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RESEARCH

Toward a generalizable machine learning 
workflow for neurodegenerative disease staging 
with focus on neurofibrillary tangles
Juan C. Vizcarra1, Thomas M. Pearce2, Brittany N. Dugger3, Michael J. Keiser4, Marla Gearing5,6, 
John F. Crary7,8,9,10, Evan J. Kiely6, Meaghan Morris11, Bartholomew White12, Jonathan D. Glass5,6,13, 
Kurt Farrell7,8,9,14 and David A. Gutman6*   

Abstract 

Machine learning (ML) has increasingly been used to assist and expand current practices in neuropathology. However, 
generating large imaging datasets with quality labels is challenging in fields which demand high levels of expertise. 
Further complicating matters is the often seen disagreement between experts in neuropathology-related tasks, 
both at the case level and at a more granular level. Neurofibrillary tangles (NFTs) are a hallmark pathological feature 
of Alzheimer disease, and are associated with disease progression which warrants further investigation and granu-
lar quantification at a scale not currently accessible in routine human assessment. In this work, we first provide 
a baseline of annotator/rater agreement for the tasks of Braak NFT staging between experts and NFT detection 
using both experts and novices in neuropathology. We use a whole-slide-image (WSI) cohort of neuropathology 
cases from Emory University Hospital immunohistochemically stained for Tau. We develop a workflow for gathering 
annotations of the early stage formation of NFTs (Pre-NFTs) and mature intracellular (iNFTs) and show ML models 
can be trained to learn annotator nuances for the task of NFT detection in WSIs. We utilize a model-assisted-labeling 
approach and demonstrate ML models can be used to aid in labeling large datasets efficiently. We also show these 
models can be used to extract case-level features, which predict Braak NFT stages comparable to expert human raters, 
and do so at scale. This study provides a generalizable workflow for various pathology and related fields, and also pro-
vides a technique for accomplishing a high-level neuropathology task with limited human annotations.

Keywords Neuropathology, Machine learning, Model-assisted-labeling, Alzheimer’s disease, Neurofibrillary tangles, 
Braak NFT staging, Whole-slide-images

Introduction
Neuropathologic analysis of brain tissue is fundamental 
to enhancing our understanding of Alzheimer Disease 
(AD) and related dementias [1, 2]. This process involves 
careful review of brain tissue using a variety of stains and 
antibodies, by experts, which is the current gold standard 

for diagnosis [3]. In contrast, ante-mortem diagnosis is 
based on clinical findings, such as neurological symp-
toms, cognitive test results, family background, includ-
ing genetic predisposition (e.g. APOE genotype), cerebral 
spinal fluid biomarkers, and other laboratory and neuro-
imaging modalities [4–6]. The ante-mortem diagnosis is 
typically validated against the neuropathology diagnosis 
to provide a better understanding of the pathology pre-
sent in the brain and how it relates to clinical symptoms 
and disease progression [7]. This feedback loop is criti-
cal for improving our understanding of these complex 
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diseases, which in turn provides guidance in the develop-
ment of future diagnostic biomarkers.

Over the last decades there have been significant 
advances to improve the diagnostic process, including 
better staining techniques, improvements of diagnostic 
staging systems, and increased access to large digitized 
tissue slides known as whole-slide-images (WSI) [2, 6, 8–
13]. Additionally, and in order to increase the consistency 
of neuropathology diagnosis across research centers, 
standardized qualitative and semi-quantitative staging 
systems, which rely on visual inspection of the tissue, 
often by a single expert, have been developed [14–18].

AD neuropathologic changes have classically been 
defined as abnormal accumulation of amyloid beta (aβ) 
and tau proteins [19]. Misfolded aβ forms extracellular 
structures known as aβ plaques, which are hypothesized 
to hinder communications between neurons and other 
cells [20, 21]. Abnormally hyperphosphorylated tau can 
create intraneuronal inclusions known as neurofibrillary 
tangles (NFTs) which lead to cell death over a prolonged 
period of time [8, 22]. The current standard for neuro-
pathology diagnosis of AD is set forth by the National 
Institute on Aging—Alzheimer’s Association (NIA-AA) 
[6, 14, 15, 23–25]. Part of this criteria is the Braak NFT 
staging system, which is predicated upon the presence or 
absence of NFTs in select brain regions [26]. Braak NFT 
stage spans from no (stage 0) or very little NFT pathol-
ogy (stage I), to abundant NFT pathology throughout the 
entorhinal, limbic, and isocortical regions of the brain 
(stage VI) giving a single stage for each case [14, 27].

Semi-quantitative neuropathology schemes display 
good inter-rater agreement among experts for cases with 
little or abundant pathology, but fare worse in intermedi-
ate stages [28–32]. Disagreements are in part caused by 
differences in neuropathology evaluation between insti-
tutions, and sometimes even between the pathologists/
experts within a given institution due to variation in 
protocols for tissue and slide preparation between labo-
ratories. Our group has also previously demonstrated 
differences amongst institutions including size of tissue 
section sampled, antibody used in immunohistochem-
istry, brain regions collected, and variations in staging 
protocol used [31, 32]. While semi-quantitative scoring 
systems remain essential in neuropathology, such sys-
tems, in their efforts to simplify and standardize, invari-
ably do not fully capture the complexity of these rich 
datasets. However, recent breakthroughs in machine 
learning (ML) and computer vision have had a broad 
impact across a wide set of disciplines, and may hold 
some promise for addressing these issues [33, 34].

Within the neuropathology literature, for example, 
ML has been shown to reliably detect aβ plaques and 
NFTs [35–39]. Yet progress in this space is hampered 

by various factors, such as the large amount of variation 
seen in neuropathology cohorts, pre-analytical variables 
such as tissue preparation and staining parameters, vari-
ations in digital imaging acquisition between scanners, 
and the need for large, typically expert labeled datasets 
to train ML models [31, 32, 40]. Current published work-
flows also involve hours of computational effort per WSI, 
generally require in depth knowledge of programming, 
and have no easy method to implement workflows or vis-
ualize results at scale [41].

Creating labeled datasets which have adequate size 
and fidelity for ML is challenging. It demands invest-
ment of time and effort from experts (i.e. neuropatholo-
gists) who are in high demand [42]. In some contexts, 
crowd-sourcing approaches using systems like Amazon’s 
MechanicalTurk can reduce the need for domain experts, 
depending on the complexity of the task [43–47]. In the 
medical field this is not always possible however, due to 
the expertise required. For example, while it may be easy 
to train non-experts to identify individual cells on a slide, 
accurately identifying subtypes such as astrocytes or oli-
godendrocytes can be a much harder task. Furthermore, 
even experts often disagree with each other, making 
defining the ground truth needed to train a robust model 
complicated [30].

In this work, we focus on two tasks: NFT detection 
and Braak NFT staging [14]. We demonstrate a compu-
tational workflow which detects neuropathology-relevant 
histologic features at scale, and show computational 
imaging paradigms can be utilized in neuropathology 
research with high levels of efficacy, while also reducing 
expert burden. This was achieved using YOLO (You Only 
Look Once) ML models capable of detecting early stage 
formation of NFTs, the pre-tangle (Pre-NFT) phase, as 
well as mature intracellular NFTs (iNFTs) in WSIs. These 
models were developed in house and refined for this pur-
pose [8]. YOLO models have been shown to be effective 
in similar neuropathology based tasks, with recent work 
showing its ability to accurately and reliably detect aβ 
pathology in WSIs [48]. Koga et  al. [49], used an older 
implementation of YOLO, YOLOv3, to detect five dif-
ferent types of tau inclusions, and used these to success-
fully differentiate tauopathies in neuropathology cases. In 
this work, Pre-NFT/iNFT YOLO detection is first used 
to extract a set of descriptive features for neuropathology 
cases, which in turn are used to recreate Braak NFT stag-
ing comparable to human expert raters. We also assessed 
Braak NFT stage inter-rater and NFT inter-annotator 
agreement in our cohorts, and used this as a baseline 
to evaluate our models. Given the challenges of gather-
ing ground truth labels, we assembled a team of experts, 
from whom we derive consensus, and later evaluated 
the impact of including novice annotators. Finally, we 
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developed a facile model-assisted-labeling workflow to 
further enhance the robustness of our consensus labeled 
dataset.

Materials and methods
Cohorts/datasets
All WSIs used in this work were stored in an instance 
of the Digital Slide Archive (DSA) [50]. WSIs were digi-
tized at a resolution of 0.25 microns per pixels (files 
with SVS extension) or 0.23 microns per pixel (files with 
NDPI extension), immunohistochemically labeled for 
tau, and counterstained with hematoxylin. Cases from 
the Emory University Alzheimer’s Disease Research 
Center (ADRC) included WSIs from the posterior hip-
pocampus, amygdala, temporal cortex, and occipital cor-
tex. All Emory WSIs were digitized with an Aperio AT2 
scanner. Antibodies used to label tau varied, with PHF-1 
being the most common (n = 311, kindly provided by Dr. 
Peter Davies), followed by a pan-tau antibody (n = 73, 
catalog BYA10741, Accurate Chemical and Scientific, 
Carle Place, NY), AT8 (n = 51, catalog MN1020, Pierce), 
and CP13 (n = 12, kindly provided by Dr. Peter Davies). 
Emory cases were split into two cohorts: Emory-Train 
(52 cases) and Emory-Holdout (59 cases) (Table 1). Each 
cohort was used for different parts of the project, as 
shown in Fig. 1.

A cohort of 23 cases from the University of California-
Davis (UC Davis) ADRC was used to test inter-institu-
tional generalizability of Braak NFT  stage ML models. 
Due to differences in neuropathology practice between 
the institutions, cases from this cohort included the ante-
rior hippocampus in place of the amygdala. Tau staining 
in this cohort was done using the AT8 antibody (catalog 
MN1020, Thermo Fisher).

Case inclusion criteria were defined with consultation 
of a panel of experts (BD, JC, MG) from different institu-
tions. Cases with major infarctions observed during neu-
ropathology assessment in the temporal cortex, occipital 
cortex, hippocampus, and/or amygdala were excluded.. 
Cohorts included cases across all Braak NFT stages if 
available, and with a variety of neuropathology diagno-
ses, including cases with multiple pathologies present 
(Table 1 and Additional file 1).

Braak NFT stage inter‑rater agreement analysis
The Emory-Train cohort was used to measure inter-
rater agreement for Braak NFT staging in a cohort of 
five experts with years of neuropathology experience 
(referred to as raters). All of the experts were individuals 
who were either board-certified, practicing neuropathol-
ogists and/or PhD researchers with greater than 10 years’ 
experience in the area of neurodegenerative disease 
neuropathology. Raters were recruited from multiple 

institutions: Emory University (MG, BW), UC Davis 
(BD), Mt. Sinai University (JC), and Johns Hopkins Uni-
versity (MM). The Braak NFT staging protocol described 
in Braak et al. [27] was used in this study, and raters were 
blind to other raters’ analyzes and case demographics. 
Each rater was provided access to the WSIs through the 
DSA and used the HistomicsUI viewer to provide Braak 
NFT stages (Additional file 3: Fig. S1) [50]. HistomicsUI 
provides capabilities common to most WSI viewers (pan-
ning, magnification changes, and rotation), as well as the 
storage and querying of metadata (e.g. Braak NFT stage), 
and ability to navigate between WSIs within a collec-
tion (e.g. organized by neuropathology case), without the 
need to store large files locally.

Braak NFT stage inter-rater agreement was meas-
ured following the methods described in Montine et  al. 
[28]. Briefly, a weighted Cohen’s kappa, using quadratic 
weights, was used to calculate the agreement between all 
pairs of raters, reporting the average of all these kappas. 

Table 1 Demographics on neuropathology cohorts used

For each cohort we include the demographics (sex, age at death, and race/
ethnicity), the number of cases in each Braak NFT stage, and the distribution of 
WSI stained with different tau antibodies. The NFT Braak stage is provided for 
each case during neuropathology assessment.

M male, F female, std. dev. standard deviation

Cohorts

Emory‑Train Emory‑Test UC Davis

Demographics

Number of cases (M/F) 52 (30/22) 59 (23/36) 23 (12/11)

Average age at death (std. 
dev.)

70.44 (10.22) 70.83 (14.96) 83.83 (7.32)

Race/ethnicity

Caucasian 42 (80.77%) 48 (81.36%) 18 (78.26%)

Black/African American 10 (19.23%) 7 (11.86%) 1 (4.35%)

Hispanic – – 2 (8.70%)

Asian – – 1 (4.35%)

Unknown – 4 (6.78%) 1 (4.35%)

Braak NFT Stage

0 1 (1.92%) 4 (6.78%) –

I 4 (7.69%) 7 (11.86%) –

I–II 2 (3.85%) – –

II 7 (13.46%) 5 (8.47%) 1 (4.35%)

III 5 (9.62%) 7 (11.86%) 3 (13.04%)

IV 4 (7.69%) 6 (10.17%) 3 (13.04%)

V 7 (13.46%) 4 (6.78%) 5 (21.74%)

VI 22 (42.31%) 26 (44.07%) 11 (47.83%)

Tau antibody (WSI counts)

PHF-1 138 (65.71%) 173 (73.00%) –

AT8 23 (10.95%) 28 (11.81%) 92 (100%)

CP13 12 (5.71%) – –

pan-tau 37 (17.62%) 36 (15.19%) –
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Fig. 1 Overview of project data contribution. Each neuropathology case contained four regions immunohistochemically stained for tau pathology 
(top). All cases included WSIs from the posterior hippocampus, temporal cortex, and occipital cortex. Emory cases included the amygdala 
while UC Davis cases used the anterior hippocampus instead. WSIs from the Emory-Train cohort included one or more ROIs that were annotated 
by either multiple annotators for inter-annotator-agreement analysis, a single annotator, or not annotated (middle, left). Not all WSIs contained ROIs 
in this cohort however. Annotations were collected as single pixels (circles for visualization) and converted to box annotations using watershed 
approach and manual quality check step (middle, right). The inference workflow was run on all WSIs to predict NFT subtypes (Pre-NFT or iNFTs), 
followed by extraction of imaging features used to train and test machine learning models for predicting Braak stages for neuropathology 
cases. Red circles/boxes represent iNFT annotations, blue circles/boxes represent Pre-NFT annotations. Two Emory cases contained two WSIs 
for the posterior hippocampus, one from each side of the brain (hemispheres). Overview of project cohorts and specific uses for different cohorts
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Cohen’s kappa is used for measuring inter/intra rater 
agreement of categorical data while taking into account 
agreement occurring by chance. Strict cut-offs for excel-
lent, good, and poor agreement are not standardized with 
this approach so we use the general criteria of “excellent” 
(kappa > 0.75), “good” (0.4 > kappa < 0.75), and “poor” 
agreement (kappa < 0.4). A bootstrap approach was used 
to calculate the 95% confidence interval by resampling 
the cases 1,000 times with replacement. A jackknife 
approach was implemented to identify outliers in raters, 
by removing one rater at a time and re-calculating the 
average weighted Cohen’s kappa [51, 52].

NFT inter‑annotator agreement analysis
Additional non-expert/novice annotators were recruited 
to provide NFT annotations; in total our annotators 
included the five experts above and four novices. The 
novices were individuals that  at the time of evaluations 
had   insufficient experience in the area of neurodegen-
erative disease neuropathology to independently assess a 
Braak NFT stage. The novice group was made up of an 
undergraduate student, PhD student (JV), research sci-
entist (EK), and post-doctoral researcher (KF; now an 
assistant professor). The annotators were tasked with 
providing WSI annotations for Pre-NFTs and iNFTs in 
selected regions of interest (ROIs) within the hippocam-
pus and amygdala. The ROIs were selected to include 
both Pre-NFT and iNFTs from gray matter regions, in 
relatively high quantities. The criteria used to differenti-
ate Pre-NFTs and iNFTs were developed with consulta-
tion from JC and with reference to Augustinack et  al. 
[53]. Instructional material was created and provided to 
all annotators in the form of a detailed document with 
image examples and a tutorial video (Additional file  2). 
Additionally, one-on-one sessions were provided as 
needed to on-board annotators in the use of the Histom-
icsUI web application. Participants annotated 15 ROIs 
from different cases (14 from the posterior hippocam-
pus, one from the amygdala) for all Pre-NFTs and iNFTs 
present (ROI size varied slightly but was approximately 
719 × 1228  µm/3858 × 3853 pixels). HistomicsUI’s point 

annotation tool was used to allow rapid annotations of 
the NFTs; the participants were not required to draw 
boundaries. Participants were blind to each other’s anno-
tations (Fig. 2a).

Point annotations were converted to bounding boxes 
using watershed, and were then manually checked and 
modified for best fit [54]. Bounding boxes enclosed the 
tau inclusion and the nucleus when visible. For each pair 
of annotators a Cohen’s kappa was calculated to meas-
ure inter-annotator agreement. The annotations for each 
annotator were used to create two binary masks for each 
ROI, a Pre-NFT and an iNFT mask, where 0 are pixels 
with background and 1 are pixels inside a Pre-NFT or 
iNFT bounding box. These masks were flattened into a 
vector and Cohen’s kappa was measured for each ROI 
between pairs of annotators (Additional file  3: Fig. S2). 
The average Cohen’s kappa of the 15 ROIs was reported 
for each pair of annotators. We report the results of com-
paring experts versus experts, experts vs novices, and 
novices vs novices [55, 56].

YOLO models trained with human annotated data
To provide ample annotations, an additional 278 ROIs 
(approximate 719 × 1228  µm/3858 × 3853 pixels in size) 
were selected from the Emory-Train cohort and ran-
domly assigned to five experts and three of the novices 
for annotation following the protocol described above 
(novice four was not included for the rest of the pro-
ject and only annotated the 15 ROIs needed for NFT 
inter-annotator analysis). These ROIs, together with the 
15 ROIs used in the inter-annotator agreement analy-
sis (total of 293 ROIs), were used to train YOLO (You 
Only Look Once) models for Pre-NFT & iNFT detection 
(Additional file  3: Table  S1) [57, 58]. We utilized Ultra-
lytics’s YOLOv5 open source implementation as our base 
and added some project specific modifications [59].

All ROIs were divided into smaller images, which we 
refer to as tiles, to use in model training and evaluation 
(1280 × 1280 pixels, with 25% pixel overlap between 
adjacent tiles, Additional file 3: Fig. S3). The ROIs were 
grouped by the annotator who labeled them, creating 8 

(See figure on next page.)
Fig. 2 Consensus Labeling of Annotated ROIs. a WSI as viewed in the HistomicsUI application, containing annotated ROIs. ROIs are annotated 
by experts and/or nonvices for Pre-NFTs (blue circles/boxes) and iNFTs (red circles/boxes) using the point annotation tool and these points are 
converted to bounding boxes using watershed and manual corrections. Green circle in ROI marks a completely annotated ROI. b Process used 
to create labels for unlabeled ROIs using pre-trained models. The best models for each annotator are used as an initial guess of the Pre-NFT/iNFT 
labels. These sets of predictions are then matched between each other: for each prediction in an ROI, find if any predictions from other ROIs match, 
using the IoU metric (threshold of 0.5). When creating the final set of labels of the ROI, set a minimum number of models that must agree on a label 
to be given as the “ground truth”: n. The bottom row of images shows that as n is set higher, the number of labels decreases as more models must 
agree. Setting n to 1 includes all predictions from all models, with the label (Pre-NFT/iNFT) being set by the label most models agree with. In cases 
of ties, iNFTs takes precedence over Pre-NFT as the label. Close ups of iNFT and Pre-NFT predictions are also shown with bounding boxes for n = 1, 4, 
and 8. NFT annotations and workflow for consensus labeling
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datasets. For each dataset we randomly held-out 10% 
of WSIs (i.e. all ROIs from these WSIs) for testing. We 
utilized three-fold cross validation on the remaining 

data (80% train, 10% validation of WSIs) to avoid per-
formance being dependent on which WSIs are in the 
train and validation datasets, and report the average 
of the three folds. The validation datasets were used to 

Fig. 2 (See legend on previous page.)
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prevent overfitting using early stopping (i.e. when per-
formance no longer improved).

An inference workflow was developed to generate pre-
dictions on ROIs, which are significantly larger than the 
tile images. First, the models were used to predict Pre-
NFT/iNFT bounding boxes on tiles, and these predic-
tions were merged between overlapping regions (caused 
by tiling process using 25% overlap) to create final ROI 
predictions. ROI predictions were compared to the 
annotator’s ground truth annotations using the intersec-
tion over union (IoU) at a threshold of 0.5 to calculate 
micro-F1, macro-F1, precision, and recall metrics. All 
models were trained using multi-GPU data processing 
with a batch size of 24 and two GPUs (NVIDIA A4500s 
or A5000s). All models were trained to 100 epochs with 
early stopping after 20 epochs of no improvement on the 
validation dataset.

Emory‑Holdout dataset ROIs
A dataset of 28 annotated ROIs was selected from the 
Emory-Holdout cohort and used as the consensus test 
dataset for YOLO ML models. The ROIs were chosen 
specifically to include all brain regions and Braak NFT 
stages equally (4 brain regions and stages 0 to VI). These 
ROIs were annotated by JV and checked for correctness 
by an expert (TP) (Additional file 3: Table S2).

Consensus labeled datasets and models
The best models for each annotator (n = 8) were lever-
aged to predict tentative labels for an additional set of 
large ROIs (n = 194, ~ 1438 × 2256 µm/5752 × 9024 pixels) 
from the Emory-Train cohort. These ROIs were taken 
from WSIs with previous ROIs but on different parts of 
the image, as well as WSIs without any previously anno-
tated ROIs. For each ROI a set of tentative labels was 
predicted, one from each model, and a consensus strat-
egy was implemented to finalize the labels (Fig. 2b). We 
tested the performance of training models with labels 
created from an n-consensus model agreement. For 
example: for a given ROI we predicted labels for the best 
annotator models, based on performance on the Emory-
Holdout dataset. These labels were then combined into a 
single set of predictions by a n-agreement of models. To 
do this we calculated the intersection-over-union (IoU) 
between prediction boxes of different models and identi-
fied boxes that overlapped sufficiently (IoU threshold of 
0.5). For a given set of overlapping boxes we calculated 
the most frequently occurring label: Pre-NFT or iNFT. 
If the label’s consensus count was above n, then that box 
is assigned the consensus label as the ground truth. We 
tested this for n of 1 (take predictions from all models) to 
8 (all models must agree). In cases of ties, an iNFT label 
took precedence over a Pre-NFT label.

This workflow was also repeated on ROIs previously 
annotated to create a dataset totaling 487 ROIs, labeled 
in the same manner. We used three-fold cross-validation 
(90% of WSIs for train, 10% for validation) to train a new 
set of YOLOv5 models. These new models were evalu-
ated on the Emory-Holdout dataset for performance 
comparison to models trained on data labeled by single 
annotators.

Model assisted labeling
To improve model performance while minimizing anno-
tation time, we implemented a model-assisted-labeling 
workflow that incorporates Python code, the Histom-
cisUI viewer, and a custom Javascript application that 
integrates with the DSA [50]. We started with labels cre-
ated by n of 4 consensus models, as described above. The 
models predict the bounding box of the object, the label 
(Pre-NFT or iNFT), and a confidence score. For each 
ROI we calculated the average confidence of the predic-
tions, by averaging the confidence of all predictions of 
that ROI. We then iterate by selecting 25 of the ROIs with 
the lowest average confidence (approximately 5% of total 
ROIs), and manually reviewing and revising the labels as 
needed. To do this we pushed the boxes as annotations 
to HistomicsUI, and used a combination of HistomicsUI 
and a custom-developed web application to (1) adjust 
box boundaries, (2) change label between Pre-NFT and 
iNFT, (3) delete false predictions, and (4) add missed Pre-
NFTs/iNFTs. We then updated the labels before train-
ing a new iteration of models. These new models were 
then used to update the labels on ROIs that have not 
been curated in previous iterations. The next set of 25 
ROIs are selected in a similar fashion and the process is 
repeated. We repeated this process until performance on 
the Emory-Holdout dataset was shown not to improve. 
Additional models were also trained using only the ROIs 
that were manually curated after the final iteration as well 
as models trained to specifically predict NFTs in each 
region (Additional file 3: Fig. S4).

WSI inference and background ROIs
The inference workflow described above was extended 
to work on entire WSIs. Briefly, we split an entire WSI 
into small tile images of 1280 × 1280 pixels with a stride 
of 960 pixels (25% overlap between adjacent tiles) and 
saved the images locally. To speed the workflow we only 
processed tile images containing tissue, by referencing 
a tissue mask pre-calculated using HistomicsTK’s tissue 
detection workflow (https:// github. com/ Digit alSli deArc 
hive/ Histo micsTK). A pre-trained model was then used 
to predict Pre-NFTs/iNFTs in all saved tiles. The pre-
dictions were saved as coordinates and merged together 
using a combination of non-max-suppression with IoU 

https://github.com/DigitalSlideArchive/HistomicsTK
https://github.com/DigitalSlideArchive/HistomicsTK
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threshold of 0.45 and a custom approach to remove boxes 
mostly contained in other boxes (IoU threshold of 0.7). 
This approach was necessary to remove duplicate pre-
dictions caused by overlapping images and remove small 
predictions contained in larger ones. The final prediction 
boxes were then pushed as DSA annotations for review 
and modification. Using HistomicsUI we then identified 
regions of tissue with high rates of false positive errors, 
and added additional ROIs from these regions manu-
ally selected to contain no Pre-NFT/iNFTs in order to 
enhance the training data. We trained new models with 
these additional ROIs to reduce the number of false 
positives.

ML Braak NFT staging
The best model-assisted-labeling model was chosen 
based on top performance on the Emory-Holdout dataset 
and was used to predict Pre-NFTs and iNFTs on all WSIs 
(Emory-Train, Emory-Holdout, and UC Davis cohorts). 
Quantitative histologic features were then extracted for 
each WSI which included the density of Pre-NFTs/iNFTs 
in the tissue (number of prediction boxes normalized by 
tissue area) and the highest number of Pre-NFT/iNFTs 
in a field of view (FOV) of 4  mm2. The FOV was chosen 
to mimic the area observed when using a 10× lens at a 
microscope with tissue slide, the common approach neu-
ropathology practice.

Average clustering coefficient is a graph theory concept 
measuring how close objects are to each other in a popu-
lation of nodes (Pre-NFT/iNFT prediction in our case). 
To evaluate items in this manner, we first define a max-
imum radius that two objects must be from each other 
to be considered “connected.” A previous study reported 
the average clustering coefficient of iNFTs accurately 
predicted cognitive impairment when the radius was 
between 150 and 600  µm [38]. Following this we calcu-
lated the average clustering coefficient for Pre-NFT and 
iNFTs on the selected FOV at various radii (150 to 600 
microns in 50 micron intervals) and added it to our fea-
ture list.

For each case we used a feature list of size 88 and 
used recursive feature elimination to narrow down the 
features to the 20 most critical for the task of Braak 
NFT staging (Additional file 3: Table S3). A random for-
est classifier (scikit-learn Python package) was trained 
on this subset of features to predict Braak NFT stages 
[60]. We used a random grid search approach to tune 
the hyper-parameters for our dataset and we report 
performance as the weighted Cohen’s kappa (quadratic 
distance). The Emory-Holdout cohort was used to train 
the models and the Emory-Train cohort, as well as the 
UC Davis cohort, to test predictions. We did this for 
two reasons: (1) the Emory-Train cohort had only one 

case of stage 0 and (2) this allowed us to compare per-
formance against Braak NFT stages provided by expert 
raters. Predicted Braak NFT stages were also compared 
against the Braak NFT stage provided in the original 
autopsy report.

Additionally, we compared the density of Pre-NFT/
iNFT by region and stage to identify patterns and statis-
tical significance between groups. Statistical analysis was 
done using Python’s statsmodel package, implementing a 
one-way ANOVA between groups with post-hoc Tukey’s 
test for comparison between cohorts, using a significance 
value of 0.05 for all tests [61].

Results
Braak NFT stage inter‑rater agreement
The Emory-Train cohort, consisting of 52 cases from 
Emory University, was used to measure Braak NFT stage 
inter-rater agreement between five experts in neuropa-
thology (Table 1). Each case included a tau-stained WSI 
from the posterior hippocampus, amygdala, temporal 
cortex, and occipital cortex regions (210 WSIs in total, 
see Fig. 1). We measured inter-rater agreement using the 
weighted Cohen’s kappa with quadratic weights, penal-
izing disagreement more when farther apart from each 
other. Braak NFT stage inter-rater agreement showed 
a weighted Cohen’s kappa of 0.88 (95% CI 0.82–0.91) 
across these raters. Cases with higher Braak NFT stages 
showed better agreement among raters compared to low 
to intermediate Braak NFT stages. Perfect agreement was 
observed in 17 of 52 cases, with 16 of these cases being 
rated the highest stage (Fig. 3).

NFT inter‑annotator agreement analysis
Inter-annotator agreement for the task of NFT detection 
was measured on a set of 15 rectangular regions of inter-
est (ROIs) in WSIs (Fig. 2a). ROIs were annotated by five 
experts and four novices for Pre-NFTs and iNFTs. The 
mean Cohen’s kappa varied greatly between annotators 
and showed better agreement for iNFTs (0.69 ± 0.13) than 
Pre-NFTs (0.34 ± 0.11) (Fig. 4b, c). Outliers were seen in 
both experts and novices (Fig. 4a).

The mean Cohen’s kappa was computed between spe-
cific groups of annotators, comparing experts against 
other experts, novice against other novices, and experts 
against novices. Pre-NFT agreement between experts 
was the highest at a Cohen’s kappa of 0.42 ± 0.11, com-
pared to expert vs. novices (0.31 ± 0.11) and novices vs. 
novices (0.29 ± 0.11). Agreement for iNFTs, however, 
was similar between all comparison groups: expert ver-
sus expert (0.70 ± 0.11), expert versus novice (0.68 ± 0.15), 
and novice vs novice (0.69 ± 0.10).
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YOLO models trained with human annotated data
A cohort of five expert and three novice annotators (nov-
ice four excluded) looked at approximately 50 ROIs from 
multiple cases, with only 15 ROIs being shared between 
all annotators for inter-annotator agreement, described 
above (Additional file  3: Table  S1 & S4). These sets of 
ROIs were selected from the Emory-Train cohort and 
used to train YOLO object detection models for each 
annotator. Performance was measured by calculating 
the number of true positives, false positives, and false 
negatives on the ROIs after inference of the models. We 
reported F1-scores by class and account for class imbal-
ance with the macro-F1 score.

Model performance was better at predicting iNFTs 
than Pre-NFTs (Table  2). Validation and Test dataset 
performance was similar for most models, and this met-
ric reflects how well the models learned the prediction 

patterns of specific annotators. An additional dataset of 
28 ROIs, from a secondary Emory-Holdout cohort, was 
labeled by two annotators as a consensus test dataset 
(Table 1 and Additional file 3: Table S2). Performance on 
the Emory-Holdout dataset shows how good each anno-
tator model was at predicting on a consensus labeled 
dataset. Pre-NFT performance was poor for all models, 
with the top performing models being from expert 3 at an 
F1-score of 0.31 ± 0.08. iNFT performance was medium 
to poor, with the highest performing models being expert 
3 at an F1-score of 0.66 ± 0.03. All model performance 
was reported as the average of three-fold cross validation, 
with standard deviations (Table 2).

Models trained on datasets labeled by n‑consensus
An additional set of large unlabeled ROIs 
(~ 1438 × 2256  µm, 5752 × 9024 pixels) from the 

Fig. 3 Braak stage inter-rater agreement on the Emory-Train cohort (52 cases). a Agreement between pairs of annotators was excellent, left 
histogram. b The right figure shows Braak stages provided for each case by 5 expert raters, sorted by the most common stage given for each case 
for better readability. The number of raters providing a Braak stage is represented by a different marker/color (see legend). Vertical dotted lines are 
added for readability. Braak stage inter-rater agreement

Fig. 4 Pre-NFT/iNFT inter-annotator agreement analysis. a Count of annotations in the 15 ROIs of hippocampal and amygdala areas for each 
annotator. Heatmaps of pair Cohen’s kappa between annotators for Pre-NFT (b) and iNFT (c). The title shows the average Cohen’s kappa 
for the heatmap with the standard deviation. N: novice, E: expert. Inter-annotator Agreement Analysis for Pre-NFT/iNFT Detection
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Emory-Train cohort were added to the original dataset of 
ROIs. For each set of annotator models (models trained 
on datasets annotated by a single annotator) we chose the 
model with the best performance on the Emory-Holdout 
dataset and predicted labels on these ROIs. For each 
ROI we combined the various model predictions using a 
majority voting scheme with an agreement requirement, 
where n is the number of models that must agree to add 
a consensus label (Fig. 2b). We trained these models and 
evaluated the performance on the Emory-Holdout data-
set (Additional file  3: Fig. S5). Best model performance 
was seen when n was set to two (0.59 macro F1 score), 
and performance decreased as the value of n increased 
thereafter.

Model‑Assisted‑labeling
We utilized a model-assisted-labeling workflow to 
improve the data quality and consequently demonstrate 
an increase in overall model performance. Using custom 
Python code, the HistomicsUI annotation viewer, and 
a custom web application, we iteratively improved and 
refined the labels of the training dataset (Additional file 3: 
Fig. S4). We used the best performing consensus labeled 
model, when n was set to four, and predicted labels on all 
our training ROIs. We then looked at the ROIs with the 
lowest prediction confidence, and curated the labels. The 
HistomicsUI viewer and custom web application allowed 
us to view predictions directly on WSIs as annotations, 
and quickly apply changes to the labels. Label curation 
involved adjusting bounding boxes on predictions, delet-
ing false positives, adding missed Pre-NFTs/iNFTs, and 
re-labeling misclassified Pre-NFTs/iNFTs. We then froze 
these labels so they would not be modified again, and 
trained a new model. This new model was used to predict 

a new set of labels and the next set of ROIs were then 
curated, with each iteration curating 5% of total ROIs.

Model performance using model-assisted-labeling ini-
tially improved, but plateaued after the fourth iteration 
(20% of ROIs curated). Performance improvement was 
mainly due to increased accuracy in predicting iNFTs 
(from 0.67 to 0.77 F1-score), while Pre-NFT performance 
remained mostly unchanged (0.38 F1-score). After the 
eighth iteration (40% of ROIs curated) we trained a model 
using just the curated ROIs (n = 200) and saw improve-
ments to the performance on the Emory-Holdout data-
set (top performance was 0.62 macro F1-score) (Table 3). 
Confusion matrices revealed that these improvements 
were mostly due to a lower number of false negatives, 
compared to the base consensus models (Additional 
file 3: Fig. S6).

Models were also evaluated by brain region, training 
only on curated ROIs from specific brain regions and 
evaluating on the subset of the Emory-Holdout dataset 
from these regions. Models trained on ROIs from amyg-
dala demonstrated the highest performance with a macro 
F1-score of 0.64 ± 0.02, while the worst performing region 
model was the occipital cortex with a macro F1-score of 
0.39 ± 0.05 (Table 3).

WSI inference
The best trained model, as determined by performance 
on the Emory-Holdout dataset, was used to predict 
Pre-NFTs/iNFTs on entire WSIs. Pre-NFT/iNFT pre-
dictions were mostly confined to gray matter regions of 
tissue, where most neurons are found (Fig. 5). Inference 
time varied greatly between WSIs based on the number 
of objects detected, with the most time consuming step 
being predicting the labels. The fastest time to infer-
ence was seven minutes and predicted a total of 1266 

Table 2 Results for YOLO models trained with data annotated by humans

The Emory-Holdout 28 ROI dataset is the consensus annotated dataset from a hold-out Emory cohort. Val (Validation) and Test datasets are annotated by the specific 
annotator and reflect how well the models learned the annotator nuances. All values reported are the average results of three-fold cross-validation models for each 
annotator. Standard deviations are shown

Annotators Pre‑NFT F1 Score iNFT F1 Score Macro F1 Score

Val Test Emory
Holdout

Val Test Emory
Holdout

Val Test Emory
Holdout

Novice 1 0.49 ± 0.12 0.63 ± 0.10 0.20 ± 0.09 0.76 ± 0.02 0.76 ± 0.02 0.59 ± 0.05 0.63 ± 0.07 0.70 ± 0.06 0.39 ± 0.02

Novice 2 0.44 ± 0.04 0.39 ± 0.06 0.21 ± 0.08 0.80 ± 0.01 0.73 ± 0.02 0.51 ± 0.05 0.62 ± 0.02 0.56 ± 0.02 0.36 ± 0.06

Novice 3 0.67 ± 0.08 0.65 ± 0.03 0.13 ± 0.02 0.65 ± 0.05 0.74 ± 0.01 0.59 ± 0.01 0.66 ± 0.06 0.70 ± 0.02 0.36 ± 0.01

Expert 1 0.36 ± 0.08 0.55 ± 0.05 0.21 ± 0.04 0.75 ± 0.06 0.75 ± 0.00 0.45 ± 0.06 0.55 ± 0.06 0.65 ± 0.03 0.33 ± 0.05

Expert 2 0.41 ± 0.24 0.26 ± 0.13 0.10 ± 0.01 0.64 ± 0.11 0.46 ± 0.03 0.39 ± 0.10 0.53 ± 0.09 0.36 ± 0.07 0.25 ± 0.05

Expert 3 0.40 ± 0.24 0.54 ± 0.04 0.31 ± 0.08 0.80 ± 0.05 0.75 ± 0.03 0.66 ± 0.03 0.60 ± 0.11 0.65 ± 0.03 0.48 ± 0.05

Expert 4 0.49 ± 0.21 0.40 ± 0.02 0.29 ± 0.07 0.79 ± 0.01 0.71 ± 0.02 0.59 ± 0.07 0.64 ± 0.10 0.55 ± 0.01 0.44 ± 0.06

Expert 5 0.47 ± 0.02 0.43 ± 0.06 0.17 ± 0.04 0.67 ± 0.04 0.65 ± 0.01 0.38 ± 0.04 0.57 ± 0.03 0.54 ± 0.03 0.28 ± 0.03
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Pre-NFTs/iNFTs, while the slowest WSI inference time 
was 46  min and predicted a total of 32,867 Pre-NFTs/
iNFTs (Additional file  3: Fig. S7). Inference time on the 
full 52 case Emory-Train cohort (total 210 WSIs) was 
67.9 h using a single server and two NVIDIA RTX A4500 
GPUs.

Inference results were pushed to HistomicsUI for 
visualization at the WSI level (Fig. 5a). To aid in quality 

control, we examined results across our training dataset 
to identify errors the models appeared to be making con-
sistently. Objects of similar morphology, edges of tissue, 
and tissue artifacts, such as folds, consistently led to false 
positive predictions (Fig.  6a–c). Using HistomicsUI we 
added a new set of ROIs to the training dataset contain-
ing examples of these false positive predictions but no 
Pre-NFTs/iNFTs. New models trained on this expanded 

Table 3 Model performance on the Emory holdout dataset for model-assisted-labeling models

Additional models are also shown which are modifications to the datasets used. iter.: iteration in model-assisted-labeling, amygdala/hippocampus/temporal/occipital: 
models trained on ROIs only from specific regions of the brain (temporal and occipital refers to the temporal and occipital cortex), QC ROIs: models trained only 
with ROIs with curated labels during model-assisted-labeling, best consensus: consensus model when n equal to 4 (Additional file 3: Fig. S4). Values are shown with 
standard deviation from the average of the three-fold cross-validation models. Bold score is the best performing model trained on the dataset from all brain regions

Models Pre‑NFT iNFT Macro F1‑score

Precision Recall F1 score Precision Recall F1 Score

iter. 1 0.36 ± 0.03 0.40 ± 0.03 0.38 ± 0.03 0.86 ± 0.01 0.57 ± 0.00 0.69 ± 0.00 0.53 ± 0.01

iter. 2 0.37 ± 0.02 0.45 ± 0.01 0.41 ± 0.01 0.84 ± 0.02 0.63 ± 0.01 0.72 ± 0.01 0.56 ± 0.01

iter. 3 0.29 ± 0.02 0.46 ± 0.01 0.36 ± 0.02 0.82 ± 0.01 0.71 ± 0.02 0.76 ± 0.01 0.56 ± 0.01

iter. 4 0.31 ± 0.02 0.47 ± 0.01 0.37 ± 0.02 0.79 ± 0.01 0.74 ± 0.02 0.77 ± 0.01 0.57 ± 0.00

iter. 5 0.31 ± 0.03 0.51 ± 0.00 0.38 ± 0.02 0.78 ± 0.01 0.76 ± 0.02 0.77 ± 0.01 0.58 ± 0.02

iter. 6 0.30 ± 0.04 0.53 ± 0.02 0.38 ± 0.03 0.75 ± 0.01 0.78 ± 0.02 0.77 ± 0.01 0.57 ± 0.02

iter. 7 0.29 ± 0.01 0.53 ± 0.02 0.38 ± 0.02 0.74 ± 0.00 0.81 ± 0.01 0.77 ± 0.00 0.58 ± 0.01

iter. 8 0.26 ± 0.01 0.54 ± 0.04 0.35 ± 0.02 0.73 ± 0.02 0.80 ± 0.02 0.76 ± 0.02 0.56 ± 0.02

amygdala 0.46 ± 0.06 0.52 ± 0.08 0.48 ± 0.00 0.73 ± 0.03 0.86 ± 0.02 0.79 ± 0.03 0.64 ± 0.02

hippocampus 0.27 ± 0.04 0.44 ± 0.08 0.33 ± 0.04 0.68 ± 0.03 0.78 ± 0.01 0.73 ± 0.02 0.53 ± 0.03

temporal 0.14 ± 0.06 0.20 ± 0.10 0.16 ± 0.07 0.76 ± 0.06 0.67 ± 0.05 0.71 ± 0.04 0.44 ± 0.06

occipital 0.04 ± 0.03 0.22 ± 0.19 0.06 ± 0.05 0.68 ± 0.09 0.76 ± 0.09 0.71 ± 0.04 0.39 ± 0.05

QC ROIs 0.41 ± 0.04 0.45 ± 0.01 0.43 ± 0.03 0.78 ± 0.01 0.85 ± 0.03 0.81 ± 0.01 0.62 ± 0.02
best consensus 0.36 ± 0.04 0.53 ± 0.03 0.43 ± 0.04 0.82 ± 0.01 0.70 ± 0.01 0.76 ± 0.01 0.59 ± 0.02

Fig. 5 Inference results for NFT detection. a Example WSI from the Emory-Holdout cohort with Pre-NFT (blue) and iNFT (red) predictions. 
Predictions are mostly localized to the gray matter regions of the tissue (outer edge), as is expected for NFTs since neurons are mostly present 
in these regions. b At high resolution we can see the distinct differences between the two classes of predictions, with iNFTs being more fibrillary 
and darker in color while Pre-NFTs being putative in texture, showing a clear nuclei, and a lighter brown. NFT Detection on WSIs
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training dataset maintained similar performance on the 
Emory hold-out dataset (28 ROIs), and new inference 
results showed a significant decrease in false positives 
around edges of tissue and folds. Additionally, similar, 
but task irrelevant pathology found in some WSIs was 
more consistently ignored (Fig. 6d–f).

Predicting Braak NFT stages with imaging features
Random forest classifiers (scikit-learn Python package) 
were trained to predict Braak NFT stages using a set of 
imaging features created from WSI inference results [60]. 
While experts typically use details such as anatomical 
region when assessing Braak NFT stage, no additional 
annotations were added when creating these imaging 
features. To allow comparison against Braak NFT stages 
from our five experts, we reversed the cohorts used 
in training and testing. The model was trained on the 
Emory-Holdout cohort of 59 cases and evaluated on the 
Emory-Train cohort, as well as a separate cohort from 
UC Davis (23 cases) (Table 1). Performance was reported 
as a weighted Cohen’s kappa, similar to those reported in 
the inter-rater agreement analysis above. Agreement on 
the Emory-Train cohort was comparable to those seen in 
neuropathology agreement analysis (Fig. 7a–c).

In contrast, agreement on the UC Davis cohort was 
comparatively low, with poor overall performance 
(Fig. 7b). We inspected the WSI inference in the cohorts 
by plotting the average counts of iNFT and Pre-NFT pre-
dictions on cases with varying amounts of tau pathol-
ogy (grouped by the Braak NFT stage provided during 
neuropathology diagnosis). There are more iNFTs than 

Pre-NFTs predicted in a WSI from the Emory cohort on 
average, with the opposite being true of the UC Davis 
cohort. We also observed a smaller number of predic-
tions on the UC Davis cohort overall (Additional file  3: 
Fig. S8).

Discussion
One of the biggest challenges for ML in highly tech-
nical domains, such as medicine, is the lack of large 
diverse well annotated datasets. Our approach allowed us 
to circumvent this by minimizing the human annotations 
required, through use of unique “individual” models to 
label a large number of images. We demonstrate a work-
flow which generates large datasets of well-annotated 
neuropathology images, by effectively augmenting anno-
tations generated by domain experts. However, we also 
show, even with detailed instructions, annotations from 
different experts can vary considerably. We effectively 
counter this general variability using ML models trained 
to mimic the unique nuances and opinions of the annota-
tors. These models are capable of creating a much larger, 
yet robust, training dataset which circumvents the inter-
annotator variance by incorporating a consensus decision 
process. We show  with this approach, even novice anno-
tators can provide valuable data, depending on the com-
plexity of the task. By utilizing a model-assisted-labeling 
workflow to iteratively improve labels in an interactive 
manner, we further demonstrate the relative ease with 
which accuracy of the dataset may be improved, while 
also reducing overall burden on the expert (Additional 
file 3: Fig. S9).

Fig. 6 Inference results before (top images a, b, and c) and after (bottom images d, e, and f) training with background ROIs. Examples are shown 
of the models learning new features and what to ignore as background objects that are not Pre-NFTs/iNFTs. a and d Models learn to ignore corpora 
amylacea. In the training dataset there were no examples of these objects and thus were originally predicted as NFTs. b and e Edges or vessels are 
also often predicted as Pre-NFTs or iNFTs since the model was never exposed to these during training, but can learn to ignore these as background. 
c and f Folded tissue was also a common mistake as it provided a sudden darker shade compared to background, oftentimes having edges 
that look of NFT shape. However, new models learn to ignore these after seeing examples of folded tissue. Red boxes: iNFTs, blue boxes: Pre-NFTs. 
Inference Mistake and Corrections for WSIs
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While previous works share similarities with this study, 
they do not address the issue of inter-rater annotator 
disagreement, nor do they demonstrate implementation 
of a workflow which puts these approaches into practice 
for neuropathology use. Current approaches often take 
several hours to run on a single WSI and are not eas-
ily viewed in a setting that is familiar or comfortable for 
experts (i.e. neuropathologist/neuropathology research-
ers), and it is often unclear how those workflows could 
be improved without considerable re-engineering of the 
original approach.

The results of the inter-annotator agreement analysis 
for NFT detection herein showed significant disagree-
ment between both novice and expert neuropathology 

annotators. We specifically attempted to remove personal 
experience and institutional biases from the task of NFT 
annotations by providing clear guidelines on what defines 
as a Pre-NFT/iNFT in terms of this study. However, even 
with these precautions the agreement was poor, showing 
very different quantities of annotations, and often very 
different annotations in general, provided on the same 15 
ROIs (Fig. 4).

We included two classes of tau inclusions in this analy-
sis that span different stages of NFT progression. The 
Pre-NFT stage occurs before the formation of mature 
intraneuronal NFTs, and it is still not clear the impor-
tance of this early stage and if it could be leveraged thera-
peutically, while the iNFT stage is the traditional mature 

Fig. 7 Braak NFT stage prediction results using imaging features. a Prediction results on the Emory-Train cohort when compared against the Braak 
NFT stage assigned during initial neuropathology autopsy, 52 cases. b Prediction results on the UC Davis cohort, 23 cases. Green boxes with hatches 
are used to highlight the diagonal. The weighted Cohen’s kappa is shown in the title. c Heatmap of weighted Cohen’s kappa for the Emory-Train 
cohort between pairs of expert raters and the ML model. The average and standard deviation of all Cohen’s kappas is shown in the title. d Top 10 
most important features for predicting Braak stages. The random forest classifier reports the feature importance, with the feature value (x-axis) 
being a normalized value where the sum of all feature importances equals 1. E: expert, ML: random forest ML classifier, k: weighted Cohen’s kappa, 
r: radius used when calculating the average clustering coefficient, FOV: field of view (see methods, ML Braak NFT Staging section), coef: coefficient. 
Predicting Braak NFT Stages with Imaging Features and ML
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phase of NFT formation, with a clear inclusion with fibril-
lary texture that often crowds the nucleus and pushes to 
the edge of the soma [53, 62]. Extracellular or ghost tan-
gles were not included in this study. The two most com-
mon antibodies used in this project, PHF-1 and AT8, do 
not readily stain for these tangles in Emory and UC Davis 
cohorts, although some studies have noted them to stain 
extracellular tangles [8, 53]. There may also be protocol 
differences that may alter staining (e.g., formic acid pre-
treatments) and/or differences in cohort composition 
as there was a dearth of lower Braak NFT stages in the 
UC Davis cohort. Alternative approaches, such as histo-
logical staining with hematoxylin and eosin which can 
aid in visualization of ghost/extracellular tangles could 
be used in future studies to include this third stage. In 
theory, NFT stages are clearly different from each other, 
however the reality is the process of NFT progression is 
dynamic and there exist stages that incorporate aspects 
of both Pre-NFT and iNFTs, as well as the later “ghost 
tangle” phase (not evaluated in the current study). This 
creates instances of ambiguity as to what stage an inclu-
sion should be classified under. The tau antibody used for 
staining also plays an outsized role in determining which 
stage of NFT formation is most predominantly stained, 
and therefore the stage which is emphasized in a given 
slide or section of tissue, which, for obvious reasons, has 
a strong influence on the later results of this study [8]. 
Specifically, the Emory cohorts were typically stained 
using an antibody which binds to the PHF-1 protein and 
preferentially stains iNFTs over Pre-NFTs [8]. This was 
clearly reflected in the counts we obtained throughout 
the project, with iNFTs being considerably more abun-
dant than Pre-NFTs in this cohort (Fig. 4a and Additional 
file  3: Table  S1). Agreement analysis also reflected this, 
with agreement for Pre-NFTs roughly half of that seen 
for iNFTs (Fig. 4b).

We acknowledge the agreement analysis for Pre-
NFT/iNFT detection can likely be improved by provid-
ing a more detailed set of instructions to annotators 
(Additional file  2). Efforts were made to uncover the 
root cause(s) of the differences observed, and upon fol-
low up discussions with annotators, it was discovered 
these deviations were likely at least partially caused by a 
misunderstanding(s) of the instructional material. While 
this may not have been an issue with the experts, it hap-
pened on two occasions for novices. Novice 3, who had 
no experience in this field, simply labeled any brown 
morphology/object as an iNFT, even when these pro-
posed iNFTs were not large enough to be consistent with 
the given criteria, and were demonstrably similar to back-
ground staining present elsewhere in the tissue. Similarly, 
novice 4 misinterpreted one aspect of the instructions 
that specified vacuoles might be visible in Pre-NFTs, 

as an explicit criteria (i.e. need to be visible to class as 
Pre-NFT). As a result their annotations showed com-
paratively higher numbers of Pre-NFTs, whose putative 
texture can be misinterpreted as vacuoles in regions of 
high background staining.

Our primary reason for including an inter-annotator 
agreement analysis was to quantify if novice annota-
tions could match experts, given limited instruction. In 
contrast to the above, novices 1 & 2 showed comparable 
agreement with several of the experts. Two expert out-
liers were also identified, experts 2 & 5 were both more 
stringent in their definition of iNFTs (Fig.  4a). This was 
not due to a misunderstanding of the instructional mate-
rials, as occurred for novices, but instead with personal 
experience and preferred nuances in their definitions of 
NFTs.

It was important for us to determine, through quan-
tification, if the ML workflow we developed would suc-
cessfully learn the nuances of the annotators with high 
fidelity. The first implementation of this workflow showed 
models trained in this framework could learn the subtle-
ties of individual annotators, but were not able to per-
fectly recreate their decision making process (Table  2). 
Specifically, as was consistent throughout this study, Pre-
NFT detection was relatively poor. We hypothesize this 
is largely due to the lower number of Pre-NFTs in the 
training datasets compared to iNFTs, as well as the anti-
body used to stain the majority of the WSIs used for this 
study, as it does not preferentially, or even equivalently, 
stain for this NFT stage. Another challenge is the consid-
erable background staining and abundance of neuropil 
threads found in our dataset (Additional file 3: Fig. S11). 
On WSIs with heavy, non-specific staining, it becomes 
difficult to differentiate an inclusion as being Pre-NFT 
or iNFT. However, these WSIs were included intention-
ally in order to more accurately represent the variability 
of tissue slides common in neuropathology practice, and 
to allow us to gauge the utility of, and identify challenges 
when developing the workflow.

Performance on the Emory-Holdout dataset, composed 
of 28 ROIs and including a balanced number of Braak 
NFT stages (including Braak stage 0) and brain regions 
(Additional file  3: Table  S2 and Fig. S12), was poor for 
models trained using human annotated datasets. This 
test dataset was initially annotated by JV (novice) and 
was subsequently evaluated for correctness, based on the 
criteria set forth in this study, by TP (expert with famili-
arity with the study), who also added any relevant modi-
fications to improve quality. It is difficult, and maybe 
impossible at this point, to say if a single expert or groups 
of experts can provide a “true” label for NFTs. However, 
we considered this an effective approximation and used 
this dataset as a target to aim for when implementing 
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our ML workflows. The poor performance of the initial 
models on this dataset was not surprising, as the models 
where trained on the nuances of specific annotators and 
not the consensus labels.

ML requires large datasets, especially when the task 
is difficult, complex, contains much subtlety/nuance, 
or would otherwise rely on some feature of the human 
brain for which we do not yet have a clear computational 
equivalent. A task like computational NFT detection 
can be easy, when the datasets being used for train-
ing and inference appear very homogeneous. However, 
neuropathology datasets are often very heterogeneous 
with significant variations in staining, tissue morphol-
ogy, pathologies present, and potential tissue artifacts 
included.

To address this in part, we have herein demonstrated 
a model-assisted-labeling workflow that can be used to 
leverage our pre-trained, annotator-specific models and 
rapidly label large datasets, in an approach which has 
some similarities to transfer learning. As a baseline we 
completely removed any human labeling by labeling ROIs 
with pre-trained models using a consensus approach 
(Fig. 2b). By specifying the number of models needed for 
consensus we control how strict we wanted to be on what 
is considered a Pre-NFT/iNFT. This approach served to 
mimic consensus annotations by human experts/novices 
which has proven to be time consuming and logistically 
difficult to implement in practice.

Model-assisted-labeling can be used to leverage pre-
trained models to create an initial set of labels for a 
dataset, at which point an expert can fine-tune for cor-
rectness. Labeling large datasets, such as those needed 
for this study, is very time consuming and exhaustive, 
and experts generally have neither the freedom nor 
desire to commit extensive effort to this process. Fine-
tuning labels using a well-developed application, such 
as that which was developed and demonstrated in this 
work, substantially reduces annotation time and annota-
tor fatigue without sacrificing performance [63, 64]. Fur-
thermore, this workflow is generalizable; it is likely just as 
applicable to this kind of problem in the context of can-
cer as it has been shown to be in the case of neuropathol-
ogy. Indeed, it may even transcend a single modality and 
prove efficacious in the context of ultrasound or MRI, for 
example.

In this study we showed model-assisted-labeling 
improves performance rapidly in the first few itera-
tions but quickly plateaus (Additional file 3: Fig. S9). We 
implemented a “quantity over quality” approach, where 
we chose to incorporate a large number of ROIs with 
ML generated labels during training, adding additional 
ROIs with curated labels on each iteration. As would 
be expected, the best performing model was trained on 

only the set of ROIs with curated labels. While ML ben-
efits from large quality datasets, and these often enable 
the model(s) to generalize well, simply feeding in large 
datasets with misleading or inaccurate labels can over-
whelm the models and hamper learning (the well known 
“garbage in, garbage out” rule). Thus it is easy to conclude 
that for this neuropathology task, and indeed for these 
kinds of approaches in general, a “quality over quantity” 
mentality will almost always produce superior results.

In previous studies implementing ML methods for 
neuropathology tasks, we noticed little emphasis on 
workflow implementation in a “real-world” setting [36, 
39]. WSIs are very large files with billions of pixels, and 
analysis on such a scale is an understandably daunt-
ing task, particularly for a human. Yet, while AI models 
can ingest images at a rapid pace not seen in most image 
analysis workflows, the sheer size of these images still 
means full-WSI analysis can take considerable time to 
accomplish. We address this challenge by leveraging the 
DSA infrastructure and the HistomicsUI viewer. Histom-
icsUI facilitates the visualization of, and interaction with, 
images and annotations inside an image viewer, and the 
DSA provides an application programming interface 
(API) that can be used directly from our AI workflow to 
interact with HistomicsUI bidirectionally. We utilized 
these tools to develop and implement a workflow which 
enables our models to predict NFTs on large regions (up 
to the entire tissue area for WSIs of any size) and display 
them in HistomicsUI for viewing. Our implementation 
showed a correlation between time taken to complete 
automated annotation and the relative abundance of the 
pathology of interest in the WSI. For example, WSIs with 
thousands of iNFTs/Pre-NFTs take considerably more 
time to complete than those with few. Annotating WSIs 
with little pathology can take less than 10  min to com-
plete while WSIs with tens of thousands of Pre-NFT/
iNFTs take closer to 40 min.

The workflow (referred to as inference workflow) con-
tains several key steps, with the most time consuming 
step, other than prediction, being tiling/clean up. Tiling 
and clean up are necessary with the current implemen-
tation of the YOLOv5 AI model used, which requires us 
to save tiles locally for prediction, before then deleting. 
This is a time consuming process requiring input and 
output operations (I/O), which in newer versions of the 
YOLO model has been removed, and necessitates stor-
age of duplicated data. The prediction step can be accel-
erated by adding additional resources to the workflow 
(in this case, GPUs were the primary bottleneck). In the 
case of this study, we utilized two GPUs at a time. Serv-
ers are limited to how many GPUs can be installed in 
them, generally two to four, but other software tools can 
be leveraged to implement AI inference across servers, 
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such as NVIDIA’s Triton software (https:// devel oper. 
nvidia. com/ nvidia- triton- infer ence- server). While not 
tested, we could, in theory, even reduce time to process/
predict on WSIs with tens of thousands of NFTs to just a 
few minutes. Much effort is currently being allocated to 
enable these kinds of inference workflows to run directly 
through HistomicsUI, further reducing the barrier to use 
for experts in domains other than computer science, AI, 
etc.

One additional benefit of implementing models using 
the inference workflows is the visualization of results at 
scale. Viewing results on the entire WSI, and indeed on 
multiple WSIs from a given case, or even a collection of 
cases, allows identification of patterns of NFT predic-
tions, and facilitates the ability of experts to determine if 
they make sense in the context of what is already known 
about the particular disease or pathology (Figs.  5 and 
6). Predictions in our workflow showed most NFTs are 
observed in the gray matter with only sporadic instances 
of them in the white matter, with most of those identified 
in white matter later confirmed to be false positives. This 
aligns well with what has been observed for this particu-
lar subset of neuropathology historically. Importantly, we 
were also able to identify three common mistakes made 
by our best model: (1) folding tissue being predicted as 
iNFTs, (2) edge staining being predicted as iNFTs or 
Pre-NFTs, and (3) non-NFT pathology, such as corpora 
amylacea, being predicted as iNFTs. Using Histomic-
sUI we were able to easily add new examples for these 
regions. This could be done rapidly since we were adding 
ROIs specifically with no NFTs, and did not require the 
time-consuming annotation step. This method proved to 
be effective at adjusting our models to avoid making mis-
takes mostly caused by image features the models did not 
see during training.

Imaging features from NFT ML detection have recently 
been shown to predict cognitive impairment, and similar 
detection of other tauopathies have shown to be predic-
tive of disease diagnosis [38, 65]. In a similar approach, 
we showed we could use imaging features to accurately 
predict Braak NFT stages. Braak NFT staging displays 
inter-rater agreement and thus we reported our results 
in comparison to other expert raters [28]. Agreement 
from our predictor was good to excellent against a set 
of 5 raters, on a cohort of Emory cases. Limitations are 
present inherent to the rater being an ML model and 
not a human. The models are prone to a small level of 
false positives, which often lead to models not predict-
ing Braak NFT stage 0 for any case (which usually display 
no tau pathology). This could also have been caused due 
to few cases of low Braak NFT stage being present dur-
ing training. In this study, we collected a large dataset of 
labeled ROIs, but the number of available cases (n = 59) 

was small compared to what is normally recommended 
to train AI models. Regardless, we were able to create 
an open source passable ML Braak NFT stage rater that 
reported the same stages for a given case in our datasets. 
Additionally, this study provides an open-source dataset 
with human-level and machine-generated annotations of 
NFTs, which can be used in future studies.

Even so, this work strives to acknowledge the outstand-
ing and unsolved challenges in the neuropathology field, 
where cohorts can vary considerably between institutions 
(Additional file  3: Fig. S11). Qualitatively we observed 
our best ML models could predict Pre-NFT/iNFTs on 
WSI from a different cohort—UC Davis. However, per-
formance of our Braak NFT stage predictor was poor on 
a small cohort of UC Davis cases, and we hypothesize 
variations in the antibody between institutions may at 
least partially explain this difference. While the UC Davis 
cohort was entirely stained with the AT8 antibody, which 
has been reported to primarily stain Pre-NFTs in tissue, 
the Emory cohort was mostly PHF-1 stained, which pri-
marily stains the iNFTs [8]. Yet further investigation into 
the subset of cases from Emory stained with AT8 did not 
show the expected similarity to the UC Davis cohort, 
suggesting other reasons, such as antibody dilution, incu-
bation time, or even manufacturer, may be required to 
explain why NFT predictions on UC Davis WSIs were so 
markedly different.

Alternative approaches could be taken to tackle these 
challenges, with the simplest being to train the ML model 
on a UC Davis cohort and predicting on a separate UC 
Davis cohort. While Braak NFT staging ML model had 
poor performance, Pre-NFTs/iNFTs are predicted on the 
UC Davis cohort with good quality upon visual inspec-
tion. The difference appears to be what is actually on the 
images, thus training a model from a feature set extracted 
from UC Davis might predict Braak NFT stages compa-
rable to humans on data from the same institution. In 
this study, we did not have the required amount of UC 
Davis cases to do this effectively, and future studies could 
attempt to do this on several cohorts from different insti-
tutions to validate this approach. A different approach 
might be taken though, where ML models are trained 
based on the antibody type used, which might be more 
translatable across centers with minimal work. This does 
of course pose its own sets of challenges, as recent pub-
lished works have highlighted the amount of variabil-
ity seen in antibody use across ADRCs and brain banks 
[31]. Creating a family of ML models that each capture a 
single antibody would be challenging, and first the vali-
dation of the YOLO NFT detection model would need 
to show robustness to various antibodies. A final and 
potentially the most robust approach, would be to extract 
more detailed features. The features used in this study 

https://developer.nvidia.com/nvidia-triton-inference-server
https://developer.nvidia.com/nvidia-triton-inference-server
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are primarily based on the quantity of NFT type found 
in different regions, which as we show varies depending 
on antibody use/other features. Morphological features 
of NFTs (i.e. size, texture, key points such as SIFT, etc.) 
might be a more robust feature set that could translate 
across variations seen in cohort [66]

This workflow has potential far beyond neuropathol-
ogy. Indeed we believe it can provide utility in the vari-
ous pathology subfields, such as cancer and nephrology, 
and even fields as far flung as Astronomy, which similarly 
processes exceptionally large and complex imaging data 
[67, 68]. Though even just within neuropathology, this 
work is likely only the beginning, and we hope the data-
set generated and discussed herein, which has been made 
public, will be the foundation from which many work-
flows may be created. Future work will focus on using 
transfer learning to allow detection of more diverse neu-
ropathology relevant features such as neurons, pTDP-43 
inclusions, and Lewy bodies.

Understanding the relationship between imaging fea-
tures, biomarkers from multi-omics approaches, and 
clinical data is of increasing importance and is being 
discussed with great urgency, particularly in the con-
text of highly complex, poorly understood diseases [69]. 
We envision the possibility of new ways of phenotyping 
neurodegenerative disease, by creating deep imaging fea-
tures to describe neuropathology cases with a granularity 
not currently possible. Finally, we intend to provide this 
workflow in an accessible format via the DSA/Histomic-
sUI, in hopes that we may aid the field of neuropathology, 
and those practicing it, in more readily meeting the chal-
lenges of the data-driven future of this domain.

Conclusions
In this study we tackled the task of NFT detection in 
WSIs and Braak NFT staging of patient tissues using 
a supervised learning approach with object detection 
models. We demonstrated the complexity of annotating 
these tissues for neuropathology inclusions and the ten-
dency for poor inter-annotator agreement. Leveraging 
a model-assisted-labeling approach, we show the rela-
tive ease with which models may be improved by artifi-
cially labeling a larger set of images on a diverse cohort of 
Emory cases, without the need of expert knowledge ini-
tially. These models were then used in a novel workflow 
that efficiently identifies Pre-NFT & iNFTs within entire 
WSIs, and extracts a set of features that describes each 
case. These features, alongside an ML model, successfully 
predict Braak NFT stages for Emory cases, displaying 
high agreement with experts. Implementing the reported 
approach with a cohort sourced from another institu-
tion showed that staining variations, potentially due to 
differences in immunohistochemical antibodies, leads 

to different results between institutions. This study inte-
grated AI workflows with an image viewer that is acces-
sible to experts in neuropathology, with our goal being to 
show ML can provide practical utility for the field, and 
to demonstrate a workflow which facilitates this. Future 
work will aim to integrate the workflow (Pre-NFT/iNFT 
detection, model-assisted-labeling, and automated NFT 
Braak staging) developed in this study into a usable inter-
face, making it easy for persons to use routinely and at 
scale.
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