
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Finding structure in disorder: Evolutionary analyses of disordered proteins in Drosophila

Permalink
https://escholarship.org/uc/item/8r72s3dx

Author
Singleton, Marc

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8r72s3dx
https://escholarship.org
http://www.cdlib.org/

Finding structure in disorder: Evolutionary analyses of disordered proteins in Drosophila

By

Marc Singleton

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Biophysics
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:
Professor Mike Eisen, Chair

Professor Liana Lareau
Professor Susan Marqusee
Professor Priya Moorjani

Spring 2023

© 2023 Marc Singleton

Abstract

Finding structure in disorder: Evolutionary analyses of disordered proteins in Drosophila
by

Marc Singleton

Doctor of Philosophy in Biophysics
University of California, Berkeley

Professor Mike Eisen, Chair

Living systems are governed by the interactions between large collections of atoms called macro-
molecules. The most important class of these macromolecules are proteins, which are the molecular
machines that carry out a cell’s processes. Though proteins are linear chains of simpler building
blocks called amino acids, many proteins accomplish their functions by folding into well-defined
three-dimensional structures. For many years scientists believed fixed structures were necessary
for protein function, but by the early 2000s evidence had accumulated that segments with no fixed
spatial relationship between their atoms are ubiquitous in proteins. Furthermore, because these
intrinsically disordered regions (IDRs) are highly flexible and can therefore interact with diverse
binding partners, they are essential for many cellular processes related to signaling and regulation.

Although our understanding of the structure and function of IDRs has grown significantly over
the past two decades, predicting their functions from their sequences of amino acids remains a
significant challenge. Because IDRs are structurally unconstrained, their sequences evolve rapidly
and are therefore not amenable to traditional bioinformatics techniques which depend on the precise
order of amino acids to make comparisons with known proteins. There is increasing evidence,
though, that IDRs conserve distributed features such as their chemical composition or net charge,
and a recent study clustered IDRs with similar patterns of conserved features into groups with
distinct functions. This study, however, was restricted to IDRs in a set of yeast genomes, so it is
unclear if these global relationships between conserved features and function are unique to yeast or
a general property of IDR evolution. Thus, in this work I conduct a series of evolutionary analyses
of IDRs in the genomes of 33 different species of fruit flies to detect patterns of conservation.

These comparisons, however, require the identification of IDRs with common ancestry which per-
form equivalent functions across many distinct organisms. Since the first genomes were sequenced
in the late 1990s, researchers have developed techniques for identifying and aligning such proteins,
called orthologs. While these methods are generally effective, they are conducted by automated
computational pipelines and prone to errors when processing the highly divergent sequences that
characterize many IDRs. The evolutionary relationships between the genomes of closely related
species generally make such mistakes easier to identify, and fortunately over the past five years ad-
vances in DNA sequencing technology have yielded dramatic increases in the number of sequenced
genomes in the Drosophila genus. However, because the existing methods for ortholog identification
were designed for fewer or more distantly related genomes, they do not fully leverage such genomic
redundancy to minimize errors.

Thus, in the first chapter, I develop a novel method for identifying orthologs which addresses this
shortcoming and apply it to 33 Drosophila genomes to generate a set of aligned orthologs. In the
second chapter, I then identify rapidly evolving IDRs in these alignments and analyse them with a
variety of evolutionary models to dissect the forces driving their evolution and detect patterns of
conservation. Finally, in the third chapter, I discuss several software tools and tutorials for fitting
statistical models to data, which were created while pursuing the previous aims.

1

To my parents, who were always willing to indulge
another “experiment” in their kitchen sink

i

Acknowledgements

If it takes a village to raise a child, then it must take at least three to raise a scientist. Over
the years, I’ve had countless friends, teachers, and mentors. These relationships have shaped the
person I am today, so I’m grateful to all the people who took time out of their busy lives to help
me in ways both small and large. However, I want to single out the following people who had an
especially important impact on my time in graduate school.

Thank you to my advisor, Mike, for supporting me as a scientist and a person in equal mea-
sure.

Thank you to my committee, Susan, Liana, and Priya, for giving me the pep talk I needed every
year.

Thank you to my lab, Holli, Stadler, Ciera, Ashley, Victoria, Augusto, and Xiao-Yong, for cre-
ating a space where it’s okay to ask questions. A special thank you to my bay mates, Jenna and
Colleen, for getting me through the hard days with sound advice and a healthy dose of humor.

Thank you to my undergraduate research mentors, Cathy and Jessica, for teaching me the most
exciting science is at the intersection of different fields.

Thank you to my parents, Amy and David, for everything.

Thank you to my brothers, Andrew and Daniel, for giving me thick skin in the way only big
brothers can.

Thank you to all the friends I’ve made in California and the Bay Area, for the much-needed
life outside of work.

Finally, thank you to my partner, Joseph, for going on this crazy ride with me. I couldn’t have
done this without you.

ii

Contents

0 Introduction 1
0.1 Background . 1
0.2 Aims . 8

1 Leveraging genomic redundancy to improve inference and alignment of orthol-
ogous proteins 11
1.1 Introduction . 11
1.2 Results . 13
1.3 Discussion . 23
1.4 Materials and methods . 26

2 Evolutionary analyses of IDRs reveal patterns of conserved features 31
2.1 Introduction . 31
2.2 Results . 33
2.3 Discussion . 41
2.4 Materials and methods . 44

3 Tools and tutorials for fitting mixture models and HMMs 49
3.1 Overview of tools and tutorials . 49
3.2 HMM training tutorial introduction . 50
3.3 What is training? . 51
3.4 Training with known states . 52
3.5 Training with unknown states . 69
3.6 Discriminative training . 80
3.7 Conclusion . 93

References 95

A Supporting information for chapter 1 102

B Supporting information for chapter 2 113

C Supporting information for chapter 3 128

iii

CHAPTER 0

Introduction

Abstract

Living systems are governed by the interactions between large collections of atoms called macromolecules.
The most important class of these macromolecules are proteins, which are the molecular machines that carry
out a cell’s processes. Though proteins are linear chains of simpler building blocks called amino acids, many
proteins accomplish their functions by folding into well-defined three-dimensional structures. For many years
scientists believed fixed structures were necessary for protein function, but by the early 2000s evidence had
accumulated that segments with no fixed spatial relationship between their atoms are ubiquitous in proteins.
Furthermore, because these intrinsically disordered regions (IDRs) are highly flexible and can therefore
interact with diverse binding partners, they are essential for many cellular processes related to signaling and
regulation. Although our understanding of the structure and function of IDRs has grown significantly over
the past two decades, predicting their functions from their sequences of amino acids remains a significant
challenge. Because IDRs are structurally unconstrained, their sequences evolve rapidly and are therefore not
amenable to traditional bioinformatics techniques which depend on the precise order of amino acids to make
comparisons with known proteins. There is increasing evidence, though, that IDRs conserve distributed
features such as their chemical composition or net charge, and a recent study clustered IDRs with similar
patterns of conserved features into groups with distinct functions. This study, however, was restricted to
IDRs in a set of yeast genomes, so it is unclear if these global relationships between conserved features and
function are unique to yeast or a general property of IDR evolution. Thus, in this work I conduct a series of
evolutionary analyses of IDRs in the genomes of 33 different species of fruit flies to dissect the forces driving
their evolution and detect patterns of conservation.

0.1 Background

Life is a physical phenomenon. Despite the complexity of living things, their processes are governed
by the same physical laws that describe the planets’ motion around the sun and the propagation
of electromagnetic waves through space. However, many systems are too complex to describe with
physical models and equations, so scientists simplify them into levels of abstraction that are more
useful.1 For example, Punnett squares facilitate the prediction of genotypes and phenotypes by
distilling the complexities and nuances of diverse reproductive systems into a set of simple rules.
However, since life spans a scale from single cells to entire ecosystems, biology likely employs more
layers of abstraction than any other scientific discipline. One of the most powerful and widely
used frameworks within the life sciences is biochemistry, which characterizes biological processes

1This is the origin of the observation that biology is applied chemistry and chemistry is applied physics.

1

in terms of their component molecules and chemical reactions. A specific focus is four classes of
macromolecules called nucleic acids, carbohydrates, lipids, and proteins, all of which are unique to
biological systems. Though not all biological molecules are macromolecules and not all biological
macromolecules fit neatly in one of these four categories, much of life at the molecular level is
understood in terms of their structure and function.2 Each of the four has a characteristic role.
Nucleic acids, i.e. DNA and RNA, are responsible for information storage and transfer. Carbohy-
drates primarily store energy but can also act as structural components of cells. Lipids are a diverse
class of oily molecules which are components of cell membranes, store energy, and transmit signals.
Proteins have a range of functions, including catalyzing reactions, transmitting signals, transport-
ing materials, and providing structure. Many of these overlap with the functions of the other
macromolecule classes because proteins are involved in virtually every biological process. However,
unlike the others, which are often passive participants, proteins are highly active and dynamic.
They respond to signals, change shape, and often use the other macromolecules as substrates in
their activities. Proteins are essentially the molecular machines that carry out life’s functions.

Some examples will illustrate the central role of proteins more clearly. Blood is a part of the
circulatory system, which is responsible for transporting nutrients and waste. Though blood is
a complex mixture, containing a cocktail of cells, proteins, sugars, gases, and ions dissolved in a
medium of water, its primary cellular component is red blood cells. These cells, which give blood
its red color, ferry oxygen from lungs throughout the body. While water can dissolve some oxygen,
the body requires more oxygen more quickly than is available in the aqueous component of blood
alone. Thus, red blood cells are packed with a special protein called hemoglobin, which binds
oxygen.3 Each red blood cell contains as many as 270 million molecules of hemoglobin [1], each of
which can carry up to four oxygen molecules. Because red blood cells are so dense with hemoglobin,
composing roughly 35% of their total volume [2], any defect in hemoglobin can dramatically impact
the structure of the red blood cells themselves. A well-studied example is sickle cell disease where
an error in the body’s hemoglobin molecules deforms red blood cells into a characteristic sickle
shape. This prevents them from easily flowing through blood vessels, resulting in pain and oxygen
deprivation.

Whereas hemoglobin is an example of a protein mediating transport, proteins are also involved in
transmitting signals and catalyzing chemical reactions. For example, the back of the eye contains a
light-sensitive surface called the retina which is composed of photoreceptor cells. These cells respond
to light because they produce special proteins called opsins that translate light into chemical and
electrical signals which are then interpreted by the brain. Humans, and primates broadly, have
three types of opsins, which are sensitive to red, green, and blue light, respectively, that mediate
our color vision. Color blindness is the result of photoreceptor cells missing one of these proteins,
typically either the red or green opsin. In contrast to sickle cell disease, this condition is caused
by a missing rather than a mutated protein. In other cases, however, a protein is not missing or
mutated, but instead not produced at the right time and place. For example, lactose is a sugar
found in milk that requires a specific protein, lactase, to metabolize properly. Many humans who
can digest milk products in childhood lose this ability in adulthood because they stop producing
lactase. As a result, lactose in dairy products passes undigested into the colon where it is broken
down by bacteria, causing symptoms such as bloating and diarrhea.

2Macromolecule is a loose term applied to molecules with high molecular masses. In practice, it usually refers to
one of the classes listed above, among a few other prominent non-biological examples.

3In biology, binding is a slippery word whose exact meaning can varying greatly depending on the context.
However, it generally means that a molecule physically interacts with another molecular for an extended period.

2

Despite performing this diverse range of functions, all proteins are made from of a set of 20 simple
building blocks called amino acids.4 Though each amino acid is chemically unique, they share a
common backbone composed of two distinct and complementary “receptor” and “donor” sites for
chemical bonds. Thus, in a protein the amino acids are bonded in a linear chain like beads on a
string. However, once synthesized, proteins are not tidy rod-shaped molecules. Instead, the chain
loops and weaves between itself creating a three-dimensional structure in a process called folding.
These structures, which are highly stable and characteristic of each protein, are a result of the
interactions between the amino acids in the chain and the surrounding medium, which is typically
water. Because each amino acid has unique geometric and chemical properties that influence the
energetics of these interactions, a protein’s three-dimensional structure is encoded by the sequence
of amino acids that compose it. A protein’s function is in part a result of its structure. For example,
the structure of hemoglobin precisely positions its amino acids and a helper molecule called a heme
group to create a pocket that can stably but reversibly bind oxygen. This allows hemoglobin to
carry oxygen throughout the body until it is delivered to its destination. However, people affected
by sickle cell disease have a mutation in the sequence of their hemoglobin proteins which causes
it to malfunction. Frequently this mutation is a single change where the sixth amino acid in the
sequence, glutamate, is substituted for valine [3]. This creates a sticky patch on the surface of
hemoglobin, and under low-oxygen conditions normal hemoglobin changes shape to expose a sticky
patch on its surface as well. The two patches are complementary, which allows hemoglobin proteins
to clump together into long, fibrous strands. These strands distort the shape of red cells, giving
them their characteristic sickle shape.

Clearly, understanding the relationship between the sequence, structure, and function of proteins
is essential for unraveling more complex biological phenomena. Though biologists study all three
properties of proteins, they are generally most interested in function since it is the most directly
related to the biological processes the protein takes part in.5 However, functions and biological
processes are not always easily identified or measured. Thus, determining a protein’s structure is
frequently the first step of detailed studies of its function. Though in recent years researchers have
developed powerful computational tools that can accurately predict structure from sequence alone,
historically structures were determined experimentally, and experimental methods still remain the
gold standard. While many methods can reveal information about the structure of a protein,
the most powerful techniques, X-ray crystallography, NMR spectroscopy, and cryogenic electron
microscopy (cryo-EM), can map the spatial coordinates of every atom in a protein. However,
this resolution requires extremely pure samples of the protein of interest. Since proteins are only
produced by living systems, preparations begin with a complex mixture consisting of cells or tissue,
and the protein of interest is isolated through a series of extraction and purification steps. Some
proteins are only produced in small amounts or degrade easily, so each step may require substantial
optimization to achieve a sufficient yield. When structural techniques were first developed in the
late 1950s, they were so time-consuming that a graduate student could dedicate an entire PhD to
solving a single protein structure. Many developments have substantially accelerated the process,

4The term amino acid encompasses any compound that contains an amino and carboxyl group. However, pro-
teins are only synthesized from the 20 “canonical” amino acids. Another two (selenocysteine and pyrrolysine) are
incorporated via a distinct mechanism under rare circumstances and are therefore considered non-standard.

5Function generally refers to molecular function which is a description of a specific chemical activity possessed
by a protein. A biological process, however, is the larger “biological program” which is accomplished by the action
of multiple linked molecular functions. For example, the molecular function of hemoglobin is to bind oxygen, an
activity it shares with a related protein myoglobin. However, the two have different roles in the process of oxygen
transport and storage. Hemoglobin is found in red blood cells where it acts as a carrier during transport. In contrast,
myoglobin is found in muscle cells, where it stores oxygen until needed.

3

but it remains a labor-intensive technique which may require several months of effort. However,
the result is a powerful map that scientists use to suggest hypotheses and interpret data.

The success of structural methods at elucidating the molecular details of protein function cemented
the view that function depends on the presence of a fixed structure. While scientists understood
proteins were not completely rigid and could adopt a variety of related structures, many believed
that functional proteins largely had a single dominant structure [4]. Despite its strength, exceptions
to this structure-function paradigm were known. For example, elastin is a protein secreted by cells
which allows tissues like skin or blood vessels to repeatedly expand and contract. It imparts this
elasticity by forming networks of disordered chains that act like molecular springs. When a tissue
experiences a force, the chains stretch to accommodate it. When the force is removed, the chains
return to their random orientations, which reduces their end-to-end length and forces the tissue
to return to its original shape [5, 6]. However, as a result of this unique role in providing tissue
elasticity, elastin’s disorder was viewed as a specific adaptation rather than a general mechanism
of protein function. In other cases, proteins had regions which returned undefined or highly vari-
able atomic coordinates when analysed with structural techniques, indicating they lacked defined
structures and were disordered. Because these segments were often short loops between structured
regions, they were seen as linkers which facilitated the structure of the functional portions of pro-
teins. By the early 2000s, though, enough exceptions had accumulated that scientists began to
recognize that fully and partially disordered proteins were involved in many biological processes [7–
9]. Many examples were proteins which folded on binding to their targets, commonly other pro-
teins. This mechanism was a departure from the prevailing model of interactions between biological
macromolecules which required highly stable and complementary interfaces, like two puzzle pieces
fitting together. As a result, scientists speculated that disorder was an adaptation that allowed
proteins to efficiently relay and regulate signals by enabling interactions with many possible targets.
Furthermore, the flexibility of disordered proteins would permit environmental conditions to easily
modulate these interactions.

In the following years, as the complete genomes of several scientifically important model organisms
such as S. cerevisiae (baker’s yeast), C. elegans (roundworm), and D. melanogaster (fruit fly) were
sequenced for the first time, researchers applied computational methods for predicting disorder to
the proteins inferred from their genomes. They discovered that disorder is ubiquitous in eukaryotic
organisms,6 with estimates of the fraction of proteins containing disordered segments of greater
than 30 residues ranging between 28 and 63% [10, 11].7 For reference, though the lengths of
proteins can vary dramatically, a typical protein contains on the order of a few hundred residues,
so these regions can compose a significant fraction of a protein’s length. Because these segments
were disordered in their native state, i.e. under normal operating conditions, they were termed
intrinsically disordered regions (IDRs) to emphasize the disorder was not induced by exposure
to chemicals or heat. Furthermore, while most proteins were predicted to contain a mixture of
structure and disorder, some intrinsically disordered proteins (IDPs) were entirely or almost entirely
disordered. Thus, disorder was recognized as a pervasive but poorly understood feature of proteins.

Many studies investigated the structural and functional properties of IDRs over the following years.
6All life belongs to one of three categories, or domains. Two, Archaea and Bacteria, are all single-celled organisms

with simple cellular structures. In contrast, the cells of members of Eukarya, i.e. eukaryotes, are complex and contain
substructures called organelles, among other differences. Animals, plants, and fungi are eukaryotes, but the domain
includes many microorganisms as well.

7The amino acids that compose the links of a protein chain are conventionally called residues to distinguish them
from their related, but chemically distinct, free forms.

4

They found that although IDRs still have sequence-structure-function relationships, they play by
a very different set of rules. These differences manifest at all three levels but are at first most
easily understood in terms of structure. Strictly speaking, a protein’s structure refers its three-
dimensional arrangement of atoms. Thus, structured regions in proteins, often called domains,
typically fold into a small number of related structures.8 This does not imply these folded domains
are completely rigid, though. At the molecular level, everything is in constant motion. For example,
at room temperature an average water molecule moves at over 500 meters per second!9 However,
liquid water is so dense that it will collide with something after moving only a fraction of its own
length. Likewise, in the cellular environment folded domains are buffeted by collisions with water
and other molecules, but they are constrained by the rigid bonds and interactions between amino
acid residues in the chain. Thus, while folded domains can “flex” and “breathe,” these motions are
minor variations on their overall structure.

In some cases, folded domains have multiple structures, or conformations, which are related to
different functional states. For example, hemoglobin has two forms, traditionally called the T and
R states [3]. The T state is hemoglobin’s oxygen-free form, but on binding oxygen its structure
shifts to the R state. The change is small, differing at most by only a few hydrogen atoms. However,
this enough to re-orient the atoms that interact with oxygen, allowing it to bind more tightly and
promoting oxygen uptake at the other three binding sites. Once the red blood cells reach their
destination, other physiological factors favor the adoption of the T state, which coordinates the
release of all four oxygen atoms. In the other cases, conformational changes can dramatically re-
organize a protein’s structure. For example, the 26S proteasome is a complex of proteins responsible
for degrading other proteins. Its structure is highly complex and consists of over three dozen distinct
protein subunits, which are in turn organized into three subcomplexes: a lid, a base, and a core [12,
13]. The functions of these subcomplexes are roughly analogous to the parts of a paper shredder.
The lid is like the outer shell because it regulates access to the “motor” in the base and the “blades”
in the core that pull in and degrade the protein, respectively.10 Like a paper shredder, the motor is
only engaged when a protein is correctly positioned in the lid. Unlike a paper shredder, however,
the motor is activated by a conformational change rather than a physical switch. When the tail of
a protein marked for degradation is inserted in the motor, the lid shifts by nearly forty hydrogen
atoms to align the motor with the pore that leads into the core subcomplex. Despite the scale of
this re-arrangement, it occurs over the span of only half a second [14]. Thus, when folded domains
have multiple conformations, they are generally discrete forms without stable intermediates.

In contrast, IDRs have no fixed spatial relationship between their atoms, so their structures are
sometimes described as conformational ensembles, i.e. collections of conformations where the dis-
tances and orientations between residues can vary considerably. Furthermore, IDRs populate a con-
tinuum of structural states over time, whereas when folded domains undergo large conformational
changes, they are usually triggered by specific environmental signals or chemical modifications,

8Though there are various overlapping definitions, domains typically refer to independently folding regions of a
protein. Domains are also described as discrete functional or evolutionary elements since proteins may contain several
domains which are connected by unstructured linker sequences.

9This value was derived using the Maxwell–Boltzmann distribution, which is a physical model of the speeds of
particles in an ideal gas. Clearly, water is not a gas at room temperature, so it should be considered a rough
approximation.

10As with many analogies, this comparison to a paper shredder simplifies several structural and functional details
of the proteasome. For example, in a paper shredder the motor powers the blades which both pull in and shred the
paper. In the proteasome, however, these are distinct steps. The motor subunits in the base first physically interact
with the target protein to simultaneously unfold and pull it into the core. Different subunits in the core then break
the exposed chemical bonds between amino acid residues in the chain.

5

and the intermediate structures are transient. Despite the diversity of conformations available to
IDRs, they can be broadly grouped into one of several qualitative descriptions which range from
extended coils to more compact globules. The specific conformational class of a given IDR, how-
ever, is dictated by its local composition of amino acid residues. Because the chemical properties
of each amino acid in the protein alphabet are dictated its specific arrangement of atoms, each has
a unique impact on a protein’s structure. However, to simplify discussion and analysis amino acids
are often compared by quantitative factors like size or charge. One of the most useful scales for
describing an amino acid’s overall effect on protein structure is hydrophobicity, which measures a
molecule’s tendency to associate with water. Molecules which interact with water are hydrophilic
(water loving), and molecules which do not are hydrophobic (water fearing). Thus, hydrophilic
molecules, like sugar or alcohol, easily dissolve in water, whereas hydrophobic molecules, like fats
and oils, remain separate. Since the cellular environment is largely water, the hydrophobic residues
in proteins tend to cluster into a hydrophobic core. This hydrophobic collapse is a major driv-
ing force in the early stages of protein folding, so a protein’s relative number of hydrophilic and
hydrophobic residues is a key determinant of whether it is folded or disordered.

Unsurprisingly, disordered regions are characterized by a relative depletion of hydrophobic resi-
dues [15]. However, there is no simple formula which accurately predicts disorder in a protein using
only the hydrophobicity values of its constituent residues. Other factors, such as the number and
distribution of charged residues, also impact a sequence’s predisposition for disorder and its result-
ing conformational class [16–18]. For example, sequences with high number of either positively or
negatively charged residues, called polyelectrolytes, tend to form stiff rods because the like charges
repel each other. However, if a sequence contains a high number of positively and negatively charged
residues in roughly equal proportion, the sequence is called a strong polyampholyte, and its confor-
mational class depends on the distribution of those charged residues. If the two classes of residues
are segregated into separate blocks of like charges, they attract and form hairpins. However, if they
are evenly distributed, the attractive and repulsive forces balance on average, and the sequence
generally assumes expanded coil-like conformations. High numbers of polar amino acids, which are
hydrophilic but not charged, are associated with semi-compact globules. Though their side chains,
the portions which give each amino acid its unique identity, are hydrophilic, their interactions with
water are not sufficient to overcome the tendency of the hydrophobic backbone, composed the
donor and receptor sites common to all amino acids, to self-associate. Thus, like folded domains,
the structures of disordered proteins are dictated by their sequences. However, because IDRs do
not make stable contacts between specific residues in their chains, multiple sequences can generally
correspond to a single conformational class.

The structural diversity of IDRs is directly related to their functional plasticity, and as IDRs are
not confined to one conformation, they can interact with and bind to many possible partners. Often
these partners are other proteins, but they can also be other macromolecules like DNA or even small
molecules and ions. As a result of this adaptability, IDRs are enriched in proteins involved in cell
signaling. Because cells are highly compartmentalized, they have a dizzying array of mechanisms
to relay messages.11 Many are mediated by interactions between proteins, which in turn create a
change in the state of the system that propagates the signal. Often these state changes are chemical

11The most fundamental compartment is the cell, which roughly separates inside from outside and life from non-
life. However, the cells of more complex organisms called eukaryotes contain additional subcompartments called
organelles. Compartmentalization is essential in living systems because it confines and concentrates biochemical
reactions that would be harmful if they occurred at the wrong place or time. However, it also introduces many
complications because information in the form of physical or chemical signals cannot travel freely.

6

alterations made by one protein to another, which are termed post-translational modifications
(PTMs).12 One of the most common modifications is phosphorylation where a phosphate group
is attached to a specific amino acid in the protein. Phosphate groups contain three negative
charges, so their addition can dramatically affect a protein’s structural energetics and induce a
conformational change. Thus, phosphorylation often plays a key role in toggling proteins between
inactive and active states. In general, though, PTMs encompass a variety of chemical modifications
with similarly diverse impacts on a protein’s behavior. Because IDRs are generally exposed to
their environment, they are frequent targets of PTMs. However, PTMs do not occur haphazardly
in proteins but are instead targeted to binding sites created by sequential patterns of residues
called short linear motifs (SLiMs). SLiMs are a general mechanism for mediating interactions with
proteins, so while many SLiMs are targets of PTMs, others simply recruit binding partners. In
contrast to the highly structured interfaces that characterize interactions with folded domains,
however, SLiMs are usually no more than ten residues [19]. Thus, their interactions are relatively
weak and highly transient. As their flexibility makes SLiMs easily accessible, they are also enriched
in IDRs, which in turn allows them to bind to many partners, sometimes simultaneously. IDRs
therefore often act as hubs in complex regulatory networks by propagating signals from diverse
sources or organizing binding partners into higher-order structures [20–22]. Furthermore, these
signals and interactions are easily tuned because PTMs can modulate their meanings and strengths,
respectively, by modifying only a few residues. Thus, IDRs are like “molecular computers” that
integrate complex data and respond accordingly to execute different biological “programs.”

Some of the most prominent examples of IDRs in cell signaling are found in the proteins that
regulate the creation of other proteins. A protein’s amino acid sequence is encoded in DNA in a
unit called a gene, and since all cells in an organism share the same genome, they can in principle
synthesize any protein encoded in it.13 However, different cell types instead express unique com-
plements of proteins that in large part determine their identities. This selective conversion of the
information stored in DNA into proteins is called gene expression and is a highly regulated process
that varies in space and time, i.e. between different cells and within a single cell. Though gene
expression involves dozens, if not hundreds, of distinct biochemical reactions, most occur as steps
within two major processes: transcription and translation. In transcription, the sequence of a pro-
tein encoded in the cell’s DNA is transcribed into an intermediate molecule called messenger RNA
(mRNA). mRNA is also a kind of nucleic acid, and is chemically closely related to DNA. However,
as a much smaller molecule containing only the information needed to synthesize a protein, mRNA
is more easily transported and manipulated in subsequent steps. Thus, if a gene stored as DNA
is a cell’s master record of a protein sequence, mRNA is its working copy. In translation, a vast
molecular machine called the ribosome then synthesizes a protein by translating the information
encoded in a strand of mRNA into a sequence of amino acids.

Both transcription and translation are tightly regulated processes, but because cells employ numer-
ous interlocking mechanisms to control access to DNA and the creation of mRNA, transcription
is often the major regulatory checkpoint in gene expression. A key step in this process is the
recruitment of the protein complex which transcribes DNA into mRNA to the beginning of a
gene’s sequence, i.e. its transcription start site (TSS). The placement of this complex, called RNA

12A protein’s amino acid sequence is encoded in a cell’s DNA, and the process of reading that information to create
a protein (from an intermediate molecule called RNA) is translation. Therefore, any modifications to a protein after
its initial synthesis are post-translational.

13The DNA sequences of different cells in an organism are not always strictly identical. For example, spontaneous
mutations can create changes that range from single-letter substitutions to large-scale rearrangements. In other cases,
such as during the creation of sex or immune cells, a cell’s DNA is intentionally modified to generate genetic diversity.

7

polymerase, is dictated by regulatory sequences encoded in the DNA, and while some regulatory
sequences are ubiquitous, like those that mark a gene’s TSS, many are gene-specific. Thus, the
unique collection of regulatory sequences associated with a gene determines many aspects of its
expression. RNA polymerase does not directly contact these gene-specific regulatory elements,
however. Instead, proteins called transcription factors directly bind these sequences and interact
with other components of the transcriptional machinery which in turn recruit RNA polymerase to
the TSS. Accordingly, a typical transcription factor has two parts: a DNA-binding domain and
an activation domain. DNA-binding domains are usually structured because they make stable
contacts with specific regulatory sequences. In contrast, activations domains interact with the
transcriptional machinery and are highly enriched in IDRs [23]. Decades of research have identified
many of the proteins involved in these interactions as well as some common properties of their
sequences [24–31]. Despite this progress, however, the precise mechanisms by which transcription
factors locate their DNA targets and recruit the transcriptional machinery to initiate expression
of specific genes remains an unsolved problem in molecular biology. As disordered regions play a
key role in this process, studies which broadly investigate the relationship between the sequence,
structure, and function of IDRs therefore have significant implications for our understanding of
gene regulation.

0.2 Aims

Despite recent advances in identifying IDRs and their conformational ensembles from their se-
quences alone [16–18, 32], the relationship between their sequence and function remains poorly
understood. In contrast, predictions of structure and function are readily available for many folded
domains. Because they make specific contacts between residues, the sequences of folded domains
are generally conserved or evolve slowly. Thus, the specific sequence of a folded domain consti-
tutes its unique “signature.” Traditional bioinformatics techniques use these signatures to detect
similar protein sequences and transfer structural and functional information between them [33–35].
Though this approach is simple in principle, it is extremely difficult to perfect in practice, and fully
mapping the relationship between the sequence and structure of folded domains alone hsa been an
active area of research for decades. Part of the challenge is the available data is extremely sparse
relative to the sheer number of possible protein sequences. Even for a moderately sized protein of
100 amino acid residues, there are 20100 ≈ 1.3 × 10130 possible sequences. Only in the past few
years have researchers in many senses solved this problem by using advanced techniques from ma-
chine learning to leverage the information encoded in nearly two hundred thousand experimentally
determined structures [36].

IDRs, however, challenge this sequence-dependent model of protein structure and function. Be-
cause they do not make stable contacts between residues which establish a fixed structure, IDRs
are not generally constrained to maintain a specific sequence of residues. Thus, while there are ex-
ceptions, many IDRs evolve extremely rapidly, and related IDRs are therefore not easily identified
by their sequence. There is growing evidence, though, that IDRs evolve under a different set of con-
straints. Because the composition and patterning of residues in an IDR dictates its conformational
class, many distinct sequences can yield similar conformational ensembles. Furthermore, because
modification and binding sites in IDRs are usually fewer than ten residues, their interaction inter-
faces are compact and can occur in multiple positions without compromising function [19]. Thus,
rather than conserving specific sequences, IDRs are hypothesized to conserve distributed “molecu-
lar features” associated with those sequences. By the mid 2010s several studies had demonstrated
evidence of such constraint in the flexibility [37], chemical composition [38], net charge [39], or

8

charge distribution of IDRs [40]. These initial studies demonstrating evidence of constraint were
generally restricted to specific features or proteins. However, by comparing the observed values of
various IDR-associated properties against those generated under a simulated model of evolution, in
2019 Zarin et al. showed most IDRs across the entire yeast proteome contain conserved features.
Furthermore, they identified clusters of IDRs with common “evolutionary signatures,” i.e. patterns
of conserved features, which were associated with specific biological functions. This analysis for the
first time provided a global view of the relationship between sequence and function in IDRs.

These analyses were conducted using IDRs identified in various species of yeast, which is a widely
used model organism in molecular biology research. However, no known subsequent studies have
determined if similar patterns of conservation are found in the IDRs of other systems. As an-
other foundational model organism with abundant genomic information across many evolutionary
lineages [41–44], the fruit fly, Drosophila melanogaster, is a natural choice for subsequent inves-
tigation. Furthermore, given its complex multicellular development process and shared signaling
pathways with humans, the findings of such a study would significantly advance our understanding
of the role of IDRs in gene regulation as well as human health and disease. The concordance of
these results with the previously identified IDR clusters would also have profound implications for
the broader mechanisms of IDR evolution. For example, the absence of global patterns of evolu-
tionary signatures across IDRs in Drosophila would suggest they are a property of IDRs which is
unique to yeast. In contrast, the identification of clusters similar to those in yeast would indicate
the existence of a taxonomy of IDRs which is conserved across the tree of life.

Though modern genetic engineering techniques enable the direct manipulation of DNA sequences in
living systems, gene editing remains a lengthy and work-intensive process in fruit flies. Therefore,
experimentally testing the vast number of sequences needed to fully map the relationship between
distributed features and function in IDRs is infeasible. The comparative genomics approach instead
leverages the work done by nature to identify evolutionarily conserved features and generate specific
hypotheses to guide experiments [45]. As life is constantly exploring the space of allowed proteins
through evolutionary change, features which are unimportant for a protein’s function or, at a larger
scale, an organism’s survival offer no benefit for their maintenance and are therefore gradually
degraded and lost. Thus, conservation in related sequences is powerful signal of function.

These comparisons, however, require the identification of IDRs with common ancestry that per-
form equivalent functions across many distinct organisms. Given the difficulties with identifying
similar IDRs by their sequences, this may seem like a chicken and egg problem. Fortunately, IDRs
are frequently associated with more conserved folded domains. Thus, identifying evolutionarily
related proteins by their overall sequence signatures and aligning them will in turn identify the
equivalent IDRs in those sequences. The first step of an evolutionary analysis of IDRs, then, is
the identification of proteins with common ancestry, called orthologs. Since the first genomes were
sequenced in the late 1990s, researchers have developed techniques for identifying and aligning
orthologs [46–49]. While these methods are generally effective, they are conducted by automated
computational pipelines and prone to errors when processing the highly divergent sequences that
characterize many IDRs. The evolutionary relationships between the genomes of closely related
species generally make such mistakes easier to identify, and fortunately over the past five years ad-
vances in DNA sequencing technology have yielded dramatic increases in the number of sequenced
genomes in the Drosophila genus. However, because the existing methods for ortholog identification
were designed for fewer or more distantly related genomes, they do not fully leverage such genomic
redundancy to minimize errors. Thus, in the first chapter, I develop a novel method for identifying

9

Figure 0.1. Graphical overview of aims. (A) The large open circles represent the genomes of different
Drosophila species, and the small, filled circles represent protein sequences in those genomes. Orthologs
are colored with shades of the same hue. (B-D) Each horizontal line represents a sequence in panel A,
and together each set of lines creates an alignment. The lines are broken where gaps are inserted to align
equivalent segments. The grey segments denote regions of the alignment which are not part of subsequent
analyses. (E) Each aligned IDR is scored on four features, where the strength of that feature is indicated
by the height and color of its bar. (F) Scoring many IDRs on these features yields three distinct clusters.

orthologs which addresses this shortcoming and apply it to 33 Drosophila genomes to generate a
set of aligned orthologs (Fig. 0.1A-B). In the second chapter, I then identify rapidly evolving IDRs
in these alignments and analyse them with a variety of evolutionary models to dissect the forces
driving their evolution and detect patterns of conservation (Fig. 0.1C-F). Finally, in the third chap-
ter, I discuss several software tools and tutorials for fitting statistical models to data, which were
created while pursuing the previous aims.

10

CHAPTER 1

Leveraging genomic redundancy to improve inference and align-
ment of orthologous proteins

Abstract

Identifying protein sequences with common ancestry is a core task in bioinformatics and evolutionary biology.
However, methods for inferring and aligning such sequences in annotated genomes have not kept pace with
the increasing scale and complexity of the available data. Thus, in this work we implemented several
improvements to the traditional methodology that more fully leverage the redundancy of closely related
genomes and the organization of their annotations. Two highlights include the application of the more
flexible k-clique percolation algorithm for identifying clusters of orthologous proteins and the development
of a novel technique for removing poorly supported regions of alignments with a phylogenetic HMM. In
making the latter, we wrote a fully documented Python package Homomorph that implements standard
HMM algorithms and created a set of tutorials to promote its use by a wide audience. We applied the
resulting pipeline to a set of 33 annotated Drosophila genomes, generating 22,813 orthologous groups and
8,566 high-quality alignments.

1.1 Introduction

Comparative genomics is a powerful tool for yielding insights into evolutionary relationships, molec-
ular function, and the forces that drive gene, genome, and population evolution. These methods
often rely on the identification of homologous sequences or homologs, that is sequences with com-
mon ancestry, since this ensures that differences between sequences reflect variations in evolution
from a common point of divergence. However, many analyses impose the additional condition
that the sequences have diverged through speciation events (orthology) rather than duplications
(paralogy) or other mechanisms such as horizontal gene transfer [50]. The underlying assumption
is orthologs have conserved equivalent functions whereas paralogs, by virtue of their redundancy,
are more likely to diverge [51–55].1 This relationship between orthology and function is an essen-
tial component of modern biological research since it permits the transfer of annotations between
biological systems using sequence similarity alone.

Given this importance, methods for inferring orthologous groups of proteins were developed shortly
1For multiple sequences, orthology is usually defined relative to their most recent common ancestor. This techni-

cally includes sequences which split by duplication after this point (in-paralogs), but excludes sequences which split
by duplication before (out-paralogs) [56]. Many current orthology inference pipelines explicitly incorporate steps
to detect in-paralogs. However, the resulting orthologs groups can easily be restricted to those without in-paralogs
(single copy orthologs) for analyses where an assumption of conserved function is necessary.

11

after the first genomes were sequenced in the late 1990s [46–48]. One early and influential approach
was to cluster triangles of hits resulting from homology searches between pairs of genomes [49].
Graph-based approaches have remained popular, and in the intervening years many other re-
searchers have refined this method by implementing various pre- and post-processing steps. Despite
these improvements, many databases and pipelines use the same triangle clustering algorithm [57]
or other methods which require relatively few hits between sequences to infer an orthologous group,
e.g. connected components and other single-linkage criteria [56, 58–60] or Markov clustering [61–
63]. However, the scale of biological sequence data has changed dramatically. For example, in the
last decade, the number of annotated genomes available from NCBI has increased nearly 20-fold
and currently exceeds 900 (Fig. A1). Though this figure is only a rough proxy of the total number
of assemblies available, it will likely continue to grow rapidly in the coming years as many large-
scale genome assembly efforts such as i5K [64], the Bird 10,000 Genomes Project [65], and the
Vertebrate Genomes Project [66] have already yielded results. Thus, the dense taxonomic sampling
made possible by these projects poses new challenges and opportunities for the standard methods
of orthology inference and alignment, which implicitly assume fewer and more distantly related
genomes or fail to fully leverage the redundancy and organization of their annotations.

In this work we therefore developed a computational pipeline that can robustly infer and align
orthologous groups of proteins even when the genomes are highly redundant. Like many other
orthology inference pipelines, our overall approach is based on clustering a graph of hits from
homology searches. However, we modified many details to maximize the detection of highly diverged
orthologs while also minimizing the impact of incomplete or incorrect annotations. Furthermore,
since modern genome annotation pipelines frequently produce gene models and protein sequences in
tandem, we implemented an additional clustering step to organize the resulting orthologous groups
of proteins into gene-level units. However, most of our efforts were focused on the final step of
aligning the orthologous sequences. Though genome annotation pipelines are often proficient at
identifying the overall locus of genes, the accurate identification of exon boundaries and start codons
when transcript evidence is limited remains an ongoing challenge [67, 68]. Consequently, protein
sequences derived from annotation pipelines can include non-homologous segments of significant
length or exclude highly conserved segments. Such heterogeneity in the structure and length of
the sequences in an orthologous group poses many challenges for their alignment and subsequent
analysis. Thus, we implemented several novel quality control and data cleaning steps to correct
mis-alignments and identify likely sequencing, assembly, or annotation errors.

To develop these methods, we chose a set of 33 assembled and annotated Drosophila genomes,
which includes all 12 species from the original Drosophila 12 Genomes Consortium [69]. However,
the genomes of these 12 species have been re-sequenced since their first release, which has resulted
in substantial improvements in their assemblies and annotations [41, 42]. Despite these develop-
ments and other several other recent genome assembly projects of species in the Drosophila genus,
there is not yet a collection of high-quality alignments of orthologous proteins that reflects these
improvements in genome assembly and diversity [43]. Given the Drosophila genus spans diverse
habitats and over 50 million years of evolution but maintains a conserved life cycle and body plan,
such a resource would facilitate a new generation of studies that illuminate the forces that drive
protein evolution in unprecedented detail [70, 71].

12

Figure 1.1. Overview of orthology inference pipeline. (A-C) The large, open circles represent
the annotated genomes, and the small, filled circles represent the protein sequences associated with each
annotation. Sequences that share homology are colored with shades of the same hue. (D-F) The small,
filled circles and lines represent the same sequences and best hits from the previous steps.

1.2 Results

1.2.1 Pipeline overview

Our pipeline follows a similar overall approach to other graph-based methods of orthology inference.
First, protein sequences from annotated genomes are collected (Fig. 1.1A), and homology searches
are conducted between all query-target pairs of genomes (Fig. 1.1B). The raw output from these
homology searches is processed to yield best hits between pairs of sequences (Fig. 1.1C). Next, the
network of best hits is clustered into self-consistent orthologous groups (Fig. 1.1D). Since genes
can have multiplied associated isoforms, we then implemented a novel second clustering step where
orthologous groups are grouped by their parent genes, which are represented by the two sets of
clusters with warm and cool colors, respectively (Fig. 1.1E). Finally, representative sequences in
each orthologous group are aligned (Fig. 1.1F). In the following sections, we discuss each of these
and other steps which were omitted for clarity in greater detail.

13

1.2.2 Input genomes and pre-processing

All annotated genomes in the genus Drosophila available in April 2022 were downloaded from
NCBI’s RefSeq database. The assemblies annotated by the NCBI eukaryotic genome annotation
pipeline have passed several quality checks and all have supporting transcript evidence, so the
annotations are generally highly complete [72]. The D. miranda annotation was excluded due to
its unusual karyotype [73]. Other annotations were excluded after preliminary clustering showed a
deficiency in the number of orthologous groups containing those genomes, indicating their annota-
tions were less complete (data not shown). The D. melanogaster annotation was downloaded from
FlyBase [44]. In total, the input data consists of 33 genomes, which are listed in Table A1. Many
genes have transcripts that differ only in their UTRs, and as a result there are many duplicate
protein sequences in the annotations. Though not strictly necessary, we removed the duplicates in
our pipeline, which greatly reduced the computational burden of later steps.

1.2.3 Extraction of best hits from BLAST output

The protein sequences in each genome annotation were searched against each other in reciprocal
pairs using BLAST, yielding a list of high-scoring segment pairs (HSPs) for each query-target
pair [33]. HSPs are local alignments, meaning they do not necessarily span the entire lengths of the
query and target sequences. Consequently, the search algorithm may return multiple HSPs for each
query-target pair if statistically significant regions of homology are separated by nonhomologous
or poorly conserved regions. Though the most significant HSP is often used to represent all HSPs
between a query-target pair, this approach can fail to rank the pairs by their overall significance if
their alignments are broken into multiple HSPs. Furthermore, since query-target pairs were later
filtered by the amount overlap between their sequences, it can also exclude pairs that pass the
overlap threshold even if the most significant HSP alone does not. Thus, HSPs were merged into
a single object called a hit. The best hits for each query were then taken as the highest-scoring
hits that passed a minimum overlap criterion and were reciprocal between the query and target
sequences.

1.2.4 Clustering in orthologous groups

The best hits between sequences are naturally visualized as a graph where sequences are nodes
and best hits are edges between nodes. Two connected components, sets of nodes joined by a
sequence of edges, are shown (Fig. 1.2A-B). The sequences in the first (Fig. 1.2A) all contain
C2H2 zinc fingers, whereas the sequences in the second (Fig. 1.2B) are members of the Par-1
family of serine/threonine protein kinases. In both components, some sets of nodes have a high
density of edges, forming distinct clusters, whereas other nodes are only sparsely connected to
their neighbors. To better understand the structure of these two components, we calculated the
number of sequences, unique genes, and unique species in each. The first has 385, 346, and 33
sequences, genes, and species, respectively, and the second has 222, 33, and 33 sequences, genes,
and species, respectively. We then plotted the relationship between the number sequences and
unique genes across all components to see if this pattern holds true generally (Fig. 1.2C). Two
distinct trendlines are apparent. The first increases linearly with the number of sequences with
a slope of one, indicating each sequence is generally associated with a unique gene. The second
is constant with an intercept of 33, indicating the number of unique genes quickly saturates at
the total number of genomes. Thus, there are generally two classes of components. The first is
composed of many distinct genes, whereas the second is composed of many different isoforms of a
single group of genes.

14

The diffuse networks observed in the first component class are likely the result of a combination
of factors, including rapid evolution, gene duplication, and annotation errors. Regardless of their
origin, these hits are not strong candidates for comparative analyses since an orthology relationship
is supported by relatively few genome pairs. Instead, likely orthologs should consistently identify
each other as best reciprocal hits across many genome pairs. The same is true of the hits in the
second component class. Although the genes as a unit form a single orthologous group, sequences
with few hits are likely non-conserved or tissue-specific isoforms. Thus, orthologous groups can be
operationally defined as self-consistent clusters in the hit graph. However, sequence divergence or
assembly and annotation errors may prevent a best reciprocal hit between orthologous sequences
across all genome pairs. In fact, although the most common number of reciprocal hits is 32,
one fewer than the total number of genomes, many sequences have fewer (Fig. 1.2D). Thus, the
clustering method should require a high degree of self-consistency without demanding complete
consensus.

Figure 1.2. Selected connected components of hit graph and summary statistics. (A-B) Two
distinct connected components of the hit graph. Edges are colored by the value of their bit score. (C)
Hexbin plot of the number of sequences and the number of unique genes in each component. (D) Histogram
of number edges associated with each sequence, i.e. the degree of each node. Only the lower 99th percentile
of the distribution is shown.

The identification of sets of densely connected nodes in graphs is known as community detection
in network analysis. While many community detection algorithms are available, only some are

15

commonly used in the context of orthology inference. One early method that remains popular is
building clusters progressively by identifying nodes that form a triangle with at least two other
nodes in the cluster [49, 57]. Other approaches include the MCL algorithm, which clusters graphs
by simulating stochastic flow [61–63], and connected components or other single-linkage criteria [56,
58–60]. While these methods are robust when clustering hit graphs derived from smaller or more
diverse sets of genomes, they are not suitable for the large number of closely related genomes in this
work since they require relatively few edges to define a cluster. For example, the MCL algorithm
and connected components method assign a node to a cluster as long as it has a single edge, and
triangle clustering only requires two edges to two adjacent nodes.

However, connected components and triangle clustering are special cases of the more general k-
clique percolation algorithm where k equals two and three, respectively. The clique percolation
algorithm detects clusters by first identifying cliques, sets of nodes which are fully connected, of
a specified size k in the graph (Fig. 1.3A). Clusters are then taken as the connected components
of an overlap graph where an edge exists between two cliques if they share k-1 nodes in common.
An intuitive way to visualize this algorithm is by “rolling” a clique of some size k over the graph
(Fig. 1.3B). More specifically, a cluster is initiated when a set of nodes which form a k-clique is
identified. The cluster expands by shifting the k-clique to an adjacent k-clique that shares k-1
nodes in common with the current k-clique. A cluster stops expanding when there are no adjacent
k-cliques, and the algorithm terminates when there are no k-cliques which are not part of a cluster.
The strength of this algorithm is its ability to exclude sparsely connected nodes from clusters with
an easily tunable parameter k. Higher values of k require greater overlap between a candidate
node and those already in the cluster and therefore produce tighter clusters at the cost of excluding
more speculative orthology relationships (Fig. 1.3C). We set k to four as compromise between these
concerns, yielding 22,813 orthologous groups, a plurality of which contained all 33 species (Fig. A2).

1.2.5 Addition of paralogs to orthologous groups

A weakness of the best reciprocal hits criterion is its exclusion of recently diverged paralogs. Since
only the highest scoring hits for each query are included in the graph, a paralog without a corre-
sponding duplicate in the target genome is ignored if it is marginally more diverged than the other
copy. This is corrected by adding likely paralogs to the orthologous groups. Briefly, the protein
sequences in each genome were searched against themselves. If the bit score for an intra-genome hit
exceeded the bit score of any inter-genome hits for the same query, the two sequences were iden-
tified as a paralogous pair. Orthologous groups were then supplemented with paralogs by adding
the paired sequences for each of the original members of the orthologous group. Most orthologous
groups contain no paralogs, and those that do generally have few relative to the original number
of sequences in the group (Fig. A3).

1.2.6 Grouping orthologous groups by gene

As genes can have several annotated isoforms, each gene can be associated with several orthologous
groups. However, the orthologous groups are not organized into gene-level units since they were
clustered using sequence similarity only. A graph-based approach was therefore used to group
orthologous groups with similar sets of parent genes. First, a gene overlap graph was constructed
by defining an edge between orthologous groups if the intersection of their associated sets of parent
genes is at least 50% of the smaller of the two. Gene groups were then taken as the connected
components of the resulting graph, yielding 14,909 groups. This is commensurate with the roughly

16

Figure 1.3. Clique percolation algorithm. (A) Cliques for k equal to three, four, five, and six. k equal
to one and two correspond to a single node and two nodes joined by an edge, respectively. (B) Illustration
of clique percolation algorithm where k = 4. (C) A single component clustered by clique percolation with
varying values of k. Nodes are colored according to their cluster. If a node belongs to multiple clusters, it
uses a blend of those colors.

15,000 genes in each genome, which suggests this approach has successfully clustered orthologous
groups derived from a common set of parent genes.

1.2.7 Initial alignment and selection of representative sequences

Since the NCBI annotation pipeline incorporates transcriptome data from a variety of sources,
its inputs are heterogeneous in sequencing depth, developmental stage, and tissue of origin across
different genomes. As a result, some genomes are annotated with different or multiple splice
isoforms of a given orthologous gene, which can create complex networks in the resulting hit graph.
For example, if the genomes are variably annotated with one or both of two distinct isoforms, the
resulting graph may contain two clusters connected by a “bridge” formed by the genomes which
contain only one of the isoforms. If the nodes bridging the two clusters form cliques with themselves
and the clusters, the clique percolation algorithm will merge all the nodes into a single orthologous
group where some genes have multiple associated sequences. However, these additional sequences
can complicate downstream comparative analyses that may not easily generalize to genes with

17

multiple associated sequences. Thus, in our pipeline a single representative was chosen for each
gene using an alignment-based strategy detailed in the methods section. Briefly, a statistical profile
was created from an alignment of the sequences in each orthologous group, and the representative
for each gene was chosen as the sequence which best matched this profile.

1.2.8 Selection of single copy orthologous groups

The criteria for selecting orthologous groups for further analyses depends on the biological question
under investigation. For example, studies of gene duplication will focus on orthologous groups
with paralogs in some lineages but not in others. In contrast, analyses which assume functional
conservation should restrict the orthologous groups to single copy orthologs since paralogs more
frequently undergo functional divergence [53–55]. A simple method for identifying such groups is
requiring each species to have exactly one associated gene. However, since the probability of at
least one missing gene annotation approaches one as the total number of genomes increases, this
is too restrictive and fails to leverage the redundancy of closely related genomes. Instead, a set
of phylogenetic diversity criteria detailed in Table A2 were applied to ensure the major lineages
were represented in downstream analyses. Furthermore, genome-wide analyses should select one
orthologous group per each of the previously identified gene groups as to not bias the results
towards genes with many distinct groups of isoforms. In summary, orthologous groups failing the
phylogenetic diversity criteria were first removed, and the representative for each gene group was
chosen as the highest scoring orthologous group when ranked by the number species and the sum
of the bit scores associated with each edge. This significantly reduced the number of orthologous
groups from 22,813 to 8,566.

1.2.9 Alignment refinement

Though the pipeline’s quality control measures ensure a high degree of overall sequence identity be-
tween members of an orthologous group, some sequences contain long “poorly supported” segments
which have no homology to most or any other sequences in the alignment. Since most common mul-
tiple sequence alignment algorithms assume the sequences are largely homologous, these segments
are sometimes “over-aligned” by forcing them into alignment where chance sequence similarities
occur. Typically, these segments remain contiguous, so the alignments alternate between short
runs of columns with few or no gaps and large gap-rich regions (Fig. 1.4A-B, left). More rarely,
when long poorly supported segments are adjacent to a long gap in the same sequence, the two are
interlaced, yielding long gaps interrupted by short segments of spurious alignment (Fig. 1.4C, left).

The aligner MAFFT has a mode for addressing over-alignment with a parameter, amax, that adjusts
the strength of the correction [74, 75]. amax varies between 0 and 1, with higher values yielding a
stronger correction. While values above 0.8 completely eliminate over-alignment and successfully
align highly conserved regions, the alignment as a whole is severely degraded, as even homologous
sequences with a small amount of divergence are separated by gaps. Thus, in our pipeline orthol-
ogous groups were aligned in two stages. In the first, the sequences were aligned with a strong
correction of 0.7. Highly conserved regions were identified, which divided the alignment into a
complementary set of diverged regions. The sequences in each of these regions were extracted and
aligned separately with a more conservative value for amax of 0.4. The resulting “sub-alignments”
were “stitched” back into their positions in the original alignment. By defining highly conserved
“anchor” regions, this approach largely prevents the alignment of chance sequence similarities in
long poorly supported segments (Fig. 1.4, right).

18

Figure 1.4. Alignment with long poorly supported segments. The alignments of representative
sequences in orthologous groups 0167 (A), 2770 (B), and 23D9 (C) before and after refinement.

1.2.10 Alignment curation

Although the refinement process corrects most cases of over-alignment, the alignment may still
contain regions whose aligned segments have poor or inconsistent support. For example, long
poorly supported segments in internal regions were not removed from the alignment since they
are bounded by at least one consensus column to the left and right. Additionally, some regions
have a significant fraction of sequences with strongly supported segments, but the observed gap
pattern is discordant with the expected phylogenetic relationships. Since they are present in so
few sequences, the former segments are likely artifactual, resulting from errors during assembly

19

or annotation. (Biological explanations such as alternative splice sites, frameshift mutations, or
transposition events are also possible, however.) In contrast, the high sequence identity and clear
boundaries of the segments in the latter regions suggest they are conserved but skipped exons. Given
the heterogeneous sourcing of the transcript evidence, these sequences containing these segments
are likely splice isoforms specific to certain tissues or developmental stage.

Since the segments in these regions are likely the result of incorrect or incomplete annotations
rather than meaningful biological variation, maintaining them in the alignments would propagate
spurious homologies to subsequent analyses. This is a common issue in alignments generated by
automated pipelines, so downstream analyses often focus on the strongly supported regions by
removing or “trimming” columns below some threshold number of gaps or sequence identity [76,
77]. This approach, however, is inadequate if the taxonomic sampling is dense, as a single indel
event along a lineage containing many species can increase the number of gaps above the threshold.
Moreover, as this method does not incorporate any spatial information, it can rapidly alternate
between trimming and preserving columns. Thus, it can severely disrupt any analyses which are
sensitive to the spatial organization of an alignment.

Phylogenetic HMMs (phylo-HMMs) are statistical models that incorporate phylogenetic and spatial
information to calculate the probability that each observation in a sequence was generated by one
of several hidden states [78, 79]. Since they can evaluate both the probability of a gap pattern in a
column given the known phylogenetic relationships and the local context, a phylo-HMM was used
to segment the alignment into contiguous regions with different patterns of gaps. A fully specified
phylo-HMM requires a fixed number of hidden states and a probability distribution for each. Thus,
we identified four distinct types of regions in the alignments, roughly corresponding to highly
conserved regions with few to no gaps, diverged regions, regions with a stable gap pattern discordant
with the expected phylogenetic relationships, and regions with poorly supported segments. For
simplicity, however, we refer to the states that generate each type of region as 1A, 1B, 2, and 3,
respectively. To model probability distributions for each state, we first conceptualized the observed
alignments as the superposition of two distinct processes (Fig. 1.5A, left). The first is a phylogenetic
process which evolves and splits a single ancestral sequence over time according to a tree. The
second is the annotation process which can erroneously exclude or include segments from a sequence.
The result is an alignment of annotated sequences which contains evolutionary information obscured
by noise from the annotation process, shown here by the exclusion of three N-terminal residues in
the fourth annotated sequence. To simplify modeling this behavior with an HMM, we coded the
sequences into binary symbols. The distributions for each state then consisted of two components
derived from the encoded sequences (Fig. 1.5A, right). The first component models the gap pattern
with a Markov process. This Markov process is in turn composed of two subprocesses where the first
is a phylogenetic process, and the second is a jump process. These subprocess roughly correspond
to changes caused by evolution and annotation, respectively. Because this first component did
not fully capture the propensity for the gap patterns to remain constant, we included a second
component that models the “gap stickiness” as a beta-binomial random variable by counting the
number of symbols that remain constant between columns. Each component is associated with a
set of parameters, and the unique parameters for each state yield its characteristic gap pattern and
gap stickiness.

After the model was trained on manually labeled examples, it was used to assign a label to the
columns in each alignment. Columns assigned to states 1A and 1B are the regions of interest for
downstream analyses since the gaps generally follow the expected pattern given the phylogenetic

20

tree. In contrast, columns assigned to states 2 and 3 largely corresponded to the long poorly
supported segments and phylogenetically discordant regions discussed previously and were therefore
removed from the alignments. In the example decoded alignment shown, the decoded states closely
follow the expected patterns (Fig. 1.5B). Overall, 29% of alignments were trimmed of at least one
segment or region. However, 87% of the trims were segment trims, meaning the removed segments
were largely inferred as state 3 and therefore were likely long poorly supported segments aligned
to few if any other sequences (Fig. A5).

Figure 1.5. HMM emission architecture and a decoded alignment. (A) Schematic of theoretical
alignment generating process and corresponding probabilistic components in HMM. White and colored boxes
indicate gap and non-gap symbols in the biological sequences, respectively. White and grey boxes indicate
gap and non-gap symbols in the encoded sequences, respectively. c0 and c1 indicate the first and second
columns in the alignment, respectively. The parameters associated with each component are shown to the
right. (B) The alignment of the representative sequences in orthologous group 2252 decoded using the
trained HMM.

Though the phylo-HMM removed phylogenetically incongruent insertions, some sequences still con-
tained extensive segments of uninterrupted gaps. These segments are easily identified in regions
which are otherwise highly conserved, so they are also likely the result of incorrect or incomplete

21

annotations. However, they can also span more diverged regions, which complicates a simple rule-
or threshold-based approach for identifying them. Thus, another phylo-HMM was trained to label
each position in a sequence as generated by either a “missing” or “not missing” state. In this case,
though, the aligned sequences were processed individually and not as aligned columns. As the
previous phylo-HMM already ensured each column has sufficient support, these labels can instead
be used to exclude sequences from downstream analyses depending on the amount of tolerated
overlap with the regions of interest. Overall, 15% of alignments have at least one sequence with a
segment of “missing” data (Fig. A7).

1.2.11 Inference of species trees

Many phylogenetic methods require a species tree to inform the evolutionary relationships between
sequences. In fact, the phylo-HMMs discussed previously used a species tree as an input, though
we omitted this detail for clarity of exposition. Therefore, to support the curation step and other
downstream analyses, we sought to infer phylogenetic trees from the aligned sequences. How-
ever, since the roots of phylogenetic trees are not identifiable with commonly used time-reversible
substitution models, we repeated the orthology inference pipeline with the outgroup species Scap-
todrosophila lebanonensis. Afterwards, we inferred phylogenetic trees using the LG model of amino
acid substitution from 100 meta-alignments sampled from alignments of single copy orthologous
groups. We then combined them into a single consensus tree (Fig. 1.6A). To provide a similar
tree for the analysis of non-coding regions, we inferred phylogenetic trees using the GTR model of
nucleotide substitution from 100 meta-alignments sampled from nucleotide alignments which were
“reverse translated” from the protein alignments and their corresponding coding sequences (1.6B).
Both trees have an identical topology, which is consistent with other published phylogenies [69, 80].

Figure 1.6. Phylogenetic tree of species. (A) Consensus tree from LG model fit to meta-alignments
directly sampled from the original protein alignments. (B) Consensus tree from GTR model fit to meta-
alignments sampled from “reverse translated” nucleotide alignments. Values at nodes are bootstrap percent-
ages.

22

1.3 Discussion

1.3.1 Developments in genome assembly and annotation challenge existing meth-
ods of orthology inference

The orthologous groups and alignments yielded by this pipeline are a valuable resource for compara-
tive studies of gene birth/death processes and protein evolution at the level of both entire proteomes
and specific gene families in the Drosophila genus. To assist these efforts, the final alignments after
curation and the labels from the “missing” phylo-HMM are provided as supplemental data. Al-
though this work focused on single copy orthologs, other studies may require different subsets of
orthologous groups that demand other pre-processing and alignment strategies. Therefore, we have
included the orthologous groups and the initial alignments with and without non-representative
sequences in the supplemental data as well. While we anticipate these resources will remain rel-
evant in the near term, the trends that permitted this work to substantially improve on previous
efforts will render them obsolete in the coming years as more Drosophila genomes are assembled
and annotated. However, an authoritative and lasting set of orthologous groups and alignments
is not the primary goal of this work. Instead, it serves as a case study in how dense taxonomic
sampling and modern genome assembly and annotation pipelines present new opportunities and
challenges to the traditional techniques for identifying and aligning orthologous groups.

For example, despite many additional pre-processing steps and other tweaks introduced by later
authors, the basic framework of orthology inference by clustering the hit graph has remained
largely unchanged in the past twenty years [49, 56–60, 62, 63]. This longevity is a testament to
the robustness of the underlying idea that orthologous proteins should consistently identify each
other as the most similar pairs between their genomes. Even as the number of genomes and their
taxonomic density has increased dramatically, many orthology inference pipelines continue to use
algorithms which were originally applied to sets of far fewer and more distantly related genomes.
This mismatch in scale increases the chance of propagating annotation errors since only a small
number of edges are needed to create or merge clusters. Thus, we instead applied a generalization of
the triangle and connected components clustering methods called k-clique percolation where k is a
tunable parameter that influences the tightness of a cluster. The optimal value of k for a given set of
genomes is unclear and likely depends on the desired trade-off between sensitivity and specificity.
Furthermore, k is not necessarily a global parameter and can instead depend on the properties
of each connected component. For example, one possibility is to take an entire component as an
orthologous group if its number of unique genes and unique species are equal since all the sequences
are isoforms of a single set of genes. This would effectively set k equal to one for this component.
Another approach is to make k an decreasing function of the density of edges, so sparser graphs
are clustered more permissively. However, percolation theory or simulations may yield additional
insights.

Another challenge is the annotation of multiple isoforms for a single gene. Though prior pipelines
have generally selected the longest isoform as the representative before conducting the orthology
searches, if the sequences do not share a common intron-exon structure this approach can introduce
artifacts or other issues during alignment. Instead, as protein sequences are increasingly derived
from or linked to genomic sequences, we sought to incorporate the full annotations into the orthology
inference pipeline. This, however, created two additional complications. First, a single gene could
have several associated orthologous groups if its isoforms belonged to different clusters. Second, a
single orthologous group could have several isoforms of a single gene if its isoforms were clustered

23

together. In both cases, the presence of multiple sequences for a single gene creates ambiguities
over which is the “primary” isoform. Since the first occurs at the level of orthologous groups,
the orthologous groups were first grouped by the similarity of their parent genes using a graph-
based strategy. Afterwards, a single representative is easily chosen as the group with the largest
number of distinct species, though other criteria are possible. Since the second occurs within an
orthologous group, the sequences were first aligned, and a representative for each gene was chosen
as the sequence which was most concordant with this initial alignment.

The second major innovation in this work is its method for the refinement and trimming of align-
ments. Since sequences produced from automated annotation pipelines can contain long segments
which are not homologous to most or any other sequences in their respective orthologous groups,
their alignments may contain over-aligned or poorly supported regions which can introduce ar-
tifacts into downstream analyses. Thus, in refinement over-alignment is avoided by aligning the
sequences in two stages. In the first highly conserved regions are aligned using a strong correction
for over-alignment, and in the second more diverged regions are aligned with a weaker correction.
This process usually prevents errors caused by long poorly supported segments without degrading
the quality of the alignment. In trimming, a phylo-HMM is used to remove regions which are poorly
supported by the phylogenetic consensus.

1.3.2 Comprehensive bioinformatic analyses of proteins will depend on splice-
sensitive alignments

While the combination of these two steps yielded high-quality alignments that are suitable for
further analyses, they are an ad hoc fix for underlying issues with the gene models and alignment
algorithms. The most principled solution is to optimize or supplement the gene models using the
initial alignments generated by the orthology inference pipeline, which is possible with tools such
as OMGene or OrthoFiller [68, 81]. However, if preserving the original annotations is desired or
necessary, the remaining possibility is to correct the alignments as we have done here. In fact,
the errors we sought to address broadly stem from shortcomings of current alignment algorithms
rather than errors in the sequences themselves. Though the scoring functions of modern multiple
sequence alignment algorithms are complex, they are generally derived from models that penalize
gaps with a linear or affine cost. As a result, they often interlace gaps with short, aligned segments
rather than a single long gap. However, when the sequences are different isoforms of a single gene,
their alignment will necessarily contain contiguous exon sized gaps. The same is true when aligning
isoforms of diverged orthologs, though the relationship between their exons may be complex.

The most popular aligners for protein sequences (Clustal Omega [82], MAFFT [74], MUSCLE [83],
T-Coffee [84]) do not include splice sites in their alignments, which makes them prone to aligning
non-homologous exons. Current algorithms can easily be extended to incorporate splice sites by
coding them as a new symbol and preventing alignment between splice sites and amino acids, which
was recently implemented in the aligner, Mirage [85]. The biggest challenge in practice, however, is
mapping a protein sequence to its genomic sequence to identify splice sites in the protein sequence.
Although this information can in principle be derived from the GTF annotation files produced
by the NCBI pipeline, annotating the splice junctions in the protein sequences themselves would
facilitate splice-sensitive alignment.

These improvements would enhance rather than replace the phylo-HMM trimming method devel-
oped in this work. The model could easily be extended to include a state that outputs a splice
symbol before transitioning to one of the states in the current architecture. This intermediate state

24

would increase the accuracy of state inference since a splice symbol followed by a phylogenetically
discordant gap pattern would strongly signal a state 2 region. The association between state 2 and
skipped exons can be made explicit by requiring that transitions to and from state 2 first proceed
through the splice state. This of course depends on proper labeling of the training data, which
would be trivial since the boundaries between exons would be marked by splice site symbols rather
than inferred from gap patterns. Unfortunately, this would not allow the phylo-HMM to label
extended exon boundaries as state 2 since they would not be bounded by splice symbols to the
left and right. Accordingly, the phylo-HMM would need to permit transitions between state 3 and
any other state to accommodate more complex splice variants and other annotation errors. Thus,
this extended phylo-HMM would combine the strengths of splice-sensitive alignment with the more
heuristic approach used here. Since state 2 inferences would necessarily correspond to skipped
exons, they would be suitable for analyses of this form of alternative splicing. Though state 3 infer-
ences would not directly correspond to specific biological process, they still have value as spatially
and phylogenetically aware labels for trimming poorly supported segments from alignments.

The phylo-HMM could be further enhanced by expanding its emission distribution to include more
symbols in the amino acid alphabet. This would allow it to better model observed substitution
patterns between specific symbols, for example the high rate of exchange between gaps and glu-
tamine residues caused by polyglutamine tracts. The transitions between amino acids could be
parametrized with a published matrix such as LG [86], but the transitions between amino acids
and gaps would be inferred from labeled data. It is unclear if the resulting gain in accuracy would
justify the increased computational burden, however.

1.3.3 Accessible computational tools will facilitate future comparative studies

Though benchmarks are available for optimizing and comparing methods of orthology inference, the
metrics are calculated over a set of reference genomes which are sparsely sampled over a broad tax-
onomic range, so it is unclear if they are informative for method designed to yield robust inferences
when the genomes are highly related [87]. Furthermore, the heterogeneity of genome architec-
tures and annotations may require quality assurance methods tailored to each set of genomes.
Thus, there is likely no one-size-fits-all approach to orthology inference, and with many other
standalone programs available for more standard use cases (Hieranoid [88], OMA standalone [89],
OrthoFinder [90], OrthoInspector [91], Orthologer [92]), we have chosen not to package the code
into an end-to-end pipeline. Instead, we have devoted considerable attention to organizing and
documenting the code to make it accessible to a newcomer and thereby facilitate the adaptation of
specific steps to similar projects as needed.

In contrast, though many HMM packages are available for the Python programming language, we
found none were satisfactorily documented or contained tutorials to introduce HMMs and their
APIs to a wide audience. We therefore refactored this code into a package available on PyPI and
GitHub called Homomorph. The package itself only implements standard HMM algorithms, but
the GitHub repository includes tutorials that introduce the API and implement training routines.
Similar tutorials for machine learning libraries such as TensorFlow have undoubtedly fueled the
application of neural networks across diverse fields, but HMMs are also powerful models that can
be more appropriate when the data obey certain statistical or structural constraints. Thus, we
hope this package and its accompanying tutorials will serve as an on-ramp to HMMs and spur their
greater adoption by non-specialists.

Though databases of orthologous groups such as COGs [93], Ensembl Compara [94], EggNOG [95],

25

OMA [96], OrthoDB [92], OrthoInspector [97], and OrthoMCL [98] will continue to be useful for
comparative studies across broad taxonomic ranges, the increasing speed at which high-quality
genome assemblies and annotations are produced means no single database can encompass the
most complete data. Furthermore, since many early comparative genomics studies spanned diverse
branches of the tree of life, future research will likely prioritize taxonomic depth over breadth. Thus,
custom sets of orthologous groups will grow more and not less common. Despite the challenges
these developments pose, they also present new opportunities to bridge the gap between mutational
and macroevolutionary processes.

1.4 Materials and methods

1.4.1 Sequence de-duplication and BLAST search parameters

The protein sequences for each annotation were de-duplicated by removing any sequences which
had already appeared in association with the same gene. Thus, the first accession associated with
a sequence and gene pair was the sequence’s representative accession for the gene. BLAST+ 2.13.0
was used for the sequence similarity searches [33]. An E-value cutoff of 1 was used for the initial
searches. However, this cutoff was lowered to 1E-10 during processing of the BLAST output.

1.4.2 Extraction of HSPs from BLAST output

To reduce the computational burden of merging HSPs into hits, the BLAST output was filtered
to extract HSPs associated with the highest-scoring gene. The HSPs were first grouped by target
protein, and the resulting groups were sorted in descending order by the bit score of their highest-
scoring HSP. Iterating over the groups, all HSPs in a group were passed to the next step until
the parent gene of the group was not the parent gene of the highest ranked group. This method
collected all candidate HSPs for a target gene if the highest-scoring HSP within a group exceeded
the highest-scoring HSP of the next best gene. This is in some senses an extension of the best
hit criterion where hits are considered at the level of genes rather than proteins. If multiple genes
tied for the highest-scoring HSP, the iteration stopped when the parent gene of the current group
matched none of these highest-scoring genes.

1.4.3 Merging of HSPs into hits

HSPs were merged in two stages where the first combined non-overlapping HSPs, and the second
combined the remaining HSPs. In the first stage, proceeding from highest to lowest bit score,
HSPs were marked as “disjoint” if they did not overlap with any other HSP previously marked as
disjoint. Although this greedy strategy did not necessarily yield the highest-scoring set of disjoint
HSPs, it prioritized higher scoring HSPs. In the second stage, all disjoint HSPs were marked as
“compatible,” and proceeding from highest to lowest bit score the remaining HSPs were marked as
compatible if the overlap with any other compatible HSP was no more than 50% of the length of
either. The best hit for each query was chosen as the hit with the highest sum of bit scores from
disjoint HSPs. The best hits were filtered by overlap and reciprocity criteria. The overlap criterion
was applied first and required that 50% of residues in the query were aligned in compatible HSPs.
This excluded false positives from conserved domains embedded in larger non-homologous proteins
by ensuring the hits spanned a sufficient fraction of the query and target sequences. The reciprocity
criterion required each query-target pair had a corresponding hit where the roles were reversed,
which ensured there was no ambiguity in which target was the best match for the query.

26

1.4.4 Clustering by k-clique percolation

k-clique percolation was implemented in two steps. In the first, maximal cliques were identified.
In the second, a percolation graph was constructed by defining edges between cliques if they had
k-1 nodes in common. Clusters were the connected components of this second graph. The first
step used the NetworkX implementation of a maximal clique algorithm. The second step used a
modification of the NetworkX implementation of the k-clique community algorithm. The NetworkX
implementation exhaustively finds all edges in the percolation graph. Since joining a k-clique
community only requires that a clique has a single edge connecting it to that a community, this
approach was needlessly expensive for large graphs. The custom implementation instead used a
progressive approach where each clique was checked against a list of known communities, merging
communities as necessary in each step.

The hit graph was sparse, so these algorithms were efficient when applied to its individual con-
nected components. However, some components had a structure with many maximal cliques, which
dramatically slowed the first or second step of the clique percolation algorithm. Thus, if either step
exceeded 90 s, the process timed out, and the simpler k-core algorithm was used instead. Out of
over 10,000 connected components, only seven timed out, and many of those contained highly dense
clusters of histone sequences.

1.4.5 Addition of paralogs to orthologous groups

The protein sequences for each annotation were searched against themselves with the same settings
as for the inter-genome searches. The resulting output was processed identically except the HSPs
were not filtered using the best gene criterion. Thus, all HSPs for each query were merged into
hits. The best hit for each query and target gene was chosen as the hit with the highest sum of
bit scores from disjoint HSPs. (Grouping by target gene ensured only the highest-scoring isoform
was selected.) Query-target pairs whose hits exceeded the maximum bit score for all inter-genome
hits associated with that query and passed the overlap and reciprocity filters were designated as
paralogous pairs. The orthologous groups were supplemented with paralogs by adding the paired
sequences for each of the original members of the orthologous group.

1.4.6 Initial alignment and selection of representative sequences

The sequences in each orthologous group were aligned using MAFFT 7.490 with the following
settings: --globalpair --maxiterate 1000 --thread 1 --anysymbol --allowshift --leavegappyregion --
unalignlevel 0.4 [74]. Representative sequences for each gene were selected by maximum likelihood
according to binary profiles constructed from these alignments. First each sequence was coded
into gap and non-gap symbols. The sequences were grouped by gene, and for each group and
position if at least one sequence was aligned in the group, the group contributed one count for the
non-gap symbol to the profile at that position. Otherwise, the group contributed a count for the
gap symbol at that position. To account for the phylogenetic dependencies between sequences, the
counts were weighted according to a Gaussian process over the GTR2 consensus tree described in
the section on inferring species trees [99]. If a species had multiple genes in the orthologous group,
the species weight was divided evenly among them. Each coded sequence was scored according to
this profile, and the maximum likelihood sequence for each gene was selected as its representative.
By assigning a non-gap count to groups and positions where at least one sequence was aligned, the
profile prioritized the selection of sequences with the fewest gaps that best matched the consensus
alignment. Since this scheme can cause a sequence to score negative infinity if it has a gap at

27

a position where every group has at least one aligned sequence, the profile was initialized with a
pseudocount of 0.005 for the gap and non-gap symbols at each position.

1.4.7 Alignment refinement

The representative sequences in the single copy orthologous groups were aligned with the same
settings as described in the previous section except amax was set to 0.7. A binary profile was
created from the alignment using Gaussian process sequence weighting as described in the section on
selecting representative sequences. (Because the orthologous groups were single copy and contained
only representative sequences, each sequence received the full weight associated with its species.)
The binary profile was converted into a binary mask by identifying where the weighted fraction
of non-gap symbols exceeded 0.5. The binary mask was closed with a structuring element of
size three, and highly conserved regions were identified as the contiguous intervals of this closed
mask with a minimum length of 10. Diverged regions were taken as the complement of the highly
conserved regions. For each diverged region, the corresponding segments of the sequences in the
initial alignment were extracted and aligned with amax set to 0.4. The resulting sub-alignments
were stitched into the initial alignment.

1.4.8 Alignment curation

The alignments were coded into gap and non-gap symbols to simplify the emission distributions.
The “insertion” phylo-HMM was composed of the four hidden states described in the main text.
The emission distributions for each consisted of two components which modeled the gap pattern
and the propensity for those patterns to remain constant (“gap stickiness”), respectively. The first
component was a two-state Markov process which was in turn composed of two subprocess. The first
was a phylogenetic process on the on the GTR2 consensus tree described in the section on inferring
species trees, and the second was jump process at the tips. The second component was a beta-
Bernoulli distribution on the number of symbols which were constant between subsequent columns.
The “missing data” phylo-HMM was composed of two hidden states which were both parameterized
with the same two-state, two component Markov process as the insertion phylo-HMM. However, the
emission probabilities were calculated as the posterior probability of the observed symbol given the
data rather than the probability of the data. Only the alignments of the single copy orthologous
groups were curated, so each tip in the species tree corresponded to a single sequence in the
alignment.

The likelihoods of phylogenetic trees were efficiently calculated with Felsenstein’s pruning algo-
rithm, and all HMM algorithms were implemented with custom code which is available as the
package Homomorph on PyPI [100]. The insertion phylo-HMM was trained on 47,387 manually la-
beled columns in 14 alignments, and the missing data phylo-HMM was trained on 67,001 manually
labeled positions in 23 sequences in 11 unique alignments (Fig. A4, Fig. A6). Because maximum-
likelihood estimation of the model parameters yielded posterior decoding curves which toggled
between hidden states too rapidly, the models were instead trained discriminatively [101]. The
difference, briefly, is maximum-likelihood estimation finds the parameters that best reproduce the
observed distributions whereas discriminative training finds the parameters that minimize predic-
tion error. Discriminatively trained models typically perform better in practice since real-world
data are rarely fully described by the distribution specified by the model.

The posterior distributions over states were calculated for each alignment using the trained insertion
phylo-HMM. Regions with a high probability of state 2 or 3 were candidates for trimming. However,

28

because the probability of a state can change rapidly or gradually depending on the local context, a
simple cutoff would not necessarily define the boundaries of these regions as the columns where the
gap pattern changed most abruptly. Instead, the following algorithm was used. First, a high cutoff
defined a “seed” region. The left and right endpoints of the seed were then expanded both inwards
and outwards to define two intervals from which boundaries were selected. The outward expansion
halted when the probability or its derivative was below two distinct thresholds, respectively. The
inward expansion halted when the derivative was below a different threshold. The left and right
boundaries were chosen as the columns in each interval with the maximum product between the
derivative and the change in the gap profile between columns. The gap profile was calculated as
the number of gaps in each column using Gaussian process sequence weighting as described in the
section on selecting representative sequences. By combining where the model’s confidence changed
rapidly with the observed change in the gap pattern, this method generally selected reasonable
boundaries.

States 2 and 3 have distinct characteristics which required different trimming strategies. Regions
with a high probability of state 3 were handled first. Because the long poorly supported segments
in state 3 regions were sometimes aligned to highly conserved columns or short segments in other
sequences, trimming columns entirely would remove these segments from the other sequences even
if they would not qualify as long and poorly supported themselves. Thus, regions with high state
3 probabilities were trimmed at the level of individual sequences rather than entire columns using
the following method. First, the probability of state 3 for columns with a gap profile value less than
or equal to 0.1 was set to 0 to break long poorly supported segments aligned to highly conserved
columns into separate regions. Regions were defined with the previously described algorithm using
high and low cutoffs of 0.75 and 0.01, respectively. The outer and inner derivative cutoffs were
both 0.001. The mean number of non-gap symbols in a region was calculated using Gaussian
process sequence weighting as described in the section on selecting representative sequences. (The
sequences with the five most non-gap symbols were also excluded to not bias the estimate with long
poorly supported segments.) The final mean µ was taken as the minimum of this value and two.
A cutoff k, derived from a geometric model of the number of non-gap symbols and a significance
level α, was calculated using the equation k = log(α)/ log(1 − p) − 1 where p = 1

µ+1 and α = 0.01.
Any sequence whose number of non-gap symbols in the region equaled or exceeded this value was
trimmed by replacing all non-gap symbols with gaps.

To trim the remaining state 2 regions, the posterior probability of state 2 was added to a modified
state 3 probability which was set to zero for any state 3 regions identified in the previous step. This
ensured that any regions which were intermediate between state 2 and 3 were included. Regions
were defined from this combined probability using the algorithm described previously except with
a high probability cutoff of 0.9 instead of 0.75. The posterior probabilities from the missing data
phylo-HMM were converted into state assignments using a similar method. However, the initial
seeds were defined with a cutoff of 0.75, and the seeds were expanded outward to the first non-
gap symbol or until the posterior probability of the “missing data” state was below 0.05. These
assignments, which are available in the supplementary data, can be used to filter segments or entire
sequences from downstream analyses.

1.4.9 Inference of species trees

The orthology inference pipeline was first repeated with the outgroup species Scaptodrosophila
lebanonensis. Orthologous groups with one sequence for each species were aligned, and 100 meta-

29

alignments were constructed by randomly sampling 10,000 columns from these 9,435 alignments.
(The alignments were not refined before sampling.) To determine the effect of invariant columns and
gaps, two sampling strategies were used where invariant columns were allowed or disallowed and the
maximum fraction of gaps was set at 0, 50, and 100%. Their combination yielded six different sets of
meta-alignments. A tree was fit to each meta-alignment with the LG substitution model [86], four
discrete gamma rate categories [102], and optimized state frequencies using IQ-TREE 1.6.12 [103].
If the sampling strategy allowed invariant columns, an invariant rate category was included. The
resulting trees from each set were merged into a majority consensus tree (Fig. A8). All figures are
derived from the maximum 50% gap fraction meta-alignment set unless otherwise noted.

To fit trees using the GTR model of nucleotide substitution, the protein alignments were converted
to nucleotide alignments using the corresponding coding sequences in the genome annotations.
Some protein sequences were “low quality,” meaning their coding sequences contained frameshifts,
premature stop codons, or other errors even though they were strong hits to known protein-coding
genes. The NCBI annotation pipeline corrects some of these defects in the protein sequences, which
can complicate a simple “reverse translation” of the alignment. After rejecting alignments where
the expected translation from a coding sequence differed from its corresponding protein sequence,
3,425 alignments remained. Consensus tree were derived from meta-alignments sampled from these
alignments using the approach described previously except the GTR model was used in place of
the LG model.

To fit trees using the two-state GTR model of substitution, the protein alignments were first coded
into gap or non-gap symbols. As before, 100 meta-alignments were constructed from these coded
alignments for each sampling strategy. In this case, only the presence of invariant columns was
varied, yielding two sets of meta-alignments. Trees were fit using the GTR2 model with no rate
categories. An invariant category, however, was included if invariant columns were allowed. Since
the bootstrap confidences were sometimes lower than 50%, the resulting trees from each set were
merged into a loose consensus tree to prevent multifurcations (Fig. A9).

1.4.10 Code and data availability

The code used to produce the results and analyses is available at https://github.com/
marcsingleton/orthology_inference2023. HMM algorithms were implemented in the
standalone package Homomorph which is available at https://github.com/marcsingleton/
homomorph and on the Python Package Index (PyPI). The following Python libraries were used:
matplotlib [104], NumPy [105], pandas [106], and SciPy [107]. Relevant output files are avail-
able in the supporting information. There are no primary data associated with this manuscript.
All primary data are available from publicly accessible sources described in their corresponding
sections.

30

https://github.com/marcsingleton/orthology_inference2023
https://github.com/marcsingleton/orthology_inference2023
https://github.com/marcsingleton/homomorph
https://github.com/marcsingleton/homomorph

CHAPTER 2

Evolutionary analyses of IDRs reveal patterns of conserved features

Abstract

Intrinsically disordered regions (IDRs) are segments of proteins without stable three-dimensional structures.
As this flexibility allows them to interact with diverse binding partners, IDRs play key roles in cell signaling
and gene expression. Despite the prevalence and importance of IDRs in eukaryotic proteomes and various
biological processes, associating them with specific molecular functions remains a significant challenge due
to their high rates of sequence evolution. However, by comparing the observed values of various IDR-
associated properties against those generated under a simulated model of evolution, a recent study found
most IDRs across the entire yeast proteome contain conserved features. Furthermore, it showed clusters
of IDRs with common “evolutionary signatures,” i.e. patterns of conserved features, were associated with
specific biological functions. To determine if similar patterns of conservation are found in the IDRs of other
systems, in this work we apply a series of phylogenetic models to over 8,500 orthologous IDRs identified in
the Drosophila genome to dissect the forces driving their evolution. By comparing models of constrained
and unconstrained continuous trait evolution using the Brownian motion and Ornstein-Uhlenbeck models,
respectively, we identify specific clusters of IDRs with shared patterns of constraint. As in yeast, these
clusters are enriched for proteins with specific functional annotations, which suggests the preservation of
distributed features and their associated functions is a widespread mechanism of IDR evolution.

2.1 Introduction

Intrinsically disordered regions (IDRs) are segments of proteins which lack stable three-dimensional
structures and instead exist as ensembles of rapidly interconverting conformations. As a result
of this structural heterogeneity, IDRs can interact with diverse binding partners. Often these
interactions have high specificity but moderate affinity, which permits the efficient propagation of
signals by rapid binding and dissociation [22, 108]. Furthermore, as IDRs readily expose their
polypeptide chains, they are enriched in recognition motifs for post-translational modifications
which allow environmental or physiological conditions to modulate their interactions. Accordingly,
IDRs often act as the “hubs” of complex signaling networks by integrating signals from diverse
pathways and coordinating interactions [20, 21]. However, as IDRs are ubiquitous in eukaryotic
proteomes, with estimates of the fractions of disordered residues in the human, mouse, and fruit
fly proteomes ranging between 22 and 24% [109, 110], they are involved in diverse processes [17]
including transcriptional regulation [23] and the formation of biomolecular condensates [111].

Despite the prevalence and importance of IDRs in eukaryotic proteomes, associating them with
specific molecular functions or biological processes remains a significant challenge. The sequences

31

of IDRs are generally poorly conserved, so traditional bioinformatics approaches which rely on
the conservation of amino acid sequences to identify homologous proteins and transfer annotations
between them are largely unsuccessful when applied to IDRs. However, several recent studies
have demonstrated evidence that IDRs are constrained to preserve “distributed features” such as
flexibility [37], chemical composition [38], net charge [39], or charge distribution [40]. Because
many sequences can yield a region with a specific composition, for example, this mode of constraint
uncouples an IDR’s fitness from its strict sequence of amino acids. Furthermore, in contrast to
folded regions whose precise contacts and packing geometries are easily disrupted by amino acid
substitutions, distributed features are robust to such changes, as individual residues only weakly
contribute to a region’s fitness. For example, a mutation at one site in an IDR that changes its
net charge is easily reversed by subsequent compensatory mutations elsewhere in the region. Thus,
under this model the sequences of IDRs can rapidly diverge and still preserve their structural or
functional properties.

This form of selective constraint can also describe the evolution of more “localized” features in IDRs
such as short linear motifs (SLiMs). Because SLiMs are composed of fewer than 12 residues, they
form limited interfaces that frequently mediate the transient binding events involved in signaling
pathways [19]. Accordingly, they are highly enriched in IDRs, which provide an accessible and
flexible scaffold for these interactions [112, 113]. While some SLiMs in IDRs are strongly conserved
at specific positions, these constitute a small fraction of disordered residues, estimated at roughly
17% in the yeast proteome [114]. Instead, as SLiMs are compact and often highly degenerate at
some positions, they can arise de novo from a small number of mutations and therefore have high
rates of turnover. Furthermore, when IDRs contain multiple copies of a motif that jointly mediate
a high-avidity interaction [19] or a graded response to a signal via the accumulation of multiple
phosphorylations [22, 115], the individual motifs are under weak selective constraints. As a result,
though SLiMs are encoded by specific sequences, in some contexts they may evolve as distributed
features that characterize IDRs as a whole rather than specific sites within them [116].

The initial studies demonstrating evidence of constraint were generally restricted to specific features
or proteins. However, by comparing the observed values of various IDR-associated properties
against those generated under a simulated model of evolution, Zarin et al. showed most IDRs
across the entire yeast proteome contain conserved features. Furthermore, they identified clusters
of IDRs with common “evolutionary signatures,” i.e. patterns of conserved features, which were
associated with specific biological functions. This analysis for the first time provided a global view
of the relationship between sequence and function in IDRs. A follow-up study then expanded
on this initial finding by applying techniques from machine learning and statistics to predict the
functions of individual IDRs using their evolutionary signatures [117].

However, no known subsequent studies have determined if similar patterns of conservation are found
in the IDRs of other systems. As another foundational model organism with abundant genomic
information across many evolutionary lineages [41–44], the fruit fly, Drosophila melanogaster, is
a natural choice for subsequent investigation. Furthermore, given its complex multicellular devel-
opment process and shared signaling pathways with humans, the findings of such a study would
significantly advance our understanding of the role of IDRs in gene regulation as well as human
health and disease. The concordance of these results with the previously identified IDR clusters
would also have profound implications for the broader mechanisms of IDR evolution. For example,
the absence of global patterns of evolutionary signatures across IDRs in Drosophila would suggest
they are property of IDRs which is unique to yeast. In contrast, the identification of clusters similar

32

to those in yeast would indicate the existence of a taxonomy of IDRs which is conserved across the
tree of life. The latter result would represent a significant step towards the creation of resources
for the classification of IDRs analogous to those for folded domains such as Pfam [35], CATH [118],
or SCOP [119, 120].

Therefore, in this work we apply a series of phylogenetic models to a set of orthologous IDRs iden-
tified in the Drosophila genome to dissect the forces driving their evolution. Our analyses span
multiple levels, ranging from the sequences that compose these regions to the distributed features
that characterize them as a whole. For the latter, though the previous approach relied on simula-
tions to generate the null distribution for a hypothesis of no constraint, we instead leverage a fully
statistical phylogenetic comparative framework [121]. By comparing models of constrained and un-
constrained continuous trait evolution, i.e. the Brownian motion and Ornstein-Uhlenbeck models,
respectively, we can demonstrate evidence of selective constraint on features independent of any
assumptions about the underlying process of sequence evolution. However, we also propose hybrid
approaches that combine simulations with phylogenetic comparative methods to test increasingly
refined models of IDR evolution. We find that IDRs exhibit unique patterns of amino acid substi-
tution and that in some proteins disorder itself is a dynamically evolving property. Furthermore,
though IDRs are broadly unconstrained along several axes of feature evolution, we identify specific
clusters of IDRs with shared patterns of constraint. As in yeast, these clusters are enriched for pro-
teins with specific functional annotations, which suggests the preservation of distributed features
and their associated functions is a widespread mechanism of IDR evolution.

2.2 Results

2.2.1 IDRs are shorter and more divergent than non-disordered regions

We identified regions with high levels of inferred intrinsic disorder in over 8,500 alignments of single
copy orthologs from 33 species in the Drosophila genus using the disorder predictor AUCPreD [122].
To highlight the unique features of IDR evolution in subsequent analyses, we also extracted a com-
plementary set of regions with low levels of inferred disorder. Both sets were filtered on several
criteria, including the lengths of their sequences and their phylogenetic diversity, which yielded
11,445 and 14,927 regions, respectively, from 8,466 unique alignments. In the subsequent discus-
sion, we refer to these sets as the “disorder” and “order” regions, respectively. To investigate the
differences in basic sequence statistics between the two region sets, we first generated histograms
from the average length of each region (Fig. B1). Although both distributions span several orders
of magnitude, the order regions are generally longer than the disorder regions, with means of 105
and 245 residues, respectively. We then quantified the sequence divergence in each region by fitting
phylogenetic trees to the alignments using amino acid and indel substitution models. The average
rates of substitution are significantly larger in the disorder regions, demonstrating that while both
sets contain conserved and divergent regions, IDRs are enriched in more rapidly evolving sequences
(Fig. B1).

2.2.2 IDRs have distinct patterns of residue substitution

To gain insight into the substitution patterns of amino acid residues in the disorder and order
regions, we fit substitution models to meta-alignments sampled from the respective regions. These
models are probabilistic descriptions of sequence evolution and are parameterized in terms of the
one-way rates of change from one residue to another. Thus, the rates are not necessarily equal for

33

a given pair when the initial and target residues are swapped. For example, the rate of change of
valine to tryptophan can be distinct from that of tryptophan to valine. In practice, substitution
models are typically constrained to fulfill a condition called time-reversibility, as this converts a
difficult multivariate optimization of the tree’s branch lengths into a series of simpler univariate
optimizations [100]. A common method for fulfilling this condition is parameterizing the model
in terms of a frequency vector, π, and an exchangeability matrix, S. The frequency vector deter-
mines the model’s expected residue frequencies at equilibrium, meaning the model dictates that all
sequences eventually approach this distribution, no matter their initial composition. The exchange-
ability matrix is symmetric (sij = sji) and encodes the propensity for two residues to interconvert.
Because the rate of change from residue i to residue j is given by rij = sijπj , higher exchangeabil-
ity coefficients yield higher rates of conversion. Thus, exchangeability coefficients are frequently
interpreted as a measure of biochemical similarity between residues.

To highlight the differences in patterns of residue substitution between the disorder and order
regions, the parameters in each model are directly compared in Fig. 2.1, beginning with the fre-
quency vectors. The disorder regions show an enrichment of “disorder-promoting” residues such as
serine, proline, and alanine, and a depletion of hydrophobic and bulky residues such as trytophan
and phenylalanine (Fig. 2.1A). The exchangeability matrices fit to the disorder and order regions
have similar overall patterns of high and low coefficients (Fig. 2.1B-C). However, the log ratios
of the disorder to the order exchangeability coefficients show clear differences within and between
the disorder-enriched and -depleted residues. The disorder-enriched residues are less exchangeable
with each other, whereas disorder-depleted residues are more exchangeable with each other and
with disorder-enriched residues (Fig. 2.1D). Likewise, we observe a trend in the log ratios of the
rate coefficients where the coefficients above the diagonal are generally positive, and those below
the diagonal are generally negative. As the coefficients model the one-way rates of substitution
between residues with the vertical and horizontal axes indicating the initial and target residues,
respectively, this suggests a net flux towards a more disorder-like composition. However, the coeffi-
cients between the disorder-depleted and -enriched classes of residues for both the exchangeability
and rate matrices should be interpreted with caution, as they are estimated with a high amount of
uncertainty (Fig. B5-B6).

2.2.3 Intrinsic disorder is poorly conserved in some proteins

Though the substitution models reveal specific patterns of evolution at the level of individual
residues, the large amounts of sequence divergence between many orthologous IDRs implies their
evolution is not well-described by fine-scale models of residue substitution. Given the growing
evidence that IDRs are constrained to conserve distributed properties, we instead turned towards
characterizing their evolution in terms of 82 disorder-associated “molecular features” obtained from
the previous study of IDRs in the yeast proteome. However, before conducting an in-depth analysis
of these features, we examined the disorder score traces in greater detail and were struck by the
significant variability between species. For each residue in the input sequence, AUCPreD returns
a score between 0 and 1 where higher values indicate higher confidence in a prediction of intrinsic
disorder. In some alignments, the scores vary by nearly this entire range at a given alignment
position even when there is a relatively high level of sequence identity (Fig. 2.2A).

To better understand the relationship of this variability to differences in the regions’ biophysical
properties, we sought to correlate the average disorder score of the segments in a region with
their molecular features. However, as the sequences are not independent but instead related by a

34

Figure 2.1. Amino acid substitution models fit to disorder and order regions. (A) Amino
acid frequencies of substitution models. Amino acid symbols are ordered by their enrichment in disorder
regions, calculated as the disorder-to-order ratio of their frequencies. Error bars represent standard devia-
tions over models fit to different meta-alignments (n = 25). (B-C) Exchangeability coefficients of disorder
and order regions, respectively, averaged over meta-alignments. (D) log10 disorder-to-order ratios of ex-
changeability coefficients. (E-F) Rate coefficients of disorder and order regions, respectively, averaged over
meta-alignments. The vertical and horizontal axes indicate the initial and target amino acids, respectively.
(G) log10 disorder-to-order ratios of rate coefficients.

hierarchical structure which reflects their evolutionary relationships, any features derived from them
are unsuitable for direct use in many standard statistical procedures. In the most severe cases, traits
derived from clades of closely-related species can effectively act as duplicate observations, which can
yield spurious correlations. We therefore applied the method of contrasts to both the scores and the
features. This algorithm takes differences between adjacent nodes in the phylogenetic tree relating
the species to generate “contrasts,” which, under some general assumptions of the underlying
evolutionary process, are independent and identically-distributed and therefore appropriate for use
in correlation analyses. The resulting feature contrasts have varying degrees of correlation with
the score contrasts (Fig. 2.2B-C). Some, like isopoint, are uncorrelated, but most are significantly,

35

Figure 2.2. Analyses of disorder scores. (A) Example region in the alignment of the sequences in
orthologous group 07E3 with their corresponding disorder scores. Higher scores indicate a higher probability
of intrinsic disorder. Disorder score traces are colored by the position of their associated species on the
phylogenetic tree. (B) Correlations between disorder scores and feature contrasts in regions. Asterisks
indicate statistically significant correlations as computed by permutation tests (p < 0.001). (C-D) Example
scatter plots showing correlations given in panel B. (E) GO term analysis of regions with rapidly evolving
disorder scores. Only terms where p < 0.001 are shown.

36

if weakly, correlated. In general, the strongest correlations are observed for features which have
a direct biophysical relationship to the presence or absence of disorder, such as disorder fraction
or hydrophobicity. Interestingly, the correlations with many motifs were statistically significant,
though small in magnitude relative to the non-motif features. However, a more detailed analysis of
this observation is presented in the discussion. To determine if regions with rapidly evolving disorder
scores are associated with particular functions, processes, or compartments, we then extracted the
regions in the upper decile of the rate distribution and performed a term enrichment analysis on
their associated annotations (Fig. B7). The most significant terms are generally related to DNA
repair or extracellular structure, which suggests these processes and components are enriched in
proteins whose structural state is rapidly evolving (Fig. 2.2E).

2.2.4 IDRs have three axes of unconstrained variation

Having calculated the features associated with the sequence segments composing each region in our
data set, we then sought to determine if their distributions contained any global structure which
would enable us to identify classes with distinct biophysical or functional properties. These distri-
butions are generated by a complex underlying evolutionary process which reflects the combined
effects of selection, drift, and mutation. However, to leverage a statistical framework to infer the
properties of this process, we fit Brownian motion (BM) models to the features calculated from the
segments in each region. BM is a simple model of evolution where continuous traits change through
a series of small, undirected steps. Thus, the traits accumulate variation at a constant rate over
time but do not on average deviate from their original values. BM models are therefore specified
by two parameters: a rate, which describes the speed at which trait variation accumulates, and a
root, which describes the ancestral trait value.

We then applied principal components analyses (PCAs) to visualize the major axes of variation
of the root and rate parameters for each feature and region. A difficulty with a direct analysis of
the parameter estimates, however, is PCAs are sensitive to differences in scaling between variables,
and some features have dramatically different intrinsic scales. For example, many compositional
features, like fraction S, are restricted to the interval [0, 1], whereas SCD is unbounded and can
vary from negative to positive infinity. As a result, SCD is responsible for a significant fraction of
the overall variance in both parameter distributions (Fig. B8-B9). Therefore, we first normalized
the parameters associated with each feature by transforming them into z-scores relative to their
proteome-wide distributions.

The first two principal components of the root distributions show little overall structure, though
there is a slight enrichment of regions along two axes that correlate with acidic and polar features,
respectively (Fig. 2.3). Likewise, the projections of the rates onto the first two components are
largely distributed along the first principal component (Fig. 2.4A). This and the variable amounts
of sequence divergence in the regions led us to suspect the first principal component was a measure
of the overall rate of sequence evolution. Plotting the first principal component against the sum
of the average amino acid and indel rates as measured by substitution models revealed a strong
association (Fig. 2.4B). We then projected the rates along second and third principal components
to determine if these higher order components contained any additional structure. The resulting
distribution is roughly triangular and contains three major axes of variation, corresponding to
rapid changes in the regions’ proportions of acidic, glutamine, and glycine residues (Fig. 2.4C-
D). Inspection of regions selected along these axes confirmed the high rates of evolution of these
features (Fig. 2.4E-G). Furthermore, we observe a similar distribution when the rates of the order

37

Figure 2.3. PCA of disorder regions’ feature roots. (A) The first two PCs of the disorder regions’
feature root distributions. The explained variance percentage of each component is indicated in parentheses in
the axis labels. (B) The same plot as panel A with the projections of original variables onto the components
shown as arrows. Only the 16 features with the largest projections are shown. Scaling of the arrows is
arbitrary.

regions were projected along their second and third principal components, which suggests a lack of
constraint along these axes is a general property of rapidly evolving proteins (Fig. B10).

2.2.5 A model of constrained evolution reveals patterns of conserved features

Though the BM process permits the inference of the rates of feature evolution after accounting for
the phylogenetic relationships between species, it does not directly test for their conservation. In
fact, under the BM model, trait variation is unconstrained and will increase without bound over
time. Instead, evidence of conservation requires comparison to a model where trait variation is
constrained. A common choice for modeling the effect of selection on the evolution of a continuous
trait is the Ornstein-Uhlenbeck (OU) model. The OU model is similar to the BM model where a
trait accumulates variation through a series of small, undirected steps. However, it differs in that the
trait is also attracted towards an optimal value where the attraction is proportional to a parameter α
and the trait’s distance from this value. Under an additional assumption of stationarity that ensures
parameter identifiability and estimate consistency, the OU model is therefore specified with three
total parameters: the optimal value, the fluctuation magnitude, and the selection strength [123,
124]. While the first two parameters are analogous to the root and rate parameters in the BM
model, respectively, the selection strength has no equivalent.

We therefore fit OU models to the features calculated from the segments in each region to detect
evidence of their conservation. A strength of probabilistic models of trait evolution is they permit
the use of standard statistical methods to compare the support for different hypotheses. Thus, the
goodness of fit of the OU model relative to that of the BM model is a measure of the evidence
for selective constraint. However, because the OU model is specified with an additional parameter
and has a greater capacity to fit the data, we compared their fits using the difference in the Akaike
information criterion (AIC), which accounts for the model complexity, rather than the likelihood
ratio. We chose not to treat these differences in a strict statistical sense but instead as qualitative
“evolutionary signatures” as in Zarin et al. [125]. Accordingly, we clustered the signatures to identify

38

Figure 2.4. PCA of disorder regions’ feature rates. (A) The first two PCs of the disorder regions’
feature rate distributions. The explained variance percentage of each component is indicated in parentheses.
(B) Scatter plot of the disorder regions’ feature rates along the first PC against the sum of the average
amino acid and indel substitution rates in those regions. (C) The second and third PCs of the disorder
regions’ feature rate distributions. The explained variance percentage of each component is indicated in
parentheses in the axis labels. (D) The same plot as panel C with the projections of original variables onto
the components shown as arrows. Only the 16 features with the largest projections are shown. Scaling of
the arrows is arbitrary. (E-F) Example alignments of disorder regions from the orthologous groups 0A8A,
3139, 04B0, respectively. The colored bars on the left indicate the hexbin containing that region in panel C.

39

patterns of feature conservation across the proteome. To ensure the clusters were enriched in regions
with a high likelihood of feature conservation despite low levels of sequence identity, we restricted
this analysis to regions with a minimum amount of divergence as measured by substitution models
(Fig. B11).

Figure 2.5. Hierarchical clustering of evolutionary signatures. The AIC difference between the BM
and OU models is measure of their relative goodness of fit to the data with a penalty for the number of
parameters in each. Larger values indicate a better fit by the OU model. Clusters are indicated by rectangles
on the right. The cluster descriptions are summaries of selected significantly enriched annotations (p < 0.01)
and do not necessarily correspond to specific terms.

The resulting heatmap reveals patterns of similar signatures interspersed among a high background
of noise (Fig. 2.5). However, we identify at least 12 clusters with a strong and consistent patterns of

40

constraint, with many having significant associations with certain processes, functions, or compart-
ments. For example, cluster B is strongly enriched in proteins associated with the Wnt signaling
pathway, and cluster F contains many proteins involved in nuclear transport. (Selected annotations
corresponding to the summaries in Fig. 2.5 are given in Table B1.) Though these preliminary results
suggest the existence of a high-level relationship between certain patterns of conserved features and
function, further insight into the mechanisms that underpin these associations will rely on more
in-depth analyses of specific clusters and the properties of their constituent IDRs.

2.3 Discussion

2.3.1 IDRs have distinct patterns of sequence and feature evolution

In this study, we applied several phylogenetic models to IDRs to interrogate the evolution of their
sequences and molecular features. Most significantly, through a comparison of two models of
continuous trait evolution we demonstrate evidence of widespread constraint in IDRs within the
Drosophila proteome. Furthermore, using evolutionary signatures derived from these models, we
identify several clusters of IDRs with shared patterns of constraint and associations with specific
biological functions. Most immediately, this work generates hypotheses on the importance of various
molecular features that will aid in the functional dissection of IDRs in specific proteins. More
broadly, though, it suggests that constraint of distributed features is a mechanism of IDR evolution
common to multiple biological systems. However, in the absence of more detailed analyses of
individual clusters, it remains unclear if any are homologous or analogous to those identified in yeast.
Additionally, the clusters’ functional associations require careful interpretation. For example, the
cluster descriptions summarize a subset of the enriched annotations which were selected for their
related functions. Because the significance tests were not corrected for multiple testing or controlled
for their false discovery rate, some annotations with significant enrichment, which may include the
subset selected for the cluster descriptions, are likely spurious. Thus, while these initial results are
promising, further investigation is necessary to corroborate them.

In addition to these global clusters of conserved features, we found IDRs exhibit other distinct
patterns of evolution. For example, a comparison of the exchangeability matrices fit to the disorder
and order regions shows that, relative to the order regions, the disorder regions have decreased ex-
changeability coefficients between the disorder-enriched residues. Conversely, the disorder-depleted
residues have increased exchangeability coefficients with each other. As a residue’s enrichment in
IDRs is generally interpreted as a measure of its ability to promote intrinsic disorder, these results
indicate that within IDRs and relative to folded domains, disorder-promoting residues are subject
to stricter constraints, whereas structure-promoting residues are more biochemically interchange-
able. A potential weakness of this analysis is its dependence on sequence alignments which were
created using scoring matrices that are in turn derived from other substitution models. Previous
studies have attempted to minimize the impact of this circular dependency through an EM-like pro-
cedure where substitution models are first fit to alignments, and the sequences in the alignments
are then re-aligned with scoring matrices derived from the fit models in alternating rounds until
convergence [126, 127]. Because our analyses fit the substitution models directly from alignments,
the observed patterns are possibly an artifact of using a scoring matrix derived from folded domains
to align IDRs. However, as our matrices reproduce the trends reported in these prior studies, they
likely reflect true differences in the patterns of residue substitution within IDRs.

This result is a partial reversal of the typical pattern observed in folded proteins where the gen-

41

erally larger and more hydrophobic structure-promoting residues are subject to strict geometric
constraints imposed by the tightly packed hydrophobic core. In contrast, the smaller and more
hydrophilic disorder-promoting residues are more variable, as they often occur in flexible, solvent-
exposed regions. It is, however, consistent with other analyses of sequence-function relationships
in IDRs. For example, several studies demonstrated that acidic activation domains of transcrip-
tion factors, which are usually disordered, contain clusters of hydrophobic residues interspersed
throughout their largely acidic chains [28–30]. Additionally, these studies showed that many dis-
tinct sequences can yield similar levels of transcriptional activity. Together, these findings sug-
gest a model of transcriptional activation where the repulsions between acidic residues maintain
the bulky hydrophobic residues in accessible conformations that in turn allow the activation do-
mains to bind their targets through non-specific hydrophobic interactions. As these interactions
do not require highly complementary interfaces, the observed increase in exchangeability coeffi-
cients between hydrophobic residues is consistent with this model and may reflect the prevalence of
such “fuzzy complexes” in IDR interactions. Furthermore, other studies have shown that different
disorder-promoting residues have specific effects on the material properties of condensates formed
by phase-separating IDRs. For example, in FUS family proteins glycine residues enhance fluidity,
whereas glutamine and serine residues promote hardening [128]. Even glutamine and asparagine
residues, which differ by a single methylene group, can have disparate effects on the conformational
preferences of IDRs. While glutamine-rich sequences are conformationally heterogeneous and form
toxic aggregates, asparagine-rich sequences instead assemble into benign amyloids, as asparagine’s
shorter side chain promotes the formation of turns and β-sheets [129]. Thus, these observations
along with the decreased exchangeability coefficients between disorder-promoting residues suggest
that subtle differences in their biochemical properties may constrain patterns of residue substitution
in IDRs.

2.3.2 Disorder is correlated with many molecular features

Though the mutations generated by evolution are not a random or exhaustive sample of sequence
space, they are perturbations of a common ancestor which can reveal the relationship between a
region’s biophysical properties and its propensity for disorder. Thus, the analysis of feature and
score contrasts is effectively a natural “mutational scanning” experiment. We found that disorder
scores have the strongest correlations with features that measure a region’s overall polarity and
hydrophobicity, e.g. fraction disorder and hydropathy. As the formation of a hydrophobic core is a
major driving force in protein folding, this relationship is expected. However, the strength of these
correlations indicate that a region’s relative proportion of hydrophilic and hydrophobic residues is,
to a first approximation, the largest determinant of predicted intrinsic disorder.

Excluding these hydrophobicity-related features, the next strongest association is a negative cor-
relation with wf complexity, demonstrating the predictor strongly associates low complexity with
intrinsic disorder. However, sequence complexity is a statistical rather than a biophysical criterion,
and while many disordered regions have low levels of complexity, some low-complexity regions,
like collagen, are structured. This suggests that while disorder predictors are in general accurate
classifiers of a residue’s structural state [32], they can conflate the correlates of intrinsic disorder
with their causes. Therefore, in some cases their predictions may require careful interpretation.

The remaining significant correlations are generally weak and likely reflect a partial redundancy with
the more strongly correlated features discussed previously. Interestingly, though, disorder scores
are weakly correlated with many motifs, with the signs largely reflecting their class. For example,

42

the correlations with docking (DOC) and ligand binding (LIG) sites are largely negative, whereas
those with modification (MOD) sites are generally positive. However, this analysis does not indicate
whether the predictor responds to these motifs directly or to features that are correlated with them.
For example, docking and ligand binding sites are generally mediated by small hydrophobic patches,
so the correlations could reflect an increase in hydrophobicity caused by an additional hydrophobic
residue “completing” the motif rather than the motif itself. Likewise, IDRs are highly enriched
in phosphorylation sites, many of which are targeted to disorder-promoting residues like serine or
threonine. As the disorder scores and features are calculated at the level of regions, whose lengths
can exceed 1,000 residues, this analysis is limited in its ability to distinguish these possibilities.
However, a more targeted in silico mutational analysis would yield further insights.

The GO annotation enrichment analysis indicates that proteins involved in DNA repair and extra-
cellular structures contain a disproportionate number of regions whose disorder scores are rapidly
evolving. Because the significance tests were not corrected for multiple testing or controlled for
their false discovery rate, we caution against over-interpreting this result and instead consider it as a
hypothesis for further investigation. In general, however, the regions with rapidly evolving disorder
scores may correspond to molecular recognition features (MoRFs), which are modules in IDRs that
undergo a disorder-to-order transition on binding their targets [17, 130]. Because MoRFs already
exist on the boundary between disorder and structure, small changes in the biophysical properties
of these regions may have large effects on their structural ensembles. Thus, the most variable dis-
order scores may reflect instances where a mutation triggered a “phase transition” between largely
structured or disordered native states.

2.3.3 Future evolutionary analyses of IDRs will require a multimodal approach

As discussed by Zarin et al., the interpretation of evolutionary signatures is complicated by several
methodological limitations [125]. For example, because IDRs are identified as contiguous segments
of high predicted disorder, their boundaries are defined by adjacent structural elements. This
approach can therefore split an IDR that is a single evolutionary or functional unit if it contains
a semi-disordered module that scores below the threshold. Conversely, it can also merge two
distinct IDRs if they are not separated by at least one folded domain. Another challenge is the
significant overlap in the definitions of many features induces strong correlations that preclude
straightforward quantitative manipulations or interpretations of an IDR’s evolutionary signature.
The original authors have since addressed this in subsequent studies by applying machine learning
methods to perform feature selection or learn features directly from alignments of IDRs [117, 131].
However, integrating these methods into a unified phylogenetic comparative framework will require
further effort.

By fitting the BM and OU models to molecular features calculated from alignments of IDRs,
we were able to quantify the relative support for constrained and unconstrained models of IDR
evolution using a statistical framework. As the BM and OU models describe the evolution of
arbitrary continuous traits, a strength of this approach is its independence from assumptions about
the underlying process of sequence evolution. In contrast, the previous study used simulations to
generate null distributions for a model of no constraint and defined an IDR’s evolutionary signature
as its deviation from these distributions. However, these comparisons do not directly demonstrate
evidence of stabilizing selection but instead test for differences from the null hypothesis. Thus,
this approach is highly dependent on the specification and parameterization of these simulated
models. Accordingly, an error in either can yield evidence of constraint for an IDR even if none of

43

its molecular features are under selection.

However, the comparative phylogenetics methodology applied here also has limitations. As many
features have strict boundaries or cannot vary continuously, they violate one or more of the under-
lying assumptions of the BM and OU models. Fortunately, for many features these inconsistencies
likely do not seriously compromise the analysis. For example, though compositional features like
fraction S are mathematically restricted to the interval between zero and one, they are likely con-
strained by much narrower selective regimes, and within these regimes, their behavior is effectively
described by an OU model. For other features, however, the deviations are more consequential. For
example, net charge and the motif features can only assume integer and non-negative values, re-
spectively, which imposes significant restrictions on their allowed increments that are not reflected
in the BM and OU models. Instead, more appropriate models for count data are birth-death
processes, which are Markov chains defined on the natural numbers. However, though linear birth-
death processes are well-studied and widely applied in biology [132], to our knowledge there are no
simple parameterizations which describe a mean-reverting behavior analogous to the OU model.
Thus, further theoretical developments are needed to apply birth-death processes as a model of
stabilizing selection in studies of IDR evolution.

While the BM and OU models are powerful tools for studying trait evolution, their generality
limits the specificity of the hypotheses they can test. In contrast, because simulation-based ap-
proaches can specify arbitrary constraints, they permit investigations of increasingly refined models
of IDR evolution. We therefore view the two approaches as complementary and propose the use
of hybrid methods where test statistics are derived from phylogenetic comparative methods like
the BM model, and simulations generate the null distributions for those test statistics. While
simulations can eliminate specific hypotheses, the substantial resources involved both in designing
them and generating samples make exhaustively testing mechanisms of feature constraint by sim-
ulation impractical. We instead recommend a workflow that begins with an analysis using general
models of trait evolution to suggest specific hypotheses of constraint that are then tested with a
simulation-based approach. Another hybrid method involves using sequence permutations to test
for the conservation of motifs or patterned features like kappa. In this method, a comparative model
like BM provides the test statistic as before, and a sample of shuffled sequences approximates the
null distribution. Because the background distribution of residues is preserved, this procedure can
specifically test for the conservation of motifs or patterned features in an IDR independent of the
conservation of its composition.

However, as IDRs are likely subject to multiple selective pressures where the constraints on different
compositional, patterned, or motif features are highly specific to each, we anticipate a range of
computational and experimental methods will be needed to disentangle the complex forces driving
their evolution. Accordingly, while these results represent a significant step forward in relating
sequence to function in IDRs, further studies exploring these and other approaches will undoubtedly
reveal new insights into these ubiquitous but poorly understood regions of proteins.

2.4 Materials and methods

2.4.1 Alignment and species tree provenance

Alignments of 8,566 single copy orthologs and the corresponding outputs of the missing data phylo-
HMM were obtained from the analyses conducted in chapter 1. Likewise, the LG consensus tree

44

generated by the “non-invariant, 100% redundancy” sampling strategy was used as the input or
reference where indicated in subsequent phylogenetic analyses.

2.4.2 IDR prediction and filtering

Based on its strong performance in a recent assessment of disorder predictors, AUCPreD was chosen
to identify regions with a high probability of intrinsic disorder [32, 122]. After removing the gap
symbols from the sequences in the alignments, the disorder scores of each sequence were predicted
individually. (Alignments 0204 and 35C2 contained sequences which exceeded the 10,000-character
limit and were excluded from subsequent analyses.) The resulting scores were then aligned using
the original alignment. The average score for each position was calculated using Gaussian process
sequencing weighting over the LG consensus tree [99]. Any positions inferred as “missing” by the
missing data phylo-HMM or to the left or right of the first or last non-gap symbol, respectively, were
excluded. For simplicity, the Gaussian process weights were not re-calculated from a tree pruned
of the corresponding tips, and instead the weights corresponding to the remaining sequences were
re-normalized. The scores at any remaining positions with gap symbols were inferred by linear
interpolation from the nearest scored position.

The average disorder scores were converted into contiguous regions with the following method. Two
binary masks were defined as positions where the average score exceeded high and low cutoffs of
0.6 and 0.4, respectively. The low-cutoff mask was subjected to an additional binary dilation with
a structuring element of size three to merge any contiguous regions separated by a small number of
positions with scores below the cutoff. “Seed” regions were then defined as 10 or more contiguous
“true” positions in the high-cutoff mask, and “disorder” regions were obtained by expanding the
seeds to the left and right until the first “false” position in the low-cutoff mask or the end of the
alignment. “Order” regions were taken as the complement of the disorder regions in each alignment.

The regions were filtered with the following criteria. First, segments with non-standard amino acid
symbols, which overlapped with any position labeled as “missing” by the missing data phylo-HMM,
or whose number of non-gap symbols was below a length cutoff of 30 residues were removed. Regions
whose remaining segments failed the set of phylogenetic diversity criteria detailed in Table A2 were
excluded. The final set contained 11,445 and 14,927 disorder and order regions, respectively, from
8,466 distinct alignments.

2.4.3 Fitting substitution models and trees

To fit amino acid substitution matrices to disorder and order regions, 25 meta-alignments for each
were constructed by randomly sampling 100,000 columns from the respective regions. To determine
the effect of gaps, the maximum fraction of gaps was set at 0, 50, 100%. The combination of
the region types and sampling strategy yielded six different sets of meta-alignments. A GTR20
substitution model with four FreeRate categories and optimized state frequencies was fit to each
meta-alignment using IQ-TREE 1.6.12 [103]. Exchangeability and rate coefficients were normalized,
so the average rate of each model was equal to 1. Because exchangeability and rate coefficients are
highly correlated across meta-alignments of the same region type, all figures are derived from the
maximum 50% gap fraction meta-alignment sets unless otherwise noted (Fig. B2-B4).

To obtain estimates of the average substitution rates in each region, separate amino acid and indel
models were fit to each alignment. For the amino acid substitution models, the columns in the
alignments were manually segregated into disorder and order partitions using the regions derived

45

from the AUCPreD scores. However, to prevent poor fits from a lack of data, a partition was
created only if it contained a minimum of 20 sequences with at least 30 non-gap symbols. If one
partition met these conditions but the other did not, the disallowed partition was consolidated into
the allowed one. If neither partition passed, the alignment was skipped. These rules ensured that
the regions represented in the final set were fit with substitution models which were concordant with
their predicted disorder states. Trees were fit to each partition with an invariant and four discrete
gamma rate categories using IQ-TREE 1.6.12 [102]. The disorder partition used a substitution
model derived from the average of the state frequencies and exchangeability coefficients fit to the
50% gap fraction meta-alignment sets sampled from the disorder regions. The order partition used
the LG substitution model [86]. To prevent overfitting of branch lengths, the trees were restricted
to scaled versions of the reference species tree using the --blscale option.

As inference with models that allow insertions and deletions of arbitrary lengths is computationally
intractable, a more heuristic approach was taken to quantify the amount of evolutionary divergence
resulting from indels in the alignments. For a given alignment, all contiguous subsequences of gap
symbols with unique start or stop positions in any sequence were defined as binary characters.
Then for each character a sequence was coded with the symbol 1 if the character was contained in
that sequence, or it was nested in another contiguous subsequence of gap symbols in that sequence.
Otherwise the sequence was coded with the symbol 0. GTR2 models with optimized state frequen-
cies and ascertainment bias corrections were fit to the resulting character alignments. A discrete
gamma rate category was added for every five character columns, up to a maximum of four. To
prevent overfitting of branch lengths, the trees were restricted to scaled versions of the reference
species tree using the --blscale option.

Because the rate and branch lengths of a phylogenetic substitution model always appear as products
in the likelihood expression, they are not jointly identifiable parameters. Instead, the rate is
conventionally taken as equal to one (with inverse count units), and the branch lengths are expressed
in terms of the expected number of substitution events per column. For models with multiple rate
categories, the equivalent condition is that the mean of the prior distribution over the rate categories
is equal to one. This effectively makes each rate category a scaling factor of the branch lengths.
The inferred rate of a column, calculated as the mean of the posterior distribution over the rate
categories, is therefore relative to the average across all columns in the alignment. Thus, an absolute
measure of the evolutionary divergence of a column can be obtained by multiplying the inferred
rate by the total branch length of the tree. However, as the alignments contain variable numbers of
species, this total branch length represents the contribution of both the rate and the tree topology.
To normalize for this effect, the total branch length for each tree fit to an alignment was divided by
the total branch length of the reference species tree including only the species in that alignment.
The reported substitution rate is therefore the product of this scaling factor and the inferred column
rate. The average amino acid or indel substitution rate for a region was calculated as the mean
of the respective rates across all columns. Because the indel rates were associated with columns
in character alignments, they were mapped back to the original sequence alignment by assigning
half of a character’s rate to its start and stop positions. Since indel models with limited data were
prone to overfitting, rates obtained from character alignments with fewer than five columns were
set to zero.

46

2.4.4 Definition and calculation of features

Features were calculated as in Zarin et al. with the following modifications [125]. The regular
expression for polar residue fraction was [QNSTCH], which, in contrast to the original study,
excludes glycine residues. Additionally, length, expressed in log scale, was replaced with a feature
proportional to the radius of gyration for an excluded-volume polymer [133]. Because the radii of
gyration of chemically denatured proteins closely match the values expected for equivalent random
coils [134], we felt this feature would better capture the relationship between an IDR’s length and
its biophysical properties. Finally, several motifs from ELM were replaced with their metazoan
counterparts or updated versions of the same entries [135]. These differences are noted in the
supplementary data. Furthermore, unlike the previous work, motifs were left as counts and not
normalized to the proteome-wide average. Kappa, omega, SCD, hydropathy, PPII propensity, and
Wootton-Federhen sequence complexity were calculated with localCIDER 0.1.19 [136]. Isoelectric
point was calculated with the Python package isoelectric, which is available on PyPI or at https:
//isoelectric.org/ [137]. Otherwise, features were implemented with custom code. A full list
of features and their definitions is given in Table B2 and Table B3.

2.4.5 Brownian motion and Ornstein-Uhlenbeck analyses

Brownian motion (BM) model parameters were calculated with two methods. The first used Felsen-
stein’s contrasts algorithm to efficiently calculate roots and contrasts for the disorder scores and
features of each region [138, 139]. Rates were calculated as the mean of the squares of the contrasts.
Though these values are unbiased, they are not maximum likelihood estimates and are inappropri-
ate for use with the Akaike information criterion (AIC) [140]. Thus, they were used for analyses
involving only the BM model. For comparison with the Ornstein-Uhlenbeck (OU) model, the BM
parameters were calculated by maximizing the likelihood. The OU model parameters were also
calculated via maximum likelihood estimation as described in Butler et al. [141]. To ensure param-
eter identifiability and estimate consistency, the root was treated as a random variable [123, 124].
Thus, the covariance matrix, V , was parameterized as Vij = eαdij where dij is the tree distance
between tips i and j, and α is the selection strength [123].

The AICs were calculated for the models of each feature using their maximized likelihoods and
two and three parameters for the BM and OU models, respectively. The pairwise differences in
the AICs yielded a vector with 82 components, each representing the relative goodness of fit of the
OU model over the BM model after accounting for their difference in complexity. The vectors were
clustered using the correlation distance metric and the UPGMA algorithm. Clusters were manually
chosen for subsequent GO analyses. To enrich these clusters for regions with a high likelihood of
feature conservation despite low levels of sequence identity, this analysis was restricted to the 7,645
regions whose amino acid and indel substitution rates exceeded 1 and 0.1, respectively (Fig. B11).

2.4.6 GO term analyses

The 2022-03-22 go-basic release of the Gene Ontology was obtained from the GO Consortium
website [142, 143]. The gene association file for the 2022 02 release of the D. melanogaster genome
annotation was obtained from FlyBase [44]. Obsolete annotations were dropped, and the remaining
annotations were filtered by qualifiers and evidence code. The allowed qualifiers were “enables,”
“contributes to,” “involved in,” “located in,” “part of,” and “is active in.” The allowed evidence
codes were all experimental sources, traceable author statement (TAS), and inferred by curator
(IC). The annotations were propagated up the ontology graph and joined with the region sets, so

47

https://isoelectric.org/
https://isoelectric.org/

every annotation associated with a gene was associated with the regions derived from that gene.
P-values were calculated with exact hypergeometric probabilities with regions considered as the
sampling unit. For the disorder score analysis, the reference set was the filtered regions, and the
enrichment set was the regions in the upper decile of the score rate distribution (Fig. B7). For the
cluster analysis, the reference set was the regions after the additional filtering by substitution rates,
and the enrichment sets were the regions in each cluster.

2.4.7 Code and data availability

The code used to produce the results and analyses is available at https://github.com/
marcsingleton/IDR_evolution2023. The following Python libraries were used: matplotlib [104],
NumPy [105], pandas [106], SciPy [107], and scikit-learn [144]. Relevant output files are avail-
able in the supporting information. There are no primary data associated with this manuscript.
All primary data are available from publicly accessible sources described in their corresponding
sections.

48

https://github.com/marcsingleton/IDR_evolution2023
https://github.com/marcsingleton/IDR_evolution2023

CHAPTER 3

Tools and tutorials for fitting mixture models and HMMs

Abstract

Fitting statistical models to data is often a key step in the scientific method because it can formalize hypothe-
ses and conclusions as unambiguous and testable statements. The major scientific computing library for the
programming language Python, SciPy, provides ready-to-use implementations of core statistical functions,
which allows users with varying levels of expertise to easily apply them to their data. However, SciPy does
not support two common and powerful types of models called mixture models and hidden Markov models
(HMMs). Other more specialized packages such as hmm-learn and pomegranate provide implementations
for a restricted subset of these models, but they use APIs which are not compatible with SciPy. This can
pose a barrier to entry for beginners and prevent more advanced users from easily extending these packages’
capabilities. We therefore created two packages, MixMod and Homomorph, that implement mixture models
and HMMs, respectively, and conform to the SciPy API for specifying distributions. Each package is fully
documented, and we wrote a set of tutorials which both introduce their APIs and illustrate various training
techniques through a series of examples. These packages are available on the Python Package Index (PyPI)
under the names mixmod and homomorph, and the source code is hosted alongside the tutorials on GitHub at
https://github.com/marcsingleton/mixmod and https://github.com/marcsingleton/homomorph, re-
spectively.

3.1 Overview of tools and tutorials

Most code written for data analysis is ad hoc, that is, it is intended to accomplish a single task and
cannot be used for any other purpose. However, often solving one problem entails solving several
other problems along the way, and sometimes those intermediate solutions are general enough to
be widely useful. This happened twice over the course of this work, both times involving fitting
probabilistic models to data. The first was mixture models, which describe data that contain several
subpopulations, each with its own statistical properties, mixed together. For example, in exam
scores there are often two clusters: the high-scoring group of students who understood the material
and the low-scoring group who did not. The second was hidden Markov models (HMMs), which
like mixture models, describe data with several subpopulations. However, in HMMs the data are
ordered in a time series and observations from a given subpopulation tend to occur consecutively.
These models are frequently used to analyze systems which toggle between different states over
time, for example periods of growth and recession in the economy.

Both types of models are well-known and frequently used. Despite this, none of the major scientific
computing libraries for Python such as SciPy or statistical modules like scikit-learn or statsmodels

49

https://github.com/marcsingleton/mixmod
https://github.com/marcsingleton/homomorph

contained generic implementations of either. A major factor in this exclusion is likely the high level
of stability and consistency these packages guarantee. Mixture models and HMMs are not so much
single models but rather recipes for creating models. As a result, implementing these models for
arbitrary distributions is not trivial, so these packages often sacrifice generality to support training
methods for common use cases. For example, scikit-learn implements mixture models where all
subpopulations are restricted to normal distributions. Other more specialized packages like hmm-
learn and pomegranate are more flexible, but they still limit their built-in support to a relatively
small number of common distributions, including normal, exponential, categorical, and Poisson,
among others. Furthermore, to support these additional features these packages implement custom
APIs which may pose a barrier to users who are already comfortable with the interface of SciPy’s
statistical module.

We therefore sought to create lightweight implementations of mixture models and HMMs which are
available in the packages MixMod and Homomorph, respectively. A key design goal was to ensure
these packages were both immediately accessible but also easily extensible. Thus, both packages
conform to the SciPy API for specifying distributions, which allows use of its large number of
distributions but also permits advanced users to easily implement custom distributions as needed.
Fitting models parameterized by arbitrary distributions to data remains a significant challenge,
however. MixMod supports fitting models whose subpopulations are parameterized by roughly
a dozen distinct distributions, including several common continuous and discrete distributions.
Homomorph has no built-in methods for fitting models. We instead wrote an extensive tutorial that
covers the theory and implementation of several model fitting approaches for specific distributions.
This tutorial is the centerpiece of a series of tutorials for both MixMod which demonstrate their
APIs and common applications through a series of examples. Our hope is together these packages
and tutorials will bridge the gap between beginner and advanced users by illustrating how complex
probabilistic models are constructed from simple pieces.

The tutorials are available alongside the source code for these packages on GitHub. Though each is
largely independent of the others, they follow a logical progression. For example, both Mixmod and
Homomorph have tutorials which serve as brief introductions to the theory, applications, and APIs
for their respective models. Homomorph then has two additional tutorials. The first discusses a
generalization of HMMs called autoregressive HMMs (ARHMMs), and the second covers methods
for training HMMs. For brevity, only the training tutorial is adapted from its current form in the
following section. As the tutorial is a self-contained document with an introduction and conclusion,
it is presented without further commentary.

3.2 HMM training tutorial introduction

Welcome to the training tutorial! Since Homomorph doesn’t have built-in methods for fitting
HMMs to data, in this tutorial we’ll cover examples of training HMMs where the hidden states are
both known and unknown using maximum likelihood estimation and the estimation-maximization
algorithm, respectively. We’ll then discuss an advanced approach called discriminative training.

The material in sections four through six owes a heavy debt to two sources, respectively. The
first is the book Biological Sequence Analysis, which is an excellent resource on HMMs and other
probabilistic models and their applications [145]. The second is the paper Hidden Neural Networks
by Anders Krogh and Søren Riism [101]. Many of the theoretical results for HMMs shown here
are adapted or expanded from the derivations outlined in those references, so this tutorial wouldn’t

50

have been possible without them.

Clearly we have a lot of ground to cover, so let’s get started!

3.3 What is training?

3.3.1 Training, informally

Training and learning are jargon commonly used in machine learning. While convenient as short-
hand, they obscure what’s actually happening: parameter estimation or, more generally, optimiza-
tion. Statistical models are specified by some number of parameters, so the name of the game is
choosing parameters that fit the data the best. Depending on the model, this can be as simple
as taking an average or as complex as needing specialized algorithms and thousands of computing
hours. Note that the notion of a “best” fit to the data isn’t always immediately obvious, and some
applications will define it differently. (We’ll see at least two distinct definitions in the following
sections.) In every case, however, some quantity of interest is defined that is hopefully correlated
with the ability to predict real-world outcomes, and then some computational method is used to
find parameters that maximize or minimize that quantity.

3.3.2 Training, formally

Now that we understand what training is intuitively, let’s briefly discuss how it’s defined mathemat-
ically. This section will mainly serve to introduce some terminology used throughout this tutorial,
but it will also highlight the features that are common to all optimization problems regardless of
application or mathematical form.

At the core of every optimization problem is a function whose output is optimized with respect to
one or more inputs. This is called the objective function or simply the objective. This terminol-
ogy is common when discussing optimization generically, and the kind of extremum (minimum or
maximum) is unstated. In machine learning and statistics, however, the objective is often framed
as a kind of distance between the model’s output and the actual data. Distance has a very specific
meaning in mathematics, so instead this quantity is called loss. Naturally, then, the goal is to
minimize loss. Unlike in many optimization problems where the optimal value of the objective is
as important as the inputs that achieve that optimum, when fitting models the loss is often only
a means to an end. Though the loss has applications when comparing the fits of different models,
the optimized parameters are typically the ultimate goal.

The form of the loss function depends on the exact nature of the problem, so it’s difficult to go any
further without speaking in overly general terms. Thus, to illustrate these concepts mathematically,
we’ll use an extremely common loss function, the mean squared error. Let’s now define the data,
model, and loss precisely. The data, D, are composed of N examples which are the indexed ordered
pairs {(xi, yi) : 1 ≤ i ≤ N}. Each xi and yi is an input and output, respectively. Though these
quantities can be vector-valued, we’ll keep our discussion general enough to not have to worry about
these details. The model is a function, f , which accepts an input, x, and returns an output, ŷ. The
output is designated with a hat to indicate it was calculated from the model rather than observed.
This function also accepts a set of parameters, Θ, which can be tuned to better fit the data. Thus,
we write ŷ = f(x, Θ). Finally the loss function, L, accepts the data, model, and parameters and
returns a measure of the deviation from the data, L(D, f, Θ). For the mean squared error, this is
written as

51

L(D, f, Θ) = 1
N

N∑
i=1

(ŷi − yi)2

= 1
N

N∑
i=1

(f(xi, Θ) − yi)2 .

In this case, the loss is expressed as a sum over individual examples. This is extremely common, so
losses are frequently written in terms of an individual input and output pair rather than the data
as a whole. Furthermore, since the data and model are usually fixed, they are often dropped as
arguments, making the loss a function of the parameters alone:

L(D, f, Θ) = L(Θ).

The optimized or learned parameters are then written as

Θ̂ = argmin
Θ

L(Θ).

Finding these optimal parameters is not always straightforward. For simple models, such as one-
dimensional linear regression where f(x, Θ) = θ1x + θ0, there are closed-form solutions. However,
many modern machine learning models offer no such luxury, so other approaches are needed. There
are various techniques for such cases depending on the structure of the model. However, all are
usually iterative in nature, meaning they gradually decrease the loss in a series of steps. For
complex models and large data sets, each step can involve significant computation, which is why
these models are often trained on computational clusters with specialized hardware.

3.4 Training with known states

Sometimes the universe is kind and gives us data where the underlying states are known. This is
by far the easiest case since all the information is available to us, and as HMMs are probabilistic
models, we can rely on the rich theory of mathematical statistics to define optimality and identify
the corresponding parameters. Depending on the emission distributions, there are even closed-form
solutions for these optimal parameters!

3.4.1 Maximum likelihood estimation

The strength of probabilistic models is that for a given set of parameters, every possible input is
associated with a probability or probability density, so objective functions are naturally defined
in terms of these quantities. This doesn’t answer the question of what probability we should
try to optimize, however. There are several common approaches, but one of the most natural is
to maximize the probability of the data with respect to the parameters. Let’s clarify what this
means by writing it mathematically. We call our data, which is a set of indexed observations
{xi : 1 ≤ i ≤ N}, D and the probability mass function f(x, Θ) = P (X = x|Θ). (The right-hand

52

side translates to “the probability that the random variable called X assumes the value x given
the set of parameters Θ.” In probability, the random processes that generate observations are
distinguished from the observations themselves.) The probability of the data is then written as

P (D|Θ) =
N∏

i=1
P (X = xi|Θ)

=
N∏

i=1
f(xi, Θ)

since each observation is independent and identically distributed. Sums are easier to work with, so
it’s common to take the logarithm of both sides and call the result

L(Θ) = log P (D|Θ) =
N∑

i=1
log f(xi, Θ)

the log-likelihood function. The original product then is the likelihood function; however, the loga-
rithm doesn’t change the position of the extrema, so this distinction is not very important for our
purposes.

Before moving forward, let’s discuss some nuances of the likelihood function. First, even though it’s
defined in terms of observations that assume discrete values (notice that f is probability rather than
a probability density), the definition is the same for continuous observations. The only difference
is the likelihood is no longer considered a probability since it’s technically a probability density.
However, this not a common interpretation anyway since even for discrete data the probability of
any set of observations approaches zero as the number of observations increases. It’s instead more
useful to compare ratios of likelihoods under different models. That, however, is a topic for another
time. Another subtle point is the likelihood function is not the probability that the parameters are
correct. Instead a particular choice of parameters is viewed as certain, and then the probability
of the data is calculated given that choice. Finally, as with the mean squared loss defined earlier,
though the likelihood is technically a function of both the parameters and the data, the data are
often dropped as an argument to emphasize that they are typically fixed.

Unlike for a loss function, we want to maximize the log-likelihood since this maximizes the proba-
bility of the data under the model. This defines the following set of parameters

Θ̂ = argmax
Θ

L(Θ)

which are known as maximum likelihood estimates (MLEs). Though this objective isn’t quite a
loss in the sense of a distance from some desired outputs, it’s similar in spirit. Since the model
should assign common events high probabilities (and accordingly rare events low probabilities since
the total probability is constrained to sum to one), the log-likelihood in effect penalizes deviations
from the empirical distribution. In fact, simply negating the log-likelihood function converts the

53

maximization into a minimization, making it a kind of loss. Furthermore, for some models algebraic
manipulations can reveal an expression which is more readily interpreted as a distance.

Calculus tells us that for differentiable functions local extrema are necessarily where the derivative
relative to the input is zero. If Θ is a set of N parameters, this condition must occur simultaneously
for the derivative relative to each. In other words,

∂L

∂θ1
= 0, . . . ,

∂L

∂θN
= 0

for each θi ∈ Θ. In some cases these equations can be solved explicitly, but often numerical
techniques are needed. We’ll see two examples of such approaches in later sections.

3.4.2 Maximum likelihood estimates for HMMs

Decomposition into independent products

Now we’ll turn to HMMs and derive the MLEs for labeled data. Here the data, D, are again
composed of N examples of ordered pairs {(xi, yi) : 1 ≤ i ≤ N} where xi is a sequence of states and
yi is a sequence of emissions, each with length Ti. The probability of the data given the parameters
is then

P (D|Θ) = P (X1 = x1, Y1 = y1, . . . , XN = xN , YN = yN |Θ)

=
N∏

i=1
P (Xi = xi, Yi = yi|Θ).

The joint probability expands into a product of the probabilities of individual examples since each
is independent and identically distributed. Let’s focus on one pair of state and emission sequences
denoted x and y, each with length T . Using the Markov property of HMMs, we can derive an
expression for their joint probability:

P (D|Θ) = P (X = x, Y = y|Θ)
= P (Y1 = y1|X1 = x1, Θ)P (X1 = x1|Θ)

×
T −1∏
t=1

P (Yt+1 = yt+1|Xt+1 = xt+1, Θ)P (Xt+1 = xt+1|Xt = xt, Θ).

(Note that here the subscripts refer to the index within a sequence rather than the index of the
example.)

All these capital letters are cluttering this expression, so we’ll make a few common substitutions to
simplify it. First, we assume there are S states numbered from 1 to S and write the transition and

54

start probabilities as P (Xt+1 = j|Xt = i, Θ) = aij and P (X1 = i|Θ) = a0i, respectively. Second,
we define ei(yt) = P (Yt = yt|Xt = i, Θ). We can think of each ei as a function that accepts an
emission yt and outputs a probability or probability density. Putting all this together, we have

P (X = x, Y = y|Θ) = ex1(y1)a0x1

T −1∏
t=1

ext+1(yt+1)axtxt+1 .

Since log-likelihoods are easier to work with, we take the logarithm of both sides and write the
product as a sum of log terms:

log P (X = x, Y = y|Θ) = log
(

ex1(y1)a0x1

T −1∏
t=1

ext+1(yt+1)axtxt+1

)

= log a0x1 +
T −1∑
t=1

log axtxt+1 +
T∑

t=1
log ext(yt).

This is now a fairly clean expression since at each step we pick the right transition probability and
emission distribution using the state sequence. However, it will be useful both theoretically and
computationally to write this expression in terms of the number of times each transition appears
in the sequence. To do this, we first need the Kronecker delta function, which is defined as

δij =
{

0 if i ̸= j

1 if i = j.

Then we can write the number of transitions between states i and j as

nij =
T −1∑
t=1

δixtδjxt+1 .

We can define a similar variable that counts the number of times each state starts the state sequence:

n0i = δix1 .

For a single example, this might seem unnecessarily complex since one n0i is equal to one and all
others are zero. However, this form will be convenient for generalizing to data that contain multiple
examples.

Inspection of the previous equation shows we can write it using the quantities we’ve defined and a
similar trick with the Kronecker delta function for the emissions:

55

log P (X = x, Y = y|Θ) = log a0x1 +
T −1∑
t=1

log axtxt+1 +
T∑

t=1
log ext(yt)

=
S∑

i=1
n0i log a0i +

S∑
i=1

S∑
j=1

nij log aij +
S∑

i=1

T∑
t=1

δixt log ext(yt).

(To ensure this expression is valid for forbidden start states or transitions, we define 0 log 0 = 0.)

While this may look complicated, it’s the same sum of the log probabilities of each start state,
transition, and emission. However, when it’s written in this form, two things are clear. First, many
calculations are expressed as the logarithm of a parameter multiplied by the number of times it
appears in the training data. Second, each of these sums is independent of the others, meaning they
have no parameters in common. In fact, the transition sum can be broken into independent sums for
each initial state. The same is true for the emission sum if none of the emission distributions share
parameters. This dramatically simplifies the optimization since we can maximize the probability
of the entire expression by maximizing each sum separately. Finally, although we’ve derived this
expression for a single pair of state and emission sequences, the form is identical for the data as a
whole. The only differences are the counts are taken over all state sequences and the emission sum
is taken over all emission sequences.

MLEs for categorical distributions

Now that we’ve broken the maximization problem into a set of simpler problems, let’s review the
solutions for each. The optimal parameters for the emissions will depend on their distributions,
but the start and transition distributions will always take the form of a single choice from a set
of options. This is formally called a categorical distribution which itself is a special case of the
multinomial distribution. Fortunately, the MLEs for categorical distributions have a simple form
when they are parameterized directly in terms of the probability of selecting each outcome. The
derivation is somewhat involved, so we’ll skip to the final result. Using the count variables defined
earlier, the MLE for each aij is given as

âij = nij∑S
j=1 nij

.

The interpretation is intuitive. Our estimate of the probability of state i transitioning to state
j is simply the fraction of times we observe this in the data! One problem with this equation,
however, is if we’re working with a relatively small amount of data, we may never observe a certain
transition and estimate its probability as zero. This means according to the model the transition
is impossible, which may be contrary to our hypothesis of the underlying process. In these cases,
it’s customary to add a small non-negative correction factor, rij , for each pair of states:

âij = nij + rij∑S
j=1 nij + rij

.

56

These corrections may look like a sloppy fix, but they have a natural Bayesian interpretation as
the parameters of a Dirichlet prior on the transition probabilities. What this means in practice is
the size of each rij reflects the prior expectation for the probability of that transition, with larger
values indicating more certainty.

3.4.3 Examples

Let’s now take what we’ve learned and apply it to some examples. We’ll first write code to estimate
the parameters for an HMM with categorical emission distributions since we’ve already reviewed
the MLEs in the previous section. We’ll then use the principle of maximum likelihood to derive
the estimators for other common emission distributions and write implementations from scratch.

Categorical emission distribution

To get started, we’ll first import the packages and some plotting settings used throughout this
tutorial.

In: import pprint
import random
from functools import reduce
from itertools import accumulate

import homomorph
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from numpy import exp, log
from sklearn.metrics import roc_curve
from utils import fit_CML

legend_kwargs = {'frameon': False,
'loc': 'center left',
'bbox_to_anchor': (1, 0.5)}

Let’s create our HMM. Since the purpose of this tutorial is to illustrate training techniques rather
than to motivate the applications of HMMs with relevant examples, we’ll arbitrarily label the states
with numbers and the emissions with letters.

In: t_dists = {1: {1: 0.95, 2: 0.05},
2: {1: 0.05, 2: 0.9, 3: 0.05},
3: {2: 0.35, 3: 0.65}}

e_dists = {1: {'A': 1},
2: {'A': 0.5, 'B': 0.5},
3: {'B': 1}}

start_dist = {1: 0.2, 2: 0.5, 3: 0.3}

model = HMM(t_dists=t_dists, e_dists=e_dists, start_dist=start_dist)
model

57

Out: HMM(states={1, 2, 3},
stop_states=[],
name='hmm')

We’ll now generate 10 examples, each with length 200. The simulations are returned as a single
sequence of (state, emission) tuples. However, since in the theory section we defined the states and
emissions as separate sequences, we’ll do a bit of Python magic to put the data in this form.

In: data = [model.simulate(200, random_state=i) for i in range(10)]
print('Original form:', data[0][:5])
data = [list(zip(*example)) for example in data]
print('New form:', [seq[:5] for seq in data[0]])

Out: Original form: [(2, 'A'), (1, 'A'), (1, 'A'), (1, 'A'), (1, 'A')]
New form: [(2, 1, 1, 1, 1), ('A', 'A', 'A', 'A', 'A')]

We’re now ready to implement the MLEs for the transition probabilities. Before, though, we should
discuss selection of the model structure, that is, the number of states and the allowed transitions
between those states. Since in this case the data are simulated, we know the structure exactly.
However, modeling real-world data is often far more complicated since it’s rare to have perfect
knowledge of the data generating process even if the states are labeled. Thus, it’s tempting to use
a fully connected model that allows transitions between each pair of states and let the model learn
what transitions are actually used from the data. That said, constraining the allowed transitions
can lead to better models, particularly if the constraints reflect a feature of the underlying process.

For this example, we’ll assume that we have some domain knowledge that permits us to know
the states and their allowed transitions. For example, state 2 can transition to every state, but
states 1 and 3 can only transition to themselves and state 2. It’s also customary to add a small
pseudocount to the allowed transitions to ensure they’re permitted by our model in the rare chance
that we don’t observe them in the data. There are a variety of ways to implement this, but in the
approach shown below we first instantiate a transition count dictionary with the pseudocounts. We
then iterate over the data to add the observed transitions and afterwards normalize the counts by
the total number for each initial state to obtain the estimated transition probabilities.

The strength of this approach is it yields a nested dictionary which we can use as an input to
the HMM class. We’ll actually use the original t dists to establish the model structure, but if it
weren’t available, we could create a similar nested object which encodes the same information.
(Unfortunately, it’s hard to avoid specifying at least some portions of the model manually unless
it’s fully-connected or its structure is highly modular.)

In: # Make transition count dicts and add pseudocounts
t_pseudo = 0.1
t_counts = {}
for state1, t_dist in t_dists.items():

t_count = {}
for state2 in t_dist:

t_count[state2] = t_pseudo
t_counts[state1] = t_count

Add observed counts

58

for example in data:
xs, ys = example
state0 = xs[0]
for state1 in xs[1:]:

t_counts[state0][state1] += 1
state0 = state1

Normalize counts
t_dists_hat = {}
for state1, t_count in t_counts.items():

t_sum = sum(t_count.values())
t_dist_hat = {}
for state2, count in t_count.items():

t_dist_hat[state2] = count / t_sum
t_dists_hat[state1] = t_dist_hat

t_dists_hat

Out: {1: {1: 0.9548785594639866,
2: 0.0451214405360134},

2: {1: 0.05571315102689209,
2: 0.8965165097015771,
3: 0.04777033927153069},

3: {2: 0.2924773022049287,
3: 0.7075226977950714}}

So far so good! The estimated transition probabilities are extremely close to their actual values.

We’ll now estimate the emission probabilities. Since the emission distributions are also categorical,
the code has nearly the same structure. However, we’ll make a small change to illustrate some
choices inherent in model selection. Although we assumed we knew the states and allowed tran-
sitions perfectly, let’s say this isn’t true for the emissions. For example, even though we never
observe states 1 and 3 emitting an A and B, respectively, we still aren’t 100% convinced that it’s
impossible. Thus, we’ll first gather all the possible emission types from the data and instantiate
the emission distributions with a small pseudocount for each type. From there the code is largely
the same.

In: # Collect all possible emissions
e_set = set()
for example in data:

xs, ys = example
e_set.update(ys)

Make emission count dicts and add pseudocounts
e_pseudo = 0.1
e_counts = {}
for state in t_dists:

e_counts[state] = {emit: e_pseudo for emit in e_set}

Add observed counts

59

for example in data:
xs, ys = example
for state, emit in zip(xs, ys):

e_counts[state][emit] += 1

Normalize counts
e_dists_hat = {}
for state, e_count in e_counts.items():

e_sum = sum(e_count.values())
e_dist_hat = {}
for emit, count in e_count.items():

e_dist_hat[emit] = count / e_sum
e_dists_hat[state] = e_dist_hat

e_dists_hat

Out: {1: {'A': 0.999896071502806, 'B': 0.00010392849719393058},
2: {'A': 0.48755937570685365, 'B': 0.5124406242931463},
3: {'A': 0.000648508430609598, 'B': 0.9993514915693904}}

Again the estimates are very close!

Let’s finish this out with the start distribution. The overall idea is exactly the same, except now
we’re working with a single distribution rather than a dictionary of distributions. Technically, we
can only estimate the start distribution from the initial state of each example. Since this severely
limits the amount of data relative to the transitions, it may be tempting to use the state counts
over all time steps instead. However, this quantity will estimate the equilibrium distribution of the
underlying Markov process, which is a function of the transition probabilities and independent of
the start distribution. However, there may be data-specific reasons to think these quantities are
equal, so this is again an example of a model selection decision.

In: # Make start count dicts and add pseudocounts
start_pseudo = 0.1
start_count = {}
for state in start_dist:

start_count[state] = start_pseudo

Add observed counts
for example in data:

xs, ys = example
start_count[xs[0]] += 1

Normalize counts
start_sum = sum(start_count.values())
start_dist_hat = {}
for state, count in start_count.items():

start_dist_hat[state] = count / start_sum
start_dist_hat

Out: {1: 0.10679611650485439, 2: 0.5922330097087379, 3: 0.3009708737864078}

60

We’re now ready to combine all these individual parameter estimates to create an estimated model.

In: model_hat = HMM(t_dists=t_dists_hat,
e_dists=e_dists_hat,
start_dist=start_dist_hat)

model_hat

Out: HMM(states={1, 2, 3},
stop_states=[],
name='hmm')

Though the estimates match the parameters closely, to really see how well they compare, let’s make
some predictions using both. We’ll use posterior decoding to obtain a distribution over states at
each time step since this will give us a more nuanced picture of how each model interprets the data.

In: xs, ys = data[0]
fbs = model.forward_backward(ys)
fbs_hat = model_hat.forward_backward(ys)

fig, axs = plt.subplots(4, 1, figsize=(6.4, 9.6), sharex=True)

axs[0].plot(ys)
for state in t_dists:

axs[1].plot([x == state for x in xs], label=state)
for state, line in sorted(fbs.items()):

axs[2].plot(line, label=state)
for state, line in sorted(fbs_hat.items()):

axs[3].plot(line, label=state)
axs[3].set_xlabel('Time step')
axs[0].set_ylabel('Emission')
axs[1].set_ylabel('Label')
axs[2].set_ylabel('Probability')
axs[3].set_ylabel('Probability')
axs[1].legend(title='true states', **legend_kwargs)
axs[2].legend(title='model', **legend_kwargs)
axs[3].legend(title='model_hat', **legend_kwargs);

61

Out:

The posterior decoding curves are effectively identical. There are, of course, some minor differences
but no outstanding patterns. Generally these models are good at detecting the time steps corre-
sponding to state 1 but much worse at distinguishing between states 2 and 3. We can understand
this qualitatively by examining the original model parameters. State 1 is highly “sticky” and only
emits As, so long runs of As are extremely likely to correspond to state 1. State 3 only emits Bs,
but it’s fairly likely to switch to state 2. Since state 2 is equally likely to emit an A as a B, it’s
difficult to know if a B was emitted because the model remained in state 3 or because it switched
to state 2. This shows that state inference can be highly variable even if the parameters are known
exactly.

Discrete emission distribution

For the next example, we’ll derive and implement the MLE for the parameter of a Poisson distri-
bution. Poisson distributions are commonly used to model count data with no upper bound. The
underlying assumptions are the counts represent events that occur with some average rate over
time and the number of events in one interval is independent of the number of events in any other
non-overlapping interval. These conditions impose few restrictions, so Poisson distributions are
used to model a variety of phenomena, ranging from the number of particle decays in a radioactive
sample to the number of requests arriving at a web server.

If the events of a Poisson process X occur at an average rate of λ, then the probability that x
events are observed in an interval of length t is given by

62

P (X = x|λ, t) = f(x, λ, t)

= e−λt (λt)x

x! .

The rate λ and length of the interval t always appear as the product λt, so Poisson distributions
are often parameterized in terms of λ only. Confusingly, this is frequently still called a rate even
though it’s actually a unitless quantity. To match these conventions, we’ll also drop t as a parameter,
although we’ll avoid referring to λ as a rate.

We can now write the log-likelihood function explicitly:

L(λ) =
N∑

i=1
log f(xi, λ)

=
N∑

i=1
log

(
e−λ λx

i

xi!

)

=
N∑

i=1
−λ + xi log λ − log(xi!)

= −Nλ +
N∑

i=1
xi log λ − log(xi!).

To find the MLE for λ, we 1) take the derivative relative to λ and 2) solve for λ when this expression
is zero. Since in the second step we solve for specific values where the derivative is zero, we replace
λ with λ̂ to clarify this distinction.

Step 1: Differentiate the log-likelihood function

dL(λ)
dλ

= −N +
N∑

i=1

xi

λ

Step 2: Solve for the MLE

0 = −N +
N∑

i=1

xi

λ̂

N =
∑N

i=1 xi

λ̂

λ̂ =
∑N

i=1 xi

N
= x̄

63

Pleasingly, the MLE for λ is the average of the observations. Now let’s implement this in code
using a model with two arbitrary states. This will follow the same format as the previous section,
so we’ll proceed with little comment.

In: t_dists = {1: {1: 0.95, 2: 0.05},
2: {1: 0.25, 2: 0.75}}

e_dists = {1: stats.poisson(3),
2: stats.poisson(0.5)}

start_dist = {1: 0.5, 2: 0.5}

model = HMM(t_dists=t_dists, e_dists=e_dists, start_dist=start_dist)

data = [model.simulate(200, random_state=i) for i in range(10)]
data = [list(zip(*example)) for example in data]

The estimate for each state’s λ is simply the average of the emissions associated with that state.
However, the emissions are separated across multiple examples and not organized by state, so we’ll
first gather them in a dictionary keyed by state and then take the average.

In: # Make emission dicts keyed by state
state2emits = {}
for state in t_dists:

state2emits[state] = []

Add emissions
for example in data:

xs, ys = example
for state, emit in zip(xs, ys):

state2emits[state].append(emit)

Average emissions
lambda_hats = {}
for state, emits in state2emits.items():

lambda_hat = sum(emits) / len(emits)
lambda_hats[state] = lambda_hat

lambda_hats

Out: {1: 2.991077119184194, 2: 0.46635730858468677}

Though this form of the parameter estimates is convenient for inspection, discrete emission distri-
butions over an infinite domain are implemented as SciPy random variables in Homomorph.

In: e_dists_hat = {}
for state, lambda_hat in lambda_hats.items():

e_dists_hat[state] = stats.poisson(lambda_hat)

The estimators for the transition and start distributions are the same, so we can copy those cells
from the previous example.

64

In: # Make transition count dicts and add pseudocounts
t_pseudo = 0.1
t_counts = {}
for state1, t_dist in t_dists.items():

t_count = {}
for state2 in t_dist:

t_count[state2] = t_pseudo
t_counts[state1] = t_count

Add observed counts
for example in data:

xs, ys = example
state0 = xs[0]
for state1 in xs[1:]:

t_counts[state0][state1] += 1
state0 = state1

Normalize counts
t_dists_hat = {}
for state1, t_count in t_counts.items():

t_sum = sum(t_count.values())
t_dist_hat = {}
for state2, count in t_count.items():

t_dist_hat[state2] = count / t_sum
t_dists_hat[state1] = t_dist_hat

t_dists_hat

Out: {1: {1: 0.9487589559877175, 2: 0.0512410440122825},
2: {1: 0.19452247191011232, 2: 0.8054775280898876}}

In: # Make start count dicts and add pseudocounts
start_pseudo = 0.1
start_count = {}
for state in start_dist:

start_count[state] = start_pseudo

Add observed counts
for example in data:

xs, ys = example
start_count[xs[0]] += 1

Normalize counts
start_sum = sum(start_count.values())
start_dist_hat = {}
for state, count in start_count.items():

start_dist_hat[state] = count / start_sum
start_dist_hat

65

Out: {1: 0.303921568627451, 2: 0.696078431372549}

With the parameter estimates in hand, we can instantiate an estimated model and compare the
decoded states to those from the actual model and the true states.

In: model_hat = HMM(t_dists=t_dists_hat,
e_dists=e_dists_hat,
start_dist=start_dist_hat)

xs, ys = data[0]
fbs = model.forward_backward(ys)
fbs_hat = model_hat.forward_backward(ys)

fig, axs = plt.subplots(4, 1, figsize=(6.4, 9.6), sharex=True)

axs[0].plot(ys)
for state in t_dists:

axs[1].plot([x == state for x in xs], label=state)
for state, line in sorted(fbs.items()):

axs[2].plot(line, label=state)
for state, line in sorted(fbs_hat.items()):

axs[3].plot(line, label=state)
axs[3].set_xlabel('Time step')
axs[0].set_ylabel('Emission')
axs[1].set_ylabel('Label')
axs[2].set_ylabel('Probability')
axs[3].set_ylabel('Probability')
axs[1].legend(title='true states', **legend_kwargs)
axs[2].legend(title='model', **legend_kwargs)
axs[3].legend(title='model_hat', **legend_kwargs);

66

Out:

Continuous emission distribution

The normal distribution, with its iconic bell-shaped density curve, is practically synonymous with
statistics. This association is deserved as the normal distribution is the foundation of many signifi-
cant results and methods in both mathematical and applied statistics. For our purposes, however,
we only need to know that the normal distribution is a common and robust model for continuous
measurements, so in this example we’ll derive the MLEs for its parameters.

As seen in the previous example, once the MLEs are derived, the implementations are often straight-
forward translations from mathematical symbols to code. In fact, for many common distributions,
including the normal distribution, the MLEs have closed-form expressions that can be interpreted
in terms of familiar statistical quantities like the mean or variance. Thus, for this example we’ll
skip the implementations and only present the derivations.

Let’s first review the probability density function of a normal distribution:

f(x, µ, σ2) = 1√
2πσ2

e− (x−µ)2

2σ2 .

Though the expression may look intimidating, the important take-away is the distribution has two
parameters µ and σ2, which are equal to its mean and variance, respectively. In qualitative terms,
µ controls the position of the peak of the curve and σ2 controls its width.

We will now substitute the density into the log-likelihood function:

67

L(µ, σ2) =
N∑

i=1
log f(xi, µ, σ2)

=
N∑

i=1
−1

2 log(2π) − 1
2 log(σ2) − (xi − µ)2

2σ2

= −N

2 log(2π) − N

2 log(σ2) −
N∑

i=1

(xi − µ)2

2σ2 .

As the density function has two parameters, µ and σ2, the log-likelihood is a function of these
variables. This changes the next step slightly from the previous example since we have to take
the partial derivative relative to each and solve the resulting system of equations. In this case the
algebra works out nicely, but sometimes numerical optimization techniques are required.

We’ll start with the partial derivative for µ. A subtle point for distributions with multiple param-
eters is in the second step when the derivative is set to zero, we replace each parameter with its
estimated counterpart since we’re solving for specific points where the derivatives relative to each
parameter are simultaneously zero.

Step 1: Differentiate the log-likelihood function

∂L

∂µ
=

N∑
i=1

(xi − µ)
σ2

Step 2: Solve for the MLE

0 =
N∑

i=1

(xi − µ̂)
σ̂2

Nµ̂ =
N∑

i=1
xi

µ̂ =
∑N

i=1 xi

N
= x̄

Now let’s find the MLE for σ2. Another nuance for the normal distribution in particular is the
derivative is taken relative to the variance, σ2, and not the standard deviation, σ. Though this
choice does not impact the resulting formula, it both simplifies the calculation and reflects the
natural role of the variance as the more fundamental statistical quantity.

Step 1: Differentiate the log-likelihood function

∂L

∂σ2 = − N

2σ

2
+

N∑
i=1

(xi − µ)2

2σ4

68

Step 2: Solve for the MLE

0 = − N

2σ̂2 +
N∑

i=1

(xi − µ̂)2

2σ̂4

N

σ̂2 =
N∑

i=1

(xi − µ̂)2

σ̂4

σ̂2 =
∑N

i=1 (xi − µ̂)2

N

As hinted in the introduction for this section, the MLEs for µ and σ2 are simply the mean and
variance of the data! Notice the MLE for σ2 includes µ̂, so in practice we would calculate µ̂ first
and substitute that value in the expression for σ̂2. Those with some background in statistics might
notice the formula for σ̂2 has a factor of N rather than N − 1 in the denominator. This is no typo.
It turns out that while MLEs are optimal in many ways, they are not always unbiased, meaning
they can on average be higher or lower than the true value. In this case, the MLE for σ2 is low by
a factor of exactly N−1

N on average, so some formulas divide by this quantity to remove the bias.
This actually makes our estimate more imprecise, so there are some trade-offs involved in using
one formula over the other. The good news is the difference is trivial for most data sets of realistic
size, so the choice is largely inconsequential.

3.5 Training with unknown states

3.5.1 Estimation-maximization, informally

When we knew the states, we could assign each emission to a log-likelihood function and optimize
the parameters of these functions separately. However, when the states are unknown, the problem
of estimating parameters is much harder because we can’t decompose the log-likelihood into inde-
pendent terms. (We’ll see this formally in the next section.) Not all hope is lost though. Remember
that we can estimate parameters when we know the states, and when we know parameters we can
estimate state probabilities. While this may seem like a chicken and egg problem, we can use this
relationship as an iterative method for estimating parameters when the states are unknown. In
practice, it works as the following:

1. Make an informed guess of the initial parameters.

2. Use the current parameters to estimate posterior state probabilities.

3. Use the posterior state probabilities to improve the parameter estimates.

4. Repeat steps 2 and 3 a fixed number of times or until some convergence criteria is met.

In the context of HMMs, this procedure is known as the Baum-Welch algorithm, but it’s a special
case of a more general technique called estimation-maximization (EM). Though it intuitively makes
sense, it’s not at all clear that it will work in practice. For example, the likelihood function could
ping-pong up and down without ever settling down to a single value. Fortunately, each iteration is
guaranteed to improve the likelihood. Unfortunately, the sequence may converge to a local rather
than a global maximum, i.e. a good answer but not necessarily the best. Thus, it’s common to

69

run the algorithm multiple times with different initial parameters and choose the final parameters
as those with the largest likelihood.

Hopefully this discussion has given a conceptual overview of the Baum-Welch algorithm. Clearly
we’ve skipped many details, so in the next section we’ll implement it from scratch for categorical
distributions. Then in the following sections, we’ll introduce the EM algorithm formally and use it
to derive the update equations for a normal distribution.

3.5.2 Implementing Baum-Welch for categorical distributions

The steps in the Baum-Welch algorithm as presented above should at this point make sense except
step 3. How exactly do we use posterior decoding to improve the parameter estimates? For a
generic distribution, we’ll need the EM formalism to derive the update equations properly, but
for a categorical distribution we can intuit our way to the answer. We’ll start with the transition
distributions since we’ve already seen their MLEs, but then we’ll derive a similar result for the
emission distributions. Recall that the MLEs for the parameters of a transition distribution are
written in terms of the number of observed transitions between states i and j, nij :

âij = nij∑S
j=1 nij

.

Unfortunately, we don’t have access to these counts since the states are unknown. However, what
if we replaced these counts with how often we thought they happened under our current parameter
estimates? For example, if between time t and t + 1, we calculate there’s a 75% chance the process
remained in state 1 and a 25% chance it transitioned to state 2, that’s effectively a 0.75 count
towards n11 and a 0.25 count towards n12. Although we originally defined the nij variables in
terms of whole numbers, the equations still yield valid estimates with fractional counts.

Now the name of the game is to calculate these probabilities over all time steps. Formally we’re
looking for:

nij =
T −1∑
t=1

P (Xt = i, Xt+1 = j|Y = y, Θ)

= 1
P (Y = y|Θ)

T −1∑
t=1

P (Xt = i, Xt+1 = j, Y = y|Θ)

= 1
P (Y = y|Θ)

T −1∑
t=1

[
P (Xt = i, Y1 = y1, . . . , Yt = yt|Θ)

× P (Xt+1 = j, Yt+1 = yt+1, . . . , YT = yT |Xt = i, Y1 = y1, . . . , Yt = yt, Θ)
]

= 1
P (Y = y|Θ)

T −1∑
t=1

[
P (Xt = i, Y1 = y1, . . . , Yt = yt|Θ)

× P (Xt+1 = j, Yt+1 = yt+1, . . . , YT = yT |Xt = i, Θ)
]
.

70

The first term is the forward variable evaluated at time t and state i, which we’ll denote by fi(t).
We haven’t formally introduced this quantity in this tutorial, but we can easily obtain these values
with the forward method of an HMM instance. Incidentally, P (Y = y|Θ) = ∑

i fi(T) since this sums
the probability of the entire emission sequence over all possible final states. Let’s now focus on the
second term in the sum and define the following events to clean up the notation:

• A : Yt+2 = yt+2, . . . , YT = yt

• B : Yt+1 = yt+1

• C : Xt+1 = j

• D : Xt = i.

Thus, we have

P (Xt+1 = j, Yt+1 = yt+1, . . . , YT = yT |Xt = i, Θ) = P (A, B, C|D, Θ)
= P (A|B, C, D, Θ) · P (B|C, D, Θ) · P (C|D, Θ)
= P (A|C, Θ) · P (B|C, Θ) · P (C|D, Θ).

From right to left, the third term is aij , the second term is ej(yt+1), and the first term is the
backward variable evaluated at time t + 1 and state j, which we’ll denote by bj(t + 1). Analogous
to the forward variable, the backward variable is available via the backward method of an HMM
instance.

Putting everything together we have

nij = 1
P (Y = y|Θ)

T −1∑
t=1

fi(t)aijej(yt+1)bj(t + 1).

Now let’s tackle the emission distributions. When the states are known, the MLEs are the same,
but instead of counting transitions between states, we count emissions. (The emissions essentially
take on the role of the target state j.) When the states are unknown, we replace these counts
with how much we think each state is responsible for each emission. In other words, if at time t
we observe emission i and we calculate an 90% chance of state 1 and a 10% chance of state 2, we
assign a 0.9 count towards n1i and a 0.1 count towards n2i. Written mathematically,

71

nij =
∑

t:yt=j

P (Xt = i|Y = y, Θ)

= 1
P (Y = y|Θ)

∑
t:yt=j

P (Xt = i, Y = y|Θ)

= 1
P (Y = y|Θ)

∑
t:yt=j

P (Y1 = y1, . . . , Yt = yt, Xt = i|Θ)P (Yt+1 = yt+1, . . . , YT = yT |Xt = i, Θ)

= 1
P (Y = y|Θ)

∑
t:yt=j

fi(t)bi(t).

With these results, we can implement the Baum-Welch algorithm. For continuity, we’ll use the
same example from the MLE section.

In: t_dists = {1: {1: 0.95, 2: 0.05},
2: {1: 0.05, 2: 0.9, 3: 0.05},
3: {2: 0.35, 3: 0.65}}

e_dists = {1: {'A': 1},
2: {'A': 0.5, 'B': 0.5},
3: {'B': 1}}

start_dist = {1: 0.2, 2: 0.5, 3: 0.3}

model = HMM(t_dists=t_dists, e_dists=e_dists, start_dist=start_dist)

data = [model.simulate(200, random_state=i) for i in range(10)]
data = [list(zip(*example)) for example in data]

To start the algorithm, we first need a model structure and initial estimates for its parameters.
To keep the Baum-Welch approach on equal footing with the previous example, we’ll assume we
know the disallowed transitions but not the disallowed emissions. For the initial estimates, we’ll
use uniform random values to keep the code simple, but more sophisticated approaches can use
specific distributions for each parameter. Though it’s good practice to use the best result from
several different random initializations, if the initial parameters are hard coded, the states must be
different from each other in some way. If the states are all identical, there’s no way for the model
to break symmetry, and all the updates will yield parameters that are the same as the initial ones.

In: random.seed(1)

Make transition count dicts and add pseudocounts
t_counts = {}
for state1, t_dist in t_dists.items():

t_count = {}
for state2 in t_dist:

t_count[state2] = random.random()
t_counts[state1] = t_count

Normalize counts

72

t_dists_hat = {}
for state1, t_count in t_counts.items():

t_sum = sum(t_count.values())
t_dist_hat = {}
for state2, count in t_count.items():

t_dist_hat[state2] = count / t_sum
t_dists_hat[state1] = t_dist_hat

t_dists_hat

Out: {1: {1: 0.13685528663315571,
2: 0.8631447133668443},

2: {1: 0.5043817911017634,
2: 0.16844258615115162,
3: 0.3271756227470851},

3: {2: 0.4082259386891194,
3: 0.5917740613108805}}

In: random.seed(2)

Collect all possible emissions
e_set = set()
for example in data:

xs, ys = example
e_set.update(ys)

Make emission count dicts and add pseudocounts
e_counts = {}
for state in t_dists:

e_counts[state] = {emit: random.random() for emit in e_set}

Normalize counts
e_dists_hat = {}
for state, e_count in e_counts.items():

e_sum = sum(e_count.values())
e_dist_hat = {}
for emit, count in e_count.items():

e_dist_hat[emit] = count / e_sum
e_dists_hat[state] = e_dist_hat

e_dists_hat

Out: {1: {'A': 0.5021552995618842, 'B': 0.49784470043811585},
2: {'A': 0.39987288219487493, 'B': 0.6001271178051251},
3: {'A': 0.531667470841593, 'B': 0.4683325291584069}}

In: random.seed(3)

Make start count dicts and add pseudocounts
start_count = {}
for state in start_dist:

73

start_count[state] = random.random()

Normalize counts
start_sum = sum(start_count.values())
start_dist_hat = {}
for state, count in start_count.items():

start_dist_hat[state] = count / start_sum
start_dist_hat

Out: {1: 0.2065397992628295, 2: 0.47236009956297115, 3: 0.32110010117419935}

Let’s now code the main loop, beginning with the definition of the stopping conditions. We can
operationally define convergence as when the improvement in the log-likelihood is below some
threshold, epsilon. In practice, this may take too long, so we’ll also define a maximum number of
iterations, maxiter. What follows, then, is a fairly straightforward implementation of the equations
we derived previously. There are two nuanced points, however. First, to preserve the model struc-
ture, the counts are always taken over the allowed transitions or emissions. (In theory, disallowed
transitions or emissions should always have a probability of zero, but floating point errors may
yield unexpected results.) Second, the forward and backward variables are scaled to sum to one
at each time step for numerical stability. Thus, the true value at time t is a product of the raw
value and all scaling factors up to and including time t. (Since the backward variable is calculated
recursively from the final instead of the first observation, the product is taken from t to T .) A side
effect of this representation is P (Y = y|Θ) is simply the product of all scaling factors.

For brevity, the input code is given in Appendix C, and only the final values are shown below.

Out: FINAL VALUES
log-likelihood: -906.2061302148018
delta log-likelihood: 0.009596164686740849
t_dists: {1: {1: 0.19048033686643145,

2: 0.8095196631335685},
2: {1: 0.730991899350023,

2: 0.168079808479332,
3: 0.10092829217064504},

3: {2: 0.04584548747372808,
3: 0.9541545125262719}}

e_dists: {1: {'A': 0.28936393517521436,
'B': 0.7106360648247857},

2: {'A': 0.48150408200102607,
'B': 0.5184959179989739},

3: {'A': 0.9999943519811173,
'B': 5.648018882737235e-06}}

start_dist: {1: 0.7875017247391405,
2: 0.005518967674210817,
3: 0.20697930758664865}

Based on the results, the algorithm seems to have merged states 2 and 3 into a single state that
emits a mixture of A and B. State 1 was largely estimated correctly, but it’s labeled as state 3 in
the estimated model. There are two factors which may explain this result. First, the initial values
were chosen poorly. We generated them randomly, so we were potentially unlucky, and there was

74

a “bad” local maximum near those initial values. Additionally, since we didn’t prime the initial
values with any information that state 1 only emits A and state 3 only emits B, the algorithm
exchanged them. For both these reasons, it’s best practice to use multiple initializations that are
random but still encode the expected behavior for each state. Try playing around with different
random seeds or initialization schemes to see if the fit improves!

The second reason why the algorithm merged states 2 and 3 is state 2 is inherently difficult to
fit. Under the current parameters, state 2 is just as likely to emit an A as a B, which maximizes
the uncertainty associated with its emissions. (Compare this to states 1 or 3 whose emissions we
know with certainty.) While this example is highly artificial, it illustrates that although we can
define an HMM however we like, its emission distribution may be well-described by multiple sets
of parameters, i.e., the likelihood surface is broad and flat or has multiple peaks.

3.5.3 Estimation-maximization, formally

Though what we’ve done so far makes sense intuitively, let’s look at what’s happening more formally
in order to generalize this approach to other emission distributions. Recall that in maximum
likelihood estimation, we find parameters Θ̂ that maximize the logarithm of probability of the
data, D:

Θ̂ = argmax
Θ

L(Θ)

= argmax
Θ

log P (D|Θ).

In the HMM setting with known states, the data are composed of N examples of ordered pairs
{(xi, yi) : 1 ≤ i ≤ N} where xi is a sequence of states and yi is a sequence of emissions, each with
length Ti. For simplicity, however, we will only consider a single example (x, y) where xt and yt

indicate the tth state and emission in those sequences, respectively. The log-likelihood function
is then written as L(Θ) = log P (X = x, Y = y|Θ). So far this is all review from the previous
section. What about the case when we only know the emissions, y? Then the log-likelihood is
L(Θ) = log P (Y = y|Θ). Though we can calculate this quantity directly with the forward algorithm
and thus in principle apply a number of optimization algorithms, we instead will take a probabilistic
approach and write the log-likelihood function as a sum over all possible state sequences:

L(Θ) = log P (Y = y|Θ)
= log

∑
x

P (Y = y, X = x|Θ).

The only problem is that for an emission sequence of length T and a model with S hidden states,
there are ST possible state sequences. This sum therefore has an exponential number of terms and
is intractable for any data of realistic size.

75

Thus, this expression hasn’t gotten us anywhere yet. However, it’s possible to derive a related
but more tractable quantity whose improvements lower bound improvements for the log-likelihood.
This quantity, commonly denoted as Q(Θ|Θn), is defined as the expectation of the log-likelihood
function with respect to the conditional distribution of the states, X, given the emissions, y:

Q(Θ|Θn) = EX|Y =y,Θn
log P (Y = y, X|Θ)

=
∑

x

P (X = x|Y = y, Θn) log P (Y = y, X = x|Θ).

This is a confusing expression, especially since the notation for conditional expectation is dense.
However, in the second line the expectation is written explicitly, showing it is simply a sum of the
joint log-likelihoods of the states and emissions given the parameters where each is weighted by the
quantity P (X = x|Y = y, Θn). Notice that P (X = x|Y = y, Θn) is constant for a given Θn, so
Q(Θ|Θn) is function only of the log-likelihood terms.

Next we define the new estimates of the parameters as

Θn+1 = argmax
Θ

Q(Θ|Θn).

These two steps are where the name expectation-maximization is derived since the first is the
calculation of an expectation, and the second is a maximization of that expectation. It may seem
like we haven’t done much to simplify the problem since we’re still dealing with sums over all
state sequences. However, by moving the sum outside the logarithm, we’ve greatly simplified the
maximization step as we will see in the next section.

By repeating this process, we can iteratively improve our estimates of the parameters. As mentioned
earlier, these improvements in Q(Θ|Θn) lower bound improvements in the log-likelihood. We won’t
show the derivation here, but formally this means

log P (Y |Θ) − log P (Y |Θn) ≥ Q(Θ|Θn) − Q(Θn|Θn).

Since in each step Q(Θ|Θn) is maximized, the right quantity is always non-negative. Thus, the
log-likelihood of the emissions is improved by at least that much as well. Written mathematically,

Q(Θn+1|Θn) − Q(Θn|Θn) ≥ 0 =⇒ log P (Y |Θn+1) − log P (Y |Θn) ≥ 0.

3.5.4 Deriving the update equations for a normal distribution

We’ll now apply this theory to the HMM context. First we’ll show not only that Q(Θ|Θn) is
tractable to calculate but also that it decomposes into independent terms. Then we’ll derive the
update equations for normal emission distributions. Let’s get started!

We first expand the expression for Q(Θ|Θn) using the probabilistic structure of an HMM:

76

Q(Θ|Θn) =
∑

x

P (X = x|Y = y, Θn) log P (Y = y, X = x|Θ)

=
∑

x

P (X = x|Y = y, Θn) log
[
P (Y1 = y1|X1 = x1, Θ)P (X1 = x1|Θ)

T −1∏
t=1

P (Yt+1 = yt+1|Xt+1 = xt+1, Θ)P (Xt+1 = xt+1|Xt = xt, Θ)
]

=
∑

x

P (X = x|Y = y, Θn)
[
log P (X1 = x1|Θ)

+
T∑

t=1
log P (Yt = yt|Xt = xt, Θ) +

T −1∑
t=1

log P (Xt+1 = xt+1|Xt = xt, Θ)
]

=
∑

i

P (X1 = i|Y = y, Θn) log P (X1 = i|Θ)

+
∑

i

T∑
t=1

P (Xt = i|Y = y, Θn) log P (Yt = yt|Xt = i, Θ)

+
∑
i,j

T −1∑
t=1

P (Xt = i, Xt+1 = j|Y = y, Θn) log P (Xt+1 = j|Xt = i, Θ).

In the final step, the outer sum was distributed over each term and exchanged with the inner sum.
This step is shown explicitly for the second term below:

∑
x

P (X = x|Y = y, Θn)
T∑

t=1
log P (Yt = yt|Xt = xt, Θ)

=
∑

x

T∑
t=1

P (X = x|Y = y, Θn) log P (Yt = yt|Xt = xt, Θ)

=
∑

i

∑
x\xt

T∑
t=1

P (X = x|Y = y, Θn) log P (Yt = yt|Xt = i, Θ)

=
∑

i

T∑
t=1

log P (Yt = yt|Xt = i, Θ)
∑
x\xt

P (X = x|Y = y, Θn)

=
∑

i

T∑
t=1

P (Xt = i|Y = y, Θn) log P (Yt = yt|Xt = i, Θ).

(The final line used that the probability of a state sequence with a fixed state Xt = i is the sum of
the probabilities of all state sequences that include that fixed state.)

Though moving the sum over all state sequences outside the logarithm seemed like a minor math-
ematical detail, it, in combination with the probabilistic structure of an HMM, makes its com-

77

putation tractable. Another consequence is that if all transitions and emissions are governed by
different parameters, we can maximize the entire expression by optimizing the corresponding sum
for each state or pair of states individually. The fractional “counts” P (Xt = i|Y = y, Θ) and
P (Xt = i, Xt+1 = j|Y = y, Θ) defined in the previous section are even the coefficients of the
log-likelihood terms, which is directly related to their appearance in the update equations.

Now that we’ve demonstrated that each term can be optimized separately, we’ll derive the update
equations for a normal emission distribution. We begin by writing the term we wish to optimize
for a fixed state i, which we call q(Θ):

q(Θ) =
T∑

t=1
P (Xt = i|Y = y, Θn) log P (Yt = yt|Xt = i, Θ).

We’ll write wit = P (Xt = i|Y = y, Θn) to simplify the notation and to emphasize this quantity is
fixed during the maximization step. We’ll also substitute the expression for a normal density with
mean µi and variance σ2

i :

q(µi, σ2
i) =

T∑
t=1

P (Xt = i|Y = y, Θn) log P (Yt = yt|Xt = i, Θ)

=
T∑

t=1
wit log

(1√
2πσ2

e− (y−µ)2

2σ2

)

=
T∑

t=1
wit

(
−1

2 log σ2 − 1
2 log 2π − (yt − µi)2

2σ2

)
.

This quantity should look extremely familiar from the section on deriving the MLEs for a normal
distribution! However, let’s bring it home and take some derivatives. We’ll start with the parameter
for the mean.

Step 1: Differentiate the log-likelihood function

∂q

∂µi
=

T∑
t

wit
(yt − µi)

σ2
i

78

Step 2: Solve for the MLE

0 =
T∑

t=1
wit

(yt − µ̂i)
σ̂2

i

0 =
T∑

t=1
wit(yt − µ̂i)

T∑
t=1

witµ̂i =
T∑

t=1
wityt

µ̂i =
∑T

t=1 wityt∑T
t=1 wit

The resulting formula is very similar to the corresponding MLE derived in the previous section.
However, here each observation is multiplied by a weight, and the sum is divided by the total
weight rather than the number of observations. (In fact, setting the weight for each observation to
one recovers the original formula!) Since the weights for each observation must sum to one, we’ve
essentially partitioned each observation across all states where the amount that an observation
contributes to a state is given by our confidence that it was generated by that state.

Let’s now derive the update equation for the variance.

Step 1: Differentiate the log-likelihood function

∂q

∂σ2
i

=
T∑

t=1
wit

(
− 1

2σ2
i

+ (yt − µi)2

2σ4
i

)

Step 2: Solve for the MLE

0 =
T∑

t=1
wit

(
− 1

2σ̂2
i

+ (yt − µ̂i)2

2σ̂4
i

)
1
σ̂2

i

T∑
t=1

wit = 1
σ̂4

i

T∑
t=1

wit (yt − µ̂i)2

σ̂2
i =

∑T
t=1 wit (yt − µ̂i)2∑T

t=1 wit

Again, the update equation has the same form as the corresponding MLE except each term in the
sum is weighted. This is a common occurrence when using the EM algorithm and is a consequence
of the construction of the objective function as a weighted sum of log-likelihood functions. Thus,
when the MLEs are interpretable as quantities like counts or averages, the corresponding update
equations are often weighted versions of those estimators. Of course, it’s not always obvious how
the weights will come into play, especially for MLEs which don’t have an obvious interpretation, so
it’s good idea to solve the equations or look up a reference rather than guessing.

79

3.6 Discriminative training

In this next section, we’ll cover discriminative training, which is sometimes called conditional max-
imum likelihood (CML) estimation. Technically the discriminative training method falls under the
heading of training with known states since it requires labeled data. However, there are enough
differences in the objective function and the optimization algorithm that it deserves its own treat-
ment. As before, the material is largely divided between a section that motivates the problem and
develops the theory and a section that translates that theory into code.

3.6.1 Discriminative training theory

Previously, we saw that maximum likelihood estimation and the EM algorithm often obtained
parameter estimates which were reasonably close to their true values. However, what if we don’t
really care about the parameters, and we’re instead more interested in using an HMM to predict
the hidden states? What if the model we’ve chosen for our data is wrong, or, even worse, the data
are so messy that no tractable statistical model could ever hope to describe it?

The bad news is all these things are frequently true when working with HMMs. While sometimes
the parameters are inherently meaningful, more often than not HMMs are a tool to label data. In
these cases, it’s more important to accurately predict the states than to estimate the underlying
parameters. If the data are actually described by the model, this distinction isn’t as relevant
because with enough data the parameters that yield the most accurate predictions will converge
to the true parameters. However, real-world data are almost never fully described by statistical
models, and in these cases the parameters that best fit the data are often not those that best predict
the states. Furthermore, the phrase “with enough data” is actually a sneaky way of saying “as the
number of observations approaches infinity,” so for all practical purposes the two parameter sets
are solving distinct problems.

Let’s clarify these distinctions by writing them formally. Recall that in maximum likelihood esti-
mation for HMMs with known states, we solve the following optimization:

Θ̂ML = argmax
Θ

L(Θ)

= argmax
Θ

log P (X = x, Y = y|Θ)

where Θ is the set of model parameters and x and y are sequences of states and emissions, respec-
tively, with lengths T . In general, the optimization is conducted over a set of paired state and
emission sequences, but since this won’t change the key features of the following discussion, for
simplicity we’ll consider only a single state-emission sequence pair.

In contrast, conditional maximum likelihood solves the following optimization:

80

Θ̂CML = argmax
Θ

log P (X = x|Y = y, Θ)

= argmax
Θ

log P (X = x, Y = y, Θ)
P (Y = y|Θ)

= argmax
Θ

log P (X = x, Y = y, Θ) − log P (Y = y|Θ).

It’s clear the ML and CML objectives are closely related, so let’s use this relationship to gain a
deeper understanding of how CML parameter estimates differ from their ML counterparts. To ease
the following discussion, we’ll make the substitutions

log P (X = x, Y = y|Θ) = Lc(Θ)

and

log P (Y = y|Θ) = Lf (Θ).

Lc is the joint log-likelihood of the state and emission sequences, so the term is “clamped” by the true
states. Lf is the log-likelihood of the emission sequences only, so the term is “free” to account for
all possible state sequences. To maximize the difference between Lc and Lf , it seems the optimized
parameters should make Lc as large as possible and Lf as small as possible. However, Lf ≥ Lc

for any choice of Θ because Lf includes the contributions of all possible state sequences. Thus,
the best we can do is to make Lc as close as possible to Lf , and this only happens if we minimize
the contribution of state sequences which are not the true sequence. In other words, conditional
maximum likelihood is maximum likelihood with an added penalty for parameter choices that favor
alternate state sequences.

In the maximum likelihood case, we were able to decompose the optimization into independent
products under some fairly general assumptions because when the state sequence was known the
likelihood was a single product of transition and emission probabilities. Here, however, the free
term, Lf , forces us to consider all possible state sequences. As noted in the previous section, the
number of state sequences grows exponentially with length, so even if we derived a closed-form
solution, we would still have to contend with an intractable number of terms. We can’t apply the
EM algorithm either because this optimization doesn’t depend on any hidden variables.

We’ll instead take a route distinct from all the approaches seen so far by using a method called
gradient descent. Gradient descent is the workhorse for many modern machine learning techniques,
so there are numerous online resources which explain it in detail. However, the basic idea is since
the derivative of a function relative to some input is a measure of its response to a change in
that input, we can use that information to iteratively improve an initial guess until we reach a
minimum. For functions of two variables, the process is often visualized as progressively climbing
down a mountain by taking small steps in the direction of steepest descent. The power of this
technique is that it’s much easier to take derivatives than it is to identify their zeros, so gradient
descent can be applied to almost any optimization problem.

81

Thus, we need to compute derivatives of the conditional likelihood function. Because gradient de-
scent is for finding minima, however, we redefine our maximization as a minimization by multiplying
by negative one:

Θ̂CML = argmin
Θ

− log P (X = x|Y = y, Θ)

= argmin
Θ

log P (Y = y|Θ) − log P (X = x, Y = y|Θ)

= argmin
Θ

Lf (Θ) − Lc(Θ)

= argmin
Θ

L(Θ).

It’s a small change, but when we write the update equations, we can use the conventional form
instead of having to flip the sign of the derivatives.

We’re now ready to take derivatives. We’ll start with Lf for a generic parameter θ ∈ Θ:

∂Lf

∂θ
= 1

P (Y = y|Θ)
∂P (Y = y|Θ)

∂θ

=
∑

x

1
P (Y = y|Θ)

∂P (X = x, Y = y|Θ)
∂θ

=
∑

x

P (X = x, Y = y|Θ)
P (Y = y|Θ)

∂ log P (X = x, Y = y|Θ)
∂θ

=
∑

x

P (X = x|Y = y, Θ)∂ log P (X = x, Y = y|Θ)
∂θ

.

This expression is almost identical in structure to the function Q(Θ|Θn) used in the EM algorithm.
We can therefore use a similar series of tricks, namely expanding the log of a product as a sum
of log terms and exchanging the order of summation, to obtain a tractable expression. To reduce
the clutter, we’ll also use the shorthand defined in the section on maximum likelihood estimation
where P (Xt+1 = j|Xt = i) = aij and ei(yt) = P (Yt = yt|Xt = i, Θ). After all the algebraic dust
settles, we obtain the equation

∂Lf

∂θ
=
∑
t,i

ni(t)
ei(yt)

∂ei(yt)
∂θ

+
∑
t,i,j

nij(t)
aij

∂aij

∂θ
.

The variables ni(t) and nij(t) are defined as P (Xt = i|Y = y, Θ) and P (Xt = i, Xt+1 = j|Y = y, Θ).
Though this may look like new notation, they are nearly identical to quantities defined in the section
on the EM algorithm and can be efficiently calculated with the forward and backward variables.

A similar computation shows the derivative of the clamped log-likelihood is

82

∂Lc

∂θ
=
∑
t,i

mi(t)
ei(yt)

∂ei(yt)
∂θ

+
∑
t,i,j

mij(t)
aij

∂aij

∂θ
.

mi(t) and mij(t) are defined like ni(t) and nij(t). However, because the clamped log-likelihood is
taken only over the true state sequence, they are in practice indicators of the state or transition at
each time step. This means they are one if a state i or transition from state i to state j occurred
at time t and zero otherwise.

HMMs are typically parameterized directly in terms of their transition probabilities. In this case,
the derivative of the loss function simplifies to

∂L

∂aij
= −mij − nij

aij

where nij and mij are sums over all time steps of the previously defined quantities. While this is
the derivative we’re seeking, there is one issue. For a generic parameter, gradient descent updates
are written in the form

θt+1 = θt − η
∂L

∂θt

where η is the learning rate, which controls the size of the steps down the mountain. When η is
large, we make bold steps at the cost of sometimes going uphill if the loss landscape is bumpy. By
making η small, we can ensure we always go downhill but potentially at a glacial pace. Our problem
is this update equation does not incorporate the constraints aij ≥ 0 and ∑j aij = 1. In other words,
there’s nothing stopping a gradient descent update from making a transition probability greater
than one or, even worse, negative. If that happens, we’ve moved outside the parameter space of
our model, so there’s no guarantee the gradient descent updates would remain meaningful for our
optimization even if every mathematical operation were defined.

This is a fundamental shortcoming of derivative-based methods, and there are many variants of
gradient descent, e.g. projected gradient descent, which address constrained optimization. Fortu-
nately, in this case the constraints allow us to still use vanilla gradient descent via a clever variable
transformation. We instead define

aij = ezij∑
j′ ezij′

and perform gradient descent on the auxiliary variables zij . (Note that the symbol e without any
subscripts refers to the constant and not an emission distribution.) The derivative relative to zij is
then given by

∂L

zij
= −

mij − nij − aij

∑
j′

(
mij′ − nij′

) .

83

Further manipulations can yield an update equation that eliminates the auxiliary variables. How-
ever, in our implementation we’ll work with the auxiliary variables directly, so this is sufficient for
our needs.

3.6.2 Deriving the update equations for normal distributions

This is about as far as we can go without specifying the model further, so let’s now consider the case
where the emission distributions are normal and each state is governed by different parameters. If
fi is the probability density function for state i with mean µi and variance σ2

i , then its derivative
relative to µi is

∂fi(y)
∂µi

= 1√
2πσ2

i

e
− (y−µi)2

2σ2
i

y − µi

σ2
i

= fi(y)y − µi

σ2
i

,

and the derivative relative to σ2
i is

∂fi(y)
∂σ2

i

= 1√
2π

· −1
2
(
σ2

i

)− 3
2 e

− (y−µi)2

2σ2
i + 1√

2π

(
σ2

i

)− 1
2 e

− (y−µi)2

2σ2
i · −(y − µi)2

2 · −
(
σ2

i

)−2

= fi(y)
2

[(
−σ2

i

)−1
+ (y − µi)2

(
σ2

i

)−2
]

.

Because the variance is non-negative, we define

σ2
i = ezi

and perform gradient descent on the auxiliary variable zi. The new derivative is then easily calcu-
lated as

∂fi(y)
∂zi

= ∂fi(y)
∂σ2

i

∂σ2
i

∂zi

using the chain rule.

The final step is to put all these pieces together by substituting the above expressions into the
derivatives of the free and clamped log-likelihoods and taking their difference. For µi, this is

∂L

∂µi
= −

[∑
t

(mi(t) − ni(t))
(

yt − µi

σ2
i

)]
.

84

3.6.3 Labeling data with a misspecified model

We’re finally ready to see discriminative training in action! To illustrate the differences between
maximum likelihood and conditional maximum likelihood, we’ll examine a case of model misspeci-
fication. Specifically we’ll fit normal distributions to data where the emissions of one state follow a
gamma distribution. The gamma distribution is highly flexible, so its parameter a can dramatically
impact the shape of its density curve. However, for many values of a the gamma distribution is
roughly normal with a right skew. Thus, the goal of this example is to understand the impact of
this skew on the parameter estimates and accuracy of state inference for each training method.

Let’s start by creating the components of an HMM with two states and plotting the density functions
of their emission distributions.

In: t_dists = {1: {1: 0.95, 2: 0.05},
2: {1: 0.1, 2: 0.9}}

e_dists = {1: stats.norm(loc=-2.5, scale=25**0.5), # Scale is std dev
2: stats.gamma(a=1.5, scale=16**0.5)}

start_dist = {1: 0.5, 2: 0.5}

xs = np.linspace(-25, 25, 250)
ys1 = e_dists[1].pdf(xs)
ys2 = e_dists[2].pdf(xs)

plt.plot(xs, ys1, label='1')
plt.plot(xs, ys2, label='2')
plt.ylabel('Density')
plt.legend(**legend_kwargs);

Out:

Though the densities are clearly distinct, they do have a non-trivial overlap.

Let’s generate some data and look at a single example to get a sense of the kinds of sequences this

85

HMM produces.

In: model = HMM(t_dists=t_dists, e_dists=e_dists, start_dist=start_dist)

data = [model.simulate(200, random_state=i) for i in range(10)]
data = [list(zip(*example)) for example in data]

xs, ys = data[0]
lines = {}
for state in t_dists:

lines[state] = [x == state for x in xs]

fig, axs = plt.subplots(2, 1, sharex=True)
axs[0].plot(ys)
for state, line in sorted(lines.items()):

axs[1].plot(line, label=state)
axs[1].set_xlabel('Time step')
axs[0].set_ylabel('Emission')
axs[1].set_ylabel('Label')
axs[1].legend(**legend_kwargs);

Out:

It’s apparent there are alternating high and low intervals. However, as a result of the overlap
between the emission distributions, the boundaries are not always clearcut.

We’ll now fit models with normally distributed emissions using both training methods, beginning
with maximum likelihood. The following code implements the same maximum likelihood estimators
derived in previous sections. However, because this is an advanced example, we’ll do the calculations
with NumPy arrays. Because NumPy arrays vectorize operations, this is generally more efficient
and cleaner than iterating over each state-emission pair in a for loop.

86

In: xstack = np.stack([xs for xs, ys in data])
ystack = np.stack([ys for xs, ys in data])

Make estimated transition distributions
t_dists_ML = {}
for state1, t_dist in t_dists.items():

t_dist_ML = {}
x1 = (xstack[:, :-1] == state1)
x1_sum = x1.sum()
for state2 in t_dist:

x2 = (xstack[:, 1:] == state2)
x12_sum = (x1 & x2).sum()
t_dist_ML[state2] = x12_sum / x1_sum

t_dists_ML[state1] = t_dist_ML
print('ML ESTIMATED T_DISTS')
for state, t_dist_ML in t_dists_ML.items():

print(f'{state}: {t_dist_ML}')
print()

Make estimated emission distributions
e_params_ML = {}
for state in e_dists:

xs = xstack.ravel() == state
ys = ystack.ravel()[xs]
loc = ys.mean()
scale = ys.var()
e_params_ML[state] = {'mu': loc, 'sigma2': scale}

print('ML ESTIMATED E_PARAMS')
for state, e_param_ML in e_params_ML.items():

print(f'{state}: {e_param_ML}')
print()

Make estimated start distribution
start_dist_ML = {}
for state in start_dist:

start_dist_ML[state] = (xstack[:, 0] == state).sum() / xstack.shape[0]
print('ML ESTIMATED START_DIST')
print(start_dist_ML)

Out: ML ESTIMATED T_DISTS
1: {1: 0.9470684039087948, 2: 0.052931596091205214}
2: {1: 0.08923884514435695, 2: 0.910761154855643}

ML ESTIMATED E_PARAMS
1: {'mu': -2.708260094140367, 'sigma2': 24.878695602046125}
2: {'mu': 5.875899028606219, 'sigma2': 22.49724725215567}

ML ESTIMATED START_DIST

87

{1: 0.3, 2: 0.7}

Let’s now tackle conditional maximum likelihood training, and after we’ll compare the two. Because
the implementation is somewhat lengthy, it’s included as the function fit CML in the accompanying
utils module. We only have to supply all the pieces. First, each parameter requires an initial
estimate. While it’s best practice to inject some randomness into these initial values and choose the
best result after several runs, for simplicity, we’ll use the ML estimates directly. Because t dists
and start dist will always take the form of a nested dictionary and dictionary, respectively,
fit CML accepts these objects as is. The emission distributions are more complex, however, because
we need to provide the 1) parameter names and their initial estimates, 2) the emission probability or
density functions, 3) their derivatives relative to each parameter, 4) functions which transform any
constrained parameters to their auxiliary variables, and 5) corresponding functions which reverse
the transformation. Accordingly, each of these is supplied as a separate argument in the form of
simple or nested dictionaries.

Fortunately, the ML parameter estimates are already in the proper form, so we can go directly to the
emission density functions. The hardest part here is choosing our parameters and their names since
they must be consistent throughout all functions we define. We’ll use the names mu and sigma2,
so they correspond to the equations derived in the previous section. These parameters, however,
differ slightly from those used by the SciPy statistics module, so we’ll create a thin wrapper around
its implementation of the normal density function.

In: def norm_pdf(y, mu, sigma2):
return stats.norm.pdf(y, loc=mu, scale=sigma2**0.5)

After defining our new density function, we simply map the states to it in a dictionary.

In: e_funcs = {1: norm_pdf,
2: norm_pdf}

The derivatives require more explanation. As we saw before, the derivative of the conditional log-
likelihood function involves a sum over a function that includes ni and mi. However, the terms
involving those variables are the same for any emission distribution whose parameters are not
shared between states, so it would be redundant to include them every time. Instead, in fit CML
the derivative relative to the auxiliary variable z takes the form

∂L

∂z
= −

[∑
t

(mi(t) − ni(t)) f(yt)
]

,

and we only provide the function f as the “derivative.” Note the derivative is relative to an
unconstrained auxiliary variable. For unconstrained parameters, there is no difference, but the
derivatives of constrained parameters must be relative to their unconstrained counterparts. These
functions must also accept the emissions y as their first argument and the parameters by their
names as subsequent arguments. Finally, because all parameters and their auxiliary variables are
passed into the derivative functions, they must allow a variable number of keyword arguments with
the **kwargs syntax to “catch” any unused arguments.

Though these requirements may sound complex, in practice they are fairly intuitive. For example,
our derivatives are direct translations of the expressions we found earlier.

88

In: def norm_prime_mu(y, mu, sigma2, **kwargs):
return (y - mu) / sigma2

def norm_prime_sigma2(y, mu, sigma2, **kwargs):
term1 = - 1 / sigma2
term2 = (y - mu) ** 2 / sigma2 ** 2
return 0.5 * (term1 + term2) * sigma2

These functions are then mapped to their corresponding state and parameter combination using a
nested dictionary.

In: e_primes = {1: {'mu': norm_prime_mu, 'sigma2': norm_prime_sigma2},
2: {'mu': norm_prime_mu, 'sigma2': norm_prime_sigma2}}

The two sets of variable transformation functions are defined and structured similarly. The auxiliary
variables are named with the convention that the corresponding auxiliary variable for parameter
param is called param aux.

In: def mu2aux(mu, **kwargs):
return mu

def aux2mu(mu_aux, **kwargs):
return mu_aux

def sigma22aux(sigma2, **kwargs):
return log(sigma2)

def aux2sigma2(sigma2_aux, **kwargs):
return exp(sigma2_aux)

e_param2aux = {1: {'mu': mu2aux, 'sigma2': sigma22aux},
2: {'mu': mu2aux, 'sigma2': sigma22aux}}

e_aux2param = {1: {'mu': aux2mu, 'sigma2': aux2sigma2},
2: {'mu': aux2mu, 'sigma2': aux2sigma2}}

We’re finally ready to fit our model to the data! All we have to do now is pass our arguments into
fit CML. There are a few more optional parameters, but their meanings should be clear from the
previous discussion.

In: params = fit_CML(data,
t_dists=t_dists_ML,
e_params=e_params_ML, e_funcs=e_funcs, e_primes=e_primes,
e_param2aux=e_param2aux, e_aux2param=e_aux2param,
start_dist=start_dist_ML, eta=0.3, maxiter=500, verbose=False)

t_dists_CML, e_params_CML, start_dist_CML = params

89

print('CML ESTIMATED T_DISTS')
for state, t_dist_CML in t_dists_CML.items():

print(f'{state}: {t_dist_CML}')
print()
print('CML ESTIMATED E_PARAMS')
for state, e_param_CML in e_params_CML.items():

print(f'{state}: {e_param_CML}')
print()
print('CML ESTIMATED START_DIST')
print(start_dist_CML)

Out: CML ESTIMATED T_DISTS
1: {1: 0.9485741440805543, 2: 0.05142585591944567}
2: {1: 0.09604341135218855, 2: 0.9039565886478114}

CML ESTIMATED E_PARAMS
1: {'mu': -2.7344728682990804, 'sigma2': 23.630241342073358}
2: {'mu': 5.990857687710255, 'sigma2': 12.528992301575078}

CML ESTIMATED START_DIST
{1: 0.014065968700277301, 2: 0.9859340312997227}

The parameter estimates don’t appear to have changed too drastically, but let’s plot the density
functions with the true parameters against the two estimated densities to get a better sense of how
they differ.

In: fig, axs = plt.subplots(2, 1, figsize=(6.4, 7.2))
xs = np.linspace(-25, 25, 250)

ys1 = e_dists[1].pdf(xs)
ys2 = e_dists[2].pdf(xs)
for ax in axs:

ax.plot(xs, ys1, label='true state 1')
ax.plot(xs, ys2, label='true state 2')
ax.set_ylabel('Density')

ys1 = stats.norm.pdf(xs,
loc=e_params_ML[1]['mu'],
scale=e_params_ML[1]['sigma2']**0.5)

ys2 = stats.norm.pdf(xs,
loc=e_params_ML[2]['mu'],
scale=e_params_ML[2]['sigma2']**0.5)

axs[0].plot(xs, ys1, label='ML state 1')
axs[0].plot(xs, ys2, label='ML state 2')
axs[0].legend(**legend_kwargs)

ys1 = stats.norm.pdf(xs,
loc=e_params_CML[1]['mu'],

90

scale=e_params_CML[1]['sigma2']**0.5)
ys2 = stats.norm.pdf(xs,

loc=e_params_CML[2]['mu'],
scale=e_params_CML[2]['sigma2']**0.5)

axs[1].plot(xs, ys1, label='CML state 1')
axs[1].plot(xs, ys2, label='CML state 2')
axs[1].legend(**legend_kwargs);

Out:

The change is most obvious for state 2 whose curve is much more peaked. However, even the
state 1 curve has shifted slightly as well. These differences can be easily understood in terms of
the objective functions. Maximum likelihood estimation chooses parameters that best describe
the data, so the distribution is wider to account for the skew. In contrast, conditional maximum
likelihood estimation chooses parameters that maximize prediction accuracy, so the distribution is
narrower to better capture the decision boundary.

However, has all this work actually yielded an improvement in the accuracy of state inference? We
can check by using the estimated models to calculate the probability of each state at each time
step. Since these probabilities range continuously from zero to one, they are in a sense soft labels.
Accuracy calculations, though, require hard state assignments. There are any number of methods
to convert the probabilities into states, but the easiest is using a threshold of 0.5. This is a natural
choice because we have no reason to favor one state over the other, but in general the threshold
should reflect the costs of incorrect assignments for each state. For example, credit card companies
err on the side of caution when alerting customers to potential fraud because the cost of confirming
a valid transaction is much smaller than refunding a fraudulent one.

91

In: e_dists_ML = {}
for state, e_param_ML in e_params_ML.items():

e_dists_ML[state] = stats.norm(loc=e_param_ML['mu'],
scale=e_param_ML['sigma2']**0.5)

e_dists_CML = {}
for state, e_param_CML in e_params_CML.items():

e_dists_CML[state] = stats.norm(loc=e_param_CML['mu'],
scale=e_param_CML['sigma2']**0.5)

model_ML = HMM(t_dists=t_dists_ML,
e_dists=e_dists_ML,
start_dist=start_dist_ML)

model_CML = HMM(t_dists=t_dists_CML,
e_dists=e_dists_CML,
start_dist=start_dist_CML)

xstack_ML = []
xstack_CML = []
for example in data:

_, ys = example
fbs_ML = model_ML.forward_backward(ys)
fbs_CML = model_CML.forward_backward(ys)

xstack_ML.append(fbs_ML[1])
xstack_CML.append(fbs_CML[1])

xstack_ML = np.stack(xstack_ML)
xstack_CML = np.stack(xstack_CML)

threshold = 0.5
accuracy_ML = ((xstack_ML >= threshold) == (xstack == 1)).sum()
accuracy_CML = ((xstack_CML >= threshold) == (xstack == 1)).sum()
print('ML accuracy:', accuracy_ML / xstack.size)
print('CML accuracy:', accuracy_CML / xstack.size)

Out: ML accuracy: 0.948
CML accuracy: 0.947

The CML model actually has a slight decrease in accuracy. However, we’re not seeing the full
picture by using a single threshold, and we should instead measure the models’ responses as the
threshold is varied continuously over the full range of the data. A common implementation of
this idea is the receiver operating characteristic (ROC) curve which plots the true positive rate
against the false positive rate at varying thresholds. It essentially measures the trade-off between
the increases in true and false positives as the threshold is decreased. Thus, the curve of a model
with good separation between classes should rise steeply and rapidly level off.

Let’s plot the ROC curves for the two models.

92

In: fpr_ML, tpr_ML, _ = roc_curve((xstack == 1).ravel(), xstack_ML.ravel())
fpr_CML, tpr_CML, _ = roc_curve((xstack == 1).ravel(), xstack_CML.ravel())

fig, ax = plt.subplots()
ax.plot(fpr_ML, tpr_ML, label='ML')
ax.plot(fpr_CML, tpr_CML, label='CML')
ax.set_xlabel('False positive rate')
ax.set_ylabel('True positive rate')
ax.legend(**legend_kwargs)

idx_ML = fpr_ML <= 0.1
idx_CML = fpr_CML <= 0.1
axins = ax.inset_axes([0.25, 0.1, 0.7, 0.5])
axins.plot(fpr_ML[idx_ML], tpr_ML[idx_ML], label='ML')
axins.plot(fpr_CML[idx_CML], tpr_CML[idx_CML], label='CML')
axins.set_xticklabels([])
axins.set_yticklabels([])
ax.indicate_inset_zoom(axins, edgecolor='black');

Out:

A small effect but an effect nonetheless! Because in this case the ML model was already close to the
true model, the improvement in the discriminatively trained model was fairly marginal. However,
the greater the mismatch between the data and a model, the greater the effect on state inference,
so for real data the difference between the two approaches can be substantial.

3.7 Conclusion

We have at last reached the end of the training tutorial! It’s been quite a tour through several
fundamental concepts in statistics and machine learning. While many of these ideas seem complex,
as shown throughout this tutorial, they can often be implemented in only a few dozen lines of code.

93

The previous examples have covered some of the most widely used distributions in statistics, but
we’ve only scratched the surface of what is possible with probabilistic modeling. Fortunately, once
the theoretical heavy lifting is out of the way, supporting a new distribution is often a relatively
straightforward task of writing and solving a set of equations. Hopefully, then, these examples will
inspire you to derive and implement your own MLEs and EM or gradient update equations if the
need arises. Good luck!

94

References

1. Pierigè, F., Serafini, S., Rossi, L. & Magnani, M. Cell-based drug delivery. Advanced Drug
Delivery Reviews 60, 286–295 (Jan. 2008).

2. Kanias, T. & Acker, J. P. Biopreservation of red blood cells — the struggle with hemoglobin
oxidation. FEBS Journal 277, 343–356 (Nov. 2009).

3. Voet, D., Voet, J. G. & Pratt, C. W. Fundamentals of biochemistry life at the molecular level
4E (John Wiley & Sons, Chichester, England, July 2015).

4. Karush, F. Heterogeneity of the Binding Sites of Bovine Serum Albumin. Journal of the
American Chemical Society 72, 2705–2713 (June 1950).

5. Vrhovski, B. & Weiss, A. S. Biochemistry of tropoelastin. European Journal of Biochemistry
258, 1–18 (Nov. 1998).

6. Alberts, B. Molecular Biology of the Cell 6th ed. (Garland Publishing, New York, NY, Nov.
2014).

7. Plaxco, K. W. & Gross, M. The importance of being unfolded. Nature 386, 657–659 (Apr.
1997).

8. Wright, P. E. & Dyson, H. Intrinsically unstructured proteins: re-assessing the protein structure-
function paradigm. Journal of Molecular Biology 293, 321–331 (Oct. 1999).

9. Dunker, A. K. & Obradovic, Z. The protein trinity — linking function and disorder. Nature
Biotechnology 19, 805–806 (Sept. 2001).

10. Dunker, A. K., Obradovic, Z., Romero, P. & Garner, E. C. Intrinsic Protein Disorder in
Complete Genomes. Genome Informatics 11, 161–171 (Jan. 2000).

11. Ward, J., Sodhi, J., McGuffin, L., Buxton, B. & Jones, D. Prediction and Functional Analysis
of Native Disorder in Proteins from the Three Kingdoms of Life. Journal of Molecular Biology
337, 635–645 (Mar. 2004).

12. Finley, D., Chen, X. & Walters, K. J. Gates, Channels, and Switches: Elements of the Pro-
teasome Machine. Trends in Biochemical Sciences 41, 77–93 (Jan. 2016).

13. Bard, J. A. et al. Structure and Function of the 26S Proteasome. Annual Review of Biochem-
istry 87, 697–724 (June 2018).

14. Bard, J. A., Bashore, C., Dong, K. C. & Martin, A. The 26S Proteasome Utilizes a Kinetic
Gateway to Prioritize Substrate Degradation. Cell 177, 286–298.e15 (Apr. 2019).

15. Uversky, V. N., Gillespie, J. R. & Fink, A. L. Why are “natively unfolded” proteins unstruc-
tured under physiologic conditions? Proteins: Structure, Function, and Genetics 41, 415–427
(2000).

16. Mao, A. H., Crick, S. L., Vitalis, A., Chicoine, C. L. & Pappu, R. V. Net charge per residue
modulates conformational ensembles of intrinsically disordered proteins. Proceedings of the
National Academy of Sciences 107, 8183–8188 (Apr. 2010).

17. Van der Lee, R. et al. Classification of Intrinsically Disordered Regions and Proteins. Chem-
ical Reviews 114, 6589–6631 (Apr. 2014).

95

18. Das, R. K., Ruff, K. M. & Pappu, R. V. Relating sequence encoded information to form
and function of intrinsically disordered proteins. Current Opinion in Structural Biology 32,
102–112 (June 2015).

19. Tompa, P., Davey, N. E., Gibson, T. J. & Babu, M. M. A Million Peptide Motifs for the
Molecular Biologist. Molecular Cell 55, 161–169 (July 2014).

20. Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M. & Uversky, V. N. Flexible nets.
The roles of intrinsic disorder in protein interaction networks. FEBS Journal 272, 5129–5148
(Oct. 2005).

21. Buljan, M. et al. Tissue-Specific Splicing of Disordered Segments that Embed Binding Motifs
Rewires Protein Interaction Networks. Molecular Cell 46, 871–883 (June 2012).

22. Wright, P. E. & Dyson, H. J. Intrinsically disordered proteins in cellular signalling and
regulation. Nature Reviews Molecular Cell Biology 16, 18–29 (Dec. 2014).

23. Liu, J. et al. Intrinsic Disorder in Transcription Factors. Biochemistry 45, 6873–6888 (May
2006).

24. Ma, J. & Ptashne, M. A new class of yeast transcriptional activators. Cell 51, 113–119 (Oct.
1987).

25. Sigler, P. B. Acid blobs and negative noodles. Nature 333, 210–212 (May 1988).
26. Gerber, H.-P. et al. Transcriptional Activation Modulated by Homopolymeric Glutamine and

Proline Stretches. Science 263, 808–811 (Feb. 1994).
27. Arnold, C. D. et al. A high-throughput method to identify trans-activation domains within

transcription factor sequences. The EMBO Journal 37 (July 2018).
28. Ravarani, C. N. et al. High-throughput discovery of functional disordered regions: investiga-

tion of transactivation domains. Molecular Systems Biology 14 (May 2018).
29. Staller, M. V. et al. A High-Throughput Mutational Scan of an Intrinsically Disordered

Acidic Transcriptional Activation Domain. Cell Systems 6, 444–455.e6 (Apr. 2018).
30. Erijman, A. et al. A High-Throughput Screen for Transcription Activation Domains Reveals

Their Sequence Features and Permits Prediction by Deep Learning. Molecular Cell 78, 890–
902.e6 (June 2020).

31. Sanborn, A. L. et al. Simple biochemical features underlie transcriptional activation domain
diversity and dynamic, fuzzy binding to Mediator. eLife 10 (Apr. 2021).

32. Necci, M. et al. Critical assessment of protein intrinsic disorder prediction. Nature Methods
18, 472–481 (Apr. 2021).

33. Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinformatics 10 (Dec.
2009).

34. Eddy, S. R. A New Generation Of Homology Search Tools Based On Probabilistic Inference
in Genome Informatics 2009 (Imperial College Press, Oct. 2009).

35. Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Research 49,
D412–d419 (Oct. 2020).

36. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596,
583–589 (July 2021).

37. Daughdrill, G. W., Narayanaswami, P., Gilmore, S. H., Belczyk, A. & Brown, C. J. Dynamic
Behavior of an Intrinsically Unstructured Linker Domain Is Conserved in the Face of Negli-
gible Amino Acid Sequence Conservation. Journal of Molecular Evolution 65, 277–288 (Aug.
2007).

38. Moesa, H. A., Wakabayashi, S., Nakai, K. & Patil, A. Chemical composition is maintained in
poorly conserved intrinsically disordered regions and suggests a means for their classification.
Molecular BioSystems 8, 3262 (2012).

96

39. Zarin, T., Tsai, C. N., Ba, A. N. N. & Moses, A. M. Selection maintains signaling function
of a highly diverged intrinsically disordered region. Proceedings of the National Academy of
Sciences 114 (Feb. 2017).

40. Beh, L. Y., Colwell, L. J. & Francis, N. J. A core subunit of Polycomb repressive complex
1 is broadly conserved in function but not primary sequence. Proceedings of the National
Academy of Sciences 109 (Apr. 2012).

41. Yang, H. et al. Re-annotation of eight Drosophila genomes. Life Science Alliance 1, e201800156
(Dec. 2018).

42. Miller, D. E., Staber, C., Zeitlinger, J. & Hawley, R. S. Highly Contiguous Genome Assemblies
of 15 Drosophila Species Generated Using Nanopore Sequencing. G3 Genes|Genomes|Genetics
8, 3131–3141 (Oct. 2018).

43. Kim, B. Y. et al. Highly contiguous assemblies of 101 drosophilid genomes. eLife 10 (July
2021).

44. Gramates, L. S. et al. FlyBase: a guided tour of highlighted features. Genetics 220 (Mar.
2022).

45. Hardison, R. C. Comparative Genomics. PLoS Biology 1, e58 (Nov. 2003).
46. Fleischmann, R. D. et al. Whole-Genome Random Sequencing and Assembly of Haemophilus

influenzae Rd. Science 269, 496–512 (July 1995).
47. Goffeau, A. et al. Life with 6000 Genes. Science 274, 546–567 (Oct. 1996).
48. Consortium, T. C. e. S. Genome Sequence of the Nematode C. elegans: A Platform for

Investigating Biology. Science 282, 2012–2018 (Dec. 1998).
49. Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A Genomic Perspective on Protein Families.

Science 278, 631–637 (Oct. 1997).
50. Fitch, W. M. Distinguishing homologous from analogous proteins. Systematic Zoology 31,

99–113 (June 1970).
51. Ohno, S. Evolution by Gene Duplication (Springer Berlin Heidelberg, 1970).
52. Nowak, M. A., Boerlijst, M. C., Cooke, J. & Smith, J. M. Evolution of genetic redundancy.

Nature 388, 167–171 (July 1997).
53. Altenhoff, A. M., Studer, R. A., Robinson-Rechavi, M. & Dessimoz, C. Resolving the Or-

tholog Conjecture: Orthologs Tend to Be Weakly, but Significantly, More Similar in Function
than Paralogs. PLoS Computational Biology 8, e1002514 (May 2012).

54. Pegueroles, C., Laurie, S. & Albà, M. M. Accelerated Evolution after Gene Duplication:
A Time-Dependent Process Affecting Just One Copy. Molecular Biology and Evolution 30,
1830–1842 (Apr. 2013).

55. Soria, P. S., McGary, K. L. & Rokas, A. Functional Divergence for Every Paralog. Molecular
Biology and Evolution 31, 984–992 (Jan. 2014).

56. Remm, M., Storm, C. E. & Sonnhammer, E. L. Automatic clustering of orthologs and in-
paralogs from pairwise species comparisons. Journal of Molecular Biology 314, 1041–1052
(Dec. 2001).

57. Jensen, L. J. et al. eggNOG: automated construction and annotation of orthologous groups
of genes. Nucleic Acids Research 36, D250–D254 (Dec. 2007).

58. Train, C.-M., Glover, N. M., Gonnet, G. H., Altenhoff, A. M. & Dessimoz, C. Orthologous
Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scal-
able hierarchical orthologous group inference. Bioinformatics 33, i75–i82 (July 2017).

59. Linard, B., Thompson, J. D., Poch, O. & Lecompte, O. OrthoInspector: comprehensive or-
thology analysis and visual exploration. BMC Bioinformatics 12 (Jan. 2011).

60. Cosentino, S. & Iwasaki, W. SonicParanoid: fast, accurate and easy orthology inference.
Bioinformatics 35, 149–151 (July 2018).

97

61. Enright, A. J. An efficient algorithm for large-scale detection of protein families. Nucleic
Acids Research 30, 1575–1584 (Apr. 2002).

62. Li, L., Stoeckert, C. J. & Roos, D. S. OrthoMCL: Identification of Ortholog Groups for
Eukaryotic Genomes. Genome Research 13, 2178–2189 (Sept. 2003).

63. Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole genome com-
parisons dramatically improves orthogroup inference accuracy. Genome Biology 16 (Aug.
2015).

64. Thomas, G. W. C. et al. Gene content evolution in the arthropods. Genome Biology 21 (Jan.
2020).

65. Feng, S. et al. Dense sampling of bird diversity increases power of comparative genomics. en.
Nature 587, 252–257 (Nov. 2020).

66. Rhie, A. et al. Towards complete and error-free genome assemblies of all vertebrate species.
Nature 592, 737–746 (Apr. 2021).

67. Frankish, A. et al. Comparison of GENCODE and RefSeq gene annotation and the impact
of reference geneset on variant effect prediction. BMC Genomics 16 (June 2015).

68. Dunne, M. P. & Kelly, S. OMGene: mutual improvement of gene models through optimisation
of evolutionary conservation. BMC Genomics 19 (Apr. 2018).

69. Consortium, D. 1. G. Evolution of genes and genomes on the Drosophila phylogeny. Nature
450, 203–218 (Nov. 2007).

70. Wiegmann, B. M. et al. Episodic radiations in the fly tree of life. Proceedings of the National
Academy of Sciences 108, 5690–5695 (Mar. 2011).

71. Obbard, D. J. et al. Estimating Divergence Dates and Substitution Rates in the Drosophila
Phylogeny. Molecular Biology and Evolution 29, 3459–3473 (Aug. 2012).

72. Thibaud-Nissen, F., Souvorov, A., Murphy, T., DiCuccio, M. & Kitts, P. in. Chap. Eukaryotic
Genome Annotation Pipeline (National Center for Biotechnology Information, 2013).

73. Dobzhansky, T. Drosophila miranda, a new species. Genetics 20, 377–391 (July 1935).
74. Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7:

Improvements in Performance and Usability. Molecular Biology and Evolution 30, 772–780
(Jan. 2013).

75. Katoh, K. & Standley, D. M. A simple method to control over-alignment in the MAFFT
multiple sequence alignment program. Bioinformatics 32, 1933–1942 (Feb. 2016).

76. Castresana, J. Selection of Conserved Blocks from Multiple Alignments for Their Use in
Phylogenetic Analysis. Molecular Biology and Evolution 17, 540–552 (Apr. 2000).

77. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated
alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (June
2009).

78. Felsenstein, J. & Churchill, G. A. A Hidden Markov Model approach to variation among
sites in rate of evolution. Molecular Biology and Evolution 13, 93–104 (Jan. 1996).

79. Siepel, A. & Haussler, D. Combining Phylogenetic and Hidden Markov Models in Biosequence
Analysis. Journal of Computational Biology 11, 413–428 (Mar. 2004).

80. Lage, J.-L. D. et al. A phylogeny of Drosophilidae using the Amyrel gene: questioning the
Drosophila melanogaster species group boundaries. Journal of Zoological Systematics and
Evolutionary Research 45, 47–63 (Feb. 2007).

81. Dunne, M. P. & Kelly, S. OrthoFiller: utilising data from multiple species to improve the
completeness of genome annotations. BMC Genomics 18 (May 2017).

82. Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein
sequences. Protein Science 27, 135–145 (Oct. 2017).

98

83. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high through-
put. Nucleic Acids Research 32, 1792–1797 (Mar. 2004).

84. Notredame, C., Higgins, D. G. & Heringa, J. T-coffee: a novel method for fast and accurate
multiple sequence alignment. Journal of Molecular Biology 302, 205–217 (Sept. 2000).

85. Nord, A., Hornbeck, P., Carey, K. & Wheeler, T. Splice-Aware Multiple Sequence Alignment
of Protein Isoforms in Proceedings of the 2018 ACM International Conference on Bioinfor-
matics, Computational Biology, and Health Informatics (ACM, Aug. 2018).

86. Le, S. Q. & Gascuel, O. An Improved General Amino Acid Replacement Matrix. Molecular
Biology and Evolution 25, 1307–1320 (Apr. 2008).

87. Nevers, Y. et al. The Quest for Orthologs orthology benchmark service in 2022. Nucleic Acids
Research 50, W623–W632 (May 2022).

88. Kaduk, M. & Sonnhammer, E. Improved orthology inference with Hieranoid 2. Bioinformat-
ics, btw774 (Jan. 2017).

89. Altenhoff, A. M. et al. OMA standalone: orthology inference among public and custom
genomes and transcriptomes. Genome Research 29, 1152–1163 (June 2019).

90. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative
genomics. Genome Biology 20 (Nov. 2019).

91. Linard, B. et al. OrthoInspector 2.0: Software and database updates. Bioinformatics 31,
447–448 (Oct. 2014).

92. Zdobnov, E. M. et al. OrthoDB in 2020: evolutionary and functional annotations of orthologs.
Nucleic Acids Research 49, D389–D393 (Nov. 2020).

93. Galperin, M. Y. et al. COG database update: focus on microbial diversity, model organisms,
and widespread pathogens. Nucleic Acids Research 49, D274–D281 (Nov. 2020).

94. Herrero, J. et al. Ensembl comparative genomics resources. Database 2016, bav096 (2016).
95. Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically anno-

tated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Research
47, D309–D314 (Nov. 2018).

96. Altenhoff, A. M. et al. OMA orthology in 2021: website overhaul, conserved isoforms, ances-
tral gene order and more. Nucleic Acids Research 49, D373–D379 (Nov. 2020).

97. Nevers, Y. et al. OrthoInspector 3.0: open portal for comparative genomics. Nucleic Acids
Research 47, D411–D418 (Oct. 2018).

98. Chen, F. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups.
Nucleic Acids Research 34, D363–D368 (Jan. 2006).

99. Altschul, S. F., Carroll, R. J. & Lipman, D. J. Weights for data related by a tree. Journal of
Molecular Biology 207, 647–653 (June 1989).

100. Felsenstein, J. Evolutionary trees from DNA sequences: A maximum likelihood approach.
Journal of Molecular Evolution 17, 368–376 (Nov. 1981).

101. Krogh, A. & Riis, S. K. Hidden Neural Networks. Neural Computation 11, 541–563 (Feb.
1999).

102. Yang, Z. Maximum likelihood phylogenetic estimation from DNA sequences with variable
rates over sites: Approximate methods. Journal of Molecular Evolution 39, 306–314 (Sept.
1994).

103. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A Fast and
Effective Stochastic Algorithm for Estimating Maximum Likelihood Phylogenies. Molecular
Biology and Evolution 32, 268–274 (Nov. 2014).

104. Hunter, J. D. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering
9, 90–95 (2007).

105. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (Sept. 2020).

99

106. McKinney, W. Data Structures for Statistical Computing in Python in Proceedings of the
Python in Science Conference (SciPy, 2010).

107. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nature Methods 17, 261–272 (Feb. 2020).

108. Zhou, H.-X. Intrinsic disorder: signaling via highly specific but short-lived association. Trends
in Biochemical Sciences 37, 43–48 (Feb. 2012).

109. Piovesan, D. et al. MobiDB: intrinsically disordered proteins in 2021. Nucleic Acids Research
49, D361–D367 (Nov. 2020).

110. Piovesan, D. et al. MobiDB: 10 years of intrinsically disordered proteins. Nucleic Acids Re-
search 51, D438–D444 (Nov. 2022).

111. Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers
of cellular biochemistry. Nature Reviews Molecular Cell Biology 18, 285–298 (Feb. 2017).

112. Fuxreiter, M., Tompa, P. & Simon, I. Local structural disorder imparts plasticity on linear
motifs. Bioinformatics 23, 950–956 (Mar. 2007).

113. Davey, N. E. et al. Attributes of short linear motifs. Mol. BioSyst. 8, 268–281 (2012).
114. Ba, A. N. N. et al. Proteome-Wide Discovery of Evolutionary Conserved Sequences in Dis-

ordered Regions. Science Signaling 5 (Mar. 2012).
115. Roey, K. V., Gibson, T. J. & Davey, N. E. Motif switches: decision-making in cell regulation.

Current Opinion in Structural Biology 22, 378–385 (June 2012).
116. Tan, C. S. H., Jørgensen, C. & Linding, R. Roles of “junk phosphorylation” in modulating

biomolecular association of phosphorylated proteins? Cell Cycle 9, 1276–1280 (Apr. 2010).
117. Zarin, T. et al. Identifying molecular features that are associated with biological function of

intrinsically disordered protein regions. eLife 10 (Feb. 2021).
118. Sillitoe, I. et al. CATH: increased structural coverage of functional space. Nucleic Acids

Research 49, D266–D273 (Nov. 2020).
119. Andreeva, A., Howorth, D., Chothia, C., Kulesha, E. & Murzin, A. G. SCOP2 prototype:

a new approach to protein structure mining. Nucleic Acids Research 42, D310–D314 (Nov.
2013).

120. Andreeva, A., Kulesha, E., Gough, J. & Murzin, A. G. The SCOP database in 2020: expanded
classification of representative family and superfamily domains of known protein structures.
Nucleic Acids Research 48, D376–D382 (Nov. 2019).

121. Cornwell, W. & Nakagawa, S. Phylogenetic comparative methods. Current Biology 27, R333–
R336 (May 2017).

122. Wang, S., Ma, J. & Xu, J. AUCpreD: proteome-level protein disorder prediction by AUC-
maximized deep convolutional neural fields. Bioinformatics 32, i672–i679 (Aug. 2016).

123. Ho, L. S. T. & Ané, C. Asymptotic theory with hierarchical autocorrelation: Ornstein-
Uhlenbeck tree models. The Annals of Statistics 41 (Apr. 2013).

124. Ho, L. S. T. & Ané, C. Intrinsic inference difficulties for trait evolution with Ornstein-
Uhlenbeck models. Methods in Ecology and Evolution 5, 1133–1146 (Nov. 2014).

125. Zarin, T. et al. Proteome-wide signatures of function in highly diverged intrinsically disor-
dered regions. eLife 8 (July 2019).

126. Brown, C. J., Johnson, A. K. & Daughdrill, G. W. Comparing Models of Evolution for
Ordered and Disordered Proteins. Molecular Biology and Evolution 27, 609–621 (Nov. 2009).

127. Szalkowski, A. M. & Anisimova, M. Markov Models of Amino Acid Substitution to Study
Proteins with Intrinsically Disordered Regions. PLoS ONE 6, e20488 (May 2011).

128. Wang, J. et al. A Molecular Grammar Governing the Driving Forces for Phase Separation of
Prion-like RNA Binding Proteins. Cell 174, 688–699.e16 (July 2018).

100

129. Halfmann, R. et al. Opposing Effects of Glutamine and Asparagine Govern Prion Formation
by Intrinsically Disordered Proteins. Molecular Cell 43, 72–84 (July 2011).

130. Mohan, A. et al. Analysis of Molecular Recognition Features (MoRFs). Journal of Molecular
Biology 362, 1043–1059 (Oct. 2006).

131. Lu, A. X. et al. Discovering molecular features of intrinsically disordered regions by using
evolution for contrastive learning. PLOS Computational Biology 18, e1010238 (June 2022).

132. Crawford, F. W. & Suchard, M. A. Transition probabilities for general birth–death processes
with applications in ecology, genetics, and evolution. Journal of Mathematical Biology 65,
553–580 (Oct. 2011).

133. Flory, P. J. The Configuration of Real Polymer Chains. The Journal of Chemical Physics
17, 303–310 (Mar. 1949).

134. Kohn, J. E. et al. Random-coil behavior and the dimensions of chemically unfolded proteins.
Proceedings of the National Academy of Sciences 101, 12491–12496 (Aug. 2004).

135. Kumar, M. et al. The Eukaryotic Linear Motif resource: 2022 release. Nucleic Acids Research
50, D497–D508 (Oct. 2021).

136. Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. & Pappu, R. V. CIDER:
Resources to Analyze Sequence-Ensemble Relationships of Intrinsically Disordered Proteins.
Biophysical Journal 112, 16–21 (Jan. 2017).

137. Kozlowski, L. P. IPC – Isoelectric Point Calculator. Biology Direct 11 (Oct. 2016).
138. Felsenstein, J. Maximum-likelihood estimation of evolutionary trees from continuous charac-

ters. American Journal of Human Genetics 25, 471–492 (Sept. 1973).
139. Felsenstein, J. Phylogenies and the Comparative Method. The American Naturalist 125, 1–

15 (Jan. 1985).
140. Akaike, H. A new look at the statistical model identification. IEEE Transactions on Auto-

matic Control 19, 716–723 (Dec. 1974).
141. Butler, M. A. & King, A. A. Phylogenetic Comparative Analysis: A Modeling Approach for

Adaptive Evolution. The American Naturalist 164, 683–695 (Dec. 2004).
142. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. Nature Genetics 25,

25–29 (May 2000).
143. Consortium, G. O. The Gene Ontology resource: enriching a GOld mine. Nucleic Acids

Research 49, D325–D334 (Dec. 2020).
144. Pedregosa, F. et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning

Research 12, 2825–2830 (2011).
145. Durbin, R., Eddy, S. R., Krogh, A. & Mitchison, G. Biological Sequence Analysis (Cambridge

University Press, Apr. 1998).

101

APPENDIX A

Supporting information for chapter 1

Figure A1. Cumulative number of different eukaryotic genomes annotated by NCBI.

102

Figure A2. Statistics of orthologous groups. (A) Each species is equally represented in orthologous
groups (OGs). (B) Nearly all proteins are associated with a single orthologous group. (C) A plurality of
orthologous groups contain all species. (D) The number of orthologous groups associated with a species is
strongly correlated with the number of unique annotated proteins, which suggests the annotation pipeline
generally identifies conserved genes.

103

Figure A3. Addition of paralogs to orthologous groups. (A) Most orthologous groups (OGs) have
no in-paralogs. (B, D) Of the groups with paralogs, most have fewer than five. (C) The in-paralogs are
generally only a small fraction of the sequences in an orthologous group.

104

Figure A4. Insertion phylo-HMM data and training details. (A) Most columns in the training
data were labeled as state 1A or 1B. (B) The model loss stabilized by the final training iteration. (C-F)
The values of parameters in the phylogenetic process, the jump process, the pattern stickiness model, and
the transition matrix, respectively, at each training iteration. The transition matrix plots are the transition
rates to the state indicated on the vertical axis and given in log scale. Self transitions are excluded.

105

Figure A5. Insertion phylo-HMM trimming details. (A) Most alignments were not trimmed. Of
the alignments with trims, most were trimmed only at the level of sequences. (B) Most trimmed regions
were inferred primarily as state 2. (C) Most alignments with sequence trims have fewer than 10 segments
removed. (D) Most alignments with region trims have fewer than five regions removed. (E, G) The number
of non-gap symbols in sequence trims can vary considerably, but for nearly all sequence trims each non-gap
symbol in the removed segment is aligned to fewer than five non-gap symbols on average. Only the lower
95% of the distribution of the number of non-gap symbols in the sequence trims is shown. (F, H) The
length of region trims can also vary considerably, but generally each region trims accounts for fewer than
10% of the columns in the original alignment.

106

Figure A6. Missing phylo-HMM data and training details. (A) Most columns in the training data
were labeled as state 1, which is referred to as the “not missing” state in the main text. (B) The model loss
stabilized by the final training iteration. (C-F) The values of parameters in the phylogenetic process, the
jump process, and the transition matrix, respectively, at each training iteration. The transition matrix plots
are the transition rates to the state indicated on the vertical axis and given in log scale. Self transitions are
excluded.

107

Figure A7. Missing phylo-HMM trimming details. (A) Most alignments have no sequences with
“missing” segments. (B) Of the alignments with sequences trimmed of missing segments, a majority have
only one trimmed sequence. (C-D) The length of missing segments can vary considerably, both in terms of
the number of positions as well as its ratio to the number of columns in the alignment.

108

Figure A8. Phylogenetic trees fit to meta-alignments yielded by different sampling strategies
under LG model.

109

Figure A9. Phylogenetic trees fit by different sampling strategies under GTR model.

110

Table A1. Genome annotations.

Species Species ID Taxon ID Version Source
Drosophila ananassae dana 7217 102 NCBI
Drosophila biarmipes dbia 125945 102 NCBI
Drosophila bipectinata dbip 42026 102 NCBI
Drosophila elegans dele 30023 102 NCBI
Drosophila erecta dere 7220 101 NCBI
Drosophila eugracilis deug 29029 102 NCBI
Drosophila ficusphila dfic 30025 102 NCBI
Drosophila grimshawi dgri 7222 103 NCBI
Drosophila guanche dgua 7266 100 NCBI
Drosophila hydei dhyd 7224 101 NCBI
Drosophila innubila dinn 198719 100 NCBI
Drosophila kikkawai dkik 30033 102 NCBI
Drosophila mauritiana dmau 7226 100 NCBI
Drosophila melanogaster dmel 7227 FB2022 02 FlyBase
Drosophila mojavensis dmoj 7230 102 NCBI
Drosophila navojoa dnav 7232 101 NCBI
Drosophila novamexicana dnov 47314 100 NCBI
Drosophila obscura dobs 7282 101 NCBI
Drosophila persimilis dper 7234 101 NCBI
Drosophila pseudoobscura dpse 7237 104 NCBI
Drosophila rhopaloa drho 1041015 102 NCBI
Drosophila santomea dsan 129105 101 NCBI
Drosophila sechellia dsec 7238 101 NCBI
Drosophila serrata dser 7274 100 NCBI
Drosophila simulans dsim 7240 103 NCBI
Drosophila subobscura dsob 7241 100 NCBI
Drosophila subpulchrella dspu 1486046 100 NCBI
Drosophila suzukii dsuz 28584 102 NCBI
Drosophila takahashii dtak 29030 102 NCBI
Drosophila teissieri dtei 7243 100 NCBI
Drosophila virilis dvir 7244 103 NCBI
Drosophila willistoni dwil 7260 102 NCBI
Drosophila yakuba dyak 7245 102 NCBI
Scaptodrosophila lebanonensis sleb 7225 100 NCBI

111

Table A2. Phylogenetic diversity criteria.

Species IDs Minimum number
dinn, dgri, dhyd 2
dnov, dvir 1
dmoj, dnav 1
dper, dpse 1
dgua, dsob 1
dana, dbip 1
dkik, dser 1
dele, drho 1
dtak, dbia 1
dspu, dsuz 1
dere, dtei 1
dsan, dyak 1
dmel 1
dmau, dsec, dsim 1

112

APPENDIX B

Supporting information for chapter 2

Figure B1. Summary statistics of disorder and order regions. (A) Distribution of mean lengths
of regions. (B) Boxplot of the sums of the average amino acid and indel substitution rates in the disorder
and order regions. The substitution rates are significantly greater in the disorder regions than in the order
regions (p < 1 × 10−10, Mann-Whitney U test).

113

Figure B2. Exchangeability matrices fit to meta-alignments yielded by different sampling
strategies. Each panel is a mean of the exchangeability coefficients fit to the meta-alignments yielded by
a single sampling strategy (n = 25). The prefix and suffix in the title of each panel indicate the maximum
gap fraction and region type of the columns in the meta-alignments. For example, the columns in the
“50R disorder” set of meta-alignments were fewer than 50% gaps and sampled from the disorder regions.

114

Figure B3. Rate matrices fit to meta-alignments yielded by different sampling strategies. Each
panel is a mean of the rate coefficients fit to the meta-alignments yielded by a single sampling strategy
(n = 25). See Fig. B2 for an explanation of the panel labels.

Figure B4. Correlations between mean exchangeability and rate matrices fit to meta-
alignments yielded by different sampling strategies. (A) Correlations between the mean exchange-
ability matrices in Fig. B2. (B) Correlations between the mean rate matrices in Fig. B3.

115

Figure B5. Coefficients of variation of the exchangeability matrices. For all panels, the top and
bottoms rows correspond to the 50R disorder and 50R order meta-alignment sets, respectively. (A, D)
Mean exchangeability matrices. (B, E) Coefficients of variation (ratio of the standard deviation to the
mean) of exchangeability matrices. (C, F) The coefficient of variation is inversely proportional to the mean,
indicating the variation in the parameter estimates is constant relative to their magnitude.

Figure B6. Coefficients of variation of the rate matrices. For all panels, the top and bottoms
rows correspond to the 50R disorder and 50R order meta-alignment sets, respectively. (A, D) Mean rate
matrices. (B, E) Coefficients of variation (ratio of the standard deviation to the mean) of rate matrices.
(C, F) The coefficient of variation is inversely proportional to the mean, indicating the variation in the
parameter estimates is constant relative to their magnitude.

116

Figure B7. Histogram of disorder score rates in regions. The grey interval indicates the upper decile
of the distribution across both disorder and order regions, which was used as the input set for the GO term
enrichment analysis.

Figure B8. Variance ratios of disorder regions’ feature roots. (A) Variance ratios before normal-
ization. (B) Variance ratios after normalization. (C) Scree plot of the explained variance ratio by PC.

117

Figure B9. Variance ratios of disorder regions’ feature rates. (A) Variance ratios before normal-
ization. (B) Variance ratios after normalization. (C) Scree plot of the explained variance ratio by PC.

Figure B10. PCA of order regions’ feature rates. (A) The second and third PCs of the order
regions’ feature rate distributions. The explained variance percentage of each component is indicated in
parentheses in the axis labels. (B) The same plot as panel B with the projections of original variables onto
the components shown as arrows. Only the 16 features with the largest projections are shown. Scaling of
the arrows is arbitrary.

118

Figure B11. Rate distributions of substitution models fit to disorder regions. (A) Average amino
acid rates in regions. (B). Average indel rates in regions. For both panels, the grey intervals correspond to
the subset of rapidly evolving regions used for the clustering and GO term enrichment analyses.

119

Table B1. Selected enriched annotations in clusters.

Cluster p-value Term ID Term name
A 1.38E-03 GO:0005201 extracellular matrix structural constituent
A 3.38E-03 GO:0043062 extracellular structure organization
A 9.48E-03 GO:0030198 extracellular matrix organization
B 3.64E-04 GO:0090263 positive regulation of canonical Wnt signaling pathway
B 4.32E-04 GO:0060828 regulation of canonical Wnt signaling pathway
B 5.04E-04 GO:0030177 positive regulation of Wnt signaling pathway
B 8.91E-04 GO:0030111 regulation of Wnt signaling pathway
B 3.98E-03 GO:0061629 RNA polymerase II-specific DNA-binding transcription factor binding
B 7.15E-03 GO:0008134 transcription factor binding
D 2.44E-03 GO:0006999 nuclear pore organization
D 3.23E-03 GO:0006607 NLS-bearing protein import into nucleus
D 3.60E-03 GO:0008104 protein localization
D 3.74E-03 GO:0045184 establishment of protein localization
D 3.78E-03 GO:0044613 nuclear pore central transport channel
D 3.78E-03 GO:0017056 structural constituent of nuclear pore
E 3.66E-04 GO:0070161 anchoring junction
E 7.11E-04 GO:0030054 cell junction
E 1.66E-03 GO:0022843 voltage-gated cation channel activity
E 2.12E-03 GO:0022832 voltage-gated channel activity
E 2.12E-03 GO:0005244 voltage-gated ion channel activity
F 2.92E-04 GO:0033365 protein localization to organelle
F 4.08E-04 GO:0051179 localization
F 5.43E-04 GO:0034504 protein localization to nucleus
F 8.68E-04 GO:0034613 cellular protein localization
F 1.57E-03 GO:0008104 protein localization
F 1.67E-03 GO:0006606 protein import into nucleus
F 2.10E-03 GO:0051170 import into nucleus
G 2.40E-04 GO:0005459 UDP-galactose transmembrane transporter activity
G 2.40E-04 GO:0005338 nucleotide-sugar transmembrane transporter activity
G 2.40E-04 GO:0015165 pyrimidine nucleotide-sugar transmembrane transporter activity
G 2.40E-04 GO:0072334 UDP-galactose transmembrane transport
G 2.40E-04 GO:0090481 pyrimidine nucleotide-sugar transmembrane transport
G 2.40E-04 GO:0015780 nucleotide-sugar transmembrane transport
G 1.41E-03 GO:0015932 nucleobase-containing compound transmembrane transporter activity
G 2.33E-03 GO:1901505 carbohydrate derivative transmembrane transporter activity
G 2.33E-03 GO:1901264 carbohydrate derivative transport
H 2.14E-04 GO:0007113 endomitotic cell cycle
H 1.51E-03 GO:0051726 regulation of cell cycle
I 5.02E-04 GO:0007616 long-term memory
I 6.03E-04 GO:0099177 regulation of trans-synaptic signaling
I 6.03E-04 GO:0050804 modulation of chemical synaptic transmission
I 8.90E-04 GO:0010646 regulation of cell communication
I 9.41E-04 GO:0023051 regulation of signaling
J 1.47E-03 GO:0008172 S-methyltransferase activity
J 2.37E-03 GO:0042800 histone methyltransferase activity (H3-K4 specific)
J 3.76E-03 GO:0034708 methyltransferase complex
J 4.79E-03 GO:0051568 histone H3-K4 methylation
J 8.43E-03 GO:0035097 histone methyltransferase complex
L 2.51E-03 GO:0031507 heterochromatin assembly
L 2.51E-03 GO:0031497 chromatin assembly
L 3.00E-03 GO:0070828 heterochromatin organization
L 3.91E-03 GO:0003677 DNA binding
L 4.70E-03 GO:0003676 nucleic acid binding

120

T
ab

le
B

2.
Fe

at
ur

es
an

d
th

ei
r

de
fin

it
io

ns
.

Fe
at

ur
e

ID
Fe

at
ur

e
na

m
e

G
ro

up
na

m
e

R
an

ge
D

es
cr

ip
ti

on
C

ha
ng

es
fr

om
Z

ar
in

et
al

.
[1

25
]

fr
ac

tio
n

S
S

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

fr
ac

tio
n

P
P

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

fr
ac

tio
n

T
T

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

fr
ac

tio
n

A
A

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

fr
ac

tio
n

H
H

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

fr
ac

tio
n

Q
Q

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

fr
ac

tio
n

N
N

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

fr
ac

tio
n

G
G

fr
ac

tio
n

am
in

o
ac

id
co

nt
en

t
[0

,1
]

FC
R

fr
ac

tio
n

ch
ar

ge
d

re
sid

ue
s

ch
ar

ge
pr

op
er

tie
s

[0
,1

]
ba

sic
re

sid
ue

fr
ac

tio
n

+
ac

id
ic

re
sid

ue
fr

ac
tio

n

N
C

PR
ne

t
ch

ar
ge

pe
r

re
sid

ue
ch

ar
ge

pr
op

er
tie

s
[-1

,1
]

ba
sic

re
sid

ue
fr

ac
tio

n
-a

ci
di

c
re

sid
ue

fr
ac

tio
n

ne
t

ch
ar

ge
ne

t
ch

ar
ge

ch
ar

ge
pr

op
er

tie
s

(−
∞

,∞
)

#
[R

K
]-

#
[D

E]

ne
t

ch
ar

ge
P

ne
t

ch
ar

ge
w

ith
ph

os
ph

or
yl

at
io

n
ch

ar
ge

pr
op

er
tie

s
(−

∞
,∞

)
ne

t
ch

ar
ge

in
cl

ud
in

g
ph

os
ph

or
yl

at
io

n
of

[S
T

]P
co

ns
en

su
s

sit
es

w
ith

-1
.5

ch
ar

ge
pe

r
sit

e

ka
pp

a
ka

pp
a

ch
ar

ge
pr

op
er

tie
s

(0
,1

]
m

ea
su

re
of

se
pa

ra
tio

n
be

tw
ee

n
po

sit
iv

el
y

an
d

ne
ga

tiv
el

y
ch

ar
ge

d
re

sid
ue

s

om
eg

a
om

eg
a

ch
ar

ge
pr

op
er

tie
s

(0
,1

]
m

ea
su

re
of

se
pa

ra
tio

n
be

tw
ee

n
ch

ar
ge

d
re

sid
ue

s
or

pr
ol

in
es

an
d

al
lo

th
er

re
sid

ue
s

SC
D

se
qu

en
ce

ch
ar

ge
de

co
ra

tio
n

ch
ar

ge
pr

op
er

tie
s

(−
∞

,∞
)

m
ea

su
re

of
se

pa
ra

tio
n

be
tw

ee
n

po
sit

iv
el

y
an

d
ne

ga
tiv

el
y

ch
ar

ge
d

re
sid

ue
s

R
K

ra
tio

R
/K

ra
tio

ch
ar

ge
pr

op
er

tie
s

(0
,∞

)
ad

ju
st

ed
ra

tio
of

ar
gi

ni
ne

to
ly

sin
e

re
sid

ue
s:

(#
R

+
1)

/(
#

K
+

1)

ED
ra

tio
E/

D
ra

tio
ch

ar
ge

pr
op

er
tie

s
(0

,∞
)

ad
ju

st
ed

ra
tio

of
gl

ut
am

ic
ac

id
to

as
pa

rt
ic

ac
id

re
sid

ue
s:

(#
E

+
1)

/(
#

D
+

1)

fr
ac

tio
n

ac
id

ic
ac

id
ic

re
sid

ue
fr

ac
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,1
]

C
on

tin
ue

d
on

ne
xt

pa
ge

121

T
ab

le
B

2
(c

on
tin

ue
d)

Fe
at

ur
e

ID
Fe

at
ur

e
na

m
e

G
ro

up
na

m
e

R
an

ge
D

es
cr

ip
ti

on
C

ha
ng

es
fr

om
Z

ar
in

et
al

.
[1

25
]

fr
ac

tio
n

ba
sic

ba
sic

re
sid

ue
fr

ac
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,1
]

fr
ac

tio
n

al
ip

ha
tic

al
ip

ha
tic

re
sid

ue
fr

ac
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,1
]

fr
ac

tio
n

po
la

r
po

la
r

re
sid

ue
fr

ac
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,1
]

re
m

ov
ed

gl
yc

in
e

fr
ac

tio
n

ch
ai

ne
xp

ch
ai

n-
ex

pa
nd

in
g

re
sid

ue
fr

ac
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,1
]

fr
ac

tio
n

ar
om

at
ic

ar
om

at
ic

re
sid

ue
fr

ac
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,1
]

fr
ac

tio
n

di
so

rd
er

di
so

rd
er

-p
ro

m
ot

in
g

re
sid

ue
fr

ac
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,1
]

ra
di

us
gy

ra
tio

n
ra

di
us

of
gy

ra
tio

n
ph

ys
io

ch
em

ic
al

pr
op

er
tie

s
[0

,
∞

)
nu

m
be

r
of

re
sid

ue
s

to
th

e
0.

6
po

w
er

su
bs

tit
ut

ed
fo

r
le

ng
th

hy
dr

op
at

hy
hy

dr
op

at
hy

ph
ys

io
ch

em
ic

al
pr

op
er

tie
s

[0
,1

]
no

rm
al

iz
ed

K
yt

e-
D

oo
lit

tle
sc

al
e

iso
po

in
t

iso
el

ec
tr

ic
po

in
t

ph
ys

io
ch

em
ic

al
pr

op
er

tie
s

(−
∞

,∞
)

pH
w

he
re

ch
ar

ge
of

pe
pt

id
e

is
ne

ut
ra

l

PP
II

pr
op

en
sit

y
PP

II
pr

op
en

sit
y

ph
ys

io
ch

em
ic

al
pr

op
er

tie
s

[0
,1

]
pr

op
en

sit
y

fo
r

pr
ol

in
e

to
fo

rm
le

ft
-h

an
de

d
he

lic
es

re
pe

at
Q

Q
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
Q

re
pe

at
N

N
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
N

re
pe

at
S

S
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
S

re
pe

at
G

G
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

tu
iv

e
G

re
pe

at
E

E
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
E

re
pe

at
D

D
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
D

re
pe

at
K

K
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
K

re
pe

at
R

R
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
R

C
on

tin
ue

d
on

ne
xt

pa
ge

122

T
ab

le
B

2
(c

on
tin

ue
d)

Fe
at

ur
e

ID
Fe

at
ur

e
na

m
e

G
ro

up
na

m
e

R
an

ge
D

es
cr

ip
ti

on
C

ha
ng

es
fr

om
Z

ar
in

et
al

.
[1

25
]

re
pe

at
P

P
re

pe
at

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
P

re
pe

at
Q

N
[Q

N
]r

ep
ea

t
fr

ac
tio

n
re

pe
at

s
an

d
co

m
pl

ex
ity

[0
,1

]
fr

ac
tio

n
2

or
m

or
e

co
ns

ec
ut

iv
e

[Q
N

]

re
pe

at
R

G
[R

G
]r

ep
ea

t
fr

ac
tio

n
re

pe
at

s
an

d
co

m
pl

ex
ity

[0
,1

]
fr

ac
tio

n
2

or
m

or
e

co
ns

ec
ut

iv
e

[R
G

]

re
pe

at
FG

[F
G

]r
ep

ea
t

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
[F

G
]

re
pe

at
SG

[S
G

]r
ep

ea
t

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
[S

G
]

re
pe

at
SR

[S
R

]r
ep

ea
t

fr
ac

tio
n

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

fr
ac

tio
n

2
or

m
or

e
co

ns
ec

ut
iv

e
[S

R
]

re
pe

at
A

P
[K

A
P]

re
pe

at
fr

ac
tio

n
re

pe
at

s
an

d
co

m
pl

ex
ity

[0
,1

]
fr

ac
tio

n
2

or
m

or
e

co
ns

ec
ut

iv
e

[K
A

P]

re
pe

at
T

S
[P

T
S]

re
pe

at
fr

ac
tio

n
re

pe
at

s
an

d
co

m
pl

ex
ity

[0
,1

]
fr

ac
tio

n
2

or
m

or
e

co
ns

ec
ut

iv
e

[P
T

S]

w
fc

om
pl

ex
ity

W
oo

tt
on

-F
ed

er
he

n
se

qu
en

ce
co

m
pl

ex
ity

re
pe

at
s

an
d

co
m

pl
ex

ity
[0

,1
]

co
m

pl
ex

ity
ba

se
d

on
SE

G
al

go
rit

hm
:

bl
ob

le
ng

th
=

ID
R

le
ng

th
,s

te
p

siz
e=

1

C
LV

Se
pa

rin
M

et
az

oa
se

pa
ra

se
cl

ea
va

ge
m

ot
if

m
ot

ifs
[0

,∞
)

M
et

az
oa

m
ot

if
in

st
ea

d
of

fu
ng

i

D
EG

A
PC

C
K

EN
B

O
X

2
A

PC
C

-b
in

di
ng

de
st

ru
ct

io
n

m
ot

if
m

ot
ifs

[0
,∞

)

D
EG

A
PC

C
T

PR
1

A
PC

C
-T

PR
-d

oc
ki

ng
m

ot
if

m
ot

ifs
[0

,∞
)

D
O

C
C

K
S1

1
C

ks
1

lig
an

d
m

ot
ifs

[0
,∞

)
D

O
C

M
A

PK
D

C
C

7
M

A
PK

do
ck

in
g

m
ot

if
m

ot
ifs

[0
,∞

)
D

O
C

M
A

PK
ge

n
1

M
A

PK
do

ck
in

g
m

ot
if

m
ot

ifs
[0

,∞
)

D
O

C
M

A
PK

H
eP

T
P

8
M

A
PK

do
ck

in
g

m
ot

if
m

ot
ifs

[0
,∞

)
D

O
C

PP
1

RV
X

F
1

PP
1-

do
ck

in
g

m
ot

if
RV

X
F

m
ot

ifs
[0

,∞
)

D
O

C
PP

2B
Px

Ix
I

1
ca

lc
in

eu
rin

(P
P2

B
)-

do
ck

in
g

m
ot

if
Px

Ix
I

m
ot

ifs
[0

,∞
)

LI
G

A
PC

C
C

bo
x

1
A

PC
/C

A
pc

2-
do

ck
in

g
m

ot
if

m
ot

ifs
[0

,∞
)

M
et

az
oa

m
ot

if
in

st
ea

d
of

fu
ng

i

LI
G

A
P

G
A

E
1

ga
m

m
a-

ad
ap

tin
ea

r
in

te
ra

ct
io

n
m

ot
if

m
ot

ifs
[0

,∞
)

LI
G

C
aM

IQ
9

he
lic

al
ca

lm
od

ul
in

bi
nd

in
g

m
ot

if
m

ot
ifs

[0
,∞

)

LI
G

EH
1

EH
lig

an
d

m
ot

ifs
[0

,∞
)

C
on

tin
ue

d
on

ne
xt

pa
ge

123

T
ab

le
B

2
(c

on
tin

ue
d)

Fe
at

ur
e

ID
Fe

at
ur

e
na

m
e

G
ro

up
na

m
e

R
an

ge
D

es
cr

ip
ti

on
C

ha
ng

es
fr

om
Z

ar
in

et
al

.
[1

25
]

LI
G

eI
F4

E
1

eI
F4

E
bi

nd
in

g
m

ot
if

m
ot

ifs
[0

,∞
)

LI
G

G
LE

B
S

B
U

B
3

1
G

LE
B

S
m

ot
if

m
ot

ifs
[0

,∞
)

LI
G

LI
R

G
en

1
A

tg
8

pr
ot

ei
n

fa
m

ily
lig

an
ds

m
ot

ifs
[0

,∞
)

sa
m

e
EL

M
en

tr
y,

bu
t

up
da

te
d

re
ge

x

LI
G

PC
N

A
PI

PB
ox

1
PC

N
A

bi
nd

in
g

PI
P

bo
x

m
ot

ifs
[0

,∞
)

sa
m

e
EL

M
en

tr
y,

bu
t

up
da

te
d

re
ge

x

LI
G

SU
M

O
SI

M
pa

r
1

SU
M

O
in

te
ra

ct
io

n
sit

e
m

ot
ifs

[0
,∞

)

M
O

D
C

D
K

SP
xK

1
C

D
K

ph
os

ph
or

yl
at

io
n

sit
e

m
ot

ifs
[0

,∞
)

M
O

D
LA

T
S

1
LA

T
S

ki
na

se
ph

os
ph

or
yl

at
io

n
m

ot
if

m
ot

ifs
[0

,∞
)

M
O

D
SU

M
O

fo
r

1
su

m
oy

la
tio

n
sit

e
m

ot
ifs

[0
,∞

)

T
R

G
ER

FF
AT

1
FF

AT
m

ot
if

m
ot

ifs
[0

,∞
)

sa
m

e
EL

M
en

tr
y,

bu
t

up
da

te
d

re
ge

x
T

R
G

G
ol

gi
di

Ph
e

1
ER

ex
po

rt
sig

na
ls

m
ot

ifs
[0

,∞
)

T
R

G
N

LS
M

on
oE

xt
N

4
cl

as
sic

al
nu

cl
ea

r
lo

ca
liz

at
io

n
sig

na
ls

m
ot

ifs
[0

,∞
)

M
O

D
C

D
K

ST
P

C
D

K
ph

os
ph

or
yl

at
io

n
m

ot
if

m
ot

ifs
[0

,∞
)

M
O

D
M

EC
1

M
ec

1
ph

os
ph

or
yl

at
io

n
m

ot
if

m
ot

ifs
[0

,∞
)

M
O

D
PR

K
1

Pr
k1

ph
os

ph
or

yl
at

io
n

m
ot

if
m

ot
ifs

[0
,∞

)

M
O

D
IP

L1
Ip

l1
ph

os
ph

or
yl

at
io

n
m

ot
if

m
ot

ifs
[0

,∞
)

M
O

D
PK

A
Pk

a
ph

os
ph

or
yl

at
io

n
m

ot
if

m
ot

ifs
[0

,∞
)

M
O

D
C

K
II

C
ki

ip
ho

sp
ho

ry
la

tio
n

m
ot

if
m

ot
ifs

[0
,∞

)

M
O

D
IM

E2
Im

e2
ph

os
ph

or
yl

at
io

n
m

ot
if

m
ot

ifs
[0

,∞
)

D
O

C
PR

O
pr

ol
in

e
ric

h
m

ot
if

m
ot

ifs
[0

,∞
)

T
R

G
ER

H
D

EL
ER

lo
ca

liz
at

io
n

m
ot

if
m

ot
ifs

[0
,∞

)

T
R

G
M

IT
O

C
H

O
N

D
R

IA
m

ito
ch

on
dr

ia
l

lo
ca

liz
at

io
n

m
ot

if
m

ot
ifs

[0
,∞

)

C
on

tin
ue

d
on

ne
xt

pa
ge

124

T
ab

le
B

2
(c

on
tin

ue
d)

Fe
at

ur
e

ID
Fe

at
ur

e
na

m
e

G
ro

up
na

m
e

R
an

ge
D

es
cr

ip
ti

on
C

ha
ng

es
fr

om
Z

ar
in

et
al

.
[1

25
]

M
O

D
IS

O
M

ER
A

SE
di

su
lfi

de
iso

m
er

as
e

m
ot

if
m

ot
ifs

[0
,∞

)

T
R

G
FG

FG
nu

cl
eo

po
rin

m
ot

if
m

ot
ifs

[0
,∞

)

IN
T

R
G

G
R

G
G

m
ot

if
m

ot
ifs

[0
,∞

)

125

T
ab

le
B

3.
Fe

at
ur

e
re

gu
la

r
ex

pr
es

si
on

s.

Fe
at

ur
e

ID
R

eg
ul

ar
ex

pr
es

si
on

fr
ac

tio
n

S
S

fr
ac

tio
n

P
P

fr
ac

tio
n

T
T

fr
ac

tio
n

A
A

fr
ac

tio
n

H
H

fr
ac

tio
n

Q
Q

fr
ac

tio
n

N
N

fr
ac

tio
n

G
G

fr
ac

tio
n

ac
id

ic
[D

E]
fr

ac
tio

n
ba

sic
[R

K
]

fr
ac

tio
n

al
ip

ha
tic

[A
LM

IV
]

fr
ac

tio
n

po
la

r
[Q

N
ST

C
H

]
fr

ac
tio

n
ch

ai
ne

xp
[E

D
R

K
P]

fr
ac

tio
n

ar
om

at
ic

[F
Y

W
]

fr
ac

tio
n

di
so

rd
er

[T
A

G
R

D
H

Q
K

SE
P]

re
pe

at
Q

Q
{2

,}
re

pe
at

N
N

{2
,}

re
pe

at
S

S{
2,

}
re

pe
at

G
G

{2
,}

re
pe

at
E

E{
2,

}
re

pe
at

D
D

{2
,}

re
pe

at
K

K
{2

,}
re

pe
at

R
R

{2
,}

re
pe

at
P

P{
2,

}
re

pe
at

Q
N

[Q
N

]{
2,

}
re

pe
at

R
G

[R
G

]{
2,

}
re

pe
at

FG
[F

G
]{

2,
}

re
pe

at
SG

[S
G

]{
2,

}
re

pe
at

SR
[S

R
]{

2,
}

re
pe

at
A

P
[K

A
P]

{2
,}

re
pe

at
T

S
[P

T
S]

{2
,}

C
LV

Se
pa

rin
M

et
az

oa
E[

IM
PV

L]
[M

LV
P]

R
.

D
EG

A
PC

C
K

EN
B

O
X

2
.K

EN
.

D
EG

A
PC

C
T

PR
1

.[I
LM

]R
D

O
C

C
K

S1
1

[M
PV

LI
FW

Y
Q

].(
T

)P
..

D
O

C
M

A
PK

D
C

C
7

[R
K

].{
2,

4}
[L

IV
P]

P.
[L

IV
].[

LI
V

M
F]

|[R
K

].{
2,

4}
[L

IV
P]

.P
[L

IV
].[

LI
V

M
F]

D
O

C
M

A
PK

ge
n

1
[K

R
]{

0,
2}

[K
R

].{
0,

2}
[K

R
].{

2,
4}

[IL
V

M
].[

IL
V

F]
C

on
tin

ue
d

on
ne

xt
pa

ge

126

T
ab

le
B

3
(c

on
tin

ue
d)

Fe
at

ur
e

ID
R

eg
ul

ar
ex

pr
es

si
on

D
O

C
M

A
PK

H
eP

T
P

8
([L

IV
][ˆ

P]
[ˆ

P]
[R

K
]..

..[
LI

V
M

P]
.[L

IV
].[

LI
V

M
F]

)|(
[L

IV
][ˆ

P]
[ˆ

P]
[R

K
][R

K
]G

.{
4,

7}
[L

IV
M

P]
.[L

IV
].[

LI
V

M
F]

)
D

O
C

PP
1

RV
X

F
1

..[
R

K
].{

0,
1}

[V
IL

][ˆ
P]

[F
W

].
D

O
C

PP
2B

Px
Ix

I
1

.P
[ˆ

P]
I[ˆ

P]
[IV

][ˆ
P]

LI
G

A
PC

C
C

bo
x

1
[D

E]
R

[Y
FH

][I
LF

V
M

][P
A

G
].R

LI
G

A
P

G
A

E
1

[D
E]

[D
ES

][D
EG

A
S]

F[
SG

A
D

][D
EA

P]
[L

V
IM

FD
]

LI
G

C
aM

IQ
9

[A
C

LI
V

T
M

][ˆ
P]

[ˆ
P]

[IL
V

M
FC

T
]Q

[ˆ
P]

[ˆ
P]

[ˆ
P]

[R
K

][ˆ
P]

{4
,5

}[
R

K
Q

][ˆ
P]

[ˆ
P]

LI
G

EH
1

.N
PF

.
LI

G
eI

F4
E

1
Y

...
.L

[V
IL

M
F]

LI
G

G
LE

B
S

B
U

B
3

1
[E

N
][F

Y
LW

][N
SQ

].E
E[

IL
M

V
F]

[ˆ
P]

[L
IV

M
FA

]
LI

G
LI

R
G

en
1

[E
D

ST
].{

0,
2}

[W
FY

][ˆ
R

K
PG

W
FY

][ˆ
PG

][I
LV

FM
]((

.{
0,

4}
[P

LA
FI

V
M

Y
])|

($
)|(

.{
0,

3}
[E

D
]))

LI
G

PC
N

A
PI

PB
ox

1
[Q

M
].[

ˆF
H

W
Y

][L
IV

M
][ˆ

P]
[ˆ

PF
W

Y
M

LI
V

]((
[F

Y
H

L]
[F

Y
W

])|
([F

Y
H

][F
Y

W
L]

))
..

LI
G

SU
M

O
SI

M
pa

r
1

[D
ES

T
]{

0,
5}

.[V
IL

PT
M

][V
IL

][D
ES

T
V

IL
M

A
][V

IL
].{

0,
1}

[D
ES

T
]{

1,
10

}
M

O
D

C
D

K
SP

xK
1

...
([S

T
])P

.[K
R

]
M

O
D

LA
T

S
1

H
.[K

R
]..

([S
T

])[
ˆP

]
M

O
D

SU
M

O
fo

r
1

[V
IL

M
A

FP
](K

).E
T

R
G

ER
FF

AT
1

[E
D

S]
.{

0,
4}

[E
D

][F
Y

][F
Y

K
R

EM
][D

E]
[A

C
].{

1,
2}

[E
D

ST
]

T
R

G
G

ol
gi

di
Ph

e
1

Q
.{

6,
6}

FF
.{

6,
7}

T
R

G
N

LS
M

on
oE

xt
N

4
((

[P
K

R
].{

0,
1}

[ˆ
D

E]
)|(

[P
K

R
]))

((
K

[R
K

])|
(R

K
))

((
[ˆ

D
E]

[K
R

])|
([K

R
][ˆ

D
E]

))
[ˆ

D
E]

M
O

D
C

D
K

ST
P

[S
T

]P
M

O
D

M
EC

1
[S

T
]Q

M
O

D
PR

K
1

[L
IV

M
]..

..T
G

M
O

D
IP

L1
[R

K
].[

ST
][L

IV
]

M
O

D
PK

A
R

[R
K

].S
M

O
D

C
K

II
[S

T
][D

E]
.[D

E]
M

O
D

IM
E2

R
P.

[S
T

]
D

O
C

PR
O

P.
.P

T
R

G
ER

H
D

EL
H

D
EL

T
R

G
M

IT
O

C
H

O
N

D
R

IA
[M

R
]L

[R
K

]
M

O
D

IS
O

M
ER

A
SE

C
..C

T
R

G
FG

F.
FG

|G
LF

G
IN

T
R

G
G

R
G

G
|R

G

127

APPENDIX C

Supporting information for chapter 3

Listing B1: Implementation of Baum-Welch for categorical distributions

In: epsilon = 0.01
maxiter = 100

ll0 = None
model_hat = HMM(t_dists=t_dists_hat,

e_dists=e_dists_hat,
start_dist=start_dist_hat)

for numiter in range(maxiter):
Initialize count dictionaries
ps = []
t_counts = {state1: {state2: 0 for state2 in t_dist}

for state1, t_dist in t_dists_hat.items()}
e_counts = {state: {emit: 0 for emit in e_dist}

for state, e_dist in e_dists_hat.items()}
start_count = {state: 0 for state in start_dist_hat}

Get counts across all examples
for example in data:

xs, ys = example
fs, ss_f = model_hat.forward(ys)
bs, ss_b = model_hat.backward(ys)

p = reduce(lambda x, y: x+y, map(log, ss_f))
ss_f = list(accumulate(map(log, ss_f)))
ss_b = list(accumulate(map(log, ss_b[::-1])))[::-1]
ps.append(p)

t_counts
for t in range(len(ys)-1):

for state1, t_count in t_counts.items():
for state2 in t_count:

term1 = fs[state1][t] * t_dists_hat[state1][state2]
term2 = e_dists_hat[state2][ys[t+1]] * bs[state2][t+1]
count = term1 * term2
t_count[state2] += count * exp(ss_f[t] + ss_b[t+1] - p)

e_counts
for t in range(len(ys)):

for state, e_count in e_counts.items():
if ys[t] in e_count:

count = fs[state][t]*bs[state][t]

128

e_count[ys[t]] += count * exp(ss_f[t] + ss_b[t] - p)

start_count
for state in start_count:

count = fs[state][0]*bs[state][0]
start_count[state] += count * exp(ss_f[0] + ss_b[0] - p)

Format parameters for display
t_string = pprint.pformat(t_dists_hat)
t_string = t_string.replace('\n', '\n' + len('t_dists: ')*' ')
e_string = pprint.pformat(e_dists_hat)
e_string = e_string.replace('\n', '\n' + len('e_dists: ')*' ')
start_string = pprint.pformat(start_dist_hat)

Check stop condition
Don't want to repeat calculations,
so ith iterate checks previous update
For example, 0th iterate shows initial parameters,
and 1st iterate shows results of first update
ll = sum(ps)
if ll0 is not None and abs(ll - ll0) < epsilon:

print(f'FINAL VALUES')
print('log-likelihood:', ll)
print('delta log-likelihood:', ll-ll0 if ll0 is not None else None)
print('t_dists:', t_string)
print('e_dists:', e_string)
print('start_dist:', start_string)
break

Print results
print(f'ITERATION {numiter}')
print('log-likelihood:', ll)
print('delta log-likelihood:', ll-ll0 if ll0 is not None else None)
print('t_dists:', t_string)
print('e_dists:', e_string)
print('start_dist:', start_string)
print()

Normalize all counts and update model
t_dists_hat = {}
for state1, t_count in t_counts.items():

t_sum = sum(t_count.values())
t_dist_hat = {}
for state2, count in t_count.items():

t_dist_hat[state2] = count / t_sum
t_dists_hat[state1] = t_dist_hat

e_dists_hat = {}
for state, e_count in e_counts.items():

e_sum = sum(e_count.values())
e_dist_hat = {}
for emit, count in e_count.items():

e_dist_hat[emit] = count / e_sum
e_dists_hat[state] = e_dist_hat

start_sum = sum(start_count.values())
start_dist_hat = {}
for state, count in start_count.items():

129

start_dist_hat[state] = count / start_sum

ll0 = ll
model_hat = HMM(t_dists=t_dists_hat,

e_dists=e_dists_hat,
start_dist=start_dist_hat)

130

	Introduction
	Background
	Aims

	Leveraging genomic redundancy to improve inference and alignment of orthologous proteins
	Introduction
	Results
	Discussion
	Materials and methods

	Evolutionary analyses of IDRs reveal patterns of conserved features
	Introduction
	Results
	Discussion
	Materials and methods

	Tools and tutorials for fitting mixture models and HMMs
	Overview of tools and tutorials
	HMM training tutorial introduction
	What is training?
	Training with known states
	Training with unknown states
	Discriminative training
	Conclusion

	References
	Supporting information for chapter 1
	Supporting information for chapter 2
	Supporting information for chapter 3

