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ABSTRACT

California’s salmonids are at the southern limits of 
their individual species’ ranges, and display a wide 
diversity of strategies to survive in California’s 
highly variable climate. Land use changes after 
statehood in 1850 eliminated important habitats, or 
blocked access to them, and reduced the abundance, 
productivity, and distribution of California’s salmon. 
Habitat simplification, fishing, hatchery impacts, 

and other stressors led to the loss of genetic and 
phenotypic (life history, morphological, behavioral, 
and physiological) diversity in salmonids. Limited 
diversity and habitat loss left California salmon 
with reduced capacity to cope with a variable 
and changing climate. Since 1976, California has 
experienced frequent droughts, as were common 
in the paleo-climatological record, but rare in the 
peak dam-building era of 1936–1976. Increasing 
temperatures and decreasing snowpacks have 
produced harsher conditions for California’s salmon 
in their current habitats than they experienced 
historically. The most likely way to promote salmon 
productivity and persistence in California is to restore 
habitat diversity, reconnect migratory corridors 
to spawning and rearing habitats, and refocus 
management to replenish the genetic and phenotypic 
diversity of these southernmost populations. 

INTRODUCTION

Chinook Salmon, Coho Salmon, and Steelhead 
populations in California have declined precipitously 
since the mid-1800s (Ricker 1981; Yoshiyama et al. 
1998, 2001; NMFS 2009; Williams et al. 2006, 2012). 
Many of California’s salmonid populations are either 
extirpated or at risk of extinction. How to manage 
salmon and Steelhead populations in California’s 
variable and changing climate was the topic of a 
workshop held at the University of California, Davis, 
in September 2015. (A video recording of the entire 
workshop is available at: https://cmsi.ucdavis.edu/
events/salmon-and-climate-symposium.html.) We 
explore issues raised at that workshop, with emphasis 
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on possible management approaches to improve 
salmon resilience in California.

Salmon resilience is based on habitat heterogeneity. 
Salmon in California had access to diverse freshwater 
and estuarine habitats, and display an array of 
life history and physiological adaptations to the 
challenges posed by the dynamic climate. Diverse 
habitats support genetic and phenotypic diversity 
among populations, providing opportunities to 
optimize growth and survival at early life stages 
(Figure 1). Climate variations included multi-year 
and multi-decadal droughts, including the so-called 
mega-droughts of the medieval warm period from 
800 CE to 1300 CE (Stein 1994). Salmon also face 
varying ocean conditions such as year-to-year El 
Niño/La Niña cycles (Fiedler and Mantua 2017), and 
the multi-decadal patterns of the Pacific Decadal 
Oscillation (Mantua et al. 1997) and the North Pacific 
Gyre Oscillation (Di Lorenzo et al. 2008). Diverse 
habitats for diverse genotypes and phenotypes can 
provide a portfolio of options to support sustainable 
salmon populations in challenging climates (Hilborn 
et al. 2003; Figge 2004; Koellner and Schmitz 2006; 
Schindler et al. 2010, 2015). 

Salmon adaptations to earlier conditions in California 
are mismatched with current habitats. Dams, water 
management, logging, levees, and land use changes 
have simplified California’s mosaic of aquatic 
environments. Populations of naturally-spawning 
Chinook Salmon are at historically low levels despite 
regulatory and management efforts, restoration 
work, and large hatchery programs. In addition, 
the genotypic and phenotypic traits expressed by 
California’s salmon have become less diverse because 
of the cumulative effects of hatcheries, harvest, and 
altered habitats. Restoration of diverse habitats, 
genotypes, and phenotypes may permit salmonids to 
adapt to new and changing conditions in freshwater 
and the ocean.

Climatic Effects on Salmon Habitat

The habitat-forming processes that affect 
salmon in freshwater are driven by California’s 
Mediterranean climate interacting with the state’s 
diverse topography and geology. Paleoclimate 
reconstructions show much longer droughts before 
California became a state in 1850, but such droughts 

were periods of more frequent moderately dry years 
with fewer moderately wet years (Stein 1994; Ingram 
and Malamud–Roam 2013). The mega-droughts 
were often followed by floods greater than any seen 
since (Biondi et al. 2000; Ingram and Malamud–
Roam 2013). Thus, the climatic extremes to which 
California salmonids were exposed before 1850 were 
greater than those since. 

Central Valley watersheds include high-elevation 
catchment areas (to 4,421 m) with often-persistent 
snowpacks that extend the runoff season. In the 
Central Valley, salmon distribution was always 
limited by hot, dry summers and sub-freezing 
temperatures in winter at high elevations. Eight 
widely-separated major rivers drain into a catchment 
area 720 km long and averaging 62 km wide, 
culminating in a common delta that enters San 
Francisco Bay.

California’s coastal-zone climate features 
moderate temperatures. The Coast Range is lower 
(max elevation 2,268 m) and seldom develops a 
persistent snowpack. From December to March, the 
many isolated coastal watersheds have “flashy” 
hydrographs with frequent overbank flows. In late 
summer and fall, flows are extremely low, even 
dry in many reaches. Large coastal basins like the 
Klamath/Trinity have substantial catchment areas 
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Figure 1 Conceptual model of how habitat heterogeneity 
creates trait and phenotypic diversity to promote population 
resilience. Source: S.M. Carlson.   
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at both high and low elevations. This produces a 
“transitional” hydrograph with high runoff from fall 
and winter rains, and snowmelt runoff in spring to 
early summer. Coastal fog from April to September 
improves stream habitat by cooling streams and 
reducing evaporation (Johnstone and Dawson 2010).

Variability in annual precipitation (Figure 2) is 
higher in California than in any other state in the 
continental US (Dettinger 2011). This variability rests 
entirely on November–May precipitation, producing 
extreme fluctuations in freshwater salmon habitat 
quality and quantity. Precipitation from June through 
October is negligible. Years of high snowfall have 
high runoff from May through July. In other years, 
warm “atmospheric river” storms generate rapid 
runoff that leads to overbank flows in November–
March (Ralph and Dettinger 2012). In extreme 
drought years, like 1976–1977, 1987–1992, and 
2013–2016, stream flows remain low year-round. 

Almost all California rivers are impounded. Reservoirs 
provide flood control in wet winters, and water 
delivery to cities and irrigated agriculture during 
drier times. As a result, reservoir operations flatten 
the natural hydrograph. Reservoir storage volume 
and release patterns have large effects on temperature 
and flow conditions downstream, often controlling 
salmon habitat quality, location, and quantity. 

Annual variability in water supply, water 
management actions, and habitat alteration drive 
estuarine conditions for Central Valley fish. Wet 
years inundate flood-control bypasses that provide 
habitat beneficial to the growth of outmigrating 
young salmon (Sommer et al. 2001, 2004, 2005). 
Wet years extend freshwater conditions down to 
Suisun and San Pablo bays, where most remaining 
or restored tidal wetlands occur. Wet years provide 
pulses of freshwater that help guide salmon adults 
back to spawning grounds. Lower river flows produce 
fewer of these benefits. Coastal estuaries vary less 
because there are reduced effects of snowpack, water 
management activities change less from year to year, 
and wetland habitats are available in all years (Hayes 
et al. 2006).

Ocean habitat and food web productivity vary 
dramatically within and between years and across 
decades, causing salmon survival and return rates 
to vary greatly. Changes in Pacific physical patterns 

associated with El Niño conditions have further 
destabilized salmon survival rates (Kilduff et al. 
2015). Seasonal shifts in surface wind patterns 
produce a strong seasonal pattern in temperature, 
currents, and nutrient suspension. Upwelling within 
this California Current System controls near-shore 
productivity (Checkley and Barth 2010). In winter 
months, consistent southerly and southwesterly winds 
typically produce onshore and northerly movement of 
relatively warm and nutrient-poor surface waters and 
coastal downwelling. In spring and summer, variable 
northwesterly winds move surface waters southward 
and offshore; these surface waters are replaced by 
cooler, nutrient-rich water from lower depths and 
higher latitudes. These cooler, nutrient-rich waters 
support a lipid-rich food web beyond the continental 
shelf from Vancouver Island to Pt. Conception 
(Checkley and Barth 2009). 

As juvenile salmon leave the estuary, they experience 
the most direct effects of ocean conditions (Beamish 
and Mahnken 2001; Satterthwaite et al. 2014). 
Warmer-than-average periods in the California 
Current System reduce food quality and production, 
shift salmon predator distributions and diets, and 
reduce early marine survival for Coho and Chinook 
Salmon (Peterson and Schwing 2003; Wells et al. 
2016, 2017). Higher survival rates occur in years 
during which salmon enter the ocean when food is 
plentiful (Duffy and Beauchamp 2011; Wells et al. 
2012; Dale et al. 2016). When food is scarce, early 
marine survival is low, and only the fish that grow 
the fastest in the freshwater survive to adulthood 
(Woodson et al. 2013). 

Historic Habitat Heterogeneity in California

The Central Valley, formed by the San Joaquin 
and Sacramento rivers and their tributaries, is a 
highly diverse and dynamic landscape. Consistent 
flows from volcanic springs from Mt. Lassen 
and Mt. Shasta, with variable snowmelt from the 
Sierra Nevada, fed the Sacramento River through 
2,400 km of steep, cold streams and meandering 
mid- elevation rivers, to support 46,620 sq km of 
lowland floodplains, wetlands, and water bodies 
(Yoshiyama et al. 2001). The San Joaquin River 
arises from snows on the southern, higher peaks of 
the Sierra Nevada, and formerly cascaded through 

https://doi.org/10.15447/sfews.2018v16iss2art3
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Figure 2 Time-series for key 
climate drivers of California’s 
salmon habitat from long-term 
monitoring stations. End-of-
season snow–water equivalent, 
amount of water in the snowpack 
at Donner Pass near Tahoe 
(A) changes sharply from year 
to year. The snowpack was 
zero in 2015 for the first time 
on record. Runoff from the 
Northern Sierra (B) shows wide 
year-to-year variation but little 
trend. Statewide average (Oct–
Sept) temperatures (C) show a 
warming trend since the 1970s 
in addition to high year-to-year 
variation. Prominent peaks 
and valleys in annual mean 
Sea Surface Temperatures in 
the California Current System 
(D), correspond with those in 
the statewide terrestrial air 
temperature record (C) 

Sources: Snow–water equivalent 
data for Donner Pass and North 
Sierra 8 Station Precipitation 
Index data obtained from the 
California Department of Water 
Resources (http://cdec.water.
ca.gov). Statewide-average 
water year precipitation and air 
temperature data were obtained 
from the National Climate Data 
Center’s U.S. Climate Division 
Data (http://www.ncdc.noaa.gov/
cag/time-series/us)

http://cdec.water.ca.gov
http://cdec.water.ca.gov
http://www.ncdc.noaa.gov/cag/time-series/us
http://www.ncdc.noaa.gov/cag/time-series/us
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granite and glacial outwash into vast marshes and 
seasonal inland swamplands (The Bay Institute 1998). 
These river systems converged in expansive tidal 
wetlands and joined smaller tributaries to flow into 
San Francisco Bay and the Pacific Ocean (Whipple 
et al. 2012). Northern California’s coastal tributaries 
are shorter, rain-dominated systems; many supported 
oversummering habitat of deep pools formed 
around downed redwoods, beaver dams, or bedrock. 
Salmonids found winter rearing habitat on flood 
benches, complex side channels, and intermittent 
tributaries. Estuaries, floodplains, and tidal marshes 
provided productive rearing habitat for outmigrant 
salmon and Steelhead before they entered the Pacific 
Ocean (Healey 1982; Simenstad et al. 1982).    

California’s salmonids adapted to the diversity 
and dynamism of the state’s habitats and climate. 
Some are migratory and some are resident, some 
are semelparous and others iteroparous, some spend 
substantial portions of their lives in freshwater and 
others move quickly to the ocean (Kendall et al. 
2014; Moyle et al. 2017). These multiple life- history 
strategies allowed them to exploit freshwater and 
estuarine habitats that varied from 
year to year in location, amount, and 
quality. Diverse phenotypes allowed 
adaptation to local conditions and 
produced populations resilient to fire, 
flood, earthquake, landslide, and drought. 
This diversity is exemplified by the 
Central Valley Chinook Salmon complex, 
comprising four distinct runs named 
for their respective seasons of adult 
migration (Fry 1961) (Figure 3). Although 
each run is named for the time of adult 
return, all life stages of Chinook Salmon 
are present in the system year-round. 
Both wild spring-run and hatchery-
reared late-fall-run Chinook Salmon 
migrate more quickly and survive better 
in wetter years (Michel et al. 2013, 
2015; Cordoleani et al. 2017). Distinct, 
naturally-spawning populations of Coho 
and Chinook Salmon occur in large 
coastal systems such as the Klamath 
and Eel rivers. Steelhead and resident 
Rainbow Trout also occupy many rivers 
year-round as far south as the Tijuana 

River. Salmonid life-history variation in response to 
California’s heterogeneous landscape and variable 
climate suggests a broad capacity to withstand and 
adapt to climate variability and change if diverse 
habitats are available.

California’s salmon-bearing rivers formerly supported 
a suite of ecosystem processes that drove biological 
productivity. Interconnections among aquatic habitat 
types distributed production across the landscape. 
Pacific salmon played complex and critical roles 
in ecological productivity. Eggs and spawned-out 
carcasses provided ocean nutrients to nutrient-
limited, montane streams. These imported nutrients 
nourished everything from invertebrates to birds, deer 
to coyotes, and redwood trees to wine grapes (Merz 
and Moyle 2006). In the valleys, flood flows created 
productive habitat for outmigrating juvenile salmon, 
diversified their size and migration timing, and 
conveyed prey and nutrients downstream. Estuaries, 
with ocean and freshwater inputs of nutrients and 
food, provided a highly productive zone for rearing 
and smoltification (Sommer et al. 2001, 2004, 2005). 
Materials from upstream also provided flow and 

Figure 3 Central Valley salmon with multiple life stages of all four runs of salmon 
and steelhead in the freshwater landscape year-round. This variation spreads 
extinction risk within populations, across evolutionarily significant units, and brings 
resilience to populations. Source: CH2M Hill for the California Rice Promotion Board.

https://doi.org/10.15447/sfews.2018v16iss2art3
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chemical cues to guide adults back to their natal 
streams. California’s extremely productive salmonid 
assemblage supported Native American fisheries for 
thousands of years (McEvoy 1986).

The Modern Salmonid Landscape

Since statehood, watersheds of the Central Valley and 
Coast Range have undergone radical transformations. 
Less than 5% of the native wetland, riparian, and 
floodplain habitats remain in the Central Valley 
(Whipple et al. 2012). Hydraulic mining and logging 
produced dammed, denuded, and channelized 
headwater streams, and sent massive sediment and 
contaminant loads downstream (The Bay Institute 
1998). Coastal streams were straightened, and pond-
forming redwoods and beaver were removed. Thus, 
much of the quantity and complexity of salmonid 
habitat was lost, and the remaining habitat was often 
greatly simplified and impaired.

Dams and diversions disconnected rivers from their 
upstream reaches and reshaped hydrodynamic 
processes. State and federal water projects now 
control river flows throughout the Central Valley 
in all but the most extreme floods and droughts. 
Coordinated operation of reservoirs, pumps, and 
canals removes as much as 7.4 billion cubic meters 
of freshwater from the San Francisco Bay–Delta 
estuary each year. Timing and volumes of reservoir 
releases control much of salmon survival downstream 
(Zeug et al 2014). Native landscapes have been 
almost entirely supplanted by urban and agricultural 
landscapes (Figure 4). Dams and levees block 
access to more than 70% of anadromous salmonid 
spawning and rearing habitats (Figure 5; Yoshiyama 
et al. 1998) and limit the diversity of habitats that 
salmon can access (McClure et al. 2008). Along the 
coast, road construction, channel alteration, dams, 
and diversions impede migration, disrupt physical 
processes in streams, and reduce estuarine and tidal 
marsh habitat.

Historical Floodplain
& Wetlands

1.2 Million hectares

Current Agricultural, Fallow, 
& Urban Areas

1 million hectares

Current Floodplain Remnants
76,000 hectares (~7% of Historic)
+ 31,000 hectares of  Open Water

A CB

Figure 4 (A) Historical floodplain and Delta wetlands habitat; (B) remnant floodplain and wetland habitat currently in agricultural lands, 
fallow lands, or urban areas; and (C) floodplain and wetland remnants. Sources: The Bay Institute the Sierra of the Sea GIS maps and USDA 
2014 Cropland Data Layer.
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Climatic Effects on Salmon in the Modern 
Landscape

Decadal-scale climate variations, combined with 
physical degradation and loss of freshwater and 
estuarine habitats, have driven down salmon 
abundance. California’s salmon populations have 
suffered rapid declines under recent simultaneous 
extremes in freshwater and marine conditions. These 
sharp population declines are followed by persistent 
periods of low-productivity for natural populations, 
leading to weak recovery (Willmes et al. 2018). 
Subsequent extreme events then affect smaller 
populations, leading to lower and slower recoveries 
(Lindley et al. 2009). Consecutive years of drought 
and exceptionally high air, stream, and sea surface 
temperatures have had widespread negative effects 
on the freshwater, estuary, and marine phases of 
Chinook and Coho Salmon and Steelhead from 2012–
2016 (Williams et al. 2016). 

The drought of 2012–2016 contained several features 
consistent with climate change effects generally, 
especially exceptionally high temperatures and the 
low percentage of precipitation as snow. Responses 
of salmon and their ecosystem to this drought may 
foreshadow future trends. Much of the northeast 
Pacific Ocean, including areas typically used by 
California salmon and Steelhead, experienced record 
high sea surface temperatures from 2014 to 2016 
(Jacox et al. 2017). A “warm blob” formed offshore of 
the Pacific Northwest region in fall 2013 (Bond et al. 
2015). Off the coast of southern and Baja California, 
upper ocean temperatures became anomalously 
warm in spring 2014, and this warming spread to the 
central California coast in summer 2014. In fall 2014, 
a shift in wind and ocean current patterns caused 
the entire northeast Pacific to experience unusually 
warm sea surface temperatures from the West Coast 
offshore for several hundred kilometers (Swain et 
al. 2017). The California Current System overall 
experienced its warmest 3-year average temperatures 

A B

Figure 5 Historical habitat accessible to salmonids (A, in blue) and lost upstream habitat (B, in black) from construction of impassible dams 
(black squares). (B, in blue) Remaining anadromous habitat for multiple life stages of salmon is largely confined to the valley floor. Modified 
from Lindley et al. (2016).

https://doi.org/10.15447/sfews.2018v16iss2art3
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on record from 2014–2016, with 2015 having the 
record warmest year going back to at least 1920 
(Jacox et al. 2017). These extraordinarily warm 
conditions presented salmon with a combination of 
physiological stress and reduced food availability.  

California had well-below-average precipitation 
in water years 2012–2015, record high surface 
air temperatures in 2014 and 2015, and record 
low snowpack in 2015. Anomalously high air 
temperatures made this a “hot drought,” in which 
high surface temperatures substantially amplified 
annual water deficits during the period of below- 
average precipitation (Williams et al. 2015). The 
combination of heat and dryness may be the most 
extreme in the past 500 or more years (Diffenbaugh 
et al. 2015), and is likely to become more extreme 
(Singh et al. 2016). Further, droughts and floods are 
both expected to become more frequent, producing 
greater volatility in conditions from year to year 
(Swain et al. 2018). Thus, although floods and 
droughts in the last 250 years are not as great as 
those in the paleo-climatological record, California 
salmon in their present landscape now encounter 
more stressful climatic conditions than those in 
which they evolved. 

In 2014 and 2015, low reservoir storage, low 
precipitation, and high air temperatures elevated 
stream temperatures to historic extremes in many 
watersheds. The lack of cold water behind Shasta 
Dam led to a loss of suitable stream temperature in 
winter-run Chinook spawning grounds in September 
2014. Stream temperatures exceeded the 56°F (13°C) 
target in 2014 and 2015, and contributed to 95% 
mortality of eggs and fry in those years (Johnson 
et al. 2017). There were similar concerns in the 
Klamath Basin in the summers of 2014 and 2015 
because high stream temperatures elevated the effect 
of pathogens. These concerns prompted emergency 
reservoir releases that aimed to lower downstream 
temperatures and reduce risks to salmon. Thus, the 
freshwater environment was harsh for salmonid 
populations throughout California during the recent 
drought, and led to changes to water operations in 
attempts to mitigate for low precipitation, stream 
flow, and water storage. 

Changes in Salmon as a Result of Current 
Conditions

Lost Genetic Independence 

Genetic diversity is greatly reduced in Central Valley 
Chinook Salmon (Meek et al. 2014; 2016). Reduced 
numbers of populations and reduced population sizes, 
combined with the loss of genetic and demographic 
independence, make remaining salmon populations 
more vulnerable to extinction (Lindley et al. 2007). 

Financial analysts use the “Sharpe Ratio” 
(performance divided by variability; Sharpe 1994) 
to estimate risk-based performance. The same 
approach can describe fish dynamics (Moore et al. 
2010). Salmon and steelhead sub-populations that 
vary more independently produce larger and more 
stable yields (Hilborn et al. 2003; Schindler et al. 
2010; Moore et al. 2014). The greater stability and 
performance of populations when sub-populations 
vary independently—the portfolio effect—has been 
quantified in several salmon systems, e.g., in the 
Snake River (Figure 6). Extirpation of several Central 
Valley salmon sub-populations and increased 
synchrony among the remaining sub-populations 

Figure 6 Modeled salmon resilience from historical data on 
21 Snake River salmon populations in 10 early years when 
populations varied more independently vs. 10 later years when 
they varied more in synchrony . Modified from Moore et al. (2010).
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greatly reduces their risk-adjusted performance and 
bodes ill for long-term resilience of the Central 
Valley’s salmon production system (Figure 7) 
(Lindley et al. 2007; Carlson and Satterthwaite 2011; 
Satterthwaite and Carlson 2015; Franks and Lackey 
2015). 

Lost Habitat

Important salmon habitats have become unavailable, 
eliminated, or simplified, resulting in extirpation 
of some populations and a fundamental shift in 
the dominant life histories within and among sub-
populations. Spring-run Chinook Salmon were 
formerly the basis of the commercial and recreational 
salmon fishery. Their success was the result of the 
quantity, quality, and reliability of accessible high-
elevation habitat for adult holding, spawning, and 

juvenile rearing (Fisher 1994; Yoshiyama et al. 1998, 
2000). Spring-run spent variable lengths of time 
growing in streams, floodplains, and rivers before 
migrating to the ocean, so they were often large, and 
entered the ocean over a broad window of time. This 
diversity in timing and size likely buffered them from 
many stressors. 

Impassable dams on all major Central Valley rivers 
have shifted the advantage to fall-run salmon that 
use valley-floor habitats. California’s climate is 
expected to continue warming, and precipitation 
events are expected to become more extreme. This 
warming is likely to cause higher snowlines and 
widespread declines in California’s snowpack, more 
precipitation as rain, and warmer stream, estuary, 
and coastal ocean water temperatures (Cloern et 
al. 2011). Summer and fall water temperatures on 

Figure 7 Interactive effects of reduced 
natural production of salmon (N) with more 
stable production of less-fit hatchery fish (H) 
lowers fitness (F) overall. With no variability in 
population response, climatic trends (C) ratchet 
all abundances downward, but the proportion 
of hatchery fish increases  Source: S Lindley, 
NMFS. 

https://doi.org/10.15447/sfews.2018v16iss2art3
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the valley floor may rise more sharply than winter 
temperatures and become even more challenging for 
cold-water fish (Cloern et al. 2011). The windows of 
appropriate conditions for Central Valley Chinook 
Salmon to complete the freshwater part of their life 
cycle are likely to narrow even more, in both time 
and space. Winter-run are blocked from the reliable 
cold-water spawning grounds coming off Mt. Shasta, 
and spring-run are blocked from most reliably cold 
water habitat in the upper reaches of Sierra Nevada 
streams. These US Endangered Species Act (ESA)-
listed runs—winter-run and spring-run—already 
require substantial habitat, harvest, and hatchery 
management to reduce their extinction risks. Without 
significant alleviation of existing stressors, climate 
change will make survival difficult for fall-run and 
late-fall-run Chinook Salmon, as well (Moyle et al. 
2017). 

The loss of access to reliable good conditions in the 
freshwater environment means that the proximate 
cause of low return rates is often ascribed to 
poor ocean conditions (Lindley et al. 2009). This 
emphasis on the role of the ocean in year-to-year 
variance in abundance masks the larger problem of 
persistently poor conditions in freshwater (Table 1). 
Occasionally, freshwater conditions can become 
extraordinarily bad, as for winter-run Chinook 
Salmon in 2014–2015 (Figure 8; SWRCB 2016; 
Kratville 2016, unreferenced, see “Notes"). Winter-
run Chinook Salmon are especially vulnerable 
because they only have one spawning ground, now 
limited to the tailwaters below Keswick Dam. In 
2013, ocean conditions were supportive while the 
drought produced mildly stressful conditions on 
the spawning grounds. Then, in 2014 and 2015, 

conditions were extremely stressful in both the ocean 
and freshwater. As the drought was nearing its end 
in 2016, conditions became more moderate in both 
habitats (Figure 8). Thus, oceanic habitat conditions 
vary from good to poor, and have a greater influence 
than freshwater conditions on year-to-year variability 
in salmon numbers. However, climate variability 
has an amplified effect on freshwater production in 
California because there is so little freshwater habitat 
now available to salmon. Increased variability in 
northeast Pacific Ocean conditions is likely to make 
conditions more frequently stressful for salmon in 
the ocean (DiLorenzo and Mantua 2016; Jacox et 
al. 2017). However, if more numerous and more 
diverse juvenile salmon arrived at the ocean at 
different times and at different sizes, it is likely that 
adult returns would be less sensitive to inter-annual 
variation in ocean conditions.

In freshwater, floodplain habitat use has been a 
focus of research for the past 15 years; seasonally-
inundated floodplains provide foraging habitat 
and more food (Sommer et al. 2001; Sommer et al. 
2004; Corline et al. 2017). Such habitat and food 
supply enhance juvenile salmon growth, compared 
to the nearby mainstem Sacramento River (Figure 9) 
(Sommer et al. 2001; Jeffres et al. 2008; Henery et 
al. 2010). Ephemeral and intermittent streams show 
a seasonality similar to floodplains and may also be 
important habitats for California salmon and trout 
(Limm and Marchetti 2009; Hwan et al. 2017; Phillis 
et al. 2018). 

Access to spatially-diverse habitats influences fish 
growth rates, movement, and phenotypic diversity 
(Hilborn et al. 2003; Schindler et al. 2015; Lisi et al. 

Table 1 Environmental conditions (poor, moderate, or good) in freshwater and marine aquatic ecosystems influence predicted salmon 
population sizes and limiting factors on the populations. Consistently poor freshwater conditions result in only moderate or small population 
sizes, depending on the variable quality of ocean conditions (highlighted in grey boxes).  

Ocean conditions Freshwater conditions Population size Limiting factors Example year

Good Good Large
Competition/Predation 
Habitat

Poor Good Moderate
Ocean conditions     
Food

Good Poor Moderate 
Spawning habitat 
Rearing habitat                  

2013, 2016

Poor Poor Small Food and space -> Extinction spiral 2014, 2015
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Figure 8 Salmon experienced years of extreme temperatures in the freshwater and ocean life stages in 2013–2016. (A) Severity of drought 
conditions from abnormally dry (yellow) to exceptional drought (dark red) measured in August each year. (B) Observed annual mean ocean 
temperature anomalies with colder than normal (blues) and warmer than normal (yellows/reds) relative to the 1981–2010 average. Note the 
extreme conditions experienced in 2014–2015 (boxed) in both aquatic habitats in the salmon life cycle indicating the cumulative effects of 
warming Sources: http://www.droughtmonitor.unl.edu; bottom-row images provided by the NOAA/ESRL Physical Sciences Division, Boulder 
Colorado from their website at http://www.esrl.noaa.gov/psd/.

https://doi.org/10.15447/sfews.2018v16iss2art3
http://www.droughtmonitor.unl.edu
http://www.esrl.noaa.gov/psd/
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2013). Such diversity stabilizes inter-annual variation 
in juvenile production (Thorson et al. 2014). Variation 
in size and timing of outmigration increases the 
likelihood that some individuals experience optimal 
arrival timing in variable riverine, estuarine, and 
early ocean conditions (Satterthwaite et al. 2014; 
Huber and Carlson 2015). In some years, juvenile 
salmon that leave their natal rivers as small fry (<55 
mm) and rear for several months downstream become 
a large proportion of adult returns (Miller et al. 2010; 
Sturrock et al. 2015). Rearing in estuarine habitat 
substantially improves Chinook Salmon survival rates 
(Magnusson and Hilborn 2003). Thus, for salmon 
in a variable climate, different habitats may be of 
different importance in different years.

Hatchery Impacts

The first North American commercial salmon cannery 
opened in Sacramento in 1864, and the industry 
rapidly spread north (NWPC 2011). Sharp declines in 
salmon abundance as a result of habitat degradation 
and overfishing led in 1870 to the establishment 
of hatcheries, or “breederies” (Stone 1874; Leitritz 
1970). Fall-run fish migrate, spawn, and outmigrate 
quickly, and so they became the primary stock for 
hatchery propagation (Hallock 1978). Currently, five 
hatcheries propagate fall and late-fall-run Chinook 
in the Central Valley: four state-operated hatcheries 
(Feather River Hatchery, Nimbus Fish Hatchery on 
the American River, Mokelumne River Hatchery, 
and Merced River Fish Facility) and one federally-
operated hatchery (Coleman National Fish Hatchery 
on Battle Creek). Together, these hatcheries typically 
release >30 million juvenile Chinook Salmon each 

year (Huber and Carlson 2015). These hatcheries, 
and the remaining natural spawning areas, support 
culturally and economically important tribal, 
sport, and commercial fisheries. For instance, in 
2013, 297,409 Chinook Salmon were harvested 
commercially, and 175,307 were recreationally 
caught, for economic benefits of $244 million and 
$105 million, respectively (PFMC 2014).

Hatchery fish create conservation challenges when 
they mingle with wild fish and use shared resources. 
Salmon hatcheries produce many more smolts from 
a small number of spawners than would be produced 
in nature. Large numbers of hatchery salmon can 
bolster predator populations that then prey more 
heavily on wild salmon (CALFED 2000). During the 
2012–16 drought, the percentage of wild fish fell 
disproportionately, and led to greater dominance 
by hatchery-based fish (Willmes et al. 2018). For 
many years, hatchery effects were a concern largely 
in freshwater because of concerns about the limited 
carrying capacity of freshwater habitats. However, 
the ocean’s carrying capacity has become better 
understood, and hatchery salmon can influence 
growth and survival of wild salmon stocks and 
other species in the ocean (Ruggerone et al. 2010; 
Ruggerone and Irving 2018). Thus, the release of 
millions of hatchery fish from one river system can 
have broad effects. The degree and mechanisms of 
competition between hatchery and wild fish requires 
further research into spawning dynamics, rearing 
habitat, and food limitations in both freshwater and 
the ocean.

Hatchery managers make several logistical decisions 
that influence diversity and resilience of wild stocks: 

A B

Figure 9 Two years (A and B) of data of 
juvenile Chinook Salmon size from the Yolo 
Bypass (black diamonds) and in the adjacent 
Sacramento River mainstem (open circles) 
that demonstrate the role of habitat mosaics 
in creating phenotypic diversity and potential 
differences in outmigration timing. Modified 
from Sommer et al. (2001).
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the number of each sex to use, the number of fish to 
produce, the size and stage to release, and where and 
when to release the fish. The number, size, location, 
and timing of release of artificially-propagated fall-
run Chinook have become more standardized across 
hatcheries in the Central Valley. These practices 
result in relatively similar-sized juveniles entering 
the ocean within a narrow temporal window (Huber 
and Carlson 2015). Because Central Valley fall-
run Chinook Salmon populations are dominated 
by hatchery-produced fish, this homogenization 
of release strategies has presumably weakened the 
portfolio effect (Barnett–Johnson et al. 2007; Carlson 
and Satterthwaite 2011; Satterthwaite and Carlson 
2015).

Trucking hatchery fish for release has influenced the 
dynamics and resilience of both hatchery and wild 
fish. Currently, about 40% of the Chinook Salmon 
produced in Central Valley hatcheries are trucked 
to San Pablo Bay for release (Huber and Carlson 
2015). Trucking is used to circumvent the mortality 
associated with down-river migration. However, the 
trucking program has consequences that erode the 
resilience of the stocks. 

1. Trucking decreases variation in ocean arrival 
timing relative to fish migrating downstream 
volitionally. Downstream-migrating fish use 
diverse corridors and rearing habitats that vary 
outmigration timing and fish condition. For 
example, salmon in the Yolo Bypass slow their 
migration, presumably to take advantage of 
feeding opportunities in the Bypass (Sommer et 
al. 2001). Larger body size is known to improve 
early-marine survival, and delayed migration 
might contribute to more variable ocean arrival 
timing. Variable timing of ocean entry influences 
salmon survival via match–mismatch dynamics 
(Satterthwaite et al. 2014)—individuals that arrive 
when prey resources are plentiful grow quickly 
and survive. Variable timing within and among 
populations buffers populations from uncertain 
ocean conditions. 

2. Trucked salmon do not imprint to the 
characteristics of their natal stream. 
Consequently, when trucked smolts return as 
adults, many stray into rivers more frequently 
than fish that outmigrated volitionally (Palmer–

Zwahlen and Kormos 2015; Keefer and Caudill 
2014). Straying of trucked hatchery fish, 
especially into streams without hatcheries, 
reduces local adaptation in the recipient 
population and degrades local adaptations. 
Indeed, the trucking program is a likely cause of 
the genetic homogenization of Central Valley fall-
run Chinook Salmon (Williamson and May 2005; 
Meek et al. 2014, 2016); this homogenization 
is unusual for such a large salmon stock 
complex. Moreover, unmarked hatchery fish 
on the spawning grounds mask declines in the 
abundance of wild fish (Johnson et al. 2012). 
Finally, elevated straying leads to more similar 
dynamics among all populations, which weakens 
portfolio performance (Satterthwaite and Carlson 
2015). 

Actions to Facilitate Salmon Resilience to  
Climate Variability

The highly variable genetic and phenotypic 
characteristics of salmon promoted their resilience 
and abundance in the variable landscape of historical 
California. The modern California landscape 
challenges salmon with: lack of access to reliable 
cold water for spawning, lack of nursery habitat 
for all young life stages, and simplified migratory 
corridors occupied by invasive predators and 
competitors (Sabal et al. 2016; Lehman et al. 2017). 
In general, the simplified and shrunken area to which 
salmon have access leads to smaller, simpler, and 
less diverse salmon populations. Restoring habitat 
complexity is essential to restore salmon resilience to 
stress.  

Salmon have four responses to environmental stress: 

1. Adapt. Depending on the degree and pace 
of change, salmonids can adapt to shifting 
conditions. Such local adaptation to high 
temperature has likely occurred in some 
California trout (Verhille et al. 2015). The process 
is complicated by temperature effects on other 
stressors, such as disease organisms and their 
vectors (Schaff et al. 2017). Increased genetic 
and phenotypic diversity is fodder for selection 
and adaptive evolution; however, there are also 
clear physiological limits on the ability of salmon 

https://doi.org/10.15447/sfews.2018v16iss2art3
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to adapt to temperature increases (Muñoz et al. 
2015). 

2. Hunker Down. Individuals find thermal refuges in 
groundwater springs or shaded habitats and wait 
for the stressor to pass (i.e., a resistance strategy). 
Increased habitat diversity increases the chance 
that members of a population will find suitable 
refuges. 

3. Move. Individuals or populations may move to 
new, more suitable locations. Insurmountable 
barriers and habitat fragmentation have greatly 
limited the ability of salmon populations to move 
long distances in most California rivers.

4. Extinction or Extirpation. If individuals are unable 
to move, acclimate, or adapt, then populations 
are likely to die out. 

Humans have greatly reduced the ability of salmon 
to exercise the first three options while increasing 
the likelihood and rate of the fourth. Management 
can facilitate salmon recovery and resilience by 
enhancing their ability to adapt, hunker down, or 
move (Beechie et al. 2013; Mantua et al. 2016; NMFS 
2014). Management actions that build on historical 
adaptations of salmon to California’s climate are 
most likely to yield positive outcomes. 

Four approaches are likely to improve the ability of 
salmon to persist in a changing climate.

1. Improve Upstream Access. Blocked access to 
cold-water habitat can be addressed in several 
ways. Removal of barriers is a near-term option 
where the political will exists and socio-economic 
considerations allow. Some dams are unlikely 
to be removed, although fish passage structures 
are possible at some (e.g., NMFS 2009). The 
value of such work has been shown in smaller 
streams such as Butte Creek, with substantial 
improvements in naturally-spawning spring-
run Chinook Salmon escapement (Johnson and 
Lindley 2016). Because of the complexities, and 
lack of proven success to facilitate volitional 
passage around large dams, interest has focused 
on the feasibility of using trap-and-transport 
methods. Substantial engineering, biological, 
and societal issues are associated with this 
approach. However, for winter-run and spring-
run Chinook Salmon, trap-and-transport is an 

important option to consider because they are 
most vulnerable to climate effects in their current 
habitats (Lindley et al. 2007; NMFS 2009; Lusardi 
and Moyle 2017).

2. Improve Bioenergetic Conditions. Higher 
temperatures increase bioenergetic stress and 
susceptibility to disease (Schaff et al. 2017). 
Warmer water increases the amount of food 
needed to meet the higher metabolic demands. 
Salmon, therefore, have greater resilience if 
warm-season water temperatures can be reduced, 
or prey availability can be increased, or both. 

Existing infrastructure can sometimes mitigate 
water-temperature stress. Specifically, increased 
hypolimnetic releases from reservoirs maintains 
cold-water habitat below dams. This is a key 
strategy for winter-run Chinook Salmon, where 
summer releases from Keswick and Shasta 
dams help sustain developing eggs (NMFS 
2009). Similarly, releases from Oroville Dam 
are managed to provide cooler temperatures 
for steelhead downstream. The effect is 
geographically limited to waters below major 
dams, and is more difficult or less effective when 
reservoir storage is low. Coordinated operations 
can conserve cold water supplies for the most 
at-risk populations.

Habitat restoration is broadly expected to create 
spatial and temporal refuges and options for 
salmon and trout. For example, tidal inundation 
in Suisun Marsh generates warming and cooling 
patterns (Enright et al. 2013) that may provide 
thermal refuges for fish. Similarly, on the Yolo 
Bypass, wind and topography generate different 
patterns of temperature variability than the 
adjacent Sacramento River (Sommer et al. 2001; 
Goertler et al. 2017). However, little of the 
targeted restoration in the Delta has yet been 
completed, and so results are lacking.

Enhanced food supply is the other key tool to 
improve salmon bioenergetics. The bioenergetic 
benefits of improved food availability in 
seasonally-inundated floodplain habitat are 
amplified by higher consumption rates at lower 
activity levels (Sommer et al. 2001). Hence, 
a major goal of habitat restoration efforts is 
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to improve connectivity between river and 
floodplain habitat (NMFS 2009). 

Increased duration of inundation enhances the 
benefit of floodplain habitat to more individuals 
of each population and to more populations 
(Katz et al. 2017). Long-term data from the Yolo 
Bypass reveal that increasing the duration of 
flooding enhances use of off-channel habitat 
and increases fish size at migration (Takata et al. 
2017). In the Central Valley, many seasonally-
inundated habitats in the form of rice fields, 
wildlife refuges, and duck clubs continue to 
support wildlife. Salmon recovery efforts on these 
lands can include restoration of access—either 
temporary access by season, or access in different 
areas in different years. For inundated areas 
without direct fish access, production and release 
of invertebrates can subsidize food supply in 
accessible habitat. Preliminary analysis suggests 
that re-operation of these lands to provide 
salmon habitat could recover as much as 35% of 
historic floodplain habitat (Figure 10). 

Seasonally-flowing streams may be another 
important habitat for refuge and food supply 
for young salmon in some years (Maslin et al. 
1996, 1998, unreferenced, see “Notes"; Limm 
and Marchetti 2009; Phillis et al. 2018). There is 
substantial evidence from the Pacific Northwest 
that restoration of tidal marsh in the estuary 
could also generate major food-web benefits 
(Shreffler et al. 1990; Miller and Simenstad 1997; 
Bottom et al. 2005). Moreover, restoration of tidal 
marsh and floodplain habitat is likely to benefit 
other native fishes (Sommer et al. 1997; Brown 
LR. 2003; Feyrer et al. 2006; Sherman et al. 
2017).

3. Restore Life-History Diversity. Different life stages 
of salmon require different habitats; in different 
years, they require those habitats in different 
geographic areas. Within a watershed, habitat 
diversity allows access to a broader spatial and 
temporal range of suitable refuges. Diverse 
refuges allow individuals to pursue diverse 
strategies with varying degrees of success, thereby 
distributing risk. Across watersheds, habitat 
diversity—coupled with the fidelity of salmon 

Rice Fields

114,000 hectares

Wildlife Areas 

106,000 hectares

Conservation Easements

110,000 hectares

Potential Areas for
Wetlands Restoration

407,000 hectares

A B C D

Figure 10 Opportunities for recovery of Central Valley wetland habitat extent and function through the reoperation of seasonally-inundated 
areas including: (A) rice fields, (B) existing wildlife areas and preserves, and (C) conservation easement lands. (D) These opportunities 
comprise over 35% of the historical habitat extent. Sources: (A)–(C) 2014 USDA Cropland Data Layer; (D) 2014 Protected Area Database.
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returning to spawn in their natal rivers— allows 
populations to diverge genetically, and to adapt 
to different stressors in different watersheds. 
Salmon from floodplain versus riverine habitats 
show the large phenotypic differences that can 
result from using different habitats (Goertler et 
al. 2017). Given the significant loss of historical 
salmon habitat, a mosaic of aquatic habitats to 
support all stages would better allow California 
salmon stocks to withstand stochastic events and 
a changing climate. 

Bottlenecks in survival can occur in all three 
major habitats: freshwater streams, estuaries, and 
the ocean. Diverse types of high-capacity habitats 
permit salmon to avoid poor habitat and reduce 
inter-specific competition—but only if phenotypes 
and/or timing of habitat use are different. 
California’s climate was remarkably variable 
historically, and in all modeled future climate 
scenarios; diverse, accessible, high-quality habitat 
will contribute to variable growth rates and 
variability in phenotypes, including outmigrant 
behaviors and timing. This life-history diversity 
is thought to create diverse sub-populations with 
more reliable overall population growth rates. 
Performance will vary across watersheds and 
through time with this diversification, and, much 
like a stock portfolio’s diversification, can thereby 
reduce overall risk. The effects of ocean fishing 
will likely change with climate change and 
require new considerations for sustainable harvest 
management (Worden et al. 2010). In years when 
both ocean and freshwater habitats are poor, 
diverse populations of sufficient size can better 
rebound. 

4. Artificial Propagation. Hatcheries can be 
important parts of a conservation strategy for 
imperiled stocks, despite substantial issues with 
some traditional practices (see above). Modern 
hatcheries can involve any part of the salmon life 
cycle and, as a result, they shape demographic 
and genetic components of salmon populations. 
Reliance on hatchery production has been a tool 
to sustain salmon populations by promoting 
increased juvenile survival to adulthood during 
poor ocean and freshwater conditions. Hatcheries 
can provide temporary refuge under the most 
extreme conditions. During the recent drought, 

hatchery propagation compensated for extremely 
low egg-to-fry survival in rivers, while trucking 
hatchery juveniles probably boosted survival 
of juveniles at the cost of increased straying 
rates of adults. For imperiled stocks (particularly 
winter-run Chinook Salmon) considerable effort 
is routinely invested in reducing the effects of 
hatchery production on genetic integrity. For 
viable salmon populations, hatchery practices 
that assist in short-term protection of stocks must 
support the longer-term genetic and demographic 
needs of natural-spawning salmon (Johnson and 
Lindley 2016). Efforts to reduce straying and to 
reduce significant gene flow between hatchery 
and natural-origin salmon are essential to allow 
the maintenance or re-emergence of locally-
adapted populations (Araki et al. 2008; Christie et 
al. 2016).

Newly-developed analytical tools provide ways 
to assess which of these various actions—or 
combination of actions—provide the greatest 
benefits to the portfolios of different runs and 
populations to promote recovery in a changing 
climate (Hendrix et al. 2014; Yamane et al. 2018).

CONCLUSIONS 

Improving upstream and floodplain access as well 
as bioenergetic conditions, restoring life-history 
diversity, and careful consideration of artificial 
propagation practices provide a suite of process-
based management objectives that could collectively 
strengthen the salmon portfolio. Over the last 170 
years, California’s aquatic habitats, and the salmon 
that rely upon them, have lost much of their 
complexity. To successfully deal with California’s 
variable and warming climate, California’s salmon 
and steelhead need more habitat options than they 
have now. Access to diverse habitats will allow 
salmon to express the genetic and phenotypic 
diversity that gave them the portfolio to thrive 
in California’s historical climate. Re-investing in 
that portfolio is the most likely way to bolster the 
persistence of salmonids in California.
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