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CRISPR screen in regulatory T cells reveals modulators of Foxp3 

Jessica T. Cortez 

Abstract 

Regulatory T cells (Tregs) are required to control immune responses and maintain 

homeostasis, but are a significant barrier to anti-tumor immunity1. Conversely, Treg 

instability, characterized by loss of the master transcription factor Foxp3 and acquisition 

of pro-inflammatory properties2, can promote autoimmunity and/or facilitate more 

effective tumor immunity3,4. A comprehensive understanding of the pathways that 

regulate Foxp3 could lead to more effective Treg therapies for autoimmune disease and 

cancer. Despite improved functional genetic tools that now allow for systematic 

interrogation, dissection of the gene regulatory programs that modulate Foxp3 expression 

has not yet been reported. In this study, we developed a CRISPR-based pooled screening 

platform for phenotypes in primary mouse Tregs and applied this technology to perform 

a targeted loss-of-function screen of ~490 nuclear factors to identify gene regulatory 

programs that promote or disrupt Foxp3 expression. We discovered several novel 

modulators including ubiquitin-specific peptidase 22 (Usp22) and ring finger protein 20 

(Rnf20). Usp22, a member of the deubiquitination module of the SAGA chromatin 

modifying complex, was discovered to be a positive regulator that stabilized Foxp3 

expression; whereas the screen suggested Rnf20, an E3 ubiquitin ligase, can serve as a 

negative regulator of Foxp3. Treg-specific ablation of Usp22 in mice reduced Foxp3 

protein and created defects in their suppressive function that led to spontaneous 

autoimmunity but protected against tumor growth in multiple cancer models. Foxp3 

destabilization in Usp22-deficient Tregs could be rescued by ablation of Rnf20, revealing 
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a reciprocal ubiquitin switch in Tregs. These results reveal novel modulators of Foxp3 

and demonstrate a screening method that can be broadly applied to discover new targets 

for Treg immunotherapies for cancer and autoimmune disease. 
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CHAPTER 1: INTRODUCTION 
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Regulatory T cell function and stability 

 
Regulatory T cells (Tregs) are a specialized subset of CD4+ T cells that function to 

suppress immune responses and maintain self-tolerance1. Stable expression of the 

transcription factor Forkhead box P3 (Foxp3) in Tregs ensures robust suppressive 

function in inflammatory environments. Tregs have previously been thought to be 

irreversibly committed to suppressive functions5, however, lineage tracing studies 

challenged this by revealing that Tregs exhibit plasticity. Tregs that lose Foxp3 

expression, termed exTregs, can acquire proinflammatory cytokine production 

capabilities similar to effector T cells and exacerbate autoimmunity2. These findings raise 

questions of lineage compartmentalization and cellular plasticity among CD4+ T cell 

subsets. While exTregs that produce higher amounts of pro-inflammatory cytokines can 

lead to rapid and fatal onset of autoimmunity, the deterioration of Treg function provides 

an advantage in developing more effective anti-tumor immune responses6. A better 

understanding of the fundamental regulators of Foxp3 instability is key to being able to 

manipulate Treg function as a therapeutic intervention.   

 

The Treg suppressive phenotype is largely driven by gene expression patterns dictated 

by Foxp3. Control of Foxp3 stability, and thus Treg function, is thought to occur at both 

the transcriptional and post-translational level. Epigenetic modifications at the Foxp3 

locus and at Treg-associated loci can affect Foxp3 transcription and facilitate the 

generation of ex-Foxp3 Tregs7. Foxp3 protein can also be dynamically controlled post-

translationally by deubiquitinases (DUBs) or ubiquitin ligases in response to 

proinflammatory signals8. Despite years of work to understand and identify regulators of 
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Foxp3 expression, the field still lacks systematic strategies to comprehensively 

interrogate genes that control Treg identity and function. There is a critical need to identify 

factors that manipulate Foxp3 expression in order to provide rapid and temporal control 

of Treg function.  

 

CRISPR tools to systematically interrogate immune function 

 
Recent advances in CRISPR-Cas9 technology have overcome the major challenge of 

effective genetic perturbation to perform high-throughput genetic studies. Although the 

development of commercially available lentiviral single guide RNA (sgRNA) libraries and 

Cas9 knock-in mice9 have enabled screens in other primary cell types10,11, large-scale 

screens in murine Tregs have yet to be achieved.  
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CHAPTER 2: CRISPR SCREEN IN REGULATORY T CELLS REVEALS 

MODULATORS OF FOXP3 
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Discovery and validation of Foxp3 regulators in primary Tregs using a pooled 

CRISPR screen 

 

While unstable Foxp3 expression in Tregs can result in autoimmunity, similar changes 

that reduce Treg suppressive function can contribute to more effective anti-tumor immune 

responses4. Understanding the fundamental regulators of Foxp3 is critical, especially as 

we navigate towards new potential applications for Treg therapies to treat autoimmunity 

and cancer12. 

 

To discover novel regulators of Foxp3 stability, we developed a pooled CRISPR 

screening platform in primary mouse Tregs (Fig. 1a). We first designed a targeted library 

of ~490 nuclear factors based on optimized single guide RNA (sgRNA) sequences from 

the Brie library13 (Fig. 4a) and used a retroviral vector to introduce this library into ex vivo 

Tregs isolated from Foxp3GFP-CreRosa26LSL-RFPCas9 mice (Fig. 4b-4e). We then stained 

for endogenous Foxp3 protein and sorted the highest Foxp3-expressing cells (Foxp3high) 

and the lowest (Foxp3low). MAGeCK software14 systematically identified sgRNAs that 

were enriched or depleted in Foxp3low cells relative to Foxp3high cells (Table 1). We were 

able to maintain high sgRNA coverage of our library (~1000x) and non-targeting control 

(NTC) sgRNAs showed no effect (Figs. 4f, 4g) which provided confidence that our hits 

identified biological pathways controlling Foxp3 levels. 

 

Our screen revealed many novel Foxp3 regulators, with a bias towards identifying positive 

regulators over negative regulators (Figs. 1b, 1c). sgRNAs enriched in the Foxp3low 
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population reflect positive regulators (blue) that promote Foxp3 expression while sgRNAs 

depleted in the Foxp3low population reflect negative regulators (red) that inhibit Foxp3 

expression. As expected, sgRNAs targeting Foxp3 were enriched in the Foxp3low 

population. We also identified many established regulators known to be important for 

maintenance of Foxp3 expression including Cbfb, Runx1 and Stat5b7,15–21 as positive 

regulators and Sp3 and Satb1 as negative regulators7,21 providing further confidence in 

our hits. Importantly, several novel factors and complexes that modulate Foxp3 were 

identified including positive regulators Usp22, Atxn7l3 and negative regulator Rnf20. The 

deubiquitinase (DUB) Usp22 and cofactor Atxn7l3, are both members of deubiquitination 

module of the SAGA chromatin modifying complex22 (Fig. 4h). 

 

To validate the effects of our screen hits on Foxp3 levels, we assessed five of the top-

ranking positive regulators by individual CRISPR knockout with Cas9 

ribonucleoproteins23 (RNPs) (Fig. 8a). The effects on Foxp3 levels were consistent 

across multiple guide RNAs (gRNAs) targeting the key candidate regulators (Fig. 1d, 

Figs. 5b-d and Table 2). These results strongly confirmed the candidate genes identified 

from our screen as positive regulators of Foxp3. As our screen indicated that Usp22 is a 

positive regulator of Foxp3, we next wanted to assess the potential therapeutic relevance 

of USP22 by knocking it out with RNPs in human Tregs. We saw a significant decrease 

in FOXP3 mean fluorescence intensity (MFI) (Figs. 1e, 1f) and frequencies of FOXP3+ 

and FOXP3hiCD25hi cells in USP22-targeted human Tregs (Figs. 5e-g) across 

experiments performed in ten different blood donors. The effects of USP22 targeting in 

human Tregs on FOXP3 levels were also observed with multiple distinct gRNAs (Figs. 
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5h-j). Together these findings confirm critical regulation of Foxp3 by members of the 

SAGA complex, especially Usp22. 

 

Usp22 is required for Foxp3 maintenance and Treg suppressive function. 

 

To understand the in vivo significance of Usp22 in Tregs, we generated mice with Treg-

specific ablation of Usp22 by creating Usp22fl/fl mice (Figs. 6a, 6b) and crossing them 

with Foxp3YFP-Cre mice24. Western blot analysis confirmed specific deletion of Usp22 in 

Treg cells, but not in CD4+ conventional T (Tconv) cells (Fig. 6c). Usp22fl/flFoxp3YFP-Cre 

knockout (KO) mice had a marked decrease in Foxp3 MFI in Tregs isolated from spleens, 

thymus and peripheral lymph nodes (pLN) (Figs. 2a-c) compared to Usp22+/+Foxp3YFP-

Cre wild-type (WT) mice, as well as decreased Treg frequencies (Fig. 6d). Western blot 

analysis confirmed a significant reduction in Foxp3 protein in Usp22-null Tregs (Fig. 6e). 

A decrease in Foxp3+ cells was also seen in induced Tregs (iTregs), although less 

pronounced with increasing levels of TGF-β (Figs. 6f, 6g). Given the diminished Foxp3 

levels in Usp22 KO Tregs, we reasoned that these cells may exhibit defects in 

suppressive function. Indeed, Usp22 KO Tregs were less able to suppress T effector cells 

than WT Tregs from Usp22+/+Foxp3YFP-Cre mice (Fig. 2d, Fig. 6h), and this defect could 

be rescued by heterologous expression of Foxp3 (Figs. 6i, 6j). These data substantiate 

our screen data and suggest Usp22 promotes Foxp3 levels and is critical for Treg 

function. 
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Usp22 regulates Foxp3 through transcriptional mechanisms mediated via 

deubiquitination of histone 2B 

 

Control of Foxp3 stability, and thus Treg function, can occur at the transcriptional and/or 

post-transcriptional level25. Chromatin modifications at the Foxp3 locus and other key loci 

can affect Foxp3 transcription26–31. As Usp22 is a component of the chromatin modifying 

SAGA complex, we hypothesized that Usp22 controls Foxp3 expression through 

transcriptional regulation. IRES-YFP knock-in to the Foxp3 locus of Usp22fl/flFoxp3YFP-Cre 

mice allowed us to use YFP as a reporter to assess the effect of Usp22 on Foxp3 

transcript levels. Similar to endogenous Foxp3 protein, YFP MFI was significantly 

decreased in Usp22-null Tregs isolated from the thymus, pLN and spleen in 

Usp22fl/flFoxp3YFP-Cre mice compared to Usp22+/+Foxp3YFP-Cre mice, despite normal Treg 

frequencies (Figs. 2e, 8a-c). Furthermore, by qPCR, Foxp3 transcripts were significantly 

reduced in splenic Tregs from Usp22fl/flFoxp3YFP-Cre compared to Usp22+/+Foxp3YFP-Cre 

mice (Fig. 2f). RNA sequencing confirmed that Foxp3 transcripts are significantly reduced 

in Tregs from Usp22fl/flFoxp3YFP-Cre mice relative to WT (Fig. 2g). Foxp3 transcript levels 

also trended down with acute targeting by Usp22 RNPs in mouse and human Tregs, 

although results were less consistent perhaps due to variability in knockout efficiency 

and/or other experimental factors (Figs. 8d-f). Foxp3 protein can also be dynamically 

controlled post-translationally by DUBs or ubiquitin ligases in response to 

proinflammatory signals8,32–35. We investigated whether Foxp3 protein can be directly 

targeted by Usp22. Usp22 loss contributed to increased Foxp3 ubiquitination and 
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degradation (Fig. 7). These results are consistent with Usp22 tuning Foxp3 expression 

at transcriptional and post-transcriptional levels. 

 

Usp22 is required for SAGA-mediated deubiquitination of histones, which regulates 

transcriptional activity36. We therefore tested if histone ubiquitination was altered in Usp22 

KO Tregs. Western blot analysis confirmed that Usp22fl/flFoxp3YFP-Cre mice had increased 

levels of ubiquinated histone 2A and 2B (H2AK119Ub and H2BK120Ub, respectively) in 

iTregs compared to Usp22+/+Foxp3YFP-Cre mice (Fig. 8g). Chromatin immunoprecipitation 

followed by qPCR (ChIP-qPCR) showed increased H2BK120Ub in the conserved non-

coding sequence 1 (CNS1) region of the Foxp3 locus in Usp22fl/flFoxp3YFP-Cre Tregs, 

whereas effects on H2AK119Ub levels at the locus were not significant (Figs. 8h-j). 

Further interrogation with ChIP followed by genome-wide sequencing (ChIP-seq) 

revealed significant increases in H2BK120Ub levels across the Foxp3 locus in 

Usp22fl/flFoxp3YFP-Cre Tregs compared with control Tregs. A significant accumulation of 

H2BK120Ub at the locus also was observed in Tregs electroporated with Usp22 Cas9 

RNPs compared to those treated with NTC Cas9 RNPs (Fig. 2h). These findings 

demonstrated that Usp22 is essential for chromatin regulation at the Foxp3 locus. 

 

We next analyzed effects of Usp22 loss on chromatin states across the Treg genome. 

First, we found evidence that Usp22 can co-occupy many Foxp3-bound regions in Tregs 

(Fig. 8k). Foxp3-bound regions tended to gain H2BK120Ub in Usp22-deficient cells 

compared to control cells and increases in H2BK120Ub were more pronounced than 

effects on H2AK119Ub, suggesting that H2KB120Ub is likely the more relevant chromatin 
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target of Usp22 in Tregs (Fig. 2h, 8k). Looking more broadly across the genome, we 

found that sites that significantly gained H2BK120Ub in both Usp22KO and Usp22-RNP 

targeted Tregs were enriched for activating histone modifications (H3K4me3, H3K4me 

and H3K27ac) suggesting that changes occurred at gene regulatory elements, including 

at Treg-specific super enhancers (Figs. 8l, 8m). These data revealed a critical role for 

Usp22 in control of H2KB120Ub across the Treg chromatin landscape. 

 

Usp22 and Rnf20 act as reciprocal regulators of Foxp3 

 

Our screen nominated E3-ubiquitin ligase Rnf20 as a candidate negative regulator of 

Foxp3. We hypothesized that the DUB Usp22 and E3-ubiquitin ligase Rnf20 might have 

an epistatic relationship given their reciprocal effects on histone ubiquitination. To test 

this, we used RNPs to knockout Rnf20 in Usp22 KO or WT Tregs. Although Cas9 RNP-

mediated loss of Rnf20 alone did not significantly increase Foxp3 levels in WT Tregs 

(Figs. 2h, 5d), Rnf20 RNP knockout was able to rescue the impairment in Foxp3 

transcript levels (assessed by YFP levels) in Usp22-deficient Tregs (Fig. 8n). Double 

RNP knockout of both USP22 and RNF20 in mouse and human Tregs also rescued 

FOXP3 protein levels relative to USP22 RNP treatment alone, although effects on 

transcript levels were less consistent (Figs. 2i, 5h, 5j, 8e, 8f). Consistent with a model 

where the ubiquitin ligase Rnf20 and DUB Usp22 have reciprocal functional roles, we 

found that Rnf20 co-occupies Foxp3-bound regions (Fig. 8k). Although Rnf20 ablation 

did not affect already low levels of H2BK120Ub at the Foxp3 locus, targeting Rnf20 

tended to reduce H2BK120Ub levels at these Foxp3-bound regions genome-wide 
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whereas Usp22 deficiency increased them (Fig. 2h, 8k). Western blot analysis confirmed 

that targeting Rnf20 in Usp22-deficient cells restored H2BK120Ub levels back to those of 

control Tregs (Fig. 2j). Taken together, these results revealed reciprocal regulation of 

Foxp3 and key chromatin regions in Tregs by Usp22 and Rnf20. 

 

Treg-specific ablation of Usp22 results in autoimmunity and enhances anti-tumor 

immunity 

 

To determine the in vivo functional relevance of Usp22 deficiency in Tregs, we 

characterized the spontaneous autoimmune symptoms of Usp22fl/flFoxp3YFP-Cre mice. 

While Usp22fl/flFoxp3YFP-Cre mice were born at normal size, their body weights were lower 

than those of age and sex matched Usp22+/+Foxp3YFP-Cre mice after 5 weeks of age (Figs. 

3a, 9a). We next assessed whether this body weight reduction might be due to chronic 

inflammation as is observed with impaired Treg function1. Indeed, flow cytometry analysis 

detected greater frequencies of CD4+ and CD8+ effector memory T cells (CD44hiCD62Llo) 

and corresponding lower percentages of naïve T cells (CD44loCD62Lhi) in 7-month-old 

KO mice compared to WT (Figs. 9b, 9c). Additionally, histological analysis of aged mice 

detected lymphocyte infiltration in multiple organs, including kidney, lung, colon and liver 

(Fig. 3b). Importantly, ablation of Usp22 in all T cells in Usp22fl/flLckCre mice largely 

phenocopied the reduced levels of Foxp3 in Tregs and lymphoproliferation observed in 

the Usp22fl/flFoxp3YFP-Cre mice (Fig. 10). These findings underscored a relatively selective 

role of Usp22 in Foxp3 regulation and Treg suppressive function, rather than global 

requirement for Usp22 in T cell function.  



 

 
 

12 

 

We further validated the in vivo requirements for Usp22 in Treg suppressive function 

using multiple models of autoimmune disease. We assessed Treg suppressive activity in 

vivo using an adoptive transfer model of colitis and a MOG-induced experimental 

autoimmune encephalomyelitis (EAE) model. In the colitis model, mice that received 

defective Usp22 KO Tregs were not protected against colitis, in contrast to those that 

received WT Tregs (Figs. 3c, 3d). Similarly, in the EAE model, Usp22fl/flFoxp3YFP-Cre mice 

showed worse clinical scores compared to WT mice suggesting an inability of the Usp22-

deficient Tregs to limit autoimmunity (Fig. 3e). 

 

Since these data suggest that Usp22 deficiency reduces Foxp3 stability and impairs Treg 

suppressive function, we next tested whether Usp22fl/flFoxp3YFP-Cre mice would exhibit 

increased anti-tumor immunity using syngeneic tumor models. As expected, growth of 

EG7 lymphoma tumors was significantly inhibited by Treg-specific Usp22 gene deletion 

(Fig. 3f). We next examined the immune responses in these tumor-bearing mice and 

found greater proportions of effector-memory CD4+ and CD8+ T cells in the spleens of 

Usp22fl/flFoxp3YFP-Cre mice compared to WT (Figs. 3g, 3h). We also found increased 

frequencies of interferon-! (IFN!)	and granzyme B producing CD8+ T cells, as well as 

increased mRNA levels of Ifng, Gzmb and Cd8a from tumor tissue (Fig. 11d), suggesting 

an increased cytotoxic lymphocyte response due to impaired Treg suppressive function. 

Splenic Tregs from these mice showed reduced MFIs of Foxp3 target genes important 

for Treg function including CD25 (Figs. 11a-c). Further analysis of tumor-infiltrating 

lymphocytes indicated a significant increase in CD8+ T cell frequencies and decreased 
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percentages of intratumoral Foxp3+ Tregs in EG7 tumor-bearing Usp22fl/flFoxp3YFP-Cre 

mice (Fig. 3i-j). Consistent with the lymphoid organs, we found that the Foxp3 MFI was 

significantly decreased in the intratumoral Treg cells from EG7 tumor-bearing KO mice 

(Fig. 3k). Taken together, these data indicate Usp22 KO impairs Treg suppressive 

function and reduces Treg abundance in EG7 tumors, consequently enhancing the anti-

tumor immune response. We also showed that Usp22fl/flFoxp3YFP-Cre mice exhibit 

increased anti-tumor immunity in additional tumor models (Figs. 11e-m). These results 

highlight Usp22 in Tregs as a new potential target for anti-tumor immunotherapies. 

 

Summary 

 

Here, we developed the first CRISPR-based pooled screening platform for primary mouse 

Tregs and applied this technology for systematic identification of gene modifications that 

control Foxp3 levels. We discovered several novel regulators of Foxp3 including Usp22 

and Rnf20. We developed a Treg-specific Usp22 KO mouse and showed that Usp22 is 

critical to stabilize Foxp3 and maintain suppressive functions in vivo. We demonstrate 

that Usp22 is a regulator of Foxp3 transcript levels, likely through deubiquitination of H2B 

at Foxp3 and other key loci, and that Usp22 can also regulate Foxp3 post-translationally. 

Mice with Usp22-null Tregs showed impaired ability to resolve autoimmune inflammation 

and an enhanced anti-tumor immune response. Usp22 could be a particularly attractive 

cancer immunotherapy target because in addition to its role in Tregs that can limit anti-

tumor immune responses, over-expression of Usp22 in cancer cells is associated with 

poor prognosis in a variety of tumor types37 and Usp22 knockdown in cancer cells can 



 

 
 

14 

induce their apoptosis38. This study provides a resource of novel Foxp3 regulators that 

can be perturbed to fine tune Treg function and specifically defines the function of Usp22 

and Rnf20 as important modulators of Foxp3 and potential targets for Treg 

immunotherapies. 
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Figures 

 

Figure 2.1. Discovery and validation Foxp3 regulators in primary Tregs using a 
pooled CRISPR screen. 
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a) Diagram of pooled CRISPR screening platform in primary mouse Treg cells. 

b) Volcano plot for hits from the screen. X-axis shows Z-score for gene-level log2 

fold-change (LFC); median of LFC for all single guide RNAs (sgRNAs) per gene, 

scaled. Y-axis shows the p-value as calculated by MAGeCK7. Red are negative 

regulators (depleted in Foxp3 low cells), while blue dots show all positive 

regulators (enriched in Foxp3 low cells) defined by FDR < 0.5 and Z-score > 0.5. 

c) Top panel: distribution of sgRNA-level LFC values of Foxp3 low over Foxp3 high 

cells for 2,000 guides. Bottom panel: LFC for all four individual sgRNAs targeting 

genes enriched in Foxp3 low cells (blue lines) and depleted genes (red lines), 

overlaid on grey gradient depicting the overall distribution. 

d) Mean fluorescence intensity (MFI) of Foxp3 in Foxp3+ cells from data in Fig. 5b. 

Each data point represents effects of an independent gRNA for each target gene. 

Statistics are based on comparison to non-targeting control (NTC). 

e) Representative histogram showing FOXP3 MFI (pre-gated on live cells) from 

human Tregs treated with non-targeting control (NTC) or USP22 Cas9 RNPs. 

f) Statistical analysis of FOXP3 MFI in human Tregs from 10 biological replicates. 

Tregs from each donor here were targeted with the same high efficiency gRNA 

(USP22-2). 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2.2. Usp22 is required for Foxp3 maintenance and Treg suppressive 
function. 
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a) Representative flow cytometry analysis of the Treg population (gated on CD4+ 

cells) from the spleen of Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO 

mice. A subset of Tregs with the highest expression of Foxp3 and CD25 is 

highlighted with a red gate.  

b) Histogram of Foxp3 expression in Foxp3+ Tregs from spleens of 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice from panel a.  

c) Statistical analysis of Foxp3 MFI from CD4+Foxp3+ Tregs in thymus (Thy), 

peripheral lymph nodes (pLN) and spleen (Spl) of Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice. 

d) Summary data of in vitro suppression experiments, corresponding to Fig. 6h. Lines 

connect paired samples. Data are presented as the frequency of non-dividing cells 

relative to WT 0:1 No Treg control, with any negative values after normalization 

replaced with 0. 

e) Histogram of YFP expression in Tregs from the spleen and lymph nodes of 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice from Fig. 8a. 

f) qPCR analysis of Foxp3 mRNA levels in sorted YFP+ cells of spleen from 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice. 

g) Volcano plot for RNA sequencing of YFP+ Tregs sorted from Usp22+/+Foxp3YFP-Cre 

WT or Usp22fl/flFoxp3YFP-Cre KO mice. X-axis shows log2FoldChange (LFC). Y-axis 

shows the –log10 of the adjusted p-value (padj) as calculated by DESeq2. Genes 

downregulated in the KO are shown in red and genes upregulated are shown in 

blue defined by padj <1e-10 and LFC > 1. 

h) Genome tracks of ChIP-seq for H2BK120Ub at the Foxp3 locus in wild-type (WT), 

Usp22 KO, non-targeting control (NTC-RNP) treated, Usp22-RNP treated and 

Rnf20-RNP treated Tregs. Evolutionary conservation, ATAC-seq, and ChIP-Seq 

for H3K27ac, H3K4me3, and H3K4me in WT Tregs are also shown. 

i) Analysis of reciprocal regulation of Foxp3 by deubiquitinase Usp22 and E3 

ubiquitin ligase Rnf20. Foxp3 MFI of Tregs sorted from Usp22+/+Foxp3YFP-Cre WT 

or Usp22fl/flFoxp3YFP-Cre KO mice and then electroporated with either NT control 

(NTC-RNP) or Rnf20 RNP. 

j) Western blot analysis of H2BK120Ub (H2B-ub) levels in Tregs sorted from 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice and then 

electroporated with either NT control (NTC-RNP) or Rnf20 RNP; corresponding to 

panel i. p84 was used as a loading control. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001.  
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Figure 2.3. Treg-specific ablation of Usp22 results in autoimmunity and enhances 
anti-tumor immunity. 

 

a) Body weight differences between Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-

Cre KO littermate mice. 

b) Hematoxylin-and-eosin (H&E) staining of kidney, lung, colon and liver sections 

from 7-month-old Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice. 

Original magnification at 100x (fold). 

c) Body weight of Rag-/- recipient mice over time after adoptive transfer of CD4+CD25-

CD44loCD62hi (CD45.1+) naïve T cells sorted from SJL mice alone or together with 
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CD4+YFP+ (CD45.2+) Treg cells from 9-week-old Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice, presented relative to weight at day 0. 

d) H&E staining of colon tissues from the Rag-/- recipient mice shown in panel c, 7 

weeks post-transfer. Original magnification at 100x. 

e) Clinical severity of EAE in Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO 

mice was monitored for 20 days post immunization with MOG peptide. 

f) EG7 lymphoma tumor volume in Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre 

KO mice. Mice were subcutaneously inoculated with 1x106 EG7 cells. Tumor 

volume was measured every 1-2 days by scaling along 3 orthogonal axes (x, y, 

and z) and calculated as (xyz)/2. 

g) Representative flow cytometry analysis of the expression of CD44 and CD62L in 

both CD4+ and CD8+ T cells of spleen from Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO EG7 tumor-bearing mice. 

h) The frequency of effector T cells (CD44hiCD62Llo) from Usp22+/+Foxp3YFP-Cre WT 

or Usp22fl/flFoxp3YFP-Cre KO EG7 tumor-bearing mice summarized. 

i) Statistical analysis of tumor-infiltrating lymphocyte (TIL) percentages from EG7-

bearing Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice collected 19 

days after tumor inoculation. 

j) Statistical analysis of tumor-infiltrating Treg percentages from EG7 tumor-bearing 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice collected 19 days after 

tumor inoculation. 

k) Foxp3 MFI of the CD4+Foxp3+ EG7 tumor-infiltrating Treg population in 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice summarized. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001.   
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Figure 2.4. Design and quality control of targeted pooled CRISPR screen in 
primary mouse Tregs. 
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a) Design strategy for selection of genes for unbiased targeted library of 493 targets, 

including 490 nuclear factors and 3 control targets (NT, GFP, and RFP). Genes 

were selected based on gene ontology (GO) annotation and then sub-selected 

based on highest expression across any CD4 T cell subset for a total of 2,000 

sgRNAs. 

b) Diagram of MSCV expression vector with Thy1.1 reporter used for retroviral 

transduction of the sgRNA library. 

c) Detailed timeline schematic of the 12-day targeted screen pipeline. Arrows indicate 

when the cells were split, and media was replenished. 

d) Retroviral transduction efficiency of the targeted library in primary mouse Tregs 

shown by Thy1.1 surface expression measured by flow cytometry. The infection 

was scaled to achieve a high efficiency multiplicity of infection. 

e) Foxp3 expression from screen input, output and control cells measured by flow 

cytometry. Top: Foxp3 expression from input Foxp3+ purified Tregs as measured 

by GFP expression on Day 0. Middle: Foxp3 expression as measured by 

endogenous intracellular staining from control Tregs (not transduced with library) 

on Day 12. Bottom: Foxp3 expression as measured by endogenous intracellular 

staining from screen Tregs (transduced with library) on Day 12. 

f) Targeted screen (2,000 guides) shows that sgRNAs targeting Foxp3 and Usp22 

were enriched in Foxp3 low cells (blue). Non-targeting control (NT Ctrl) sgRNAs 

were evenly distributed across the cell populations (black). 

g) Distribution of read counts after next generation sequencing of sgRNAs of sorted 

cell populations, Foxp3high and Foxp3low.  

h) Schematic of experimentally determined and predicted protein-protein interactions 

between top hits, 16 negative regulators (red) and 25 positive regulators (red), 

generated by STRING-db39. Black lines connect interacting proteins and dotted 

lines outline selected known protein complexes. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2.5. Validation of Foxp3 modulators in primary mouse and human Tregs 
with Cas9 RNP electroporation. 

 

a) Overview of orthogonal validation strategy using arrayed electroporation of Cas9 

RNPs in Tregs. 

b) Foxp3 expression 4 days post electroporation of Cas9 RNPs in mouse Tregs as 

measured by flow cytometry of top screen hits. Each row shows 3 histograms 

layered on top of one another (1-2 for controls) with each representing effects of 

independent gRNAs for each target gene. Percentages shown on the right depict 

the average frequency of Foxp3+ cells across gRNAs targeting each gene. 
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c) Percentage of Foxp3- cells of live, CD4+ cells 4 days post electroporation of Cas9 

RNPs in mouse Tregs as measured by flow cytometry of top screen hits. Each 

data point represents an independent sgRNA for each target gene. 

d) Foxp3 MFI of Foxp3+ mouse Tregs for 3-4 distinct gRNAs targeting each gene 

paired with the mean KO efficiency (top) for each guide as determined by TIDE 

analysis. 

e) Representative flow plots depicting FOXP3 and CD25 expression 7 days post 

electroporation of Cas9 RNPs targeting USP22 or NT Ctrl in human Tregs. The 

subpopulation of cells with the highest expression of FOXP3 and CD25 

(FOXP3hiCD25hi) is highlighted with a red gate. 

f) Percentage of FOXP3+ cells from human Tregs electroporated with Cas9 RNPs 

targeting USP22 or NT Ctrl in 10 biological replicates. Lines connect paired 

samples. 

g) Percentage of FOXP3hiCD25hi cells from human Tregs electroporated with Cas9 

RNPs targeting USP22 or NT Ctrl in 10 biological replicates. 

h) FOXP3 MFI of human Tregs for 3-4 distinct gRNAs targeting each gene paired 

with the mean KO efficiency (top) for each guide as determined by TIDE analysis. 

i) Simple linear regression of FOXP3 MFI (y-axis) by percentage of editing efficiency 

determined by TIDE analysis (x-axis) for 4 gRNAs targeting USP22 in 2-4 

biological donors. 

j) FOXP3 MFI of human Tregs electroporated with Cas9 RNPs with 2-3 distinct 

sgRNAs each in 2-4 biological donors; corresponding to panel h. Data points with 

less than 60% editing efficiency KO by TIDE analysis were excluded from the 

graph. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2.6. Design and validation of Treg-specific Usp22 knockout mice. 

 

a) Diagram of the murine Usp22 locus. Targeting vector contains IRES-lacZ and a 

neo cassette inserted into exon 2. 

b) Genotyping by PCR showed a 600-bp band for the wild-type allele and a 400-bp 

band for mutant allele, simultaneously in the homozygous floxed (f/f) mice.  

c) Western blot analysis of Usp22 in CD4+CD25- conventional T cells (Tconv) and 

CD4+CD25+ Treg cells isolated from Usp22+/+Foxp3YFP-Cre WT and 

Usp22fl/flFoxp3YFP-Cre KO mice. Gapdh was used as a loading control. 

d) Statistical analysis of CD4+Foxp3+ Treg frequencies, corresponding to Figure 2c. 
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e) Western blot analysis of Foxp3 protein level from Tregs isolated from spleen and 

LN of Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice. Gapdh was used 

as a loading control. 

f) iTreg differentiation of naïve CD4+ T cells from Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice with titration of TGF-β (as indicated).  

g) Summary of iTreg differentiation of naïve CD4+ T cells from Usp22+/+Foxp3YFP-Cre 

WT or Usp22fl/flFoxp3YFP-Cre KO mice with titration of TGF-β (as indicated). 

h) In vitro suppressive activity of Tregs assessed by the division of naïve CD4+CD25- 

T cells. Naïve T cells were labeled with cytosolic cell proliferation dye and activated 

by anti-CD3 and antigen presenting cells (irradiated splenocytes from wild-type 

mice, depleted of CD3+ T cells), then co-cultured at various ratios (as indicated 

above) with YFP+ Treg cells sorted from 8-week-old Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice. Numbers indicate the percentage of non-dividing 

cells for each ratio. 

i) In vitro suppressive activity of control (pMIG-Control) or Foxp3+ (pMIG-Foxp3) 

transduced YFP+ Tregs sorted from Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-

Cre KO mice.  Naïve T cells were labeled with cytosolic cell proliferation dye and 

activated then co-cultured at 1:4 transduced YFP+ Treg cells to naïve T effectors 

(Teff). Numbers indicate the percentage of non-dividing cells for each ratio. 

j) Summary data of in vitro suppression experiments represented as frequency of 

non-dividing cells relative to WT 0:1 No Treg control, corresponding to panel i. 

Lines connect paired samples. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.  
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Figure 2.7. Usp22 acts as deubiquitinase to control post-translational Foxp3 
expression. 

 

a) Endogenous interaction of Usp22 and Foxp3 in murine iTreg cells from WT mice. 

Rabbit anti-Usp22 antibody was used to perform the immunoprecipitation and 

mouse anti-Foxp3 antibody was used to detect the bound Foxp3. Normal rabbit 

IgG was used as control. Whole cell lysates (WCL) were used as sample 

processing controls.  

b) Ubiquitination assay of Foxp3. HEK293 cells were co-transfected with Flag-Foxp3 

and HA-ubiquitin (HA-ub) along with either Myc-empty vector, Myc-Usp22, or the 

catalytically inactive mutant Myc-Usp22C185A (C>A), and then 

immunoprecipitated with anti-Flag and immunoblotted for HA-ubiquitin (Foxp3-ub). 

Whole cell lysates (WCL) were used as sample processing controls. 

c) Splenocytes isolated from Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO 

mice were treated with 200 μg/ml cycloheximide (CHX) for the indicated time 

course. Inset numbers for each histogram indicate the MFI of Foxp3 in Tregs 

(black=WT, blue=KO).  

d) Foxp3 MFI from splenic CD4+CD25+Foxp3+ Treg population treated with 200 μg/ml 

cycloheximide (CHX) for the indicated time course, n=3; corresponding to panel c. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2.8. Usp22 regulates Foxp3 through transcriptional mechanisms. 

 

a) Representative flow cytometry analysis of the YFP+ Treg population (gated on 

CD4+ cells) from the spleen and lymph nodes of Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice. 
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b) Statistical analysis of YFP MFI in CD4+YFP+ Tregs from the thymus (Thy), 

peripheral lymph nodes (pLN), and spleen (Spl) of Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice. 

c) Statistical analysis of CD4+YFP+ Treg frequencies in Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice, corresponding to panel b. 

d) Volcano plot for RNA sequencing of Usp22 RNP KO Tregs vs Rnf20 RNP KO 

murine Tregs. X-axis shows log2FoldChange (LFC). Y-axis shows the –log10 of 

the p-value as calculated by DESeq2. Genes downregulated in the Usp22 RNP 

KO compared to Rnf20 RNP KO are shown in red and genes upregulated are 

shown in blue defined by p-value <5e-3 and LFC > 0.8. Foxp3 (shown in green) 

trended down but did not reach significance. 

e) qPCR analysis of FOXP3 mRNA levels in human Tregs from 2 donors 8 days 

post-electroporation with Cas9 RNPs targeting NTC , FOXP3, USP22, RNF20 or 

both USP22 and RNF20. Normalized to the expression of $-ACTIN transcripts. 

Data are presented as mean ±SEM and are representative of at least two 

independent experiments. 

f) qPCR analysis of Foxp3 mRNA levels in mouse Tregs 4 and 8 days post-

electroporation with Cas9 RNPs targeting NTC, Foxp3, Usp22, Rnf20 or both 

Usp22 and Rnf20. Normalized to the expression of $-actin transcripts. 

g) Western blot analysis of ubiquitinated histone 2A (H2AK119Ub; H2A-ub) and 

ubiquitinated histone 2B (H2BK120Ub; H2B-ub) from iTregs from 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice. Gapdh was used as 

a loading control. 

h) Schematic of Foxp3 locus depicting PCR products used for ChIP-qPCR data 

shown in panel i and panel j. 

i) ChIP-qPCR data analysis for H2AK119Ub (H2A-ub) where primers amplified 

across the transcriptional start site (TSS) and the CNS1 enhancer region of the 

Foxp3 locus. Data are normalized to the input and are presented as mean ±SD. 

j) ChIP-qPCR data analysis for H2BK120Ub (H2B-ub) for PCR across the 

transcriptional start site (TSS) and across the CNS1 enhancer region of the Foxp3 

locus. Data are normalized to the input and are presented as mean ±SD. 

k) Heatmap of ChIP-seq read density for Foxp3, Usp22, and Rnf20 at sites bound 

by Foxp3 (using previously published Foxp3 ChIP data40), ranked by highest to 

lowest Foxp3 binding signal. The corresponding log2 fold change (log2fc) for 

either H2BK120Ub or H2AK119Ub upon Usp22 or Rnf20 deletion at these sites 

are plotted on the right, with each biological replicate shown as an individual 

column. 

l) Average ChIP-seq read density of H2BK120Ub at Treg super enhancers in 

control versus Usp22-deficient Tregs.  

m) Co-occurrence analysis showing the natural log of the ratio of the observed 

number of overlapping regions over the expected values for sites that either gain 

or lose H2BK120Ub in Usp22-deficient Tregs against publicly available histone 

modifications H3K4me, H3K4me3 and H3K27ac as well as enhancer classes, as 

described in the Methods. 

n) Analysis of reciprocal regulation of Foxp3 by deubiquitinase Usp22 and E3 

ubiquitin ligase Rnf20. YFP MFI of Tregs sorted from Usp22+/+Foxp3YFP-Cre WT or 
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Usp22fl/flFoxp3YFP-Cre KO mice and then electroporated with either NT control 

(NTC-RNP) or Rnf20 RNP, corresponding with Figure 2j where Foxp3 MFI from 

the same experiment is shown. 

All data are presented as mean ±SEM, unless otherwise stated. ns indicates no 

significant difference, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2.9. Autoimmune inflammation in Treg-specific Usp22 knockout mice. 

 

a) Body weight differences (in grams, g) between 8-week-old, sex-matched C57BL/6 

WT (BL6), Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice. 

b) Representative flow cytometry analysis of CD44 and CD62L expression in splenic 

CD4+ and CD8+ T cells from aged 7-month-old Usp22+/+Foxp3YFP-Cre WT and 

Usp22fl/flFoxp3YFP-Cre KO mice. Numbers in quadrants indicate percentage of each 

cell population. 

c) The frequency of splenic CD4+ and CD8+ effector T cells (CD44hiCD62Llo) and 

naïve T cells (CD44loCD62Lhi) of aged 7-month-old Usp22+/+Foxp3YFP-Cre WT and 

Usp22fl/flFoxp3YFP-Cre KO mice summarized, corresponding to panel b. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 

0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2.10. T cell-specific ablation of Usp22 resulted in decreased Foxp3 and 
increased T cell activation. 

 

a) Western blot analysis of Usp22 protein levels in CD4+ T cells isolated from spleens 

of Usp22fl/flLckCre KO and Usp22+/+LckCre WT mice. Gapdh was used as a loading 

control. 

b) Representative macroscopic images of spleens and peripheral lymph nodes (pLN) 

from 10-month-old Usp22fl/flLckCre KO and Usp22+/+LckCre WT mice. 
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c) Representative flow cytometry plots showing CD44 and CD62L expression in 

CD4+ and CD8+ T cells from spleens of 10-month-old Usp22fl/flLckCre KO and 

Usp22+/+LckCre WT mice.  

d) Frequency of effector-memory T cells (CD44hiCD62Llo) in peripheral 

lymph nodes (pLN) and spleens from 10-month-old Usp22fl/flLckCre KO and 

Usp22+/+LckCre WT mice. 

e) Representative flow cytometry plots showing the splenic CD4+Foxp3+ Treg 

population from 10-month-old Usp22fl/flLckCre KO and Usp22+/+LckCre WT mice.  

f) Foxp3 MFI of the CD4+Foxp3+ Treg population in the spleen and pLN from 10-

month-old Usp22fl/flLckCre KO and Usp22+/+LckCre WT mice. 

g) IL-2 production by CD4+CD25- T cells under various stimulation conditions (as 

indicated) for 3 days was assessed by flow cytometry in Usp22fl/flLckCre KO and 

Usp22+/+LckCre WT mice. Although the dominant effect of Usp22-deficiency in T 

cells was increased T cell activation and lymphoproliferation, we found some 

evidence of impaired IL-2 production in conventional T cells. 

h) Usp22-deficiency in T cells led to a selective defect in iTreg differentiation. In 
vitro differentiation of CD4+ naïve T cells cultured under Th1, Th2, Th17 or sub-

optimal TGF-β (1ng/mL) iTreg conditions from Usp22fl/flLckCre KO and 

Usp22+/+LckCre WT mice was assessed by flow cytometry. 

i) Summary of in vitro differentiation experiments showing percent differentiation, 

corresponding to panel h. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Figure 2.11. Tumor growth is inhibited in Treg-specific Usp22 knockout mice in 
multiple cancer models. 

 

a) Left: Representative flow cytometric analysis of splenic IFNγ in CD8+ T cells from 

EG7 tumor-bearing Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO. Right: 

Statistical analysis of IFNγ production by splenic CD8+ T cells from EG7 tumor-

bearing Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO. 
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b) Left: Representative flow cytometric analysis of splenic Granzyme B (GrzB) in 

CD8+ T cells from EG7 tumor-bearing Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO. Right: Statistical analysis of Granzyme B production by 

splenic CD8+ T cells from EG7 tumor-bearing Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO.  

c) The MFI of various Treg markers (as indicated) from splenic CD4+Foxp3+ Tregs 

from Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO EG7 tumor-bearing 

mice, assessed by flow cytometry. 

d) qPCR analysis of Ifng, Gzmb and Cd8a mRNA levels in the tumor tissue of 

Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO EG7 tumor-bearing mice.  

e) Tumor volumes from Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice 

subcutaneously inoculated with 5x104 B16 melanoma cells. For e, h, k, tumor 

volumes were measured every 2-3 days by scaling along 3 orthogonal axes (x, y, 

and z) and calculated as (xyz)/2. 

f) The MFI of various Treg markers (as indicated) from splenic CD4+Foxp3+ Tregs 

in Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO B16 tumor-bearing mice, 

assessed by flow cytometry. 

g) Foxp3 MFI of Foxp3+ cells from tumor-infiltrating Tregs in Usp22+/+Foxp3YFP-Cre WT 

or Usp22fl/flFoxp3YFP-Cre KO B16 tumor-bearing mice. 

h) Tumor volumes from Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice 

subcutaneously inoculated with 1x106 LLC1 Lewis lung carcinoma cells. 

i) The MFI of various Treg markers (as indicated) from splenic CD4+Foxp3+ Tregs 

in Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO LLC1 tumor-bearing 

mice, assessed by flow cytometry. 

j) Foxp3 MFI of Foxp3+ cells from tumor-infiltrating Tregs in Usp22+/+Foxp3YFP-Cre 

WT or Usp22fl/flFoxp3YFP-Cre KO LLC1 tumor-bearing mice. 

k) Tumor volumes from Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice 

subcutaneously inoculated with 1x106 MC38 colon adenocarcinoma cells. 

l) The MFI of various Treg markers (as indicated) from splenic CD4+Foxp3+ Tregs 

in Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO MC38 tumor-bearing 

mice, assessed by flow cytometry. 

m) Foxp3 MFI of Foxp3+ cells from tumor-infiltrating Tregs in Usp22+/+Foxp3YFP-Cre 

WT or Usp22fl/flFoxp3YFP-Cre KO MC38 tumor-bearing mice. 

All data are presented as mean ±SEM. ns indicates no significant difference, *P < 0.05, 

**P < 0.01, ***P < 0.001, ****P < 0.0001. 
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Tables 
Table 2.1. Top 30 gene level hits from screen data. 

 

id nu
m 

neg|s
core 

neg|p-
value 

neg|f
dr 

neg|r
ank 

neg|goo
dsgrna 

neg|
lfc 

pos|sc
ore 

pos|p-
value 

pos|f
dr 

pos|r
ank 

pos|goo
dsgrna 

pos|
lfc 

Foxp
3 4 1 1 0.999

995 493 0 1.34
25 

3.61E-
09 

4.97E-
06 

0.000
817 1 4 1.34

25 
Usp
22 4 1 1 0.999

995 492 0 0.36
66 

6.37E-
07 

4.97E-
06 

0.000
817 2 4 0.36

66 

Cbfb 4 0.998
99 

0.9988
6 

0.999
995 488 0 0.71

208 
6.43E-

06 
4.97E-

06 
0.000
817 3 4 0.71

208 
Run
x1 4 0.816

78 
0.8172

9 
0.999
995 401 1 0.37

272 
4.63E-

05 
0.0001
9389 

0.019
118 4 3 0.37

272 

Myc 4 0.999
95 

0.9999
4 

0.999
995 491 0 0.38

282 
4.80E-

05 
0.0001
9389 

0.019
118 5 4 0.38

282 

Ss18 4 0.960
17 0.9603 0.999

995 463 0 0.32
901 

6.70E-
05 

0.0002
7344 

0.022
467 6 3 0.32

901 
Med
30 4 0.632

22 
0.6843

1 
0.999
995 331 1 0.35

826 
0.0001
5658 

0.0006
115 

0.040
033 7 3 0.35

826 
Atxn
7l3 4 0.992

8 
0.9929

5 
0.999
995 480 0 0.46

354 
0.0001
6422 

0.0006
5127 

0.040
033 8 4 0.46

354 
Med
12 4 0.990

12 
0.9904

8 
0.999
995 478 0 0.33

721 
0.0001
8536 

0.0007
3082 

0.040
033 9 4 0.33

721 
Hnrn
pk 4 0.999

74 
0.9997

2 
0.999
995 490 0 0.25

204 
0.0002

622 
0.0009
6945 

0.047
794 10 4 0.25

204 
Zfp2
81 4 0.999

58 
0.9996

2 
0.999
995 489 0 0.28

02 
0.0004
2109 

0.0015
561 

0.069
742 11 4 0.28

02 

Taf5l 4 0.954
93 

0.9552
6 

0.999
995 460 0 0.30

566 
0.0007
3703 

0.0027
89 

0.114
583 12 3 0.30

566 
Ddit

3 4 0.998
97 

0.9988
5 

0.999
995 487 0 0.16

312 
0.0010

324 
0.0038

828 
0.138
831 13 4 0.16

312 
Zmy
nd8 4 0.996

53 
0.9965

7 
0.999
995 483 0 0.25

309 
0.0010

568 
0.0039

424 
0.138
831 14 4 0.25

309 
Med
14 4 0.730

89 0.7468 0.999
995 360 1 0.15

551 
0.0011

953 
0.0044

993 
0.147
876 15 2 0.15

551 
Rad
21 4 0.998

17 
0.9981

1 
0.999
995 486 0 0.16

141 
0.0018

272 
0.0065

774 
0.190
223 16 4 0.16

141 
Dma
p1 4 0.988

74 
0.9891

1 
0.999
995 476 0 0.21

613 
0.0019

075 
0.0068

558 
0.190
223 17 4 0.21

613 
Med
11 4 0.994

51 
0.9945

3 
0.999
995 481 0 0.31

583 
0.0019

501 
0.0069

453 
0.190
223 18 4 0.31

583 
Zksc
an3 4 0.997

81 
0.9977

6 
0.999
995 485 0 0.13

156 
0.0021

869 
0.0078

501 
0.203
689 19 4 0.13

156 
Foxp

1 4 0.997
07 

0.9970
5 

0.999
995 484 0 0.16

301 
0.0029

347 
0.0104

65 
0.257
966 20 4 0.16

301 
Stat
5b 4 0.558

26 
0.6465

1 
0.999
995 312 1 0.24

658 
0.0051

143 
0.0177

63 
0.402
741 21 3 0.24

658 
Med
13 4 0.994

82 
0.9948

6 
0.999
995 482 0 0.15

299 
0.0051

78 
0.0179

72 
0.402
741 22 4 0.15

299 
Plagl

2 4 0.888
19 0.8884 0.999

995 430 0 0.18
785 

0.0055
238 

0.0190
66 

0.408
674 23 3 0.18

785 
Tada

3 4 0.940
33 

0.9411
9 

0.999
995 453 0 0.20

472 
0.0062

52 
0.0213

73 
0.439
032 24 3 0.20

472 

Mta2 4 0.992
6 0.9928 0.999

995 479 0 0.12
335 

0.0073
952 

0.0251
91 

0.496
765 25 4 0.12

335 
Ceb
pz 4 0.328

46 
0.4735

4 
0.999
995 216 1 0.15

394 
0.0081

261 
0.0275

08 
0.521
587 26 2 0.15

394 
Creb

zf 4 0.913
22 

0.9143
5 

0.999
995 436 0 0.20

764 
0.0087

668 
0.0296

95 
0.542
211 27 3 0.20

764 

Per1 4 0.913
86 

0.9149
4 

0.999
995 437 0 0.19

095 
0.0092

773 
0.0311

87 
0.549
107 28 3 0.19

095 
Nac

a 4 0.962
26 

0.9624
2 

0.999
995 465 0 0.19

788 
0.0098

853 
0.0330

36 
0.561
613 29 3 0.19

788 
Sma
d4 4 0.989

48 
0.9897

2 
0.999
995 477 0 0.10

17 
0.0105

19 
0.0352

14 
0.571
869 30 4 0.10

17 
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Table 2.2. List of primers 

Primer_name Sequence 

Primers used for Pooled sgRNA Library Design and Construction 
MSCV BsgI-Gib 

Fwd CTTGTGCAGTTTTGTACGTCTCTGTTTTAGAGCTAGAAATAGC 

MSCV BsgI-Gib 

Rev GTGTGTGCAGTTACAACCGTCTCCGGTGTTTCGTCCTTTCCAC 

Lenti-sgRNA 

ExcFod BsgI 

Fwd 

CGAAACACCGGAGACGGTTGTAACTGCACACACAAAATACAC

ATGC 

Lenti-sgRNA 

ExcFod BsgI 

Rev CTAGCTCTAAAACAGAGACGTACAAAACTGCACAAGAAGC 

sgRNA Gib Lib 

Fwd (35) GGCTTTATATATCTTGTGGAAAGGACGAAACACCG 

sgRNA Gib Lib 

Rev (38) CTAGCCTTATTTTAACTTGCTATTTCTAGCTCTAAAAC 

Primers used for Preparation of Genomic DNA for Next Generation Sequencing 
PCR-SetA 3' 

common primer 

p7 

CAAGCAGAAGACGGCATACGAGATGGGTCGCTACAGACGTTG

TTTG 

PCR-SetA 5' 

index primer p5 

AATGATACGGCGACCACCGAGATCTACACGATCGGAAGAGCA

CACGTCTGAACTCCAGTCACCTTGTAGGACTATCATATGCTTA

CCGTAAC 

Index 3- PCR-

SetA 5' index 

AATGATACGGCGACCACCGAGATCTACACGATCGGAAGAGCA

CACGTCTGAACTCCAGTCACAGTTCCGGACTATCATATGCTTA

CCGTAAC 

5' custom seq 

primer 

MSCVscreen 

TTCGATTTCTTGGCTTTATATATCTTGTGGAAAGGACGAAACAC

CG 

Primers used for real-time qPCR (Figure 2.2f) 

Foxp3 Forward GGCCCTTCTCCAGGACAGA 

Foxp3 Reverse GCTGATCATGGCTGGGTTGT 

ChIP-qPCR 
Primers (Takaki et al., 2008) 

Primer 1 Fwd cta gaa acc atg ctg caa aga c 

Primer 1 Rev gta ctc att ttc tca ggg tcc atg g 

Primer 2 Fwd cgc agc tgc cag atc ttg aat ac 

Primer 2 Rev cac tcc cgt ttg caa agg ttt agg 

Primer 5 Fwd cct ttt acc tct gtg gtg agg g 

Primer 5 Rev tat acc gag aag aaa aac cac ggc g 

Primer 6 Fwd 

(TSS) gat aat gtg gca gtt tcc cac aag c 
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Primer_name Sequence 

Primer 6 Rev 

(TSS) ttt ttg ccc ctg tct aag gac caa c 

Primer 10 Fwd 

(CNS1) cag gct gac ctc aaa ctc aca aag 

Primer 10 Rev 

(CNS1) cat acc cac act ttt gac ctc tgc 

Primer 11 Fwd gtg ggc tat cta cgc agt cac tt 

Primer 11 Rev gag aca gtg aga gca gtt tag agg 

Primer 12 Fwd ctc cat aag att tac ccc agc cac 

Primer 12 Rev cat gct atg gtt atg gac tgg atc c 

Primer 15 Fwd caa tat cca tga ggc ctg cct aat ac 

Primer 15 Rev ctt ggc cag att ttt ctg cca ttg ac 

Taqman Primer Probes used for real-time qPCR (Extended Data Figure 5) 
Mouse Actb Endogenous Control (VIC/MGB probe, primer limited) - ThermoFisher 

Cat# 4352341E 

Mouse Foxp3 Mm00475162_m1 (FAM/MGB probe) - Taqman, ThermoFisher Cat# 

4331182 

Human ACTB Hs01060665_g1 (VIC/MGB probe, primer limited) - Taqman, 

ThermoFisher Cat# 4448484 

Human FOXP3 Hs01085834_m1 (FAM/MGB probe) - Taqman, ThermoFisher Cat# 

4331182 

Primers used for real-time qPCR (Extended Data Figure 8)) 

IFNy Forward TGAACGCTACACACTGCATCT 

IFNy Reverse CACCATCCTTTTGCCAGTTCC 
Grzb Forward CATGCTGCTAAAGCTGAAGAGT 
Grzb Reverse GGACTCACACTCCCGATCCT 
CD8 Forward GTCCTTCCTACAACTGCCCC 
CD8 Reverse CTCTCCTCCGCACACAGTAAA 
b-Actin Forward AGATCAAGATCATTGCTCCTCCT 

b-Actin Reverse ACGCAGCTCAGTAACAGTCC 
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Table 2.3. List of crRNA 

Species Guide_name Sequence 

Mouse mCD4 KO CCTGGAAGTTCTCTGACCAG 

Mouse mFoxp3-1 CATACCTGATGCATGAAGTG 

Mouse mFoxp3-2 TCTACCCACAGGGATCAATG 

Mouse mFoxp3-3 AGGTCGGGACCTGCGAAGTG 

Mouse mFoxp3-4 GCAAGAGCTCTTGTCCATTG 

Mouse mUsp22-1 GCCATCGACCTGATGTACGG 

Mouse mUsp22-2 TTGACCAGATCTTTACGGGT 

Mouse mUsp22-3 TGCGTGGACTGATCAACCTG 

Mouse mUsp22-4 TGGGGCTCTGCATCTCACAG 

Mouse mAtxn7l3-1 GCAGCCGAATCGCCAACCGT 

Mouse mAtxn7l3-2 TGTCCAAAGATGTCCAACCC 

Mouse mAtxn7l3-3 TCTACTCACCTTAAAAGGAT 

Mouse mAtxn7l3-4 GTACACCGGGCTGTTAAGTG 

Mouse mRnf20-1 CAATCTGGGACACAGCACGG 

Mouse mRnf20-2 AAACGTTATGATCTGGACCA 

Mouse mRnf20-3 TAGCAGAAATGCTAGATCAG 

Mouse mRnf20-4 GCTATAAAGTATATGGAGCG 

Mouse mRunx1-1 TGCGCACTAGCTCGCCAGGG 

Mouse mRunx1-2 CGGTCCCTACACTAGGACAT 

Mouse mRunx1-3 AGAACTGAGAAATGCTACCG 

Mouse mRunx1-4 TTGTGGCGGATTTGTAAAGA 

Mouse mCbfb-1 GCCTTGCAGATTAAGTACAC 

Mouse mCbfb-2 AACCCATACCATCCAATCTG 

Mouse mCbfb-3 CGATCTCCGAGCGACCGTCG 

Mouse mCbfb-4 AAGTCGACATATTCCCGGCT 

Mouse/Human NTC-1 GCGACTAGTACGCGTAGGTT 

Mouse/Human NTC-2 TATGTACCCGTTGTACGCGC 

Mouse/Human NTC-3 GGTTCTTGACTACCGTAATT 

Human OS_1_USP22_B_KO TGGGGCTCTGCATCTCACAG 

Human OS_2_USP22_KO CAACTTATACGGGATGTGAG 

Human OS_3_USP22_KO CATGGAAATAATCGCCAAGG 

Human OS_4_USP22_B_KO GCCATTGATCTGATGTACGG 

Human OS_14_Foxp3_B_KO CCCACCCACAGGGATCAACG 

Human OS_15_Foxp3_B_KO CCTACTTAGGCACTGCCAGG 

Human OS_16_Foxp3_KS_KO TCATGGCTGGGCTCTCCAGG 

Human OS_17_Foxp3_KO CTTGAGGGAGAAGACCCCAG 

Human JCg130: hATXN7L3.1.AA GTACACCGGGCTGTCAAGTG 



 

 
 

41 

Species Guide_name Sequence 

Human JCg131: hATXN7L3.1.AB AATGACAACGACTGGTCCTA 

Human JCg132: hATXN7L3.1.AC TAATGACTTGGATCTTCGAG 

Human JCg133: hRNF20.1.AA TATTGATTGTCAACCGATAC 

Human JCg134: hRNF20.1.AB CAATCTGGGACACGGCTCGG 

Human JCg135: hRNF20.1.AC CATCCTTAAACGTTATGATC 

Human OS_5: Human_CD4_B_KO AGTGCAATGTAGGAGTCCAA 
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Table 2.4. List of Antibodies 

Application Target Clone Fluorophore  Vendor 
Catolog 
Number 

Flow Cytometry 
Antibodies      

Viability Dye 
dead 
cells N/A 

Brilliant Violet 
510 Tonbo 

13-0870-
T100 

Viability Dye 
dead 
cells N/A Alexa Fluor 506 eBioscience 65-0866-14 

Mouse T Cell Surface 
Staining 

CD90.1 
(Thy1.1) HIS51 APC eBioscience 17-0900-82 

Mouse T Cell Surface 
Staining CD3e 145-2C11 PE Biolegend 100307 
Mouse T Cell Surface 
Staining CD3e 17A2 PE-Cy7 Biolegend 100219 
Mouse T Cell Surface 
Staining CD3e 145-2C11 APC Biolegend 100311 
Mouse T Cell Surface 
Staining CD4 GK1.5 Pacific Blue BioLegend 100428 
Mouse T Cell Surface 
Staining CD4 GK1.5 PerCP-Cy5.5 Biolegend 100433 
Mouse T Cell Surface 
Staining CD4 GK1.5 APC Cy7 Biolegend 100413 
Mouse T Cell Surface 
Staining CD4 GK1.5 PE-Cy7 Biolegend 100421 
Mouse T Cell Surface 
Staining CD8a 53-6.7 Pacific Blue Biolegend 100725 
Mouse T Cell Surface 
Staining CD25 PC61 APC BioLegend 102012 
Mouse T Cell Surface 
Staining CD25 PC61 PE-Cy7 Biolegend 102016 
Mouse T Cell Surface 
Staining CD25 PC61 PE Biolegend 102008 
Mouse T Cell Surface 
Staining CD44 IM7 PE-Cy7 Biolegend 103030 
Mouse T Cell Surface 
Staining CD44 IM7 APC Biolegend 103011 
Mouse T Cell Surface 
Staining CD62L MEL-14 APC BioLegend 104412 
Mouse T Cell Surface 
Staining CD62L MEL-14 PE ebioscience 12-0621-82 
Mouse T Cell Surface 
Staining 

CD357 
(GITR) DTA-1 PerCP-Cy5.5 BioLegend 126315 

Mouse T Cell Surface 
Staining 

CD357 
(GITR) DTA-1 PE BioLegend 126309 

Mouse T Cell Surface 
Staining 

CD128 
(ICOS) 7E.17G9 PE ebioscience 12-9942-81 

Mouse T Cell Surface 
Staining 

CD279 
(PD-1) 29F.IA12 PE BioLegend 135205 

Mouse T Cell Surface 
Staining 

CD274 
(PD-L1) 10F.9G2 PE BioLegend 124308 

Mouse T Cell Surface 
Staining CD103 2E7 PE eBioscience 12-1031-82 
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Application Target Clone Fluorophore  Vendor 
Catolog 
Number 

Mouse T Cell Intracellular 
Staining Foxp3 FJK-16s FITC eBioscience 11-5773-82 
Mouse T Cell Intracellular 
Staining Foxp3 FJK-16s PE eBioscience 12-5773-82 
Mouse T Cell Intracellular 
Staining Usp22 C-3 Alexa Fluor 647 

Santa Cruz 
Bio sc-390585 

Mouse T Cell Intracellular 
Staining IL-2 JES6-5H4 APC eBioscience 17-7021-81 
Mouse T Cell Intracellular 
Staining IFN-y XMG1.2 FITC BioLegend 505806 
Mouse T Cell Intracellular 
Staining IL-4 11B11 APC BioLegend 504105 
Mouse T Cell Intracellular 
Staining IL-17A 

TC11-
18H10.1 APC BioLegend 506915 

Mouse T Cell Intracellular 
Staining 

Granzym
e B GB11 FITC BioLegend 515403 

Mouse T Cell Intracellular 
Staining Helios 22F6 APC BioLegend 137221 
Mouse T Cell Intracellular 
Staining 

CD152 
(CTLA-4) UC10-4B9 APC BioLegend 106309 

Mouse T Cell Intracellular 
Staining 

CD152 
(CTLA-4) UC10-4B9 PE-Cy7 BioLegend 106313 

Mouse T Cell Intracellular 
Staining 

CD304 
(Neuropili
n-1) 3E12 APC BioLegend 145205 

Human T Cell Surface 
Staining CD4 SK3 PerCP Tonbo 

67-0047-
T500 

Human T Cell Surface 
Staining CD25 BC96 APC Tonbo 

20-0259-
T100 

Human T Cell Surface 
Staining CD127 

hIL-7R-
M21 PE BD 557938 

Human T Cell Surface 
Staining CD25 M-A251 PE-Cy7 BD 557741 
Human T Cell Intracellular 
Staining FOXP3 206D Alexa Fluor 488 BioLegend 320112 
Human T Cell Intracellular 
Staining 

CD152 
(CTLA4) L3D10 APC BioLegend 349908 

Human T Cell Intracellular 
Staining IFN-y B27 V450 BD 560371 
Human T Cell Intracellular 
Staining Helios 22F6 PerCP/Cy5.5 BioLegend 137230 
Human T Cell Intracellular 
Staining IL-2 

MQ1-
17H12 

Brilliant Violet 
650 BioLegend 500334 

Human T Cell Intracellular 
Staining IL-4 

MP4-
25D2 APC/Cy7 BioLegend 5000834 

Human T Cell Intracellular 
Staining IL-10 JES3-9D7 PE BD 554498 
Human T Cell Intracellular 
Staining IL-17A BL168 Alexa Fluor 700 BioLegend 512318 
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Target (Vendor, Catalog)      
Western Blot Antibodies      
HRP-conjugated Myc (Santa Cruz,  
Cat# 2040S )     
HRP-conjugated HA (Santa Cruz, Cat# 
14031S)     
HRP-conjugated FLAG (Sigma, Cat# 
A8592)     
anti-GAPDH (Sigma, Cat# 
G9545)      
anti-Usp22 (Santa Cruz, Cat# sc-
390585 )     
anti-Foxp3 (eBioscience, Cat# 11-5773-
82)     
      
Co-IP Antibodies      
anti-FLAG (Sigma, Cat# 
A8592)      
anti-Usp22 (Novus Biologicals, Cat# 
NBP1-49644)     
      
ChIP Antibodies      
rabbit anti-IgG (Cell Signaling, Cat# 
2729)     
rabbit anti-USP22 (Abcam, 
ab195289)      
ub-Histone H2A Lys119 (Cell Signaling, 
Cat# 8204S)     
ub-Histone H2B Lys120 (Cell Signaling, 
Cat# 5546P)     
RNF20 Novus Biologicals, Cat# NB100-
2242     
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Mice for screen and RNP validation 

B6 Foxp3GFP-Cre mice41 were crossed with B6 Rosa26LSL-RFP reporter mice42 as previously 

described43 to generate the Foxp3 fate reporter mice. These mice were then crossed to 

B6 constitutive Cas9-expressing mice9 to generate the Foxp3GFP-CreRosa26LSL-RFPCas9 

mice used for the CRISPR screen. For the arrayed validation experiments, B6 Foxp3EGFP 

knock-in mice44 that were obtained from Jackson Laboratories (Strain No. 006772) were 

used. These mice were maintained in the UCSF specific-pathogen-free animal facility in 

accordance with guidelines established by the Institutional Animal Care and Use 

Committee and Laboratory Animal Resource Center. 

 

Isolation and culture of primary mouse Tregs for screen and validation 

Spleens and peripheral lymph nodes were harvested from mice and dissociated in 1x 

PBS with 2% FBS and 1 mM EDTA. The mixture was then passed through a 70-µm filter. 

CD4+ T cells were isolated using the CD4+ Negative Selection Kit (StemCell 

Technologies, Cat# 19752) followed by fluorescence-activated cell sorting. For the 

prescreen sort, Tregs were gated on lymphocytes, live cells, CD4+, CD62L+, RFP+, 

Foxp3-GFP+ cells. For the arrayed validation experiments, Tregs were gated on 

lymphocytes, live cells, CD4+, Foxp3-GFP+ cells. Sorted Tregs were cultured in complete 

DMEM, 10% FBS, 1% pen/strep + 2000U hIL-2 in 24 well plates at 1 million cells/mL. 

Tregs were stimulated using CD3/CD28 Mouse T-Activator Dynabeads (Thermo Fisher, 

Cat# 11456D) at a ratio of 3:1 beads to cells for 48 hours. Cells were split and media was 

refreshed every 2-3 days. 
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Pooled sgRNA library design and construction 

For the cloning of the targeted library, we followed the custom sgRNA library cloning 

protocol as previously described45. We utilized a MSCV-U6-sgRNA-IRES-Thy1.1 

backbone (gifted from the Bluestone Lab). To optimize this plasmid for cloning the library, 

we first replaced the sgRNA with a 1.9kb stuffer derived from the lentiGuide-Puro plasmid 

(Addgene, plasmid# 52963) with flanking BsgI cut sites. This stuffer was excised using 

the BsgI restriction enzyme (NEB, Cat# R0559) and the linear backbone was gel purified 

(Qiagen, Cat# 28706). We designed a targeted library to include all genes matching Gene 

Ontology for “Nucleic Acid Binding Transcription Factors”, “Protein Binding Transcription 

Factors”, "Involved in Chromatin Organization" and "Involved in Epigenetic Regulation." 

Genes were then selected based on those that have the highest expression levels across 

any mouse CD4 T cell subset as defined by Stubbington et al46. In total, we included 489 

targets with 4 guides per gene, GFP and RFP controls with 8 guides for each, and 28 

non-targeting controls. Guides were subsetted from the Brie sgRNA library13, and the 

pooled oligo library was ordered from Twist Bioscience (San Francisco, CA) to match the 

vector backbone. Oligos were PCR amplified and cloned into the modified MSCV 

backbone by Gibson assembly as described by Joung et al45. The library was amplified 

using Endura ElectroCompetent Cells following the manufacturer’s protocol (Endura, 

Cat# 60242-1). All primer sequences are listed in Table 2. 

 

Retrovirus production 

Platinum-E (Plat-E) Retroviral Packaging cells (Cell Biolabs, Inc., Cat# RV-101) were 

seeded at 10 million cells in 15 cm poly-L-Lysine coated dishes 16 hours prior to 
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transfection and cultured in complete DMEM, 10% FBS, 1% pen/strep, 1 µg/mL 

puromycin and 10 µg/mL blasticidin. Immediately before transfection, the media was 

replaced with antibiotic free complete DMEM, 10% FBS. The cells were transfected with 

the sgRNA transfer plasmids (MSCV-U6-sgRNA-IRES-Thy1.1) using TransIT-293 

transfection reagent per the manufacturer’s protocol (Mirus, Cat# MIR 2700). The 

following morning, the media was replaced with complete DMEM, 10% FBS, 1% 

pen/strep. The viral supernatant was collected 48 hours post transfection and filtered 

through a 0.45 μm, polyethersulfone sterile syringe filter (Whatman, Cat# 6780-2504), to 

remove cell debris. The viral supernatant was aliquoted and stored until use at -80°C.  

 

Retroviral transduction 

Tregs were stimulated as described above for 48-60 hours. Cells were counted and 

seeded at 3 million cells in 1 mL of media with 2x hIL-2 into each well of a 6 well plate 

that was coated with 15 µg/mL of RetroNectin (Takara, Cat# T100A) for 3 hours at room 

temperature and subsequently washed with 1x PBS. Retrovirus was added at a 1:1 v/v 

ratio (1 mL) and plates were centrifuged for 1 hour at 2000g at 30°C and placed in the 

incubator at 37°C overnight. The next day, half (1 mL) of the 1:1 retrovirus to media 

mixture was removed from the plate and 1 mL of fresh retrovirus was added. Plates were 

immediately centrifuged for 1 hour at 2000g at 30°C. After the second spinfection, cells 

were pelleted, washed, and cultured in fresh media. 
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Foxp3 intracellular stain and post-screen cell collection 

Tregs were collected from their culture vessels 8 days after the second transduction and 

centrifuged for 5 min at 300g. Cells were first stained with a viability dye at a 1:1,000 

dilution in 1× PBS for 20 min at 4°C, then washed with EasySep Buffer (1× PBS, 2% FBS, 

1 mM EDTA). Cells were then resuspended in the appropriate surface staining antibody 

cocktail and incubated for 30 min at 4°C, then washed with EasySep Buffer. Cells were 

then fixed, permeabilized, and stained for transcription factors using the Foxp3 

Transcription Factor Staining Buffer Set (eBioscience, Cat# 00-5523-00) according to the 

manufacturer’s instructions. Antibodies used in this study are listed in Table 4. For the 

CRISPR screen, Foxp3high and Foxp3low populations were isolated using fluorescence-

activated cell sorting by gating on lymphocytes, live cells, CD4+ and gating on the highest 

40% of Foxp3-expressing cells (Foxp3high) and lowest 40% of Foxp3-expressing cells 

(Foxp3low) by endogenous Foxp3 intracellular staining. Over 2 million cells were collected 

for both sorted populations to maintain a library coverage of at least 1,000 cells per 

sgRNA (1000x). 

 

Isolation of genomic DNA from fixed cells 

After cell sorting and collection, genomic DNA (gDNA) was isolated using a protocol 

specific for fixed cells. Cell pellets were resuspended in cell lysis buffer (0.5% SDS, 50 

mM Tris, pH 8, 10 mM EDTA) with 1:25 v/v of 5M NaCl to reverse crosslinking and 

incubated at 66°C overnight. RNase A (10 mg/mL) was added at 1:50 v/v and incubated 

at 37°C for 1 hour. Proteinase K (20 mg/mL) was added at 1:50 v/v and incubated at 45°C 

for 1 hour. Phenol:Chloroform:Isoamyl Alcohol (25:24:1) was added to the sample 1:1 v/v 
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and transferred to a phase lock gel light tube (QuantaBio, Cat# 2302820), inverted 

vigorously and centrifuged at 20,000g for 5 mins. The aqueous phase was then 

transferred to a clean tube and NaAc at 1:10 v/v, 1 µl of GeneElute-LPA (Sigma, Cat# 

56575), and isopropanol at 2.5:1 v/v were added. The sample was vortexed, and 

incubated at -80°C until frozen solid. Then thawed and centrifuged at 20,000g for 30 mins. 

The cell pellet was washed with 500 µl of 75% EtOH, gently inverted and centrifuged at 

20,000g for 5 mins, aspirated, dried, and resuspended in 20 µl TE buffer. 

  

Preparation of genomic DNA for next generation sequencing 

Amplification and bar-coding of sgRNAs was performed as previously described47 with 

some modifications. Briefly, after gDNA isolation, sgRNAs were amplified and barcoded 

with TruSeq Single Indexes using a one-step PCR. TruSeq Adaptor Index 12 (CTTGTA) 

was used for the Foxp3low population and TrueSeq Adaptor Index 14 (AGTTCC) was used 

for the Foxp3high population. Each PCR reaction consisted of 50μL of NEBNext Ultra II 

Q5 Master Mix (NEB, Cat# M0544), 1μg of gDNA, 2.5μL each of the 10μM forward and 

reverse primers, and water to 100μL total. The PCR cycling conditions were: 3 minutes 

at 98°C, followed by 10 seconds at 98°C, 10 seconds at 62°C, 25 seconds at 72°C, for 

26 cycles; and a final 2 minute extension at 72°C. After the PCR, the samples were 

purified using Agencourt AMPure XP SPRI beads (Beckman Coulter, Cat #A63880) per 

the manufacturer's protocol, quantified using the Qubit ssDNA high sensitivity assay kit 

(Thermo Fisher Scientific, Cat #Q32854), and then analyzed on the 2100 Bioanalyzer 

Instrument. Samples were then sequenced on an Illumina MiniSeq using a custom 

sequencing primer. Primer sequences are listed in Table 2. 
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Pooled CRISPR screen pipeline 

Primary Tregs were isolated from the spleen and lymph nodes of three male Foxp3-GFP-

Cre/Rosa26-RFP/Cas9 mice aged 5-7 months old, pooled together, and stimulated for 60 

hours. Cells were then retrovirally transduced with the sgRNA library and cultured at a 

density of 1 million cells/ml continually maintaining a library coverage of at least 1,000 

cells per sgRNA. Eight days after the second transduction, cells were sorted based on 

Foxp3 expression defined by intracellular staining. Genomic DNA was harvested from 

each population and the sgRNA-encoding regions were then amplified by PCR and 

sequenced on an Illumina MiniSeq using custom sequencing primers. From this data, we 

quantified the frequencies of cells expressing different sgRNAs in each in each population 

(Foxp3high and Foxp3low) and quantified the phenotype of the sgRNAs, which we have 

defined as Foxp3 stabilizing (enriched in Foxp3high) or Foxp3 destabilizing (enriched in 

Foxp3low). 

 

Analysis of pooled CRISPR screen 

Analysis was performed as previously described48. To identify hits from the screen, we 

used the MAGeCK software to quantify and test for guide enrichment7. Abundance of 

guides was first determined by using the MAGeCK “count” module for the raw fastq files. 

For the targeted libraries, the constant 5’ trim was automatically detected by MAGeCK. 

To test for robust guide and gene-level enrichment, the MAGeCK “test” module was used 

with default parameters. This step included median ratio normalization to account for 

varying read depths. We used the non-targeting control guides to estimate the size factor 
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for normalization, as well as to build the mean-variance model for null distribution, which 

was used to find significant guide enrichment. MAGeCK produced guide-level enrichment 

scores for each direction (i.e. positive and negative) which were then used for alpha-

robust rank aggregation (RRA) to obtain gene-level scores. The p-value for each gene 

was determined by a permutation test, randomizing guide assignments and adjusted for 

false discovery rates by the Benjamini–Hochberg method. Log2 fold change (LFC) was 

also calculated for each gene, defined throughout as the median LFC for all guides per 

gene target. Where indicated, LFC was normalized to have a mean of 0 and standard 

deviation of 1 to obtain the LFC Z-score. MAGeCK analysis for sgRNA and gene level 

enrichment and normalized and raw count files can be provided upon request. The top 

30 gene level hits for positive regulators of Foxp3 can be found in Table 1. 

Arrayed Cas9 ribonucleotide protein (RNP) preparation and electroporation 

RNPs were produced by complexing a two-component gRNA to Cas9, as previously 

described23. In brief, crRNAs and tracrRNAs were chemically synthesized (IDT), and 

recombinant Cas9-NLS were produced and purified (QB3 Macrolab). Lyophilized RNA 

was resuspended in Nuclease-free Duplex Buffer (IDT, Cat# 1072570) at a concentration 

of 160 µM, and stored in aliquots at −80 °C. crRNA and tracrRNA aliquots were thawed, 

mixed 1:1 by volume, and annealed by incubation at 37 °C for 30 min to form an 80 µM 

gRNA solution. Recombinant Cas9 was stored at 40 µM in 20 mM HEPES-KOH, pH 7.5, 

150 mM KCl, 10% glycerol, 1 mM DTT, were then mixed 1:1 by volume with the 80 µM 

gRNA (2:1 gRNA to Cas9 molar ratio) at 37 °C for 15 min to form an RNP at 20 µM. RNPs 

were electroporated immediately after complexing. RNPs were electroporated 3 days 

after initial stimulation. Tregs were collected from their culture vessels and centrifuged for 
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5 min at 300g, aspirated, and resuspended in the Lonza electroporation buffer P3 using 

20 µl buffer per 200,000 cells. 200,000 Tregs were electroporated per well using a Lonza 

4D 96-well electroporation system with pulse code EO148 (mouse) or EH115 (human). 

Immediately after electroporation, 80 μL of pre-warmed media was added to each well 

and the cells were incubated at 37°C for 15 minutes. The cells were then transferred to a 

round-bottom 96-well tissue culture plate and cultured in either complete DMEM, 10% 

FBS, 1% pen/strep + 2000U hIL-2 at 200,000 cells/well in 200 µl of media (mouse) or X-

VIVO 15 media (Lonza, Cat# 04-418Q), supplemented with 5% FBS, 50uM 2-

mercaptoethanol, 10uM N-acetyl L-cysteine and 1% pen/strep with hIL-2 at 300U/mL at 

200,000 cells/well in 200 µl of media (human). 

PCR amplification of target regions and TIDE analysis 

Editing of the DNA was confirmed by Tracking of Indels by DEcomposition (TIDE) 

analysis 4-8 days post-electroporation and performed as previously described49. A total 

of 5*10^4 to 1*10^5 cells were re-suspended in 30μL of QuickExtract DNA Quick 

Extraction solution (Epicentre) to lyse the cells and extract genomic DNA. The cell lysate 

was incubated at 65°C for 15 min, 95°C for 5 min, and then stored at −20°C until PCR 

could be performed across the CRISPR/Cas9 target sites. Unique genomic primers to 

amplify across the proposed cut sites were designed using the Primer3 online web tool 

(http://bioinfo.ut.ee/primer3/), chemically synthesized (IDT), and suspended at 100μM. 

Each PCR reaction contained 2μl 10x High-fidelity PCR buffer (Life Technologies), 3μl 

2mM dNTPs (Bioline), 0.8μl 50mM MgCl2 (Life Technologies), 0.6μl 10μM forward 

primer, 0.6μl 10μM reverse primer, 0.2μl 5U/μl Platinum HIFI Taq (Life Technologies), 1μl 

extracted DNA, and 11.8μl H2O. The primer sets used for each crRNA can be found in 
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Table 3. The thermocycler setting consisted of one step at 95°C for 5 minutes, followed 

by 14 cycles at 94°C for 20 seconds, 65°C for 20 seconds, and 72°C for 1 minute (wherein 

the annealing temperature was decreased by 0.5°C per cycle), followed by 35 cycles at 

94°C for 20 seconds, 58°C for 20 seconds, and 72°C for 1 minute with one final step at 

72°C for 10 minutes. PCR cleanup and capillary sequencing was performed by 

Quintarabio (San Francisco, CA). Sequencing traces were analyzed with the TIDE 

webtool (http://tide.nki.nl/)50. 

 

Isolation, culture and FOXP3 intracellular staining of human Treg cells 

Primary human Treg cells for all experiments were sourced from healthy donors from 

leukoreduction chamber residuals after Trima Apheresis (Vitalant, formerly Blood Centers 

of the Pacific) or from freshly drawn whole blood under a protocol approved by the UCSF 

Institutional Review Board (IRB# 13-11950). Peripheral blood mononuclear cells 

(PBMCs) were isolated from samples by Lymphoprep centrifugation (StemCell, Cat 

#07861) using SepMate tubes (StemCell, Cat# 85460). CD4+ T cells were isolated from 

PBMCs by magnetic negative selection using the EasySep Human CD4+ T Cell Isolation 

Kit (StemCell, Cat# 17952) and Tregs were then isolated using fluorescence-activated 

cell sorting by gating on CD4+, CD25+, CD127low cells. After isolation, cells were 

stimulated with ImmunoCult Human CD3/CD28/CD2 T Cell Activator (StemCell, Cat# 

10970) per the manufacturer’s protocol and either electroporated after 48h of stimulation 

or expanded for 9 days. If expanded, Tregs were restimulated on day 9; 48h before RNP 

electroporation. Cells were cultured in X-VIVO 15 media (Lonza, Cat# 04-418Q), 

supplemented with 5% FBS, 50uM 2-mercaptoethanol, 10uM N-acetyl L-cysteine and 1% 
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pen/strep with hIL-2 at 300U/mL at 1 million cells/mL. For intracellular staining, cells were 

collected and centrifuged at 300xg for 5mins. Cells were resuspended with a viability dye 

at a 1:1,000 dilution in 1× PBS for 20 min at 4°C, then washed with EasySep Buffer (1× 

PBS, 2% FBS, 1 mM EDTA). Cells were then resuspended in the appropriate surface 

staining antibody cocktail and incubated for 30 min at 4°C, then washed with EasySep 

Buffer. Cells were then fixed, permeabilized, and stained for transcription factors using 

the True-Nuclear Transcription Factor Buffer Set (BioLegend, Cat# 424401) according to 

the manufacturer’s instructions. Antibodies used in this study are listed in Table 4. 

 

Generation of Usp22 knockout mice 

Usp22 floxed mice were generated and used as recently reported51. The Usp22 target 

mouse embryonic stem cells from C57BL/6 mice were purchased from the Wellcome 

Trust Sanger Institute. Blastocyst injections resulted in several chimeric mice with the 

capacity for germline transmission. Breeding of heterozygous mice yielded Usp22+/+, 

Usp22+/targeted but not Usp22targeted/targeted mice due to the obligation of Usp22 expression 

by the neomycin selection and β-gal reporter cassette, which causes embryonic 

lethality32. We then bred Usp22+/targeted mice with Flp recombinase transgenic mice to 

delete the selection cassette, leading to the generation of Usp22+/fl mice, further breeding 

of which produced Usp22+/+, Usp22+/fl and Usp22fl/fl mice without phenotypic 

abnormalities in expected Mendelian ratios (Figs. 6a, 6b). Treg-specific Usp22-null mice 

were generated by breeding Usp22fl/fl mice with Foxp3YFP-Cre mice17. T cell-specific 

Usp22-null mice were generated by breeding Usp22fl/fl mice with LckCre mice. Additionally, 

C57BL/6 Rag-/-mice, SJL CD45.1 congenic mice were purchased from Jackson 
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Laboratories. These mice were maintained and used at the Northwestern University 

mouse facility under pathogen-free conditions according to institutional guidelines and 

using animal study proposals approved by the institutional animal care and use 

committees. Unless stated otherwise, all figures are representative of experiments with 

healthy 6-8 week-old mice. 

  

Cell lines, plasmids, antibodies, and reagents 

Platinum-E (Plat-E) Retroviral Packaging cells (Cell Biolabs, Inc., Cat# RV-101) were 

provided by the Bluestone and Cyster Labs and cultured per the manufacturer’s 

instructions. Human embryonic kidney 293 cells (HEK293) were stored in the Fang lab 

and were cultured in DMEM containing 10% FBS. EG7 lymphoma, MC38 colon cancer, 

LLC1-OVA lung carcinoma and B16-SIY melanoma cell lines were provided by Dr. Bin 

Zhang and used for tumor models as previously reported52. Cell lines were not genetically 

authenticated. HEK293 and cancer cell lines were tested for mycoplasma using LookOut 

Mycoplasma PCR detection kit (Sigma, Cat# MP0035-1KT). Myc-Usp22, Myc-

Usp22(C185A), FLAG-Foxp3 and HA-ubiquitin expression plasmids and their tagged 

vectors were constructed and stored in the Fang lab. Antibodies used for Western blots, 

Co-IPs and flow cytometry are listed in Table 4. PMA (phorbol 12-myristate 13-acetate), 

ionomycin, and cycloheximide (CHX) were purchased from Sigma. Monesin was from 

eBioscience. 
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Cell isolation and flow cytometry for analysis of Usp22 mice 

Peripheral T cells were isolated from mouse spleen by a CD4+ T-cell negative (Stem Cell) 

or positive selection kit (Invitrogen). Enriched CD4+ T cells were further sorted for either 

YFP+ (Foxp3+) T cells or CD25-CD44loCD62Lhi naïve T cells by FACSAria (BD 

Bioscience). Purity of sorted cells was > 99%. Lymphocytes isolated from the intestinal 

lamina propria were acquired by following previously described methods53. To isolate 

tumor-infiltrating lymphocytes, subcutaneous tumors were cut into small fragments and 

digested by collagenase D (Sigma) and DNase (Sigma) for 1h at room temperature. Flow 

cytometry was done with a FACSCanto II. Samples were initially incubated with anti-

CD16/32 antibodies to block antibody binding to Fc receptor. Single-cell suspensions 

were stained with relevant antibodies (Table 4) and then washed twice with cold PBS 

containing 3% FBS. For intracellular staining, cells were then fixed, permeabilized, and 

stained for transcription factors using the Foxp3 Transcription Factor Staining Buffer Set 

(eBioscience, Cat# 00-5523-00) according to the manufacturer’s instructions. For 

cytokine staining, cells were first stimulated for 4-5 h with 20 ng/ml PMA plus 0.5μM 

ionomycin in the presence of monesin (10 μg/ml) before staining. Data were analyzed 

with FlowJo software. 

 

Tumor models 

Cultured cancer cells were trypsinized and washed once with PBS. 1x106 tumor cells (for 

EG7 cells, LLC1 cells and MC38 cells) or 5x104 tumor cells (for B16 melanoma) in 

suspension were subcutaneously injected into WT or Usp22fl/flFoxp3YFP-Cre 8-10 week-old 

mice. Tumors were measured every 2-3 days by measuring along 3 orthogonal axes (x, 
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y, and z) and calculated as (xyz)/2 as recently reported52. To isolate tumor-infiltrating 

lymphocytes, tumors were cut into small fragments and digested with 50 mg/ 

ml collagenase D (Sigma) and 20 mg/ml DNase (Sigma) for 1h at room temperature. 

Tumors were then washed and subsequently strained through a 70 micron filter to 

achieve single cell suspensions. The tumor size limit agreed by IRB was 2cm3. 

  

In vitro Treg suppression assay 

Naïve CD4+CD25- T cells (5x104) labeled with eFluor 670 cell proliferation dye were used 

as responder T cells and cultured in 96-well U-bottom plate for 72h together with 

increasing ratio of sorted YFP+ Treg cells from WT or Usp22fl/fl Foxp3YFP-Cre mice in the 

presence of irradiated splenocytes depleted of T cells (5x104) plus anti-CD3 (2 μg/ml). 

The suppressive function of Treg cells was determined by measurement of the 

proliferation of activated CD4+ and CD8+ effector T cells on the basis of eFluor 670 cell 

proliferation dye dilution as reported54. 

 

Rescue experiment with Foxp3 overexpression 

CD4+ cells were isolated from harvested LN and spleens of 8-week-old Usp22+/+Foxp3YFP-

Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice with the Invitrogen CD4+ purification kit 

(ThermoFisher Cat# 11331D). YFP+ Tregs were sorted and subsequently stimulated with 

3:1 beads to cells using CD3/CD28 dynabeads in complete DMEM with 2000U hIL-2 at a 

culture density of ~1 million cells/mL in a 24 well plate for 48 hours. After 48h stimulation, 

cells were transferred to RetroNectin coated 6-well plates at a density of 3 million cells/mL 

with a 1:1 ratio of virus to media. RetroNectin coating was done at room temperature for 
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3hr with 1mL of 15ug/mL in PBS in each of the wells in the 6-well plate. The cells were 

spinfected for 1hr at 2000xg, then left overnight in the plate at 37˚C. The following day, 

1mL of new virus was added to the cells for a second spinfection for 1hr at 2000xg. Once 

spinfection was complete, the cells were plated in a 24-well plate at a density of 

1million/well in T cell media in complete RPMI 1640 medium containing 10% FBS, 1% 

penicillin/streptomycin (MediaTech), 50 μM β-mercaptoethanol (Gibco), and 1% L-

glutamine (Gibco) for 72 hours. After rest, the cells were sorted for YFP+GFP+ viral 

infected Tregs. Naïve CD4+CD25- T cells (5×104) labeled with APC CFSE cell proliferation 

dye were used as responder T cells and cultured in 96-well u-bottom plate for 72h 

together with increasing ratio of the sorted GFP+YFP+ Treg cells with anti-CD3 and anti-

CD28 (2 μg/ml). The suppressive function of Treg cells was assessed by flow cytometry 

measurement of the proliferation of activated CD4+ effector T cells on the basis of APC 

CFSE cell proliferation dye dilution. 

 

Induced Treg (iTreg) differentiation 

0.5x106 spenic CD4+CD25- naïve T cells were isolated from Usp22+/+Foxp3YFP-Cre WT or 

Usp22fl/flFoxp3YFP-Cre KO mice and cultured in 24-well plates coated with 3 μg/ml anti-CD3 

and 5μg/ml anti-CD28 antibodies for 5 days. For iTreg cell polarization, the cultures were 

supplemented with IL-2 (5 ng/ml), anti-IFN-γ (2 μg/ml), anti-IL-4 (2 μg/ml) and TGF-β (at 

2, 5 or 10 ng/ml). Cytokines were purchased from Peprotech. 
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Th1, Th2 and Th17 in vitro differentiations 

0.5×106 splenic CD4+CD25- naïve T cells were isolated from Usp22fl/flLckCre KO or 

Usp22+/+LckCre WT mice and cultured in 24-well plates coated with 3 μg/ml anti-CD3 and 

5μg/ml anti-CD28 antibodies for 5 days. For skewing towards different T cells subsets, 

the cultures were supplemented with the following cytokines and antibodies. Th1, IL-2 (5 

ng/ml) + IL-12 (5 ng/ml) + anti-IL-4 (1 μg/ml); Th2, IL-2 (5ng/ml) + IL-4 (30 ng/ml); Th17, 

IL-6 (50 ng/ml) + TGF-β (10 ng/ml) + anti-IFN-γ (1μg/ml)+anti-IL-4 (1μg/ml). 

 

Quantitative PCR (qPCR) 

RNA was extracted using a RNeasy Micro Kit (Qiagen, Cat# 74004) from sorted Foxp3+ 

(GFP+ or YFP+) Tregs and qPCR was performed following the manufacturer’s protocol 

using gene-specific primer sets (Table 2). 

 

Histology 

Mouse tissues were fixed in 10% formalin and embedded in paraffin. 4μm sections were 

stained with hematoxylin and eosin. The images were viewed on an olympus CX31 

microscope and taken with a PixelLink camera. 

 

Co-Immunoprecipitation and Western blot 

Co-IPs and Western blots were performed as previously described55. Cells were collected 

and resuspended in RIPA buffer (Millipore, Cat# 20-188) with protease inhibitors (Roche, 

Cat# 36363600) and incubated on ice for 30 min. Cells were centrifuged (12000g for 10 

min) at 4°C and the cell debris was discarded. The supernatant was incubated with 
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protein G-sepharose beads at 4°C for 30 min and then with the indicated antibody (1 

μg/test) for 2 h followed by incubation with protein G-sepharose beads overnight with 

rotation at 4°C. The cells were then washed 5 times with RIPA buffer and the protein G-

sepharose beads were dissolved with loading buffer and boiled for 5 min. Supernatants 

were subjected to SDS-PAGE gel and transferred to nitrocellulose membrane. With 

blocking with 5% (w/v) skim milk in TBS-T buffer, the membrane was incubated overnight 

with indicated primary antibodies at 4°C followed by HRP-conjugated secondary antibody 

or with HRP conjugated primary antibodies (Table 4). Membranes were then developed 

with enhanced chemiluminescence (ECL). 

 

Ubiquitination assay 

Flag-Foxp3 and HA-ubiquitin plasmids were co-transfected into HEK293 cells using 

Turbofect Transfection Reagent (Cat# R0532) along with either Myc-empty vector, Myc-

Usp22, or the catalytically inactive mutant Myc-Usp22C185A (C>A), where the conserved 

cysteine (C) residue in the C19 peptidase domain was replaced by an alanine (A) residue. 

After 48 hours, cells were collected, immunoprecipitated with anti-Flag to pull down 

Foxp3, and immunoblotted for HA-ubiquitin to assess Foxp3 ubiquitination in the 

presence or absence of functional Usp22. Whole cell lysate (WCL) controls were 

immunoblotted with HRP-conjugated Myc and HRP-conjugated Flag to show transfection 

efficiency. 
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ChIP-qPCR sample preparation 

T cells were polarized using Treg polarizing conditions described above in a 24-well plate 

for 3 days, and 3 million cells were used per immunoprecipitation. Cells were fixed in 37% 

formaldehyde for 10 min at 37˚C. Glycine was added to a final concentration of 0.125 M, 

and the incubation was continued for an additional 5 min at room temperature. Cells were 

washed twice with ice-cold phosphate-buffered saline with 1x Protease Inhibitor cocktail 

(Roche, Cat# 36363600). Millipore ChIP Assay Kit (Lot 3154126) was used for the 

remainder of the protocol. Cells were resuspended in 1 ml of SDS lysis buffer (Millipore, 

Cat# 20-163) with protease inhibitors and set on ice for 15 minutes. Samples were then 

sonicated at the medium setting (308/608) for 7 minutes. Samples were centrifuged at 14 

000 rpm at 4°C for 10 min. After removal of an input control (whole-cell extract), 

supernatants were diluted 10-fold in ChIP dilution buffer (Millipore, Cat# 20-153), and 1x 

protease inhibitor. 40 uL of Salmon Sperm DNA/Protein A Agarose-50% (Millipore, Cat 

#16-157C) for 30 min spinning at 4˚C. Agarose pelleted out with brief centrifugation and 

supernatant moved to a new tube. Samples were incubated with either 4 ul of antibody 

rabbit anti-IgG (Cell Signaling, Cat# 2729), rabbit anti-USP22 (Abcam, ab195289), ub-

Histone H2A Lys119 (Cell Signaling, Cat# 8204S), and ub-Histone H2B Lys120 (Cell 

Signaling, Cat# 5546P) overnight at 4˚C rotation. Samples then incubated with 30 ul of of 

Salmon Sperm DNA/Protein A Agarose-50% for 1 hour at 4˚C with rotation. Agarose was 

pelleted and placed at rotation for five minutes with Low Salt Immune Complex Wash 

Buffer (Millipore, Cat #20-154), then pelleted. High Salt Immune Complex Wash Buffer 

(Millipore, Cat #20-155) was added to the pellet and the sample was spun for five minutes 

at 4˚C then pelleted. The agarose was re-suspended in LiCl Immune Complex Wash 
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Buffer and placed at rotation for five minutes at 4˚C. The samples were then spun down 

and re-suspended in 1X TE (Millipore, Cat #20-157) and placed at rotation at room 

temperature for 5 minutes (repeated once more). The sample was then pelleted and 

resuspended in 100uL of elution buffer (1%SDS, 0.1M NaHCO3 in water) and placed at 

rotation for 10 minutes at room temperature. Sample was spun down and supernatant 

was saved, and step was repeated. 10uL of 5M NaCl was added to the combined eluates 

and to the input starting material and heated at 65˚C overnight. 0.5 M EDTA, 1M Tris-HCl 

(pH 6.5) and 10mg/mL of protein kinase were added to the samples and incubated at 

45˚C for one hour. DNA was recovered using a PCR purification kit (Qiagen, Cat #28004). 

 

ChIP-seq sample preparation 

Treg cells were collected and either cross-linked in 1% formaldehyde for ten minutes or 

cross-linked first in 3mM disuccinimidyl glutarate (DSG) in 1X PBS for thirty minutes then 

in 1% formaldehyde for another ten minutes, both at room temperature. After quenching 

the excess formaldehyde with a final concentration of 125 mM glycine, the fixed cells were 

washed in 1X PBS, pelleted, flash-frozen in liquid nitrogen, and stored at -80°C. The cells 

were thawed on ice and incubated in lysis solution (50 mM HEPES-KOH pH 8, 140 mM 

NaCl, 1 mM EDTA, 10% glycerol, 0.5% NP40, 0.25% Triton X-100) for ten minutes. The 

isolated nuclei were washed with wash solution (10 mM Tris-HCl pH 8, 1 mM EDTA, 0.5 

mM EGTA, 200 mM NaCl) and shearing buffer (0.1% SDS, 1 mM EDTA, 10 mM Tris-HCl 

pH 8) then sheared in a Covaris E229 sonicator for ten minutes to generate DNA 

fragments between ~ 200-1000 base pairs (bp). After clarification of insoluble material by 

centrifugation, the chromatin was immunoprecipitated overnight at 4°C with antibodies 
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against Usp22 (1:100 v/v), Rnf20 (1:100 v/v), H2BK120Ub (1:100 v/v), and H2AK119Ub 

(1:100 v/v). The next day, the antibody bound DNA was incubated with Protein A+G 

Dynabeads (Invitrogen) in ChIP buffer (50 mM HEPES-KOH pH 7.5, 300 mM NaCl, 1 mM 

EDTA, 1% Triton X-100, 0.1% DOC, 0.1% SDS), washed and treated with Proteinase K 

and RNase A. Cross-linking was reversed by incubation at 65°C overnight. Purified ChIP 

DNA was used for library generation (NuGen Ovation Ultralow Library System V2) 

according to manufacturer’s instructions for subsequent sequencing. ChIP-seq samples 

were performed with at least 2 biological replicates; with the exception of Usp22 ChIP 

which has 1 biological replicate with 2 technical replicates (due to poor IP efficiency in the 

second biological replicate) and H2AK119Ub ChIP performed on Rnf20-RNP cells which 

has only 1 biological replicate (due to limiting cell number, H2BK120Ub ChIP was 

prioritized). 

 

ChIP-seq analysis 

Single-end 50 base pair (bp) or paired-end 42 bp reads were aligned to mouse genome 

mm10 using STAR alignment tool (V2.5)56. ChIP-seq peaks were called using findPeaks 

within HOMER using parameters for histone (-style histone) or transcription factor (-style 

factor) (Christopher Benner, HOMER, http://homer.ucsd.edu/homer/index.html, 2018). 

Peaks were called when enriched > four-fold over input and > four-fold over local tag 

counts, with Benjamin-Hochberg false discovery rate (FDR) 0.001. For histone ChIP, 

peaks within a 1000 bp range were stitched together to form regions. ChIP-Seq peaks or 

regions were annotated by mapping to the nearest TSS using the annotatePeaks.pl 

command. Differential ChIP peaks were found by merging peaks from control and 
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experiment groups and called using getDiffExpression.pl with fold change ≥ 1.5 or ≤ -1.5, 

Poisson p value < 0.0001. Significance of peak overlap was determined by calculating 

the number of peaks co-occurring across the entire genome using the HOMER 

mergePeaks program. For the heatmaps of ChIP-seq read densities at sites bound by 

Foxp3, publicly available Foxp3 ChIP-seq data was used40. For enhancer enrichment 

analysis, we defined the different enhancer classes using publicly available Treg ChIP-

seq data for histone modifications H3K4me, H3K4me3, and H3K27ac57. All enhancers 

were called by identifying all H3K4me-positive regions that are at least 1 kb away from 

the nearest TSS or H3K4me3 mark58. These were sub-divided as either active (H3K27ac-

positive) or poised (H3K27ac-negative)59. To call super enhancers, we used the 

findPeaks program in HOMER with the style option super58. This was performed with the 

two H3K27ac ChIP-seq replicates and the sites common between the two were used for 

further analysis. H2BK120Ub ChIP-seq read density histograms at Treg super enhancers 

were generated by partitioning each super enhancer into 20 bins and also considering 20 

kb upstream and downstream, which were also binned similarly. The number of peaks 

per kb per bin was calculated and averaged across all super enhancers in the genome. 

To compare across samples with different number of peaks, the final averaged values 

were normalized by the number of peaks in each data set. Genome browser tracks for 

H2BK120Ub ChIP-seq data were generated by combining the tag directories from 

replicate experiments and using the makeBigWig command in HOMER. 
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RNA sequencing 

For RNA-sequencing of Usp22 KO vs WT Tregs, YFP+ cells were sorted from spleen and 

LN of Usp22+/+Foxp3YFP-Cre WT or Usp22fl/flFoxp3YFP-Cre KO mice (n=5) and total RNA was 

isolated from 1x106 cells per sample using a RNeasy Mini Kit (Qiagen, Cat# 74104) as 

previously described60. For RNA sequencing of Usp22 RNP KO and Rnf20 RNP KO 

Tregs, GFP+ Tregs were sorted from Foxp3EGFP mice, stimulated for 48h and 

electroporated with Cas9 RNPs (n=2). The cells were collected at day 5 post-

electroporation and RNA was isolated as described above. ERCC ExFold RNA Spike-In 

Mixes (Thermo Fisher, Cat# 4456739) were then added to total RNA for each sample. 

WT and NTC RNP samples were spiked with Mix #1, while KO and RNP KO samples 

were spiked with Mix# 2. Total RNA was then provided to the Functional Genomics 

Laboratory at UC Berkeley where RNA-seq libraries were prepared by Oligo dT 

enrichment followed by a stranded Illumina library prep protocol with the KAPA mRNA 

HyperPrep kit (Kapa Biosystems, KK8580). Libraries were checked for quality on an AATI 

Fragment analyzer (Agilent, DNF-935-1000), quantified using the Illumina Quant 

Universal qPCR Mix (Kapa Biosystems, KK4824), and pooled evenly at 3nM. The Vincent 

J. Coates Genomics Sequencing Laboratory at UC Berkeley then performed one lane of 

150bp paired-end Illumina, HiSeq4000 sequencing followed by demultiplexing and bclfile 

to fastq conversion using Illumina bcl2fastq v2.19 software (Illumina). Reads were 

mapped to the GRCm38.p6 assembly (Ensembl annotation) using kallisto v0.45 with 

default parameters61. Transcript-level abundance estimates were collapsed to create 

gene-level count matrices and Usp22 KO vs WT samples were normalized to the ERCC 

spike-ins using loess regression62. Differentially expressed genes were then detected 
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using DESeq2 with default parameters63. Pseudogenes beginning with “Gm” were 

excluded from volcano plots; RNP data was batch corrected and genes with read counts 

< 10 were removed.  

 

Adoptive transfer model of colitis 

Naïve T cells (CD4+CD25-CD44loCD62Lhi) were sorted from congenic CD45.1 B6.SJL 

mice and YFP+ Treg cells were sorted from WT or Usp22fl/flFoxp3YFP-Cre mice. 

Rag1-/- mice were given intraperitoneal injection of naïve T cells (4x105) alone or in 

combination with WT or Usp22 KO Treg cells (2x105). After T cell reconstitution, mice 

were weighed weekly and monitored for clinical of signs of disease. Mice were sacrificed 

when their body weight decreased 20%. At cessation, colons were harvested for 

measurement and histology and flow cytometry. 

 

Induced experimental autoimmune encephalomyelitis (EAE) 

8-10 week-old WT or Usp22fl/flFoxp3YFP-Cre mice were subcutaneously injected with 200µg 

of MOG33-55 peptide (Genemed Synthesis). The MOG33-55 peptide was emulsified in 

complete Feund’s adjuvant (CFA) which contained 200µg of Mycobacterium tuberculosis 

H37Ra (Difco). The mice were then subsequently intraperitoneally injected with 200 ng 

of pertussis toxin (List Biological Laboratories) on day 0 and day 2. Clinical signs of EAE 

were assessed daily. Scores were given as follows: 0, no sign of disease; 2, limp tail, 3, 

hind leg weakness or limp; 3, partial back limb paralysis; 4, complete hind limb paralysis; 

5, total limb paralysis. 
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Data availability 

Some data from the screen (Fig. 1) is included as Table 1 and the remaining screen data 

and RNA sequencing (Fig. 2, Fig. 8) can be provided upon request. ChIP-seq data that 

support the findings of this study have been deposited in the Gene Expression Omnibus 

under the accession code GSE140102 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE140102]. Publicly available 

ChIP-seq and ATAC-seq data were downloaded from the indicated repositories and 

processed using HOMER v4.8 (Christopher Benner, HOMER, 

http://homer.ucsd.edu/homer/index.html, 2018). Foxp3 ChIP-seq GEO accession code 

GSE40684; ATAC-seq and ChIP-seq for H3K4me, H3K27ac, H3K4me3 SRA accession 

number DRP003376. 

 

 

 

 

 

 

 

  



 

 
 

69 

 

 

 

CHAPTER 4: CONCLUDING REMARKS 
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Future directions 

 
While this study represents a brute force discovery effort, unfortunately, we were only 

able to deep dive into the biology of a handful of targets that were identified in our 

screen. The many remaining hits represent untapped potential of new mechanistic 

biology that has yet to be revealed.  

 

The future of Treg cell therapies 

 
Several clinical trials have already or are currently exploring ways in which engineered 

Tregs can be used as a living drug to treat various autoimmune diseases or 

transplant12. One critical unmet need for these therapies is to design stable and long-

lived Tregs that can prevail in the human body. This study is only the tip of the iceberg 

in discovering novel targets that can be manipulated to create the potential for stable 

and effective Treg cell therapies. 
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