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This article describes the equilibrium shape of a liquid drop under applied fields such as gravity and
electrical fields, taking into account material properties such as dielectric constants, resistivities, and
surface tension coefficients. The analysis is based on an energy minimization framework. A rigorous
and exact link is provided between the energy function corresponding to any given physical
phenomena, and the resulting shape and size dependent force term in Young’s equation. In
particular, the framework shows that a physical effect, such as capacitive energy storage in the
liquid, will lead to 1/R ‘‘line-tension’’-type terms if and only if the energy of the effect is
proportional to the radius of the liquid drop: E#R . The effect of applied electric fields on shape
change is analyzed. It is shown that a dielectric solid and a perfectly conducting liquid are all that
is needed to exactly recover the Young–Lippmann equation. A dielectric liquid on a conducting
solid gives rise to line tension terms. Finally, a slightly resistive liquid on top of a dielectric, highly
resistive solid gives rise to contact angle saturation and accurately matches the experimental data
that we observe in our electro-wetting-on-dielectric devices. © 2003 American Institute of
Physics. $DOI: 10.1063/1.1563828%

I. INTRODUCTION

The shape of a liquid drop on a surface is determined by
the composition of the liquid !solvent, and ionic and surfac-
tant solutes" and by the composition and morphology of the
underlying solid. When an electric potential is applied across
the liquid drop and the solid substrate, ions and dipoles re-
distribute in the liquid, in the solid, or in both depending on
the relative material properties. This redistribution can cause
a hydrophobic surface to behave in a hydrophyllic manner.
In such a case, the liquid drop will change shape under the
applied electric potential.

This electro-wetting phenomenon can be used to create
fluid flow. 1–10 In practice, electro-wetting-based actuation of
aqueous solutions is limited by the onset of current flow
through the substrate and the solution, which leads to chemi-
cal oxidation, the reduction of solutes, and to electrolysis
!bubble formation". It has recently been demonstrated that
fluid actuation can be achieved without electrolysis by coat-
ing the conductor or semiconductor substrate with a
dielectric.1,3,6,10 The dielectric serves both to block the elec-

tron transfer and to provide a hydrophobic surface that en-
ables large changes in contact angle. This electro-wetting-on-
dielectric !EWOD" driven actuation has been used to create
droplets from reservoirs, as well as to cut, join, and mix
drops on planar surfaces or in channels.3,10 Applications of
EWOD include microfluidics and biofluidic sensors and de-
vices.

In order to design and control such devices, we required
accurate models of the underlying physics. First, we need
some way of deciding which physical mechanisms are domi-
nant in the devices: is the ionic double-layer more or less
important then the dielectric energy stored in the liquid?
What percent of the energy is being stored/dissipated in the
liquid bulk, solid bulk, and at the interfaces? Second, we
need to understand the engineering limits: why does contact
angle saturate? What limits droplet switching speed? This
article addresses some of these needs.

A. Background

Prior modeling results are based on the classical work by
Lippmann 11 and Young !see, for example, Chap. 10 in
Probstein12". More recent articles include Refs. 1,7,10,13–
25. In particular, the total energy minimization framework
proposed by Digilov26 is similar to our starting point. How-
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ever, our method of analysis and physical interpretation is
different; plus, we go on to numerically solve the surface-
energy/electrostatic minimum energy conditions and we
study the properties of the solutions.

Due to its engineering importance, there have been a
large number of articles focused on electro-wetting limiting
phenomena: why does the contact angle cease to change after
some critical voltage is reached? To date, some of the pro-
posed physical mechanisms include: electrolysis,24 contact
line electrostatic/capillary instabilities for pure water,6 ion-
ization of air in the vicinity of the drop edge,6 charge
trapping,5 and a proposed zero surface/liquid energy limit.4
Charge/ion adsorption from the liquid to the solid surface,
and its effect on the solid/liquid surface energy, is another
possible source of contact angle saturation. 27,28 The match
between contact angle saturation theory and experiment is
often inconclusive, and/or the model parameters have been
chosen to fit one set of data but have not been validated
against a different independent set of data. !A notable excep-
tion is the work of Verheijen and Prins. 5 These authors show
good agreement between experiment and theory and they
present a second independent test to show that charge trap-
ping is responsible for contact angle saturation in their de-
vices." It is possible, in fact likely, that different limiting
phenomena are important in different devices: Vallet, Val-
lade, and Berge 6 see luminescence in their devices and argue
that gas ionization is one of their dominant phenomena. We
do not see any luminescence in our devices but we have been
able to accurately predict contact angle saturation for mul-
tiple devices, without fitting, by including the small electrical
resistance found in the liquid.

There have also been a number of studies about the elec-
trical and chemical details at the interfaces: Lyklema29 pre-
sents a comprehensive discussion of ion double-layer theo-
ries; Chou30 presents an analytic solution for the liquid/gas
shape right at the triple point under an applied potential;
Zimmerman, Dukhin, and Werner31 provide an experimental
and theoretical treatment of ' potentials and solid/liquid con-
ductivities due to ion adsorption; and Koopal and Avena32
provide an excellent description of adsorption kinetics. We
do not consider such fine-scale spatial details here.

B. Current approach

Our analysis is aimed at quantifying how different physi-
cal effects !gravity, electrical resistance, ionic double layers"
influence the electro-wetting phenomena. In this article we
are only interested in those physical phenomena that influ-
ence voltage induced shape change. Essentially, we need
some way of deciding which physical effects are important
and which are negligible. We do this by finding the energy
associated with each effect, by minimizing the energy to find
equilibrium conditions, and by rigorously converting that en-
ergy minimum into a Young-type equation that describes the
change in droplet shape as a function of applied voltage and
other physical parameters. This lets us compare the relative
sizes of different effects. In this sense, our analysis is similar
in spirit to Digilov.26 However, when necessary, we phrase
and solve Maxwell’s partial differential equations to find the

electric fields, and thus the stored energies, inside the solid
and liquid materials. Moreover, we have been able to derive
a rigorous equation which takes any arbitrary energy term
and analytically gives back the corresponding, size-
dependent, force term in Young’s equation.

Section II A presents the mathematical framework that
takes the energy term for any physical effect and computes
the resulting force term in Young’s equation. Sections III A
and III B verify this framework for two simple examples
where the answer is known and is straightforward, respec-
tively. New ground is covered in Secs. IVA 4 and IVB,
culminating with the contact angle saturation example of
Sec. IVC.

The basic tenets of our analysis are: a total energy mini-
mization, a phrasing of Maxwell’s electrostatic partial differ-
ential equations !PDEs", an analytical extraction of how the
PDE solutions change with analytically accessible param-
eters, and a numerical solution of the remaining, normalized,
shape-dependent PDEs to capture parametric dependences
that are not available analytically.

a. A total energy minimization approach with a constant
liquid volume constraint: We write down the energy due to
liquid/gas, liquid/solid and solid/gas interfaces plus the en-
ergy stored in the bulk due to applied external fields such as
gravity and the imposed electrical potentials. The energy is
minimized subject to the constraint that the liquid volume
must remain the same. This gives rise to a Young-type equa-
tion that can account for any physical effects and which in-
cludes droplet size dependence.

Although the link between energetics and Young-type
formulations has been explored partially !see, for example,
Chap. 10 in Probstein12 and Refs. 16 and 15" this argument
has traditionally been applied for a pure translation of the
liquid/gas front: no change in droplet size is considered. This
means that the radius R does not appear in the formulation,
and so all the size information is lost. Using this approach, it
is fundamentally impossible to recover size dependent terms
like the ‘‘line-tension’’ 1/R-type term debated in the litera-
ture. This term is usually included based on phenomenologi-
cal considerations, not derived from first principles, hence
the debate. Our analysis includes variations in both R and (
and analytically recovers the size dependent terms. Thus,
given the energy due to any physical effect, we can analyti-
cally write down the corresponding force term in Young’s
equation. In particular, we can state when line tension terms
exist, and we can derive these terms from physical first prin-
ciples.

b. Solution scalings for the electrostatic partial differen-
tial equations (PDEs): In order to find the electrical energies,
we first find the PDEs and the relevant boundary conditions
that describe the electric fields inside the liquid and solid
phases. !Typically, Maxwell’s equations are sufficient for
phrasing the right set of PDEs. But there are cases where we
consider other coupled effects such as the thermal diffusion
effects found in the ionic double layer." Before solving the
resulting PDEs, we perform an analytic scaling analysis to
extract as many parametric dependencies as possible. By so
doing, we find how the solutions, and also the electrical en-
ergies, scale with system parameters such as the applied volt-
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age V and liquid radius R, and with intrinsic material coeffi-
cients such as the resistivities ) and dielectric constants * . In
most instances, this type of analysis is sufficient to reveal the
underlying nondimensional numbers that determine the
strength of the various physical phenomena. For example,
the Bond number B!)gR2/+ lg which determines the size of
gravity terms compared to surface tension effects can be re-
covered from a scaling analysis.

c. Solving the shape-dependent normalized PDEs: Once
we have extracted the dimensional parameters such as the
voltages, radius, heights, dielectric constants and resistivi-
ties, it remains to solve the PDEs for the shape, or ( , depen-
dence. This is done numerically.

d. Finding the energy minima: From the scaling analysis
and the shape-dependent numerical results, we can find the
total electrical energies as a function of the applied fields,
material coefficients and droplet shape. By minimizing this
energy, we can find the contact angle as a function of param-
eters. At the end, the result depends only on a few dimen-
sionless numbers. In the case of gravity, the contact angle
depends on the nondimensional surface tension number ,
and the Bond number B. In the case of a resistive liquid atop
a dielectric solid, the contact angle depends on the surface
tension coefficient , , on the insulating solid electro-wetting
number U, and on the nominal ratio of solid to liquid resis-
tance Āo .

e. Predict key phenomena, including line-tension and
contact angle saturation: This article essentially performs a
careful engineering analysis of the bulk electrical and surface
tension properties of a sessile drop. Using this approach we
have been able to rigorously show that a dielectric liquid
leads to 1/R line tension terms, but a conducting liquid does
not. We have been able to assess the electrical resistive-
capacitive (RC) charging time constants, and we have been
able to quantitatively predict contact angle saturation in our
devices. It will be shown that saturation, at least in our de-
vices, is caused by the small amount of electrical resistance
found in the liquid. This explains why we continue to see
essentially the same contact angle saturation behavior for
different dielectric coatings of different thicknesses: the satu-
ration is basically fixed by the net resistance of the liquid
which depends on its size R, shape ( , and its intrinsic resis-
tivity ) l .

II. ASSUMPTIONS AND THE MATHEMATICAL
FRAMEWORK

Our attention is restricted to a single, approximately
spherical, sessile drop in equilibrium, under applied external
fields !such as gravity and electric potentials", with variable
material properties !solvent, ion type and concentration, and
the dielectric constants of the liquid and solid". For this case,
the modeling framework and underlying assumptions are
listed below.

a. An energy minimization approach: We phrase all
physical effects in terms of energies !not forces". From a
tautological standpoint this is attractive because all known
forces are derivatives of a potential energy !see Vol. I, Chap.
14, Sec. 4 in Feynman33". Nonconservative forces, which are

not written as the derivatives of a potential energy, are used
when it is not possible to track the details of all the underly-
ing conservative forces. An energetics framework is also ad-
vantageous from a practical standpoint. It is not at all clear
how ion diffusion gradients give rise to forces at the triple-
phase line, but it is !relatively" straightforward to find the
potential energy associated with an ion distribution field, and
to then perform the energy differentiation described in Sec.
III to find the associated term in Young’s equation.

b. Drop shape: The drop is assumed to be essentially a
perfect sphere truncated at the solid plane, as shown in Fig.
1. High gravitational or electrical forces can squash a drop
but we assume that the applied external fields are sufficiently
small that this distortion is negligible. We also neglect any
droplet deformation right at the triple line because we are
only interested in the bulk, not local, shape of the drop. This
means that the shape of our drop can be uniquely described
by two numbers: the radius R and the contact angle ( . After
we have solved for the electric, gravitational, and other fields
as a function of R and ( , the liquid drop has only these two
degrees of freedom left. The constant liquid volume con-
straint ties R and ( together and thus reduces the problem to
a single degree of freedom.

The methods in this article can be extended to non-
spherical drops and puddles. In such cases, the spirit of the
development is exactly the same, but the associated math-
ematics needed to find the larger number of parameters to
describe the minimal energy liquid shape is more sophisti-
cated. See Brakke34 for how to compute complex minimal
energy surfaces.

c. Equilibrium: Thus far we have only addressed the
equilibrium shape of the liquid drop under applied fields and
material variations. To include droplet dynamics, which are
important for issues such as maximizing droplet switching
speed in the electro-wetting devices described in Cho
et al.,35 two extensions will be required.

First, we will have to consider the time varying nature of
the electric fields. This is done partially in Secs. IV C 1 and
IVC 2 where we find that our resistive-capacitive (RC)
charging time constants are on the order of milliseconds.
Second, and more importantly, it will be necessary to incor-
porate our results into fluid simulations that solve the low-
Reynolds limit of the Navier-Stokes equations for two-phase
flows. Two points are important. A common concern is the
validity of the continuum assumption !see Beskok36 for a
good overview" which is not an issue in our micrometer
sized devices. Also, there is an inconsistency between sur-
face tension contact angle and viscous no-slip fluid boundary

FIG. 1. Spherical drop geometry is parametrized by radius R and !apparent"
contact angle ( .
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conditions:15,17,19,37 if both boundary conditions are enforced,
and if the fluid is a realistic fluid where discontinuous veloc-
ity fields are not possible, then the triple line cannot move.
Resolution of this issue is an active area of research.

d. No roughness or hysteresis: No surface roughness ef-
fects are included in the current model. The contact angle
hysteresis that arises from surface heterogeneities or rough-
ness can be modeled by energy considerations,21 and thus
can be incorporated into the current framework.

e. No evaporation: The liquid volume of the droplet
shown in Fig. 1 is assumed to remain constant. If we wanted
to include the liquid volume change associated with evapo-
ration, we would need to formulate the energies associated
with phase change and let volume become a variable instead
of a fixed parameter.

Rigorous conversion from energy minimum to the
modified Young’s equation

This section presents the mathematics for converting any
sessile drop potential energy function !including energies for
effects such as ion concentrations, electric fields, and mate-
rial variations" into a Young-type equation. This link is rig-
orous and exact: there are no approximations associated with
the conversion. All approximations reside within incomplete
knowledge of the energies, or within the assumption that the
drop is a perfect sphere completely described by radius R and
contact angle ( . In Sec. III we will find the total potential
energy E(R ,(;p) of the drop for different physical scenarios.
At the end of all computations, this energy will depend on
the drop radius R, the !apparent" contact angle ( , and rel-
evant system parameters p such as applied voltage V, dielec-
tric constants *! and *s , and nominal liquid ion concentra-
tions co .

At equilibrium, the drop will assume a shape R ,( that
minimizes this energy E. This means that the derivative of
the energy with respect to R and ( is zero

dE!!-E-R !R ,(;p ""dR"!-E-(
!R ,(;p ""d(!0. !1"

Equation !1" says that at an energy minimum, the infini-
tesimal change in energy due to shape variations must be
zero, and that there are two possible shape variations: one in
R and the other in ( . It is not possible to change ( without
also changing R; if ( increases in Fig. 1, R must decrease to
keep the drop volume constant !neglecting evaporation". The
drop volume is given by

v!R ,("!.R3# 23#
3 cos (

4 "
cos 3(

12 $ . !2"

Since volume is constant, its variation must be zero, hence

dv!! -v
-R !R ,(""dR"!-v

-(
!R ,(""d(

!!3.R2# 23#
3 cos (

4 "
cos 3(

12 $ "dR
"!.R3# 3 sin (

4 #
sin 3(

4 $ "d(!0. !3"

Solving for dR in terms of d( yields

dR!Rq!("d(!R# #
2 cos2!(/2"cot!(/2"

2"cos ( $ d( , !4"

where q(()!#$2 cos2((/2)cot((/2)%/$2"cos (%. A similar
equation is derived in Decamps and De Coninck.20 Using Eq.
!4", Eq. !1" can now be rewritten to show how the energy
changes with contact angle

dE
d(

!!-E-R !R ,(;p ""Rq!(""!-E-(
!R ,(;p ""!0. !5"

In order to get the traditional Young term + lg cos ( to appear
in this equation, it is necessary to pre-multiply Eq. !5" by
#(2"cos ()/2.R2 sin (. This term is strictly negative for all
possible contact angles 0$($. so there is no division by
zero. Thus

# #
2"cos (

2.R2 sin (
$ dEd(

!# #
2"cos (

2.R2 sin (
$ # !-E-R !R ,(;p ""Rq!("

"!-E-(
!R ,(;p "" $!0 !6"

is exactly Young’s equation, although written in a new way.
In the special case when E only includes the energies

due to liquid/solid, liquid/gas, and solid/gas interfaces with
constant surface tension coefficients, as in Sec. III A, this
equation becomes exactly + lg cos (#(+gs#+ ls)!0. How-
ever, this formulation can handle any potential energy func-
tion E(R ,(;p). If we include additional effects such as elec-
trical energy in the solid, electrical energy in the liquid,
gravitational terms, or ion concentration effects, then Eq. !6"
will rigorously produce additional terms in Young’s equation.

III. TWO EXAMPLES AND THE SIZE DEPENDENT
TERMS

The first example is a drop that only has energies due to
interfaces. The purpose of this example is to verify the
framework of Sec. II A and to show that we exactly recover
the traditional Young equation in this simple case. The sec-
ond example includes gravity. This example shows how bulk
effects are included in the analysis, the electrical fields of
Sec. IV are included in the same way, and it demonstrates
how scaling arguments can be used to extract the relevant
nondimensional parameters. We close this section with sub-
section III C which converts size dependent energy terms
into the corresponding size dependent terms in Young’s
equation. This subsection shows when 1/R line-tension terms
are active.

A. Interfacial potential energy

We start with a trivial example. If we only consider the
potential energy due to the solid/liquid, solid/gas, and liquid/
gas interfaces, and if we assume the surface tension coeffi-
cients are constant, then the sessile drop interfacial potential
energy is given by Probstein12 in Chap. 10
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E int!!+ ls#+gs"A ls"+ lgA lg , !7"

where the subscripts l ,s and g denote liquid, solid, and gas
phases, respectively, Ai j is the interface area !so A lg is the
area of the liquid/gas interface", and + i j are the surface ten-
sion coefficients with units of energy per area. The solid/gas
coefficient +gs appears with a negative sign because if A ls is
increased by some amount, then Ags must be decreased by
the same amount.

For the drop shown in Fig. 1, it follows from purely
geometrical reasoning that

A ls!R ,("!.R2 sin2( , !8"

A lg!R ,("!2.R2!1#cos (". !9"

In consequence, the interfacial potential energy is

E int!R ,("!R2$!+ ls#+gs". sin2("+ lg2.!1#cos ("% .
!10"

As expected, the interfacial potential energy term scales with
drop radius squared. If we plug E int into the conversion de-
scribed by Eq. !15", then, after some half angle trigonometric
identities, we exactly recover the traditional Young
equation12 + lg cos (#(+gs#+ ls)!0.

B. Gravitational potential energy

We now consider the potential energy due to gravity.
This case is presented because it demonstrates some of the
key concepts, such as solution scaling, for a simple and in-
tuitive example. In reality, for most practical microfluidic
devices, gravity is negligible.

It is possible to find the form of the gravitational poten-
tial by a simple scaling analysis.

A liquid element of volume /v , of density ! , at height
! above the solid reference plane, will have a potential en-
ergy due to gravity of /Egvty!mg!!!g!/v , where m
!!/v is the mass of the element and g!9.81m/s2 is the
acceleration due to gravity. The total potential energy due to
gravity is the integral over all the liquid elements within the
drop shape. For a drop of radius one, the integral of !g!dv
over the drop shape will give some function of ( only:
Egvty(R!1,()!agvty((). If we increase the size of the drop
by a factor of R but keep the shape, meaning ( , the same,
then the integral will change by a factor of R4 – the ‘‘num-
ber’’ of elements remains the same, but there is one factor of
R for the change in ! and three factors of R for the cubic
change in dv . Hence the potential energy of the drop due to
gravity must be

Egvty!R ,("!R4agvty!(", !11"

where agvty(() is the shape form factor. This R4 dependence
will create an R2 term in Young’s equation: + lg cos (!(+gs
#+ ls)"R2b((), as described by Eq. !15" in Sec. III C be-
low.

To actually find the form factor agvty , we carry out the
shape integration. Namely

agvty!("!%
.#(

.
#.!g$cos0"cos (%sin3!0" d0

!
2.

3 !g$3"cos (%sin6!(/2". !12"

As necessary, this factor is zero when (!0 !total spreading
corresponds to an infinitely thin, infinitely large puddle and
means no potential energy due to gravity" is maximal when
(!. !no wetting", and is strictly positive for all ( in be-
tween.

Combining this result with the Eqs. !10" and !11", the
potential energy due to the interfacial and gravitational terms
is

E!R ,("!R2$!+ ls#+gs". sin2("+ lg2.!1#cos ("%

"R4!g
2.

3 $3"cos (%sin6!(/2". !13"

The interfacial term is at a minimum when ( is equal
to the no gravity equilibrium contact angle. The gravity
term is at a minimum when (!0 and so it tends to flatten
the drop: its effect is more pronounced for larger
drops where the Bond ratio B!R4!g/R2+!R2!g/+
is substantial. A standard calculation shows that for a
0.1 mm sized drop of water, the Bond number is
approximately (10#4 m)2%(103 kg/m3)%(9.81 m/s2)/(+ lg
!7.3%10#2 kg/s2)!0.0013, which means that the gravity
potential energy is only 0.1% of the interfacial energy.

Using Eq. !15" derived below, and dividing through by
+ lg , the dimensionless Young’s equation for a liquid drop
with gravity is

cos (## +gs#+ ls
+ lg

$"# R2!g+ lg
$ !cos (

3 #
cos 2(

12 #
1
4"!0.

!14"

C. Rka„!… energy terms lead to RkÀ2b„!… Young
terms

As shown in the two examples above, many potential
energy terms scale as E(R ,()!Rkak(() where Rk is the size
dependence and ak is a shape factor. Interfacial energy terms
in Sec. III A scale as R2a2((), gravity terms scale as
R4a4(() in Sec. III B, the conducting drop will have a
R2a2(() scaling !Sec. IVA", and the dielectric drop will
display a Ra1(() scaling !Sec. IVB". Some physical effects,
like the fixed electrode height resistivity effect of Sec.
IVC 4, will lead to energies that do not scale simply as pow-
ers of R. But even in this case we can expand such terms into
a power series in R, or we can just apply Eq. !6" directly
without the additional analysis described below.

Using Eq. !6", we see that a E!Rkak(() energy term
gives a
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Young’s equation term for a Ek!Rkak!(" energy term

!# #
2"cos (

2.R2 sin (
$ # -E

-R Rq!(""
-E
-( $

!# #
2"cos (

2.R2 sin (
$ # kRk#1ak!("Rq!(""Rk -ak

-( $
!Rk#2# #

2"cos (

2. sin ( $ # kak!("q!(""
-ak
-(

!(" $
!Rk#2bk!(" !15"

contribution in Young’s equation. R4 energy terms !e.g.,
gravity" lead to R2 effects in Young’s equation, R2a2(() en-
ergy terms !e.g., interfacial areas or insulating dielectric sol-
ids" reduce to pure ( terms, and Ra1(() terms lead to 1/R
line-tension variations. This means that the conducting liquid
drop in Sec. IVA whose electrical energy scales as R2 will
produce a Young’s equation with no R dependence. However,
the dielectric liquid drop whose energy scales as Ra(() will
have a line tension term, and the magnitude of this term will
be determined by the energy derivation in Sec. IVB and by
Eq. !15".

IV. THREE EXAMPLES WITH ELECTRICAL ENERGIES

Here we consider three examples that include electrical
fields. A conducting liquid atop a dielectric solid is discussed
in Sec. IVA: this recovers the traditional Lippmann–Young
relation. In this section we also address the role of the ionic
double layer. A dielectric liquid atop a conducting solid is
analyzed in Sec. IVB: this case leads to a 1/R line tension
term. Section IVC considers a slightly resistive liquid atop a
highly resistive dielectric solid this case recovers the contact
angle saturation behavior we observe in our devices. For
each example, we find the total potential energy, extract the
nondimensional parameters, and find the dimensionless,
modified Young’s equation.

A. Conducting liquid atop a dielectric solid

In bio-chip applications, the water will contain an appre-
ciable number of ions and will be a good conductor of elec-
tricity: see Probstein,12 Sec. 2.5, for a relation between ion
concentrations and the resistivity or conductivity of water. To
prevent current flow, the dielectric coatings in our EWOD
devices35 are designed to act as insulators. Thus, to a first
approximation, the experimental arrangement in EWOD de-
vices can be described as a conductive liquid above an insu-
lating, dielectric solid. It will be shown that this conducting
liquid/ insulating solid case exactly recovers the Lippmann–
Young relation + lg cos (!$+gs#+ ls"*sV2/2h% , but it does
not lead to contact angle saturation or any line tension
1/R-type terms.

Figure 2 shows the relevant geometry. Because the liquid
is conductive, the potential at the solid/liquid interface is
equal to the applied voltage: 0sl!V . There are three sources
of potential energy: the interfacial energy derived in Sec.
III A, the dielectric energy stored in the solid, and the energy
stored in the externally applied charging source.

1. Potential energy in the solid dielectric layer
For a dielectric solid element at location (x ,y ,z), of vol-

ume /v , with local electric field E(x ,y ,z); the electrical
potential energy is /Ede! 1

2(D•E)/v . Here D is the po-
larazibility vector field: it is the induced dipole moment in
the solid per unit volume, see Feynman33 Volume II, Chap.
10, Sec. 2. For an ideal dielectric, this moment is linearly
related to the local electric field by D!*sE where *s is the
dielectric constant of the sold. Hence /Ede!

1
2*s&E&2/v . Ne-

glecting edge effects, the electric field immediately under the
solid/liquid contact area is E!#(0,0,V/h); it points straight
down with a strength equal to the applied voltage V divided
by the dielectric thickness h. The electric field everywhere
else is zero as illustrated in Fig. 2. Thus 1

2*s&E&2dv must be
integrated over the volume v!hA ls and this gives, together
with Eq. !8", the energy stored in the solid dielectric

Ede!R ,("!
1
2 *s# Vh $ 2hA ls!*sV2

2h .R2 sin2( . !16"

If there are n solid dielectric layers, as opposed to the single
dielectric layer considered above, then *s /h is replaced by
the net in-series capacitance per unit area 1/(h1 /*1" . . .
"hn /*n).

2. Potential energy stored in the external charging
source

The basic reason this term has to be included is that
every time the drop shape changes, the charged volume im-
mediately under the solid/liquid contact area changes, and a
packet of charge /Q must be received from or pushed back
against the fixed voltage source. This requires an amount of
work, or minus potential energy, W!V/Q!#E . It follows
that the energy stored in the charge source is twice again the
energy stored in the dielectric but with opposite sign. A care-
ful exposition of this result can be found in Vol. II, Chap. 8,
Sec. 2 of Feynman33 and also in Verheijen and Prins,5 and so
it is not repeated. Hence Ecs(R ,()!#(*sV2/h).R2 sin2(.

3. Total energy and the Young–Lippmann equation
Combining the interfacial energy of Sec. III A with the

dielectric and external source energy derived above, the total
energy for the conducting drop system is

FIG. 2. Left: Conducting drop atop an insulating dielectric layer of thick-
ness h. The voltage V is applied between the bottom-most flat conducting
electrode and the electrode inserted into the top of the drop. Right: Sche-
matic showing resulting dipole moments & in the dielectric immediately
under the liquid/solid contact area; here the electric field E!#(0,0,V/h)
points down as shown by the arrows. The electric field is zero everywhere
else.
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E!R ,("!R2! # + ls#+gs#
*sV2

2h $. sin2("+ lg2.!1#cos ("" .
!17"

Note that *s is the dielectric constant of the solid, not the
liquid.

Equation !17" is identical to Eq. !10" except that + ls
#+gs has become + ls#+gs#*sV2/2h . Using the results of
Eq. !15", and dividing through by + lg to nondimensionalize,
we exactly recover the Lippmann–Young relation

cos (## +gs#+ ls
+ lg

"
*sV2

2+ lgh
$!0. !18"

This equation contains no line tension 1/R terms because the
energy stored in the dielectric scales as the charged volume
in the solid, and this volume scales as A lsh&R2h . Since h is
constant, this stored energy behaves just like a liquid/solid
interfacial energy term. To get a line tension term, it is nec-
essary to have a physical effect whose energy scales as R, not
as R2 !see Sec. IVB".

4. Effect of ionic double layer
There are two basic physical effects associated with the

double layer. The first is the capacitive energy stored in the
double layer: this effect is negligible in our devices. Lipp-
mann theory treats the ionic double layer as a Helmholtz
capacitor. As pointed out in Ref. 24, this is equivalent to
treating the ionic layer as yet another material layer !so in
our case we would then have three layers: silicon dioxide,
Teflon, and the ionic layer". Since the thickness of the ionic
layer !nm’s" is much smaller than the thickness of the mate-
rial coatings (1m!s), the dielectric energy stored in the ionic
double layer is negligible. It is possible to make this argu-
ment precise even when nonlinear effects in the ionic double
layer are considered. For the standard fully dissociated, sym-
metric salt situation discussed in Refs. 38 and 12, it can be
shown !see the Appendix" that the ratio of the energy stored
in the double layer to the energy stored in the solid dielectric
must fall below *s2D /* lhs which is on the order of 0.001 for
our devices. Here * denotes the dielectric constant in the
liquid and solid, 2D is the Deybe double layer length scale
which is typically on the order of nanometers, while hs is the
height of the insulating solid layer and it ranges between 0.1
and 10 1m in our devices.

The second physical effect is the possible change in the
liquid/solid surface tension coefficient + ls due to voltage in-
duced surface chemistry. This effect can be important. In our
devices, protein adsorption/desorption to the Teflon surface
is modified by the applied voltage, and the adsorbed proteins
change the surface tension properties of the Teflon apprecia-
bly.

Consider first a simpler case. For a standard fully disso-
ciated symmetric salt, the change in the positive and negative
ion concentration /c& at the solid/liquid interface depends
exponentially on the applied voltage as

/c&!coe'!zF/RT "Vdl !19"

where co is the far field ion concentration, Vdl is the voltage
drop across the double layer, and zF/RT is the characteristic

potential.12,38 If, in turn, the solid/liquid surface tension co-
efficient + ls depends on the wall ion concentration, + ls
!+ ls(c&), as stated in Butkus and Grasso,28 then +sl be-
comes a function of the applied voltage. If + ls(c&) is known
experimentally, say from Butkus and Grasso,28 then Eq. !19"
together with a voltage balance gives + ls!+ ls(V). This must
then be substituted into Eq. !7" and the voltage dependent
+ ls(V) will then appear in Eq. !17" also. The methods of Sec.
II A and Eq. !6" will now return the modified Young’s equa-
tion for this case.

More complex situations, such as those involving protein
adsorption/desorption, raise two key issues. First, how
strongly does the liquid/solid surface tension coefficient +sl
depend on the species concentration at the wall? Butkus and
Grasso28 find a moderate change in +sl based on electrolyte
concentration. Van der Vegt et al.27 find a much stronger
variation of both the solid/liquid and liquid/gas surface ten-
sion coefficients. Second, what is the transport rate of the
chemical species from the liquid bulk to the solid/liquid and
liquid/gas interfaces? And how does this transport vary with
applied voltage? As noted in van der Vegt et al.,27 chemical
species transport is a complex and important issue.

B. Dielectric liquid atop a conducting solid

We now compute the electric potential energy for a di-
electric liquid drop with an applied voltage. This case is
treated because we are interested in transporting dielectric
liquids such as silicone oil, and because this case recovers
the controversial 1/R line tension terms from physical first
principles. Such terms are included in Refs. 26 and 22 based
on phenomenological grounds. Below it is assumed that the
drop is an insulator with dielectric constant * l and that the
solid is a perfect conductor; for example, a droplet of sili-
cone oil atop a metal electrode. A voltage V is applied as
shown in Fig. 3.

1. Electrical energy scaling
For this case, we assume the top electrode is always

positioned so that it only penetrates the tip of the drop. The
analysis for a fixed electrode case is analogous to the analy-
sis carried out in Sec. IVC 3. The end result for the fixed
electrode case is similar to the varying electrode height case
discussed here. Like in the gravity example, it is possible to
find the form of the electrical potential energy by a scaling
argument. As in Sec. IVA, the potential energy stored in a

FIG. 3. A dielectric liquid drop with dielectric constant * l atop a conducting
solid. The bottom plate has a zero ground potential 0!0, but the liquid
immediately surrounding the tip of the electrode at the top of the drop has a
0!V potential.
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small volume /v of !ideal" dielectric material is /Ede
! 1

2* l&E&2/v , where * l is the dielectric constant of the liquid
and E(x ,y ,z) is the electric field in the liquid.

To see how the electrical energy scales with voltage,
radius, and the dielectric constant, we need to understand
how the electric field E varies with these parameters. First
consider a drop of unit radius with a unit applied voltage.
The electric potential field within such a drop is described by
Poisson’s equation 320(x ,y ,z)!0, with boundary condi-
tions 0bottom!0 and 0 top!V!1. !Side boundary conditions,
which are independent of R and V, do not affect the scaling
argument." The electric field is then the gradient of the po-
tential field: E!#30!#(-0/-x ,-0/-y ,-0/-z).

Consider the potential field 0(x ,y ,z) inside a drop of
unit radius with applied unit voltage. If we double the size of
the liquid drop then the potential field 0 is stretched by a
factor of 2: 0R!1(x ,y ,z) becomes 0R!2(x ,y ,z)
!0R!1(x/2,y /2,z/2). This means that the electric field,
which is the rate of change of the potential in space,
will become half as strong. Thus ER(x ,y ,z)
!1/RER!1(x/R ,y /R ,z/R). Conversely, if we double the ap-
plied voltage V then the electric field will be doubled. There-
fore, if we know the electric field at position (x ,y ,z) for a
drop of unit size with unit voltage, then the electric field at
(Rx ,Ry ,Rz) for a drop of radius R with applied voltage V is

ER ,V!Rx ,Ry ,Rz "!
V
R ER!1,V!1!x ,y ,z ". !20"

To find the stored potential energy, we must integrate the
energy per unit volume /Ede! 1

2* l&E&2/v over the drop
shape. Namely

Ede!
1
2%R ,V drop

* l&ER ,V&2dv ,

!
1
2%R ,V drop

* l
V2

R2
&ER!1,V!1&2dv ,

!
1
2 * l

V2

R2
R3%

R!1,V!1 drop
&ER!1,V!1&2dv ,

where the last equation is a consequence of the fact that the
volume v scales as R3. The integral in the last line only
depends on the shape ( !both R and V are fixed to unity"
hence

Ede!R ,("!
1
2 * lRV2%

R!1,V!1 drop
&ER!1,V!1&2dv

!
1
2 * lRV2ade!(". !21"

In summary, the electric field E varies as V/R; it appears
twice in the potential energy giving a V2/R2 dependence,
while the volume v scales as R3. Together, they imply that
the stored electrical energy for a dielectric liquid drop scales
as 1

2* lRV2ade(().

As in Sec. IVA, the potential energy stored in the volt-
age source is twice again the capacitive energy stored in the
dielectric, but with opposite sign. Hence the total electrical
energy stored in the system is

Eelec!R ,("!
1
2 * lRV2ade!("#* lRV2ade!("

!#
1
2 * lRV2ade!(". !22"

Equation !15" implies that the R dependence inside this term
will give rise to a line-tension-type effect in Young’s equa-
tion:

+ lg cos (!!+gs#+ ls""
1
R b!(".

Thus we have been able to derive the phenomenological line
tension term cited in Refs. 22 and 26 from physical first
principles by using Sec. II A and a scaling argument.

2. Shape factor ade„!…
To find the form factor ade((), we need to solve Pois-

son’s equation for all possible drop shapes. Figure 4 shows
the electric potential field 0(x ,y ,z)!c contours for contact
angles (!154 °, 114 °, 78 °, and 37 °.

Form factor results for 14 contact angles are shown in
Fig. 5. Notice that ade(() is nearly independent of ( for
contact angles between 50 ° and 140 °. This is because all
the high electric potential gradients 30 that make up the
majority of the integral occur at the top of the drop, or at the
top and bottom when the contact angle is close to 180 °.
Hence only a very small angle can impact the high gradient
region at the top, and only a very large angle can create and
then affect the high gradient region at the bottom.

Using the form factor of Fig. 5, together with Eq. !22",
the potential energy for the interfacial plus electrical energy
is

E!R ,("!R2$!+ ls#+gs". sin2("+ lg2.!1#cos ("%

#R
* lV2

2 ade!(". !23"

Define W!* lV2/R+ lg as the nondimensional dielectric liquid
electro-wetting number. It is exactly this number that deter-
mines the size of the 1/R line-tension term. For a R
!0.1 mm drop of silicone oil with a dielectric constant of
* l!2.5* !from CRC handbook39" where * is the permittivity

FIG. 4. Four drops of equal radius but different contact angles (!154 °,
114 °, 78 °, and 37 °. The constant electric potential contours 0(x ,y ,z)
!c are shown for a vertical slice through each of the four drops. The
calculated form factor for each drop is ade(()!4R!1,V!1 drop&30&2dv
!0.0592, 0.0609, 0.0617, and 0.0640, respectively.
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of vacuum, and an applied voltage of 100 V the ratio of the
interfacial to electrical energies is approximately a/2W
!a/2R* lV2/R2+ lg!a/2* lV2/R+ lg5(0.06/2)%(2.5%8.85
%10#12 C/Vm)%(100 V)2/(0.0001 m)%(0.02 J/m2)
!0.0033. Evidently, less than 1% of the energy of our ex-
ample drop is electrical energy. We would have to increase
the voltage up to 1000 V before the electrical energy be-
comes appreciable; in that case a/2W50.4.

Creating such a high voltage for such a small drop could
lead to dielectric breakdown: the electric field generated for
1000 V across a 0.1 mm drop is &E&&V/R!107 V/m. For
oils, dielectric breakdown typically occurs right around
107 V/m. In terms of the electric field, the electro-wetting
number W scales as * lR2(V/R)2/R+ lg!* lR&E&2/+ lg , so it
would actually make more sense to pick an electric field that
is high but is substantially below the dielectric breakdown,
and then to increase the drop radius R until W approaches
unity. Such an experiment should allow one to see appre-
ciable line-tension effects.

3. Young’s equation for a dielectric liquid: The
‘‘line-tension’’ term

Applying Eq. !15" to Eq. !23" and dividing by + lg , gives
the nondimensional Young equation for a dielectric liquid
drop in terms of the electro-wetting number W!* lV2/R+ lg

cos (## +gs#+ ls
+ lg

$#
1
2 # * lV2

R+ lg
$ !#

2"cos (

2. sin ( "
%!ade!("q!(""

dade
d(

!(""!0. !24"

Here q(() is defined immediately below Eq. !4" and ade(()
is shown in Fig. 5. Notice the 1/R ‘‘line-tension’’ depen-
dence. We write ‘‘line tension’’ in quotes because the effect

is not, in fact, due to a line tension in any physical sense. It
arises because the drop volume scales as R3 and the electric
field scales as V/R . Upon integration of the dielectric energy
this gives an R-type energy dependence, which becomes a
1/R force dependence via Sec. III C, Eq. !15". The exact
same scaling argument gives, for a conducting drop on an
insulating surface, and R2 energy dependence in Eq. !17" and
no 1/R line tension in Eq. !18".

Equation !24" cannot be solved analytically, but can be
solved numerically. Figure 6 shows the resulting variation in
contact angle as a function of the nondimensional electro-
wetting parameter W!* lV2/R+ lg . The contact angle de-
creases only gradually with increasing W. This means that
dielectric liquids on conducting solids will change shape
only slightly under applied electric fields. It is clear why it
would be difficult to measure such an effect experimentally:
the effect is small and it is sensitive to the dielectric proper-
ties of the liquid.

C. Slightly resistive liquid atop a dielectric,
highly-resistive solid implies contact
angle saturation

In Sec. IVA we considered the case of a conducting
liquid atop a perfectly insulating dielectric solid: this case
recovered the Young–Lippmann Eq. !18", and was a first-cut
model of the physical situation encountered in our electro-
wetting devices. However, the assumption of a perfect insu-
lator is unrealistic, and so we introduce the resistance of the
solid !which is large by design" and also a small amount of
liquid resistance !which is unavoidable in practice". Liquid
resistivity depends on the number and type of ions in the

FIG. 5. Circles show the computed form factor ade(() for 14 different
contact angles. The stored energy in the liquid dielectric, for a drop of radius
R with applied voltage V, is now given by Ede!

1
2* lRV2ade((). Since the

energy stored in a capacitor is Ede!
1
2CV2 this also gives the liquid drop

capacitance as C(()!* lRade((). Using ( in radians, the equation for the
solid line fit is ade(()50.0592"0.0012("0.0022 tan(1.71#() and it only
holds for 0.4$($3 in radians, or equivalently for 25 °$($172 ° in de-
grees.

FIG. 6. For a dielectric liquid atop a conducting solid, this plot shows the
contact angle dependence on the electro-wetting number W!* lV2/R+ lg for
six nominal !zero voltage" contact angles. The analysis above predicts that
the drop shape will snap-to complete wetting past some critical electro-
wetting number W*. The predicted snap-to limit W* is within the plot range
for the three bottom curves. Three cautions are necessary: first, the shown
snap-to situation for the bottom three curves corresponds to a very high
electric field !the drop is thin and the voltage V is high"; second, the fit for
ade(() used to generate these results does not hold for ($26 °; third, we
suspect that other physical effects, like electrolysis, will become active at
high V/low ( , and this snap-to total wetting will not occur.
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liquid, see Probstein,12 Sec. 2.5. These features are all that is
required to replicate the contact angle saturation that we see
in our devices.

We note that many different physical effects can poten-
tially cause contact angle saturation. Any kind of loss mecha-
nism will cause the reversible dielectric energy stored in the
solid to deviate away from the ideal Young–Lippmann value.
Verheijen and Prins5 present a convincing argument that
charge trapping is the dominant loss mechanism in their de-
vices. Other mechanism are proposed in Refs. 4,6 and 24.
We stress three points here. One, a reasonable amount of
liquid resistance will cause contact angle saturation !see the
development below". Two, the saturation predicted by liquid
resistance accurately matches the experimental data we see
in our devices !see Fig. 13". Three, liquid resistance is the
leading cause of contact angle saturation in our devices. We
examined a large number of physical mechanisms and liquid
resistance was the only physically meaningful assumption
that was able to explain our experimental data.

1. Equivalent circuit diagram

To understand how liquid resistance affects contact angle
saturation, first consider the bulk circuit diagram shown on
the left side of Fig. 7. When the total resistance is large but
finite, there is a small amount of current flow I through the
liquid and solid. Following standard electrical engineering
practice, the relation between the voltage V and the current I
is most conveniently expressed in the frequency domain by a
complex impedance z(s)!V(s)/I(s). !Here s is the Laplace
variable. For a sinusoidal signal V(t)!V̄ cos(wt) of fre-
quency w, take s!iw . Setting w!0 gives back the steady-
state V(t)!V̄ case." The total impedance for the circuit dia-
gram shown in Fig. 7 is

V!s "
I!s " !z!s "!

1"
R liq
Rsol

"sR liqCsol

sCsol"
1
Rsol

. !25"

If the liquid resistance is set to zero (R liq→0) and the solid
resistance is set to infinity (Rsol→6) to model a perfect in-

sulator, then the above impedance z(s) reduces to z(s)
!1/sCsol and we recover the pure solid capacitive case of
Sec. IVA.

As before, all the reversible electrical energy is stored in
the solid capacitor and the voltage source. !The liquid and
solid resistance only cause a non-reversible energy loss." The
energy stored in the solid capacitor is still Ede! 1

2CsolVsol
2 ,

where Vsol is the voltage drop across the solid !see
Feynman,33 Vol. II, Chap. 22, Sec. 5". To find this voltage
drop, note that the impedance of the solid is zsol
!1/(1/sCsol"1/Rsol), that the current through the liquid is
the current through the solid is the total current I liq!Isol
!I , and that Eq. !25" relates V(s) and I(s), hence

Vsol!s "!zsol!s "I!s "!
zsol!s "
z!s " V!s "

!# 1

1"
R liq
Rsol

"sR liqCsol$ V!s ". !26"

Thus in steady state, i.e., as s!iw→0, the voltage and en-
ergy stored in the dielectric are

V̄sol!# 1

1"
R liq
Rsol

$ V̄ , Ēde!
1
2 Csol# 1

1"
R liq
Rsol

$ 2

V̄2,

!27"

where V̄ is the applied dc voltage. This is the same depen-
dence as shown in Eq. !16" for the perfectly insulating solid
!since Csol!*sA ls /h), except for the new R liq /Rsol term. The
key observation is that the resistance of the liquid drop R liq is
shape dependent, and it is this dependence of the resistance
on the contact angle R liq!R liq(() that is going to lead to
contact angle saturation. The mechanism is elucidated below.

2. PDE’s and their solution
Our first task is to find the PDE’s and boundary condi-

tions that describe the steady-state electric potential
0(x ,y ,z) inside the liquid and the solid.

We have assumed that the liquid is a resistor with resis-
tivity ) l but that it has no capacitive effects. The current

FIG. 7. Left: A bulk circuit diagram for a liquid with a small amount of electrical resistance R liq , atop a dielectric solid with capacitance C sol and a large
amount of electrical resistance Rsol !by design". Middle: The corresponding !steady-state" PDE with boundary conditions. Here, 0(x ,y ,z) is the electric
potential inside the three-dimensional drop; ) is the resistivity !units 7 m) where )!) l inside the liquid is small and )!)s inside the solid is large, and
3(1/)30)!0 includes the liquid/solid electric field jump conditions; n̂ is the outward unit normal and so 30• n̂!0 is the no-flux external boundary
condition; finally 0!V and 0!0 are the top and bottom boundary conditions applied by the voltage source. Right: This figure shows an example solution
of the PDE equations. The lines show 28 equally spaced contours of constant 0(x ,y ,z)!c for a vertical slice through the three-dimensional liquid and solid
geometry. Notice that almost all the voltage drop occurs across the solid but there is also a small amount of voltage drop in the liquid.

5803J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Shapiro et al.

Downloaded 03 May 2005 to 128.97.138.68. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



density in the liquid is given by jl!E/) l where E is the local
electric field. By comparison, the solid has both a resistive
and capacitive component with resistivity )s and dielectric
constant *s . The instantaneous current density in the solid is
given by j!E/)s"*sdE/dt . At steady state, the dE/dt term
goes to zero and we are left with j!E/)s . Conservation of
charge states that the divergence of the current density is
zero: 3j!0. Moreover, the electric field is minus the gradi-
ent of the electric potential E!#30 hence

3# 1) 30 $!0, )!' ) l resistivity in the liquid
)s resistivity in the solid

!28"

is the PDE that describes the electric potential inside both the
liquid and the solid at steady-state. This formulation cor-
rectly includes the conservation of current flow in the verti-
cal direction across the solid/liquid interface, namely: j z
!(-0/-z)/) is a constant across the interface with )!) l in
the liquid and )!)s in the solid, hence the solid/liquid jump
conditions are )s-0 l /-z!) l-0s /-z .

Boundary conditions for Eq. !28" are as follows. The
potential at the bottom of the solid is fixed at a nominal !and
arbitrary" 0!0 potential. An inserted electrode at the top of
the liquid is held at 0!V by the applied voltage source. At
all the liquid/gas and solid/gas boundaries we use a zero
normal electric field condition E• n̂!30• n̂!0, where n̂ is
the outward unit normal. This last condition is analogous to
the liquid/gas jump condition, here () l/s /)g)Eg• n̂!El/s• n̂ ,
except that we further assume that the resistivity of air )g is
large compared to the resistivity of the liquid ) l and solid
)s , and so El/s• n̂ is essentially zero at the liquid/gas and
solid/gas boundary.

A summary of the PDE and its boundary conditions is
shown in the middle of Fig. 7. The right side of the figure
shows a sample solution for a (!114 ° contact angle with
applied voltage V!1, liquid radius R!1, solid height h
!0.2, and resistivity ratio randomly chosen at )s /) l!230.
This solution should be understood as follows: if the drop
shape were to somehow be held at (!114 ° and a voltage
V!1 were suddenly applied, the electric potential 0(x ,y ,z)
inside the liquid and solid would approach the field lines
shown on the right side of the figure at a rate of 1/8 . This
time constant 8 is the charging time for the solid capacitor

based on the available current flow through the liquid and
solid. From the preceding section, it can be shown and then
estimated that

8!
Csol

1/Rsol"1/R liq
5

*sR2/h

R2/)sh"R/) l
. !29"

For a R!1 mm water drop, with ) l55%104 7 m, )s
51012 7 m, *s!16%10#12 C/Vm 39 and solid height h
!10#6 m, this time-constant 8 is on the order of 10#3 s.
Because this time constant is quite fast, it is reasonable to
treat the potential 0(x ,y ,z) as a steady-state quantity. Once
the potential 0 is known, the dielectric energy stored in the
system is given by the integral of dEde! 1

2(D•E)dv
! 1

2(*s30)•(30)dv over the solid geometry

Ede!R ,( ,h ,V ,)s /) l ,*s"!
1
2%sol*s&30!x ,y ,z "&2dv . !30"

Equation !30" mathematically captures the contact angle
shape dependence left unsaid in Eq. !27". As previously, the
total electrical energy is the sum of the energy stored in the
dielectric and in the voltage source: Eelec!Ede"Evs!Ede
#2Ede!#Ede .

3. Electrical energy scaling
Equation !30" shows how the electrical energy depends

on the geometry (R ,( ,h), the applied voltage V, and the
material properties )s /) l and *s . Our task now is to flush out
and simplify this dependence so that we can understand how
the energy minimum varies with geometry, applied voltage,
and material properties. This can be done by a scaling analy-
sis just like the one used in Secs. III B, IVA 1, and IVB 1,
but with one additional key assumption.

If we look at the electric potential solution shown on the
right of Fig. 7, we see that the potential field surfaces
0s(x ,y ,z)!c inside the solid are horizontal except right be-
low the drop edges. This is because the height of the solid,
h̄!0.2, is small compared to the radius of the liquid R̄ . In
our electro-wetting devices h/R$10#4, hence the energy
content of the edge effects is tiny, and we can assume the
electric field in the solid is essentially vertical: Es5
#(0,0,-0s /-z).

FIG. 8. Solution scaling: Both pictures show the electric potential inside the liquid and solid with the same color scale: white denotes high electric potential,
black denotes zero potential, and the curves denote surfaces of constant 0(x ,y ,z). The notch at the top represents the inserted wire electrode: the wire
insertion depth D is fixed and is taken into account in the scaling argument. The picture on the left shows a solution of Eq. !28" with Ro!1, h!0.2 and
Āo!0.2)s /) l!10. The picture on the right shows a solution for Ro!1.5, h!0.15 and the same liquid/solid resistance ratio Āo!0.15)s/1.5) l!10. Notice
that the solutions are essentially self-similar. There is a small discrepancy because the scaling argument ignores the horizontal stretching of the electrical edges
effects in the solid region immediately underneath the triple line.
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Then the basic scaling result is this. If we take an exist-
ing solution to Eq. !28" with the boundary conditions of Fig.
7, and we stretch the liquid in the x ,y ,z directions by a factor
R̂ , and stretch the solid by a factor R̂ in the x ,y directions,
and by ĥ in the z direction, the end result is still a solution so
long as the resistance of the liquid or solid is also changed so
as to keep the resistance ratio Ā0!h)s /Ro) l at its previous
value. Figure 8 shows this scaling idea graphically.

This means that if we know the solution to Eq. !28" with
the boundary conditions of Fig. 7 for a fixed liquid radius
R̄!1, solid height h̄!0.2, applied voltage V̄!1, and for
any contact angle (̄ , any normalized electrode penetration
depth D̄/R̄ and any resistivity ratio )̄s / )̄ l!Ā , then we also
know the solution for any combination of parameters
R ,h ,D ,V ,( ,)s and ) l . We are going to assume that the elec-
trode is always at a fixed height H above the solid because
this is how the experiment is actually done. Thus the relation
between the radius R, contact angle ( and the electrode pen-
etration depth D is D!1#cos (#H/R where H is fixed but
R ,( and D vary. !The electrode insertion depth D is shown in
Fig. 8 but not in Fig. 7." Using this relation D!D(R ,() we
can suppress further discussion of the D parameter. In math-
ematical terms, if we let 0̄ (̄ ,Ā( x̄ , ȳ , z̄) be the known solution
for R̄!1,V̄!1 and h̄!0.2, !and choose z such that z!0 at
the solid/liquid interface" then

0!x ,y ,z "!( 0 l!x ,y ,z "!V0̄ l
( ,Ā# xR , yR , zR $ in the liquid

0s!x ,y ,z "!V0̄s
( ,Ā# xR , yR , h̄zh $ in the solid

!31"

is a solution for arbitrary R, h, V, ( , )s , and ) l where Ā must
be set to h̄Ā!)sh/) lR . For example, to find a solution for
R!1 mm, h!0.2 1m, V!50 V, (!120 °, and )s /) l
!327, we first find the nondimensional solution 0̄ for R̄
!1, h̄!0.2, V̄!1, (̄!120 °, and Ā!0.327, then the di-
mensional solution is given by Eq. !31". !For a proof of this
statement, see the Appendix."

Using the above scaling, and noting once again that the
total electric energy is minus the energy stored in the dielec-
tric !see Secs. IVA 2 and IVA 3", we find that the total elec-
tric energy is given by

Eelec!R ,( ,h ,V ,)s /) l ,*s"

!#
1
2%R ,h solid*s&30!x ,y ,z "&2dv

!#
1
2 # *sR2

h $V2h̄
%%

R̄!1,h̄! .2 solid
)3̄0̄s! x̄ , ȳ , z̄ ")( ,Ā!

)sh/ h̄
) lR

)2d v̄

!#
1
2 # *sR2

h $V2h̄a# ( ,
)sh/ h̄
) lR

$ . !32"

By using scaling arguments, we have managed to take an
energy that depends on six variables (R ,( ,h ,V ,)s /) l ,*s),
and rewritten it in terms of two nondimensional numbers
(( ,Ā) times a simple dimensional quantity (*sR2V2/h). It
remains to find the shape factor a(( ,Ā). We do this numeri-
cally in the next section.

4. Shape factor a„!,Ā„R…… and the constant volume
energy minimum

At this stage, we are within the energy minimization
framework outlined in Sec. II. For our slightly resistive drop
atop a highly resistive solid, we could note that the total
energy of the drop E(R ,() is given by a sum of the interfa-
cial energy E int(R ,(;p1) in Eq. !10", and the electrical en-
ergy Eelec(R ,(;p2) in Eq. !32". We could then compute
a(( ,Ā) numerically and solve Eq. !5" with outside param-
eters p1!(+ ls#+gs ,+ lg) and p2!(h ,V ,)s /) l ,*s). This
would yield the equilibrium contact angle ( as a function of
R ,p1 and p2.

However, this process is tedious for the following rea-
son. The shape factor a(( ,Ā) here depends on two variables.
To map it out accurately we would have to evaluate a for at
least 15 values of ( and 10 values of Ā . This is 150 solutions
of the three-dimensional PDE Eq. !28". To get a sufficiently
fine-scale solution takes about 15 min per simulation, which
is a total of 37.5 h of run time. !Of course we could paral-
lelize the computations, and take previous solutions as initial
conditions for subsequent solution, but still, doing it in this
way is a significant computational burden."

Instead, we are going to use a short-cut. The volume v
!v(R ,() of the liquid drop is fixed. Inverting Eq. !2" yields

R!("

Ro
!r!("! 3! 4/3

2
3#

3 cos (

4 "
cos 3(

12

, !33"

where Ro!!3 $3v/4. is the nominal radius of a drop of vol-
ume v that is a perfect sphere !so for (!.). Under the
constant volume constraint, the shape factor a only has a (
dependence

a!("!a# ( ,
)sh/ h̄
) lR!("

$ !a# ( ,
Āo

h̄r!("
$ !34"

with Āo!)sh/) lRo . Using this relation for the radius R in
terms of ( , the total energy can be written in nondimensional
form as

E!("

+ lgRo
2 !r2!("! # + ls#+gs

+ lg
$. sin2("2.!1#cos (""

#
1
2 # *sV2

h+ lg
$ r2!("! h̄a# ( ,

)sh
) lRo

1/h̄
r!("

$ " . !35"

Notice the dependence on the three nondimensional param-
eters

,!
+ ls#+gs

+ lg
!nondimensional surface tension coefficient,
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U!
*sV2

h+ lg
!electro-wetting number for dielectric solid,

Āo!
)sh
) lRo

!solid/liquid resistivity ratio.

These three nondimensional parameters will uniquely deter-
mine the contact angle.

Figure 9 shows sample potential field solutions 0(x ,y ,z)
for Āo!10 for three values of ( . Here the solid is colored by
the magnitude of the local electric field &30s(x ,y ,z)&. The
constant liquid volume shape factor h̄a$( ,Āo / h̄r(()% is now
computed by numerically integrating &30s(x ,y ,z)& over the
solid !edge effects are truncated". Results are plotted against
( for four values of Āo in Fig. 10. As is necessary, the zero
liquid resistance !infinite Āo case" reduces to the Sec. IVA
scenario with h̄a(( ,1000/h̄) indistinguishable from . sin2(
$compare with Eq. !16"%. As the resistance is increased, the
form factor a begins to fall away from the zero resistance
case, reflecting the fact that there is now a substantial voltage
drop across the liquid and less capacitive energy is being
stored in the solid.

5. Detailed explanation of contact angle saturation
We can now precisely explain contact angle saturation

through Figs. 11 and 12.
Figure 11 shows the net electrical energy !when 1

2U
!1) as a function of the contact angle ( for a liquid drop of

constant volume. Different curves are shown for four values
of the solid to liquid resistance ratio Ao!)sh/) lRo . The
solid/liquid interface energy curve Esl(() is shown for com-
parison. For zero liquid resistance, the Ao!6 curve is the
mirror image of the Esl curve: Eelec(()!#Esl((). In this
case, Eq. !35" becomes

E!,Esl"E lg# 1
2UEsl!!,# 1

2U"Esl"E lg . !36"

It is as if the applied voltage in U!*sV2/h+ lg were directly
changing the surface tension coefficients in ,!(+ ls
#+gs)/+ lg . So this says that if we increase U high enough
!up to ,# 1

2U!#1) then we would drive the contact angle
to (!0. The left side of Fig. 12 shows this scenario notice
how as U increases, the energy curve unbends, and at U
!3 !when ,# 1

2U! 1
2#

1
2%3!#1) the contact angle arrives

smoothly at total spreading.
But there is always some liquid resistance: Ao!” 6 . As

this liquid resistance increases (Ao decreases" the electrical
energy Eelec(( ,Ao) deviates away from the ideal #Esl(()
value as shown in Fig. 11. This is just a consequence of

FIG. 9. The strength of the electric field inside the solid, and thus the amount of stored electrical energy, decreases as the liquid drop approaches total wetting.
Here we show a case where the resistivity of the liquid is 50 times smaller than the resistivity of the solid. All scaling is according to Eq. !31", but with the
figures drawn to show a constant electrode height. The solid is colored by the strength of its electric field &30s&, with black denoting a low electric field, light
gray up to white representing a high field. Notice how the electric field strength in the solid decreases as the droplet spreads and there is a progressively longer
liquid path from the bottom of the top electrode to the solid near the triple line. !If there was no liquid resistance, the size of electric field in the solid would
remain the same for all contact angles."

FIG. 10. The constant liquid volume shape factor of Eqs. !32" and !34". If
there is no liquid resistance, the form factor is proportional to the liquid/
solid area: a(( ,6)!. sin2(. As the liquid resistance increases (Ao de-
creases" the energy stored in the solid falls away from the ideal zero liquid
resistance case. Points on the graph above are found by a numerical solution
of Eq. !28". When ( reaches 66 ° the top of the liquid drop has fallen below
the bottom tip of the inserted electrode: this effect can be seen in Fig. 9.

FIG. 11. This figure shows electrical energy curves for a fixed liquid vol-
ume. When there is no liquid resistance (Ao!6), the electrical energy
exactly balances the solid/liquid interfacial energy: Eelec(( ,Ao!6)!
#(2,/U)E ls((). This implies that the imposed electric energy can perfectly
cancel the energy due to the liquid/solid interface. When the liquid resis-
tance is nonzero (Ao$6), the electric energy deviates away from the mirror
image of Esl and it is not possible to cancel the effect of the solid/liquid
energy by driving up the voltage. This leads to the contact angle saturation
shown in Figs. 12 and 13.
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solving Maxwell’s Eq. !28" with the boundary conditions of
Fig. 7 and using the constant liquid volume constraint of Eq.
!33". This numerical result can be explained intuitively. As (
decreases, the radius of the drop increases !to keep the vol-
ume constant" and in addition the liquid edges pull away
from the fixed electrode !as shown in Fig. 9" this means that
the ions in the liquid have to travel a longer distance to get
from the electrode at the top to the solid at the bottom. Thus
the effective resistance of the liquid increases as contact
angle decreases. For greater liquid resistivities ) l , the resis-
tance first starts to increase appreciably at larger contact
angles ( .

We note that even a small amount of liquid resistance
implies that it is not possible to drive the contact angle to
zero with an applied voltage of any size. For a fixed volume,
the interfacial area, and hence the energy, of Eq. !35" goes to
infinity as contact angle goes to zero at a rate of r(()

&(#2/3 due to an area versus volume scaling argument. But
the electrical energy goes to infinity at a slower rate due to
the 1/r(() term inside the shape factor a in Eq. !35". Hence
for sufficiently small ( , the interfacial energy will always
beat the electrical energy, the total energy will go to infinity
as ( goes to zero, and so (!0 can never be an energy mini-
mum, no matter the applied voltage.

V. CONTACT ANGLE SATURATION MODEL VERSUS
EXPERIMENTS

The experimental setup is as shown in Fig. 2. For the
experiments cited here, the insulating dielectric layer con-
sists of either a single layer of Teflon or a double layer of
Teflon and silicon dioxide !see Fig. 13". Silicon is used for
the bottom electrode, and a metal wire is employed for the
top inserted electrode. More experimental details can be

FIG. 12. Left: Total energy curves for a constant liquid volume as a function of contact angle ( when the liquid resistance is zero. Different curves correspond
to different electro-wetting numbers U!*sV2/h+ lg!$0,0.5, . . . ,2.5,3% . The contact angle slides smoothly to zero as U increases. Right: The same plot, now
including a small amount of liquid resistance: A!)sh/) lRo!100. At lower contact angles, there is a greater net liquid resistance, hence there is a greater
energy loss, and hence the applied electric field cannot drive the contact angle to zero. Consequently, the contact angle is caught in an energy minimum around
(575 °.

FIG. 13. Left: Measured contact angle vs applied voltage for four different Teflon/silicon oxide coatings. Right: The same data is re-plotted against the
nondimensional electro-wetting number U!*sV2/h+ lg . The thin solid line shows the Young–Lippmann prediction. The two dashed lines show our theory for
a low and high liquid resistance. The thick solid line shows our prediction when we take the resistance ratio Ao!100. Since for our experiments h/R
&10#4, this corresponds to a liquid resistivity 10#6 times smaller than the solid resistivity. We have not yet been able to measure Ao experimentally !we have
to measure the resistance across the solid and in the liquid" but Ao!100 is of the right order of magnitude for our high resistance dielectric coatings.
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found in Moon et al.24 Experimental results are shown on the
left of Fig. 13. Results are plotted for four different coatings
as contact angle versus voltage.

The first step is to re-plot this data against the nondimen-
sional electro-wetting number U!*sV2/h+ lg of Eq. !35",
then, as seen on the right of the figure, all the data essentially
fall on a single master curve. The theory we have developed
in the preceding sections predicts this master curve. We are
able to match all the data if we take a solid/ liquid resistance
ratio of Ā!100. Since the liquid radius in our devices is on
the order of 10 000 times greater than the solid thickness h,
this corresponds to a liquid/solid resistivity ratio ) l /)s
&10#6: this is all that is necessary to cause a 75 ° contact
angle saturation.

VI. RESULTS SUMMARY

a. Minimum total energy and Young’s equation: All the
results in this article are based on a minimum energy frame-
work. This in itself is not new, see Chap. 10 in Probstein,12
and Refs. 15, 16, and 26 for example. However, we have
made a careful effort to extract as much information from the
energetics framework as is possible. We have explicitly in-
cluded size dependence in the energy minimum formulation,
and have found an analytic relation between the change in
contact angle d( and the change in radius dR necessary to
keep the liquid volume constant $see Eqs. !2" and !4"%. This
leads to Eq. !6" which is in fact exactly Young’s equation if
we consider the energy due to interfacial effects only !see

Sec. III A"; but it further allows the inclusion of any other
energy terms !due to gravity, capacitive effects, the double
layer, etc.". Specifically, we have found a simple and inter-
esting link between energy scalings and the associated terms
in Young’s equation. Any physical effect that gives rise to a
E#Rk energy size dependence, will give a Rk#2 term in
Young’s equation !see Sec. III C".

b. Summary of physical examples: Table I summarizes
the examples of Sec. III.

c. A triple-line force balance is insufficient: Much of the
early literature analyzed surface tension by phrasing a force
balance at the triple line only !see Fig. 14" The limitation of
this viewpoint has been recognized in some recent
articles.5,6,26 Essentially, if we have internal bulk forces as
occur in the case of gravity !the simplest example" or be-
cause of internal electric fields such as the one shown in Fig.
4, then we must balance the bulk volume forces against the
interfacial effects. To do so, one must either consider the
forces everywhere !not just at the triple line" or one must

FIG. 14. The left diagram shows a force balance at the triple line only. This
model cannot capture the effect of internal forces !shown schematically on
the right" such as gravity or the forces due to internal electric fields. For
example, the electric field of Sec. IV B, Fig. 4 will create forces everywhere
inside the liquid.

TABLE I. Summarizes the examples of Sec. III. For each physical effect: column two lists the energy associated with that effect; column three shows the
resulting term that appears on the right-hand side of Young’s equation; and column four gives the relevant nondimensional number. For example, the ratio
between surface tension and gravity forces is given by the bond number B. If there are many competing effects, then each effect will enter with a size
corresponding to its nondimensional number.

Physical Resulting energy term: Term on right in Nondimensional
effect E(R ,( ,p1 ,p2 , . . . )! Young: cos (! . . . number Comments

Interfacial
energy

(+ ls#+gs)A ls"+ lgA lg
see Eqs. !8", !9", !10"

cos (!#,
,!

+ ls#+gs
+ lg

Exactly recovers
Young’s equation

Gravity R4!g
2.
3 $3"cos (%sin6#(2$ #B!cos (

3 #
cos 2(
12 #

1
4" B!

R2!g
+ lg

Usually small

Dielectric
solid

#
*sV2A ls
2h !#

*sV2

2h R2. sin2(
see Eqs. !16" and !17"

"
1
2U U!

*sV2

h+ lg

Recovers the
Lipp–Young Eq.

Ion layer
capacitance

#
*lAlsVdl

2

22D
9#

* lA ls
22D

!22D*s
h* l

V"2
Vdl voltage across ion layer

:
1
2U%4D D!

2D*s
h* l

very small

Is negligible,
see Sec. IV A 4

Dielectric
liquid #

1
2* lRV2ade(()

See Eq. !22", Fig. 5
"
1
2Wb(()

for b, see Eq. !24" W!
* lV2

R+ lg
Note the

1
R line

tension in W

Liquid
resistance #

*sAls
2h # V

1"R liq /Rsol
$ 2

!#
*sR2V2

2h a(( ,Āo /R)

Not found explicitly,
see Sec. IV C 4. Āo!

)sh
) lRo

is large

Liquid resistance leads to
contact angle saturation
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minimize the total system energy as we have done here.
d. Only consider gross liquid shape: We have ignored

local details of the liquid shape, meaning we do not account
for liquid pinching at the top electrode or for the details of
the shape at the three phase line. Instead, we have assigned
two numbers R and ( which parametrize the gross shape of
the liquid drop as shown in Fig. 1. For all the different physi-
cal scenarios discussed in Sec. III, at the end we have always
expressed the total energy in terms of these two numbers,
have then related R to ( through Eq. !4" $or more directly
through Eq. !33"% and have then found the minimum energy
contact angle ( . Our basic point is that including the details
of the shape in the vicinity of the triple line is computation-
ally expensive, difficult to check experimentally, and, at least
in our devices, unnecessary to explain phenomena such as
line tension and contact angle saturation.

It is possible to extend our framework to account for
droplet deformation at the top electrode, and also for the
shape of droplets between two planar electrodes, or between
multiple electrodes of any shape. Instead of considering a
truncated sphere whose shape is uniquely described by the
two parameters R and ( , we consider a drop whose shape
is described by a longer list of parameters r
!(r1 ,r2 , . . . ,rn). For example, if the drop is rotationally
symmetric, r j could be a list of points that define the liquid/
gas curve in the vertical plane. If the droplet is not symmet-
ric, then the r j’s will define a discretized surface. To recast
the analysis of Sec. II A, we find the energy E in terms of this
shape vector r and physical parameters p. This involves
solving Maxwell’s equations as a function of the shape r. We
then minimize E(r,p) with respect to r, subject to a constant
volume constraint -v(r)/-r!0, to find the minimum energy
shape r*. Thus our semianalytic formulation is replaced by a
purely numerical optimization. This formulation recovers
droplet pinching at inserted electrodes, and it predicts the
shapes of drops squashed between two planar electrodes. De-
tailed shape results for such cases will be presented in future
publications.

e. Numerical solution of the electrostatic PDEs plus
scaling arguments: For cases that involve electric fields, we
have solved the Maxwell’s PDEs that give rise to the elec-
trostatic energy terms. Moreover, in each case we have first
used a scaling argument to elucidate how the energy depends
on parameters such as drop radius R, insulating solid height
h, applied voltage V and material parameters like the conduc-
tivity and dielectric constants. Only after we have extracted
all possible parametric dependencies, do we numerically
solve Poisson’s Eq. !28" for the ( shape dependence. It turns
out that the scaling arguments !the liquid electric field goes
as the voltage over radius, the liquid volume scales as radius
cubed, the solid volume scales as radius squared times the
height of the solid" can provide a tremendous amount of
information. In fact, scaling arguments alone are sufficient to
show when line tension terms do and do not exist. Scaling
arguments reveal the underlying nondimensional numbers
that capture the relative strength of the different physical
effects, and scaling arguments can also be used to take full
advantage of a limited set of numerical solutions. However,
to predict the details of the ( shape changes we need to know

how the electrical energy changes with contact angle and this
requires numerical solutions of Eq. !28" for varying droplet
shapes.

f. Liquid resistance leads to contact angle saturation:
For our devices, we have found that including a small real-
istic amount of liquid resistance is sufficient to explain ob-
served contact angle saturation data. Basically, the shape de-
pendent resistance of the liquid drop leads to lower energy
storage in the solid dielectric at small contact angles. Section
IVC 5 provides a detailed analysis. Section V shows a com-
parison with experimental data.
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APPENDIX A: MATHEMATICAL DETAILS

Equations !8", !9", and !12" are all derived by partition-
ing the spherical drop into infinitesimally thin horizontal
disks of varying radii and performing an integration over all
the disks.

The double layer capacitive energy ratio result of Sec.
IVA 4 is proved as follows. The Gouy–Chapman double
layer theory outlined in Hiemenz and Rajagopalan38 !Sec.
11.6" can be solved analytically for the potential in the
double layer. Specifically, using normalized (ˆ) variables

0̂! ŷ "!2 ln! 1#
1#exp! V̂ l/2"
1"exp! V̂ l/2"

e# ŷ

1"
1#exp! V̂ l/2"
1"exp! V̂ l/2"

e# ŷ" , !A1"

where 0̂!zF/RT0 is the normalized potential in the double
layer, ŷ!y /2D is the normalized vertical distance away from
the y!0 wall, 2D!!* lRT/2F2z2co is the Deybe length
scale, 0̂( ŷ!0)!V̂ l is the normalized potential at the wall,
and z ,F ,R ,T ,co and * l are the charge number, Faraday con-
stant, the gas constant, the far field ion concentration, and the
dielectric constant of the liquid. Differentiating Eq. !A1"
with respect to ŷ gives the nondimensional electric field in
the liquid Ê l!#d0̂/dŷ . Specifically, at the ŷ!0 wall

Ê l! ŷ!0 "!#
d0

dŷ
& ŷ!0!#2 sinh! V̂ l /2 ". !A2"

In Sec. IVA 4 we have a solid dielectric layer under the
liquid ion layer. This layer has a dielectric constant *s and a
voltage drop Vs . The total voltage drop across the liquid and
the solid must equal the applied voltage V!Vs"Vl . More-
over, the electric field must satisfy the standard jump condi-
tion *sEs!* lEl , Feynman,33 Vol. II, Chap. 10, where Es is
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the electric field in the solid at y!0. If the dielectric has
height hs , then by virtue of the fact that Es!Vs /hs we re-
cover !after normalization"

#2 sinh! V̂ l/2"!
*s /* l
hs /2D

V̂s . !A3"

This can be inverted and then bounded from above

V̂ l!2 sinh#1# #
*s /* l
2hs /2D

V̂s$:2 sinh#1# #
*s /* l
2hs /2D

V̂ $ ,
!A4"

where V̂ is the voltage applied across the ionic double layer
and the solid. The inequality follows from V̂s!V̂#V̂ l:V̂ .
The energy of a single charge q located at height y above the
wall is

u!y "!ez
RT
zF 0̂!y /2d", !A5"

where e!1.6%10#9 C is the elementary unit of charge. The
charge per unit volume in the double layer is

n!y "!NA$c"!y "#c#!y "%!NAco$exp!#0̂ "#exp!0̂ "%

!#2NAco sinh 0̂! ŷ ", !A6"

where NA is Avogadro’s number. Multiplying Eqs. !A5" and
!A6", and simplifying the dimensional coefficients, gives the
net capacitive energy stored in the ionic double layer as

EDL cap!
1
2

* l
2D

# RTzF $ 2%
0

6

#20̂! ŷ "sinh 0̂! ŷ "dŷ . !A7"

The key point is that using 0̂( ŷ) from Eq. !A1" and the
upper bound of Eq. !A4" it can be shown that the integral in
Eq. !A7" is bounded by (*s2DV̂/* lhs)2. Thus the capacitive
energy stored in the ionic double layer is much smaller than
the capacitive energy stored in the solid dielectric: EDL cap
:(*s2D /* lhs)EDEs . This is the result stated in Sec. IVA 4.

Numerical solutions of Maxwell’s equations used in
Figs. 4, 5, 7, 8, 9, 10, 11, 12, and 13 are carried out as
follows. Poisson’s equation are phrased in cylindrical coor-
dinates with an assumed rotational symmetry about the z
axis: 320(r ,; ,z)!-20/-r2"1/r-0/-r"-20/-z2. In all
cases, we take 30sides• n̂!0 where n̂ is the outward unit
normal at the liquid/gas or liquid/solid boundary. This con-
dition assumes that the dielectric constant of air *g is much
smaller than that of the liquid * l or that of the solid *s .
Boundary conditions for the remaining surface are outlined
in the main text. The partial differential equations are dis-
cretized and solved using FEMLAB software !www.femlab-
.com". Adaptive meshing is used because very high accuracy
is required of the numerical solutions. Specifically, in Fig. 12
we need to accurately find the energy minima inside shallow
wells. Even a 1% error in the numerical solution will lead to
a significant lateral ( error in the energy minimum place-
ment. The numerical solutions shown in Fig. 12, and thus
also Fig. 13, are accurate to within 0.01%.

The solution scaling of Eq. !31" for the slightly resistive
liquid atop a highly resistive dielectric solid is proved as
follows. The proof proceeds by assuming that 0̄ is a valid

solution of the PDE and boundary conditions presented in
Sec. IVC 2, and then showing that 0 is also a valid solution.
The original liquid solution 0̄ l is multiplied by V and
stretched by a factor of R in all three directions. A stretched
and multipled field still satisfies the necessary Laplace equa-
tion 320 l!0 !within the liquid region )!) l is constant and
may be moved outside the gradient operator", the voltage at
the top of the drop goes from 0̄ l(top)!V̄!1 to 0 l(top)
!V , the edges of the liquid solution are moved from R̄!1
to R and 30 l• n̂ remains zero at the liquid/gas interface.
Likewise, the solid potential field 0̄s only has a z component
!approximately", so if it is stretched by R in the x ,y direc-
tions and by h/ h̄ in the z direction then it still satisfies
320s!-20s /-z2!0; the x ,y scaling ensures that points just
above and below the liquid/solid interface move together,
and the multiplication of both 0̄ l and 0̄s by V means that
0(x ,y ,z) remains continuous across the z!0 liquid/solid in-
terface; finally 0(bottom)!0 remains true. So the scaled
field 0 l is a permissable solution in the liquid region, and 0s
is a permissable solution in the solid region; it only remains
to show that the liquid/solid matching condition )s-0 l /-z
!) l-0s /-z still holds. A stretching and magnifying of the
potential fields creates the following scaled electric fields:

E!x ,y ,z "

!( 30 l!x ,y ,z "!
V
R3̄0̄ l

( ,Ā# xR , yR , zR $ in the liquid

30s!x ,y ,z "!
h̄V
h 3̄0̄s

( ,Ā# xR , yR , h̄zh $ in the solid.

!A8"

Hence the liquid/solid electric field jump condition is now
written

)s
-0 l

-z !
)sV
R

-0̄ l

- z̄
!

) lh̄V
h

-0̄s

- z̄
!) l

-0s

-z . !A9"

But )̄s-0̄ l /- z̄! )̄ l-0̄s /- z̄ with )̄s / )̄ l!Ā , thus -0̄s /- z̄
!Ā-0̄ l /- z̄ , substituting this into equation !A9" gives, after
rearrangement and cancelation of the -0̄ l /- z̄ term, Ā
! )̄s / )̄ l!)sh/ h̄/) lR . So the last necessary boundary condi-
tion is still satisfied when Ā is chosen in this way.
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