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Self-Consistent Calculation of the 0-Meson Regge Pole

MYRON BANDER

Stanford Linear Accelerator Center, Stanford University, Stanford, California

AND

GoRnoN L. SHawl'

Institnte of Theoretical Physics, DePartrnent of Physics, Stanford University, Stanford, California
(Received 24 February 1964)

The left-hand discontinuities in the partial-wave amplitudes for w-x scattering are assumed to be domi-
nated by the exchange of the p meson in a form suggested by the Regge representation for a resonance.
This Regge behavior provides the necessary high-energy cutoff and allows the 37/D equations to be solved.
The partial-wave I=1 amplitudes are calculated for noninteger angular momenta l&1 as well as /=1.
The trajectory cc,(s) as well as the residue P, (s) of the p-meson Regge pole are evaluated. An attempt is made
to obtain a self-consistent solution for the relevant parameters, namely the position and width of the p
resonance and o.,(0). The results of this calculation give a, (0) &0.9. The I=O vacuum trajectory is also
discussed.

I. INTRODUCTION

'BERK have been a number of papers written on
the problem of determining the position and

width of the p meson self-consistently. '' In essence,
these bootstrap calculations of the p used the exchange
of this I= 1, /= 1 resonance in the crossed channels to
provide the force necessary to produce the p meson in
the direct channel. The /=1 part of the interaction is
projected out and the partial-wave dispersion relations
are solved by the X/D method. The hope is that the
solution yields a resonance having the same position
and width as that of the exchanged one.

A major difhculty is due to the divergence arising
from the exchange of a massive vector particle, with

sufficiently large coupling, which necessitates the use
of a cutoff. Instead of considering the p to be a vector
particle even when the energy of the exchanged p is not
close to the resonant energy, Wong' employed a form
suggested by the Regge representation for a resonance.
This then provides a cutoff at high energy, the relevant
parameter being the angular momentum of the p
trajectory at zero energy, cr,'"(0).

The purpose of this article is to carry Wong's p
(bootstrap) calculation with a "Regge cutoff" a step
further. For l= 1 we carry out a calculation similar to
his but then continue the X/D equations for noninteger
angular momenta and calculate cr, (s), comparing a, (0)
with the input parameter n, '"(0) In other wor.ds, this
is an attempt to bootstrap not only the position and
width of the p resonance, but the slope of its Regge
trajectory. The residue function P, (s) is also determined.
The sensitivity of our results to some of the approxima-
tions made is examined. For example, the above
calculation is compared to a similar one in which we
take the exchanged p to have constant angular momen-

*Supported by the U. S. Atomic Energy Commission.
j' Supported in part by the U. S. Air Force through Air Force

Oflice of Scienti6c Research Grant AF-AFOSR-62-452.' F.Zachariasen, Phys. Rev. Letters 7, 112 (1961);F.Zacharia-
sen and C. Zemach, Phys. Rev. 128, 849 (1962).' D. Wong, Phys. Rev. 126, 1220 (1962).

turn and employ a straight cutoff. The I=O vacuum
trajectory is also calculated.

Section II is devoted to a presentation of the
relevant formalism. The results of the numerical
calculations are given and discussed in Sec. III.

The results may be summarized as follows: In the
same sense that the usual bootstrap calculations of the
p are not self-consistent, i.e., the output width of the
p (for reasonable values of the position of the p) is
larger than the input width of the exchanged p,

' ' so
the calculated cr, (0) is larger than the input parameter
n, r"(0). For all cases, both cr, (0) are &0.9, in agreement
with results of Foley et al.' and the calculation of Chang
and Sharp'; hovv ever, in disagreement with other
determinations of cr, (0) 0.5.' The residue of the p
Regge trajectory, after removal of a threshold factor,
turns out to be nearly constant in the scattering region
(s(0) and very close to the input P. The calculations
of the I=O vacuum pole trajectory give a small slope:
u~'(0) & 1/500. '

II. FORMULATION OF THE INTEGRAL EQUATIONS

We shall obtain amplitudes for pion-pion scattering
by the familiar 1V/D solution' of the partial-wave
dispersion relations. The usual expressions for the scalar
variables s, t, and I in terms of the momentum k and
scattering angle 8 in the center-of-mass system of the
direct or s channel are' s=4(k'+1), t= —2k'(1 —cose),
and 1=4—s—t. The invariant partial-wave amplitude
A ~ is deQned in terms of the S matrix by

A t(s) —= (1/2ip) (St 1)=Bt(—s)+

~At�(s),

(1)—
where

p= ((s—4)/s)'", (2)

and Bt is regular for s) 0 and aAt(s) has only a right-
3 K. Foley, S. Lindenbaum, W. Love, S. Ozaki, J. Russell, and

L. Yuan, Phys. Rev. Letters 10, 3/6 (1963).' H. Cheng and D. Sharp, Phys. Rev. 132, 1854 (1963).
s I. Muzinich, Phys. Rev. Letters 11, 88 (1963).
'We use units A=c=m =1.' G. Chew and S. Mandelstam, Phys. Rev. 119, 46'I (1960).
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hand cut. The right-hand discontinuity in Ag(s) is
given by unitarity: We make the approximation that
elastic unitarity holds for all physical k':

1 " ds' (s' —4 "'
A ()=B ()+- IA (')I'I . (3)

7P 4 S —S 5 s'

The left-hand discontinuity or generalized potential is
derived from application of an approximate form of
crossing symmetry. We will first determine B&(s) and
then discuss the E/D equations and their solution.

Using crossing symmetry, B&(s) is calculated from
the scattering amplitude in the crossed t and I channels.
We will consider oeIy the exchange of the I=1 p
resonance in the t and u channels. Then in the s channel
for I=1 and l equal to animteger we obtain

1

B,r='(s) =— P~(cosa)d cosa
2

XL.",Ag'='(/, s) ——,'A s'='(u, s)), (4)

which for 1 odd becomes

take

b, (f) 1- f 2s ~
A (/, s) = —P tg&l

—1—
sinsa, (/) 2~ k / —4I

2s—P;(~ll 1+ (8)

We are interested in Bg for s&4 and hence in the
region /&0 where rr, {/) is real and (1.For large s, (8)
is or order s ~&') and hence an acceptable input to the
X/D equations.

Since we do not know the behavior of b, {/) or n, (/)
except in the immediate vicinity of the p resonance, we
will take a very simple form for (8) which reduces to the
correct Breit Wigner form (6) near t=m, ', yields the
same B~ t'(s=4) as Eq. (7), and gives the same high-
energy behavior in s (for small t) as the Regge pole:

31'(/ —4) f' 2s s ) ~~'&@&'

A B'(/, ~) =
I
1+ —

I (9)
(m p' —/) 5 / 44l—

With this approximation, Aq=t (s) is readily calculated
numerically. "However we are interested in continuing
the partial-wave amplitude for noninteger / Eq. (.5)
cannot be continued; there are alternate formulations
for Bg(s) which can be continued. "From the point of
making the computations manageable, we again note
that expression (7) can be corrfimmed iri, the / p/arie. Thus
we are led to make the further approximation that using
(5) in making the partial-wave projection B& (s) of (9)
we evaluate the last factor (s/4)~~'@1&' ~'& at /=0
(where it gives the maximum contribution). Hence
our "Reggeized" BP(s) becomes"

0 2/ ~
Bi'(s) = Id/A, '{f,s), (5)

(s—4) (, 41 s—41

3r(/ —4) 2$
Pr 1+ . (6)

5$ '—/ —ir (t—4)"'//"' t 4—A'(f, s) =

where A~'(t, s) is the part of the scattering amplitude
in the / channel, A (t,s), which has no singularities for
s&0, i.e., 5&4.

Taking a Breit-Wigner form for the p resonance,
we have

Further making the narrow width approximation, so
that Ag'(t, s)=A'(/, s), we have the simple form for /

equal to an odd integer'.

6r 2m' s
Bg'{s)= (m, s—4+2s)Q) 1+

(s—4) s—4 4
(10)

6r 2m' )
(mp' —4+2s)Qi 1+

s—4 s —4i
B,'(s) = {7)

s G. Chew and S. Frautschi, Phys. Rev. 124, 264 (1961).
9 If we look at I=O and even angular momenta, the relevant

Born term is of the same form as (7) with F replaced by 2j. .
"E.Squires, Nuovo Cimento 2S, 242 (1962).A continuation of

Eq. (5) based on the lines discussed in this reference will yield the
same result.

Fquation (7) has an acceptable behavior in the /

plane as I/I ~ eo and thus can be continued for non-
integer / even though both (4) and (5) cannot. "
However, B&(s) as given by (7) diverges like log(s) as
s —+ m and the resulting 1V/D equations do not have a
unique solution.

A mechanism that damps this singular high-energy
behavior is provided by the Regge motion of resonance
poles. In the Regge description for the p resonance we

pi= ((~—4)/~)'"(~-4)', (12)

"Equation {9}and other more complicated approximations to
(8) were considered and used to calculate Ag 1'(s) even though
these could not be continued to noninteger l simply.

"Thus the input cutoff parameter n, ' (0) should be considered
as some average value. Using form given by (8) would have
necessitated a somewhat smaller n,r~(0).

This expression which is our approximate form for the
left-hand cut for the partial wave x —vr amplitude in
the I= 1 state and odd integer / has acceptable behavior
for large l and cue be continued in the / plane.

Now in order to insure that AP(s) has the proper
threshold behavior, i.e., (s—4)' and also remove this
additional cut from B~'(s) for noninteger /, we define
new amplitudes

AP (s)—=1/(s —4) 'A ~'(s) = 1/2ipq(Sq —1)
= BP(s)+~A((s), (11)

where
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FIG. 3. Comparison of n~(s) for a "straight cutoff
and a "Regge cutoff. "

III. RESULTS AND CONCLUSIONS

As discussed earlier, in addition to evaluating the
I=1, l=1 m —m scattering amplitude in an attempt to
"bootstrap" the p meson, we calculate the p's Regge
pole parameters for noninteger l&1. We computed
both the position n, and residue P, of the pole as
functions of s.

We investigated the problem for several values of
the input coupling constant I'" (or input width of the

p) and for several input masses (m, '")' ranging from
10 to the experimental value of 29. No self-consistent
solution was obtained. The procedure was to evaluate
the I= 1, I= 1 amplitude for many values of n, '"(0) until
the mass of the input p was reproduced by a zero of
ReD& t(s) at s= (m, '")', i.e., we always forced the mass
of the produced p to be the same as that of the exchanged
p. The output width could be determined either by
evaluating the quantity t N& r(s)/c)D& r(s)/cisj at the
position of the resonance (which is a correct procedure
for a narrow resonance), or by actually looking at the
/= 1 phase shift as a function of s. In either the former
case or the latter looking below the resonant energy
the output width was larger than the input one by a
factor of 3—6. Looking at the phase shift itself on the
high-energy side of the resonance situation is even
worse. The f'unction ((s—4)'/s)'" cotter(s) is plotted in

Fig. 1 together with the input value for this function.
For energies larger than the position of the p resonance
the function decreases too slowly for a resonant
behavior. The input values for the exchanged p were

(m r")'=29 and I'"=0.145 (which corresponds to a
full width at half-maximum of 110 Mev).

Hence for given m, r and I'r", n, r"(0) is determined
from the self-consistency requirement on m, in the 1= 1
calculation. Thus the generalized potential BP(s) is
determined and we solve the full N~/Dr Eqs. (15) and
(16) to determine the Regge trajectory and residue for
the p. In Figs. 2 to 4 we present some of the results for
(m, '")'=29. As the width of the produced p meson is
rather large, the imaginary parts of the p trajectory will

be large above s=4. Since we have only looked for the
zero of the real part of Dl,, we have obtained the actual
trajectory only for s(4. We emphasize this by plotting
dashed curves for s)4, e.g. , the dashed cr, (s) curves
correspond to an approximation to the real part of
n, (s)4).

For I'"=0.145 we show in Fig. 3 a comparison of Qp

for a calculation as mentioned above to one in which a
pure I=1 p exchange Las given by Eq. (7)) was con-
sidered as a straight cutoff used in solving Eqs. (15)
and (16) (again the self-consistency requirement of the
output p position equaling m, '" determined the value
of the cutoff). We see that although there is some
quantitative difference, both trajectories have rr, (0)
larger than 0.9. These calculations with the straight
cutoff and other calculations specifically for A&=t'(s),
e.g. , using (9) to calculate B& t'(s)," all gave very
similar results for the l= 1 partial wave. We felt this was
a fairly good test for a number of the approximations
made in obtaining Eq. (10).

In addition to obtaining the output width larger than
the input one, the output n, (0) was larger than rr, ' (0)."
The two discrepancies are correlated. Near the res-
onance, we have from (21), (dn, /ds) = (P,/I') so that a
large I' corresponds to a small slope for n and thus
rr, (0) is larger at s=0 than rr, '"(0). It is interesting to
note that the output P„as shown in Fig. 4, is almost
constant in the relevant scattering region (s(0) and is
very close in magnitude to P,' = (drr, '"/ds)I'".

We have also calculated the scattering amplitude in
I=0 channel again using only p exchange in the crossed
channels. If we use the same parameters as for the
I= 1 calculation' we find that there is a vacuum trajec-
tory but that for s=0 it has an /&1; specifically for
l= 1 the pole occurs for a very large negative s. There-
fore we adjusted the cutoff parameters to force the I=O
trajectory to cross" 1 at s= 0 and calculated the vacuum
trajectory az(s). A typical curve is shown in Fig. 5.
Note that the slope is quite small; (dap(s)/ds) p 10
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Fro. 4. The residue P, (s) for various input parameters. The arrows
indicate the input P,»= (dn, r /ds)r».

"If we then recalculate the I= 1, /= 1 amplitude, no p resonance
occurs.
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and hence our results would not be consistent with the 
J0 16 being on the vacuum trajectory. We also calculated 
the residue of the vacuum pole at s=O. The residue 
corresponding to the trajectory shown in Fig. 5 gave an 
asymptotic total 7r-7r cross section of 3 mb as compared 
to a value of the 15 mb obtained using the factorization
theorem17 and the asymptotic 7rN and NN cross sections. ';;• 
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We feel that both the problem (a) that the output p 
width is larger than the input p width and the problem 
(b) that using the input p parameters which yield a p
resonance to calculate the (I= O) vacuum trajectory
give ap(O)> 1 are largely due to the one channel approx
imation. The effect of an inelastic channel below its
threshold is to, (i) always act as an attraction, and (ii)
tend to narrow a resonance. Hence if we include the
inelastic effects in the I= 1 channel, which we expect to
be due largely to the 'll"W channel,1 this would narrow the
output p width, and increase the attraction so that a

0.93 o=-----=2':-
0 --�

40
::---_c:'so=---_c'-eo=--

.--,-'-oo---,.L20---,.-'-o ---,sLo_-_1eo

FIG. 5. The I =0 vacuum trajectory cw(s) which has been 

16 W. Selove, V. Hagopian, H. Broad, A. Baker, and E. Leboy,
Phys. Rev. Letters 9, 277 (1962). 

17 M. Gell-Mann, Phys. Rev. Letters 8, 263 (1962); V. Gribov
and I. Pomeranchuk, ibid. 8, 343 (1962). 

adjusted to cross s = 0 at l = 1. 

somewhat smaller a/n (0) would be required.18 On the 
other hand, the 'll"W channel does not couple to the I= O 
channel so that this additional attraction would not be 
present and hence we would have a smaller ap(O). 

18 A relatively small change in a/n (0) produces a large shift in 
the output resonance position. 




