UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Ad-Hoc, Fail-Safe Plan Learning

Permalink
https://escholarship.org/uc/item/8r88460m

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 12(0)

Authors
Zito-Wolf, Roland
Alterman, Richard

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/8r88460m
https://escholarship.org
http://www.cdlib.org/

Ad-Hoc, Fail-Safe Plan Learning

Roland Zito-Wolf
Richard Alterman

Computer Science Department

Brandeis University
Waltham MA 02254

Abstract

Artificial Intelligence research has traditionally
treated planning, execution and learning as inde-
pendent, sequential subproblems decomposing the
larger problem of intelligent action. Recently, sev-
eral lines of research have challenged the separation
of planning and acting. This paper suggests that
integration with planning and acting is also impor-
tant for learning. We present an integrated system
SCAVENGER combining an adaptive planner with
an ad-hoc learner. Situated plans are retrieved from
memory; adaptation during execution extends these
plans to cope with contingencies that arise and to
tease out descriptions of situations to which these
plans pertain. These changes are then integrated
into the plan and incorporated into memory. Every
situation of action is an opportunity for learning.
Adaptive planning makes learning fail-safe by com-
pensating for imperfections and omissions in learn-
ing and variability across situations. We discuss a
learning example in the domain of mechanical de-
vices.

1 Introduction

Traditional models of planning in artificial intelli-
gence have two key features. First, planning is ahis-
toric: the planner confronts each task in isolation.
Plans are constructed from scratch using a limited
repertoire of operators and a domain model defin-
ing their effects and interactions. Second, planning
is detached from acting. The plan is constructed
first, then given to an independent execution mon-
itor that performs the specified operations. These
assumptions help decompose the planning task, but
unfortunately introduce other problems. Experience
1s ignored, leading to redundant planning. Separate
execution makes it difficult to adequately address

908

run-time contingencies and uncertainty. This cri-
tique of traditional planning models arose from work
on adaptive planning[Alterman, 1988], case-based
planning[Kolodner and Simpson, 1989; Hammond,
1986), reactive planning[Firby, 1987; Georgeff and
Lansky, 1987], and situated activity[Suchman, 1987;
Agre and Chapman, 1987; Agre, 1988].

Adaptive planning [Alterman, ibid.] was an early
effort to address these problems. An adaptive plan-
ner is a commonsense planner. It retrieves from
memory a plan that fits the situation, and adapts
it during engagement — while focused on the task
and immersed in the details of the situation — in
conjunction with its developing interpretation of the
situation.

Adaptive planning provides a congenial environ-
ment for learning. Adaptation is a rich source of
ideas for plan modification; every situation of en-
gagement is an opportunity to learn. Learning, plan-
ning, and action are integrated: planning and acting
in particular situations generate data to be learned,
while learning is distributed across many situations.
Learning extends plans to cope with new contingen-
cies that may arise and teases out descriptions of
situations to which a given plan pertains.

This paper presents a system SCAVENGER com-
bining an adaptive planner with a learner. SCAV-
ENGER continually refines its knowledge with ex-
perience. Faced with a domain for which the system
possesses no complete theory, what else can it do?
Learning is ad-hoc because what is learned depends
on both the particular situation and the learner’s
current knowledge; knowledge is forged by experi-
ence, grounded rather than abstract. We use the
term fail-safe to suggest not infallibility but rather
that adaptation functions during execution, com-
pensating for imperfections and omissions in learn-
ing, and insulating the learner from small varia-
tions across otherwise similar situations. Learning
is the accumulation of detailed experience that can

be adapted to future situations.

SCAVENGER explicitly frames the learning prob-
lem to tolerate inconsistency and revision. This is
an atypical assumption for planning and learning
systems. Planners in the tradition descending from
STRIPS[Fikes and Nilsson, 1971; Chapman, 1987]
require a strong domain theory to predict the conse-
quences of actions. Recent EBL techniques[Mitchell
et al., 1986; DeJong and Mooney, 1986; Mooney,
1988; Minton et al., 1989] require a strong domain
theory to guide explanation and constrain general-
ization. Pazzani[1988] shows that a domain theory
for EBL can be constructed inductively; however,
the implications of basing EBL on a changing or in-
consistent theory are unclear. Our work assumes
that knowledge of the domain is inevitably incom-
plete.

SCAVENGER differs from other memory-based
planners that learn, such as MEDIATOR/[Kolodner
and Simpson, 1989] and CHEF[Hammond, 1986},
largely because plan adaptation occurs throughout
the period of engagement. For example, contrast
the frameworks of CHEF and SCAVENGER. Unlike
CHEF, SCAVENGER does not require a complete
domain theory or abstract repair schemata. Where
CHEF learns about plans, SCAVENGER learns
about plans and their situations-of-use. SCAV-
ENGER’s adaptations are motivated by the re-
sources available in the situation, rather than de-
rived primarily from operationalization of the do-
main theory. SCAVENGER is able to acquire many
independent items of knowledge in the course of a
single trial.

2 SCAVENGER

The FLOABN project[Alterman and Zito-Wolf,
forthcoming] addresses planning and plan acquisi-
tion in the the domain of everyday mechanical de-
vices such as telephones, clocks and VCRs. This
domain is challenging because there is much vari-
ability among devices and because only a minimal
domain theory is available. In compensation, the
execution environment is benign (errors in opera-
tion are normally recoverable) and there are multi-
ple opportunities for interaction with each device.
SCAVENGER, the core of FLOABN, is an adap-
tive planner coupled with an ad-hoc learner. Other
modules of FLOABN are concerned with skimming
instructions for adaptation ideas and simulating in
detail the perceptual and effective interactions be-
tween agent and device. We are prototyping SCAV-
ENGER in Quintus MacProlog.

A problem is posed to SCAVENGER by specify-
ing a goal and a situation. SCAVENGER’s semantic
memory defines concepts; its episodic memory con-
tains plans and expectations (see Figure 1). A simu-
lator models the outcome of SCAVENGER's actions
in the world. SCAVENGER has no access to the in-
ternals of this model; the outcomes of actions in the
simulated world may differ from the system’s expec-
tations.

Adaptation is driven by situation differences: dis-
crepancies between what is expected at each plan
step and what is actually observed. Situations may
differ in goals, preconditions, and outcomes; further
detail can be found in Alterman[1988]. When such
a difference is detected, SCAVENGER searches for
an adaptation that will either account for or re-
pair it. Adaptations are suggested using general
and domain-specific knowledge and related known
plans. Adaptation suggestions can also come from
other modules of FLOABN; we will not discuss
those here. Plans are modified via some combina-
tion of inserting, deleting, reordering, substituting
and modifying steps. SCAVENGER can also sat-
isfy missing preconditions and outcomes by substi-
tution of similar features or outcomes. This is in
many cases more natural than modifying an entire
step; more importantly, this allows SCAVENGER to
create new steps by modifying known ones. SCAV-
ENGER keeps track of the adaptations made; after-
wards, successful adaptations are used to elaborate
the plan. Elaboration conditionalizes the plan so
that it will act appropriately in situations resem-
bling the newly learned situation. Execution of the
plan in such circumstances will then entail little or
no deliberation.

We demonstrate this process with an example of
SCAVENGER learning to use a (simulated) touch-
tone phone. SCAVENGER adapts its dial-phone
procedure using a variety of clues: the common fea-
tures shared by touch-tone and dial phones, knowl-
edge of which features are pertinent in a situation,
knowledge of which features participate causally in
the plan, knowledge about the function of individ-
ual steps within the plan, and background knowledge
about the world. SCAVENGER’s learning module
then incorporates the successful adaptations into the
existing plan and concept structures. This results
in the creation of a new device category for touch-
tone phones, a generalized category subsuming both
phone types, and plan steps specific to touch-tone
phones. Lastly, reorganization of the telephone plan
abstracts the step of dialing a number into separate
plans for dial and touch-tone phones.

Situation g{tuatlaon
Description imulator
Actions Observations SCAVENGER
: ; Plan + g
Goal g Adaptive Adaptations _y,| Learner
: Planner i
gg';',i;f,f P Elaborated Ad-hoc
I o
Vocabulary Plan Categories

Situated
Plan Memory

Semantic
Memory

MEMORY

Figure 1: SCAVENGER system diagram

3 An Example of Ad-Hoc
Learning

SCAVENGER is given the goal of placing a tele-
phone call in a situation containing the following
items: a touch-tone telephone and a personal com-
puter. In predicate-calculus notation:

exist(tt_telephone)

parts_of (tt_telephone, [keyboard, telephone_rcvr,
flexible_cord,receiver_cradlel),

exist (apple_computer)

parts_of (apple_computer, [keyboard,screen,
slot,on_off_switch]),

exist (desired_number, value,[7,3,6,2,7,0,3])

The plan found in memory for this goal is tele-
phone_plan, which presumes a dial phone. Part of
telephone_plan is shown below. The first clause
indicates that to make a call one needs to be at
a telephone, pick up the receiver, check dial tone,
dial, wait for the ring, and wait for an answer. The
dial step 1s further decomposed. For each step, the
expected preconditions (prec) and outcomes (outc)
are declared. Role declarations specify the expected
types of the items referenced by a step.

steps (telephone_plan, [pick_up_rcvr,
hear_dial_tone,dial,wait_for_ring,answver,talk]),
role(telephone_plan,desired_number,

910

telephone_number),

prec(pick_up_rcvr, [exist,dial_telephonel),
prec(pick_up_rcvr, [exist,telephone_rcvr]),
outc(pick_up_rcvr, [hear,dial_tone]),
reason(pick_up_rcvr,dial),
step_type(hear_dial_tone,observation),
prec(hear_dial_tone, [hear,dial_tone]),

steps(dial, [find_first_digit,select_digit,
find_digit_on_dial,dial_one_digit,
hear_clicks,dial_loop_test]),

prec(dial, [hear,dial_tonel),

outc(dial, [have,dialed]),

-- remaining steps and substeps omitted --

SCAVENGER has background knowledge about
dial telephones, and a small taxonomy of sounds:

parts_of(dial_telephone,[dial,telephone_rcvr,
flexible_cord,receiver_cradlel),

index(dial_telephone,telephone_rcvr),

index(dial_telephone,dial),

isa(tone, sound),
isa(clicking, sound)

4 Plan Adaptation

Adaptation of telephone_plan proceeds as fol-
lows. Execution begins; the first situation dif-
ference detected 1s a failing precondition ex-
ist(dial_telephone) in step pick-up_rcvr. SCAV-
ENGER adapts this step by finding a substitute for
dial_telephone which exists in the current situa-
tion, namely, tt_telephone, and modifying the step
to use it. The substitution is justified by similarity
of type and features.

Another substitution occurs later in the example,
where SCAVENGER needs to re-interpret the sit-
uation to account for a failing outcome. The step
hear_clicks represents the act of confirming that a
digit has been transmitted (dialed) by listening for
the clicking sound in the receiver. In this situation a
tone 1s heard instead. The system justifies the sub-
stitution of TONE for CLICKING on the basis that
both features are of type SOUND, but more impor-
tantly, by the temporal relation of the sound and
the dialing action.

Similarity comparisons are based on class rela-
tions, as in hear_clicks, plus similarity of features,
as in pick_up_rcvr. Similarity by class is measured
by the distance of the items being compared along
ISA relations, if present. Feature similarity is based
on the features (for example, PARTS) associated
with the desired item. Missing or excess features
are not counted. In terms of Tversky’s model of
similarity[Tversky, 1977],

S(Sample, Pattern) = F(Sample U Pattern)

Our F allots extra weight to salient (causally rele-
vant) features. Also, we do not require that features
match exactly, so that a simple set-union model is
inappropriate. The value v; contributed to a match
by pattern feature ¢ is 1 if there exists a sample
feature matching i, else it is the similarity of the
best-matching sample feature. The similarity of any
pair of features is computed by recursive applica-
tion of the similarity function. Since recursive sim-
ilarity computations are computationally explosive,
each comparison is given a search horizon limiting
the level of detail the comparison will explore. The
horizon is reduced with each recursion. (Better yet
would be horizons based on how significant the re-
sult might be in the context of the overall match.)

The substitution of tt_telephone for dial_tele-
phone, for example, 1is justified primarily by the
presence of a particular salient part, the tele-
phone_rcvr. Salience is currently marked explic-
itly in the knowledge base by clauses of the form
index(object, feature). The relevant knowledge
clauses are:

911

parts_of(dial_telephone, [dial,telephone_rcvr,
flexible_cord,receiver_cradle]),

index(dial_telephone,telephone_rcvr),

index(dial_telephone,dial)

Plus the observations about the touch-tone tele-
phone present in this situation:

exist(tt_telephone),
parts_of(tt_telephone, [keyboard,telephone_rcvr,
flexible_cord,receiver_cradle])

The features marked salient with index can be
computed by examining the telephone_plan for
parts and features that appear in preconditions of
steps. That yields the list:

prec(pick_up_rcvr, [exist,dial_telephone]),
prec(pick_up_rcvr, [exist, telephone_rcvr]),
prec(dial, [hear,dial_tonel),
prec(select_digit, [exist,desired_number]),
prec(find_digit_on_dial, [exist,diall),
prec(hear_clicks, [hear,clicking]),
prec(ansver, [hear,ringing])

Intersecting this list with the static features of the
telephone suggests telephone_rcvr and dial as the
salient features of a telephone. Measured this way,
salience of features is relative to the system’s current
state of knowledge.

5 Elaboration of Situated

Plans

During adaptation, SCAVENGER notes each adap-
tation made and the reason - the situation difference
— that prompted it. Telephone_plan is then elab-
orated to incorporate SCAVENGER’s touch-tone
phone experience. Elaboration conditionalizes a
plan to recognize a new situation and make the ap-
propriate modifications. Elaboration steps through
SCAVENGER’s memory of an episode, adding the
modifications made (step insertions, deletions, and
reorderings, and new bindings) to long-term mem-
ory. It inserts a discrtmination point into the plan
for each adaptation, specifying the change to be
made and describing the contezt in which it applies.
A discrimination point is activated when its context
matches the situation of execution.

A context is a set of features characterizing a
situation.! All the discrimination points created
by a given learning episode share a common con-
text. The context for the example situation is [us-
ing(telephone), has_part(keyboard)]. (We use

1The context is currently provided to the system as part
of each situation. Preferably, the system should abstract out
its own context features. This is an area of current research.

the term keyboard rather than touchpad to emphasize
that the system does not need to distinguish the two;
they are both “objects with arrays of buttons.”) The
latter condition discriminates this situation from
the known one having context [using(telephone),
has_part(dial)].

The clauses added by this elaboration are:?

step_binding(pick_up_rcvr,
[isa, telephone, has_part, keyboard],
[dial_telephone, tt_telephone])
plan_variation(dial,
[isa, telephone, has_part, keyboard],
substitute_step, [find_key_on_keypad, for,
find_digit_on_dial, of, dial, ...])
plan_variation(dial,
[isa, telephone, has_part, keyboard],
substitute_step, [dial_one_tt_digit, for,
dial_one_digit, of, dial, ...])
step_binding(hear_clicks,
[isa, telephone, has_part, keyboard],
[clicking, tone])

The two step_bindings arise from the feature-
substitutions discussed in section 4. The first
plan_variation represents the substitution of a step
for finding a desired key on the keypad for that of
finding one on a dial; the second represents the sub-
stitution of the physical process of pressing a key for
that of dialing a digit.

Elaboration also reifies similarity-based associa-
tions as ad-hoc categories[Barsalou, 1983] making
them available as guides for future adaptation. In
our example, a new category dial_telephone_5 is
created and marked as subsuming dial_telephone
and tt_telephone. We now have available the no-
tion that dial and touch_tone telephones are intrin-
sically “similar” (more precisely, functionally similar
in some set of situations) and we can use this fact in
future action and adaptation. Linkages (PURPOSE
and ISA*) are set up between the new concept and
its specializations to encourage such adaptations to
occur. Dial_telephone_5 approximates the basic-
level concept “telephone”. Expressed as clauses:

isa(dial_telephone,dial_telephone_5),
purpose(dial_telephone,dial_telephone_5),
isa(tt_telephone,dial_telephone_5),
isa_star(tt_telephone,dial_telephone_5)

6 Reorganization of Memory

Elaboration makes no concerted effort to integrate
discrimination points into memory. As knowledge

2The formats for these clauses are:
step_binding(stepname,contert,[identifier_bound,value])
plan_variation(stepname,contezt,type,description).

912

accumulates, memory needs to be re-organized (cf.
Dynamic Memory(Schank, 1982]). In models such
as those of Kolodner[1983] and Lebowitz[1987], re-
organization is the process that structures knowl-
edge; it is an essential aspect of acquisition. Our
re-organization is driven by the desire for improved
access to data already structured by experience and
the need to identify pertinent details linking situ-
ations with actions. It consists of local, syntac-
tic modifications to the plan structure that reduce
its complexity, as measured by the number of de-
cisions that need to be made in executing the plan
in a given circumstance. Through many such re-
organizations, knowledge becomes integrated into
memory, and drifts toward routines specialized to
specific situations. This is in contrast to models
such as that of Murray and Porter[1989)], where inte-
gration is primarily concerned with maintaining the
logical consistency of memory and occurs in a single
operation.
The information that drives re-organization is:

e Where (at what steps) run-time decisions occur.

e How many run-time decisions are associated
with a given plan and its immediate substeps.

e Which steps are substantially changed, meaning
that more than 1/3 of their substeps® would be
modified given the specified context.

For each substantially changed step, we create a
new step with the changes “built in,” plus a new dis-
crimination point that substitutes the new step for
the old one in the relevant context. This operation
replaces several decisions with a single one, reducing
the number of decisions to be considered at run-time
for situations matching the given context.

The dial plan experiences a substantial number of
modifications in the touch-tone telephone situation:
of 6 steps, 3 are affected. Therefore the re-organizer
creates a new step dial_8 and adds a discrimina-
tion point to dial such that dial_8 will replace dial
whenever the current context matches the touch-
tone one. Dial and dial_8 share substeps, meaning
that later generalizations of these substeps will also
be shared. The creation of dial_8 and condition-
alization of dial in effect replace dial with an ab-
stracted notion of dialing that subsumes both dial
and dial_8. A steps clause defines the new step
dial_8, and a plan_variation clause establishes the
relationship between the new step and the old step

dial:

3This percentage was chosen heuristically; the particular
value is not critical.

steps(dial_8, [find_first_digit,select_digit,
find_key_on_keypad, dial_one_tt_digit,
hear_clicks, dial_loop_test]
plan_variation(vildcard,
[isa, telephone, has_part, keyboard],
substitute_step, [dial_8,for,dial,of,x*,
reason, [split, dial, on_context,
[isa, telephone, has_part, keyboard]]])

SCAVENGER's plans are hierarchically struc-
tured; each node either represents a primitive action
or is decomposed into subnodes. Re-organization
merges a set of decision points into a single deci-
sion closer to the root of a plan, creating a spe-
cialized subplan of wider scope. The context as-
sociated with those discrimination points, the de-
scription of their situations of applicability, prop-
agates upward, becoming more immediately acces-
sible. Re-organization optimizes plan segments for
simplicity of execution. Re-organization should be
an experience-driven process, in that the effort will
be best spent if the most-used plans receive the most
attention. We keep track of how often each step that
involves a decision is executed, and periodically re-
organize those steps which have been run the most
times since the last re-organization.

Other forms of re-organization are desirable. Ag-
gregation [Weld, 1986] is one such form of plan re-
organization; we assume that the dialing loop within
the dial procedure was created by such a method.
Others include elimination of redundant steps via
detection of causal relevance or irrelevance of steps,
elimination of redundant tests by merger or sub-
sumption, and factoring of common subplans or step
sequences. Other transformations could promote
steps of a subplan into the current plan level, or
demote steps, depending on which configuration re-
quired the least the number of conditionals. We en-
vision a library of plan-transformation operators of
which the above are special cases. These would be
realized as a series of pattern-directed plan transfor-
mations. These transformations differ from those of
Collins[1987] in that they are local, syntax-directed
optimizations rather than large-scale transforma-
tions requiring an understanding of the overall strat-
egy behind a plan.

7 Summary and Conclusions

We have presented a synthesis of learning, plan-
ning, and acting that emphasizes practical action
over generality of knowledge and plan efficiency. In
commonsense domains one’s knowledge is inevitably
incomplete. Each new situation has the potential to

913

confound one in new and unexpected ways. Expec-
tations are always subject to disconfirmation by ex-
perience. How is a planner to cope with this? Our
example illustrates several principles:

The interpretation of a situation is always tenta-
tive; every action simultaneously applies and tests
that interpretation[Heritage, 1984; Suchman, 1987].
SCAVENGER'’s success in interpreting the touch-
tone telephone as a dial phone not only adjusts the
plan, it confirms the system’s understanding of the
situation and its choice of plan. The correspondence
between plan and situation also suggests a general-
ization that can be made across the two concepts.

Every situation of action is an opportunity for
learning. Future calling episodes will expand the
system’s notion of what a phone can look like, where
one is likely to be found, and how it can be expected
to behave. Learning is generally ignored in deduc-
tive planners, because updating the domain model
correctly and consistently is simply too hard.

Working from experience simplifies planning both
by suggesting actions and constraining the space
of possible actions and interpretations[Hammond,
forthcoming; Kolodner and Simpson, 1989; Alter-
man, 1988; Schank, 1982]. SCAVENGER is able
to interpret the touch-tone phone as a kind of dial
phone because the dial-phone plan provides an inter-
pretation of the situation that defines the relevant
features of a (dial) telephone.

SCAVENGER acquires several types of knowl-
edge. It extends the telephone_plan to cope with
touch-tone phones, collects information that dis-
criminates situations to which each variant is ap-
plicable, and acquires a new category telephone.

Knowledge that is genuinely new — not deducible
from existing knowledge — can only come from ex-
perience. Methods that learn by restating existing
knowledge, e.g., operationalization in EBL and in-
dezing in case-based reasoning, contribute to our un-
derstanding of knowledge organization, but are ex-
cluded from “learning” in a larger sense. The only
escape is to predefine all the basic concepts the sys-
tem will ever need to know. While this has been
proposed as a theory of mind[Fodor, 1975), as an
implementation technique it simply defers the prob-
lem. The key question is: How is actual learning
possible? Although it will probably not take the ex-
act form proposed here, we believe that the concept
of ad-hoc learning grounded in experience is a step
toward such a method.

References

[Agre and Chapman, 1987] Philip E. Agre and
David Chapman. Pengi: An implementation of
a theory of activity. In Proceedings of AAAI-87,
pages 268-272, 1987.

[Agre, 1988] Philip E. Agre. The dynamic structure
of everyday life. Technical Report AI-TR 1085,
MIT Artificial Intelligence Laboratory, 1988.

[Alterman and Zito-Wolf, forthcoming] Richard Al-
terman and Roland Zito-Wolf. Planning and un-
derstanding: Revisited. In Proceedings of 1990
AAAI Spring Symposium, forthcoming.

[Alterman, 1988] Richard Alterman. Adaptive
planning. Cognitive Science Journal, 12:393-421,
1988.

[Barsalou, 1983] Lawrence W. Barsalou. Ad-hoc
categories. Memory and Cognition, 11(3):211-
227, 1983.

[Chapman, 1987] D. Chapman. Planning for con-
Jjunctive goals. Artificial Intelligence, 32(3):333-
377, 1987.

[Collins, 1987] Gregg C. Collins. Plan creation: Us-
ing strategies as blueprints. Technical Report
CSD/RR 599, Yale University, 1987.

[DeJong and Mooney, 1986] Gerald DelJong and
Raymond Mooney. Explanation-based learning:
An alternative view. Machine Learning, 1:145—
176, 1986.

[Fikes and Nilsson, 1971] Richard E. Fikes and
Nils J. Nilsson. STRIPS: A new approach to the
application of theorem proving to problem solv-
ing. Artificial Intelligence, 2(3):189-208, 1971.

[Firby, 1987] R. James Firby. An investigation into
reactive planning in complex domains. In Pro-
ceedings of AAAI-87, pages 202-206, 1987.

[Fodor, 1975] Jerry Fodor.
Thought. Crowell, 1975.

(Georgeff and Lansky, 1987] Michael P. Georgeff
and Amy K. Lansky. Reactive reasoning and plan-
ning. In Proceedings of AAAI-87, pages 677-682,
1987.

[Hammond, 1986] Kristian J. Hammond. CHEF: A
model of case-based planning. In Proceedings of
AAAI-86, pages 267-271, 1986.

The Language of

[Hammond, forthcoming] Kristian J. Hammond.
Case-based planning: A framework for plannng
from experience. Cognitive Science, forthcoming.

914

[Heritage, 1984] John Heritage. Garfinkel and Eth-
nomethodology. Polity Press, Cambridge, Eng-
land, 1984.

[Kolodner and Simpson, 1989] Janet L. Kolodner
and Robert L. Simpson. The MEDIATOR: Anal-
ysis of an early case-based problem solver. Cog-
nitive Science, 13:507-549, 1989.

(Kolodner, 1983] Janet L. Kolodner. Maintaining
organization in a dynamic long-term memory.
Cognitive Science, 7:243-280, 1983.

(Lebowitz, 1987] Michael Lebowitz. Experiments
with incremental concept formation: Unimem.
Machine Learning, 2:103-138, 1987.

[Minton et al., 1989] S. Minton, J. G. Carbonell,
C. A. Knoblock, D. R. Kuokka, O. Etzioni, and
Y. Gil. Explanation-based learning: A problem-
solving perspective. Artificial Intelligence, 40:63-
118, 1989.

[Mitchell et al., 1986] T. Mitchell, R. Keller, and
S. Kedar-Cabelli. Explanation-based generaliza-
tion: A unifying view. Machine Learning, 1:47-
80, 1986.

[Mooney, 1988] Raymond Mooney. A general
explanation-based learning mechanism and its ap-
plication to narrative understanding. Techni-
cal Report AITR 88-66, University of Texas at
Austin, 1988.

[Murray and Porter, 1989] Kenneth S. Murray and
Bruce W. Porter. Controlling search for the con-
sequences of new information during knowledge
integration. In Proceedings of the Sizth Inter-
national Workshop on Machine Learning, pages
290-295. Morgan Kaufmann, 1989.

[Pazzani, 1988] Michael J. Pazzani. Learning causal
relationships: An integration of empirical and
explanation-based learning methods. Technical
Report UCLA-AI-88-10, University of California,
Los Angeles, 1988.

[Schank, 1982] Roger Schank. Dynamic Memory.
Cambridge University Press, 1982.

[Suchman, 1987] Lucy A. Suchman. Plans and Sit-
uated Actions. Cambridge University Press, 1987.

[Tversky, 1977) Amos Tversky. Features of similar-
ity. Psychological Review, 84:327-352, 1977.

[Weld, 1986] Daniel S. Weld. The use of aggrega-
tion in causal simulation. Artificial Intelligence,
30(1):1-34, 1986.

	cogsci_1990_908-914

