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Abstract 
The black rail, Laterallus jamaicensis, is one of the most secretive and poorly understood birds in the Americas. Two of its five subspecies 
breed in North America: the Eastern black rail (L. j. jamaicensis), found primarily in the southern and mid-Atlantic states, and the California black 
rail (L. j. coturniculus), inhabiting California and Arizona, are recognized across the highly disjunct distribution. Population declines, due prima-
rily to wetland loss and degradation, have resulted in conservation status listings for both subspecies. To help advance understanding of the 
phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the black rail, produced as 
part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long 
reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.182%. The assembly consists of 964 
scaffolds spanning 1.39 Gb, with a contig N50 of 7.4 Mb, scaffold N50 of 21.4 Mb, largest contig of 44.8 Mb, and largest scaffold of 101.2 Mb. 
The assembly has a high BUSCO completeness score of 96.8% and represents the first genome assembly available for the genus Laterallus. 
This genome assembly can help resolve questions about the complex evolutionary history of rails, assess black rail vagility and population con-
nectivity, estimate effective population sizes, and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate 
change, habitat loss and fragmentation, and disease.
Key words: California Conservation Genomics Project, CCGP, conservation genetics, Gruiformes, Rallidae

Introduction
The black rail, Laterallus jamaicensis, is a small (~30 g) bird 
that occupies densely-vegetated freshwater and brackish wet-
land habitats. It is one of the most secretive birds in North 
America, and knowledge of its phylogeography, biology, and 
ecology is limited. Two of its five subspecies breed in North 
America. The Eastern subspecies, L. j. jamaicensis, is listed 
as Threatened under the US Endangered Species Act and 
has both migratory and non-migratory populations that are 
distributed south of Massachusetts along the East Coast of 
the United States of America; along the Gulf Coast of the 
United States of America and Mexico; and in isolated patches 
throughout the Great Plains and Eastern United States of 
America (Watts 2016; Eddleman et al. 2020). The California 
subspecies, L. j. coturniculus, is listed as Threatened by 
the California Department of Fish and Wildlife and has 

non-migratory populations that are distributed in the Sierra 
Nevada foothills and San Francisco Bay area of California and 
the Imperial Valley region of extreme southeastern California 
and adjacent western Arizona and Mexico (Richmond et al. 
2008; Girard et al. 2010; Eddleman et al. 2020). Loss and 
degradation of wetland habitats due to changes in climate 
and land use are thought to be the primary threats to black 
rail populations, but West Nile Virus has also contributed to 
black rail declines (Veloz et al. 2013; Roach and Barrett 2015; 
Watts 2016; Beissinger et al. 2022).

Black rails are classified as Rallidae, a diverse and glob-
ally distributed family with 40 genera (Kirchman et al. 
2021). Despite their propensity to colonize remote islands, 
rails are generally considered poor flyers, and flightlessness 
has evolved multiple times within the family, resulting in a 
complex evolutionary history that has been recently revised 
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(Kirchman 2012; Garcia-R and Mazke 2021; Kirchman et 
al. 2021). Novel genomic data for rail taxa, including black 
rails, would help resolve uncertainty among phylogeographic 
relationships and contribute to our understanding of the evo-
lutionary history of Rallidae.

Across the black rail’s highly disjunct distribution, direct 
assessment of dispersal, and migratory movements remains 
challenging because the elusive nature of rails makes it dif-
ficult to successfully conduct mark-release-recapture studies. 
Further, the densely-vegetated habitats of rails can result in 
entanglement of telemetred individuals and often have in-
adequate light levels for solar charging. Therefore, previous 
studies have relied on data from intensive occupancy surveys, 
stable isotopes, and genetic markers to indirectly infer black 
rail movements (Hall and Beissinger 2017; Hall et al. 2018). A 
better understanding of black rail vagility, population connec-
tivity, and genetic diversity would enable resource managers 
to select locations for wetland protection, restoration, and en-
hancement efforts, helping to secure critical habitat for this 
species. In addition, determination of management units and 
effective population sizes using genetic data could inform 
management actions because accurate census population sizes 
have been virtually impossible to obtain, presenting a major 
impediment to recovery efforts (Richmond et al. 2008; Girard 
et al. 2010; Watts 2016).

Here we report the first reference genome assembly for the 
black rail, produced as part of the California Conservation 
Genomics Project (CCGP; Shaffer et al. 2022). This genome 
will provide a resource for future black rail genomics studies, 
helping to advance our understanding of the phylogeography, 
biology, and ecology of this elusive species, including efforts 
by state, and local agencies to recover the species (Fiedler et 
al. 2022).

Methods
Biological materials
One female California black rail (L. j. coturniculus; Fig. 1) 
was captured at Spenceville Wildlife Area in Penn Valley, CA, 
United States of America (39.101991N, −121.291638W) 
on 3 August 2020 with a mist-net following the methods 
of Girard et al. (2010; California Department of Fish and 
Wildlife Permit SC-4438 to SRB). Whole blood (~150 µl) 
was collected from a brachial wing vein using a 26-gauge 
hypodermic needle and heparinized capillary tubes. Equal 
aliquots of blood were stored in two microtubes with 6.16 
nM Na EDTA. Blood was transported on ice to a field station 
where it was refrigerated at 4 °C for 24 h before one aliquot 
was transported on ice to the University of California Davis 
DNA Technologies and Expression Analysis Core Laboratory 
(Davis, CA, United States of America); the second aliquot was 
transported on ice to the University of California Santa Cruz 
Paleogenomics Laboratory (Santa Cruz, CA, United States of 
America).

High molecular weight genomic DNA isolation
High molecular weight (HMW) genomic DNA (gDNA) was 
isolated from whole blood preserved in EDTA. 20 µl of whole 
blood was added to 2 ml of lysis buffer containing 100 mM 
NaCl, 10 mM Tris-HCl pH 8.0, 25 mM EDTA, 0.5% (w/v) 
SDS, and 100 µg/ml Proteinase K. Lysis was carried out at 
room temperature for a few hours until the solution was 

homogenous. The lysate was treated with 20 µg/ml RNase A 
at 37 °C for 30 min and cleaned with equal volumes of phenol/
chloroform using phase lock gels (Quantabio, MA, United 
States of America; Cat # 2302830). DNA was precipitated 
by adding 0.4× volume of 5 M ammonium acetate and 3× 
volume of ice-cold ethanol. The DNA pellet was washed 
twice with 70% ethanol and resuspended in an elution buffer 
(10 mM Tris, pH 8.0). Purity of gDNA was assessed using 
a NanoDrop ND-1000 spectrophotometer, and a 260/280 
ratio of 1.91 and 260/230 of 2.13 were observed. DNA yield 
(150 µg total) was quantified using a Qubit 2.0 Fluorometer 
(Thermo Fisher Scientific, MA, United States of America). 
Integrity of the HMW gDNA was verified on a Femto pulse 
system (Agilent Technologies, CA, United States of America), 
and 71.9% of the DNA was found in fragments larger than 
120 Kb in length.

HiFi library preparation and sequencing
The HiFi SMRTbell library was constructed using the 
SMRTbell Express Template Prep Kit v2.0 (Pacific 
Biosciences—PacBio, CA, United States of America; Cat. 
#100-938-900) according to the manufacturer’s instructions. 
HMW gDNA was sheared to a target DNA size distribu-
tion between 15 and 20 kb. In detail, each shearing was 
added to a hydro tube (Diagenode, Denville, NJ, Cat. No. 
C30010018) for attachment to a long hydropore (Diagenode, 
Cat. No. E07010002) for shearing at speeds 34–35 with spe-
cific concentrations and volumes required by the Megaruptor 
software (Diagenode, Cat# B06010003). Sizing of each input 
shearing was verified by Femto Pulse (Agilent) before pooling 
and concentrating for next step (Supplementary Table 1). The 
sheared gDNA was concentrated using 0.45× of AMPure PB 
beads (PacBio, CA, United States of America; Cat. #100-265-
900) for the removal of single-strand overhangs at 37 °C for 
15 min, followed by further enzymatic steps of DNA damage 
repair at 37 °C for 30 min, end repair, and A-tailing at 20 °C 

Fig. 1. Photo of a California black rail (Laterallus jamaicensis coturniculus). 
Credit: Orien Richmond.
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for 10 min and 65 °C for 30 min, ligation of overhang adapter 
v3 at 20 °C for 60 min, and 65 °C for 10 min to inactivate the 
ligase, then nuclease treated at 37 °C for 1 h. The SMRTbell 
library was purified and concentrated with 0.45× Ampure 
PB beads (PacBio, CA, United States of America; Cat. #100-
265-900) for size selection using the BluePippin system (Sage 
Science, MA, United States of America; Cat #BLF7510) to 
collect fragments greater than 3–5 Kb. The 15–20 kb average 
HiFi SMRTbell library was sequenced at the University of 
California Davis DNA Technologies and Expression Analysis 
Core Laboratory (Davis, CA, United States of America) using 
two 8M SMRT cells, Sequel II sequencing chemistry 2.0, and 
30-h movies each on a PacBio Sequel II sequencer.

Omni-C library preparation and sequencing
The Omni-C library was prepared using a Dovetail Omni-C Kit 
(Dovetail Genomics, CA, United States of America) according 
to the manufacturer’s protocol with slight modifications. 
Briefly, chromatin was fixed in place in the nucleus. Fixed 
chromatin was digested with DNase I, then extracted. 
Chromatin ends were repaired and ligated to a biotinylated 
bridge adapter followed by proximity ligation of adapter-
containing ends. After proximity ligation, crosslinks were 
reversed, and the DNA was purified from proteins. Purified 
DNA was treated to remove biotin that was not internal to 
ligated fragments, and an NGS library was generated using an 
NEB Ultra II DNA Library Prep kit (New England Biolabs—
NEB, MA, United States of America) with an Illumina com-
patible y-adaptor. Biotin-containing fragments were then 
captured using streptavidin beads. The post-capture product 
was split into two replicates prior to PCR enrichment to pre-
serve library complexity with each replicate receiving unique 
dual indices. The library was prepared at the University of 
California Santa Cruz Paleogenomics Laboratory (Santa Cruz, 
CA, United States of America) and sequenced at the Vincent 
J. Coates Genomics Sequencing Laboratory at University of 
California Berkeley (Berkeley, CA, United States of America) 
on an Illumina NovaSeq platform to generate approximately 
185 million 2 × 150 bp read pairs.

Nuclear genome assembly
We assembled the California black rail genome following 
the CCGP assembly protocol Version 2.0, outlined in Table 
1, which uses PacBio HiFi reads and Omni-C data for the 
generation of high quality and highly contiguous nuclear ge-
nome assemblies while minimizing manual curation. First, 
we removed remnant adapter sequences from the PacBio 
HiFi dataset using HiFiAdapterFilt (Sim et al. 2022) and 
from the resulting HiFi dataset we generated the initial dip-
loid assembly using HiFiasm (Cheng et al. 2022). The diploid 
assembly consists of two pseudo-haplotypes (primary and al-
ternate), where the primary assembly is more complete and 
consists of longer phased blocks, and the alternate consists 
of haplotigs (contigs in the same haplotype) in heterozygous 
regions, is not as complete, and is more fragmented. Given 
these characteristics, it cannot be considered on its own but 
as a complement of the primary assembly (https://lh3.github.
io/2021/04/17/concepts-in-phased-assemblies, https://www.
ncbi.nlm.nih.gov/grc/help/definitions/).

Next, we identified sequences corresponding to haplotypic 
duplications, contig overlaps, and repeats on the primary as-
sembly with purge_dups (Guan et al. 2020) and transferred 

them to the alternate assembly. We scaffolded both assemblies 
using the Omni-C data with SALSA (Ghurye et al. 2017, 
2018).

We generated Omni-C contact maps for both assemblies by 
aligning the Omni-C data against the corresponding assembly 
with BWA-MEM (Li 2013), identified ligation junctions, 
and generated Omni-C pairs using pairtools (Goloborodko 
et al. 2018). We generated a multi-resolution Omni-C ma-
trix with cooler (Abdennur and Mirny 2020) and balanced 
it with hicExplorer (Ramírez et al. 2018). We used HiGlass 
(Kerpedjiev et al. 2018) and the PretextSuite (https://github.
com/wtsi-hpag/PretextView; https://github.com/wtsi-hpag/
PretextMap; https://github.com/wtsi-hpag/PretextSnapshot) 
to visualize the contact maps and then checked the con-
tact maps for major misassemblies. If in the proximity of a 
join that was made by the scaffolder we identified a strong 
signal off-diagonal and lack of signal in the consecutive ge-
nomic region, we marked this join. All marked joins were 
“dissolved”, meaning that we broke the scaffolds at the coor-
dinates of these joins. After this, no further joins were made. 
Using the PacBio HiFi reads and YAGCloser (https://github.
com/merlyescalona/yagcloser), we closed some of the re-
maining gaps generated during scaffolding. We then checked 
for contamination using the BlobToolKit Framework (Challis 
et al. 2020). Finally, we trimmed remnants of sequence 
adaptors and mitochondrial contamination identified during 
the NCBI contamination screening upon submission of the 
genome assembly to GenBank.

Mitochondrial genome assembly
We assembled the mitochondrial genome of the California 
black rail from the PacBio HiFi reads using the reference-
guided pipeline MitoHiFi (https://github.com/marcelauliano/
MitoHiFi) (Allio et al. 2020). The mitochondrial sequence of 
Laterallus spilonota (NCBI:NC_056095.1) was used as the 
starting reference sequence. After completion of the nuclear 
genome, we searched for matches of the resulting mitochon-
drial assembly sequence in the nuclear genome assembly 
using BLAST+ (Camacho et al. 2009) and filtered out contigs 
and scaffolds from the nuclear genome with a percentage of 
sequence identity >99% and size smaller than the mitochon-
drial assembly sequence.

Genome size estimation and quality assessment
We generated k-mer counts from the PacBio HiFi reads using 
meryl (https://github.com/marbl/meryl). The k-mer database 
was then used in GenomeScope 2.0 (Ranallo-Benavidez et al. 
2020) to estimate genome features including genome size, het-
erozygosity, and repeat content. To obtain general contiguity 
metrics, we ran QUAST (Gurevich et al. 2013). To evaluate ge-
nome quality and completeness we used BUSCO (Manni et al. 
2021) with the Aves ortholog database (aves_odb10), which 
contains 8,338 genes. Assessment of base level accuracy (QV) 
and k-mer completeness were performed using the previously 
generated meryl database and merqury (Rhie et al. 2020). 
We further estimated genome assembly accuracy via BUSCO 
gene set frame shift analysis using the pipeline described in 
Korlach et al. (2017). Following data availability and quality 
metrics established by Rhie et al. (2021), we used the derived 
genome quality notation x.y.Q.C, where, x = log10[contig 
NG50]; y = log10[scaffold NG50]; Q = Phred base accuracy 
QV (quality value); C = % genome represented by the first “n” 

https://lh3.github.io/2021/04/17/concepts-in-phased-assemblies
https://lh3.github.io/2021/04/17/concepts-in-phased-assemblies
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https://github.com/wtsi-hpag/PretextView
https://github.com/wtsi-hpag/PretextView
https://github.com/wtsi-hpag/PretextMap
https://github.com/wtsi-hpag/PretextMap
https://github.com/wtsi-hpag/PretextSnapshot
https://github.com/merlyescalona/yagcloser
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https://github.com/marcelauliano/MitoHiFi
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scaffolds, following a known karyotype of 2n = 76 inferred 
from another species in the same genus, Laterallus viridis (Bird 
Chromosome Database V3.0/2022). Quality metrics for the 
notation were calculated on the primary assembly.

Results
The Omni-C and PacBio HiFi sequencing libraries generated 
129.8 million read pairs and 3.1 million reads, respectively. The 
latter yielded 39.4-fold coverage (N50 read length 15,038 bp; 
minimum read length 43 bp; mean read length 14,930 bp; max-
imum read length of 51,509 bp) based on the Genomescope 2.0 
genome size estimation of 1.19 Gb. Using Genomescope 2.0, 
we estimated 0.182% sequencing error rate and 0.856% nu-
cleotide heterozygosity rate from the k-mer spectrum based on 
PacBio HiFi reads. The k-mer spectrum shows a bimodal dis-
tribution with two major peaks at ~19- and 38-fold coverage, 
where peaks correspond to homozygous and heterozygous 
states of a diploid species (Fig. 2A). The distribution presented 
in this k-mer spectrum was similar to that of the C. californica, 

which had a heterozygosity rate (0.73%) slightly lower than 
what we observed for the black rail (Benham et al. 2023).

The final assembly (bLatJam1) consists of two pseudo-
haplotypes, primary, and alternate. Both genome sizes were 
similar to the estimated value from Genomescope 2.0 (Fig. 
2A). The primary assembly is more contiguous and consists 
of 964 scaffolds spanning 1.39 Gb with a contig N50 of 7.4 
Mb, scaffold N50 of 21.4 Mb, largest contig of 44.8 Mb, 
and largest scaffold of 101.2 Mb. In contrast, the alternate 
assembly consists of 5,235 scaffolds, spanning 1.21 Mb with 
a contig N50 of 0.78 Mb, scaffold N50 of 5.8 Mb, largest 
contig of 6.6 Mb, and largest scaffold of 56.7 Mb. Detailed 
assembly metrics are reported in Table 2 and Fig. 2B. The cu-
ration process for the primary assembly required us to break 
22 of the joins generated during scaffolding corresponding to 
misassemblies. We closed three gaps on the primary assembly 
and 12 on the alternate. Based on NCBI feedback upon sub-
mission, we removed 2 contigs from the alternate assembly 
that were exact duplicated sequences and trimmed a single 
73 bp long remainder sequencing adapter. Contact maps for 

Table 1. Reference genome assembly protocol version 2.0 used by the California Conservation Genomics Project.

Assembly Software and options§ Version

Filtering PacBio HiFi adapters HiFiAdapterFilt Commit 64d1c7b

K-mer counting Meryl (k = 21) 1

Estimation of genome size and heterozygosity GenomeScope 2

De novo assembly (contiging) HiFiasm (Hi-C mode, –primary, p_ctg and a_ctg output) 0.16.1-r375

Remove low-coverage, duplicated contigs purge_dups 1.2.6

Scaffolding

Omni-C Scaffolding SALSA (-DNASE, -i 20, -p yes) 2

Gap closing YAGCloser (-mins 2 -f 20 -mcc 2 -prt 0.25 -eft 0.2 -pld 0.2) Commit
20e2769

Omni-C Contact map generation

Short-read alignment BWA-MEM (-5SP) 0.7.17-r1188

SAM/BAM processing samtools 1.11

SAM/BAM filtering pairtools 0.3.0

Pairs indexing pairix 0.3.7

Matrix generation cooler 0.8.10

Matrix balancing HicExplorer (hicCorrectmatrix correct—filterThreshold -2 4) 3.6

Contact map visualization HiGlass
PretextMap
PretextView
PretextSnapshot

2.1.11
0.1.4
0.1.5
0.03

Organelle assembly

Mitogenome assembly MitoHiFi (-r, -p 50, -o 1 Commit c06ed3e

Genome quality assessment

Basic assembly metrics QUAST (--est-ref-size) 5.0.2

Assembly completeness BUSCO (-m geno, -l actinopterygii) 5.0.0

Merqury 2022-01-29

Contamination screening

General contamination screening BlobToolKit 2.3.3

Local sequence alignment BLAST+ 2.1

§Options detailed for non-default parameters.
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Fig. 2. Visual overview of genome assembly metrics. (A) K-mer spectrum generated from PacBio HiFi data without adapters using GenomeScope2.0. 
The bimodal pattern observed corresponds to a diploid genome. K-mers covered at lower coverage and lower frequency correspond to differences 
between haplotypes, whereas the higher coverage and higher frequency k-mers correspond to the similarities between haplotypes. (B) BlobToolKit 
Snail plot showing a graphical representation of the quality metrics presented in Table 2 for the black rail primary assembly (bLatJam1.0.p). The plot 
circle represents the full size of the assembly. From the inside-out, the central plot covers length-related metrics. The red line represents the size of 
the longest scaffold; all other scaffolds are arranged in size-order moving clockwise around the plot and drawn in gray starting from the outside of 
the central plot. Dark and light orange arcs show the scaffold N50 and scaffold N90 values. The central light gray spiral shows the cumulative scaffold 
count with a white line at each order of magnitude. White regions in this area reflect the proportion of Ns in the assembly; the dark versus light blue 
area around it shows mean, maximum, and minimum GC versus AT content at 0.1% intervals. Omni-C contact maps for the primary (C) and alternate 
(D) genome assembly generated with PretextSnapshot. Omni-C contact maps translate proximity of genomic regions in 3D space to contiguous linear 
organization. Each cell in the contact map corresponds to sequencing data supporting the linkage (or join) between two of such regions. Black lines 
differentiate scaffolds.
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both assemblies show some level of fragmentation, where the 
primary assembly was clearly more contiguous than the al-
ternate assembly, but also little evidence of inversions and 
translocations within contigs (Fig. 2C and D). The primary 
assembly has a BUSCO completeness score of 96.8% using 
the Aves gene set, a per base quality (QV) of 61.57, a k-mer 
completeness of 92.65, and a frameshift indel QV of 40.85. 
The alternate assembly has a BUSCO completeness score of 
85.1% using the Aves gene set, a per base quality (QV) of 

62.13, a k-mer completeness of 78.18, and a frameshift indel 
QV of 41.14. We have deposited scaffolds corresponding to 
both primary and alternate assemblies on NCBI (see Table 2 
and Data availability for details).

The final mitochondrial assembly generated with MitoHiFi 
is 17,042 bp in length, with a final base composition A = 
33.71%, C = 29.02%, G = 13.21%, and T = 24.06%. The 
final assembly consists of 22 unique transfer RNAs and 13 
protein coding genes.

Table 2. Reference genome assembly metrics for the black rail, Laterallus jamaicensis, genome assembled by the California Conservation Genomics 
Project.

Bio Projects and 
vouchers

CCGP NCBI BioProject PRJNA720569

Genera NCBI BioProject PRJNA765848

Species NCBI BioProject PRJNA777185

NCBI BioSample SAMN24505262

Specimen identification 168171201

NCBI Genome accessions Primary Alternate

Assembly accession JAKCOX000000000 JAKCOY000000000

Genome sequences GCA_022605575.1 GCA_022605925.1

Genome sequence PacBio HiFi reads Run 1 PACBIO_SMRT (Sequel II) run: 3.2M spots, 47.1G bases, 21Gb

Accession SRX14572910

Omni-C Illumina reads Run 1 ILLUMINA (Illumina NovaSeq 6000) run: 129.9M spots, 39.2G 
bases, 12.7Gb

Accession SRX14572911, SRX14572912

Genome Assembly 
Quality Metrics

Assembly identifier (Quality code*) bLatJam1(6.7.Q61.C68)

HiFi Read coverage** 37.69X

Primary Alternate

Number of contigs 964 5,237

Contig N50 (bp) 7,445,194 781,495

Contig NG50 (bp)** 9,465,376 797,288

Longest Contigs 44,858,681 6,618,197

Number of scaffolds 645 3,565

Scaffold N50 (bp) 21,403,927 5,828,180

Scaffold NG50 (bp)** 25,730,285 5,840,391

Largest scaffold 101,238,236 56,777,143

Size of final assembly (bp) 1,391,405,863 1,211,411,847

Gaps per Gbp (#Gaps) 222 (319) 1,380 (1,672)

Indel QV (Frame shift) 40.86 41.14

Base pair QV 61.5739 62.1354

Full assembly = 61.8262

k-mer completeness 92.6538 78.182

Full assembly = 99.5403

BUSCO completeness 
(Aves)
N = 8338

C S D F M

P*** 96.80% 96.40% 0.40% 0.60% 2.60%

A*** 85.10% 84.40% 0.70% 1.00% 13.90%

Organelles 1 Complete mitochondrial sequence CM040151.1

*Assembly quality code x.y.Q.C derived notation, from (Rhie et al. 2021). x = log10[contig NG50]; y = log10[scaffold NG50]; Q = Phred base accuracy 
QV (Quality value); C = % genome represented by the first “n” scaffolds, following a known karyotype of 2n = 76 inferred from other species in the same 
genus, Laterallus viridis (Bird Chromosome Database V3.0/2022). BUSCO scores. (C)omplete and (S)ingle; (C)omplete and (D)uplicated; (F)ragmented and 
(M)issing BUSCO genes. n, number of BUSCO genes in the set/database. Bp: base pairs.
**Read coverage and NGx statistics have been calculated based on the estimated genome size of 1.19 Gb.
***P(rimary) and (A)lternate assembly values.
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Discussion
The genome assembly presented here for the black rail is one 
of seven publicly available genome assemblies in the family 
Rallidae and the only genome assembly available for the 
genus Laterallus. The 1.39 Gb black rail genome was similar 
in size to those reported for other species of Rallidae (mean = 
1.2 Gb, range = 1.1–1.4 Gb), with above average contig N50 
of 7.4 Mb (Rallidae mean = 4.7 Mb, range = 0.01–13.5 Mb), 
and scaffold N50 of 21.4 (Rallidae mean = 20.8 Mb, range 
= 0.04–71.6 Mb). The GC composition of the black rail ge-
nome (44%) was also similar to the average GC composition 
for Rallidae (mean = 43%, range = 43–44%).

This black rail genome assembly is a critical resource to 
improve our understanding of rail phylogeography, biology, 
and ecology. Comparisons of genomic data among rail taxa 
have helped resolve phylogeographic relationships, and this 
black rail genome will advance future efforts (Kirchman 
2012; Garcia-R et al. 2020; Garcia-R and Mazke 2021; 
Kirchman et al. 2021). For example, a recent study by 
Stervander et al. (2019) suggested that the Inaccessible Island 
rail (Atlantisia rogersi) was phylogenetically contained 
within the genus Laterallus and was closely related to the 
black rail. In addition, the black rail mitochondrial genome 
presented here was mapped to the genome of the Galapagos 
crake (L. spilonota), the nearest sister taxon of the black 
rail, with a mean crown group age of 1.3 million years  
(Chaves et al. 2020).

The black rail has a highly disjunct distribution in 
North America with both migratory and non-migratory 
populations (Richmond et al. 2008; Girard et al. 2010; 
Watts 2016; Eddleman et al. 2020). Conservation genetic 
studies of species with isolated populations such as the 
black rail are particularly valuable for improving our un-
derstanding of how habitat loss and fragmentation affect 
genetic diversity, local adaptation, and vulnerability to en-
vironmental change. This genome assembly provides a key 
resource for population genetic studies of black rail vagility, 
population connectivity, and genetic diversity. Future studies 
will further aid conservation efforts by informing molecular 
model estimates of black rail movements, effective popula-
tion sizes, and genes involved in adaptive evolution in the 
face of growing threats, including climate change, wetland 
loss, and disease.

Supplementary Material
Supplementary material can be found at http://www.jhered.
oxfordjournals.org/.
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