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Cristóbal De La Maza (cdelamaz@andrew.cmu.edu)

Alex Davis (alexdavis@cmu.edu)
Cleotilde Gonzalez (coty@cmu.edu)
Inês Azevedo (iazevedo@cmu.edu)

Carnegie Mellon University, Pittsburgh, PA 15213 USA

Abstract

In this paper we demonstrate how to use graph matching to
uncover heterogeneity in the structure of preferences across
a population of decision-makers. We propose a novel non-
parametric approach to formally capture the concept of pref-
erence structure using preference graphs, thereafter clustering
decision-makers based on graph embedding methods. We ex-
plore the approach with simulated choice and empirical data
from the most common classes of economic and psychological
models. The approach uncovers heterogeneity in preference
structure across a variety of dimensions, without requiring any
prior knowledge of those structures.
Keywords: Heuristics; Preference Structure; Graph Matching;
Clustering; Transitivity

Introduction
The study of preferences and the concept of rational choice
have been relevant for cognitive science from the early con-
ception of the fields (Simon, 1956). Theories of preferences
are often concerned with the invariant axioms that describe
how people decide, or the structure of preference. For over
a century, the dominant paradigm has been a set of axioms
that are necessary and sufficient for behavior to be consis-
tent with the maximization of a well-behaved utility func-
tion, an idea dating back to the nineteenth century theorist
Jeremy Bentham (Bentham, 1879). This paradigm requires
decision-makers to be able to consistently rank any set of al-
ternatives that they come across (Pareto, 1906). This well-
behaved description of preference may work well in simple
environments, but it is not clear how accurately represents
preferences in complex, naturalistic settings. Humans are
largely heterogeneous, with preferences that vary over time,
and are often inconsistent (Tsetsos, Chater, & Usher, 2012).
Large amounts of data are currently available that document
choices people make in naturalistic settings. For example,
information about purchase decisions, movie selections, and
transportation patterns is widely available. This trend calls
for new ways to determine insights from human preferences
in the presence of large heterogeneity of naturalistic choices.

The axioms that define well-behaved preferences are both
simple and quite powerful (Von Neumann & Morgenstern,
1944). The most relevant ones state that first, all alternatives
must be comparable, making the preference relation com-
plete. Second, preferences must be transitive. With these
conditions it is possible to define a rank ordering of the al-
ternatives according to the decision-maker’s preferences, and
there exists an ordinal utility function that corresponds to that
ranking. Over the years, this dominant paradigm has not gone

without challenge. Researchers in the decision sciences have
found that, in many circumstances, preferences are not always
well-behaved. Many descriptive theories have proliferated to
explain deviations of human behavior from utility maximiza-
tion. This includes ground-breaking work on bounded ratio-
nality, where decision-makers use short-cuts to deal with the
limits of human cognitive capacities (Simon, 1972). For ex-
ample, the cognitive burden of selecting the best alternative,
considering all potential costs and benefits of each alternative,
is at best psychologically implausible (Fischhoff, 2005). In-
stead, humans use simple rules or heuristics (Payne, Bettman,
& Johnson, 1993; Gigerenzer, Todd, ABC Research Group, et
al., 1999). For example, one psychologically plausible way to
deal with complex choices is to simplify the task by choosing
based on the attribute that is most important to the decision-
maker, only examining other attributes if alternatives are suf-
ficiently close on that attribute to be psychologically ”tied”.
Tversky’s lexicographic semiorder is such a process and can
lead to intransitive behavior (Tversky, 1969).

However, there is a blind spot in choice modelling research
that limits our possibilities to discover heuristic structures
(Maturana & Varela, 1987). Researchers develop precise tests
of their proposed models, with that testing limited to a priori
defined patterns. As a result, patterns of choices are clas-
sified as either fitting a known model or not. For exam-
ple, thus far structural tests of preference have been limited
to specific patterns known a-priori, such as weak stochastic
transitivity or the triangular condition (Regenwetter, Dana, &
Davis-Stober, 2010). While this approach is promising and
theory-driven, it potentially misses structures not previously
considered. Some decision processes are clearly identifiable
a-priori, others might not. We are looking at the choice pro-
cess too closely and at the same time partially blocking our
sight by using tools that are not general enough (Maturana
& Varela, 1987). What is needed is an approach that can
determine preference structure from choice data even when
those data are inconsistent with prior models, suggesting at
the same time new structures to psychological researchers or
confirming old ones, and lending strength to welfare analysis
or undermining it.

Next we describe our approach. The current research pro-
poses a novel non-parametric model to formally capture the
concept of preference structure using preference graphs, clus-
ters decision-makers based on that structure, and can repre-
sent types of preferences currently not possible in existing
frameworks (e.g. incomparability (Von Neumann & Morgen-
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stern, 1944)). Because the approach clusters decision-makers
with the same structural pattern of preferences, we provide
unified method that may account for disparate preference pat-
terns. The paper is structured as follows: we first present our
graph-based model; then we test the method in simulations
and in a new empirical implementations of a classic experi-
ment in decisions between risky prospects; finally we discuss
our results and present limitations of the method.

Discovering preference structure heterogeneity
Preference representation as graphs
Both classical utility models and newer descriptive theories
imply specific patterns of choices, or preference structures.
In this work, we exploit the idea that preference structures
can be represented as preference graphs (Bouyssou & Vincke,
2010). For example, classical utility maximization can be
represented as a completely connected chain (Varian, 1983;
Afriat, 1972). This is, of course, not the only preference
structure. For example, a lexicographic semiorder results in
cyclic preferences when decision-makers change the weights
they apply to attributes of alternatives (Tversky, 1969).

Graphs are a general way to represent binary relations
among elements of discrete sets, including preference rela-
tions (Bouyssou & Vincke, 2010). Consider a graph G =
(V,E) with vertex set V and edge set E. In a preference graph
the vertices are interpreted as alternatives and edges as binary
relations between alternatives where, for all pairs of alterna-
tives, one and only one of the following three edges exists
between them (Bouyssou & Vincke, 2010): i) if a � b, the
decision maker strictly prefers a over b, then a ! b and not
b ! a (strict preference or a P b). If instead, b � a, the de-
cision maker strictly prefers b over a (bPa), then b ! a and
not a ! b; ii) If a ⇠ b, the decision maker is indifferent be-
tween a and b, then a�b are connected by an undirected edge
(indifference or a I b). This can also be represented as a is
preferred to b and b to a or a$ b; and iii) If a is incomparable
with b, then no edge between a and b exists (incomparabil-
ity or a J b). Figure 1 describes a graph representation of
preferences.

a P b

a

b

a I b

a

b

a J b

a

b
Figure 1: Preference relations in binary choice

An equivalent representation is an adjacency matrix A =
(ai j) 2 {0,1}nxn where ai j = 1 if (i, j) 2 EA and B = (bi j) 2
{0,1}nxn where bi j = 1 if (i, j) 2 EB, indicating preference

from i to j. Reflexive loops are usually omitted, meaning
the main diagonal of the adjacency matrix has only zeros. In
this work we focus on a particular type of preference graphs,
namely tournaments, where every alternative is compared and
only strict preference is allowed giving a complete directed
graph (Bouyssou & Vincke, 2010). The number of vertices
in a tournament indicates the order. In the simplest case
we find transitive tournaments (Moon, 2015), where all re-
lations are strict preferences and there are no cycles. Follow-
ing (Bouyssou & Vincke, 2010), consider a total order giving
a tournament with an adjacency matrix that will show only
zeros below the diagonal. A weak order instead, will allow
indifference between alternatives and hence giving a tourna-
ment with a stepped shape adjacency matrix below the diago-
nal. For an irrational decision maker, cycles will be observed,
giving a tournament with an adjacency matrix that will show
elements above and below the diagonal.

Total order Weak order semi order No order

Figure 2: Tournaments with different order structure. Adja-
cency matrices are colored to ease interpretation with ones in
black and zeros in grey.

Another representation is a format used by Moon (Moon,
2015), where graphs are drawn based on their score vector,
which is the number of times each alternative is preferred
over other alternatives. For example, with four alternatives,
the maximum score is 3 (an alternative that is preferred to
all others), and the minimum is zero (an alternative preferred
to no others). A score vector of s = [3,2,1,0] is a complete
ranking of the alternatives, or a chain. It is drawn by sort-
ing the score vector from highest score at the top to lowest
score at the bottom, then adding down arrows from top to
bottom. If arrows are omitted (to avoid clutter), this means
that the upper alternative is preferred to the lower alterna-
tive. Inconsistencies are denoted by upward arrows, where an
alternative with a lower score is strictly preferred to an alter-
native with a higher score. As shown in Figure 3, there are
exactly 4 non-isomorphic structures for tournaments of four
alternatives (Davis, 1954): a chain, a cycle among the top 3
alternatives, a cycle among the bottom 3 alternatives, and a
single long cycle.

Notice that these structures have very different implica-
tions for decision-analysis. Given a choice between any sub-
set of four alternatives, a decision-maker with a chain pro-
vides a ranking consistent with the global ranking over four
alternatives. A decision-maker with a cycle at the top can
consistently rank only the worst alternative, and likewise, the
decision-maker with a cycle at the bottom can consistently
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Figure 3: Tournaments on four alternatives. The score vectors
are: chain s = [3,2,1,0], cycle at top s = [2,2,2,0], cycle at
bottom s = [3,1,1,1], long cycle s = [2,2,1,1].

rank only the best alternative. A decision-maker with the long
cycle has a consistent ranking over any subset of alternatives,
but no global ranking.

Preference graph similarity
Our primary analytical tool is a method of calculating the dis-
tance between graphs. Formally, a common distance met-
ric between two graphs G1 = (V1,E1) and G2 = (V2,E2),
is the minimum number of edges that need to be rear-
ranged to make them isomorphic, known as the Hamming
distance dH(G1,G2) = ||vec(G1) � vec(G2)||1 (Hamming,
1950). Decision-makers that have a small Hamming distance
between their preference graphs tend to choose similar alter-
natives, or have similar preference content. For a sample of
n individuals, we can store the Hamming distance between
all pairs of decision-makers in a symmetric n ⇥ n dissimi-
larity matrix D. From D, a weighted dissimilarity kernel K
can be constructed, with values between zero and one (Kevin,
2012). We use standard graph similarity tools to identify clus-
ters of graphs with similar content. This approach is formally
equivalent to Coombs’ multidimensional unfolding (Coombs
& Kao, 1960).

Preference structure cannot be obtained from these Ham-
ming distance computations. For example, two chain prefer-
ence graphs of equal size with opposing preference content
will have a Hamming distance equal to the total number of
unordered pairs of vertices

�n
x
�
. Even though they are both

chains (identical structures), the Hamming distance indicates
that they are as dissimilar as possible. Thus, we need a met-
ric that indicates that these graphs have the same structure
and hence that there is a structural distance of zero between
them. Two graphs have a structural distance of zero if they
are isomorphic (Babai & Luks, 1983), meaning there is a bi-
jection f : V1 !V2 such that the edges of all pairs of vertices
u,v 2 V1 in G1 have the same edges for f (u), f (v) 2 V2 in
G2 (and vice versa). An automorphism of a graph G is a
graph that is isomorphic to G, and the automorphism group
Aut(G) is all of the graphs that are isomorphic to G (Babai
& Luks, 1983). We can test whether two graphs are iso-
morphic by checking whether any of their automorphisms
are isomorphic. This is a well studied problem in com-
puter science, called the graph isomorphism problem (Babai
& Luks, 1983). The minimum Hamming distance between

two graphs across all combinations of their automorphisms
gives their structural distance dS (Butts & Carley, 2005):
dS(G1,G2) = min(dH(Aut(G1),Aut(G2))). If two graphs are
similar (but not isomorphic), their structural distance should
be small. Clusters of decision-makers with small distances
between each other, indicates a common preference struc-
ture in a population of decision-makers, partially masked by
noise.

Inexact graph matching
With a few alternatives the structural distance between graphs
can be quickly calculated using exhaustive search. As the
number of alternatives grows, exhaustive search becomes un-
feasible. In general, the problem of calculating structural dis-
tance is NP-hard (Livi & Rizzi, 2013), requiring approxima-
tion techniques for large graphs with more than 8 alternatives.
To make this approximation feasible, we recast the structural
distance calculation as an inexact graph matching problem
(Livi & Rizzi, 2013), where the objective is to find the per-
mutation matrix P⇤ over the space of permutations that makes
two adjacency matrices A and B as similar as possible (Livi
& Rizzi, 2013):

P⇤ = argmin
P2P

f (P) = disA!B(P) = ||A�PT BP|| (1)

where A,B are the adjacency matrices for the preference
graphs of two decision-makers, and P 2 P is in the set of per-
mutation matrices P . If the chosen norm is the Frobenius L2
norm squared the problem is know as quadratic assignment
(QAP) with non-deterministic polynomial time complexity
(Vogelstein et al., 2011). Instead, we replaced the objective
function f (P) by the identity �tr(APBT PT ) which leads to a
non-convex problem where —2 f (P) = B⌦A+BT ⌦AT is not
positive definite, relaxing at the same time the non-convex re-
striction P 2 P and replacing P by its convex hull D , where
D is the set of doubly stochastic matrices (Vogelstein et al.,
2011). We solved this problem with Frank-Wolfe algorithm
(Frank & Wolfe, 1956; Vogelstein et al., 2011).

Clustering
Once content and structural distances ds are determined for
preference graphs of each pair of decision-makers, the matrix
of pairwise structural (or hamming) distances between the
graphs of decision-makers can be analyzed using traditional
clustering techniques to classify decision-makers into groups
with similar preference content and structure. Nonetheless,
nothing ensures that clusters from content and structural dis-
similarities will overlap. Therefore, we need to account for
both structural and content dissimilarities simultaneously in
the clustering stage. To do so, we first embed each dissimi-
larity matrix in a lower dimensional space and hereafter we
bound columns of the resulting embeddings in an n⇥ d ma-
trix with information about content and structure for each
decision-maker, with d the sum of dimensions of the embed-
dings of both dissimilarity matrices or embedding fusion.
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We begin by using classical multidimensional scaling to
project each distance matrix onto a lower dimensional space
(Torgerson, 1952), but based on its superior performance we
finally used an autoencoder (Wang, Yao, & Zhao, 2016).
An autoencoder is a neural network model that maps or en-
codes input space x into a lower dimensional space h(x) at
its output layer and then reconstructs or decodes the origi-
nal input space as x̂(h) (Wang et al., 2016). We pretrained
the model with a Restricted Boltzmann Machine (Hinton &
Salakhutdinov, 2006). Finally, to achieve a robust solution,
we used k-medians algorithm to determine cluster allocation
(Singh, Yadav, & Rana, 2013). We used the gap-statistic to
determine the number of clusters k (Tibshirani, Walther, &
Hastie, 2001). To provide a more general solution, clusters
are merged when necessary.

Preference structure in simulation
We first describe the results of simulations designed to illus-
trate the method. In our simulation we evaluate our model’s
ability to separate a popular psychological model, the lexi-
cographic semiorder (Tversky, 1969), from the more tradi-
tional expected utility maximization (Von Neumann & Mor-
genstern, 1944). As an example, consider choosing between
pairs of gambles shown in Table 1 from Tversky’s classic pa-
per on intransitive preferences (Tversky, 1969), along with
three additional gambles (f-h) added to increase graph match-
ing difficulty. The choice task is presented in Figure 4.

Table 1: Gambles from Tversky’s (Tversky, 1969) experi-
ment 1 (a-e) plus three added for the simulation (f-h)

Gamble Probability Payoff Expected Value ($)
a 7/24 5.00 1.46
b 8/24 4.75 1.58
c 9/24 4.50 1.69
d 10/24 4.25 1.77
e 11/24 4.00 1.83
f 12/24 3.75 1.88
g 13/24 3.50 1.894
h 14/24 3.25 1.895

Figure 4: Choice set example alternatives b vs c
Subjects that choose based on expected value should pre-

fer a � b � c � d � e, and should have a complete tran-
sitive order. Tversky hypothesized that someone following
a lexicographic semiorder decision rule would first choose
based on differences in gambles probabilities. If the dif-
ference in probabilities is small enough, the decision maker
would switch to the next attribute and choose based on differ-
ences in payoffs. This would result in an intransitive sequence

a � b � c � d � e and e � a. To demonstrate that our ap-
proach can reliably cluster decision-makers into groups based
on the structure of their preferences, we generated graphs for
100 decision-makers, 37 with lexicographic preferences, 33
with risk neutral expected value maximizer preferences, and
30 that would choose at random. We first mapped the sim-
ulated choices in an adjacency matrix, then computed dis-
similarity matrices between adjacency matrices and finally
we identified clusters of graphs with similar preference con-
tent and structure. Figure 5 summarizes our method. As ex-
posed in Figure 5 we can separate successfully lexicographic
semiorders from those who are expected value maximizers.

Here, we assumed subjects would choose deterministically.
A deterministic decision rule will provide structures that are
quite easy to distinguish from others because, under all cir-
cumstances, the same graph structure will emerge. Nonethe-
less, noise in the decision process can make preference struc-
tures harder to distinguish. For example, even though a de-
cision rule such as expected value maximization is used, in-
transitive behavior is still observable if alternatives are harder
to compare, confounding the later decision rule with random
choice. In an extension of our simulation we observed that
above a certain noise level, clustering becomes unfeasible.

An empirical test of the model
We extended Tversky’s classic experiment examining lexico-
graphic semiorders (Tversky, 1969). Participants choose be-
tween the pairs of gambles shown in Table 1 from Tversky’s
classic paper on intransitive preferences (Tversky, 1969),
along with the three gambles (f-h) considered in the simu-
lation experiment and two additional gambles (i-j) where a
higher probability is negatively correlated with a higher ex-
pected value (in i there is 15/24 chance of winning $3, and
in j a 16/24 chance of winning $2.75). Following (Tversky,
1969), probabilities were presented as pie charts without nu-
meric information. We presented participants with all pair
combinations (45 pairs) in three repetitions with the order
randomized.

We recruited 200 participants using Amazon Mechanical
Turk (Mturk). Inclusion criteria were the following: age of at
least 18 years, IP address in the U.S. and completion of more
than 100 hits with an approval rate of 95% or higher. We
provided a payment of $1 per participant and a $0.5 bonus
if the participant answered an attention check correctly. The
attention question was a choice set with a deterministically
dominated alternative. 95% of the 200 participants was paid
the bonus. Clustering by content and structure six clusters
emerged: four groups with chains and two group with cycles.
Structural and content heterogeneity, rather than homogene-
ity, is the primary takeaway. Chain graphs, are the most pop-
ular pattern. Figure 6 shows the expected adjacency matrices
for the preference graphs in each cluster. Alternatives were
prearranged so a lower triangular adjacency matrix indicates
choices based strictly on probabilities and an upper triangular
matrix indicates choices based strictly on payoffs.

1619



Figure 5: The schema summarizes the four steps of our method for a simulated sample of 100 decision-makers.

(1) 13% (2) 22% (3) 30% (4) 9% (5) 10% (6) 16%

Figure 6: Weighted expected adjacency matrix in each cluster
for the transitivity task. We used a color scale to easy ease
interpretation with adjacency matrices colored from one in
darker tones and zeros in lighter tones. Proportion in each
cluster is presented in last row.

To further analyze choices, we used multinomial logit
models per clusters (McFadden, 1973). For all clusters a de-
cision rule based on a single attribute (either probabilities or
payoffs) is more likely than an expected value rule. Decision-
makers in clusters 1, 2 and 3 preferred the alternative with a
higher probability in 87%, 96% and 100% of the choices. It
is possible that this clusters respond to the same decision rule
with differences in discriminant ability. We must highlight
that given that probabilities are not numerically stated, rec-
ognizing the alternative with a higher probability in all prob-
lems as in cluster 3 requires a superior classification skill.
We decided to merge this clusters in one group. Decision-
makers in cluster 4 consistently chose the alternative with a
higher payoff 93% of times, indicating a single attribute deci-
sion rule based on payoffs. Clusters 5 and 6 seem to respond
to a different decision process. In cluster 6 multiple cycles
are observed. The proportion of choices in cluster 6 favoring
the option with the higher probability is significantly distinct
from 50% ruling out random choice (p-value  0.01). Al-
though details of the different choice rules remain uncovered,
we observed a clear tendency to choose based on probabilities
(Lichtenstein & Slovic, 1971; Birnbaum & Gutierrez, 2007;
Brandstätter, Gigerenzer, & Hertwig, 2006). It seems the data
is more consistent with a lexicographic order (up to noise) in
the sense of Fishburn (Fishburn, 1971) than a lexicographic

semiorder as proposed by Tversky (Tversky, 1969).

Figure 7: Logit probabilities of choosing the alternative with
a higher probability of winning (A) per cluster.

Limitations and future work
It must be noted that, although we used a majority rule to
define preference across repetitions, preference strength can
be reflected using weighted adjacency matrices for each indi-
vidual. Among other limitations, clustering always has some
arbitrariness. For example, the number of dimensions to em-
bed the dissimilarity matrices in a lower dimensional space
is defined using the elbow method. Determining the number
of dimensions in the optimization process can offer a poten-
tial improvement. Future applications should also developed
better ways of determining the number of clusters and herein
merging similar clusters. The experimental design also pro-
vides some challenges. The number of pairwise comparisons
required to complete a tournament grows exponentially with
the number of alternatives, increasing the risk of observing
mental fatigue. A new experimental paradigm needs to be de-
velop in order determine apriori the minimal number of ques-
tions required to recover preference structure. Although our
method is valid for any type of pairwise comparison, empir-
ical tests should be extended to other experimental domains.
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Also we could extend the method to experiments with more
than two alternatives expanding choice data by rank-order ex-
plosion (Louviere et al., 2008).

Acknowledgments
We are in debt with Nalyn Sriwattanakomen, Orsolya Ko-
vacs and Brian Sergi. We acknowledge funding from the Na-
tional Science Foundation, Decision Risk and Management
Science, Award number 1530479, Center for Climate and En-
ergy Decision Making (Grant number SES-1463492); CON-
ICYT and CMU EPP Department.

References
Afriat, S. (1972). Efficiency estimates of production func-

tions. International Economic Review, 13, 568–598.
Babai, L., & Luks, E. M. (1983). Canonical labeling of

graphs. In Proceedings of the fifteenth annual acm sym-
posium on theory of computing (pp. 171–183).

Bentham, J. (1879). An introduction to the principles of
morals and legislation. Clarendon Press.

Birnbaum, M. H., & Gutierrez, R. J. (2007). Testing for
intransitivity of preferences predicted by a lexicographic
semi-order. Organizational Behavior and Human Decision
Processes, 104(1), 96–112.

Bouyssou, D., & Vincke, P. (2010). Binary relations and
preference modeling. Decision-making Process: Concepts
and Methods, 49–84.

Brandstätter, E., Gigerenzer, G., & Hertwig, R. (2006). The
priority heuristic: making choices without trade-offs. Psy-
chological Review, 113(2), 409–432.

Butts, C. T., & Carley, K. M. (2005). Some simple algorithms
for structural comparison. Computational & Mathematical
Organization Theory, 11(4), 291–305.

Coombs, C. H., & Kao, R. C. (1960). On a connection be-
tween factor analysis and multidimensional unfolding. Psy-
chometrika, 25(3), 219–231.

Davis, R. L. (1954). Structures of dominance relations. Bul-
letin of Mathematical Biology, 16(2), 131–140.

Fischhoff, B. (2005). Cognitive processes in stated preference
methods. Handbook of environmental economics, 2, 937–
968.

Fishburn, P. C. (1971). A study of lexicographic expected
utility. Management Science, 17(11), 672–678.

Frank, M., & Wolfe, P. (1956). An algorithm for quadratic
programming. Naval Research Logistics (NRL), 3(1-2),
95–110.

Gigerenzer, G., Todd, P. M., ABC Research Group, t., et al.
(1999). Simple heuristics that make us smart. Oxford Uni-
versity Press.

Hamming, R. W. (1950). Error detecting and error correcting
codes. Bell Labs Technical Journal, 29(2), 147–160.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing
the dimensionality of data with neural networks. science,
313(5786), 504–507.

Kevin, M. (2012). Machine learning: a probabilistic per-
spective. The MIT press.

Lichtenstein, S., & Slovic, P. (1971). Reversals of preference
between bids and choices in gambling decisions. Journal
of experimental psychology, 89(1), 46.

Livi, L., & Rizzi, A. (2013). The graph matching problem.
Pattern Analysis and Applications, 16(3), 253–283.

Louviere, J., Street, D., Burgess, L., Wasi, N., Islam, T., &
Marley, A. A. (2008). Modeling the choices of individ-
ual decision-makers by combining efficient choice experi-
ment designs with extra preference information. Journal of
choice modelling, 1(1), 128–163.

Maturana, H. R., & Varela, F. J. (1987). The tree of knowl-
edge: The biological roots of human understanding. New
Science Library/Shambhala Publications.

McFadden, D. (1973). Conditional logit analysis of quali-
tative choice behavior. In P. Zarembka (Ed.), Frontiers in
econometrics (pp. 105–142). Academic Press: New York.

Moon, J. W. (2015). Topics on tournaments in graph theory.
Courier Dover Publications.

Pareto, V. (1906). Manuale di economia politica (Vol. 13).
Societa Editrice.

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The
adaptive decision maker. Cambridge University Press.

Regenwetter, M., Dana, J., & Davis-Stober, C. P. (2010).
Testing transitivity of preferences on two-alternative forced
choice data. Frontiers in psychology, 1(148), 1–15.

Simon, H. A. (1956). Rational choice and the structure of
the environment [Journal Article]. Psychological Review,
63(2), 129-138. doi: 10.1037/h0042769

Simon, H. A. (1972). Theories of bounded rationality. Deci-
sion and Organization, 1(1), 161–176.

Singh, A., Yadav, A., & Rana, A. (2013). K-means with
three different distance metrics. International Journal of
Computer Applications, 67(10).

Tibshirani, R., Walther, G., & Hastie, T. (2001). Estimat-
ing the number of clusters in a data set via the gap statistic.
Journal of the Royal Statistical Society: Series B (Statisti-
cal Methodology), 63(2), 411–423.

Torgerson, W. S. (1952). Multidimensional scaling: I. theory
and method. Psychometrika, 17(4), 401–419.

Tsetsos, K., Chater, N., & Usher, M. (2012). Salience driven
value integration explains decision biases and preference
reversal [Journal Article]. PNAS, 109(24), 9659-9664. doi:
10.1073/pnas.1119569109

Tversky, A. (1969). Intransitivity of preferences. Psycholog-
ical Review, 76(1), 31-48.

Varian, H. R. (1983). Non-parametric tests of consumer be-
haviour. The review of economic studies, 50(1), 99–110.

Vogelstein, J. T., Conroy, J. M., Lyzinski, V., Podrazik, L. J.,
Kratzer, S. G., Harley, E. T., . . . Priebe, C. E. (2011). Fast
approximate quadratic programming for large (brain) graph
matching. arXiv preprint arXiv:1112.5507.

Von Neumann, J., & Morgenstern, O. (1944). Theory of
games and economic behavior.

Wang, Y., Yao, H., & Zhao, S. (2016). Auto-encoder based
dimensionality reduction. Neurocomputing, 184, 232–242.

1621




