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RESEARCH ARTICLE Open Access

Preoperative assessment of lymph node
metastasis in Colon Cancer patients using
machine learning: a pilot study
Aydin Eresen1†, Yu Li1,2†, Jia Yang1, Junjie Shangguan1, Yury Velichko1, Vahid Yaghmai1,3,4, Al B. Benson III4,5* and
Zhuoli Zhang1,4*

Abstract

Background: Preoperative detection of lymph node (LN) metastasis is critical for planning treatments in colon
cancer (CC). The clinical diagnostic criteria based on the size of the LNs are not sensitive to determine metastasis
using CT images. In this retrospective study, we investigated the potential value of CT texture features to diagnose
LN metastasis using preoperative CT data and patient characteristics by developing quantitative prediction models.

Methods: A total of 390 CC patients, undergone surgical resection, were enrolled in this monocentric study. 390
histologically validated LNs were collected from patients and randomly separated into training (312 patients, 155
metastatic and 157 normal LNs) and test cohorts (78 patients, 39 metastatic and 39 normal LNs). Six patient
characteristics and 146 quantitative CT imaging features were analyzed and key variables were determined using
either exhaustive search or least absolute shrinkage algorithm. Two kernel-based support vector machine classifiers
(patient-characteristic model and radiomic-derived model), generated with 10-fold cross-validation, were compared
with the clinical model that utilizes long-axis diameter for diagnosis of metastatic LN. The performance of the
models was evaluated on the test cohort by computing accuracy, sensitivity, specificity, and area under the receiver
operating curve (AUC).

Results: The clinical model had an overall diagnostic accuracy of 64.87%; specifically, accuracy of 65.38% and 62.82%,
sensitivity of 83.87% and 84.62%, and specificity of 47.13% and 41.03% for training and test cohorts, respectively. The
patient-demographic model obtained accuracy of 67.31% and 73.08%, the sensitivity of 62.58% and 69.23%, and
specificity of 71.97% and 76.23% for training and test cohorts, respectively. Besides, the radiomic-derived model
resulted in an accuracy of 81.09% and 79.49%, sensitivity of 83.87% and 74.36%, and specificity of 78.34% and 84.62%
for training and test cohorts, respectively. Furthermore, the diagnostic performance of the radiomic-derived model was
significantly higher than clinical and patient-demographic models (p < 0.02) according to the DeLong method.
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Conclusions: The texture of the LNs provided characteristic information about the histological status of the LNs. The
radiomic-derived model leveraging LN texture provides better preoperative diagnostic accuracy for the detection of
metastatic LNs compared to the clinically accepted diagnostic criteria and patient-demographic model.

Keywords: Colon cancer, Computed tomography, Machine learning, Metastatic lymph node, Texture analysis

Background
Colon cancer (CC) is a leading cause of cancer morbidity
and mortality in the world with more than one million
new cases in 2018 [1]. Despite advancements in treat-
ment options of this disease, standard curative treatment
is still complete resection of the primary tumor with dis-
section of regional lymph nodes (LNs) [2]. The presence
of LN metastases plays a crucial role in the management
and treatment strategy in CC [3, 4]. In clinical practice,
preoperative identification of the histological status of
LNs provides the basis for accurate planning of surgery,
which not only ensures the quality and quantity of LN
dissection but also avoids the omission of suspected
LNs. Also, the presence of metastatic LNs determines
the potential benefit of neoadjuvant chemotherapy in se-
lect CC patients. The recent Foxtrot trial investigated
the potential efficiency of neoadjuvant chemotherapy ad-
ministered to CC patients with metastatic LNs [5]. Ac-
curate preoperative detection of metastatic LNs,
therefore, is critical for generating an effective and indi-
vidualized treatment plan for CC patients.
Computed tomography (CT) is an initial diagnostic tool

for the evaluation of CC disease in clinical examination
[5]. Despite well performance for assessment of T-stage of
tumor using this imaging modality, diagnostic accuracy
for regional metastasis is only 54% for the patients using
current diagnostic criteria based on size of the LNs (meta-
static LNs > 10mm) [6] which demonstrates the unreli-
ability of using the size to evaluate regional metastases in
CC patients [7]. Although the clinicopathological charac-
teristics demonstrate the potential for diagnosis of LN me-
tastases [8–10], the requirement of surgical resection or
biopsy for confirmation limits their usage in clinical prac-
tice. Therefore, novel approaches that use conventional
CT imaging data to detect regional metastases are needed
to develop better preoperative treatment planning for CC
patients.
Radiomics is an emerging translational field of re-

search that aims to describe tissue characteristics
extracting high throughput quantitative features or bio-
markers from multi-modality medical imaging data [11,
12]. Due to the ability to reveal complex intra-tumor
heterogeneity, radiomics is considered to be a powerful
tool in modern medicine including diagnosis, tumor
characterization and prognosis [13]. In recent years, it
has been used for the diagnosis of metastatic LNs in

bladder, lung, biliary-tract, and esophagus cancers with
satisfactory results [14–17]. However, a small number of
these studies benefit from pathological verification and
there is a paucity of quantitative analysis in CC to pre-
dict metastasis of regional LNs.
The purpose of this study was to develop and validate

machine learning models that utilize either patient-
characteristics or quantitative CT texture features for
preoperative accurate diagnosis of metastasis in regional
LNs and to compare their performance with clinical
diagnosis criteria for LNs in CC patients.

Methods
Patients
A total of 390 patients were selected from the patient
database of single-institution for this retrospective study
among 598 patients who were diagnosed with CC and
received colectomy with the removal of regional LNs
from January 2014 to May 2018 in the Affiliated Hos-
pital of Qingdao University. The detailed patient recruit-
ment pathway with inclusion and exclusion criteria is
described in Fig. 1.
Clinical data, including age, gender, and primary

tumor site, were collected by reviewing medical records.
Histological grade, T-stages, nerve invasion, and vessel
invasion were obtained directly from pathological re-
ports. The stage of the tumors was determined by surgi-
cal oncologists according to the American Joint
Committee on Cancer (AJCC) TNM staging system, 8th
edition [18].

CT image acquisition
The CC patients were scanned before radical resec-
tion of colon tumors using Siemens Somatom Sensa-
tion 64 CT scanner (Siemens Medical Solutions,
Erlangen, Germany). The CT imaging parameters
were selected by radiologists and kept the same for
all the patients which were 120 kV; 200 effective mAs;
beam collimation of 64 mm × 0.6 mm; a matrix of
512 × 512; a pitch of 0.8; and a gantry rotation time
of 0.5 s. The CT image data were reconstructed with
a slice thickness of 5 mm and resampled using b-
spline interpolation to set the in-plane resolution to
1 mm before the feature extraction process.
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Lymph node labeling and segmentation on CT data
After preoperative CT data acquisition, tumors and re-
gional LNs were evaluated according to their anatomical
regions as a standard procedure before the surgery. Dur-
ing the surgery, both tumor and LNs were removed and
the dissected LNs were separated into different groups
according to anatomical location. Following the surgery,
all the resected LNs were sent to a pathology laboratory
for histological analysis. The morphological and histo-
logical features of the LNs were recorded as metadata on
patient records after pathological analysis. We generated
a patient cohort using histology reports and preoperative
CT data with LN markings to identify the location and
the histological status of the LNs. In order to ensure the
validity of the LN histology, the largest and most adja-
cent LNs to tumors were selected. Afterward, the largest
LN from each patient was manually outlined to generate

a region of interest (ROI) on the slice with maximal in-
plane diameter using ITK-SNAP software [19] by an ex-
perienced radiologist. Later, these ROIs were validated
by a senior radiologist in abdominal radiology.

Feature extraction, selection, and model building
Before computing the features, CT data was quantized
using a fixed number of bin sizes (8 bins) and rescaled
into the range of [0,1] using min-max normalization.
The quantitative CT image features were computed by
employing six feature extraction methods, e.g. first-order
statistics (FoS) (six features), gray-level co-occurrence
matrix (GLCM) (six features), gray-level run-length
matrix (GLRLM) (seven features), local binary pattern
(LBP) (ten features), fractal analysis (FA) (one feature)
and shape features (nine features). The FoS were com-
puted to summarize the distribution of the intensity

Fig. 1 Recruitment pathway for patients in this study
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values of the CT image data regardless of spatial posi-
tioning [20]. Besides, GLCM features were computed for
analysis of the tissue texture evaluating the spatial rela-
tionship of the voxels and GLRLM features were utilized
to interpret coarseness of the texture by computing in
four directions (0°, 45°, 90°, 135°) [21, 22]. Afterward,
GLCM and GLRLM features computed for each direc-
tion were merged by averaging into a vector. Local bin-
ary patterns were used to describe local spatial patterns
of intensity images while fractal analysis was performed
to measure the rate of changing complexity of the tex-
ture with scale variation [23, 24]. The shape features
were computed to interpret the structural characteristics
of the tissues from generated ROIs. Besides, two image
filters were utilized to capture the texture characteristics
of the LNs in wavelet and gradient domains. The wavelet
coefficient images were computed using Daubechies ker-
nel function for analysis of the localized characteristics
of the images at different scales while gradient images
are the measurement of the directional changes of the
image intensity [25]. FoS, GLRLM and GLCM features
were computed from first level wavelet decomposition
images (eighty-eight features). Besides, FoS, GLCM, and
GLRLM features were also extracted from gradient im-
ages (nineteen features) to capture phenotypic details of
tissues. A total of 146 features were extracted from

preoperative CT data to reveal complex patterns of LN
structures using in house developed scripts in Matlab®
(v9.1.2, MathWorks, MA). The correlation of the fea-
tures was demonstrated in a heat map representation in
Fig. 2a. A regression model was generated to determine
potential features using the least absolute shrinkage and
selection operator (LASSO) algorithm with 10-fold
cross-validation [26]. The variables, included in the re-
gression model (variables with non-zero weights), were
used to generate a classifier for the diagnosis of meta-
static LNs. The behavior of the cross-validation mean-
squared error was shown in Fig. 2b. Moreover, Fig. 2c
demonstrated the variation of the weights of the features
while minimizing the cross-validation error.
After extraction of the quantitative CT image features,

the patients were randomly separated into two groups
by keeping the same distribution of the metastatic and
normal LNs in training (80%) and test cohorts (%20).
The training cohort consisted of 312 patients with 155
metastatic and 157 normal LNs while 78 patients with
39 metastatic and 39 normal LNs included in the test
cohort. The patients in the training cohort were used to
optimize the classification models within a 10-fold
cross-validation framework and the test cohort was only
used to evaluate the performance of the final classifica-
tion models.

Fig. 2 The correlation of the textural features and selection of a subset of features of lymph nodes using the least absolute shrinkage and selection
operator regularization. Abbreviations: DF, Degree of freedom; F8, Contrast; F16, Run percentage; F96, Low gray level run emphasis of approximate
wavelet image; F126, Contrast of gradient image; F129, Entropy of the gradient image
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The clinical model was generated employing LN size
computed from ROIs drawn by the experienced radiolo-
gist. The LNs with a size of more than 10 mm was as-
sumed as metastatic and remaining LNs as normal by
following the clinical diagnosis approach.
The patient-demographic model was generated after

analysis of patient characteristics acquired preoperatively
(age, gender, histological grade, location, short- and
long-axis diameters of LNs). The key features were se-
lected according to the performance of the 10-fold
cross-validation error of the generated classifiers during
training and selected key features were used to generate
the patient-demographic model.
The radiomic-derived model was constructed using

the selected radiomics features (contrast and run per-
centage of intensity image, low gray level run emphasis
of approximate wavelet image, contrast, and entropy of
gradient image) with the LASSO algorithm of the pa-
tients in the training cohort by performing 10-fold
cross-validation for performance evaluation of the gener-
ated model [27]. The patients in the test cohort were
only used to evaluate the performance of classification
for the diagnosis of metastatic LNs.

The diagnostic efficiency of these models was assessed
using pathological reports of LNs in terms of accuracy,
specificity, sensitivity, and area under the receiver oper-
ating curve (AUC) metrics. The AUC values were pre-
sented with 95% confidence interval and statistical
difference among the generated models was evaluated
using the DeLong method [28].

Statistical analysis
The categorical demographic characteristics of the pa-
tients were evaluated with the binomial test using
GraphPad Prism (v7.0, La Jolla, CA). For numerical clin-
ical variables, the Wilcoxon rank-sum test was utilized
to investigate the statistical significance between patients
with normal and metastatic LNs. p < 0.05 was accepted
as statistically significant. The variables were presented
as mean ± standard deviation.

Results
Patient characteristics
A total of 390 patients (390 LNs) were incorporated in
this study which 312 patients (157 normal and 155
metastatic LNs) were used in training cohort and 78

Table 1 Characteristics of patients with normal and metastatic LNs

Characteristics Training Cohort Validation Cohort

Patients with normal
LNs
(n = 157)

Patients with metastatic
LNs
(n = 155)

p Patients with normal
LNs
(n = 39)

Patients with metastatic
LNs
(n = 39)

p

Age 63.89 ± 12.38 61.76 ± 12.45 0.133 62.56 ± 14.17 62.13 ± 13.25 0.890

Gender 0.076 0.120

Male 52.87% 56.13% 51.28% 38.46%

Female 47.13 43.87% 48.72% 61.54%

Tumor location 0.060

Left 45.22% 50.32% 46.15% 46.15%

Right 54.78% 49.68% 53.85% 53.85%

Histological status 0.069 0.148

Well 67.52% 63.23% 71.80% 64.10%

Poor 32.48% 36.77% 19.10% 35.90%

Perineural
invasion

< 0.01 < 0.01

Negative 73.89% 49.03% 76.92% 43.59%

Positive 26.11% 50.07% 23.08% 56.41%

Vessel invasion < 0.01 < 0.01

Negative 94.27% 42.58% 92.31% 48.72%

Positive 5.73% 57.52% 7.69% 51.28%

T stage < 0.01 < 0.01

T1 1.27% 0.65% 0% 0%

T2 11.47% 1.94% 10.26% 0%

T3 76.43% 70.31% 79.48% 61.54%

T4 10.83% 27.10% 10.26% 38.46%

Eresen et al. Cancer Imaging           (2020) 20:30 Page 5 of 9



patients in test cohort (39 normal and 39 metastatic
LNs). The area of the normal LNs was measured as
90.49 ± 114.04 mm2 (Median: 55, Range: [10, 816]) while
metastatic LNs had an area of 185.31 ± 224.51 mm2 (Me-
dian: 122, Range: [12, 1724]). The clinicopathologic
characteristics of patients are summarized in Table 1.
There were no statistically significant differences in gen-
der, age, location and histological grade of the tumor,
however, perineural invasion, vascular invasion, and T-
stage demonstrated a statistically significant difference
(p < 0.05) between the patients with normal and meta-
static LNs.

Performance evaluation
In the clinical model, metastatic LNs were differentiated
from normal LNs by evaluating the diameter of the LNs
in the direction of the longest axis. In our patient cohort,
including patients selected for training and test process,
had a long-axis diameter of 12.12 ± 5.74 mm for normal
LNs while metastatic LNs had a diameter of 17.37 ±
8.48 mm (Fig. 3a). Wilcoxon rank-sum test showed that
the long-axis diameter of the metastatic LNs was statisti-
cally different from normal LNs with a p < 0.01 (95%
confidence interval [CI]: 3.81, 6.70]. However, the histo-
gram of LNs with a resolution of 0.25 mm demonstrated
that 74.87% of normal and metastatic LNs were clus-
tered together in the same bins (Fig. 3b); therefore,
64.87% of the LNs were diagnosed correctly using clin-
ical diagnostic criteria that correspond to correct classifi-
cation of 253 LNs (204 and 49 LNs in training and test
cohorts, respectively) in 390 CC patients (Fig. 3c). Spe-
cifically, 65.38% of the patients in the training cohort
had a correct diagnosis while the diagnostic performance
for the test cohort was 62.82%. Besides, the model had
an AUC of 0.704 (95% CI: 0.675, 0.733) for training and
0.772 (95% CI: 0.718, 0.825) for test cohorts (Fig. 4a).
The clinical model obtained a sensitivity of 83.87% and
84.62% for training and test cohorts while the specificity

of 47.13% and 41.03% was observed for training and test
cohorts, respectively (Table 2).
After the evaluation of six features of CC patients, the

short-axis diameter of LN had the best classification ac-
curacy with the least cross-validation error. Therefore, the
patient-demographic classification model was generated
using the short-axis diameter of LNs. The model demon-
strated an accuracy of 67.31% for training and 73.08% for
the test data which corresponds to the correct classifica-
tion of 267 LNs (210 and 57 LNs in training and test co-
horts, respectively). Moreover, the model had a sensitivity
of 62.58% for training and 69.23% for the test data while
obtaining a specificity of 71.97% and 76.92% for training
and test set, respectively. This model showed an AUC of
0.706 (95% CI: 0.677, 0.735) for training and 0.773 (95%
CI: 0.720, 0.827) for test data (Table 2). There was no sta-
tistically significant improvement compared to the clinical
model for training and test cohorts (p = [0.982, 0.997]).
The classifier performance for training and test cohorts
are presented in Fig. 4b.
The key features for the radiomic-derived model were

determined by performing LASSO regularization with
10-fold cross-validation among 146 CT image features.
The selected five features were used to build a radiomic-
derived classification model. The radiomic-derived
model demonstrated better performance for training
(81.09%) and test cohorts (79.49%) in terms of accuracy
with an increase of over 15% compared to the CT-image
diagnostic criteria that corresponded to an additional 63
accurately diagnosed LNs. Besides, the model correctly
identified a total of 315 LNs combined of 253 LNs from
the training cohort and 62 LNs from the test cohort.
The sensitivity of the training cohort was higher than
the clinical model but similar to the clinical model while
the radiomic-derived model generated lower sensitivity
for the test cohort compared to CT-image diagnostic
criteria but higher than the patient-demographic model.
Specificity was 78.34% for training and 84.62% for the

Fig. 3 Evaluation of lymph nodes using current CT image diagnostic criteria
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test cohorts. In addition, the classifier model showed a
significant increase in AUC for training (17.6%, p <
0.001) and test groups (5.2%, p < 0.02) resulting in an
AUC of 0.882 [95% CI: 0.862, 0.901] for training and
0.825 [95% CI: 0.778, 0.872] for the test cohorts. Fig-
ure 4c portrays the performance of the model for the
training and test sets. Moreover, Table 2 summarizes the
prediction performance of the three models.

Discussion
In our study, we compared the diagnostic accuracy of
clinical criteria to detect metastatic LNs in CC patients
with two classification models such that the patient-
demographic model utilizing short-axis LN diameter and
radiomic-derived model incorporating five texture fea-
tures of preoperative CT data. Our results demonstrated
that the radiomic-derived model had significantly better
performance compared to the clinical diagnostic criteria
and patient-demographic model for the detection of nor-
mal and metastatic LNs in CC patients (Table 2).
Metastatic LN plays a crucial role in preoperative stage

evaluation and development of treatment planning. In
clinical practice, metastatic LNs are identified based on
long-axis diameter size during the evaluation of CT im-
ages [29–31]. However, the diagnostic performance of
LNs in clinical studies is widely affected due to unreli-
ability of LN size for diagnosis of nodal metastasis in CC
[32] such that a clinical study demonstrated that meta-
static LN was detected with an accuracy of 54% in CC

patients using CT [6]. In our study, we used clinically
accepted diagnostic criteria for metastatic LNs (> 10
mm) to evaluate the detection performance of metastatic
LNs [7]. The histogram with a resolution (width size of
the bin) of 0.25 mm demonstrated that 298 LNs (normal
or metastatic) were clustered in the same bins resulting
74.87% overlap; therefore, clinical diagnosis criteria had
a correct classification for 253 LNs among 390. Other
studies investigated morphological characteristics of LNs
e.g. visible internal heterogeneity and irregular boundary,
to differentiate normal and metastatic LNs in CC pa-
tients that improved the specificity from 63% to 73%,
however, the long-term effect is still being investigated
[33–35]. Due to the limited presence of visible hetero-
geneity and irregularity of boundary for metastases on
CT images, Rollven et al. suggested that morphological
CT criteria are not sufficient for nodal staging [36].
Therefore, better tools are urgently needed to accurately
diagnose LN metastasis preoperatively.
Radiomics, computing high-dimensional quantitative

features, has demonstrated potential benefits for differ-
ent types of applications e.g. diagnosis, prognosis, pre-
diction of treatment outcomes or overall survival. Ji
et al. developed a radiomic signature interpreting the
quantitative features of preoperative CT data to diagnose
metastasis LN in biliary tract cancer which was deter-
mined with a blood test [14]. The model had an AUC of
0.81 for training and 0.80 for validation cohorts. Besides,
Shen et al. developed a multivariable model to diagnose

Fig. 4 Receiver operating characteristics curves of the CT image diagnostic criteria, clinical and radiomics models for training and test cohorts

Table 2 Predictive performance of the CT diagnostic criteria and generated classifiers

Models Dataset Accuracy (%) Sensitivity (%) Specificity (%) AUC ± 95% CI

Clinical model Training 65.38 83.87 47.13 0.703 ± 0.03

Test 62.82 84.62 41.03 0.772 ± 0.05

Patient-demographic model Training 67.31 62.58 71.97 0.706 ± 0.03

Test 73.08 69.23 76.92 0.773 ± 0.05

Radiomic-derived model Training 81.09 83.87 78.34 0.882 ± 0.02

Test 79.49 74.36 84.62 0.825 ± 0.05
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LN status for esophageal cancer patients by utilizing
CT-reported LN metastasis status, CT-reported posi-
tions and 13 texture-based features. The model obtained
an AUC of 0.806 and 0.771 for training and test cohorts,
respectively. Despite other studies focusing on the pre-
diction of metastatic LNs in several cancer types [14–
17], there is still a paucity of research that integrates
radiomics features with machine learning to diagnose
metastatic LNs with pathological validation [37]. In this
study, we developed two machine learning models, e.g.
patient-demographic utilizing selected features from
patient characteristics and radiomic-derived model bene-
fiting of quantitative imaging features computed from
preoperative CT data, and compared with the clinical
diagnosis criteria (clinical model) for LN metastasis.
While the clinical model (AUC of 0.772) and the
patient-demographic model (AUC of 0.773) had similar
diagnostic accuracy for the test cohort (p = 0.987), the
radiomic-derived model obtained a statistically signifi-
cant improvement in diagnostic performance (AUC of
0.825, p < 0.02). Specifically, 226 LNs were correctly clas-
sified by radiomic-derived and clinical model, while 89
LNs detected with the radiomic-derived model only and
27 LNs by clinical model. Besides, there were 48 LNs
were misclassified by both radiomic-derived and clinical
models).
There were several limitations to our study. It was a

retrospective study that included only the largest re-
gional LN from each patient to obtain pathological valid-
ation; therefore, our findings will benefit from a
prospective study designed to collect multiple LNs from
each patient. Due to performing a monocentric study,
we could not evaluate the reproducibility of the radio-
mics features that may be affected by the acquisition pa-
rameters of the monocentric study design. Therefore,
multicenter studies with different CT data acquisition
parameters may improve the performance of the diagno-
sis with the assessment of the reproducibility of these
features. Additionally, the ROIs of the LNs were drawn
and validated using a manual approach by two experi-
enced radiologists. Although manual segmentation is a
commonly implemented approach in clinical studies, the
implementation of automated segmentation would de-
crease the time required for the preparation of data.
Finally, our study lacks postoperative follow-up data, so
we could not examine the relationship between the tex-
ture of CT data and survival outcomes. Future studies
are needed to evaluate the correlation between LN
image biomarkers and overall survival.

Conclusion
Our study demonstrated that a radiomics model can be
used to detect metastatic LNs preoperatively in CC pa-
tients, which can improve the diagnostic accuracy

compared to the current clinical standard for diagnosis
of nodal metastasis. The kernel-based SVM classification
model had significantly better diagnostic performance
than clinical and patient-demographic models. The find-
ings of our study may be helpful for the selection of suit-
able treatment approaches for CC patients to improve
the survival rates of the patients.
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