 minutes

problem (e.g., How much reaction force is necessary? What is the footstep trajectory?) to

plan the force and pose trajectory. The second planner only computes the control input

to the motors, and it does not have a significant effect on the entire motion planning. As

explained, if the robot is force-controlled, the planner does not need to consider (5.1), (5.2).

As a result, the second optimization is not necessary for a force-controlled robot, and the

whole motion is planned only based on the first optimization problem.

5.4 Results

In this section, we evaluate our proposed planner by testing the robot’s performance in three

different tasks: energy-efficient climbing, climbing on non-uniform terrains, and climbing

with a tripod gait.

We utilize Ipopt solver [10] to solve the planning problem on an Intel Core i7-8750H

machine. The derivative of constraints are provided by CasAdi [124]. The optimizer is

initialized with the default configuration of the robot (Fig. 5.1, bottom configuration), and

the specifications of the computation for Section 5.4.2 is summarized in Table 5.2.

We implement the results of our proposed planning algorithm (i.e., the motion plan), on

a six-limbed robot, each limb of which has three DoF. Each joint uses pairs of Dynamixel

MX-106 motors, providing a maximum torque at 27 Nm. The robot is equipped with a

battery, computer, and IMU. The robot runs a PID loop to regulate its body orientation.

No other sensor is used to control its linear position. The robot weighs 11.5 kg. The width
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of the robot’s body is 442 mm while its height at its standing state is 180 mm. In each

experiment, the robot climbs between two walls at a distance of 1200 mm, where the wall

is covered with sandpapers of different grit sizes to adjust the coefficient of friction. All

hardware demonstrations can be viewed in the accompanied video1.

5.4.1 Energy Efficient Planning

The objective of this task is to assess the consumed energy of climbing with two different

violation probabilities. While the robot can grip the wall with a low violation probability

(e.g., ∆ = 0.0005), there is a disadvantage of consuming more energy. On the other hand,

the robot may perform an energy-efficient motion with a higher violation probability (e.g.,

∆ = 0.1). Here, we set N = 7, M = 6 to compute ∆j,k. To show the trade-off between the

consumed energy and the violation probability, we let the robot climb on the walls with one

leg gait where the robot first lifts its right front limb, puts it on the next position, pushes its

body up, lifts its right middle limb, and so on. Within each round, the planner investigates

12 critical instants for one leg gait: 6 instants after the robot lift one limb, and 6 instants

after the robot places the limb on the next position and pushes its body. The planner solves

the optimization problem for these 12 instants. We measure the current Ii,t and the voltage

Vi,t of each limb i online when the robot climbs on the wall covered by the 36-grit sandpapers

with one leg gait and estimated the power per one limb at every sampling time t. The power

Pi,t is estimated as follows:

Pi,t = Vi,t × Ii,t (5.25)

We plot the consumed power for two consecutive limbs from the hardware experiment

in Fig. 5.7. Fig. 5.7 shows that the consumed power of a limb decreases when the limb is

in the air while the other limbs increase the consumed power to increase the reaction force.

Furthermore, the robot consumes more power with smaller ∆, which means that the robot

needs to push the wall to increase f r. In contrast, if ∆ = 0.1, the solution requires less

1 Video of hardware experiments: https://youtu.be/ZDqvf1J4nS4
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(a) Time history of the consumed power for right front limb (b) Time history of the consumed power for right middle limb

(c) Time history of the consumed power for right back limb

Figure 5.7: Time history of the consumed power under the different violation probabilities. The shaded

regions are when the robot lifts a specific limb and puts it on the next position, and white regions are when

the robot pushes its body up. The figure shows that the consumed power of a particular limb decreases

when the limb is in the air, while it increases when the limb is on the wall to generate the normal force on

the wall.

power, but has a larger probability of slipping. In Fig. 5.8, the total consumed energy from

these limbs was calculated by integrating their power over time spent climbing. In our robot,

the robot could decrease the energy by 46.5 % under ∆ = 0.1 compared with the energy

under ∆ = 0.0005.

5.4.2 Climbing on Non-Uniform Walls

This scenario demonstrates that the robot designs different trajectories under the different

violation probability to climb on walls with varying coefficients of friction. The planned

trajectories are shown in Fig. 5.9. In this example, the robot climbs between two walls

where the terrain shown in black is covered by 36-grit sandpapers (λ = 2.3), the terrain

shown in green is covered by 80-grit sandpapers (λ = 1.1), and the terrain shown in red is
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Figure 5.8: Consumed energy with different ∆ during t = 0− 15 s

covered by the material with λ = 0 as shown in Fig. 5.9. The varying coefficients of friction

are modeled by a parabola function, which encourages the solver to converge on a solution.

In the left panel of Fig. 5.9, the violation probability ∆ is 0.1 while in the right panel, the

violation probability ∆ is 0.001 for M = 6 and N = 7.

The left panel of Fig. 5.9 illustrates that the robot avoids the red area (zero friction)

and puts its foot mostly in the black area (high friction), but sometimes also in the green

area (low friction) to minimize the trajectory length. In the right panel of Fig. 5.9, the

violation probability is decreased, and the robot footsteps completely remain inside the high

friction area. As a result, our proposed NLP-based planner operates the pose and forces

together and makes a trade-off between a shorter but more risky trajectory and a longer

but safer trajectory. This cannot be achieved if the planner decouples the footstep and force

planning, such as in [122]. Fig. 5.10 shows the trajectory with higher risk bound ∆ = 0.1

and compares the foot location at t = 146 with the foot location with ∆ = 0.001 in the

hardware experiment. We notice that at t = 146 s, the foot touches the white area where

the coefficient of friction is 0, which never happened with ∆ = 0.001. Since the robot only

controls its body orientation based on IMU feedback and does not control its linear position,

the implemented trajectory does not strictly follow the planned one. We observe that a lower

risk bound is beneficial in this situation to avoid failure since it compensates for the tracking

error by the imperfect controller.
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Figure 5.9: Side view of planned footsteps on non-uniform walls under: left ∆ = 0.1, right ∆ = 0.001. In

the left panel, the robot puts its feet on low and high friction terrain by taking a high risk bound. In the

right panel, the robot puts its feet only on high friction terrain.

5.4.3 Climbing with Less Stable Gait: Tripod Gait

In this scenario, we demonstrate that the robot can conduct a tripod gait, when it lifts

three legs simultaneously, by setting the violation probability much higher. Before installing

the gripper on the current six-limbed robot, it was almost infeasible to climb on the walls

with the tripod gait because of the torque limits of the motors. With the grippers installed,

however, the robot has a greater chance to climb on the walls with a tripod gait. If we set

∆ = 0, the problem is infeasible since the constraints under the worst-case uncertainty are

conservative. This result would be equivalent to the results of another robust algorithm such

as [125], where the optimization-based robust approach with the worst-case uncertainty is

proposed. If we apply the the optimization-based robust approach considering the worst-

case uncertainty [125] to plan the trajectory, the planning problem is infeasible since the

constraints under worst-case uncertainty are conservative. However, by utilizing the chance

constraints and increasing the violation probability, the planner generates a feasible solution.

In our trial, we set the violation probability ∆ = 0.4 for M = 6 and N = 3, and allowed the

robot to climb on a wall covered by 36-grit sandpapers. The planner investigates 4 critical

instants: 2 instants after the robot lifts three limbs, and 2 instants after the robot places

them down and pushes its body. The planned trajectory is illustrated in the left panel of
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Figure 5.10: Snapshots of climbing experiments on non-uniform walls under the different violation probabil-

ities

Fig. 5.11. As shown in the right under the condition, the robot succeeded in climbing on the

walls with the tripod gait and its climbing velocity was 2.5 cm/s, which is three times faster

than the one leg gait. Hence, the robot showed that it has the capability of climbing with

a tripod gait equipped with grippers by taking a large relative risk. However, we observed

that the robot failed to climb more than 40 % using tripod gait since the robot sometimes

has a large amount of rotational sag-down, which is not modeled in this chapter. Therefore,

modeling that considers this rotational sag-down is for future research.

5.5 Conclusion

In this chapter, we presented a motion planning algorithm for limbed robots with stochastic

gripping forces. Our proposed planner exploits NLP to simultaneously plan a pose and force

with guaranteed bounded risk. Maximum gripping forces are modeled as a Gaussian distri-
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Figure 5.11: Climbing with tripod gait. Left: A planned trajectory of the tripod gait under ∆ = 0.4. Red

arrows indicate the reaction forces from the walls. Right: A snapshot of climbing experiments with the

tripod gait under ∆ = 0.4.

bution by employing the GP, which provides the planner with the mean and the covariance

information to formulate the chance constraints. We showed that under our planning frame-

work, the robot demonstrates rich - sometimes drastically different - behaviors, including

planning a risky but energy-efficient motion versus a safe but exhausting motion, avoiding

danger zones like low friction environments and choosing fast but less stable motions (i.e., a

tripod gait) based on the different violation probabilities ∆ in hardware experiments.

In this chapter, we do not consider the change of contact modes. We instead formulate

the chance-constrained optimization algorithm that prevents the robot from changing the

contact modes. Although the algorithm presented in this chapter works in practice, there

are several research challenges we observe. One of them is that we do not consider the

propagation of uncertainty due to stochastic parameters such as friction constants. We

describe how stochastic parameters lead to stochastic states in the next chapters, which is

necessary for achieving robust manipulation and locomotion with multiple contacts.
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CHAPTER 6

Chance-Constrained Optimization for Uncertain

Contact-Rich Systems

In Chapter 5, we present chance-constrained optimization for multi-limbed robots which has

several assumptions. First, in Chapter 5, we do not consider the propagation of uncertainty

since dynamics is modeled as quasi-static. Second, we assume that contact mode does not

change due to the uncertainty, which is not true in reality.

In this chapter, we relax these assumptions. We discuss the linear dynamical system

with complementarity constraints under uncertainty. We explicitly consider the change of

the contact modes and the propagation of the uncertainty for the contact-rich systems.

We propose MIP-based optimization framework to design robust open-loop controller. We

verify that our framework is able to achieve robust performance with chance constraints

under uncertainty.

This chapter has been partially adapted from the following papers:

• Y. Shirai, D. Jha, A. Raghunathan, and D. Romeres, "Chance-Constrained Opti-

mization for Contact-rich Systems using Mixed Integer Programming", (under review

for the Nonlinear Analysis: Hybrid Systems).

• Y. Shirai, D. Jha, A. Raghunathan, and D. Romeres, "Chance-Constrained Opti-

mization in Contact-rich Systems", in Proc. 2023 American Cont. Conf., pp. 14-21,

2023.
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6.1 Overview

Contacts are central to most manipulation problems. Consequently, contact modeling has

been an active area of research in robotics for the last several decades [126, 8, 12, 127, 128, 26].

One of the most popular approaches to model contact dynamics is using Linear Complemen-

tarity Problem (LCP). The distinguishing feature of a complementarity problem is the set

of complementarity conditions. Each of these conditions requires that the product of two or

more non-negative quantities (either a decision variable or a function of decision variables)

should be zero [129]. Linear Complementarity systems have been widely used to succinctly

represent hybrid dynamical systems [130]. LCP models are widely used for modeling con-

tact dynamics since they allow a compact representation of hybrid dynamics compared to

mode enumeration. They have been also used in several physics simulation engines such

as Bullet, ODE, etc. Consequently, linear complementarity systems have been extensively

explored in robotics research in various domains like manipulation and locomotion. For ex-

ample, contact-implicit trajectory optimization (CITO) models contact as complementarity

constraint between contact forces and relative accelerations, and the optimization is formu-

lated as a mathematical program with complementarity constraints (MPCC) [131]. Such

techniques have been widely used to solve complex manipulation [132, 131, 133, 134, 135]

and locomotion problems [7]. Similarly, Lyapunov stability of linear systems with comple-

mentarity systems has also been studied [136, 137, 138]. However, almost all of these works

assume deterministic contact models for planning. In reality, contact-rich systems could suf-

fer from several uncertainties which lead to stochastic dynamics and thus, it is important to

consider uncertainty during planning. Modeling uncertainty in LCP-based contact models

leads to a Stochastic Discrete-time Linear Complementarity System (SDLCS).

Figure 6.1 shows an example of a stochastic planar pushing system which naturally leads

to stochastic evolution of system states due to stochastic frictional interaction during push-

ing. However, the complementarity constraints in SDLCS pose unique challenges for the

formulation of robust or stochastic optimization of SDLCS. This is mostly because of the

non-differentiability of the complementarity constraints which makes uncertainty propaga-
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Figure 6.1: This chapter presents chance-constrained optimization for SDLCS. The figure shows the case of

stochastic planar pushing with uncertain dynamics. Note that w and v are additive uncertainty terms. We

show a MIP-based stochastic MPC formulation for control of stochastic planar pushing system.

tion challenging. In some recent works that consider stochastic complementarity constraints,

an expected residual minimization (ERM)-based [42] penalty is used to solve the robust op-

timization problem [2]. A major shortcoming of such an approach is that it fails to capture

the stochastic evolution of system dynamics due to the stochastic complementarity con-

straint. Similarly, in [3], the authors augment the formulation in [2] with chance constraints.

However, this formulation has certain fundamental shortcomings which prevent constraint

satisfaction guarantees. One should notice that uncertainty naturally leads to stochastic

evolution of system states in SDLCS. A robust optimization formulation for SDLCS should

consider the uncertainty in state evolution. Motivated by these problems and weaknesses,

we present a formulation that circumvents these shortcomings by using a mixed integer for-

mulation. Using a relaxation of the complementarity constraints, we formulate the chance-

constrained optimization for SDLCS as a Mixed Integer Quadratic Program with Chance

Constraints (MIQPCC).

Since worst-case robust optimization is quite conservative and does not explicitly dis-

cuss stochastic evolution of states [37], this work considers probabilistic optimization with

stochastic evolution of states. We illustrate some challenges in performing principled stochas-

tic optimization for SDLCS. We introduce some simplifying assumptions which are important
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in order to formulate a tractable optimization problem. In particular, we consider the case

where the coefficient matrices multiplying the complementarity variables are stochastic while

assuming that the complementarity variables are deterministic. This corresponds to the case

when one might have uncertainty arising from errors in parameter identification leading to

a SDLCS. An alternative to this, and a more accurate formulation, is to allow the comple-

mentarity variables to also be stochastic. However, such treatment is out of the scope of the

current work. Our treatment of SDLCS leads to stochastic evolution of system states, while

we treat the complementarity variables as deterministic. The assumption of determinacy in

complementarity variables is similar to several previous works [42], [2], [3], [41]. Robustness

to uncertainty is provided by enforcing probabilistic satisfaction of state constraints. Under

certain simplifications, we show that the chance-constrained problem can be reformulated as

a MIQPCC.

Contributions. This chapter has the following contributions:

1. We present a novel formulation for chance-constrained optimization of SDLCS.

2. The proposed optimization is used in a stochastic MPC method for control of stochastic

nonlinear complementarity systems.

3. We compare our proposed approach with several previously proposed techniques and

demonstrate that our method outperforms the recent techniques in [2, 3].

4. We present a formulation for performing stochastic MPC for stochastic complementar-

ity systems using the proposed formulation. The proposed MPC formulation is verified

using a stochastic planar pushing system.

6.2 Problem Preliminary

For completeness of the chapter, we first provide a brief introduction to linear complementar-

ity problems and their stochastic form. Then the problem formulation for robust trajectory

optimization of stochastic linear complementarity systems is provided. We also point out
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several key differences of our approach w.r.t. previous attempts for robust trajectory opti-

mization of stochastic complementarity system.

6.2.1 Discrete-time Linear Complementarity System (DLCS)

A DLCS is a discrete-time linear dynamical system with complementarity constraints [138]

represented by:

xk+1 = Axk +Buk + Cλk+1 + gk (6.1a)

0 ≤ λk+1 ⊥ Dxk + Euk + Fλk+1 + hk ≥ 0 (6.1b)

where k is the time-step index, xk ∈ Rnx is the state, uk ∈ Rnu is the control input, and

λk ∈ Rnc is the algebraic variable (e.g., contact forces). The matrices, A,B,C,D,E, F

and vectors gk, hk are of compatible dimensions. The i-th element of vector pk (pk can be

xk, uk, λk) is represented as pk,i. The i-th diagonal element of matrix Pk is represented as Pk,ii.

The notation 0 ≤ a ⊥ b ≥ 0 denotes the complementarity constraints a ≥ 0, b ≥ 0, ab = 0.

The variables a and b are known as complementarity variables. These variables could be

decision variables or functions of decision variables.

Given a pair of state and control values xk, uk, a unique solution λk+1 to (6.1b) exists if

F is P-matrix [139]. The matrix F is said to be a P-matrix if every principal minor of F is

positive. If F does not satisfy the P-matrix property, it is possible that λk+1 satisfying (6.1b)

is non-unique or non-existent.
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6.2.2 Contact-Implicit Trajectory Optimization

Trajectory optimization for the DLCS (6.1) can be formulated as:

min
x,u,λ

N−1∑
k=0

J(xk, uk, λk) (6.2a)

s.t. xk+1 = Axk +Buk + Cλk+1 + gk, (6.2b)

0 ≤ λk+1 ⊥ Dxk + Euk + Fλk+1 + hk ≥ 0, (6.2c)

x0 = xs, xN = xg, xk ∈ X , uk ∈ U , λk ≤ λu (6.2d)

where xs, xg represent the initial and the terminal values, respectively, X ⊆ Rnx and U ⊆ Rnu

are convex polytopes consisting of a finite number of linear inequality constraints, λu is the

upper bound of λk, and N is the time horizon. This approach is widely known as contact-

implicit trajectory optimization in locmotion and manipulation literature [7, 16].

While (6.2) is widely used in various robotic applications (see [133, 7]), it can be fragile

under uncertainty, which is often the case in model-based manipulation. It is desirable to con-

sider a robust version of the optimization problem in (6.2). However, the non-differentiability

of complementarity constraints pose unique challenges for uncertainty propagation. We

present a novel, stochastic version of (6.2) so that the resulting trajectory would be robust

under uncertainty.

6.2.3 Stochastic Discrete-time Linear Complementarity Systems (SDLCS)

We consider the following SDLCS:

xk+1 = Axk +Buk + Cλk+1 + gk + wk (6.3a)

0 ≤ λk+1 ⊥ yk+1 ≥ 0 (6.3b)

where yk+1 = Dxk + Euk + Fλk+1 + hk + vk, and wk ∈ Rnx , vk ∈ Rnc are known additive

uncertainties. The variables yk+1 and λk+1 are the complementarity variables. One should

notice that SDLCS would lead to stochastic evolution of states as well as the complementarity

variables. In fact, in a recent publication [44], authors have shown the stochastic evolution
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of SDLCS. However, the resulting distribution of the complementarity variables is quite

complex, which makes uncertainty propagation for SDLCS quite challenging. Thus, we

consider the case where the coefficient matrix C in (6.3a) and F in (6.3b) are stochastic while

the complementarity variables are deterministic. This is used as an alternative approach to

model the stochastic effect due to complementarity constraints while admitting a tractable

computational approach. Our treatment of SDLCS leads to stochastic evolution of system

states xk, while we treat λk+1 as deterministic. While this assumption is limiting, we show

that we can compute robust trajectories for the underlying system.

The authors in [2] use ERM to solve robust TO of SDLCS with the following cost function:

N−1∑
k=0

(
J (xk, uk, λk+1) + βE

[
∥ψ (λk+1, yk+1)∥2

])
(6.4)

where ψ is a Nonlinear Complementarity Problem (NCP) function and β is a weighting

scalar. The NCP function ψ(λk+1, yk+1) has the property that ψ(λk+1, yk+1) = 0 if and only if

the complementarity constraints (6.3b) hold. An example such a function is min(λk+1, yk+1),

where the minimum is applied componentwise. We compare the robustness of our formulation

with (6.4) in Section 6.4.

6.3 Robust Trajectory Optimization for SDLCS

In this section, we present our formulation for robust trajectory optimization of SDLCS. We

consider the following optimization problem:

min
x,u,λ

E

[
N−1∑
k=0

J(xk, uk, λk)

]
(6.5a)

s.t. xk+1 = Axk +Buk + Cλk+1 + gk + wk, (6.5b)

Pr (0 ≤ λk+1 ⊥ yk+1 ≥ 0, xk ∈ X ,∀k) ≥ 1−∆, (6.5c)

x0 ∼ N (xs,Σs) , uk ∈ U , λk ≤ λu (6.5d)

where Pr(·) denotes the probability associated with an event and ∆ ∈ (0, 0.5] is the user-

defined maximum probability of violating the constraints. (6.5c) is the joint chance constraint
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for the state to lie in the desired set as well as the complementarity constraints at every

instant of time. The quantities xs,Σs are the mean and covariance matrix of the state at

k = 0 respectively . X and U are convex polytopes, consisting of a finite number of linear

inequality constraints. We make the following simplifying assumptions:

1. The noise terms wk, vk follow a Gaussian distribution.

2. The complementarity variable λk+1 is deterministic.

3. Each element of vectors Cλk+1 and Fλk+1 are independent Gaussian variables.

Problem (6.5) might be intractable with this formulation of the constraints (6.5c). There-

fore, in Section 6.3.1, we propose how to convert (6.5c) in order to obtain a tractable opti-

mization problem. In Section 6.3.2 we explain the rationale for the above assumptions as a

simplification in order to solve (6.5) .

We explain the reasoning behind our formulation presented in (6.5). Since the underly-

ing SDLCS is uncertain, we consider a chance-constrained formulation for optimization to

capture stochastic evolution of states where we impose multiple constraints simultaneously.

This is represented as joint chance constraints for the complementarity constraints as well

as the states, which is succintly written in Equation (6.5c). Note that we represent the

chance constraints on all the variables jointly (as is common in stochastic optimization for

dynamic systems) using the cumulative distribution function (cdf) for the state as well as

complementarity variables. In the remainder of this section, we will show how the joint

constraints can be decomposed into individual chance constraints using Boole’s inequality.

It is also important to note that unlike the formulation in (6.5), the method in [2, 3, 140]

fails to capture the stochastic evolution of states in their formulation.

6.3.1 Joint Linear Chance Constraints

We consider joint chance constraint such that multiple constraints are satisfied simulta-

neously with a pre-specified probability. More specifically, we consider the joint chance
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constraints (6.5c) so that the complementarity constraints and state bound constraints over

the whole time horizon of the optimized trajectory are satisfied with probability (1 − ∆).

We succintly denote the complementarity relationship in (6.3b) as (λk+1,i, yk+1,i) ∈ S for

i = 1, . . . , nc, i.e. (λk+1,i, yk+1,i) satisfies (6.3b) if and only if (λk+1,i, yk+1,i) ∈ S. Hence, we

can rewrite the joint chance constraints in the optimization problem (6.5) as:

Pr (0 ≤ λk+1 ⊥ yk+1 ≥ 0, xk ∈ X ,∀k) ≥ 1−∆⇐⇒

Pr

(
N∧
k=0

(
nc∧
i=1

(λk+1,i, yk+1,i) ∈ S

)∧(
L∧
l=1

a⊤l xk ≤ bl

))
≥ 1−∆

(6.6)

where
∧

is the logical AND operator. The parameter L represents the number of inequalities

modeling X and al ∈ Rnx is the coefficient vector and bl represents the right-hand side of

the inequality.

Obtaining a cumulative density function (cdf) of (6.6) is challenging because the joint

probability of states and complementarity variables is considered. A popular approach to

decompose joint chance constraints is the application of Boole’s inequality [43] which con-

verts the original computationally intractable joint chance constraints into conservative but

tractable independent chance constraints. Hence, similar to previous works, we use Boole’s

inequality [43] to get the conservative approximation of (6.6) as follows:

Pr

(
N∧
k=0

(
nc∧
i=1

(λk+1,i, yk+1,i) ∈ S

))
≥ 1−∆1,

Pr

(
N∧
k=0

(
L∧
l=1

a⊤l xk ≤ bl

))
≥ 1−∆2,∆1 = ∆2 =

∆

2

(6.7)

Using Boole’s inequality again, we can further obtain the conservative chance constraints

given by:

Pr ((λk+1,i, yk+1,i) ∈ S) ≥ 1− ∆1

Nnc

, (6.8a)

Pr
(
a⊤l xk ≤ bl

)
≥ 1− ∆2

NL
, (6.8b)
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We discuss how to handle (6.8a) in Section 6.3.2. We formulate (6.8b) as its equivalent

deterministic form (see [141, 142, 3]):

Pr
(
a⊤l xk ≤ bl

)
≥ 1− ∆2

NL
⇐⇒ (6.9a)

a⊤l x̄k ≤ bl −
√
a⊤l Σxk

alΦ
−1(1− ∆2

NL
) (6.9b)

where x̄k,Σxk
are the mean and covariance matrix of xk, respectively. Φ−1 is an inverse of

the cdf of the standard normal distribution.

6.3.2 Chance Complementarity Constraints (CCC) for SDLCS

We explain the rationale behind some of the assumptions specified in Section 6.3. One of

the key assumptions is that the complementarity variable λk+1 is deterministic. A more

general formulation would allow the complementarity variable λk+1 to be stochastic. In-

deed, in our previous work [44], we have shown that the complementarity variable λk+1 is in

fact stochastic. One should notice, however, that the complementarity constraints naturally

leads to truncated distribution of the complementarity variables (as λk+1 ≥ 0). This makes

uncertainty propagation for complementarity variables challenging. This could potentially

make the stochastic optimization problem computationally challenging (see [44]). Thus, in

this work, we make the assumption that λk+1 is deterministic, which improves the compu-

tational requirements for the resulting optimization problem. Furthermore, we believe that

allowing C and F to be stochastic can model a similar effect to having λk+1 stochastic in

the SDLCS. Finally, note that in cases where the distribution of λk+1 is known, our pro-

posed formulation can be easily extended to incorporate stochasticity in λk+1. However, for

brevity, we skip these details. Assuming the uncertainty to be Gaussian is motivated by our

interest in leveraging the equivalent reformulation of the chance constraints to deterministic

inequalities.

While [3] proposed a promising CCC, their formulation possesses empty solutions when

∆ ≤ 0.5 (see [3]). The formulation in [3] can result in a very fragile trajectory since the total

violation probability over N steps would be always more than 1 if N ≥ 1 (using Boole’s
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Figure 6.2: Deterministic and stochastic complementarity constraints. We have the complementarity con-

straints 0 ≤ λk+1,i ⊥ yk+1,i ≥ 0 where yk+1,i has uncertainty and accepts the violation of ϵ.

inequality). Since the optimization is formulated as a Non-Linear Program (NLP), all the

CCC are imposed simultaneously. Consequently, the resulting formulation struggles to find

feasible solutions.

In our formulation, the stochastic complementarity constraints are decomposed into two

modes (see Fig. 6.2) as follows:

Pr ((λk+1,i, yk+1,i) ∈ S) ≥ 1− θ (6.10a)

⇐⇒ Pr

 (λk+1,i ≥ 0, yk+1,i = 0)∨
(λk+1,i = 0, yk+1,i ≥ 0)

 ≥ 1− θ (6.10b)

⇐⇒

 λk+1,i ≥ 0,Pr (yk+1,i = 0) ≥ 1− θ

or λk+1,i = 0,Pr (yk+1,i ≥ 0) ≥ 1− θ
(6.10c)

where θ = ∆1

Nnc
and

∨
denotes the logical OR. Note that now yk+1 ∼ N

(
ȳk+1,Σyk+1

)
.

To obtain lower violation probabilities, we propose an Mixed Integer Programming (MIP)

framework. First, we propose the following CCC:

zk,i,0 = 1,=⇒ λk+1,i ≥ 0,Pr (yk+1,i = 0) ≥ 1− θ, (6.11a)

zk,i,1 = 1,=⇒ λk+1,i = 0,Pr (yk+1,i ≥ 0) ≥ 1− θ (6.11b)

where zk,i,0, zk,i,1 denote the binary variables to represent the two modes which satisfies

zk,i,0 + zk,i,1 = 1 for i-th complementarity constraint at instant k.

However, Pr (yk+1,i = 0) is zero (as the probability measure for singleton sets is zero) so

that we cannot directly use (6.11). To alleviate this issue while avoiding negative values for
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λ, we propose the following CCC using a relaxation for complementarity constraints (see

Fig. 6.2):

zk,i,0 = 1,=⇒ λk+1,i ≥ 0,Pr (0 ≤ yk+1,i ≤ ϵ) ≥ 1− θ, (6.12a)

zk,i,1 = 1,=⇒ λk+1,i = 0,Pr (yk+1,i ≥ ϵ) ≥ 1− θ (6.12b)

where ϵ > 0 is the acceptable violation in the complementarity constraints.

We have two-sided linear chance constraints in (6.12a). We decompose (6.12a) as two

one-sided chance constraints so that we can use the same reformulation as in (6.9). Note

that each one-sided chance constraints, obtained from the two-sided chance constraint, are

formulated with a maximum violation probability of θ
2
.

Since we have integer constraints, MIP can impose individual constraints for each mode

separately. This allows to derive a lower bound for θ as function of ϵ, ȳk+1,i, and Σyk+1,ii,

which is presented in Lemma 6.3.1. On the other hand, the NLP formulation imposes all

mode constraints jointly (see [3]). Consequently, the NLP formulation achieves a higher

bound for θ. We provide arguments describing the advantage of our approach over the NLP

approach in Remark 1.

Lemma 6.3.1. Suppose the CCC are formulated as (6.12) and ϵ, ȳk+1,i, and Σyk+1,ii are

specified. Then (i) (6.12a) is feasible for all θ > 2(1 − Φ( ϵ
2Σyk+1,ii

)) and (ii) (6.12b) is

feasible for all θ > 1− Φ
(
(ȳk+1,i − ϵ)/Σyk+1ii

)
.

Proof. Consider case (i): From (6.9b) and (6.12a), the two-side chance constraints in (6.12a)

are converted to their deterministic forms which are given as: Σyk+1,iiΦ
−1 (1− θ/2) ≤ ȳk+1,i ≤

ϵ−Σyk+1,iiΦ
−1 (1− θ/2). To have a nonempty solution, we must have ϵ−2Σyk+1,iiΦ

−1 (1− θ/2) >

0. Simplifying this equation, we obtain the bound specified in (i). Consider case (ii): From

(6.9b) and (6.12b), the one-side chance constraints in (6.12b) are converted as: ȳk+1,i ≥

ϵ+ Σyk+1,iiΦ
−1 (1− θ). Simplifying this equation, we obtain the bound specified in (ii).

Remark 6.3.1. From Lemma 6.3.1, it is easy to show that θ < 1
2

if ϵ
2Σyk+1,ii

> Φ−1(3
4
) for

case (i), and if (ȳk+1,i− ϵ)/Σyk+1ii > Φ−1(1
2
) for case (ii). In contrast, the formulation in [3]

cannot enforce the chance constraints for any θ < 0.5.
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The evolution of the mean of the states in SDLCS is described by the following equations:

x̄k+1 = Ax̄k +Buk + Cλk+1 + gk + w̄k, (6.13a)

Σxk+1
= AΣxk

A⊤ + ΣCλk+1
+W (6.13b)

where W represents the noise covariance matrix and Cλk+1 represents a mean of Cλk+1,

and ΣCλk+1
= E

[(
Cλk+1 − Cλk+1

) (
Cλk+1 − Cλk+1

)⊤] is a diagonal matrix because of the

independence of random variables.

The mean and variance of yk in SDLCS is described by the following equations:

ȳk = Dx̄k + Euk + Fλk+1 + hk + v̄k, (6.14a)

Σyk = DΣxk
D⊤ + ΣFλk+1

+ V (6.14b)

where V represents the noise covariance matrix from vk and Fλk+1 represents a mean of

Fλk+1, and ΣFλk+1
= E

[(
Fλk+1 − Fλk+1

) (
Fλk+1 − Fλk+1

)⊤] is a diagonal matrix because

of the independence of random variables.

6.3.3 Mixed-Integer Quadratic Programming with Chance Constraints

In this section, we present our MIQPCC formulation to solve (6.5). The proposed CCC could

be imposed in either an MIP or an NLP framework. However, our MIP-based method solves

disjunctive inequalities while NLP needs to impose all CCC simultaneously, which yields an

empty solution for ∆ ≤ 0.5. For this reason we do not consider an NLP framework.
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The proposed MIQPCC is formulated as follows:

min
x,u,λ,z

N−1∑
k=0

x̄⊤kQx̄k + u⊤k Ruk (6.15a)

s. t. x̄k+1 = Ax̄k +Buk + Cλk+1 + gk + w̄k, (6.15b)

Σxk+1
= AΣxk

A⊤ + Σw,Cλk+1
+W, (6.15c)

x0 ∼ N (xs,Σs) , uk ∈ U , λk ≤ λu, (6.15d)

a⊤l x̄k ≤ bl − ακ, (6.15e)

zk,i,0 + zk,i,1 = 1, (6.15f)

0 ≤ λk+1,i ≤Mzk,i,0, (6.15g)

ζψzi,k,0 + (ϵ+ ηψ)zk,i,1 ≤ ȳk+1,i (6.15h)

ȳk+1,i ≤ (ϵ− ζψ)zk,i,0 +Mzk,i,1, (6.15i)

where Q = Q⊤ ≥ 0, R = R⊤ > 0, α = Φ−1(1 − ∆
2NL

), ζ = Φ−1(1 − ∆
4Nnc

), η = Φ−1(1 −
∆

2Nnc
), κ =

√
a⊤l Σxk

al, ψ =
√

Σyk+1,ii
. zk,i,0, zk,i,1 are the binary decision variables for the i-th

complementarity constraint at k to represent mode 1, 2, respectively. Using these binary

variables, we employ big-M formulation to deal with disjunctive inequalities in our CCC.

The parameter M is a valid upper bound for λk, yk.

6.3.4 Stochastic Model Predictive Control with Complementarity Constraints

MPC is very popular and well understood for control of smooth dynamical systems. However,

it remains mostly unexplored for complementarity systems and stochastic complementarity

systems. Using our proposed MIQPCC, we present a stochastic MPC method for uncertain

contact systems. More formally, we present a formulation to implement SMPC for stochastic

non-linear complementarity system (SNCS) where the dynamics equation is represented as:

xk+1 = f(xk, uk, λk+1) + wk (6.16a)

0 ≤ λk+1 ⊥ yk+1 ≥ 0 (6.16b)
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where f(xk, uk, λk+1) is nonlinear dynamics. The goal is to find a control sequence to track a

reference state trajectory for the SNCS. We first create the reference trajectory x∗, u∗, λ∗, y∗

by solving the optimization with deterministic complementarity constraints (no chance con-

straints) using Mathematical Program with Complementarity Constraints (MPCC) [16].

Then, we linearize the dynamics along the reference trajectory which is used for uncertainty

propagation.

The modified MIQPCC for SMPC is given by:

min
x,u,λ,z

xe⊤N QNx
e
N +

N−1∑
k=0

xe⊤k Qxek + ue⊤k Ruek (6.17a)

s.t.xek+1 = Axek +Buek + Cλek+1 + w̄k, (6.17b)

(6.15c), (6.15e), (6.15f), (6.17c)

x0 ∼ N (xs,Σs) , u
e
k + u∗k ∈ U , λek + λ∗k ≤ λu, (6.17d)

0 ≤ λek+1,i + λ∗k+1,i ≤Mzk,i,0 (6.17e)

ζψzi,k,0 + (ϵ+ ηψ)zk,i,1 ≤ yek+1,i + y∗k+1,i (6.17f)

yek+1,i + y∗k+1,i ≤ (ϵ− ζψ)zk,i,0 +Mzk,i,1 (6.17g)

where xe = x̄ − x∗, ue = u − u∗, λe = λ − λ∗, ye = ȳ − y∗, A = ∂f(x,u,λ)
∂x

∣∣∣
x∗,u∗,λ∗

, B =

∂f(x,u,λ)
∂u

∣∣∣
x∗,u∗,λ∗

, C = ∂f(x,u,λ)
∂λ

∣∣∣
x∗,u∗,λ∗

. It is worth pointing out that this formulation does not

fix or penalize the discrete mode sequence. (6.17e) means that λk+1,i ≥ 0 if zk,i,0 = 1 and

λk+1,i = 0 if zk,i,1 = 1. Thus, (6.17e) allows deviation from the reference discrete mode se-

quence while satisfying complemenatarity constraints. Therefore, the controller may change

the mode sequence from the reference. In prior work, Hogan et al. [143] proposed a simi-

lar MIQP formulation. However, they penalize deviation from the reference mode sequence

which might be infeasible for a number of cases (due to state and control bounds). Addi-

tionally, it does not consider stochastic dynamics and complementarity constraints during

control.
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6.4 Numerical Simulations

We validate our proposed method using three benchmark DLCS which are shown in Fig. 6.3.

See [137] for more details of these three benchmarks. Through the numerical experiments

performed in this paper, we answer the following questions:

1. Can our proposed optimization generate robust open-loop trajectories?

2. Can our proposed formulation satisfy the probabilistic constraints imposed during op-

timization?

3. How does the proposed method compare against the previous methods for robust op-

timization in SDLCS?

6.4.1 Implementation Details

The proposed method is implemented in Python. We use Gurobi [94] to solve the proposed

MIQPCC, and PyRoboCOP [16, 16] to solve the MPCC arising from the ERM-based method

in [2] and the CCC method in [3]. The examples are implemented on a computer with Intel

i7-12800H processor.

We verify the robustness of open-loop trajectories obtained from our proposed optimiza-

tion using Monte Carlo simulations. To simulate SDLCS with a given control input, we

use MINPACK [144] to solve the nonlinear complementarity problem that arises at each

time-step in order to simulate the system. The noise term is sampled from the distribution

which was used during optimization. We simulate each control trajectory for 1000 times

to estimate the probability of constraint violation for the proposed as well as the baseline

methods.

For notation simplicity, we present the continuous-time dynamics for all the test systems.

We discretize continuous-time dynamics into discrete-time dynamics using the explicit Euler

method with sample time dt = 0.033. We denote x0,Σ0 as the mean and covariance matrix

at k = 0 for states of systems, respectively.

104



6.4.2 Example Details

6.4.2.1 Cartpole with Softwalls

The continuous-time dynamics with complementarity constraints for the cartpole with soft-

walls (see Fig. 6.3a) is as follows:

ẋ1 = x3, ẋ2 = x4, ẋ3 = g
mp

mc

x2 +
1

mc

u1, (6.18a)

ẋ4 =
g (mc +mp)

lmc

x2 +
1

lmc

u1 +
λ1
lmp

− λ2
lmp

, (6.18b)

0 ≤ λ1 ⊥ lx2 − x1 +
1

k1
λ1 + d ≥ 0, (6.18c)

0 ≤ λ2 ⊥ x1 − lx2 +
1

k2
λ2 + d ≥ 0 (6.18d)

where x1 is the cart position, x2 is the pole angle, the x3 and x4 are their derivatives. u1 is

the control and λ1, λ2 are the reaction forces at from the wall 1, 2, respectively. We consider

the additive noise w, the zero-mean i.i.d. Gaussian noise which standard deviation is 2×10−4,

to x1,k, x2,k. k1 = 10, k2 = 10 are the stiffness of walls 1 and 2, respectively. In this example,

we assume that the uncertainty also arises from the 1
k1
, 1
k2

which standard deviations are

10−5. We denote by g = 9.81 is the gravitational acceleration, and by mp = 0.1,mc = 1.0

denote the mass of the pole, cart, respectively. Further, l = 0.5 is the length of the pole and

d = 0.15 is the distance from the origin of the coordinate to the walls.

The optimization setup is as follows: N = 20,M = 100, Q = diag(0, 0, 0, 0), R = 0.01,

ϵ = 0.002, x0 = [−0.15, 0, 0, 0]⊤,Σ0 = diag(0, 0, 0, 0). We also impose the following chance

constraints: Pr(x1,k ≤ 0.05) ≥ 1 − ∆
4N
,Pr(x2,k ≤ 0.15) ≥ 1 − ∆

4N
,∀k = 0, . . . , N − 1,

Pr(−0.02 ≤ x1,N ≤ 0.02) ≥ 1− ∆
4N
,Pr(−0.04 ≤ x2,N ≤ 0.04) ≥ 1− ∆

4N
.
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(a) Cartpole with softwalls (b) Sliding box (c) Dual manipulation.

Figure 6.3: Problems described in Section 6.4.

6.4.2.2 Sliding Box with Friction

The continuous-time quasi-static dynamics with complementarity constraints for sliding box

with Coulomb friction (see Fig. 6.3b) is as follows:

ẋ1 = x2, αẋ1 = u+ λ+ − λ−, (6.19a)

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0, (6.19b)

0 ≤ λ+ ⊥ γ + u+ λ+ − λ− ≥ 0, (6.19c)

0 ≤ λ− ⊥ γ − u− λ+ + λ− ≥ 0 (6.19d)

where x1 is the box position and x2 is the box velocity. u is the control input and λ+, λ−

are the positive and negative components of the friction force, respectively. γ is the slack

variable. α = 4 is the damping constant, m = 1 is the mass of the box, and µ = 0.1 is the

coefficient of friction. We consider additive i.i.d. Gaussian noise w in the dynamics equation

as x1,k+1 = x1,k + x2,kdt + w. The standard deviation of w is 4 × 10−4. g = 9.81 is the

gravitational acceleration. We assume that the coefficient of friction, µ, is also uncertain

and standard deviation for µ is 10−5.

The optimization setup is as follows: N = 20,M = 100, Q = diag(0, 0, 0, 0), R = 0.01,

ϵ = 0.01, x0 = [1,−1]⊤,Σ0 = diag(0, 0). We also impose the following chance constraints:

Pr(x1,k ≥ 0.885) ≥ 1− ∆
2N
,∀k = 0, . . . , N − 1, Pr(0.89 ≤ x1,N ≤ 0.91) ≥ 1− ∆

2N
,Pr(−0.1 ≤

x2,N ≤ 0.1) ≥ 1− ∆
2N

.
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6.4.2.3 Dual Manipulator System

We consider the example where a box is manipulated on a planar surface with Coulomb

friction and contact forces from two manipulators (see Fig. 6.3c). The continuous-time

quasi-static dynamics is as follows:

ẋ1 = x2, αẋ1 = λ1 − λ2 + λ+ − λ−,

ẋ3 = x4, ẋ4 = u1, ẋ5 = x6, ẋ6 = u2,

0 ≤ λ1 ⊥ x1 − x3 +
1

k
λ1 ≥ 0,

0 ≤ λ2 ⊥ x5 − x1 +
1

k
λ2 ≥ 0,

0 ≤ γ ⊥ µmg − λ+ − λ− ≥ 0,

0 ≤ λ+ ⊥ γ + λ1 − λ2 + λ+ − λ− ≥ 0,

0 ≤ λ− ⊥ γ − λ1 + λ2 − λ+ + λ− ≥ 0

(6.20)

x1, x3, x5 are the positions of the box, the left arm, the right arm, respectively and x2, x4, x6

are their derivatives. u1, u2 represent the controls of the left and the right arm, respectively.

λ+, λ− are the positive and negative component of the friction force, respectively. γ is the

slack variable. λ1, λ2 are the contact forces from the left arm and the right arm, respectively.

We set g = 9.81, m = 1, k = 100, µ = 0.1. We discretize the dynamics (6.20) with dt = 0.033.

As in the previous systems, we the zero-mean i.i.d. Gaussian noise w with standard deviation

0.0002 to the dynamics, x1,k+1 = x1,k + x2,kdt + w. The standard deviation of µ and 1
k

are

0.0001.

The optimization setup in this example is as follows: Q = diag(0, 0, 0, 0, 0, 0), R =

diag(1, 1), N = 20,M = 50, ϵ = 0.0042, x0 = [0.1,−1.1, 0, 0, 0.1, 0]⊤, Σ0 = diag(0, 0, 0, 0, 0, 0).

We impose the following chance constraints: Pr(x1,k ≥ −0.17) ≥ 1− ∆
2N
,∀k = 0, . . . , N − 1,

Pr(−0.01 ≤ x1,N ≤ 0.01) ≥ 1− ∆
2N

.

Remark 6.4.1. It is noted that the proposed method can be used for robust optimization as

long as the dynamics is linear. In the presence of non-linear dynamics, uncertainty propa-

gation becomes more challenging and it can not be modeled by the current framework. The
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uncertainty in SDLCS can arise from various sources like parametric uncertainty (e.g., coef-

ficient of friction, uncertain stiffness coefficients, etc.). As long as the underlying dynamics

can be modeled as a SDLCS, the proposed formulation could be used for robust optimization.

6.4.3 Robustness of Open-Loop Trajectories

The optimized control and state trajectories for the three systems using our proposed method

are shown in Fig. 6.4-Fig. 6.6. Overall, these figures show that the optimal state trajectories

move further away from the bound specified in the chance constraints as the violation prob-

ability decreases (see the state constraints specified in Section 6.4.2). For instance, Fig. 6.4a

shows that the computed trajectories move further away from x = 0.05 as ∆ decreases (note

that Pr(x1,k ≤ 0.05) ≥ 1 − ∆
4N

is the chance constraint specified for optimization, see Sec-

tion 6.4.2). We observe the same behavior for the other systems too in Fig. 6.5 and Fig. 6.6.

In addition, these figures illustrate that the control costs increase as ∆ decreases. This

illustrates the trade-off between safety and cost.

Remark 6.4.2. At this point, we would like to discuss the magnitude of uncertainty we con-

sider in these problems. Compared to other stochastic optimal control works [145, 141], the

uncertainty in these problems is relatively smaller. There are several reasons why we need

to have a smaller uncertainty. Note that as we have explained in Section 6.2, our approach

satisfies joint constraints on multiple constraints together. First, our formulation has chance

complementarity constraints in addition to chance constraints on states, which are commonly

used. Our formulation has more number of chance constraints, and consequently, the lower

uncertainty is required because of the conservative approximation of Boole’s inequality to re-

solve joint chance constraints into individual constraints as explained in Section 6.3.1, and

Section 6.3.2. Second, we need to have a small ϵ to avoid large violation of complementar-

ity constraints, which requires small uncertainty. Finally, we would like to emphasize that

allowing larger uncertainties requires either better resolution of joint chance constraints or

covariance steering approaches [141, 44], which is out of scope for the current study.
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(a) Trajectories of x1. (b) Trajectories of x2. (c) Trajectories of u1. (d) Control cost

Figure 6.4: Results with different ∆ for the cartpole with softwalls system. First, the cart moves in the

negative direction to utilize the contact force λ2 because the control input is bounded. Once the cart obtains

enough λ2, the cart is accelerated in the positive direction. We can observe the effect of our proposed chance

constraints in particular around t ∈ [0, 0.1] and t ∈ [0.4, 0.5]. When t ∈ [0, 0.1], the mode changes from the

"contact on the wall 2" to the "no contact" and the cart tries to be far from wall 2 to satisfy the CCC. When

t ∈ [0.4, 0.5], the trajectories are farther away from x1 = 0.05 and x2 = 0.15 as ∆ decreases.

(a) Trajectories of x. (b) Trajectories of u.

Figure 6.5: Results with different ∆ for the sliding box with friction example. First, the box is accelerated

in the positive direction. Then, the control decreases with time to regulate the box around the origin by

employing friction forces. We can observe the effect of our proposed chance constraints in particular around

t ∈ [0.2, 0.3] where the trajectories are farther away from x = 0.88 as ∆ decreases.
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(a) Trajectories of x1. (b) State x1 around t ∈ [0.2, 0.3] (c) Control cost with different ∆.

Figure 6.6: Results with dual manipulation. First, the box is pushed by the right arm in the negative

direction. Next, the left arm regulates the box to the origin. In particular, around t ∈ [0.2, 0.3] s, the

trajectories are farther away from x1 = −0.17 m as ∆ decreases.

6.4.4 Monte Carlo Simulation Results

Table 6.1-Table 6.3 present the comparison of constraint violation for the proposed method

and the baseline methods proposed in [2] and [3] using Monte Carlo simulation. We compute

the empirical constraint violation for all the three problems with different values of ∆. We

run the ERM method in [2] with different objective weights β and the CCC [3] with violation

probability ∆z = 0.5. The parameter β was chosen so that the magnitude of the ERM cost

is of similar order as the other costs in the objective. Since in the original work in [2] and

[3], the authors had only considered the terminal constraint violation, we only measure the

failure of these methods for violation of the terminal constraint. For the proposed method,

we measure the constraint violations which was specified in Section 6.4.2.

Table 6.1 shows that the proposed method outperforms both the baseline methods for the

cartpole with softwalls system. The controller based on the ERM method in [2] achieves 100%

constraint violation with β = 104, 105. With β = 103, the ERM results are comparatively

better. One should notice that higher weight of the ERM in the objective function results in

more fragile trajectories since the state constraints are always violated. This indicates that

the ERM-based objective is not able to capture the robustness in the state trajectories of

SDLCS. The CCC in [3] could also show relatively good violation probability compared to

the ERM-based method with β = 104 and β = 105 but shows the worse violation probability
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Table 6.1: Comparison of the constraint violation probability specified in the different optimization problems

against the observed constraint probabililty obtained from simulation of the “cartpole with softwalls” over

1000 samples. In the table, ∆ represents the constraint violation probability for our approach, β for the

ERM-based approach in [2], and the ∆z is for the CCC method in [3].

∆ = 0.5 ∆ = 0.2 ∆ = 0.1 ∆ = 0.02

Obtained ∆ (Ours) 0.190 0.147 0.085 0.020

β = 103 β = 104 β = 105 ∆z = 0.5

Obtained ∆ (ERM) 0.75 1.0 1.0 -

Obtained ∆ (CCC) - - - 0.91

Table 6.2: Comparison of the constraint violation probability specified in the different optimization problems

against the observed constraint probabililty obtained from simulation of the “a sliding box with friction” over

1000 samples. In the table, ∆ represents the constraint violation probability for our approach, β for the

ERM-based approach in [2], and the ∆z is for the CCC method in [3].

∆ = 0.5 ∆ = 0.1 ∆ = 0.01 ∆ = 0.002

Obtained ∆ (Ours) 0.080 0.051 0.027 0.010

β = 103 β = 104 β = 105 ∆z = 0.5

Obtained ∆ (ERM) 1.0 1.0 1.0 -

Obtained ∆ (CCC) - - - 0.91

compared to our method with ∆ = 0.5 and the ERM with β = 103.

Table 6.2 shows similar results for the sliding box system for the proposed method.

However, we observe that the controller can not satisfy the constraints for the cases with

∆ = 0.01, 0.002. There could be several reasons that contribute to the violation of the chance

constraints. Unlike the cartpole example, F is not a P matrix for the sliding box system

(see Section 6.4.2) so we can get the multiple solutions for the complementarity variable λ.

Also, even though ϵ is small, it is not zero so the actual trajectory in the simulator cannot be

exactly the same as the trajectory from the optimization even in the absence of noise. While

we can ignore these effects with relatively large ∆, we cannot ignore these effects anymore
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Table 6.3: Comparison of the constraint violation probability specified in the different optimization problems

against the observed constraint probabililty obtained from simulation of the “dual manipulation” over 1000

samples. In the table, ∆ represents the constraint violation probability for our approach, β for the ERM-

based approach in [2], and the ∆z is for the CCC method in [3].

∆ = 0.5 ∆ = 0.4 ∆ = 0.3 ∆ = 0.2

Obtained ∆ (Ours) 0.419 0.317 0.257 0.217

β = 103 β = 104 β = 105 ∆z = 0.5

Obtained ∆ (ERM) 1.0 1.0 1.0 -

Obtained ∆ (CCC) - - - 1.0

with the small ∆. We believe some of these effects lead to some constraint violation observed

for this system. Although the proposed method could not satisfy chance constraints for all

∆ in this example, our method achieves much lower violation probabilities compared to the

ERM in [2] and the CCC in [3]. Table 6.3 shows that we obtain similar results for the dual

manipulator system as for the sliding-box example.

Fig. 6.7 and Fig. 6.8 show that our proposed planner could successfully drive the system to

the goal state. We also observe that with decreasing ∆, the system trajectories move further

away from state set boundaries to satisfy tighter chance constraints. For Fig. 6.9, while the

majority of the sampled trajectories converge to the specified terminal constraints, some of

them clearly converged to other states. This result also shows that the true distribution of

the uncertainty for the SDLCS is not Gaussian.

6.4.5 Computation Results

We show computational time for the proposed method in Table 6.4. We observe that the

compute time for our method increases as the number of integer variables increase. This is

expected since we use mixed-integer programming. We also added the computational results

for the ERM-based and the CCC method in Table 6.5. Similar to our method, both the

ERM-based method and the CCC method incur larger computation time as the number of
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Figure 6.7: Simulated trajectories of x2 of the cartpole example over 1000 samples with ∆ = 0.5 for the left

column and with ∆ = 0.02 for the right column. The bottom row enlarges the top row figures around the

area where the chance constraints effect is observed. The red line shows the 99.9 % confidence interval.

constraints and variables increase.

6.4.6 Discussion of Assumptions

In this section, we will provide empirical justification for the assumptions described in Sec-

tion 6.2. that we made on the stochasticity of the matrices C,F and the determinism of the

complementarity variable λk+1. Consider the cartpole system. Figure 6.10 plots simulated

trajectories of the cartpole system for different realizations of the uncertain parameters. In

performing the simulations, we simply sample the uncertainty in the spring constants and

forward simulate the DLCS using the computed optimal controls obtained from our proposed

optimization in (6.15). The subplots in 6.10a-6.10b plot the pole angle x2 and the reaction

force λ2 for low value of uncertainty variance of 10−6 in the spring constants. The remaining

plots 6.10c-6.10d and 6.10e-6.10f plot the same trajectories for larger uncertainty variances of

10−4 and 5 · 10−4 respectively. In this specific scenario, x1 and λ1 trajectories are not shown
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Figure 6.8: Simulated trajectories of x of sliding box with friction example over 1000 samples with ∆ = 0.5

for the left column and with ∆ = 0.002 for the right column. The bottom row enlarges the top row figures

around the area where the chance constraints effect is observed. The red line shows the 99 % confidence

interval.

since they do not show significant variation in the simulations. From these plots, we can ob-

serve that the simulated state trajectories x2 (as light grey lines for sampling of uncertainty)

are largely concentrated around the optimal trajectory of x2 (blue line) computed from our

proposed optimization approach (6.15). The main objective of the chance constraints is to

control the state trajectories within prescribed limits. Our assumptions yield controls that

precisely control the states as desired. The contact forces λ2, in contrast to our assumption,

are not necessarily deterministic. However, our approach is able to capture the uncertainty

propagation in the states and effectively contain the variance as desired. We have observed a

similar behavior in the other systems considered in this chapter. We believe a more rigorous

theoretical justification can be provided and we will investigate this in a future work.
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Figure 6.9: Simulated trajectories of x1 over 1000 samples with ∆ = 0.2 for dual manipulation. The right

figure shows the enlarged figure of the left figure. The red line shows the 99 % confidence interval.

(a) (b) (c)

(d) (e) (f)

Figure 6.10: Trajectories for the stochastic cartpole system obtained by using 1000 samples for the uncertain

parameters while the control input is set to that computed using our proposed optimization (6.15) where the

uncertainty values correspond to those used in Section 6.4.2.1. (a): simulated trajectories of x2 with uncertain
1
k1
, 1
k2

for which standard deviations are 10−6. (b): the simulated force trajectories of λ2 corresponding to

(a). (c): simulated trajectories of x2 with uncertain 1
k1
, 1
k2

which standard deviations are 10−4. (d): the

simulated force trajectories of λ2 corresponding to (c). (e): simulated trajectories of x2 with uncertain 1
k1
, 1
k2

which standard deviations are 5 ∗ 10−4. (f): the simulated force trajectories of λ2 corresponding to (e). We

rollout dynamics with the control input u which was computed (6.15), the blue lines show the optimal x2,

λ2 and the rollouts are shown in grey.
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Table 6.4: Computation Time of our method. nC , nI , nconstraints show the number of continuous variables,

the number of integer variables, and the number of total constraints, respectively, for each problem.

nC nI nconstraints runtime [s]

Cartpole with softwalls (Ours) 348 80 512 0.023

Sliding box (Ours) 220 120 624 1.95

Dual manipulation (Ours) 720 300 1632 8.29

Planar pushing (Ours) 148 40 270 0.009

Table 6.5: Computation Time of other methods. nvariables and nconstraints show the total number of variables

and the number of total constraints, respectively, for each problem.

nvariables nconstraints runtime [s]

Cartpole with softwalls (ERM) 416 400 0.319

Cartpole with softwalls (CCC) 1178 1160 2.42

Sliding box (ERM) 437 420 0.281

Sliding box (CCC) 1328 1310 2.90

Dual manipulation (ERM) 737 720 0.701

Dual manipulation (CCC) 1468 1450 8.01

6.5 SMPC for Planar Pushing

In this section, we verify our proposed SMPC algorithm for contact-rich system can track

a reference trajectory with probabilistic guarantees and outperform a deterministic MPC

method. We demonstrate the proposed method for a stochastic pusher-slider system.

6.5.1 Planar Pushing

The frictional interaction between the pusher and slider leads to a linear complementarity

system which we describe next. The pusher interacts with the slider by exerting forces in

the normal and tangential directions denoted by f−→n , f−→t (as shown in Figure 6.11) as well as

a torque τ about the center of the mass of the object. Assuming quasi-static interaction, the
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limit surface [146] defines an invertible relationship between applied wrench w and the twist

of the slider t. The applied wrench w causes the object to move in a perpendicular direction

to the limit surface H(w). Consequently, the object twist in body frame is given by t =

∇H(w), where the applied wrench w = [f−→n , f−→t , τ ] could be written as w = JT (−→n f−→n+
−→
t f−→t ).

For the contact configuration shown in Figure 6.11, the normal and tangential unit vectors

are given by −→n = [1 0]T and −→t = [0 1]T . The Jacobian J is given by J =

1 0 −py

0 1 px

.

The dynamics of the pusher-slider system is given by

ẋ = f(x,u) =
[
Rt ṗy

]⊤
(6.21)

where R is the rotation matrix. The twist t can be obtained using an approximate limit

surface [146] for quasi-static pushing. Since the wrench applied on the system depends of the

point of contact of pusher and slider, the state of the system is given by x = [x y θ py]
⊤

and the input is given by u = [f−→n f−→t ṗy]
⊤. The elements of the input vector must follow

the laws of coulomb friction which can be expressed as complementarity conditions as follows:

0 ≤ ṗy+ ⊥ µpf−→n − f−→t ≥ 0

0 ≤ ṗy− ⊥ µpf−→n + f−→t ≥ 0
(6.22)

where ṗy = ṗy+ − ṗy− and the µp is the coefficient of friction between the pusher and the

slider.

The world frame and the body frame of reference are denoted by Fw and Fb respectively.

The uncertainty in the friction cone is approximately represented by the shaded region in

the friction cone. We use a modified version of (6.17) to solve SMPC for planar pusher-slider

system. We use 0 ≤ uek,i + u∗k,i ≤ Mzk,i,0 instead of (6.17e) because we have stochastic

complementarity constraints on u, not on λ. We use the following hyper parameters: µ =

0.3,m = 1.0. We use dt = 0.1 to discretize the dynamics and set N = 10,M = 20.

We add uncertainty in µ and dynamics for which the standard deviations are 10−4 and

4 × 10−3, respectively. We consider the following chance constraints: Pr(x∗ − 0.1 ≤ x1,k ≤

x∗ + 0.1) ≥ 1 − ∆
4N

, Pr(x2,k ≤ 0.27) ≥ 1 − ∆
4N

. The initial and the terminal state are

xs = [0, 0, 0]⊤, xg = [0, 0.2, π]⊤. Also, we formulate our Deterministic MPC (DMPC) which
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Figure 6.11: A schematic of a planar pusher-slider system. State of the system is [x, y, θ, py]⊤ assuming that

the pusher only comes in contact with the left edge as shown in the figure.

Table 6.6: Comparison of obtained ∆ and MSE with different ∆ from the simulation of "pushing with

slipping" over 100 samples.

No MPC DMPC ∆ = 0.5 ∆ = 0.01

Obtained ∆ 0.31 0.19 0.10 0.00

MSE 0.00295 0.00244 0.00208 0.00216

uses the constraints xk ∈ X instead of Pr (xk ∈ X ). We also evaluate the no-mpc case which

implements the reference control sequence in open-loop.

6.5.2 Results

We evaluate the performance of the controllers with respect to:

1. the safety in terms of the chance constraints by counting the number of failures, and

2. the Mean Squared tracking Error (MSE) from the reference trajectory.

Note that a failure is defined as a constraint violation. Similar to the previous section, we

use Monte Carlo simulations to evaluate the different controllers.

The obtained ∆ and the MSE are shown in Table 6.6. Our proposed SMPC achieves

the best performance with respect to both metrics followed by DMPC method. Since our
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Figure 6.12: Results of SNMPC. Top left: no mpc (open loop), top right: DMPC, bottom left: ∆ = 0.5,

bottom right: ∆ = 0.01. The blue curve shows the reference trajectory of the center of the box and the

green lines show the simulated trajectories. The red curves show the bounds.

proposed SMPC considers stochastic complementarity constraints as well as uncertainty

propagation, our method achieves lowest tracking error as well as constraint violation prob-

ability. We can see the trade-off between ∆ = 0.5 and ∆ = 0.01 where ∆ = 0.5 shows the

higher ∆ but the lower MSE. The reason why the DMPC shows higher MSE is that the

DMPC may diverge from the reference trajectory since it ignores uncertainty propagation.

Fig. 6.12 illustrates the trajectories of MPC with different parameters. We can confirm

that our proposed SMPC can track the reference trajectories while satisfying the chance

constraints. Also, the average runtime for our SMPC to compute a solution was 0.0029 s

during runtime.

6.6 Discussion and Conclusion

The hybrid dynamics of contact-rich interaction as well as uncertainty associated with con-

tact parameters make efficient design of model-based controllers for manipulation challeng-
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ing. We believe that understanding stochastic and robust optimization and control methods

for contact-rich systems is important. However, this topic remains relatively unexplored in

literature. One of the key reasons is the difficulty in handling stochastic complementarity

constraints and its effect on uncertainty propagation for planning. This poses unique chal-

lenges for formulation of computationally feasible algorithms for robust planning of SDLCS.

In this chapter, we presented a robust trajectory optimization technique for contact-rich

systems. We presented a formulation for chance constrained optimization for SDLCS which

is solved using MIQPCC. This chapter makes an assumption of deterministic complemen-

tarity variables for computational tractability. We show that despite this assumption, we

are able to compute controllers that are robust to the underlying stochastic system. We

compared our proposed approach against other recent techniques for robust optimization

for stochastic complementarity systems. We showed that our formulation outperforms these

baseline techniques. We show that the proposed chance constrained optimization can be

used to design stochastic MPC controllers for contact-rich system. The proposed SMPC was

demonstrated for a stochastic planar pushing system.

In this chapter, we have several assumptions. First, we assume that the underlying

distribution of random variables is known, which can be quite challenging to get in practice.

Thus, we present robust optimization framework in Chapter 7 which does not need to know

the distribution of random variables.

Another assumption in this chapter is that we assume that contact forces λ is not a

random variable, which is not true. We also assume that the underlying distribution of the

random variables follows the Gaussian distribution. Furthermore, we only consider open-

loop controllers where the variance keeps increasing over time. To decrease the variance,

feedback control is necessary. In Chapter 8, we present our optimization problem that is

able to design feedforward and feedback controller simultaneously with chance constraints

under non-Gaussian random variables.
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CHAPTER 7

Robust Pivoting Manipulation using Contact Implicit

Bilevel Optimization

In Chapter 6, we present chance-constrained optimization for contact-rich systems, which can

design robust open-loop controller for general contact-rich systems including manipulation

and locomotion. In contrast, in this chapter, we present robust optimization considering

the underlying structure of the contact dynamics for manipulation with extrinsic contacts.

Since we consider the specific manipulation problem, we can design a more robust open-loop

controller compared to the work in Chapter 6. We first motivate this work more by describing

how friction plays a key role in introducing stability for manipulation. Next, we show some

analysis of stability margin considering friction under several different uncertain physical

parameters such as coefficients of friction, mass, CoM location, and the contact location. We

then propose our robust optimization formulation which is able to design optimal control

sequences while improving the worst-case stability margin along the manipulation. The

proposed algorithm was evaluated for the pivoting using several different objects in the

hardware experiments.

This chapter has been partially adapted from the following papers:

• Y. Shirai, D. Jha, and A. Raghunathan, "Robust Pivoting Manipulation using Con-

tact Implicit Bilevel Optimization", (under review for IEEE Transactions on Robotics).

• Y. Shirai, D. Jha, A. Raghunathan, and D. Romeres, "Robust Pivoting: Exploiting

Frictional Stability Using Bilevel Optimization", in Proc. 2022 IEEE Int. Conf. Robot.

Auto., pp. 14-21, 2022.
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Figure 7.1: We consider the problem of reorienting parts for assembly using pivoting manipulation primitive.

Such reorientation could possibly be required when the parts being assembled are too big to grasp in the

initial pose (such as the gears) or the parts to be inserted during assembly are not in the desired pose (such

as the pegs). The figure shows some instances during the implementation of our controller to reorient a gear

and a peg.

7.1 Overview

Contacts are central to most manipulation tasks as they provide additional dexterity to

robots to interact with their environment [4]. It is desirable that a robot should be able to

interact with unknown objects in unknown environments during operation and thus achieve

generalizable manipulation. Robust planning for frictional interaction with objects with

uncertain physical properties could be challenging as the mechanical stability of the object

depends on these physical properties. Inspired by this problem, we consider the task of robust

pivoting manipulation in this chapter. The pivoting task considered in this chapter requires

that the slipping contact be maintained at the two external contact points which presents

unique challenges for robust planning. We are interested in ensuring mechanical stability via

friction to compensate for uncertainty in the physical properties (e.g., mass, Center of Mass

(CoM) location, coefficient of friction, contact location.) of the objects during manipulation.

We present a formulation and an optimization technique that can solve robust manipulation
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trajectories for the proposed pivoting manipulation.

Robust planning (and control) for frictional interaction is challenging due to the hybrid

nature of underlying frictional dynamics. Consequently, a lot of classical robust planning

and control techniques are not applicable to these systems in the presence of uncertainties [2,

16, 147]. While concepts of stability margin or Lyapunov stability have been well studied

in the context of nonlinear dynamical system controller design [148], such notions have not

been explored in contact-rich manipulation problems. This can be mostly attributed to

the fact that a controller has to reason about the mechanical stability constraints of the

frictional interaction to ensure stability. Mechanical stability closely depends on the contact

configuration during manipulation, and thus a planner (or controller) has to ensure that the

desired contact configuration is either maintained during the task or it can maintain stability

even if the contact sequence is perturbed. Analysis of such systems is difficult in the presence

of friction as it leads to differential inclusion system (see [138]). One of the key insights we

present in this chapter is that friction provides mechanical stability margin during a contact-

rich task. We call the mechanical stability provided by friction as Frictional Stability. This

frictional stability can be exploited during optimization to allow stability of manipulation

in the presence of uncertainty. We show the effect of several different parameters on the

stability of the manipulation using the proposed approach. In particular, we consider the

effect of contact modes and point of contact between the robot & object on the stability

of the manipulation. We believe that our proposed ideas could also be used for designing

feedback controllers to correct contact trajectories based on estimates of contact states.

We study pivoting manipulation where the object being manipulated has to maintain

slipping contact with two external surfaces (see Fig. 7.2). A robot can use this manipulation

to reorient parts on a planar surface to allow grasping or assist in assembly by manipulating

objects to a desired pose (see Fig. 7.1). Note that this manipulation is challenging as it

requires controlled slipping (as opposed to sticking contact [60, 53, 134]), and thus it is

imperative to consider robustness of the control trajectories. Ensuring robustness for slipping

contact is challenging due to the equality constraints for the friction forces compared to
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inequality constraints for sticking contact. To ensure mechanical stability of the two-point

pivoting in the presence of uncertainty, we derive a sufficient condition for stability which

allows us to compute a margin of stability. This margin is then used in a bilevel optimization

routine, CIBO (Contact Implicit Bilevel Optimization). Our proposed CIBO designs an

optimal control trajectory while maximizing the worst-case margin along the entire trajectory

for manipulation. Through numerical simulations as well as physical experiments, we verify

that CIBO is able to achieve more robustness compared to the basic trajectory optimization.

Contributions. This chapter has the following contributions.

1. We present analysis of mechanical stability of pivoting manipulation with uncertainty

in mass, CoM location, contact location, and coefficient of friction.

2. We present a robust contact-implicit bilevel optimization (CIBO) technique which can

be used to optimize the mechanical stability margin to compute robust trajectories for

pivoting manipulation. For objects with non-convex shapes, we present a formulation

with mode-based optimization.

The proposed method is demonstrated for reorienting parts using a 6 DoF manipulator (see

Fig. 7.1.

7.2 Mechanics of Pivoting

In this section, we explain quasi-static stability of two-point pivoting in a plane. Before

explaining the details, we present our assumptions in this work. The following assumptions

are used in the model for the pivoting manipulation task presented in this chapter:

1. The object is rigid.

2. We consider quasi-static equilibrium of the object.

3. The external contact surfaces are perfectly flat.

4. The dimensions and pose of the object is perfectly known.
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Figure 7.2: A schematic showing the free-body diagram of a rigid body during pivoting manipulation when

the relative angle between FW and FS is zero. Point P is the contact point with a manipulator. The black

circle represents the origin of each frame. The object experiences four forces corresponding to two friction

forces from external contact points A and B, one control input fP from the manipulator at point P , and

gravity at point C.

Figure 7.3: A schematic showing the frame definition of a rigid body during pivoting manipulation. FW , FS ,

FO, and FB are the world frame, slope frame, object frame, and frame at contact location B, respectively.

Gravity is defined in FW where the gravity is parallel to y-axis of FW . Pivoting manipulation happens with

extrinsic contact A and B defined in FS . FO is fixed with CoM of an object. FB is in parallel to FS with

offset BS
x along x-axis of FS . We also show an example of iΣx and iΣx in Table 7.1. In this example, CB

x and

CB
y are illustrated.

125



5. The object makes point contacts.

7.2.1 Mechanics of Pivoting with External Contacts

We consider pivoting where the object maintains slipping contact with two external surfaces

(see Fig. 7.2). A free body diagram showing the quasi-static equilibrium of the object is

shown in Fig. 7.2. The definitions of frames and variables are summarized in Fig. 7.3 and

Table 7.1, respectively. In the later sections, we present trajectory optimization formulation

where we consider decision variables at time step k (e.g., fk,ni). In this section, we remove

k to represent variables for simplicity.

The quasi-static equilibrium conditions for the object in FB when the relative angle

between FW and FS is zero (see Fig. 7.2) can be represented by the following equations.

fB
nA + fB

tB + fB
xP = 0, (7.1a)

fB
tA + fB

nB +mg + fB
yP = 0, (7.1b)

AB
x f

B
tA − AB

y f
B
nA + CB

x mg + PB
x f

B
yP − PB

y f
B
xP = 0 (7.1c)

Note that because we define FB as parallel to FS, all force variables in FB and FS are the

same. We consider Coulomb friction law which results in friction cone constraints as follows:

|fB
tA| ≤ µAf

B
nA, |fB

tB| ≤ µBf
B
nB, fB

nA, f
B
nB ≥ 0, (7.2)

To describe sticking-slipping complementarity constraints, we have the following complemen-

tarity constraints at point A,B:

0 ≤ ȦB
y+ ⊥ µAf

B
nA − fB

tA ≥ 0, (7.3a)

0 ≤ ȦB
y− ⊥ µAf

B
nA + fB

tA ≥ 0, (7.3b)

0 ≤ ḂB
x+ ⊥ µBf

B
nB − fB

tB ≥ 0, (7.3c)

0 ≤ ḂB
x− ⊥ µBf

B
nB + fB

tB ≥ 0 (7.3d)

where the slipping velocities follows ȦB
y = ȦB

y+−ȦB
y−, Ḃ

B
x = ḂB

x+−ḂB
x−. ȦB

y+, Ȧ
B
y− represent

the slipping velocity at A along positive and negative directions for y-axis in FB, respectively.
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Table 7.1: Notation of variables for analysis of frictional stability margin. In Σ column, we indicate the

frame of variables. We use the following indices for defining variables in this table: j ∈ {A,B,C, P} for

representing the location of frames, i ∈ {A,B, P} for representing contact location, and Σ ∈ {W,S,O,B}

for representing a frame.

Name Description Size Σ

FΣ Σ frame.

fΣ
nj normal force at j in frame FΣ R1 Σ

fΣ
tj friction force at j in frame FΣ R1 Σ

fΣ
xj force at j along x-axis in frame FΣ R1 Σ

fΣ
yj force at j along y-axis in frame FΣ R1 Σ

m mass R1

g gravity acceleration R1 W

l length of an object R1

w width of an object R1

µi coefficient of friction at i R1

iΣx contact location at i along x-axis in frame FΣ R1 Σ

iΣy contact location at i along y-axis in frame FΣ R1 Σ

i̇Σx slipping velocity at i along x-axis in frame FΣ R1 Σ

i̇Σy slipping velocity at i along y-axis in frame FΣ R1 Σ

θ angle of an object R1 S

ϕ relative angle of frame from {FW} to {FS} R1 W
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ḂB
x+, Ḃ

B
x− represent the slipping velocity at B along positive and negative directions for x-

axis in FB, respectively. The notation 0 ≤ a ⊥ b ≥ 0 means the complementarity constraints

a ≥ 0, b ≥ 0, ab = 0. Since we consider slipping contact during pivoting, we have "equality"

constraints in friction cone constraints at points A,B:

fB
tA = µAf

B
nA, f

B
tB = −µBf

B
nB (7.4)

To realize stable pivoting, actively controlling position of point P is important. Thus, we

consider the following complementarity constraints that represent the relation between the

slipping velocity Ṗy at point P in FO and friction cone constraint at point P :

0 ≤ ṖO
y+ ⊥ µpf

O
nP − fO

tP ≥ 0 (7.5a)

0 ≤ ṖO
y− ⊥ µpf

O
nP + fO

tP ≥ 0 (7.5b)

where ṖO
y = ṖO

y+ − ṖO
y−.

7.3 Robust Pivoting Formulation

In this section, we present a generic formulation for robust pivoting manipulation. In par-

ticular, we use the quasi-static equilibrium conditions (7.1) in the presence of disturbances

to formulate the robust planning problem. In particular, using sufficiency for stability of the

object during manipulation we can estimate the bound of disturbance that can be tolerated

during manipulation. Since this bound would depend on the pose of the object, we reason

about the margin throughout the manipulation trajectory during the optimization problem

formulation. We present the general idea in the following paragraph.

In the most general case, we assume that there is an external force FB
ext and moment MB

ext

acting on the object during manipulation. Let us assume that the x and y component of the

external force in FB are represented as FB
ext,x and FB

ext,y respectively. Then the quasi-static
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equilibrium conditions (7.1) can be rewritten as follows:

fB
nA + fB

tB + fB
xP + FB

ext,x = 0, (7.6a)

fB
tA + fB

nB +mg + fB
yP + FB

ext,y = 0, (7.6b)

AB
x f

B
tA − AB

y f
B
nA + CB

x mg + PB
x f

B
yP − PB

y f
B
xP +MB

ext = 0 (7.6c)

Note that FB
ext and MB

ext may not be independent of each other. They are related via the

the point of application of force FB
ext in the quasi-static equilibrium conditions (7.6). These

equations may not be satisfied for all possible values of FB
ext and MB

ext. Since the contact

forces can be readjusted in (7.6), the quasi-static equilibrium can be satisfied for a certain

range of FB
ext and MB

ext. A generic analysis for estimating this margin or bound for which

these disturbances can be compensated by contact forces is a bit involved as such a bound is

dependent on the point and angle of application of the external force FB
ext. In the following

sections, we present some specific cases which can be analyzed by making some simplifying

assumptions on these disturbances. For brevity, we omit superscript B of variables in the

following sections because we consider quasi-static equilibrium in FB unless we consider

quasi-static equilibrium in a different frame (see Sec 7.3.5).

7.3.1 Frictional Stability Margin

The robust quasi-static equilibrium conditions shown in (7.6) can be used to explain the

concept of stability margin. The stability margin is given by the magnitude of the external

force FB
ext and moment MB

ext which can be satisfied in (7.6) in any stable configuration of

the object. This margin would depend on the contact force between the object and the

environment as well as the control force used by the manipulator during the task. This

provides the intuition that one can design a control trajectory such that the stability margin

can be maximized.

We briefly provide some physical intuition about frictional stability for a few specific

cases. First suppose that uncertainty exists in mass of a body. In the case when the actual

mass is lower than estimated, the friction force at point A would increase while the friction
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force at point B would decrease, compared to the nominal case. In contrast, suppose if the

actual mass of the body is heavier than that of what we estimate, then the body can tumble

along point B in the clockwise direction. In this case, we can imagine that the friction force

at point A would decrease while the friction force at point B would increase. However, as

long as the friction forces are non-zero, the object can stay in contact with the external

environment. Similar arguments could be made for uncertainty in CoM location. The key

point to note that the friction forces can re-distribute at the two contact locations and thus

provide a margin of stability to compensate for uncertain gravitational forces and moments.

We call this margin as frictional stability.

In the following sections, we present the mathematical formulation of frictional stability

for cases when the mass, CoM location, friction coefficients, or finger contact location are

not known perfectly.

7.3.2 Stability Margin for Uncertain Mass

For simplicity, we denote ϵ as uncertain weight with respect to the estimated weight. Also,

to emphasize that we consider the system under uncertainty, we put superscript ϵ for each

friction force variable. Thus, the quasi-static equilibrium conditions in (7.1) can be rewritten

as:

f ϵ
nA + f ϵ

tB + fxP = 0, (7.7a)

f ϵ
tA + f ϵ

nB + (mg + ϵ) + fyP = 0, (7.7b)

Axf
ϵ
tA − Ayf

ϵ
nA + Cx(mg + ϵ) + PxfyP = PyfxP (7.7c)

Then, using (7.4) and (7.7c), we obtain:

f ϵ
nA =

−Cx (mg + ϵ)− PxfyP + PyfxP
µAAx − Ay

(7.8)

To ensure that the body maintains contact with the external surfaces, we would like to

enforce that the body experience non-zero normal forces at the both contacts. To realize

this, we have f ϵ
nA ≥ 0, f ϵ

nB ≥ 0 as conditions that the system needs to satisfy. Consequently,
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by simplifying (7.8), we get the following:

ϵ ≥ PyfxP − PxfyP − Cxmg

Cx

, if Cx > 0, (7.9a)

ϵ ≤ PyfxP − PxfyP − Cxmg

Cx

, if Cx < 0 (7.9b)

Note that the upper-bound of ϵ means that the friction forces can exist even when we make

the mass of the body lighter up to ϵ
g
. The lower-bound of ϵ means that the friction forces can

exist even when we make the mass of the body heavier up to ϵ
g
. (7.9) provides some useful

insights. (7.9) gives either upper- or lower-bound of ϵ for f ϵ
nA according to the sign of Cx (the

moment arm of gravity). This is because the uncertain mass would generate an additional

moment along with point B in the clock-wise direction if Cx > 0 and in the counter clock-

wise direction if Cx < 0. If Cx = 0, we have an unbounded range for ϵ, meaning that the

body would not lose contact at point A no matter how much uncertainty exists in the mass.

(7.9) can be reformulated as an inequality constraint:

Cx(ϵ− ϵA) ≥ 0 (7.10)

where ϵA =
PyfxP−PxfyP−Cxmg

Cx
.

We can derive condition for ϵ based on f ϵ
nB ≥ 0 from (7.4), (7.7a), and (7.7b):

ϵ ≤ µAfxP − fyP −mg (7.11)

We only have upper-bound on ϵ based on f ϵ
nB ≥ 0, meaning that the contact at point B

cannot be guaranteed if the actual mass is lighter than µAfxP − fyP −mg.

7.3.3 Stability Margin for Uncertain CoM Location

We denote dOx , dOy as residual CoM locations with respect to the estimated CoM location in

FO coordinate, respectively. Thus, the residual CoM location in FW , dWx , dWy , are represented

by dWx = d cos(θ + θd), d
W
y = d sin(θ + θd), where d =

√
(dOx )

2 +
(
dOy
)2, θd = arctan

dOy
dOx

. For

notation simplicity, we use r to represent dWx . In this chapter, we put superscript r for each

friction force variable. The quasi-static equilibrium conditions in (7.1) can be rewritten as

131



follows:

f r
nA + f r

tB + fxP = 0, (7.12a)

f r
tA + f r

nB +mg + fyP = 0, (7.12b)

Axf
r
tA − Ayf

r
nA + (Cx + r)mg + PxfyP = PyfxP (7.12c)

Then, using (7.4) in (7.12), we obtain:

r ≤ PyfxP − PxfyP
mg

− Cx, (7.13a)

r ≥ −
µAAx−Ay

1+µA
(−fxP − fyP −mg)− PyfxP + PxfyP

mg
− Cx (7.13b)

where (7.13a), (7.13b) are obtained based on f r
nA ≥ 0, f r

nB ≥ 0, respectively. (7.13) means

that the object would lose contact at A if the actual CoM location is more to the right than

our expected CoM location while the object would lose the contact at B if the actual CoM

location is more to the left.

7.3.4 Stability Margin for Stochastic Friction

In this section, we present modeling and analysis of pivoting manipulation in the presence

of stochastic friction coefficients. In particular, we consider stochastic friction at the two

different contact points A and B. We do not consider stochastic friction at the contact point

between the robot and the manipulator since that leads to stochastic complementarity con-

straints (please see [44, 147] for detailed analysis on stochastic complementarity constraints).

We make the assumption that the friction coefficients at A and B are partially known. In

particular, we assume that the friction coefficients for contact at A could be represented as

µA = µ̂A+ µ̃A where µ̃A is the uncertain stochastic variable. Similarly, the friction coefficient

at B could be represented as µB = µ̂B + µ̃B where µ̃B is the uncertain stochastic variable.

Note that we do not need to need to know any information regarding the probabilistic dis-

tribution (e.g., probability density function of Gaussian distribution, beta distribution.) of

the unknown part. We can rewrite (7.6) for this case as follows. We put superscript µ for
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each friction variable:

fµ
nA + f̂µ

tB + fxP + ϵB = 0, (7.14a)

f̂µ
tA + fµ

nB +mg + fyP + ϵA = 0, (7.14b)

Axf̂
µ
tA + AxϵA − Ayf

µ
nA + Cxmg + PxfyP − PyfxP = 0 (7.14c)

where, fµ
tA = f̂µ

tA + fµ
nAµ̃A and fµ

tB = f̂µ
tB + fµ

nBµ̃B. The above equations are obtained by

representing fnAµ̃A as ϵA for contact at A and similarly, ϵB for the contact at B. Thus, ϵA

and ϵB are the uncertain contact forces for the contacts at A and B. The robust formulation

that we consider in this chapter considers the worst-case effect of these uncertainties on the

stability of the object during manipulation. Thus, we try to maximize the bound of these

variables ϵA and ϵB using our proposed bilevel optimization. It is noted that ϵA and ϵB are

the stability margin for this particular case of stochastic friction.

To ensure that the body maintains contact, we impose fµ
nA ≥ 0, fµ

nB ≥ 0, so that we get

the following inequalities for ϵA, ϵB:

−µAfxP + ϵA +mg + fyP ≤ µAϵB (7.15a)

ϵB ≤ −µB(ϵA +mg + fyP )− fxP (7.15b)

To ensure slipping contact even in the presence of uncertainties, we need to satisfy friction

cone constraints specified earlier in (7.2), (7.4). Using these constraints, we can find the

upper and lower bound for the variables ϵA and ϵB:

(µ̂A + µ̃A)f
µ
nA = f̂µ

tA + µ̃Af
µ
nA (7.16a)

(µ̂B + µ̃B)f
µ
nB = −f̂µ

tB − µ̃Bf
µ
nB (7.16b)

To get a lower bound for the variables ϵA and ϵB, we make a assumption regarding the

uncertainty for the friction coefficients at A and B. We assume that the unknown part is

bounded above by the known part, i.e., µ̃i ≤ µ̂i, ∀i = A,B. Note that this is not a restrictive

assumption. What this implies is that the above parameter has bounded uncertainty. For

simplicity, we assume that uncertainty is bounded by the known part of the parameter. For
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example, if the friction coefficient is modeled as a stochastic random variable, then we assume

that we know the mean of the friction parameter and the standard deviation is bounded by

some multiple of mean (note that this bound is just for simplification and one can assume

any practical bound for uncertainty). Consequently, we can derive the following relations:

−µ̂Af
µ
nA ≤ ϵA ≤ µ̂Af

µ
nA (7.17a)

−µ̂Bf
µ
nB ≤ ϵB ≤ µ̂Bf

µ
nB (7.17b)

Thus, we get constraints (7.15) and (7.17) for the stability margin by considering the

stability and the friction cone constraints in the presence of uncertain friction coefficients.

These constraints are used to estimate the stability margin during the proposed bilevel

optimization.

7.3.5 Stability Margin for Finger Contact Location

We consider the stability margin d of finger contact location on an object due to imperfect

stiffness controller from robotic manipulators, as illustrated in Fig. 7.4. We can formulate

the following quasi-static equilibrium in FO. We put superscript d for each extrinsic friction

variable:

fO,d
xA + fO,d

xB +mg sin θ + fO
nP = 0, (7.18a)

fO,d
yA + fO,d

yB +mg cos θ + fO
tP = 0 (7.18b)∑

i∈{A,B}

(
iOx f

O,d
yi − iOy f

O,d
xi

)
+ PO

x f
O
tP − (PO

y + d)fO
nP = 0 (7.18c)

Note that −AO
x = −BO

x = PO
x = l

2
, AO

y = −BO
y = w

2
. Using this relation, we can simplify

(7.18). In particular, we use fO,d
xA ≥ 0, fO,d

xB ≥ 0, fO
nP ≥ 0 and thus we can get the following

bound for d:

d ≤ d ≤ d̄, (7.19a)

d = −Ax
mg cos θ + 2ftP

fnP
− Ay

mg sin θ + fnP
fnP

− PO
y , (7.19b)

d̄ = −Ax
mg cos θ + 2ftP

fnP
+ Ay

mg sin θ + fnP
fnP

− PO
y (7.19c)
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Figure 7.4: A schematic showing the free-body diagram of a rigid body during pivoting manipulation. We

consider the stability margin of finger location due to imperfect control of stiffness controller in a robotic

manipulator.

When fO
nP → 0, the equation suggests that d̄ tends to infinity and d tends to negative infin-

ity. As fO
nP = 0 implies no force at point P , the finger’s placement becomes inconsequential

as it does not affect the quasi-static equilibrium of the object.

We can consider that uncertainty in finger contact location and uncertainty in the geom-

etry of an object have a similar influence on the manipulation. This is because the relative

pose of the object with respect to the robot changes for both cases, resulting in the potential

contact mode changes.

7.3.6 Stability Margin for Uncertain Mass on a Slope

We consider the case where we tilt the two external walls by the angle of ϕ. Our discussion in

Sec. 7.3.2 still holds. The only difference arises from gravity terms. Hence, the quasi-static

equilibrium conditions in FB can be rewritten as:

f ϵ
nA + f ϵ

tB + fxP + (mg + ϵ) sinϕ = 0, (7.20a)

f ϵ
tA + f ϵ

nB + fyP + (mg + ϵ) cosϕ = 0, (7.20b)

Axf
ϵ
tA − Ayf

ϵ
nA + (Cx cosϕ− Cy sinϕ) (mg + ϵ) + PxfyP − PyfxP = 0 (7.20c)
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Following the same logic in Sec. 7.3.2, we can get the following bound for the stability

margin ϵ under uncertain mass when the object is on a slope:

ϵ ≥ PyfxP − PxfyP − (Cx cosϕ− Cy sinϕ)mg

Cx cosϕ− Cy sinϕ
, if Cx cosϕ > Cy sinϕ (7.21a)

ϵ ≤ PyfxP − PxfyP − (Cx cosϕ− Cy sinϕ)mg

Cx cosϕ− Cy sinϕ
, if Cx cosϕ < Cy sinϕ (7.21b)

As a result, (7.21a) and (7.21b) result in the following inequality constraint:

(Cx cosϕ− Cy sinϕ) (ϵ− ϵA) ≥ 0 (7.22)

where ϵA =
PyfxP−PxfyP−(Cx cosϕ−Cy sinϕ)mg

Cx cosϕ−Cy sinϕ
. We also derive the bound on ϵ using f ϵ

nB ≥ 0,

(7.21a), and (7.21b):

(µA sinϕ− cosϕ) ϵ ≥ fyP − µAfxP (7.23)

Note that the sign of µA sinϕ − cosϕ can change depending on the angle of slope. In

this chapter, we choose ϕ such that the sign of µA sinϕ − cosϕ does not change during

manipulation.

The discussion in this section for manipulation under uncertain mass on a slope can be

easily extended with other uncertain parameters such as CoM location, friction, and finger

contact location.

7.3.7 Pivoting with Patch Contact between the object and the manipulator

In the previous sections, we considered point contact between the manipulator and the object.

This could be potentially restrictive. Moreover, this may not be a realistic assumption when a

robot is interacting with objects. In this section, we present a slightly modified formulation

by considering patch contact between the object and the manipulator. We would like to

analyze and understand how patch contact would compare against a point contact model

for stability during pivoting manipulation. Fig. 7.5 shows the simplest patch contact model

during the pivoting task we consider in this chapter. Using this model, we can write the

136



Figure 7.5: A schematic showing the free-body diagram of a rigid body during pivoting manipulation with

patch contact. We approximate patch contact as two point contacts P1 and P2 with the same force distri-

bution. We assume that P1 always lies on the vertex of the object for this simplistic patch contact model. s

is the distance between point contact P1 and P2 along y-axis of FO.

following quasi-static equilibrium:

fnA + ftB + fxP1 + fxP2 = 0, (7.24a)

ftA + fnB +mg + fyP1 + fyP2 = 0, (7.24b)

AxftA − AyfnA + Cxmg +
2∑

i=1

(
PixfyPi

− PiyfxPi

)
= 0 (7.24c)

where Pix , Piy represent x and y coordinate of P1 and P2 in FO, respectively. In this work,

we assume that patch contact as two point contacts P1 and P2 as the same force distribution,

which indicates that fxP1 = fxP2 , fyP1 = fyP2 . s is the distance between point contact P1 and

P2 and s is a decision variable, meaning that location of P2 is a decision variable and can

change over time. In this work, we assume that P1 does not move over time, which simplifies

the model of patch contact.

Using the above quasi-static equilibrium conditions with fnA ≥ 0, fnB ≥ 0, we can solve

and find the upper and the lower bound of stability margin under the various uncertainties

described earlier in the previous subsections. We will present some results in the later section

using this formulation and compare against the point contact formulation.
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Figure 7.6: Conceptual schematic of our proposed frictional stability and robust trajectory optimization for

pivoting. Due to slipping contact, friction forces at points A,B lie on the edge of friction cone. Given the

nominal trajectory of state and control inputs, friction forces can account for uncertain physical parameters

to satisfy quasi-static equilibrium. We define the range of disturbances that can be compensated by contacts

as frictional stability. The above figure shows the case of uncertain mass and CoM location.

7.4 Robust Trajectory Optimization

Using the notion of frictional stability introduced in the previous section, we describe our

proposed contact implicit bilevel optimization (CIBO) method for robust optimization of ma-

nipulation trajectories. The proposed method explicitly considers frictional stability under

uncertain physical parameters. It is noted that the proposed method considers robustness

under slipping contact which results in equality for friction cone constraints (see Fig. 7.6).

After describing the formulation for convex objects, we also describe how to extend the pro-

posed CIBO to consider objects with non-convex geometry. Our proposed method is also

presented as a schematic in Fig. 7.6. As shown in Fig. 7.6, the proposed CIBO considers

frictional stability margin along the entire trajectory for manipulation and then maximizes

the minimum margin in the proposed framework. This is also explained in Fig. 7.7, where we

show that we estimate the bound of stability margin in the lower level optimization and max-
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imize the minimum margin in the upper level optimization. Before introducing our proposed

bilevel optimization, we present a baseline contact-implicit TO which can be formulated as

an MPCC.

7.4.1 Contact-Implicit Trajectory Optimization for Pivoting

The purpose of our optimal control is to find optimal control input sequences under con-

straints for pivoting manipulation. In particular, we consider the objective function for

achieving the minimum motion of objects under kinematics constrains, quasi-static equilib-

rium, friction cone constraints, and sticking-slipping complementarity constraints as follows:

min
x,u,f

N∑
k=1

(xk − xg)⊤Q(xk − xg) +
N−1∑
k=0

u⊤k Ruk (7.25a)

s. t. ik,x, ik,y ∈ FK(θk, P
O
k,y), (7.1), (7.4), (7.5), (7.25b)

x0 = xs, xN = xg, xk ∈ X , uk ∈ U , 0 ≤ fk,ni ≤ fu (7.25c)

where xk = [θk, P
O
k,y, θ̇k, Ṗ

O
k,y]

⊤, uk = [fk,nP , fk,tP ]
⊤, fk = [fk,nA, fk,nB]

⊤, Q = Q⊤ ≥ 0, R =

R⊤ > 0. The input of (7.25) consists of physical parameters such as mass, length, and

width of the object and the optimization parameters such as Q and R. The output of (7.25)

consists of trajectories of xk, uk, fk,∀k ∈ {0, 1, . . . , N}. We use explicit Euler to discretize

the dynamics with sample time ∆. The function FK represents forward kinematics to

specify each contact point i and CoM location. X and U are convex polytopes, consisting of

a finite number of linear inequality constraints. fu is an upper-bound of normal force at each

contact point. Note that we impose (7.1), (7.4) at each time step k. xs, xg are the states at

k = 0, k = N , respectively.

7.4.2 Robust Bilevel Contact-Implicit Trajectory Optimization

In this section, we present our formulation where we incorporate frictional stability in tra-

jectory optimization to obtain robustness. In particular, we first focus on discussing the
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Figure 7.7: This figure illustrates the idea of the proposed contact implicit bilevel optimization, CIBO.

Given the trajectory of x, u, f , the stability margin over the trajectory can be computed as shown in lower-

level optimization problem. Then, given the computed stability margin over the trajectory ϵ, the upper-

level optimization problem maximizes the worst-case stability margin over the trajectory by optimizing the

trajectory of x, u, f . Our CIBO simultaneously optimizes the lower-level optimization problem and the

upper-level optimization problem. In the right plot, red and blue arrows represent the stability margin along

positive and negative directions, respectively. Our CIBO optimizes the stability margin for each direction.

optimization problem with uncertain mass, CoM location, and finger contact location. We

later discuss the optimization problem of uncertain coefficient of friction in Sec 7.4.3.

An important point to note is that the optimization problem would be ill-posed if we

naively add (7.7), (7.12), and/or (7.19) to (7.25) since there is no u to satisfy all uncertainty

realization in equality constraints [149]. Therefore, our strategy is that we plan to find

an optimal nominal trajectory that can ensure external contacts under uncertain physical

parameters. In other words, we aim at maximizing the worst-case stability margin over the

trajectory given the maximal frictional stability at each time-step k (also shown in Fig. 7.6).

Thus, we maximize the following objective function:

min
k
ϵ∗k,+ −max

k
−ϵ∗k,− (7.26)

where ϵ∗k,+, ϵ∗k,− are non-negative variables. Note that ϵ∗k,+, ϵ∗k,− are the largest uncertainty in

the positive and negative direction, respectively, at instant k given x, u, f , which results in

non-zero contact forces (i.e., stability margin, see also Fig. 7.6). (7.26) calculates the smallest

stability margin over time-horizons by subtracting the stability margin along the positive
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direction from that along the negative direction. Hence, we formulate a bilevel optimization

problem which consists of two lower-level optimization problems as follows (see also Fig. 7.7):

max
x,u,f,ϵ∗+,ϵ∗−

(min
k
ϵ∗k,+ −max

k
−ϵ∗k,−) (7.27a)

s. t. (7.25b), (7.25c), (7.27b)

ϵ∗k,+ ∈ argmax
ϵk,+

{ϵk,+ : Akϵk,+ ≤ bk, ϵk,+ ≥ 0}, (7.27c)

ϵ∗k,− ∈ argmax
ϵk,−

{ϵk,− : −Akϵk,− ≤ bk, ϵk,− ≥ 0} (7.27d)

where Ak ∈ R2×1, bk ∈ R2×1 represent inequality constraints in (7.10) and (7.11) or (7.22)

and (7.23) if the object is on a slope. Akϵk,+ ≤ bk, ϵk,+ ≥ 0, and −Akϵk,− ≤ bk, ϵk,− ≥ 0

represent the lower-level constraints for each lower-level optimization problem while (7.25b),

(7.25c) represent the upper-level constraints. ϵ+, ϵ− are the lower-level objective functions

while mink ϵ
∗
k,+ − maxk−ϵ∗k,− is the upper-level objective function. ϵk,+, ϵk,− are the lower-

level decision variables of each lower-level optimization problem while x, u, f, ϵ∗+, ϵ∗− are the

upper-level decision variables.

(7.27) considers the largest one-side frictional stability margin along positive and negative

direction at k. Therefore, by solving these two lower-level optimization problems, we are able

to obtain the maximum frictional stability margin along positive and negative direction. The

advantage of (7.27) is that since the lower-level optimization problem are formulated as two

linear programming problems, we can efficiently solve the entire bilevel optimization problem
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using the Karush-Kuhn-Tucker (KKT) condition as follows:

wk,+,j, wk,−,j ≥ 0, Ckϵk,+ ≤ dk, Ekϵk,− ≤ dk, (7.28a)

wk,+,j(Ckϵk,+ − dk)j = 0, (7.28b)

wk,−,j(Ekϵk,− − dk)j = 0, (7.28c)

∇(−ϵk,+) +
3∑

j=1

wk,+,j∇(Ckϵk,+ − dk)j = 0, (7.28d)

∇(−ϵk,−) +
3∑

j=1

wk,−,j∇(Ekϵk,− − dk)j = 0 (7.28e)

where Ck = [A⊤
k ,−1]⊤ ∈ R3×1, dk = [b⊤k , 0]

⊤ ∈ R3×1, Ek = [−A⊤
k ,−1]⊤ ∈ R3×1. wk,+,j is

Lagrange multiplier associated with (Ckϵk,+ ≤ dk)j, where (Ckϵk,+ ≤ dk)j represents the

j-th inequality constraints in Ckϵk,+ ≤ dk. wk,−,j is Lagrange multiplier associated with

(Ekϵk,− ≤ dk)j. Using the KKT condition and epigraph trick, we eventually obtain a single-

level large-scale nonlinear programming problem with complementarity constraints:

max
x,u,f,ϵ∗+,ϵ∗−

(t+ + αt−) (7.29a)

s. t. (7.25b), (7.25c), (7.28), (7.29b)

t+ ≤ ϵk,+, t− ≤ ϵk,−,∀k (7.29c)

where α is a weighting scalar. Note that we derive (7.29) for the case with an uncertain

mass parameter but this formulation can be easily converted to the case where uncertainty

exists in CoM location by replacing Ak, bk in (7.27) with (7.13). Similarly, we can consider

uncertainty in finger contact location by replacing Ak, bk in (7.27) with (7.19). Therefore,

by solving tractable (7.29), we can efficiently generate robust trajectories that are robust

against uncertain mass, CoM location, and contact location parameters.

Remark 1 : If we consider the case where uncertainty exists in both mass and CoM loca-

tion simultaneously, we would have a nonlinear coupling term (Cx+r)(mg+ϵ) in quasi-static

equilibrium of moment. This makes the lower-level optimization non-convex optimization,

making it extremely challenging to solve during bilevel optimization.
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7.4.3 Robust Bilevel Contact-Implicit Trajectory Optimization under Frictional

Uncertainty

We consider the case where the system has uncertainty in the friction coefficients at A and

B as discussed in Sec 7.3.4. In order to design a robust open-loop controller for the system,

we can use the similar formulation presented in Sec 7.4.2. The proposed formulation aims at

maximizing the stability margin from stochastic friction. In particular, to avoid non-convex

optimization as the lower-level optimization problem, we consider the stability margin along

positive and negative direction for both ϵA and ϵB, as we discuss in Sec 7.4.2. By borrowing

the optimization problem (7.27), the proposed formulation can be seen as follows. For

simplicity, we abbreviate subscript k.

max
x,u,f,ϵ∗A,+,ϵ∗A,−,ϵ∗B,+,ϵ∗B,−

∑
c∈C

(min
k
ϵ∗c,+ −max

k
−ϵ∗c,−) (7.30a)

s. t. (7.25b), (7.25c), (7.30b)

ϵ∗A ∈ [−ϵ∗A,−, ϵ
∗
A,+], ϵ

∗
B ∈ [−ϵ∗B,−, ϵ

∗
B,+], (7.30c)

ϵ∗A,+ ∈ argmax
ϵA,+

{ϵA,+ : g(x, u, f, ϵA,+, ϵ
∗
B) ≤ 0,

ϵA,+ ≥ 0}, (7.30d)

ϵ∗A,− ∈ argmax
ϵA,−

{ϵA,− : g(x, u, f,−ϵA,−, ϵ
∗
B) ≤ 0,

ϵA,− ≥ 0, }, (7.30e)

ϵ∗B,+ ∈ argmax
ϵB,+

{ϵB,+ : g(x, u, f, ϵB,+, ϵ
∗
A) ≤ 0,

ϵB,+ ≥ 0, }, (7.30f)

ϵ∗B,− ∈ argmax
ϵB,−

{ϵB,− : g(x, u, f,−ϵB,−, ϵ
∗
A) ≤ 0,

ϵB,− ≥ 0}, (7.30g)

where g summarizes the constraints for each lower-level optimization problem and C =

{A,B}. For each lower-level optimization problem, we consider that another uncertain

friction is in the range of optimal stability margin. For instance, (7.30d) is one of the

four lower-level optimization problems which aims at maximizing the stability margin under
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Figure 7.8: A schematic of pivoting for a non-convex shape object where contact set changes over time.

During mode 1, the peg rotates with contact at A and B2. During mode 2, the peg rotates with contact at

A and B1. γ represents one of the kinematic features of peg, which is used to discuss the result in Sec 7.9.

stochastic friction forces at A, given stochastic friction force at B, ϵ∗B. (7.30c) ensures that

ϵ∗B needs to be within the range of stability margin computed from other two lower-level

optimization problems (7.30f) and (7.30g).

The resulting optimization introduces many complementarity constraints through the

KKT condition because of four lower-level optimization problems, but the resulting compu-

tation is still tractable. We discuss computational results in Sec 7.5.10.

7.4.4 Robust Bilevel Optimization over Mode Sequences for Non-Convex Ob-

jects

The method introduced in the previous subsections assumes convex geometry of the object

being manipulated and can not be applied to objects with non-convex geometry (such as pegs

as shown in Fig. 7.1). This is because non-convex objects could result in different contact

formations between the object and the environment and it is not trivial to identify a feasible

contact sequence. In [131], the proposed optimization (7.29) was solved sequentially for pegs

with non-convex geometry. As illustrated in Fig. 7.8, we first solve the optimization for a

particular contact set (i.e., mode 1 in Fig. 7.8) and then solve the optimization for another

contact set (i.e., mode 2 in Fig. 7.8) given the solution obtained from the first optimization.

While this method works, it requires extensive domain knowledge. We observed that the

second stage optimization can result in infeasible solutions given the solution from the first
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stage optimization. Thus, we had to carefully specify the parameters of optimization and,

in particular, the initial state and terminal state constraints. Such a hierarchical approach

has difficulty in finding a feasible solution once the object becomes more complicated.

To overcome these issues, in general, complementarity constraints can be used to model

the change of contact. However, introducing complementarity constraints inside the lower-

level optimization makes the lower-level optimization non-convex optimization. Hence, the

KKT condition is not a necessary and sufficient condition for optimality but rather a neces-

sary condition. Thus, it is not guaranteed to find globally optimal safety margins over the

trajectory.

In this work, we propose another approach to deal with the non-convexity of the object.

Inspired by [16], we formulate the optimization that optimizes the trajectory given mode

sequences instead of optimizing mode sequences. It is worth noting that our framework still

optimizes the trajectory over the time duration of each mode given the sequence of the mode.

Our goal is that the optimization has a larger feasible space so that less domain knowledge

is required.

Using the formulation presented in [16], we present a mode-based formulation for non-

convex shaped objects. See [16] for more details regarding mode-based optimization. For

simplicity of exposition, we only present the formulation considering two modes. But one

can easily extend this to problems with multiple modes. For each contact mode, the system

has the different constraints. For brevity, we abbreviate the subscript k:

ix, iy ∈ FKm(θk, P
O
k,y), ∀i ∈ {A,Bm} (7.31a)

gm(fnA, ftA, fnB1 , ftB1 , fnP , ftP , P
O
y ) if m = 1 (7.31b)

gm(fnA, ftA, fnB2 , ftB2 , fnP , ftP , P
O
y ) if m = 2 (7.31c)

ftA = µAfnA, ftB1 = −µB1fnB1 , ftB2 = −µB2fnB2 (7.31d)

(7.5), xk ∈ X , uk ∈ U , 0 ≤ fk,ni ≤ fu (7.31e)

where m ∈ {1, 2} to represent each contact mode. gm represents the quasi-static model

of pivoting manipulation for mode m. It is worth noting that since we decompose the
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optimization problem into the two mode optimization problem, complementarity constraints

are encoded for each mode.

What the optimization problem needs to perform is that for each mode, it only considers

the associated constraints and does not consider constraints associated with different contact

mode. For example, during mode 1, the optimization should consider only constraints asso-

ciated with mode 1 and should not consider constraints such as (7.31c). Another thing the

optimization needs to consider is that it needs to scale θ̇, ṖO
y since we would like to optimize

over the time duration. To achieve that, we employ the scaled time variables as discussed in

[16]. As a result, we recast the quasi-static model by introducing a new state variable with a

scaled time, x̃k =
[
θk, P

O
k,y,

θ̇k
T
,
ṖO
k,y

T

]⊤
where T = T1 during mode 1 and T = T2 during mode

2.

For two contact modes, we can remodel our optimization (7.25) as follows:

min
x̃,u,f

N−1∑
k=0

(x̃k − xg)⊤Q(x̃k − xg) + u⊤k Ruk +
2∑

l=1

Tl (7.32a)

s. t. h1(x̃k, uk, fk) ≤ 0, for k∆ ≤ 1 (7.32b)

h2(x̃k, uk, fk) ≤ 0, for k∆ > 1 (7.32c)

where x̃k =

[
θk, P

O
k,y,

θ̇k
T1
,
ṖO
k,y

T1

]⊤
for k∆ ≤ 1 and x̃k =

[
θk, P

O
k,y,

θ̇k
T2
,
ṖO
k,y

T2

]⊤
for k∆ > 1. We

use h1 and h2 to represent all constraints for each mode. Given (7.32), we can obtain bilevel

optimization formulation for non-convex shape objects by following the logic in Sec 7.4.2.

7.4.5 Robust Bilevel Contact-Implicit Trajectory Optimization with Patch Con-

tact

The formulation for robust CIBO is similar to the point contact case except that the un-

derlying equilibrium conditions are different. The quasi-static equilibrium conditions for the

patch contact case were earlier presented in (7.24). Using these equations and the analysis

presented in Sections 7.3.2 through 7.3.4, it is straightforward to compute the constraints for

the corresponding robust CIBO similar to (7.27). More explicitly, this can be achieved by

146



Table 7.2: Parameters of objects. m, l, w represent the mass, length, and the width of the object, respectively.

For pegs, the first element in l, w are l1, w1 and the second element in l, w are l2, w2, respectively, shown

in Fig. 7.20. For pegs, since they are made of the same material and they make contact on the same

environment, we can assume µB = µB1 = µB2 .

m [g] l [mm] w [mm] µA, µB, µP

gear 1 140 84 20 0.3, 0.3, 0.8

gear 2 100 121 9.5 0.3, 0.3, 0.8

gear 3 280 84 20 0.3, 0.3, 0.8

peg 1 45 36, 40 20, 28 0.3, 0.3, 0.8

peg 2 85 28, 40 10, 11 0.3, 0.3, 0.8

peg 3 85 28, 40 10, 27.5 0.3, 0.3, 0.8

Table 7.3: Worst-case stability margin over the control horizon obtained from optimization for gear 1. Note

that the stability margin for the solution of the benchmark optimization is analytically calculated.

ϵ∗+, ϵ∗− [N] r∗+, r∗− [mm]

Benchmark optimization (7.25) 0.10, 0.66 1.5, 0.85

Ours (7.29) with mass uncertainty 0.34, 0.50 N/A

Ours (7.29) with CoM uncertainty N/A 3.43, 2.70

computing the appropriate constraints of the type Akϵk,+ ≤ bk and −Akϵk,− ≤ bk using (7.24)

and the frictional stability margin discussion in Sec 7.3.7.

7.5 Experimental Results

In this section, we verify the performance of our proposed approach for pivoting. Through

the experiments we present in this section, we evaluate the efficacy of the proposed planner

in several different settings and the computational requirement of the method. We also

present results of implementation of the proposed planner on a robotic system using a 6 DoF

manipulator arm and compare it against a baseline trajectory optimization method.
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(a) (b) (c) (d) (e)

Figure 7.9: Trajectory of frictional stability margin. ϵA, ϵB are bounds of ϵ from (7.10), (7.11). rA, rB are

bounds of r from (7.13). ϵ+, ϵ−, r+, ri are solutions obtained from CIBO. (a), (b): Trajectory of frictional

stability of gear 1 based on uncertain mass obtained from baseline optimization, our CIBO, respectively. (c),

(d): Trajectory of frictional stability of gear 1 based on uncertain CoM location obtained from baseline opti-

mization, CIBO, respectively. (e): Snapshots of pivoting motion for gear 1 obtained from CIBO considering

uncertain CoM location.

(a) (b)

(c)

Figure 7.10: (a), (b): Trajectory of frictional stability margin of peg 1 based on uncertain mass obtained from

CIBO, baseline optimization, respectively. Note that here we solve CIBO sequentially for each mode (i.e.,

hierarchical planning), instead of using the proposed mode-sequence-based optimization. (c): Snapshots of

pivoting motion for peg 1, obtained from CIBO considering uncertain mass.
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Figure 7.11: We show the time history of object angle, finger position, and contact forces from a manipulator

during pivoting of gear 1. The top row shows the result using CIBO (7.29) considering CoM uncertainty and

the bottom one shows the result using (7.25) (i.e., it does not consider robustness criteria in the formulation

explicitly.). The top row results and the bottom row results are used in visualizing the stability margin in

Fig. 7.9 (d), (c), respectively.

Table 7.4: Obtained worst stability margins over the time horizons from optimization for peg 1. Note that

the stability margin for the solution of the benchmark optimization is analytically calculated.

ϵ∗+, ϵ∗− [N] r∗+, r∗− [mm]

Benchmark optimization (7.25) 0.035, 0.018 31, 0

Ours (7.29) with mass uncertainty 0.050, 0.021 N/A

Ours (7.29) with CoM uncertainty N/A 38, 0

7.5.1 Experiment Setup

We implement our method in Python using IPOPT solver [10] with PYROBOCOP wrapper

[16]. We use HSL MA86 [150] as a linear solver for IPOPT. The optimization problem is

implemented on a computer with Intel i7-12800K.

We demonstrate our algorithm on several different objects, as detailed in Table 7.2.

During optimization, we set Q = diag(0.1, 0), R = diag(0.01, 0.01). We use α = 1 when we

run (7.29). We set xs = [0, w
4
]⊤, θg = π

2
. Note that we only enforce terminal constraints for

convex shape objects. For non-convex shape objects, we do not enforce terminal constraints
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since the peg cannot achieve θN = π
2

unless we consider another contact mode (see Fig. 7.8).

In PYROBOCOP wrapper, we did warm-start for the state at k = 0, N by setting initial

and terminal states as initial guesses. We did not explicitly conduct a warm-start for other

decision variables and we set them to 0.

We use a Mitsubishi Electric Factory Automation (MELFA) RV-5AS-D Assista 6 DoF

arm (see Fig. 7.1) for the experiments. The robot has a pose repeatability of ±0.03mm.

The robot is equipped with Mitsubishi Electric F/T sensor 1F-FS001-W200 (see Fig. 7.1).

To implement the computed force trajectory during manipulation, we use the default stiff-

ness controller for the robot. By selecting an appropriate stiffness matrix [151], we design

a reference trajectory that would result in the desired interaction force required for manip-

ulation [152, 153]. Note that this trajectory is implemented in open-loop and we do not

design a controller to ensure that the computed force trajectory is precisely tracked during

execution.

Explain MPC setting: Devesh could you work on this? The object states are tracked

using AprilTag[154]. The robot states are tracked using the robot’s joint encoders. The

contact states at contact A,B, P in Fig. 7.2 are estimated using the object state, the robot

state, and the known geometry of the object.

7.5.2 Results of Bilevel Optimization for Uncertain Mass and CoM Parameters

Fig. 7.9 shows the trajectory of frictional stability margin of gear 1 obtained from the pro-

posed robust CIBO considering uncertain mass and uncertain CoM location, and the bench-

mark optimization. Overall, CIBO could generate more robust trajectories. For example,

at t = 0 s, fnB in (a) is almost zero so that the stability margin obtained from (7.11) is

almost zero. In contrast, CIBO could realize non-zero fnB as shown as a red arrow in (b).

In (d), to increase the stability margin, the finger position PO
y moves on the face of gear 1 so

that the controller can increase the stability margin more than the benchmark optimization.

This would not happen if we do not consider complementarity constraints (7.5). Also, our

obtained ϵ+, ϵ−, r+, r− follows bounds of stability margin. It means that CIBO can success-
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fully design a controller that maximizes the worst stability margin given the best stability

margin for each time-step.

Fig. 7.11 shows that both the benchmark and CIBO actually change the finger position

PO
y by considering complementarity constraints (7.5). In fact, we observed that at t = 25 s,

PO
y in both results moves to the negative value to maintain the stability of the object. In

practice, we are unable to find any feasible solutions with fixed PO
y , instead of using (7.5).

Thus, (7.5) is critically important to find a feasible solution.

Next, we discuss how much CIBO improves the worst-case stability margin. The trajec-

tories of fnP in Fig. 7.11 show that the magnitude of fnP from CIBO increase at t = 25 s

to improve the worst-case stability margin. On the other hand, fnP from the benchmark

optimization does not increase at t = 25 s. Hence, we verify that by increasing normal force,

the robot could successfully robustify the pivoting manipulation. This result can be also

understood in Fig. 7.9 (c) and (d) where the stability margin in (d) at t = 25 s is larger than

that in (c), as discussed above.

Table 7.3 and Table 7.4 summarize the computed stability margin from Fig. 7.9. In

Table 7.3, for the case where CIBO considers uncertainty of mass, we observe that the

value of ϵ∗− from CIBO is smaller than that from the benchmark optimization although the

sum of the stability margin ϵ∗+ + ϵ∗− from CIBO is greater than that from the benchmark

optimization. This result means that CIBO can actually improve the worst-case performance

by sacrificing the general performance of the controller. Regarding the case where we consider

the uncertain CoM location, CIBO outperforms the benchmark trajectory optimization in

both r∗+, r∗−. For peg 1, the bilevel optimizer without using mode sequence-based optimization

(i.e., hierarchical optimization) finds trajectories that have larger stability margins for both

uncertain mass and CoM location as shown in Table 7.4. The trajectory of stability margin

obtained from CIBO considering mass uncertainty is illustrated in Fig. 7.10. We discuss the

results using CIBO with mode-sequence based optimization in Sec 7.5.7.
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Figure 7.12: Time history of frictional stability margin considering CoM location with different initial ma-

nipulator position PO
y (t = 0).

7.5.3 Results of Bilevel Optimization with Different Manipulator Initial State

We believe that the efficiency of the optimization depends on the initial location of the

manipulator finger. This is because the stability margin depends on the manipulation finger

location, which is partially governed by its location at t = 0. Thus we present some results

by randomizing over the manipulator finger location at t = 0. We sample initial state of

finger position PO
y (t = 0) from a discrete uniform distribution with the range of PO

y (t =

0) ∈ [−0.5w,−0.375w,−0.25w,−0.125w, . . . , 0.5w]. Then we run CIBO considering CoM

location uncertainty.

Fig. 7.12 illustrates the time history of stability margin with different PO
y (t = 0). CIBO

is not able to find feasible solutions with PO
y (t = 0) < 0. It makes sense since there may not

be enough moment for the desired motion if PO
y (t = 0) < 0.

Fig. 7.12 shows that different PO
y (t = 0) leads to different stability margin over the

time horizon. Table 7.5 summarizes the worst-case stability margin over the trajectory

obtained from Fig. 7.12. Table 7.5 also shows that the worst-case stability margin is different

with different PO
y (t = 0). Finding a good PO

y (t = 0) is not trivial and it requires domain

152



Table 7.5: Computed worst-case stability margin considering uncertain CoM location with different PO
y at

t = 0 over the control horizon obtained from optimization for gear 1.

r∗+, r∗− [mm]

Ours with PO
y (t = 0) = 0 16.47, 1.36

Ours with PO
y (t = 0) = 0.125w 12.99, 2.98

Ours with PO
y (t = 0) = 0.25w 10.00, 4.41

Ours with PO
y (t = 0) = 0.375w 5.94, 5.67

Ours with PO
y (t = 0) = 0.5w 1.94, 6.77

knowledge. Thus, ideally, we should formulate CIBO where PO
y (t = 0) is also a decision

variable so that the solver can optimize the trajectory over PO
y (t = 0) as well.

Since CIBO is non-convex optimization, it is still possible that a feasible solution exists

for PO
y (t = 0) < 0. However, we can at least argue that it is much more difficult to find a

feasible solution with PO
y (t = 0) < 0 than that with PO

y (t = 0) ≥ 0.

7.5.4 Results of Bilevel Optimization for Uncertain CoM parameters with Dif-

ferent Mass and Friction of Object

We first study how stability margin with uncertain CoM location changes with different

mass parameters. We sample the mass of the object from a discrete uniform distribution

with range of m ∈ [0.1, 0.12, 0.14, 0.16, 0.18, 0.2] kg. Then we run CIBO considering CoM

location uncertainty.

Fig. 7.13 shows the time history of stability margin and contact forces over the time

horizon. For this analysis, the projection of CoM lies on the contact B (i.e., CB
x = 0.) at

t = 15 s. At t ∈ [0, 15] s (i.e., CB
x > 0), the robot has to execute the contact forces to support

the object against gravity. In fact, Fig. 7.13b and Fig. 7.13c show that the contact forces

increase as mass increases. Since other parameters of the system are the same, the CIBO

designs the trajectory whose stability margin is the same with different mass by changing

the contact forces from the robot. At t ∈ [15, 30] s, the upper-bound of stability margin r+
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Figure 7.13: (a): Time history of stability margin considering CoM location with different mass. The

trajectory with the same color means that the same mass is used in the CIBO. The trajectories where r > 0

are the trajectories of r+ and the the trajectories where r < 0 are the trajectories of r−. (b): Time history

of fO
nP . (c): Time history of fO

tP .

shows the larger value with the lighter object, and the lower-bound of stability margin r−

also shows the larger value with the lighter mass of the object. This makes sense because

as the object becomes lighter, the system allows for a longer moment arm r in quasi-static

equilibrium.

Second, we study how stability margin with uncertain CoM location changes with dif-

ferent coefficients of friction between the object and the robot finger (i.e., µP at contact

P in Fig. 7.2). We sample the friction of the object from a discrete uniform distribution

with a range of µP ∈ [0.6, 0.7, 0.8, 0.9, 1.0]. Then we run CIBO considering CoM location

uncertainty.
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Figure 7.14: (a): Time history of stability margin considering CoM location with different friction at P . The

trajectory with the same color means that the same mass is used in the CIBO. The trajectories where r > 0

are the trajectories of r+ and the the trajectories where r < 0 are the trajectories of r−. (b): Time history

of PO
y . (c): Time history of fO

nP .

Fig. 7.14 shows the time history of stability margin, finger contact location PO
y , and

the contact normal force fO
nP over the time horizon. We observe that the different friction

leads to different trajectories of the stability margin. In particular, we observe that the CIBO

considering the lower µP results in a larger r+. As Fig. 7.14b, the finger keeps moving during

the manipulation to complete the pivoting. It means that the complementarity constraints

at P (7.5) are always equality constraints like (7.4), fO
tP = µPf

O
nP . With the small µP , the

robot can execute the large fO
nP with the small fO

tP , which is beneficial at t ∈ [0, 18] s to avoid

losing the contact A, before the projection of CoM lies on the contact B.
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Figure 7.15: Trajectory of frictional stability margin of (a) gear 1 and (b) gear 3, based on uncertain friction

obtained from CIBO (7.30), respectively.

7.5.5 Results of Bilevel Optimization for Uncertain Friction Parameters

Fig. 7.15 shows the time history of frictional stability margin of gear 1 and gear 3 using

(7.30). CIBO could successfully design an optimal open-loop trajectory by improving the

worst-case performance of stability margin. We observe that Fig. 7.15 (b) shows a larger

stability margin compared to (a). This result makes sense since in (b), we consider gear 3

whose weight is heavier than the weight of gear 1 and thus we get stability margins which

are bigger than those obtained for (a).

7.5.6 Results of Bilevel Optimization for Uncertain Finger Contact Location

In this section, we present results for pivoting manipulation under uncertain finger contact

location. Fig. 7.16 shows the time history of the stability margin of gear 2 using (7.29). Our

CIBO could successfully design a controller for an uncertain contact location. Also, Fig. 7.16

shows that stability margin has a quite large value at t = 37 s. At t = 37 s, the controller

makes the finger move with zero normal force, resulting in a large stability margin as we

explain in Sec 7.3.5.
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Figure 7.16: We consider CIBO with uncertain finger contact location. (a): Time history of frictional

stability margin. (b) Time history of normal force at the finger.

7.5.7 Results of Bilevel Optimization over Mode Sequences for Non-Convex

Objects

In this section, we present results for objects with non-convex geometry using the mode-

based optimization presented in Section 7.4.4. Fig. 7.17 shows the time history of states,

control inputs, and frictional stability margins for pegs whose geometry are non-convex and

the contact sets change over time. First of all, we can observe that CIBO in (7.32) could

successfully optimize the stability margin over trajectory while it optimizes the time duration

of each mode. We observe that T1

T1+T2
(i.e., the ratio of mode 1 over the horizon) of peg 2

is much smaller than that of peg 3 since γ (see Fig. 7.8 for the definition of γ) of peg 2 is

smaller than that of peg 3 and thus, it spends less time in mode 1. Fig. 7.17 shows that ftP

of peg 3 dramatically changes at t = T1 s while that of peg 1 does not. In contrast, the shape

of peg 2 has smaller γ (i.e., less non-convex shape) and it can be regarded as a rectangle

shape. Thus, the effect of contact mode is less, leading to a smaller change of ftP at t = T1

s.

In order to show that we can find solutions much more effortlessly using (7.32) compared

to two-stage optimization (that was earlier used in [131]), we sample 20 different py at t = 0

s and count the number of times the benchmark two-stage optimization problem and the
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Figure 7.17: We show the time history of object angle, finger position, contact forces from a manipulator,

and frictional stability margins. The top row shows the result with peg 2 and the bottom one shows the

result with peg 3. The pink and blue shade regions represent that the system follows mode 1 and mode 2,

respectively.

proposed optimization problem over the mode sequences (7.32) can find feasible solution.

We observed that the benchmark two-stage optimization problem found feasible solutions

only 2 times while the mode-based optimization using (7.32) was successfully able to find

feasible 18 out of 20 times. Therefore, we verify that our proposed optimization problem

enables to find solutions much more effortlessly. The benchmark method requires careful

selection of parameters to ensure feasibility (as was explained in [131]).

7.5.8 Results of Bilevel Optimization for Uncertain Mass on a Slope

We present results of objects with uncertain mass with varying angles of slope discussed in

Sec 7.3.6. We consider gear 2 with ϕ = [−20°, 0°, 20°] as an angle of slope.

Fig. 7.18a and Fig. 7.18b shows the time history of the stability margin ϵ+ and ϵ−,

respectively. Fig. 7.18a shows that the smaller ϕ is, the larger ϵ+ is during the manipulation.

ϵ+ under mass uncertainty considers if contact B is losing as we discuss in (7.11). Fig. 7.18a

means that contact B can more easily lose contact as phi increases. This makes sense because

the larger the angle of slope ϕ is, the larger the moment which makes the object rotate along

the counter-clockwise direction, resulting in the loss of contact at B. Similarly, ϵ− under

mass uncertainty considers if contact A is losing as we discuss in (7.9). Fig. 7.18b means
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(a) (b)

Figure 7.18: We consider CIBO with uncertain mass on varying angles of slope. (a): Time history of

stability margin, ϵ+. (b) Time history of stability margin, ϵ−. The case where the object is on the slope

whose angle of slope is 20° is illustrated in Fig. 7.18b.

that contact A can more easily lose contact as ϕ decreases at t =∈ [0, 15] s. This makes

sense because the smaller the angle of slope ϕ is, the larger the moment which makes the

object rotate along the clockwise direction, resulting in the loss of contact at A.

7.5.9 Results of Bilevel Optimization for Patch Contact

Table 7.9 shows the computed stability margin considering patch contact shows the greater

margins for both positive and negative directions. Hence, we verify that our optimization can

still work with patch contact and design the robust controller for maximizing the worst-case

stability margin. Intuitively, this result makes sense since the contact area increases and the

pivoting system has a larger physically feasible space, resulting in a greater stability margin.

Fig. 7.19 illustrates the time history of frictional stability margin of gear 2 from CIBO

with considering point contact and with considering patch contact. Both CIBO with point

contact and patch contact have the smallest (i.e., worst-case) stability margin at t = 0.

However, CIBO with patch contact shows a greater margin at t = 0, as we discuss above.

In addition, over the trajectory, CIBO with patch contact shows a greater margin than that

159



Table 7.6: Average Solving Time (AST) comparison between benchmark optimization (7.25) and CIBO

under mass uncertainty using (7.29) with gear 2.

N AST (s) of (7.25) AST (s) of (7.29)

30 0.21 0.38

60 0.50 0.68

120 1.01 1.24

with point contact. Thus, we quantitatively verify that using patch contact is beneficial

over the trajectory even though the optimization aims at maximizing the worst-case margin,

not the stability margin over the trajectory. It is noted that we are not able to obtain

better margins using patch contact due to the non-convexity of the underlying optimization

problem.

7.5.10 Computation Results

Table 7.6 compares the computation time between benchmark optimization (7.25) and CIBO

under mass uncertainty using (7.29) for gear 2. Overall, (7.29) is not so computationally

demanding compared to (7.25). However, as you can see in Table 7.7 and Table 7.8, once

the optimization problem has too many complementarity constraints because of the KKT

condition, we clearly observe that the computational time increases.

Table 7.7 and Table 7.8 shows the computational results for CIBO considering frictional

uncertainty (7.30) and bilevel optimization over mode sequences (7.32), respectively.

In general, the computational time for CIBO is larger than the benchmark optimization

as CIBO has larger number of complementarity constraints. In the future, we will try to work

on better warm-starting strategies so that we might be able to accelerate the optimization.
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Table 7.7: NLP specification for CIBO under frictional uncertainty using (7.30) with gear 1.

N # of Variables # of Constraints Average Solving Time (s)

30 2339 2280 1.9

60 4679 4560 10.6

120 9359 9130 30.9

Table 7.8: NLP specification for CIBO over mode sequences considering uncertain CoM location using (7.32)

with peg 3.

N # of Variables # of Constraints Average Solving Time (s)

30 1648 1590 3.68

60 3298 3180 61.6

120 6598 6360 73.0

7.5.11 Hardware Experiments

We implement our controller using a 6 DoF manipulator to demonstrate the efficacy of our

proposed method. In particular, we perform a set of experiments to compare our method

against a baseline method using gear 1. To evaluate robustness for objects with unknown

mass, we solve the optimization with mass different from the true mass of the object and im-

plement the obtained trajectory on the object. We implement trajectories obtained from the

two different optimization techniques using 4 different mass values, m = {100, 110, 140, 170}

g. Then, we implement the obtained trajectory on the object with known mass. Note that

the actual mass of gear 1 is 140 g. We test the trajectories over 10 trials for the two different

methods.

We observe that our proposed bilevel optimization is able to achieve 100 % success rates

for all 4 mass values while benchmark optimization cannot realize stable pivoting for all 4

mass values over 10 trials. Note that the benchmark trajectory optimization also generates

trajectories with non-zero frictional stability margin but they failed to pivot the object. The

reason would be that the system has a number of uncertainties such as incorrect coefficient of
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Table 7.9: Computed worst-case stability margin considering uncertain CoM location over the control horizon

obtained from optimization for gear 2.

r∗+, r∗− [mm]

Ours with point contact 5.27, 1.31

Ours with patch contact 6.81, 8.82

Figure 7.19: Trajectory of frictional stability margin of gear 2 based on uncertain CoM obtained from CIBO

using point contact model and patch contact model, respectively. The vertical blue line represents the

moment when the projection of CoM lies on the contact B.

friction, sensor noise in the F/T sensor (for implementing the force controller), etc. which are

not considered in the model. We believe that these uncertainties make the objects unstable

leading to the failure of pivoting. In contrast, even though CIBO also does not consider

these uncertainties, it generates more robust trajectories and we believe that this additional

robustness could account for the unknown uncertainty in the real hardware. We also observe

that the trajectories generated by benchmark optimization can successfully realize pivoting

if the manipulator uses patch contact during manipulation (thus getting more stability).

We perform hardware experiments with additional objects to evaluate the generalization

of the proposed planning method. All the objects used in the hardware experiments are

shown in Fig. 7.21. A video describing the hardware experiments with all the object can be

found at this link https://www.youtube.com/watch?v=ojlZDaGytSY. Fig. 7.20 shows the
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Figure 7.20: Snapshots of hardware experiments. We show snapshots of the white peg and gear (instead of

overlaid images) for clarity.

snapshots of hardware experiments for the 4 objects detailed in Table 7.2. We observe that

our bilevel optimization can successfully pivot all the objects during hardware experiments

(see Fig. 7.20 and the videos). This shows that we can use the proposed method with objects

with different size and shape.

7.6 Discussion and Future Work

Generalizable manipulation through contact requires that robots be able to incorporate

and account for uncertainties during planning. However, designing the robust controller for

achieving such manipulation remains an open problem and remains largely unexplored. This

chapter presents frictional stability-aware optimization, a strategy that exploits friction for

robust planning of pivoting manipulation. By considering a variety sources of uncertainty

such as mass, CoM location, finger contact location, and friction coefficients, we discussed the

stability margin for pivoting manipulation with slipping contact. We presented CIBO, which

solves novel bilevel optimization for pivoting manipulation while optimizing the worst-case

stability margin of pivoting manipulation for (non-convex) objects. The proposed method

was evaluated in simulation using several test settings. We showed that our proposed bilevel

optimization method is able to design trajectories which are robust to larger uncertainties
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Figure 7.21: The different objects used in hardware evaluation of the proposed method. Please check the

hardware experiments results in the video at this link https://www.youtube.com/watch?v=ojlZDaGytSY.

compared to a baseline trajectory optimization method. The proposed method was also

demonstrated on a physical robotic system by implementing the computed trajectories in an

open-loop fashion.

Although this chapter focuses on pivoting manipulation as a demonstration of our frame-

work, our work can be generalized to other manipulation primitives such as pivoting with

one-point contact, pushing, and grasping. This is because our stability margin analysis and

CIBO are derived from quasi-static equilibrium (7.1) and the corresponding friction cone

constraints (7.2). These conditions are very common across most manipulation problems,

and thus our framework can be applicable to the aforementioned manipulation primitives as

long as they satisfy (7.1) and (7.2).

The focus of this work is robust planning for pivoting in the presence of uncertainties.

However, once the uncertainty of the system is too large (e.g., the mass of the object used

in CIBO and the actual mass of the object is so different), the robot might not be able to

complete the pivoting and the mission fails. Therefore, closed-loop control will be beneficial

to recover from a failure. Thus, we present our closed-loop controllers in the next chapters.
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CHAPTER 8

Covariance Steering for Uncertain Contact-Rich Systems

We only present our contributions in open-loop control so far. However, in reality, uncertainty

always exists and thus (robust) open-loop control might not be enough for the robot to

complete its desired task. In Chapter 8 and Chapter 9, we present our contributions in

closed-loop control.

The most closely related work in this chapter is the work presented in Chapter 6. In

Chapter 6, we present robust open-loop controller for contact-rich systems where we consider

the change of contact modes explicitly in the proposed optimization problem. However, we

make several assumptions, which are 1) the underlying distribution of the system follows

Gaussian distribution, 2) contact force variables are regarded as deterministic variables,

which should be regarded as random variables, and 3) we only consider open-loop control

and do not consider the closed-loop control. These assumptions limit the application of the

proposed algorithm in Chapter 6.

In this chapter, we relax these assumptions. We propose novel chance-constrained particle-

filter-based optimization algorithm to approximate the distribution of SDLCS, which is not

Gaussian. In particular, we propose NLP-based approach, not MIP-based approach, which

dramatically decreases the computation time. Our controller is able to regulate both robots’s

states and contact states simultaneously. We demonstrate our controller for several contact-

rich systems.

This chapter has been partially adapted from the following paper:

• Y. Shirai, D. Jha, and A. Raghunathan, "Covariance steering for uncertain contact-

rich systems", in Proc. 2023 IEEE Int. Conf. Robot. Auto., pp. 7923-7929, 2023.
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8.1 Overview

Even though complementarity systems are well studied, stochastic complementarity systems

are not well understood. The state and complementarity variables are implicitly related via

the complementarity constraints – uncertainty in one leads to stochastic evolution of other.

This makes uncertainty propagation challenging. Furthermore, multiplicity of solutions to

the complementarity variables also makes it difficult to characterize the stochastic evolution.

In this chapter, we present an approximate treatment of stochastic complementarity systems

using particles. We present the design and evaluation of a contact-aware stochastic controller

for covariance control of the underlying uncertain system. An important-particle algorithm

is presented for an efficient solution to the resulting stochastic optimization problem.

Chance-constrained optimization (CCO) has been extensively studied in the control of

uncertain systems [155, 36, 156, 157, 158, 26]. It allows us to plan using the uncertainty

in the model by propagating the uncertainty which can be then used to design a controller

for desired performance constraints of the system. However, in practice, the CCO tech-

niques, based on the analytical form of chance constraints, impose restrictive assumptions

of Gaussian uncertainty and linear constraints. Further, state uncertainty increases with

time and thus finding a controller for satisfying tighter state constraints could be infeasible

over a long planning horizon. This is often the case in control of nonlinear systems with

large uncertainty. This problem is aggravated for contact-rich systems due to the presence

of discontinuities in system dynamics.

To circumvent these challenges, we consider particle-based method for uncertainty prop-

agation and explicit covariance control of our contact-rich system during optimization.

Contributions.

1. We present a novel formulation of covariance steering for complementarity systems

using feedforward and feedback controller design.

2. An important-particle algorithm is proposed for numerical efficiency and we evaluate

the proposed method on several examples.
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8.2 Problem Formulation

In this section, we describe preliminaries of the method proposed in the current work.

8.2.1 Stochastic Discrete-time Linear Complementarity Systems

In this work, we consider the Stochastic Discrete-time Linear Complementarity Systems

(SDLCS):

xk+1 =Ak(ξ)xk +Bkuk + Ck(ξ)λk+1 + gk(ξ) + wk(ξ) (8.1a)

0 ≤ λk+1 ⊥Dk(ξ)xk + Ekuk + Fk(ξ)λk+1 + hk(ξ) + lk(ξ) ≥ 0 (8.1b)

where k is the time-step index, xk ∈ Rnx is the state, uk ∈ Rnu is the control input, and

λk ∈ Rnc is the algebraic variable (e.g., contact forces). We define x = [x1, . . . , xT ], u =

[u0, . . . , uT−1], λ = [λ1, . . . , λT ]. The parameter ξ ∼ Ξ is the uncertain parameter with

distribution Ξ. In addition, Ak(ξ) ∈ Rnx×nx , Bk ∈ Rnx×nu , Ck(ξ) ∈ Rnx×nc , gk(ξ) ∈ Rnx ,

Dk(ξ) ∈ Rnc×nx , Ek ∈ Rnc×nu , Fk(ξ) ∈ Rnc×nc , and hk(ξ) ∈ Rnc are all dependent on

the uncertain parameter ξ. For simplicity, we abbreviate ξ from these matrices for the

discussion in the following sections. The notation 0 ≤ a ⊥ b ≥ 0 denotes the complementarity

constraints a ≥ 0, b ≥ 0, ab = 0. The initial state of the system x0(ξ) is also assumed to be

uncertain. ∥x∥2Q means a quadratic term with a weighting matrix Q.

In the following, we make the assumption that Fk(ξ) is a P-matrix [139] for all k and

ξ. Under this assumption, there is an unique solution λk+1 to (8.1b) for each ξ and any

uk, xk. From this it is easy to infer that there exists an unique trajectory x and λ for any

realization of uncertainty ξ ∼ Ξ and controls u from every initial condition x0(ξ). In other

words, we can define functions x : Ξ×Rnu(T−1) → RnxT and λ : Ξ×RnuT that provides the

unique trajectory given a realization of uncertainty, and the controls trajectory. Note that

we do not show explicit dependence on initial condition due to the dependence of x0 on the

uncertain parameter ξ.
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8.2.2 Stochastic Control for Contact-Rich Systems

In this work, we aim at finding a robust controller that satisfies chance constraints over

SDLCS. To realize this, the following optimization problem can be formulated:

min
u

T∑
k=1

∥Eξ∼Ξ [xk(ξ, u)]− xd∥2Q +
T−1∑
k=0

∥uk∥2R (8.2a)

s.t. uk ∈ U (8.2b)

Prξ∼Ξ (x(ξ, u) ∈ X ) ≥ ∆ (8.2c)

where Q = Q⊤ is positive semidefinite, R = R⊤ is positive definite, U is a convex polytope

consisting of a finite number of linear inequality constraints. xd is the target state at t = T .

The set X represents a convex safe region where the entire state trajectory has to lie in.

We assume that X = {x ∈ RnxT | gi(x) ≤ 0 ∀ i = 1, . . . , ng}. Pr denotes the probability

of an event and ∆ is the user-defined minimum safety probability, where the probability of

satisfying constraints is at least greater than ∆.

We propose to obtain an approximate solution to (8.2) using the Sample Average Ap-

proximation (SAA) introduced in [159, 160]. We explain more details in Sec 8.3.

8.3 Covariance Steering for Contact-Rich Systems

This section presents our proposed framework of stochastic optimal control for contact-rich

systems. Our framework approximates the distribution of the state and algebraic variables

using particles. Under the assumption that F̄ is P-matrix, our method can capture stochastic

evolution of SDLCS such that we can formally guarantee the violation of states and design

a closed-loop controller for SDLCS (i.e., covariance steering for SDLCS).

We first present our open- and closed-loop controller formulation for SDLCS using par-

ticles and then present a computationally beneficial approach based on the active-point

method [161] to accelerate the resulting optimization.
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8.3.1 Particle-based Control for Contact-Rich Systems

We propose to solve (8.2) approximately using SAA by sampling the uncertainty. In par-

ticular, we obtain N realizations of the uncertainty ΞN = {ξ1, . . . , ξN} by sampling the

distribution Ξ. In other words, we approximate the distribution Ξ using a finite-dimensional

distribution ΞN which follows an uniform distribution on the samples. Accordingly, the SAA

for (8.2) is given as

min
u

T∑
k=1

∥∥Eξ∼ΞN [xk(ξ, u)]− xd
∥∥2
Q
+

T−1∑
k=0

∥uk∥2R (8.3a)

s.t. uk ∈ U (8.3b)

Prξ∼ΞN (x(ξ, u) ∈ X ) ≥ ∆. (8.3c)

Note that the distribution Ξ has been replaced with the finite-dimensional ΞN in the above to

simplify the computation of the expectation in the objective and chance constraint. However,

there still remains the implicit function x(ξ, u) which requires us to simulate the SDLCS for

every realization of ξ ∈ ΞN . We opt to remove this difficulty by replacing the implicit

functions with the corresponding trajectories xi, λi for each ξi ∈ ΞN .

Our proposed computational formulation using N particles is given by:

min
xi,u,λi

T∑
k=1

∥∥∥∥∥ 1

N

N∑
i=1

xik − xd

∥∥∥∥∥
2

Q

+
T−1∑
k=0

∥uk∥2R (8.4a)

s.t. xik+1 = Ai
kx

i
k +Bkuk + Ci

kλ
i
k+1 + gik + wi

k (8.4b)

0 ≤ λik+1 ⊥ Di
kx

i
k + Ekuk + F i

kλ
i
k+1 + hik + lik ≥ 0 (8.4c)

xi0 = x0(ξ
i) (8.4d)

uk ∈ U (8.4e)

1

N

N∑
i=1

I
(
xi ∈ X

)
≥ ∆ (8.4f)

where I(·) is an indicator function returning 1 when the conditions in the operand are sat-

isfied and 0 otherwise. We denote θik as θik = [Ai
k, C

i
k, g

i
k, D

i
k, F

i
k, h

i
k, w

i
k, v

i
k]. Note that xi, λi
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represent the state and algebraic variable trajectory, respectively, propagated from a partic-

ular set of particles xi0, θik. Using N trajectories obtained from N particles, we approximate

mean of random variables as Eξ∼Ξ[xk(ξ, u)] ≈ 1
N

∑N
i=1 x

i
k,Eξ∈Ξ[λk(ξ, u)] ≈ 1

N

∑N
i=1 λ

i
k. In

(8.4), we approximate (8.2a) using the mean variable as shown in (8.4a). Chance constraints

(8.2c) can be also approximated as (8.4f) using N realization trajectories, which can be

formulated as integer constraints (see [156]).

In this work, we consider the following controllers:

feedforward : uk = vk (8.5a)

feedback : uk = vk +Kk(xk − x̄k) + Lk(λk − λ̄k) (8.5b)

where Kk, Lk are feedback gains to control covariance. For brevity, we use x̄k = 1
N

∑N
i=1 x

i
k

and λ̄k = 1
N

∑N
i=1 λ

i
k. We emphasize that controlling both states and contact variables

is critical for contact-rich systems and thus we also introduce Lk(λk − λ̄k) to (8.5b) to

stabilize the system. Here, we focus on discussing feedback controller (8.5b) for (8.4). The

optimization formulation for covariance steering of SDLCS using particles would be:

min
xi,v,K,L,λi

T∑
k=1

||x̄k − xd||2Q +
T−1∑
k=0

∥uk∥2R (8.6a)

s. t. xik+1 = (Ai
k +BkKk)x

i
k +Bkvk + (Ci

k +BkLk)λ
i
k+1 + ḡik −BkKkx̄k −BkLkλ̄k+1 + wi

k

(8.6b)

0 ≤ λik+1 ⊥ (Di
k + EkKk)x

i
k + Ekvk + (F i

k + EkLk)λ
i
k+1

+ hik − EkKkx̄k − EkLkλ̄k+1 + lik ≥ 0 (8.6c)

(8.4d), (8.4e), (8.4f) (8.6d)

To solve (8.6), we need to take care of, (8.6b), (8.6c) and (8.4f). One method is mixed-

integer programming. It is possible that binary variables can be used to deal with integer

constraints (8.4f) using Big-M formulation. Also, bilinear terms in (8.6b) and (8.6c) can

be approximated using McCormick envelopes, leading to additional binary variables. As

a result, a number of binary variables are introduced and we observed that it is almost

impossible to obtain a single feasible solution. Instead, in this work, we use NLP which can
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solve (8.6b) as nonlinear constraints and (8.6c) as complementarity constraints. We describe

how we solve (8.4f) using NLP through complementarity constraints in Sec 8.3.2.

8.3.2 Bilevel Optimization for Particle-based Control

To solve (8.6) using NLP, we need to solve integer constraints (8.4f) in NLP fashion. To

achieve this, we propose the following bilevel optimization problem.

min
xi,v,K,L,λi,ti,z∗

T∑
k=1

∥x̄k − xd∥2Q +
T−1∑
k=0

∥uk∥2R (8.7a)

s. t. (8.6b), (8.6c), (8.4e) (8.7b)

∀j = 1, . . . , ng, gj(x) ≤ ti, (8.7c)

1

N

N∑
i=1

zi,∗ ≥ ∆ (8.7d)

∀i = 1, . . . , N, zi,∗ = argmin
zi

tizi|0 ≤ zi ≤ 1 (8.7e)

We introduce time-invariant parameter ti ∈ R1 for each set of trajectory realization i. If

xi ∈ X , ti ≥ −ϵ with ϵ ≥ 0. In contrast, if x ̸∈ X , ti ≥ 0. This condition is encoded in

(8.7c). We have in total N lower-level optimization problems (8.7e), where each optimization

is formulated as linear programming. zi ∈ R1 is the decision variable used in i -th lower-level

optimization problem.

The purpose of (8.7e) is to count the number of trajectory realizations that are inside X .

The optimal solution of (8.7e) can be as follows:

zi =


1, ti < 0

[0, 1] , ti = 0

0, ti > 0

(8.8)

If ti < 0, (8.7c) argues that xi ∈ X and thus we count this i-th trajectory propagated from

i-th particles as one. If ti = 0, (8.7c) argues xi ∈ X (xi lies on the boundary of X ) and

thus we count this i-th trajectory propagated from i-th particles as one. If ti > 0, then xi is
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not within X , and thus we count it as zero. Then (8.7d) considers the approximated chance

constraints.

Since the upper-level optimization decision variable ti can be influenced by other upper-

level decision variables, we need to solve these two problems simultaneously, leading to a

bilevel optimization problem. Since the lower-level optimization problems are formulated

as N linear programming problems, we can efficiently solve the entire bilevel optimization

problem using the Karush-Kuhn-Tucker (KKT) condition as follows:

min
xi,v,K,L,λi,ti,zi,∗,wi

+,wi
−

(8.7a) (8.9a)

s. t. (8.7b), (8.7c), (8.7d) (8.9b)

∀i = 1, . . . , N, 0 ≤ zi,∗ ≤ 1, wi
+, w

i
− ≥ 0 (8.9c)

wi
+(z

i,∗ − 1) = 0, wi
−(z

i,∗) = 0, (8.9d)

ti + wi
+ − wi

− = 0 (8.9e)

where wi
+, w

i
− are Lagrange multipliers associated with zi− 1 ≤ 0, −zi ≤ 0, respectively. In

conclusion, we obtain a single-level nonlinear programming problem with complementarity

constraints, which can be efficiently solved using an off-the-shelf solver such as IPOPT [10].

8.3.3 Important-particle Method for Particle-based Control

One limitation of our method in Sec 8.3.2 is that the computation can be demanding with

many particles to capture the evolution of uncertainty. In this section, we present an ap-

proximate algorithm which samples important particles which might be most informative

for constraint violation. To decrease the computational burden, we employ an important-

particle method (see Algorithm 5) which starts from a relatively small number of particles

and keeps adding particles if the chance constraints are not satisfied due to the lack of the

accurate approximation of variables. Since we start from a small number of particles, it is

possible that our optimization could quickly find a feasible solution which works over testing

data set. However, in the case when the problem is infeasible for some particles, we add

the particles which experience maximum constraint violation to our set. Thus, we call our
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Algorithm 5 ImportantParticle(Param, α, β, γ, η)
1: j = 0, θ = γ, ∆α = 0

2: while j ≤ MAX-ITER and (∆−∆α)
2 ≥ ∆th and ∆ > ∆α; do

3: Run (8.9) with N = θ

4: if The obtained solution from (8.9) is feasible then

5: Run MC simulation with α particles and calculate ∆α.

6: Choose the η worst particles that violate chance constraints.

7: else

8: Choose the random η particles.

9: θ = θ + η

10: Run MC simulation with β particles and calculate ∆β .

11: return xi,∗, v∗,K∗, L∗, λi,∗, ti,∗, zi,∗, wi
+, w

i
−,∆β

proposed method "important-particle" method– the worst particles specify the boundary of

feasible sets.

The pseudocode of our important-particle method for covariance steering is shown in

Algorithm 5. Param is the collection of parameters such as Q,R. α, β represent the number

of particles for training and testing the controller, respectively. γ is the number of initial

particles our method uses during its first iteration. η is the number of particles our methods

adds to (8.9) for each iteration.

As shown in Algorithm 5, our method keeps adding more particles unless either it runs

more than MAX-ITER or converges to user-defined ∆ given threshold ∆th. For each it-

eration, we run (8.9). If the obtained solution is feasible, we do Monte Carlo simulation

(MC simulation) over the training data set with α particles and calculate the empirical safe

probability ∆α. If this ∆α is close to or greater than ∆, we terminate the while loop and run

the obtained controller over the testing data set with β particles. Otherwise, we choose the

η worst particles based on how much they violate the chance constraints and add them to

θ. If we obtain the infeasible solution or the "restoration phase failed" solution in IPOPT,

we randomly choose the η particles.
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8.4 Results

In this section, we present numerical results for our proposed approach and compare them

against some baselines. In particular, we would like to highlight and understand the following

questions:

1. Does uncertainty in complementarity constraints lead to uncertainty in state trajec-

tory?

2. How does the proposed controller perform of variance of states for SDLCS?

We implement our method using IPOPT [10] with PYROBOCOP [16]. The optimization

problem is implemented on a computer with Intel i7-12700K processor. We set α = 250, β =

1000 for Algorithm 5. For γ and η in Algorithm 5, we use the different values for different

applications as shown in Table 8.2 and Table 8.3. When we run (8.9) alone without using

Algorithm 5, we use 1000 samples to calculate the empirical probability of failure to evaluate

the satisfaction of chance constraints.

Here we explain how we simulate trajectories (i.e., perform MC simulation for SDLCS,

see [162] for more details). We propagate the dynamics by finding the roots of the com-

plementarity system with sampled parameters given the control sequence obtained from

optimization. We run each case for 1000 trials with different sampled parameters to es-

timate the probability of failure. Note that, unlike the continuous-domain dynamics, we

cannot rollout the dynamics for SDLCS with the given control sequences since we do not

have the access to λk+1.

8.4.1 Uncertainty Propagation for SDLCS

We show uncertainty evolution for SDLCS. We demonstrate this for a cartpole system with

softwalls (see [19] for more details). Here we consider both k1 and k2 follows uniform distri-

butions where upper bound of uniform distribution for k1 and k2 is 14, 12, respectively, and

the lower bound is 5 for both k1 and k2. In this experiment, we do not run any controller:
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Figure 8.1: (a): cartpole with softwalls. (b): acrobot with soft joints.

Figure 8.2: Uncertainty propagation for cartpole system. Here only uncertainty arises from stiffness param-

eters k1, k2.

we simply propagate SDLCS given uncertain parameters in order to show how the SDLCS

behaves.

Fig. 8.2 shows the evolution of uncertainty for the aforementioned system. At t = 0 s,

there is no uncertainty for state θt=0. However, because we provide uncertainty with k1 and

k2, λt=0.1 has uncertainty. This is again because given realization of uncertain parameters,

complementarity constraints give a realization of λ and y, resulting in uncertainty in λ

and y. This stochastic λt=0.1 brings uncertainty in θt=0.1 based on (8.1). As shown in

Fig. 8.2, both state and complementarity variables are stochastic. This can not be captured

in approximations like Expected Residual Minimization (ERM) [2].

8.4.2 Cartpole with Softwalls

We demonstrate our open- and closed-loop controllers for cartpole with softwalls system. x

is the cart position and θ is the pole angle. u1 is the control and λ1, λ2 are the reaction forces

at from the wall 1, 2, respectively. We have the following deterministic physical parameters.

g = 9.81 is the gravitational acceleration, mp = 0.1,mc = 1.0 are the mass of the pole, cart,
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Figure 8.3: Simulated trajectories for cartpole system using ERM-based controller. ∆ = 0.2 and ∆test =

0.083. Red lines show boundaries specified in chance constraints.

Figure 8.4: Simulated trajectories for cartpole system using our open-loop controller. ∆ = 0.2 and ∆test =

0.190 where ∆ is input of optimization and ∆test is the empirically obtained success rate from MC simulation.

Red lines show boundaries specified in chance constraints.

respectively. l = 0.5 is the length of the pole and d = 0.15 is the distance from the origin

of the coordinate to the walls. We assume that the uncertainty arises from the k1, k2 and

use the same distribution in Sec 8.4.1. We set dt = 0.1 for the explicit Euler integration and

T = 6.

The results using ERM and our controller for the open-loop trajectory are shown in

Fig. 8.3, Fig. 8.4. We observed that the proposed open-loop controller shows the better

satisfaction of chance constraints compared to the ERM-based method. This is because our

method explicitly considers propagation of uncertainty for SDLCS while the ERM-based

method is unable to consider. Also, we observe that the gap between the commanded ∆

used in our optimization and ∆test obtained from MC simulation over testing dataset is

smaller the gap between the commanded ∆ used in ERM method and ∆test obtained from
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Figure 8.5: Simulated trajectories for cartpole system using our closed-loop controller. Top: ∆ = 0.6

and ∆test = 0.510, bottom: ∆ = 0.2 and ∆test = 0.188, where ∆ is input of optimization and ∆test is

the empirically obtained success rate from MC simulation. Red lines show boundaries specified in chance

constraints.
MC simulation over testing dataset. Again this is because our method could capture the

evolution of uncertainty for SDLCS. However, even our open-loop controller does not show

the much better performance than the ERM. To show the higher ∆test, we need to input the

higher ∆ as an input of optimization. It is quite difficult especially for long-horizon planning

problems since uncertainty keeps evolving, which can be observed from both Fig. 8.3 and

Fig. 8.4.

Next, we discuss the difference among our proposed contact-aware closed-loop, the non-

contact-aware (i.e., Lk = 0,∀k in (8.5b)) closed loop, and the open-loop controllers. We

observed that in Table 8.1, (8.9) for open-loop controller with high ∆ was unable to find

feasible solutions but (8.9) for closed-loop controller could find feasible solutions. Since the

closed-loop controller can change feedback gains to satisfy chance constraints, it could find

feasible solutions with high ∆. Also, Table 8.1 shows that the contact-aware closed-loop

177



Table 8.1: Comparison of feasibility for cartpole system among open-, non-contact-aware closed, and contact-

aware-closed controllers with different ∆. ◦ and × show if optimization finds a feasible solution or not,

respectively.

∆ 0.8 0.7 0.6 0.4 0.2

Open-loop × × × ◦ ◦

Non-contact-aware closed-loop × × ◦ ◦ ◦

Contact-aware closed-loop ◦ ◦ ◦ ◦ ◦

controller could find the feasible solution with high ∆ = 0.8, 0.7 but the non-contact-aware

controller (i.e., Lk = 0,∀k in (8.5b)) could not. For SDLCS, introducing feedback to both

states and forces is important to realize the robust motion. The MC simulation results

using our contact-aware closed-loop controller are shown in Fig. 8.5. In contrast to Fig. 8.3

and Fig. 8.4, the closed-loop controller could bound the distribution of the states because it

controls covariance.

We discuss computational results. Firstly, we observe that our important-particle method

converges and the gap between ∆train and ∆test is small once it finishes its third time iter-

ation. It means that our important-particle method could successfully find feasible trajec-

tories with relative small number of particles. Secondly, in Table 8.2 the important-particle

method shows the higher ∆train as the number of particles used in optimization increases.

The proposed important-particle method shows better convergence (in total 208 s to have

∆train ≥ 0.49) than the naive method (620 s with 50 particles to have ∆test ≥ 0.49) since

our important-particle method keeps choosing the worst-case particles which break chance

constraints.

8.4.3 Acrobot with Soft Joints

We also demonstrate our controller for acrobot with soft joints system (see [19] for more

details). θ1 is the first joint angle and θ2 is the second joint angle. u1 is the control at the

second joint and λ1, λ2 are the reaction forces at from the wall 1, 2, respectively. We have
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Table 8.2: Comparison of safe probability and runtime for cartpole system between important-particle

method (top) with γ = 10, η = 10 and naive method (bottom) with ∆ = 0.6 for designing the closed-

loop controller. T represents runtime for each iteration and np is the number of particles.

iter 1 2 3

∆train 0.2708 0.09 0.592

∆test N/A N/A 0.588

T [s] 25 35 148

np 10 20 30

Case 1 2 3 4

∆test 0.277 0.376 0.451 0.499

T [s] 25 26 55 620

np 10 20 30 50

the following deterministic physical parameters.g = 9.81 is the gravitational acceleration,

m1 = 0.5,m2 = 1.0 are the mass of the pole, cart, respectively. l1 = 0.5 is the length of

the rod from the first to the second joint. d = 0.2 is the angle limit of θ1. We consider the

stochastic physical parameters k and l2 where k is the stiffness of the walls and l2 is the

length of the second rod. We assume that k follows uniform distribution where the upper

bound and the lower bound of the distribution is 1.6 and 0.6, respectively. We assume that

l2 follows a truncated Gaussian distribution where we set the mean to 1.0, variance to 0.01,

the upper bound of the interval is 1.3, and the lower bound of the interval is 0.7, respectively.

We set dt = 0.04 for the explicit Euler integration and T = 15.

The open- and closed-loop trajectories are shown in Fig. 8.6. We observed that both

controller could satisfy chance constraints over the testing dataset and the closed-loop con-

troller shows the better performance. Table 8.3 shows that the important-particle method

shows the higher ∆test = 0.771 than the naive method with the same number of particles

used in optimization.
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Figure 8.6: Simulated trajectories for acrobot using our open- and closed-loop controllers. Top: closed-loop

controller with ∆ = 0.8 and ∆test = 0.771, bottom: open-loop controller with ∆ = 0.4 and ∆test = 0.366.

Red lines show boundaries specified in chance constraints. The reader should note that open-loop controller

solution was infeasible for ∆ = 0.8, and thus we show results for ∆ = 0.4.

8.5 Discussion

Stochastic complementarity systems are not well understood in literature. This chapter

presents a study of SDLCS to perform covariance steering using particles. Under the as-

sumption of uniqueness of trajectory (F̄ is P-matrix) for complementarity systems, the

proposed method is able to compute covariance controller for SDLCS. We presented an

important-particle method to alleviate computational complexity of the resulting optimiza-

tion problem. It is shown that our work could design open- and closed-loop controllers with

chance constraints by appropriately considering the evolution of uncertainty for SDLCS.
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Table 8.3: Comparison of safe probability and runtime for acrobot system between important-particle method

(top) with γ = 4, η = 4 and naive method (bottom) with ∆ = 0.8. T represents runtime for each iteration

and np is the number of particles.

iter 1 2 3 4 5 6 7

∆train 0.426 0.485 0.562 0.625 0.363 0.593 0.763

∆test N/A N/A N/A N/A N/A N/A 0.771

T [s] 31 97 557 887 698 2450 779

np 4 8 12 16 20 24 28

Case 1 2 3 4 5 6 7

∆test 0.009 0.103 0.159 0.541 0.670 0.553 0.539

T [s] 31 15 229 260 944 3993 901

np 4 8 12 16 20 24 28

In the future, we would like to study more general manipulation systems by relaxing the

assumption on uniqueness of trajectory for SDLCS. Another limitation of this work is that

the computation is still demanding. Thus, we would like to employ distributed optimization

techniques such as ADMM [29, 163].
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CHAPTER 9

Closed-Loop Tactile Control for Tool Manipulation

In this chapter, we present closed-loop control of a complex manipulation task where a robot

uses a tool to interact with objects. Manipulation using a tool leads to complex kinematics

and contact constraints that need to be satisfied to generate feasible manipulation trajecto-

ries. We first present an open-loop controller design using Non-Linear Programming (NLP)

that satisfies these constraints. In order to design a closed-loop controller, we present a

pose estimator of objects and tools using tactile sensors. Using our tactile estimator, we

design a closed-loop controller based on Model Predictive Control (MPC). The proposed

algorithm is verified using a 6 DoF manipulator on tasks using a variety of objects and

tools. We verify that our closed-loop controller can successfully perform tool manipula-

tion under several unexpected contacts. All hardware experiment videos can be found at

https://youtu.be/VsClK04qDhk

This chapter has been partially adapted from the following paper:

• Y. Shirai, D. Jha, A. Raghunathan, and D. Hong, "Tactile Tool Manipulation", in

Proc. 2023 IEEE Int. Conf. Robot. Auto., pp. 12597-12603, 2023.

9.1 Overview

Using contacts efficiently can provide additional dexterity to robots while performing complex

manipulation tasks [4, 164, 163, 165]. However, most robotic systems avoid making contact

with their environment. This is mainly because contact interactions lead to complex, discon-

tinuous dynamics and thus, planning, estimation, and control of manipulation require careful
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Figure 9.1: We present tactile tool manipulation where a robot uses an external tool to manipulate an

external object. Usage of an external tool results in multiple contact formations which leads to a large number

of constraints that need to be satisfied during manipulation. Using the underlying frictional mechanics, we

present design of open-loop and closed-loop controllers which can successfully maintain all contact formations

during manipulation. We present the design and use of a tactile estimator which makes use of tactile sensing

to estimate pose of the system. The tactile estimator is used to perform closed-loop control in an MPC

fashion. All hardware experiment videos could be found at https://youtu.be/VsClK04qDhk.

treatment of these constraints. As a result of these challenges, most of the classical control

approaches are not applicable to control of manipulation systems [4, 166, 162, 131, 44].

However, closed-loop control of manipulation tasks is imperative for design of robust, high-

performance robotic systems that can effortlessly interact with their environments.

In this chapter, we consider tool manipulation where a robot can grasp an external tool

that can be used to pivot an external object in the environment (See Fig. 9.1). As could be

seen in Fig. 9.2, tool manipulation leads to multiple contact formations between the robot

& a tool, the tool & an object, and the object & environment. It is easy to imagine that

planning for tool manipulation needs to incorporate all constraints imposed by these contact

formations. This makes planning for tool manipulation extremely challenging. Furthermore,

the robot can not directly observe all the relevant contact and object states during tool

manipulation. This imposes additional complexity during controller design. This makes

tool manipulation a challenging, albeit extremely rich system to study closed-loop controller

design for manipulation.

We present design of planning, estimation, and control for tool manipulation using tactile
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sensing. In particular, we first present analysis of the underlying contact mechanics which

allows us to plan feasible trajectories for manipulating an external object. To allow robust

implementation of the planned manipulation, we design a closed-loop controller using tactile

sensors co-located at the fingers of the gripper. We present design of a tactile estimator

which estimates the pose of the external object during manipulation. This estimator is

used to design a closed-loop controller using MPC. The proposed planner and closed-loop

controller are extensively tested with several different tool-object pairs.

Contributions. This chapter has the following contributions:

1. We present design of closed-loop controller for tool manipulation using tactile sensing

and NLP.

2. The proposed controller is implemented and verified on tasks using different tools and

objects using a 6 DoF manipulator equipped with GelSlim tactile sensors.

9.2 Mechanics of Tool Manipulation

In this section, we explain mechanics of tool manipulation as illustrated in Fig. 9.2 and

then discuss Trajectory Optimization (TO) of tool manipulation for designing open-loop

trajectories. Before explaining the details, we present our assumptions in this chapter as

follows:

1. The object and the tool are rigid.

2. The object and the tool always stay in quasi-static equilibrium.

3. We consider simplified quasi-static mechanics in 2D.

4. The kinematics of the tool and the friction coefficients for different contact formations

are known.

The notation of variables are summarized in Table 9.1. We define the rotation matrix from

184



Table 9.1: Notation of variables. Σ column indicates the frame of variables. See Fig. 9.2 and Fig. 9.3 for

graphical definition.

Name Description Size Σ

wE reaction wrench at point A R2 W

wO gravity of object at point O R2 W

wTO wrench from the tool to the object at point B R2 T

wT gravity of tool at point T R2 W

wG wrench from the gripper to the tool at patch C R2 G

θO orientation of object R1 W

θT orientation of tool R1 W

θG orientation of gripper R1 W

θS relative orientation of frame at center of grasp R1 S

frame ΣA to ΣB as A
BR. We denote pi as a position at contact i defined in ΣW . We denote

x- and y-axis as axes in 2D plane and z-axis is perpendicular to the plane.

9.2.1 Quasi-Static Mechanics of Tool Manipulation

As is shown in Fig. 9.2, tool manipulation leads to several contact formations at A, B, and

C that would need to be maintained during manipulation. Additionally, we need to consider

quasi-static equilibrium of the tool and the object in the presence of these contacts. The

static equilibrium of the object is described as:

FO(wE,wO,
W
T RwTO) = 0, (9.1a)

GO(wE,wO,
W
T RwTO,pA,pB,pO) = 0 (9.1b)

where FO and GO represent static equilibrium of force and moment, respectively. The static

equilibrium of the tool is:

FT (wT ,
W
G RwG,

W
T RwOT ) = 0, (9.2a)

GT (wT ,
W
G RwG,

W
T RwOT ,pB,pT ,pG1,pG2) = 0 (9.2b)
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Figure 9.2: Mechanics of tool manipulation. (a): A simplified 3D contact model for tool manipulation

highlighting the three main contact interactions during the task. (b): Free-body diagram of a rigid body

and a tool during tool manipulation in 2D. (c): Force from a tool to an object has to lie on a cone defined

by the shape of the object.

Note that TwTO = −TwOT . In this work, we approximate patch contact at C as two

point contacts with the same force distribution, and thus we have pC1,pC2 in (9.2b). In

the next section, we consider contact formations at A, B, and C while making necessary

simplifications for modeling.

9.2.2 Contact Model

We first discuss the contact model in 3D then we present the approximated contact model

in 2D using Fig. 9.2. In a simplified 3D setting, the different contact formations could be

best described as follows:

1. contact A: line contact.

2. contact B: line or patch contact.

3. contact C: patch contact.

For line contacts A and B, we need to consider generalized friction cones [167] to describe

sticking line contact in 3D. However, this work considers manipulation in 2D as shown in
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Fig. 9.2 (b) and thus we can argue that there is no moment to break the line contact. Thus,

we can approximate line contacts as two point contacts with the same force distribution,

leading to the larger coefficients of friction effectively. Also for patch contacts at contact C,

we need to consider 4D limit surface [168] where we have 3D force [fx, fy, fz] and 1D moment

mz. However, in practice, implementing mz is difficult, especially for position-controlled

manipulators with a force controller with low bandwidth. Thus, this work approximates

patch contact at C as two point contacts (see Fig. 9.2 (b)) with same force distribution.

This approximation makes low-level controllers track the force trajectory easily.

For point contacts A,B,C1, C2, we have the following friction cone constraints:

−µif
i
y ≤ f i

x ≤ µif
i
y, f

i
y ≥ 0,∀i = {A,B,C1, C2} (9.3)

where µi is the coefficient of friction at contact i = {A,B,C1, C2} and f i
x, f

i
y are tangential

and normal forces for each local coordinate. Note that we set µi = 2µi,point, i = {A,B} where

µi,point is the coefficient of friction between the environment and point contact A,B to take

into account line contact effects.

Remark 1 : Contact formation at B could be either patch or line contact. To formally

discuss the change of these two different contact modes, constraints such as complementarity

constraints are required, which is out of scope in this chapter. Thus, we assume that contact

B always realizes line contact.

9.2.3 Contact between Tool and Object

The line contact at B introduces an important insight. As illustrated in Fig. 9.2 (b), this

line contact is on a certain plane P created by a tool. The plane P is used to discuss the

friction cone between the object and the tool since slipping can only occur along the plane

P . Thus, by changing the orientation of the tool, the orientation of this plane also changes.

This does not have an effect on local friction cone constraints (9.3) but does have an effect on

the object through static equilibrium. Furthermore, different tools have different tip shapes

(see Fig. 9.4). Based on kinematics of the tool, local force definition changes, which is tricky
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and unique to tool manipulation. In conclusion, the system has a preferred orientation of

the plane P for finding a feasible trajectory.

Another unique nature of this task is that we need to explicitly consider the feasible

region of a force controller. Note that the manipulator can only apply forces along the

axes where its motion is constrained. This constraint needs to be explicitly enforced during

optimization to generate mechanically feasible force trajectories.

Hence, like friction cone constraints, we formulate inequality constraints in vertex frame

ΣV (see Fig. 9.2 (c)) such that wTO is constrained by the object:

−ρfy ≤ fx ≤ ρfy, fy ≥ 0 (9.4)

where [fx, fx]
⊤ = V

TRwTO. We define ΣV such that y-axis of ΣV bisect the angle of vertex

B. ρ can be determined by the shape of the object.

9.2.4 Trajectory Optimization for Planning

We formulate TO for tool manipulation as follows:

min
x,u,f

N∑
k=1

(xk − xg)
⊤Q(xk − xg) +

N−1∑
k=0

u⊤
k Ruk (9.5a)

s.t. (9.1), (9.2), (9.3), (9.4), (9.5b)

x0 = xs,xN = xg,xk ∈ X ,uk ∈ U , fk ∈ F (9.5c)

where xk = [θO,k, θT,k, θG,k]
⊤, uk = wG,k, fk = [w⊤

E,k,w
⊤
TO,k]

⊤, Q = Q⊤ ≥ 0, R = R⊤ > 0. X ,

U , and F are convex polytopes, consisting of a finite number of linear inequality constraints.

pi can be calculated from kinematics with xk since we could assume that contacts ensure

sticking contacts by satisfying (9.3). Based on the solution of (9.5), we can calculate the

pose and force trajectory of the end-effector and we command them during implementation.

The resulting optimization in (9.5) is NLP, which can be solved using off-the-shelf solvers

such as IPOPT [10].

Remark 2 : For nox-convex shape objects (e.g., peg in Fig. 9.4), the origin of pivoting,

pA, changes over the trajectory. Thus, we cannot directly apply (9.5) for the non-convex
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objects. Hence, we solve (9.5) hierarchically for them where we solve (9.5) with the first

contact origin and then we solve (9.5) with the next contact origin and so far and so forth.

9.3 Tactile Tool Manipulation

In this section, we present design of our closed-loop controller which makes use of observations

from tactile sensors and robot encoders to estimate pose of the system. Most manipulation

systems are underactuated and unobservable. The tool manipulation system falls under the

same umbrella. Thus, we present the design of a tactile estimator which can estimate θO,

θT , pA, and the length of the object, rO. Then, we present our MPC-based controller using

the estimated states as inputs.

9.3.1 Tactile Stiffness Regression

We use tactile sensors to monitor and estimate the slip of the tool during manipulation. Since

the tactile sensors are deformable, we need to identify their stiffness to correctly estimate

the slip of objects in grasp. We employ a simple polynomial regression to estimate θS (see

Fig. 9.3 (b)) given the velocities of all markers as illustrated in Fig. 9.3 (a).

We explain how we train the regression model. Given two images at t = k and t =

k+ n, n > 0, we compute the velocity flow of the markers on the tactile sensors. We use the

norm of the velocity flow as input of polynomial regression. We use Apriltag [154] to obtain

the ground truth values of θS and train the regression algorithm. We observe a nonlinear

trend in the stiffness of the sensors, i.e., the sensors become more stiff as they deform.

9.3.2 Tactile Estimator

For our estimator design, we make an assumption that contacts at A and B are sticking.

This means that pA does not change during pivoting. Using this knowledge, the observed
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Figure 9.3: Tactile estimator. (a): Given measurements of robot proprioception and tactile sensors, our

method estimates the state of the object and the tool. (b): Schematic showing tool manipulation experiencing

rotational slipping by θS .

pB at t = k, denoted as p̄B,k, can be represented as (see Fig. 9.3 (b)):

[
p̄⊤
B,k, 1

]⊤
= W

S T
S
S′T (θS,k)

S
′

B T
[
0⊤, 1

]⊤ (9.6)

where θS,k is the relative rotation of frame at the center of grasp at t = k (we denote this

frame as ΣS′ ) with respect to the frame at the reference center of grasp at t = 0 (we denote

this frame as ΣS). S
S′T,WS T can be obtained from the tactile sensor and encoders, respectively.

S
′

B T is obtained from the known tool kinematics. We can represent pB at t = k, denoted as

pB,k, also as follows: [
p⊤
B,k, 1

]⊤
= W

A T (θO,k,pA)
A
BT (rO)[0

⊤, 1]⊤ (9.7)

Then, using (9.6) and (9.7), with time history of measurements from t = 0 to t = m, we can

do non-linear regression based on least-squares:

{
θ∗O,k

}
k=0,...,m

, r∗O,p
∗
A = argmin

m∑
k=0

∥pB,k − p̄B,k∥2 (9.8)

Once contact at pA,pB slip, the estimator is unable to estimate the state of the object

anymore like [69], [72].

Remark 3 : Similar to [72], our estimator is able to estimate θ∗O,k, r
∗
O,p

∗
A. However,

similar to [72], this requires a controller that can maintain the desired contact state during

estimation. In this work, we assume that we know the object and tool kinematics during
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control. Thus, we only make use of θ∗O,k. Controller design when the object kinematics is

not known fully is left as a future work.

Remark 4 : As illustrated in Fig. 9.3, the tool can experience both rotational and trans-

lational slip. In practice, we observed that the deformation and high friction at the tactile

sensors resulted in minimum translation slip. Thus, we ignored translational slip during ma-

nipulation. However, considering the translational slipping might improve the performance

of the estimator.

9.3.3 Tactile Controller

Our online controller based on MPC is as follows:

min
x,u,f

N+t∑
k=t+1

(θO,k − θ̄O,k)
2 +

N+t−1∑
k=t

u⊤
k Ruk (9.9a)

s.t. (9.5b), (9.5c) (9.9b)

where θ̄O,k represent the reference trajectory computed offline using (9.5). We observed that

slipping between the tool and object kept happening if the controller tracks the tool state

as well. Thus, we only consider state tracking for θO so that the system does not care if θT

is tracked - it tries to find a new θT to track θO (i.e., replanning for θT ).

9.4 Results

In this section, we perform several different experiments to answer the following questions:

1. How do the open-loop trajectories behave on a physical setup?

2. How effective is the proposed closed-loop controller for tool manipulation under differ-

ent disturbances?
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Figure 9.4: Open-loop tool manipulation. Our controller could successfully perform tool manipulation

with different object-tool-environment pairs. The bottom right picture shows the objects and the tools we

use in this chapter.
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9.4.1 Experiment Setup

For the planner and controller, we use IPOPT [10] with pyrobocop [16] interface to solve

TO. MPC is run with a large horizon of N = 160, and thus can only achieve a control rate of

2 Hz. However, the control frequency can be increased by using linearized constraints with

a QP solver.

For the hardware experiments, we use a Mitsubishi Electric Assista industrial manipulator

arm equipped with a WSG-32 gripper. For the closed-loop experiments, the gripper is

equipped with GelSlim 3.0 [169] sensors. We use a stiffness controller to track the reference

force trajectory [170, 153]. As shown in Fig. 9.4, we test our framework with 12 different

objects, 4 different tools, and 5 different environments (i.e., friction surfaces). We use an

Apriltag system to obtain the ground truth for pose of objects.

9.4.2 Open-Loop Controller

In this experiment, we show that our open-loop controller (9.5) generates successful trajec-

tories for different objects, tools, and environments. Note that our framework works even for

non-rectangle objects as long as the shape of the object can be approximated as a rectangle

in 2D. The results are shown in Fig. 9.4. More results are shown in the supplementary

video. Overall, we verified that our open-loop controller could successfully perform tool

manipulation with the carefully-tuned parameters by the authors.

Through these experiments, we observed the following failure cases:

1. Failure at the beginning of trajectory: We found that the open-loop controller is most

susceptible to failure at t = 0. This is because the tool needs to make contact with

the object at B. It might happen that the contact force at B is too little that it can

not support the moment to lift the object up or in the opposite case, it might be too

strong so that the object slips at contact C. If too much contact force is applied at

contact B, the tool might also rotate at the contact C.

2. Incorrect physical parameters: We observed that the open-loop controller fails with
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inaccurate physical parameters such as mass.

3. Unexpected contacts: Since there is no feedback in the open-loop controller, the ma-

nipulation fails if we introduce unexpected contacts during the task.

Motivated by these failure cases, we discuss how the closed-loop controller can handle them

in Sec 9.4.3.2.

9.4.3 Tactile Estimator and Controller

9.4.3.1 Tactile Estimator Results

In this section, we discuss the results of our tactile estimator. To test the accuracy of our

estimator, we perform three different kinds of experiments– the open-loop controller with no

external disturbance, the open-loop controller with external disturbance, and the closed-loop

controller with external disturbance. In all these experiments, the robot is trying to pivot

the same box with the same tool. We perform 5 trials for each experiment. All results are

shown in Fig. 9.5.

Our estimator works with the open-loop controller under no disturbances as shown in

Fig. 9.5 (a) but does not work under disturbances as shown in Fig. 9.5 (b). Since our

estimator assumes that contact is always maintained, once contact is broken (see Fig. 9.5

(b) around t = 110 s), the estimator diverges. In contrast, Fig. 9.5 (c) shows that our

estimator works under disturbances since our MPC controller can react to the disturbance

and maintain the desired contact state.

9.4.3.2 Tactile Controller Results

We demonstrate the effectiveness of our tactile controller to recover from different unexpected

contacts in Sec 9.4.2.

We first discuss recovery from slipping of the tool in the gripper fingers, i.e., non-zero θS

(see Fig. 9.3 for definition of θS) at t = 0 as described in failure case #1 in Sec 9.4.2. We
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Figure 9.5: Evaluation of the tactile estimator. We show the time history of error of θO for 5 trials

(a) with the open-loop controller under no disturbance, (b) with the open-loop controller under disturbance,

and (c): with the closed-loop controller under disturbance. The red line shows the mean of and the blue

region shows the 95% confidence interval. We added disturbance around t = 40 s for (b) and (c) (see the

blue box). For (c), we added another disturbance around t = 150 s (see the orange box). The contact is

lost around t = 110 s for (b) (see the green box). Note that for the open-loop controller, the trajectory runs

until t = 160 s because open-loop controller is pre-defined.
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implemented the open- and closed-loop controllers with the above disturbance at t = 0. We

did this experiment for 5 trials per controller. We declare failure if the contact is broken.

The result is summarized in Table 9.2 (Disturbance 1). For θS = 5°, both the open- and the

closed-loop controllers could complete the task. However, for θS = 10°, 15°, we observed that

the open-loop controller lost the contact between the tool and object around t = 110 s (see

Fig. 9.5 (b)) while the closed-loop controller could still successfully conduct the pivoting.

Next, we discuss how the closed-loop controller reacts to different unexpected contacts

during the trajectory to tackle the failure case #3 in Sec 9.4.2. In these experiments, we

add disturbance to the object (see blue and orange box in Fig. 9.5 (c)) around t = 40 s and

t = 150 s. We conducted 5 trials. The time history of the object pose θO and the gripper

angle θG is shown in Fig. 9.6. Fig. 9.6 (a) shows that the closed-controller could successfully

track the reference trajectory even under these unexpected contacts. The reactive control

efforts can be observed around t = 40, 150 s in Fig. 9.6 (b). The robot changes its gripper

orientation to maintain the constraints discussed in Sec 9.2. The results discussed here are

also summarized in Table 9.2 (Disturbance 2).

Finally, we demonstrate the closed-loop controller with incorrect mass (failure case #2 in

Sec 9.4.2). In these experiments, we solve (9.5) and (9.9) with mass different from the true

mass of the object and use the solution for implementation. The results are summarized

in Table 9.3. We observed that the closed-loop controller can always successfully pivot the

object while the open-loop controller fails especially once mO is quite different from the true

value. The open-loop controller can also work with significantly different mO as the tactile

sensors have significant compliance. This provides some inherent stability to the system

during this task. Modeling this compliance and utilizing the model inside MPC as robust

tube MPC is an interesting direction [171].
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(a)

(b)

Figure 9.6: Evaluation of the closed tactile controller. We show time history of (a) θO and (b) θG,

with the closed-loop controller under disturbances at t = 40, 150 s. The blue line is the reference trajectory

computed offline and the red trajectory is the mean of the 5 trajectories computed online.
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Table 9.2: Evaluation of the closed tactile controller with disturbances. The number of successful

pivoting attempts of the box over 5 trials for different disturbances are summarized.

Box Disturbance 1 Disturbance 2

5° 10° 15° t = 40 s t = 150 s

Open-loop 4/5 0/5 0/5 0/5 N/A

Close-loop 5/5 5/5 5/5 5/5 5/5

Table 9.3: Evaluation of the closed tactile controller with inaccurate parameters. The number of

successful pivoting attempts of the box over 5 trials for different mass of the object are summarized. The

true value of mass of the object is mO = 100 g.

mO [g] 15 200 1000

Open-loop 4/5 3/5 0/5

Close-loop 5/5 5/5 5/5

9.5 Conclusion

Closed-loop control of manipulation remains elusive. This is because contacts lead to com-

plex, discontinuous constraints that need to be carefully handled. In this chapter, we pre-

sented tactile tool manipulation. More specifically, we presented the design and implementa-

tion of a closed-loop controller to control the complex mechanics of tool manipulation using

tactile sensors and NLP. Through extensive experiments, we demonstrate that the proposed

method provides robustness against parametric uncertainties as well as unexpected contact

events during manipulation.
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CHAPTER 10

Conclusion

In this chapter, we summarize our contributions. Then, we describe the limitations of our

works presented in this dissertation and the potential future works.

10.1 Summary of Contributions

Robotic manipulation and locomotion have many research challenges because of contact. In

this dissertation, we present our planning and control methods for contact-rich manipulation

and locomotion. We show that unlike conventional planning and control framework for

robots whose dynamics are continuous, planning and control (under uncertainty) for robotic

manipulation and locomotion whose dynamics are non-smooth requires careful treatment to

accomplish the mission.

In Chapter 3, we present a framework that uses TO as short-horizon planning and GSP

as long-horizon planning, which results in better computation for complex motion planning

problems.

In Chapter 4, we present a ADMM-based planner that solves MIQP for discrete decision-

making (e.g., contact mode) and NLP for continuous decision-making (e.g., nonlinear dy-

namics of the body of the robot). Using our method, we could successfully solve the original

computationally demanding motion planning for multi-limbed robots which is formulated as

MINLP. We also present our patch-contact model for free-climbing tasks. Our planner is

able to design various trajectories and we verify them in hardware experiments.

In Chapter 5, we present chance-constrained optimization for motion planning of multi-
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limbed robots for free-climbing where contact modes do not change. Our planner is able to

design risk-aware trajectories based on user-defined violation probability. We also propose

our leaning-based stochastic contact model using Gaussian Process Regression and we employ

it to represent the distribution of the stochastic contact forces in our chance-constrained

optimization.

In Chapter 6, we analyze the stochasticity in DLCS. In particular, we formulate chance-

constrained optimization for contact-rich systems where contact modes can change. We

propose MIQPCC and its MPC to achieve robust planning and control for SDLCS. However,

we have some assumptions that limit the application of our algorithm in Chapter 6.

In Chapter 7, we analyze the frictional stability margin under different physical parame-

ters such as mass, CoM location, coefficients of friction, and contact location for the pivoting

manipulation. Using this analysis, we present our contact implicit bilevel optimization prob-

lem where the optimizer designs an optimal control input while improving the worst-case

stability margin along the manipulation. Our work provides deep insights about the pivot-

ing manipulation. Our algorithm is verified in various experiments including the hardware

experiments.

In Chapter 8, we present our covariance steering for uncertain contact-rich systems. Our

framework is able to design feedforward and feedback gains of linear controller over state

and contact measurements. Our controller is robust against the distribution of SDLCS. Our

framework uses particle-filter-based optimization to approximate the distribution of SDLCS

and thus our framework is very general and can be applied to other robotic manipulation

and locomotion tasks.

In Chapter 9, we present closed-loop controller for tool manipulation using NLP and

visuotactile sensors. We first analyze the complex tool manipulation mechanics. We then

formulate our planner and controller using NLP. We formulate our pose estimator using

visuotactile sensors, which can estimate the pose of an object and a robot simultaneously.

Using our framework, the robot is able to achieve the pivoting manipulation using an external

tool even under unexpected contact disturbances.
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10.2 Limitations and Future Works

10.2.1 Computational Complexity of ADMM

One limitation of our ADMM in Chapter 4 is that the computation is demanding once the

number of discrete constraints increases. In order to use our framework in MPC, we need

to run it with a much faster runtime. One promising direction is to design heuristics online

[112]. We hope that we can accelerate our framework as ADMM iteration proceeds based

on previous solutions.

10.2.2 Propagation of Uncertainty for SDLCS Analytically

In Chapter 8, we use particles to approximate the distribution of SDLCS, which makes the

computational complexity increase dramatically. Thus, it would be very beneficial if we

can an analytical representation of propagation of uncertainty for SDLCS as we have for

linear dynamical systems with additive Gaussian noises in Kalman filter. Moment-based

approach [40] can be promising although it is not clear how to consider the complementarity

constraints in moment propagation.

Another challenge arises from P-matrix assumption. If we do not assume that matrix

F is not P-matrix in SDLCS, we cannot even do forward dynamics calculation. Therefore,

one strategy can be enforcing some constraints so that the system is guaranteed to have

P-matrix property even under uncertainty.

10.2.3 Contact-Rich CIBO

In Chapter 7, we assume quasi-static assumption for objects. The natural extension of this

work is to relax this assumption and consider quasi-dynamic model during manipulation. To

work on these cases, we need to explicitly consider dynamic version of the stability margin.

However, this is not trivial. We need to understand how we can propagate uncertainty for

contact dynamics as it is not well understood. The stability margin needs to incorporate this
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uncertainty propagation for such cases. See [44] for more discussion about how uncertainty

propagates for contact-rich dynamical systems.

10.2.4 Accurate Contact Mechanics

The natural extension of the work in Chapter 7 and Chapter 9 is to consider mechanics in

3D with generalized friction cones [167], which is not trivial. Additionally, the system has

compliance at the contact locations and we believe that modeling the compliance would lead

to a more effective and precise closed-loop controller.

10.2.5 Analysis of Controllability and Observability for Dexterous Manipula-

tion

One of the fundamental questions that remains open in manipulation is that of controllability

and observability. There have been remarkable works in controllability and observability

for manipulation [172, 173, 174]. However, the theory of controllability and observability is

limited to more dexterous manipulation (e.g., tool manipulation as we present in Chapter 9,).

This limits the generality of model-based controller design for manipulation. Therefore,

it would be useful to understand and study controllability and observability for frictional

interaction tasks.

10.2.6 Hysteresis of Visuotactile Sensors

In Chapter 9, we use GelSlim 3 as a visuotactile sensor and use it to estimate the angle of the

tool with respect to the gripper. However, we observe hysteresis of GelSlim in the rotational

slipping of the tool with respect to the gripper. It means that the image from GelSlim with

the zero rotational angle after slipping is different from the image with the zero rotational

angle before slipping. In order to improve the performance of the closed-loop controller, it

would be important to take into consideration hysteresis in the proposed framework.
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10.2.7 Learning Manipulation Skills with Model-based Optimization

In this dissertation, all of our major contributions are based on model-based optimization.

Although model-based optimization has shown impressive results for various manipulation

and locomotion skills, it is often limited to the skills in highly structured environments. We

observe that learning-based algorithms have shown quite robust performance, especially in

the robotic locomotion community [175, 176]. However, it is in general quite challenging

to make these algorithms work in robotic manipulation. In manipulation, objects do not

have any actuators and sensors, meaning that they are zero-actuated and partially observ-

able systems. Thus simply using learning-based algorithms might not work for dexterous

manipulation skills such as tool manipulation. Thus, we are currently interested in using

our model-based optimizer for providing learning framework with some initial guesses (i.e.,

warm-start) because our optimizer is able to design various complex manipulation tasks even

under uncertainty. In practice, there are many details to make the system work.

203



Bibliography

[1] O. Stein, J. Oldenburg, and W. Marquardt, “Continuous reformulations of dis-
crete–continuous optimization problems,” Comp. Chem. Eng., vol. 28, no. 10, pp. 1951–
1966, 2004.

[2] L. Drnach and Y. Zhao, “Robust trajectory optimization over uncertain terrain with
stochastic complementarity,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp. 1168–1175,
2021.

[3] L. Drnach, J. Z. Zhang, and Y. Zhao, “Mediating between contact feasibility and
robustness of trajectory optimization through chance complementarity constraints,”
Front. Robo. AI, vol. 8, 2021.

[4] M. T. Mason, “Toward robotic manipulation,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 1, pp. 1–28, 2018.

[5] “Boston dynamics.” https://bostondynamics.com/. Accessed: 2023-12-31.

[6] A. Zermane, N. Dehio, and A. Kheddar, “Planning impact-driven logistic tasks,” IEEE
Robotics and Automation Letters, pp. 1–8, 2024.

[7] M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of
rigid bodies through contact,” The International Journal of Robotics Research, vol. 33,
pp. 69–81, jan 2014.

[8] E. Todorov, “Implicit nonlinear complementarity: A new approach to contact dynam-
ics,” in 2010 IEEE international conference on robotics and automation, pp. 2322–2329,
IEEE, 2010.

[9] B. Aceituno-Cabezas, C. Mastalli, H. Dai, M. Focchi, A. Radulescu, D. G. Caldwell,
J. Cappelletto, J. C. Grieco, G. Fernández-López, and C. Semini, “Simultaneous con-
tact, gait, and motion planning for robust multilegged locomotion via mixed-integer
convex optimization,” IEEE Robot. Autom. Lett., vol. 3, no. 3, pp. 2531–2538, 2018.

[10] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming,” Mathematical programming,
vol. 106, no. 1, pp. 25–57, 2006.

[11] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm for large-scale
constrained optimization,” SIAM review, vol. 47, no. 1, pp. 99–131, 2005.

[12] E. Drumwright and D. A. Shell, “An evaluation of methods for modeling contact in
multibody simulation,” in 2011 IEEE International Conference on Robotics and Au-
tomation, pp. 1695–1701, IEEE, 2011.

204

https://bostondynamics.com/


[13] J. Carius, R. Ranftl, V. Koltun, and M. Hutter, “Trajectory optimization for legged
robots with slipping motions,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 3013–3020,
2019.

[14] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and Trajectory Op-
timization for Legged Systems through Phase-based End-Effector Parameterization,”
IEEE Robotics and Automation Letters, pp. 1–8, 2018.

[15] Y. Zhu, Z. Pan, and K. Hauser, “Contact-implicit trajectory optimization with learned
deformable contacts using bilevel optimization,” in 2021 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 9921–9927, 2021.

[16] A. U. Raghunathan, D. K. Jha, and D. Romeres, “Pyrobocop: Python-based robotic
control & optimization package for manipulation,” in 2022 International Conference
on Robotics and Automation (ICRA), pp. 985–991, 2022.

[17] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres, “Robust pivoting manip-
ulation using bilevel contact-implicit optimization,” in RSS 2022 Workshop on The
Science of Bumping Into Things Towards Robots That Aren’t Afraid of Contact, 2022.

[18] X. Lin, G. I. Fernandez, Y. Liu, T. Zhu, Y. Shirai, and D. Hong, “Multi-modal multi-
agent optimization for limms, a modular robotics approach to delivery automation,” in
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 12674–12681, IEEE, 2022.

[19] A. Aydinoglu, V. M. Preciado, and M. Posa, “Contact-aware controller design for
complementarity systems,” in 2020 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1525–1531, 2020.

[20] H. Li, T. Zhang, W. Yu, and P. M. Wensing, “Versatile real-time motion synthesis via
kino-dynamic mpc with hybrid-systems ddp,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), pp. 9988–9994, IEEE, 2023.

[21] G. Kim, D. Kang, J.-H. Kim, S. Hong, and H.-W. Park, “Contact-implicit mpc: Con-
trolling diverse quadruped motions without pre-planned contact modes or trajectories,”
arXiv preprint arXiv:2312.08961, 2023.

[22] H. Zhu, A. Meduri, and L. Righetti, “Efficient object manipulation planning with
monte carlo tree search,” in 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 10628–10635, IEEE, 2023.

[23] V. Kurtz, A. Castro, A. Ö. Önol, and H. Lin, “Inverse dynamics trajectory optimization
for contact-implicit model predictive control,” arXiv preprint arXiv:2309.01813, 2023.

[24] T. Stouraitis, I. Chatzinikolaidis, M. Gienger, and S. Vijayakumar, “Online hybrid
motion planning for dyadic collaborative manipulation via bilevel optimization,” IEEE
Trans. Robot., vol. 36, no. 5, pp. 1452–1471, 2020.

205



[25] M. P. Polverini, A. Laurenzi, E. M. Hoffman, F. Ruscelli, and N. G. Tsagarakis, “Multi-
contact heavy object pushing with a centaur-type humanoid robot: Planning and
control for a real demonstrator,” IEEE Robot. Autom. Lett., vol. 5, no. 2, pp. 859–866,
2020.

[26] Y. Shirai, X. Lin, Y. Tanaka, A. Mehta, and D. Hong, “Risk-Aware Motion Planning
for a Limbed Robot with Stochastic Gripping Forces Using Nonlinear Programming,”
IEEE Robotics and Automation Letters, vol. 5, pp. 4994–5001, oct 2020.

[27] I. Kumagai, M. Murooka, M. Morisawa, and F. Kanehiro, “Multi-contact locomotion
planning with bilateral contact forces considering kinematics and statics during contact
transition,” IEEE Robot. Autom. Lett., vol. 6, no. 4, pp. 6654–6661, 2021.

[28] C. Nguyen and Q. Nguyen, “Contact-timing and trajectory optimization for 3d jump-
ing on quadruped robots,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 11994–11999, IEEE, 2022.

[29] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and
statistical learning via the alternating direction method of multipliers,” Foundations
and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.

[30] R. Budhiraja, J. Carpentier, and N. Mansard, “Dynamics consensus between centroidal
and whole-body models for locomotion of legged robots,” in 2019 Int. Conf. Robot.
Automat., pp. 6727–6733, 2019.

[31] Z. Zhou and Y. Zhao, “Accelerated admm based trajectory optimization for legged
locomotion with coupled rigid body dynamics,” in Proc. 2020 American Control Con-
ference, pp. 5082–5089, 2020.

[32] A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive control via
admm,” in Proc. 2022 IEEE Int. Conf. Robot. Automat., pp. 3414–3421, 2022.

[33] O. Shorinwa and M. Schwager, “Distributed contact-implicit trajectory optimization
for collaborative manipulation,” in Proc. 2021 Int. Symp. Multi. Robo. Multi. Agent.
Syst., pp. 56–65, 2021.

[34] A. Geletu, M. Klöppel, H. Zhang, and P. Li, “Advances and applications of chance-
constrained approaches to systems optimisation under uncertainty,” International
Journal of Systems Science, vol. 44, no. 7, pp. 1209–1232, 2013.

[35] L. Blackmore, Hui Li, and B. Williams, “A probabilistic approach to optimal robust
path planning with obstacles,” in 2006 American Control Conference, vol. 2006, p. 7
pp., IEEE, 2006.

[36] L. Blackmore and M. Ono, “Convex chance constrained predictive control without
sampling,” AIAA Guidance, Navigation, and Control Conference and Exhibit, 2009.

206



[37] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski, Robust optimization, vol. 28. Princeton
university press, 2009.

[38] K. Okamoto, M. Goldshtein, and P. Tsiotras, “Optimal Covariance Control for Stochas-
tic Systems under Chance Constraints,” IEEE Control Systems Letters, vol. 2, no. 2,
pp. 266–271, 2018.

[39] M. Ono, M. Pavone, Y. Kuwata, and J. Balaram, “Chance-constrained dynamic pro-
gramming with application to risk-aware robotic space exploration,” Autonomous
Robots, vol. 39, pp. 555–571, 2015.

[40] A. Jasour, A. Wang, and B. C. Williams, “Moment-based exact uncertainty
propagation through nonlinear stochastic autonomous systems,” arXiv preprint
arXiv:2101.12490, 2021.

[41] Y. Tassa and E. Todorov, “Stochastic complementarity for local control of discontinuous
dynamics,” Robotics: Science and Systems VI, 2010.

[42] X. Chen and M. Fukushima, “Expected residual minimization method for stochastic
linear complementarity problems,” Mathematics of Operations Research, vol. 30, no. 4,
pp. 1022–1038, 2005.

[43] A. Prékopa, “Boole-bonferroni inequalities and linear programming,” Operations Re-
search, vol. 36, no. 1, pp. 145–162, 1988.

[44] Y. Shirai, D. K. Jha, and A. U. Raghunathan, “Covariance steering for uncertain
contact-rich systems,” in 2023 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 7923–7929, 2023.

[45] A. Wang, A. Jasour, and B. C. Williams, “Non-gaussian chance-constrained trajectory
planning for autonomous vehicles under agent uncertainty,” IEEE Robot. Autom. Lett.,
vol. 5, no. 4, pp. 6041–6048, 2020.

[46] T. Bretl and S. Lall, “Testing static equilibrium for legged robots,” IEEE Transactions
on Robotics, vol. 24, no. 4, pp. 794–807, 2008.

[47] A. Del Prete, S. Tonneau, and N. Mansard, “Zero step capturability for legged robots
in multicontact,” IEEE Transactions on Robotics, vol. 34, no. 4, pp. 1021–1034, 2018.

[48] K. Hauser, S. Wang, and M. R. Cutkosky, “Efficient equilibrium testing under adhesion
and anisotropy using empirical contact force models,” IEEE Transactions on Robotics,
vol. 34, no. 5, pp. 1157–1169, 2018.

[49] R. Orsolino, M. Focchi, C. Mastalli, H. Dai, D. G. Caldwell, and C. Semini, “Applica-
tion of wrench-based feasibility analysis to the online trajectory optimization of legged
robots,” IEEE Robotics and Automation Letters, vol. 3, no. 4, pp. 3363–3370, 2018.

207



[50] H. Dai and R. Tedrake, “Planning robust walking motion on uneven terrain via convex
optimization,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots
(Humanoids), pp. 579–586, IEEE, 2016.

[51] H. Audren and A. Kheddar, “3-d robust stability polyhedron in multicontact,” IEEE
Transactions on Robotics, vol. 34, no. 2, pp. 388–403, 2018.

[52] Y. Hou, Z. Jia, and M. Mason, “Manipulation with shared grasping,” in Robotics:
Science and Systems, 2020.

[53] F. R. Hogan, J. Ballester, S. Dong, and A. Rodriguez, “Tactile dexterity: Manipulation
primitives with tactile feedback,” in 2020 IEEE international conference on robotics
and automation (ICRA), pp. 8863–8869, IEEE, 2020.

[54] E. Donlon, S. Dong, M. Liu, J. Li, E. Adelson, and A. Rodriguez, “Gelslim: A high-
resolution, compact, robust, and calibrated tactile-sensing finger,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 1927–1934,
IEEE, 2018.

[55] W. Li, A. Alomainy, I. Vitanov, Y. Noh, P. Qi, and K. Althoefer, “F-touch sensor:
Concurrent geometry perception and multi-axis force measurement,” IEEE Sensors
Journal, vol. 21, no. 4, pp. 4300–4309, 2020.

[56] F. E. Viña B., Y. Karayiannidis, K. Pauwels, C. Smith, and D. Kragic, “In-hand manip-
ulation using gravity and controlled slip,” in 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 5636–5641, 2015.

[57] F. E. Viña B., Y. Karayiannidis, C. Smith, and D. Kragic, “Adaptive control for
pivoting with visual and tactile feedback,” in 2016 IEEE International Conference on
Robotics and Automation (ICRA), pp. 399–406, 2016.

[58] S. Cruciani and C. Smith, “In-hand manipulation using three-stages open loop pivot-
ing,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1244–1251, 2017.

[59] N. C. Dafle, A. Rodriguez, R. Paolini, B. Tang, S. S. Srinivasa, M. Erdmann, M. T.
Mason, I. Lundberg, H. Staab, and T. Fuhlbrigge, “Extrinsic dexterity: In-hand ma-
nipulation with external forces,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA), pp. 1578–1585, 2014.

[60] Y. Hou, Z. Jia, and M. T. Mason, “Fast planning for 3d any-pose-reorienting using piv-
oting,” in 2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 1631–1638, IEEE, 2018.

[61] B. Aceituno-Cabezas and A. Rodriguez, “A global quasi-dynamic model for contact-
trajectory optimization,” in Robotics: Science and Systems (RSS), 2020.

208



[62] S. Thrun, “Probabilistic robotics,” Communications of the ACM, vol. 45, no. 3, pp. 52–
57, 2002.

[63] S. J. Julier and J. K. Uhlmann, “Unscented filtering and nonlinear estimation,” Pro-
ceedings of the IEEE, vol. 92, no. 3, pp. 401–422, 2004.

[64] A. Wang, X. Huang, A. Jasour, and B. Williams, “Fast risk assessment for autonomous
vehicles using learned models of agent futures,” arXiv preprint arXiv:2005.13458, 2020.

[65] A. Hotz and R. E. Skelton, “Covariance control theory,” International Journal of Con-
trol, vol. 46, no. 1, pp. 13–32, 1987.

[66] R. Holladay, T. Lozano-Pérez, and A. Rodriguez, “Force-and-motion constrained plan-
ning for tool use,” in 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pp. 7409–7416, IEEE, 2019.

[67] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and S. Savarese, “Learn-
ing task-oriented grasping for tool manipulation from simulated self-supervision,” The
International Journal of Robotics Research, vol. 39, no. 2-3, pp. 202–216, 2020.

[68] G. Izatt, G. Mirano, E. Adelson, and R. Tedrake, “Tracking objects with point clouds
from vision and touch,” in 2017 IEEE International Conference on Robotics and Au-
tomation (ICRA), pp. 4000–4007, 2017.

[69] D. Ma, S. Dong, and A. Rodriguez, “Extrinsic contact sensing with relative-motion
tracking from distributed tactile measurements,” in Proc. 2021 IEEE Int. Conf. Robot.
Automat., pp. 11262–11268, 2021.

[70] Z. Qin, K. Fang, Y. Zhu, L. Fei-Fei, and S. Savarese, “Keto: Learning keypoint repre-
sentations for tool manipulation,” in 2020 IEEE International Conference on Robotics
and Automation (ICRA), pp. 7278–7285, 2020.

[71] F. R. Hogan, E. R. Grau, and A. Rodriguez, “Reactive planar manipulation with convex
hybrid mpc,” in 2018 IEEE International Conference on Robotics and Automation
(ICRA), pp. 247–253, 2018.

[72] N. Doshi, O. Taylor, and A. Rodriguez, “Manipulation of unknown objects via contact
configuration regulation,” in Proc. 2022 IEEE Int. Conf. Robot. Automat., pp. 2693–
2699, 2022.

[73] S. Dong, D. K. Jha, D. Romeres, S. Kim, D. Nikovski, and A. Rodriguez, “Tactile-
RL for insertion: Generalization to objects of unknown geometry,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6437–6443, 2021.

[74] O. Taylor, N. Doshi, and A. Rodriguez, “Object manipulation through contact con-
figuration regulation: multiple and intermittent contacts,” in 2023 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 8735–8743, IEEE,
2023.

209



[75] A. K. Valenzuela, “Mixed-integer convex optimization for planning aggressive motions
of legged robots over rough terrain,” Massachusetts Institute of Technology, 2016.

[76] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-Based Methods for Motion Plan-
ning with Constraints,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 1, no. 1, pp. 159–185, 2018.

[77] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine, “How to train your
robot with deep reinforcement learning: lessons we have learned,” The International
Journal of Robotics Research, p. 027836492098785, jan 2021.

[78] M. Kelly, “An introduction to trajectory optimization: How to do your own direct
collocation,” SIAM Review, vol. 59, no. 4, pp. 849–904, 2017.

[79] B. Cohen, M. Phillips, and M. Likhachev, “Planning Single-arm Manipulations with
n-Arm Robots,” in Robotics: Science and Systems X, vol. 2015-Janua, pp. 226–227,
Robotics: Science and Systems Foundation, jul 2014.

[80] Y. Kuwata and J. P. How, “Cooperative distributed robust trajectory optimization us-
ing receding horizon milp,” IEEE Transactions on Control Systems Technology, vol. 19,
no. 2, pp. 423–431, 2011.

[81] R. Fletcher and S. Leyffer, “Numerical experience with lower bounds for miqp branch-
and-bound,” SIAM Journal on Optimization, vol. 8, no. 2, pp. 604–616, 1998.

[82] M. Conforti, G. Cornuejols, and G. Zambelli, “Integer programming,” Springer,
vol. 271, 2014.

[83] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determina-
tion of minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics,
vol. 4, no. 2, pp. 100–107, 1968.

[84] L. Campos-Macías, D. Gómez-Gutiérrez, R. Aldana-López, R. De La Guardia, and J. I.
Parra-Vilchis, “A Hybrid Method for Online Trajectory Planning of Mobile Robots
in Cluttered Environments,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 935–942, 2017.

[85] K. Bergman, O. Ljungqvist, and D. Axehill, “Improved Path Planning by Tightly
Combining Lattice-Based Path Planning and Optimal Control,” IEEE Transactions
on Intelligent Vehicles, vol. 6, pp. 57–66, mar 2021.

[86] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoidance,” IEEE
Transactions on Control Systems Technology, pp. 1–12, 2020.

[87] C. M. Dellin and S. S. Srinivasa, “A unifying formalism for shortest path problems with
expensive edge evaluations via lazy best-first search over paths with edge selectors,”
Proceedings International Conference on Automated Planning and Scheduling, ICAPS,
vol. 2016-Janua, pp. 459–467, 2016.

210



[88] B. Ponton, A. Herzog, S. Schaal, and L. Righetti, “A convex model of humanoid
momentum dynamics for multi-contact motion generation,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), pp. 842–849, 2016.

[89] M. Likhachev, G. Gordon, and S. Thrun, “ARA *: Anytime A * with Provable Bounds
on,” Science, pp. 767—-774, 2004.

[90] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[91] R. Bohlin and L. E. Kavraki, “Path planning using lazy prm,” in Proceedings 2000
ICRA. Millennium Conference. IEEE International Conference on Robotics and Au-
tomation. Symposia Proceedings (Cat. No.00CH37065), vol. 1, pp. 521–528 vol.1, 2000.

[92] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-
query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE
International Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), vol. 2, pp. 995–1001 vol.2, 2000.

[93] A. Shkolnik, M. Levashov, I. R. Manchester, and R. Tedrake, “Bounding on rough
terrain with the LittleDog robot,” International Journal of Robotics Research, vol. 30,
no. 2, pp. 192–215, 2011.

[94] G. Optimization, “Llc,” in Gurobi Optimizer Reference Manual, p. 0, 2020.

[95] A. Richards and J. How, “Mixed-integer programming for control,” Proceedings of the
American Control Conference, vol. 4, pp. 2676–2683, 2005.

[96] T. Koch, “Miplib 2010,” in Math. Program. Comp., vol. 3, pp. 103–163, 2011.

[97] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev, “Multi-
Heuristic A*,” International Journal of Robotics Research, vol. 35, no. 1-3, pp. 224–243,
2016.

[98] F. Shi, T. Homberger, J. Lee, T. Miki, M. Zhao, F. Farshidian, K. Okada, M. Inaba,
and M. Hutter, “Circus anymal: A quadruped learning dexterous manipulation with
its limbs,” in Proc. 2021 IEEE Int. Conf. Robot. Automat., 2021.

[99] K. Bouyarmane and A. Kheddar, “Humanoid robot locomotion and manipulation step
planning,” Adv. Robot., vol. 26, no. 10, pp. 1099–1126, 2012.

[100] M. Murooka, I. Kumagai, M. Morisawa, F. Kanehiro, and A. Kheddar, “Humanoid loco-
manipulation planning based on graph search and reachability maps,” IEEE Robot.
Autom. Lett., vol. 6, no. 2, pp. 1840–1847, 2021.

211



[101] Y. Shirai, X. Lin, A. Mehta, and D. Hong, “Lto: lazy trajectory optimization with
graph-search planning for high dof robots in cluttered environments,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7533–7539, IEEE,
2021.

[102] Y. Shirai, H. Minote, K. Nagaoka, and K. Yoshida, “Gait analysis of a free-climbing
robot on sloped terrain for lunar and planetary exploration,” in Proc. Int. Symp. Artif.
Intell. Robot. Autom, 2018.

[103] A. Parness, N. Abcouwer, C. Fuller, N. Wiltsie, J. Nash, and B. Kennedy, “Lemur 3:
A limbed climbing robot for extreme terrain mobility in space,” in Proc. 2017 IEEE
Int. Conf. Robot. Automat., pp. 5467–5473, 2017.

[104] K. Uno, N. Takada, T. Okawara, K. Haji, A. Candalot, W. F. R. Ribeiro, K. Nagaoka,
and K. Yoshida, “Hubrobo: A lightweight multi-limbed climbing robot for exploration
in challenging terrain,” in Proc. 2020 IEEE-RAS Conf. Humanoid Robots, pp. 209–215,
2021.

[105] K. Uno, W. F. Ribeiro, W. Jones, Y. Shirai, H. Minote, K. Nagaoka, and K. Yoshida,
“Gait planning for a free-climbing robot based on tumble stability,” in 2019 IEEE/SICE
International Symposium on System Integration (SII), pp. 289–294, IEEE, 2019.

[106] R. D. Howe and M. R. Cutkosky, “Practical force-motion models for sliding manipula-
tion,” Int. J. Rob. Res., vol. 15, no. 6, pp. 557–572, 1996.

[107] S. Wang, H. Jiang, and M. R. Cutkosky, “Design and modeling of linearly-constrained
compliant spines for human-scale locomotion on rocky surfaces,” Int. J. Rob. Res.,
vol. 36, no. 9, pp. 985–999, 2017.

[108] Y. Tanaka, Y. Shirai, X. Lin, A. Schperberg, H. Kato, A. Swerdlow, N. Kumagai, and
D. Hong, “Scaler: A tough versatile quadruped free-climber robot,” in 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 5632–5639,
IEEE, 2022.

[109] Y. Tanaka, Y. Shirai, A. Schperberg, X. Lin, and D. Hong, “Scaler: Versatile multi-
limbed robot for free-climbing in extreme terrains,” arXiv preprint arXiv:2312.04856,
2023.

[110] Y. Tanaka, Y. Shirai, Z. Lacey, X. Lin, J. Liu, and D. Hong, “An under-actuated whip-
pletree mechanism gripper based on multi-objective design optimization with auto-
tuned weights,” in Proc. 2021 Int. Conf. Intell. Rob. Syst., pp. 6139–6146, 2021.

[111] A. Schperberg, Y. Shirai, X. Lin, Y. Tanaka, and D. Hong, “Adaptive force controller
for contact-rich robotic systems using an unscented kalman filter,” in Proc. 2023 IEEE-
RAS 23rd International Conference on Humanoid Robots, 2023.

212



[112] T. Marcucci and R. Tedrake, “Warm start of mixed-integer programs for model predic-
tive control of hybrid systems,” IEEE Trans. Auto. Cont., vol. 66, no. 6, pp. 2433–2448,
2021.

[113] T. Bretl, S. Lall, J.-C. Latombe, and S. Rock, “Multi-step motion planning for free-
climbing robots,” Algorithmic Foundations of Robotics VI, pp. 59–74, 2005.

[114] K. Nagaoka, H. Minote, K. Maruya, Y. Shirai, K. Yoshida, T. Hakamada, H. Sawada,
and T. Kubota, “Passive Spine Gripper for Free-Climbing Robot in Extreme Terrain,”
IEEE Robotics and Automation Letters, vol. 3, pp. 1765–1770, jul 2018.

[115] X. Lin, H. Krishnan, Y. Su, and D. W. Hong, “Multi-limbed robot vertical two wall
climbing based on static indeterminacy modeling and feasibility region analysis,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pp. 4355–4362, IEEE, 2018.

[116] A. Pashkevich, A. Klimchik, and D. Chablat, “Enhanced stiffness modeling of manipu-
lators with passive joints,” Mechanism and Machine Theory, vol. 46, no. 5, pp. 662–679,
2011.

[117] M. SEEGER, “Gaussian processes for machine learning,” International Journal of Neu-
ral Systems, vol. 14, no. 02, pp. 69–106, 2004. PMID: 15112367.

[118] H. Jiang, S. Wang, and M. R. Cutkosky, “Stochastic models of compliant spine arrays
for rough surface grasping,” Int. J. Rob. Res., vol. 37, no. 7, pp. 669–687, 2018.

[119] A. T. Asbeck, S. Kim, M. R. Cutkosky, W. R. Provancher, and M. Lanzetta, “Scaling
hard vertical surfaces with compliant microspine arrays,” in Robotics: Science and
Systems I, vol. 1, pp. 193–200, Robotics: Science and Systems Foundation, jun 2005.

[120] K. Autumn, A. Dittmore, D. Santos, M. Spenko, and M. Cutkosky, “Frictional adhe-
sion: a new angle on gecko attachment,” Journal of Experimental Biology, vol. 209,
no. 18, pp. 3569–3579, 2006.

[121] R. Fletcher, “Practical methods of optimization,” Hoboken,NJ, USA: Wiley, vol. 2,
1981.

[122] X. Lin, J. Zhang, J. Shen, G. Fernandez, and D. W. Hong, “Optimization Based Motion
Planning for Multi-Limbed Vertical Climbing Robots,” IEEE International Conference
on Intelligent Robots and Systems, 2019.

[123] M. Ono and B. C. Williams, “An efficient motion planning algorithm for stochastic
dynamic systems with constraints on probability of failure,” Proceedings of the National
Conference on Artificial Intelligence, vol. 3, pp. 1376–1382, 2008.

[124] J. A. E. Andersson, “Casadi: a software framework for nonlinear optimization and
optimal control,” Math. Prog. Comp., vol. 11, 2019.

213



[125] O. S. Tas and C. Stiller, “Limited visibility and uncertainty aware motion planning
for automated driving,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 1171–
1178, 2018.

[126] B. Brogliato, Nonsmooth mechanics, vol. 3. Springer, 1999.

[127] E. Drumwright and D. Shell, “Modeling contact friction and joint friction in dynamic
robotic simulation using the principle of maximum dissipation,” in Algorithmic foun-
dations of robotics IX, pp. 249–266, Springer, 2010.

[128] M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body contact prob-
lems with friction as solvable linear complementarity problems,” Nonlinear Dynamics,
vol. 14, no. 3, pp. 231–247, 1997.

[129] S. C. Billups and K. G. Murty, “Complementarity problems,” Journal of Computational
and Applied Mathematics, vol. 124, no. 1, pp. 303–318, 2000. Numerical Analysis 2000.
Vol. IV: Optimization and Nonlinear Equations.

[130] W. Heemels, J. M. Schumacher, and S. Weiland, “Linear complementarity systems,”
SIAM journal on applied mathematics, vol. 60, no. 4, pp. 1234–1269, 2000.

[131] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres, “Robust pivoting: Exploit-
ing frictional stability using bilevel optimization,” in 2022 International Conference on
Robotics and Automation (ICRA), pp. 992–998, IEEE, 2022.

[132] S. Jin, D. Romeres, A. Ragunathan, D. K. Jha, and M. Tomizuka, “Trajectory opti-
mization for manipulation of deformable objects: Assembly of belt drive units,” arXiv
preprint arXiv:2106.00898, 2021.

[133] Y. Shirai, D. K. Jha, and A. U. Raghunathan, “Robust pivoting manipulation using
contact implicit bilevel optimization,” arXiv preprint arXiv:2303.08965, 2023.

[134] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Hong, “Tactile tool manipulation,” in
2023 IEEE International Conference on Robotics and Automation (ICRA), pp. 12597–
12603, 2023.

[135] Y. Shirai, D. K. Jha, A. Raghunathan, and D. Hong, “Closed-loop tactile controller for
tool manipulation,” in ICRA 2023 Workshop on Embracing contacts. Making robots
physically interact with our world, 2023.

[136] M. K. Camlibel, J.-S. Pang, and J. Shen, “Lyapunov stability of complementarity and
extended systems,” SIAM J Optimization, vol. 17, no. 4, pp. 1056–1101, 2006.

[137] A. Aydinoglu, P. Sieg, V. M. Preciado, and M. Posa, “Stabilization of complementarity
systems via contact-aware controllers,” IEEE Transactions on Robotics, vol. 38, no. 3,
pp. 1735–1754, 2021.

[138] A. U. Raghunathan and J. L. Linderoth, “Stability analysis of discrete-time linear
complementarity systems,” arXiv, 2020.

214



[139] R. Cottle, J. Pang, and R. Stone, The Linear Complementarity Problem. Classics in
Applied Mathematics, Society for Industrial and Applied Mathematics, 2009.

[140] A. Schperberg, S. Tsuei, S. Soatto, and D. Hong, “Saber: Data-driven motion planner
for autonomously navigating heterogeneous robots,” IEEE Robot. Autom. Lett., vol. 6,
no. 4, pp. 8086–8093, 2021.

[141] K. Okamoto and P. Tsiotras, “Optimal stochastic vehicle path planning using covari-
ance steering,” IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2276–2281, 2019.

[142] O. Celik, H. Abdulsamad, and J. Peters, “Chance-constrained trajectory optimiza-
tion for non-linear systems with unknown stochastic dynamics,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 6828–6833,
2019.

[143] F. R. Hogan and A. Rodriguez, “Reactive planar non-prehensile manipulation with
hybrid model predictive control,” Int. J. Rob. Res., vol. 39, no. 7, pp. 755–773, 2020.

[144] J. J. Moré, B. S. Garbow, and K. E. Hillstrom, “User guide for minpack-1,” tech. rep.,
CM-P00068642, 1980.

[145] L. Blackmore, M. Ono, and B. C. Williams, “Chance-constrained optimal path planning
with obstacles,” IEEE Transactions on Robotics, vol. 27, no. 6, pp. 1080–1094, 2011.

[146] S. Goyal, A. Ruina, and J. Papadopoulos, “Planar sliding with dry friction part 1. limit
surface and moment function,” Wear, vol. 143, no. 2, pp. 307–330, 1991.

[147] Y. Shirai, D. K. Jha, A. U. Raghunathan, and D. Romeres, “Chance-constrained op-
timization in contact-rich systems,” in 2023 American Control Conference (ACC),
pp. 14–21, 2023.

[148] M. Vidyasagar, Nonlinear systems analysis. SIAM, 2002.

[149] YALMIP, “Equalities with uncertainty,” https://yalmip.github.io/equalityinuncertainty,
2018.

[150] A. HSL, “collection of fortran codes for large-scale scientific computation,” See
http://www. hsl. rl. ac. uk, 2007.

[151] J. K. Salisbury, “Active stiffness control of a manipulator in cartesian coordinates,”
in 1980 19th IEEE Conference on Decision and Control including the Symposium on
Adaptive Processes, pp. 95–100, 1980.

[152] D. K. Jha, D. Romeres, W. Yerazunis, and D. Nikovski, “Imitation and supervised
learning of compliance for robotic assembly,” in 2022 European Control Conference
(ECC), pp. 1882–1889, 2022.

215



[153] D. K. Jha, D. Romeres, S. Jain, W. Yerazunis, and D. Nikovski, “Design of adaptive
compliance controllers for safe robotic assembly,” arXiv preprint arXiv:2204.10447,
2022.

[154] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011 IEEE In-
ternational Conference on Robotics and Automation, pp. 3400–3407, 2011.

[155] M. Ono and B. C. Williams, “Iterative risk allocation: A new approach to robust Model
Predictive Control with a joint chance constraint,” Proceedings of the IEEE Conference
on Decision and Control, no. 6, pp. 3427–3432, 2008.

[156] L. Blackmore, M. Ono, A. Bektassov, and B. C. Williams, “A probabilistic particle-
control approximation of chance-constrained stochastic predictive control,” IEEE
Transactions on Robotics, vol. 26, no. 3, pp. 502–517, 2010.

[157] T. Lew, R. Bonalli, and M. Pavone, “Chance-constrained sequential convex program-
ming for robust trajectory optimization,” in 2020 European Control Conference (ECC),
pp. 1871–1878, 2020.

[158] Y. K. Nakka and S.-J. Chung, “Trajectory optimization of chance-constrained nonlinear
stochastic systems for motion planning and control,” arXiv preprint arXiv:2106.02801,
2021.

[159] J. Luedtke and S. Ahmed, “A sample approximation approach for optimization with
probabilistic constraints,” SIAM Journal on Optimization, vol. 19, no. 2, pp. 674–699,
2008.

[160] B. K. Pagnoncelli, S. Ahmed, and A. Shapiro, “Sample average approximation method
for chance constrained programming: theory and applications,” Journal of optimization
theory and applications, vol. 142, no. 2, pp. 399–416, 2009.

[161] N. Jorge and J. W. Stephen, “Numerical optimization,” 2006.

[162] Y. Shirai, D. K. Jha, A. Raghunathan, and D. Romeres, “Chance-constrained
optimization in contact-rich systems for robust manipulation,” arXiv preprint
arXiv:2203.02616, 2022.

[163] Y. Shirai, X. Lin, A. Schperberg, Y. Tanaka, H. Kato, V. Vichathorn, and D. Hong, “Si-
multaneous contact-rich grasping and locomotion via distributed optimization enabling
free-climbing for multi-limbed robots,” in Proc. 2022 IEEE/RSJ Int. Conf. Intell. Rob.
Syst., pp. 13563–13570, 2022.

[164] A. Billard and D. Kragic, “Trends and challenges in robot manipulation,” Science,
vol. 364, no. 6446, p. eaat8414, 2019.

[165] Y. Shirai, D. Jha, and A. Raghunathan, “Contact-aware covariance control of stochastic
contact-rich systems,” in IROS 2023 Workshop on Leveraging Models for Contact-Rich
Manipulation, 2023.

216



[166] T. Marcucci, R. Deits, M. Gabiccini, A. Bicchi, and R. Tedrake, “Approximate hybrid
model predictive control for multi-contact push recovery in complex environments,” in
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids),
pp. 31–38, 2017.

[167] M. Erdmann, “On a representation of friction in configuration space,” Int. J. Rob. Res.,
vol. 13, no. 3, pp. 240–271, 1994.

[168] N. Xydas and I. Kao, “Modeling of contact mechanics and friction limit surfaces for
soft fingers in robotics, with experimental results,” Int. J. Robo. Res., vol. 18, no. 9,
pp. 941–950, 1999.

[169] I. H. Taylor, S. Dong, and A. Rodriguez, “Gelslim 3.0: High-resolution measurement
of shape, force and slip in a compact tactile-sensing finger,” in 2022 International
Conference on Robotics and Automation (ICRA), pp. 10781–10787, 2022.

[170] N. Hogan, “Impedance Control: An Approach to Manipulation: Part
II—Implementation,” Journal of Dynamic Systems, Measurement, and Control,
vol. 107, pp. 8–16, 03 1985.

[171] W. Langson, I. Chryssochoos, S. Raković, and D. Q. Mayne, “Robust model predictive
control using tubes,” Automatica, vol. 40, no. 1, pp. 125–133, 2004.

[172] K. M. Lynch and M. T. Mason, “Dynamic nonprehensile manipulation: Controllability,
planning, and experiments,” The International Journal of Robotics Research, vol. 18,
no. 1, pp. 64–92, 1999.

[173] A. Bicchi, “Hands for dexterous manipulation and robust grasping: a difficult road
toward simplicity,” IEEE Transactions on Robotics and Automation, vol. 16, no. 6,
pp. 652–662, 2000.

[174] N. Brook, M. Shoham, and J. Dayan, “Controllability of grasps and manipulations in
multi-fingered hands,” IEEE Transactions on Robotics and Automation, vol. 14, no. 1,
pp. 185–192, 1998.

[175] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
robust perceptive locomotion for quadrupedal robots in the wild,” Science Robotics,
vol. 7, no. 62, p. eabk2822, 2022.

[176] Z. Fu, X. Cheng, and D. Pathak, “Deep whole-body control: learning a unified policy
for manipulation and locomotion,” in Conference on Robot Learning, pp. 138–149,
PMLR, 2023.

217


	Title Page
	Abstract
	Committee
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgments
	Vita
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.2.1 Contribution 1: Planning through Contact
	1.2.2 Contribution 2: Robust Planning through Contact
	1.2.3 Contribution 3: Closed-Loop Control through Contact

	1.3 Outline of Dissertation

	2 Research Challenges and Related Works
	2.1 Optimization-based Planning through Contact
	2.2 Optimization-based Robust Planning through Contact
	2.2.1 Robust Optimization and Stochastic Optimization
	2.2.2 Stochastic Optimization for Contact-Rich Systems
	2.2.3 Robust Optimization for Contact-Rich Systems

	2.3 Closed-Loop Control through Contact
	2.3.1 Covariance Steering: Control Policy with Probabilistic Guarantees for Contact-Rich Systems
	2.3.2 Contact Estimation and Control with Visuotactile Sensors for Reactive Manipulation


	3 Lazy Trajectory Optimization
	3.1 Overview
	3.2 Related Works
	3.3 Problem Formulation
	3.3.1 Notation
	3.3.2 Graph Structure
	3.3.3 Mixed-Integer Convex Programs
	3.3.4 Warm-Start Strategy

	3.4 Lazy Trajectory Optimization Formulation
	3.4.1 Trajectory Optimization-Aware Cost
	3.4.2 Main Loop (Algorithm 1)
	3.4.3 Expansion (Algorithm 2)
	3.4.4 Edge generation (Algorithm 3)
	3.4.5 Vertex Validation (Algorithm 4)

	3.5 Formal Analysis
	3.5.1 Complexity
	3.5.2 Efficiency
	3.5.3 Completeness and Optimality

	3.6 Numerical Experiments
	3.6.1 Free-Flying Robots
	3.6.2 Legged Robots

	3.7 Conclusion

	4 Planning through Contact using Decomposition-based Optimization for Multi-Limbed Robots
	4.1 Overview
	4.2 Patch Contact Model with Micro-Spines
	4.2.1 Frictional Limit Surface
	4.2.2 Limit Surface of Micro-Spines
	4.2.3 Limit Surface for Two-Finger Micro-Spine Grippers

	4.3 Simultaneous Contact-Rich Grasping and Locomotion Trajectory Optimization
	4.3.1 Preliminary
	4.3.2 Optimal Control Problem for Grasping and Locomotion
	4.3.3 Alternating Direction Method of Multipliers (ADMM)
	4.3.4 Decomposition-based Optimal Control Problem
	4.3.5 Multi-Block Decomposition-based Optimal Control Problem

	4.4 Experimental Results
	4.4.1 Implementation Details
	4.4.2 Computation Results
	4.4.3 Results of Our Generated Trajectories
	4.4.4 Contact Modeling Results

	4.5 Discussion

	5 Risk-Aware Motion Planning for Multi-Limbed Robots
	5.1 Overview
	5.2 Problem Formulation
	5.2.1 Friction Cone with Stochastic Gripping Forces
	5.2.2 Model of Reaction Force Using Limb Compliance
	5.2.3 Model of Gripping Force Using Gaussian Process Regression
	5.2.4 Spine Gripper for Wall Climbing
	5.2.5 Data Collection

	5.3 Chance-Constrained Nonlinear Programming for Locomotion
	5.3.1 Deterministic Constraints
	5.3.2 Chance Constraints
	5.3.3 Cost Function
	5.3.4 Two Step Optimization for a Position-Controlled Robot

	5.4 Results
	5.4.1 Energy Efficient Planning
	5.4.2 Climbing on Non-Uniform Walls
	5.4.3 Climbing with Less Stable Gait: Tripod Gait

	5.5 Conclusion

	6 Chance-Constrained Optimization for Uncertain Contact-Rich Systems
	6.1 Overview
	6.2 Problem Preliminary
	6.2.1 Discrete-time Linear Complementarity System (DLCS)
	6.2.2 Contact-Implicit Trajectory Optimization
	6.2.3 Stochastic Discrete-time Linear Complementarity Systems (SDLCS)

	6.3 Robust Trajectory Optimization for SDLCS
	6.3.1 Joint Linear Chance Constraints
	6.3.2 Chance Complementarity Constraints (CCC) for SDLCS
	6.3.3 Mixed-Integer Quadratic Programming with Chance Constraints
	6.3.4 Stochastic Model Predictive Control with Complementarity Constraints

	6.4 Numerical Simulations
	6.4.1 Implementation Details
	6.4.2 Example Details
	6.4.3 Robustness of Open-Loop Trajectories
	6.4.4 Monte Carlo Simulation Results
	6.4.5 Computation Results
	6.4.6 Discussion of Assumptions

	6.5 SMPC for Planar Pushing
	6.5.1 Planar Pushing
	6.5.2 Results

	6.6 Discussion and Conclusion

	7 Robust Pivoting Manipulation using Contact Implicit Bilevel Optimization
	7.1 Overview
	7.2 Mechanics of Pivoting
	7.2.1 Mechanics of Pivoting with External Contacts

	7.3 Robust Pivoting Formulation
	7.3.1 Frictional Stability Margin
	7.3.2 Stability Margin for Uncertain Mass
	7.3.3 Stability Margin for Uncertain CoM Location
	7.3.4 Stability Margin for Stochastic Friction
	7.3.5  Stability Margin for Finger Contact Location
	7.3.6 Stability Margin for Uncertain Mass on a Slope
	7.3.7 Pivoting with Patch Contact between the object and the manipulator

	7.4 Robust Trajectory Optimization
	7.4.1 Contact-Implicit Trajectory Optimization for Pivoting
	7.4.2 Robust Bilevel Contact-Implicit Trajectory Optimization 
	7.4.3 Robust Bilevel Contact-Implicit Trajectory Optimization under Frictional Uncertainty
	7.4.4 Robust Bilevel Optimization over Mode Sequences for Non-Convex Objects
	7.4.5 Robust Bilevel Contact-Implicit Trajectory Optimization with Patch Contact

	7.5 Experimental Results
	7.5.1 Experiment Setup
	7.5.2 Results of Bilevel Optimization for Uncertain Mass and CoM Parameters
	7.5.3 Results of Bilevel Optimization with Different Manipulator Initial State
	7.5.4 Results of Bilevel Optimization for Uncertain CoM parameters with Different Mass and Friction of Object
	7.5.5 Results of Bilevel Optimization for Uncertain Friction Parameters
	7.5.6 Results of Bilevel Optimization for Uncertain Finger Contact Location
	7.5.7 Results of Bilevel Optimization over Mode Sequences for Non-Convex Objects
	7.5.8 Results of Bilevel Optimization for Uncertain Mass on a Slope
	7.5.9 Results of Bilevel Optimization for Patch Contact
	7.5.10 Computation Results
	7.5.11 Hardware Experiments

	7.6 Discussion and Future Work

	8 Covariance Steering for Uncertain Contact-Rich Systems
	8.1 Overview
	8.2 Problem Formulation
	8.2.1 Stochastic Discrete-time Linear Complementarity Systems
	8.2.2 Stochastic Control for Contact-Rich Systems

	8.3 Covariance Steering for Contact-Rich Systems
	8.3.1 Particle-based Control for Contact-Rich Systems
	8.3.2 Bilevel Optimization for Particle-based Control
	8.3.3 Important-particle Method for Particle-based Control

	8.4 Results
	8.4.1 Uncertainty Propagation for SDLCS
	8.4.2 Cartpole with Softwalls
	8.4.3 Acrobot with Soft Joints

	8.5 Discussion

	9 Closed-Loop Tactile Control for Tool Manipulation
	9.1 Overview
	9.2 Mechanics of Tool Manipulation
	9.2.1 Quasi-Static Mechanics of Tool Manipulation
	9.2.2 Contact Model
	9.2.3 Contact between Tool and Object
	9.2.4 Trajectory Optimization for Planning

	9.3 Tactile Tool Manipulation
	9.3.1 Tactile Stiffness Regression
	9.3.2 Tactile Estimator
	9.3.3 Tactile Controller

	9.4 Results
	9.4.1 Experiment Setup
	9.4.2 Open-Loop Controller
	9.4.3 Tactile Estimator and Controller

	9.5 Conclusion

	10 Conclusion
	10.1 Summary of Contributions
	10.2 Limitations and Future Works
	10.2.1 Computational Complexity of ADMM
	10.2.2 Propagation of Uncertainty for SDLCS Analytically
	10.2.3 Contact-Rich CIBO
	10.2.4 Accurate Contact Mechanics
	10.2.5 Analysis of Controllability and Observability for Dexterous Manipulation
	10.2.6 Hysteresis of Visuotactile Sensors
	10.2.7 Learning Manipulation Skills with Model-based Optimization


	Bibliography

