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Abstract

Individual differences in working memory are an important
source of information for refining theories of memory and
cognition. Computational modeling is an effective tool
for studying individual differences because it allows
researchers to maintain the basic structure of a theory while
perturbing a particular component. This paper presents a
computational model for a digit working memory task and
demonstrates that varying a single parameter captures
individual differences in that task. The model is developed
within the framework of the ACT-R theory (Anderson,
1993), and the continuous parameter manipulated
represents attentional capacity for the current goal.

Introduction

Working memory, or the information that people keep
active during processing, plays an important role in
cognitive processing and performance. Take, for instance,
the mental arithmetic problem 134 x 512. To solve this
problem without paper and pencil, one must maintain
several intermediate results in memory (e.g., 134 x 2 = 268)
while continuing to solve the problem. An important result
regarding working memory (that the reader may encounter in
solving this problem) is that working memory capacity is
limited (e.g., Baddeley, 1986). Thus. when a task places
extreme demands on working memory, people may have to
resort to different strategies for processing (e.g., rehearsal) or
they may exhibit performance decrements (e.g., errors).
Another important result in the area of working memory is
that limitations in working memory capacity vary from
individual to individual (e.g., Engle, 1994; Just &
Carpenter, 1992; Kyllonen & Christal, 1990). For this
reason, different people may experience differential
sensitivity to the working memory demands of a task and
hence may engage in different processing strategies and
exhibit different patterns of errors.

These two working memory phenomena—the limitations
and individual differences in working memory capacity—
place constraints on theories of working memory. They
consequently have important implications for computational
models of working memory. First, for a model to accurately
depict cognitive processing, it should not be endowed with
an unlimited working memory capacity. Second, to account
for differences across problems that vary in their working
memory demands, a model should incorporate a (functional)
limit on working memory that leads to the same
performance effects people exhibit (i.e., it should be
similarly sensitive to the working memory demands of

various tasks). And, third, for a model to account for
differences in working memory capacity among individuals,
it should be adjustable to reflect different individuals'
responses to the same working memory demands.

Computational models have been developed that deal with
these issues to varying degrees. [For example, several
models capture working memory effects aggregated across
subjects (e.g., Anderson, Reder, & Lebiere, 1996; Burgess
& Hitch, 1992; Lewandowsky & Li, 1994; Norris & Page,
1996). Other models are able to simulate working memory
differences between particular subpopulations of people (Just
& Carpenter, 1992).

The work presented in this paper goes beyond previous
research by modeling individual differences in working
memory directly. That is, we develop a detailed model of a
task that exercises working memory and then quantitatively
explore how varying a particular component of the model
can account for subject-to-subject differences in performance.
We fit the model to individual subjects' data, modeling the
processes involved in this memory task at an unprecedented
level of detail and avoiding the perils of averaging across
subjects. Our approach thus addresses the following
questions: can an underlying "system parameter” in a
computational theory provide enough flexibility to capture
the variation in working memory from individual to
individual? Does a particular setting of that parameter
accurately depict a particular individual's performance? By
focusing on individual differences, our approach offers (a) a
better understanding of the distribution of working memory
capacity across subjects, (b) a more detailed computational
account of working memory's relationship to processing and
performance, and (c) a framework for testing whether an
individual difference parameter can account for performance
patterns for the same individual across tasks. In particular,
we show that incorporating individual differences in our
model not only enables it to capture the vanability in the
data but to provide a better overall fit as well. In this way,
our work highlights several valuable benefits of
incorporating individual differences into computational
models.

In the sections below, we begin by describing a task that
was designed to exercise working memory to varying degrees
while mimimizing the opportunity for people to adapt their
strategies to its working memory demands. Then, we
describe our model of this task, developed within the ACT-R
architecture (Anderson, 1993) and demonstrate that the model
can simulate processing in this task at a detailed level.
Next, we explore how varying a single, pre-existing
parameter in the ACT-R architecture modulates the
predictions of our model to account for individual subjects'
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data. Finally, we discuss some of the implications of our
modeling work and make recommendations for modeling
individual differences in general.

The Task

The task we have devised to exercise working memory is a
variant of the digit working memory task developed by
Oakhill and her colleagues (Yuill & Oakhill, 1989). To
perform this task, subjects must read a sequence of digits
while maintaining in memory a selected subset of those
digits. Figure 1 shows the time-stepped presentation of a
single trial. Digits of the first string are presented, one at a
time, in a row of boxes. Note that the current digit is
always erased before the next digit is presented; thus,
subjects must keep apace with the presentation rate as they
read these digits aloud. Subsequent digit strings begin with
a new digit in the leftmost box and continue digit
presentation in the same manner. After reading the digits,
subjects are prompted to recall the rightmost digit of each
string in the order that the strings were presented. (In Figure
1, these to-be-recalled digits are indicated by thick boxes; in
the experiment, they were not visually highlighted but were
presented for an extra 100ms of "memorizing"” time.)
Recalling the string-final digits in this task is analogous to
recalling the sentence-final words in the Reading Span Task
(Daneman & Carpenter, 1980).

Ouwr digit working memory task is distinguished from
related working memory tasks in several ways. First, we
maintain a precise digit-presentation rate via computer
presentation. This reduces the variability from subjects
choosing different reading rates. Second, because our chosen
presentation rate is quite fast, it reduces the variability due to
different rehearsal strategies. Such variability in less
constrained tasks can confound "pure" working memory
differences. Third, we vary the presentation rate to study its
impact on memory performance. Note that a slower
presentation rate makes the reading task easier, but it also
increases the difficulty of the memory task by elongating the
delay between storing and recalling the memory digits.

‘@O0.. 0
508070
000. @
00..0 B
=0@0.0
600..0

<remaining strings>

Figure | The digit working memory task
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Fourth, we present the various trial types in a random order
instead of monotonically increasing the difficulty of trials.
This randomization eases the assumption that subjects come
to each trial with an equal allocation of resources.
Moreover, without randomly ordered trials, there may be
confounds between various time-based effects (e.g., learning,
strategy changes, boredom, fatigue) and trial type. Finally,
we include strict recall instructions for our task: the goal is
to recall both the identity and position of each memory
digit. Specifically, subjects are instructed to repeat in order
the digits they can recall; i.e., recall must proceed once
through the memory list without corrections or backtracking
but with the possibility of skipping an unknown digit.
This recall procedure reduces recall order variability as well
as potential differences in recall strategies.

Empirical Results

Aggregate performance on this task is depicted in Figure 2.
Here, the dependent measure is proportion of trials recalled
perfectly (i.e., all string-final digits were recalled in exact
order of presentation). The factors manipulated in collecting
these data were (a) number of strings per trial or number of
to-be-recalled digits (3, 4, 5, or 6), (b) number of digits per
string (4 or 6), and (c) inter-digit presentation rate (0.5s or
0.7s). All were within-subjects factors; in particular, each
of 22 subjects contributed 4 trials to each data point.

All three factors show main effects in these data. The
most salient effect is a difference in recall performance for
the different number of strings, F(3, 63) = 125, MSE =
0.06, p < .001. This result was expected both because it
fits with the general finding of a gradual decrement in
aggregate performance with increasing memory load and
because our dependent measure required perfect recall of all of
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Figure 2 Aggregated data () with standard error bars



the 1o-be-recalled digits. The effect of number of digits per
string suggested a slight memory advantage for four-digit
strings over six-digit strings, F(1, 21) = 6.6, MSE = 0.03,
p < .05. Note that this factor only affects the total number
of digits that must be read, not the number of digits that
must be recalled. The finding that reading more digits
makes the task harder suggests that longer delays and/or
more interfering items lead to worse memory. Finally, the
effect of presentation rate was informative because it revealed
better memory performance with slower rather than faster
rates, F(1, 21) = 20.8, MSE = 0.04, p < .001. Finding the
effect in this direction suggests that the positive influence of
having more time to do the tasks outweighed the negative
influence of a longer delay until recall. The only significant
interaction was between number of strings and presentation
rate, F(3, 63) = 8.3, MSE = 0.03, p < .001. This
interaction appears 1o result from a negligible rate effect for
three-string tnals, F(1.21) = 1.63, MSE = .02, n.s., but an
advantage for the slow rate on all others, F(1,21) = 42.6,
MSE = .03, p < .001.

We also probed subjects, at the end of the experiment, to
describe their approach to the task. Subjects mentioned the
use of some strategies (e.g., imagery, using number
associations) but often commented that they did not find
these strategies useful and hence abandoned them.
Nevertheless, an interesting and fairly common reported
strategy was the limited use of rehearsal (e.g., rehearsing
previous memory digits in the time available at the end of
each string).] We incorporate this information into our
model.

The Model

The processes required to perform this task involve reading
digits and storing and recalling selected digits. In addition,
from subjects’ reports, we found a fairly uniform but limited
amount of rehearsing digits. We designed our model of the
task to reflect all of these processes and to capture the step-
by-step activity of subjects.

As mentioned above, the model was developed within the
ACT-R architecture. In ACT-R, chunks represent
declarative knowledge (facts), and productions represent
procedural knowledge (skills). These symbolic knowledge
elements are strengthened and deployed according to
subsymbolic learning and performance mechanisms specified
by the ACT-R architecture. Below, we describe the main
symbolic elements in our model and then sketch the ACT-R
mechanisms that operate on them.

Our model represents the two main goals of this task
separately: reading digits and recalling digits. Each goal is
represented as a chunk structure with various pieces of
associated information (e.g., trial and position number).
The model uses a similar structure for the memory digits in
this task. (See Figure 3).

I'This is consistent with the ANOVA results in that (a) an
advantage for the slow rate is consistent with some rehearsal but
(b) a disadvantage for longer strings suggests rehearsal did not
occur after each digit.
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Figure 3 Goal and memory units in our model

The goals and memory elements in our model are acted
upon by productions of the form "IF <conditions> THEN
<actions>". Figure 4 presents a list of some of the
processes implemented by separate productions in our
model. The "read” production fires whenever the goal is to
read the digits. After a digit has been read, if it is in the last
position, the “"store” production will fire to create a new
memory element for that to-be-recalled digit. This gives the
new memory element an initial boost of activation. The
"store" production also sets a subgoal to rehearse previous
memory elements after the current digit is stored. Note that,
in our model, the production implementing rehearsal does
not need to take any outward action (such as saying the digit
out loud). Instead, by virtue of having retrieved a digit in
this production’s conditions (i.e., the digit d must be recalled
in order to be identified as the digit in position p), ACT-R
naturally increases that memory element's activation and
hence its likelihood to be recalled later. Finally, the "recall”
production retrieves digits at the end of each trial. As
described below, the memory element that is retrieved will
tend to (but does not necessarily) represent an exact match to
the element specified in the current recall goal.

READ:

IF goal is to read a digit & digit d is on screen

THEN say digitd

STORE:

IF goal is to read a digit & digit d is on screen
& d is in last column & d has been read

THEN store d & prepare to rehearse

REHEARSE:

IF goal is to read a digit & digit d is in the
position to be rehearsed

THEN update position to be rehearsed

RECALL:

IF goal is to recall digit in position p of trial t &
digit d "matches" but has not been recalled

THEN say digitd

Figure 4 Some productions from our model




In ACT-R, activation is the main unit of "currency" for
processing. That is, learning and performance functions are
specified in terms of how various elements' activations
change and impact performance.

The ACT-R learning mechanism plays a role in our model
by specifying how each memory digit's activation is
increased. When a memory digit 1s first stored, 1t is
endowed with an initial activation that decays with time.
Each time the memory digit is accessed, it receives an
additional activation "boost"; as time passes, however, these
activation "boosts" also decay as a power function of the
timelag since access. The sum of these decaying activations
produces the memory element's base-level activation, Bj.

B,= log(}.'.tj‘d).
where t; is the time lag since the j‘h access and d is the
decay rate.

For performance, the ACT-R theory posits that a memory
element to be retrieved by a particular production gets an
additional activation from the current goal. This source
activation, denoted W, can be conceptualized as the amount
of atention directed from the current goal: we take W as the
individual difference parameter in our model based on the
work of Anderson et al. (1996) and on our own related work.
W affects performance by spreading its source activation
from the goal to the to-be-retrieved memory element,
increasing that element's total activation (Figure 3). A
memory element with higher total activation will be more
likely to be retrieved. Thus, the model will produce better
recall under higher values of W. There is one additional
constraint, however: the proportion of source activation that
reaches a given memory element, S;, is reduced as more
memory elements are connected to the current goal. In the
case of our digit working memory task, this means that
source activation will be spread more thinly the more
memory digits in the current trial, S; ~ -log(number of
memory elements). Thus, the total activation of memory
element i is:

Aj=W -S; + B; + N(0,062),
where N(0,62) represents the Gaussian noise added to each
element's activation.

This total activation value is then transformed into a
performance measure according to:

P(retrieve i) = (eA/S)/(Z;eAifs),
where s = Y60/ and the denominalor sums over the
competing memory elements.2 This performance function
specifies the model's predictions in terms of retrieval
probability for a given item. The critical feature of this
function is that probability of recall is a nonlinear function
of activation and hence a nonlinear function of W.

Errors. The complement of the above retrieval
probability (i.e., 1-P(retrieve)) gives the model's prediction
for errors of omission (i.e., when a memory digit is not
retrieved). Errors of commission (i.e., when an incorrect

ZA retrieval threshold is included as one of the competing
elements so that when a memory element's total activation 1s
not above threshold. it is unlikely (depending on o) to be
retrieved.
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digit is retrieved instead of the correct one) also occur in
systematic ways that need to be reflected in our model. The
ACT-R architecture provides a way to predict errors of
comission through its partial-matching mechanism, Once
the similarity between various items is specified (e.g., how
similar are the third and fourth positions in a list? how
similar are the first and fourth positions in a list?), this
mechanism lowers the total activation of a given memory
element with respect to how closely it matches the current
goal. Since elements with higher activation are more likely
to be retrieved, there is still a bias to retrieve the correct
memory digit (if it is above threshold). Nevertheless, with
partial matching, similar memory elements (e.g., those in
neighboring positions) also have some chance of being
retrieved in place of the correct digit. Although it is not the
focus of this paper, our model is thus able to capture various
error patterns in the data.

Modeling Results

As a first exploration of the model described above, we
produced aggregate model predictions (Figure 5). These
predictions were based on the default parameter settings
prescribed by the ACT-R theory, e.g., the W parameter's
default setting is 1.0. To obtain these predictions, we ran
the same exact model through our task 22 times, to simulate
each of the 22 subjects.

This first-pass fit demonstrates that our model can produce
behavior in the range of that exhibited by subjects. The
best-fitting line between the data and predictions is observed
= 0.71*predicted + 0.16, R2 = .88. However, there are two
noticeable deficiencies in this first-pass model fit: it appears
that the model tends to overpredict for the four-digit strings
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Figure 5 Aggregate data (M) and first-pass model predictions
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and underpredict for the six-digit strings, and the standard
error bars for the model's predictions are consistently smaller
than those for the data. To address these deficiencies, we
next moved to incorporating individual differences into our
model.

First, we ran the model through 22 simulations of the
experiment as above, but this time, each simulation had a
different, randomly distributed value for W. We kept the
same basic parameter values (i.e., no optimal parameter
fitting) but took the W parameter as normally distributed
with mean 1.0 and variance 0.0625. Figure 6 shows the
improved fit attained (best-fitting line: Observed =
0.95*Predicted + 0.02, R2 = .92) . Indeed, the error bars for
the model and data in Figure 6 overlap in every case except
one. Moreover, by incorporating individual differences in
our model, the standard error bars of the predictions now
appear more similar to those of the subjects.

While the above model fit suggests that varying W
parameter can lead to performance variability that is
consistent with the individual differences in our sample, it
still suffers from aggregating over subjects. In other words,
it is possible that a model (even one that takes into account
individual differences) can capture aggregate data but not be
able to fit data of individual subjects. Thus, we next fit the
parameter W to the data for each subject individually. As
Figure 7 shows, the model can account for individual
subject's recall performance and even matches the shape of
individual subject's data. Note that here we only break down
by number of strings to maintain a sufficient number of
replications per data point. The six subjects’ data presented
in Figure 7 were chosen to represent the range of W values;
the model provided a good fit for all of the 22 subjects.
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Figure 7 Individual participant data (M) and predictions (Q)

Indeed, this fitting procedure produced a bell-shaped
distribution of W values for our sample (See Figure 8): a
few subjects were best fit by high or low W, and most
subjects were fit by W ~ 1. Thus, these W estimates tell us
something about the subject-to-subject variability in the
quantity that W represents. Moreover, according to our
model, each participant's W value represents a fixed quantity
of source activation for that individual, which should be
reflected in other tasks we can also model.

Discussion

In the modeling work above, we have shown that a single,
continuous-valued parameter of the ACT-R theory can
produce individual differences similar to those displayed by a
sample of adults performing a digit working memory task.
This parameter (W) modulates the amount of source
activation spreading from the current goal to associated
memory elements and thereby affects their probability of
retrieval. While this parameter has been used in other ACT-
R models to represent a global attentional resource that is
common across individuals, our model takes the parameter
as fixed for a given individual but potentially varying across
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Figure 8 Histogram of number of participants with different
estimated values for W, the attentional capacity parameter.

individuals. This individual-differences approach enabled our
model to reflect the variability in an aggregated data set and
to capture the individual performance curves of each subject.
Moreover, our approach predicts that differences in this
paramecter, as measured by our digit working memory task,
will produce systematic individual differences in a variety of
different tasks. We are currently testing such across-task
predictions of our model.

Our modeling work also highlights the fact that
incorporating individual differences in a nonlinear model can
have important implications for the model's predictions.
First, adding variability to a single parameter in a nonlinear
model not only changes the variability of the model's
performance but its average predictions as well. This effect
was particularly evident in the two aggregate model fits
presented in this paper (Figures 5 & 6); here, changing the
W parameter from a constant to a random variable impacted
the standard errors of the model's predictions and the
predicted values themselves. Second, our approach suggests
that, in a nonlinear model, a single parameter can have
systematic effects on performance across tasks even while
performance across the different tasks does not show a strong
linear relationship. For instance, depending on the working
memory demands of different tasks, a particular individual's
performance may not look very similar across tasks. Thus,
linear-based analyses of performance may not be able to
uncover the common source of individual differences in a
nonlinear system. In contrast, our approach uses pre-
specified (nonlinear) functions to predict performance and
thus is able to estimate a common parameter setting for a
given individual and simulate performance across tasks.

Conclusions

Computational models provide an effective tool for studying
individual differences in working memory capacity because
they allow researchers to maintain the basic structure of a
theory while perturbing any given component. As we have
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demonstrated above, one can then rigorously and
quantitatively explore how varying a particular component
of the model can account for individual differences, leading
o a better understanding of the phenomena at hand and
refinements of one's theory. This approach also provides a
framework for studying the impact of a single individual
difference parameter across tasks and for using computational
models to predict individuals' performance on a new task
based on the individualized parameter value estimated from
their performance on a previous task.
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