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RESEARCH ARTICLE Open Access

Analysis of oncogenic activities of protein
kinase D1 in head and neck squamous cell
carcinoma
Liyong Zhang1†, Zhihong Li1,4†, Yehai Liu5, Shuping Xu1, Manuj Tandon1, Brittany Appelboom1,
Courtney R. LaValle1, Simion I. Chiosea3, Lin Wang2, Malabika Sen2, Vivian W. Y. Lui7, Jennifer R. Grandis2,6

and Q. Jane Wang1*

Abstract

Background: Head and neck squamous cell carcinoma (HNSCC) is the sixth leading cause of cancer death in the
US. The protein kinase D (PKD) family has emerged as a promising target for cancer therapy with PKD1 being most
intensively studied; however, its role in HNSCC has not been investigated.

Methods: The expression of PKD was evaluated in human HNSCC by quantitative RT-PCR, Western blot and
immunohistochemistry. Cell proliferation, wound healing, and matrigel invasion assays were performed upon siRNA-
mediated knockdown of PKD1 in HNSCC cells, and subcutaneous xenograft mouse model was established by
implantation of the stable doxycycline (Dox)-inducible PKD1 expression cell lines for analysis of tumorigenic activity
in vivo.

Results: PKD1 was frequently downregulated in HNSCC cell lines at both transcript and protein levels. In human
HNSCC tissues, PKD1 was significantly down-regulated in localized tumors and metastases, and in patient-paired
tumor tissues as compared to their normal counterparts, which was in part due to epigenetic modification of the
PRKD1 gene. The function of PKD1 in HNSCC was analyzed using stable doxycycline-inducible cell lines that express
native or constitutive-active PKD1. Upon induction, the rate of proliferation, survival, migration and invasion of
HNSCC cells did not differ significantly between the control and PKD1 overexpressing cells in the basal state, and
depletion of endogenous PKD1 did not impact the proliferation of HNSCC cells. However, the median growth rate
of the subcutaneous HNSCC tumor xenografts over time was elevated with PKD1 induction, and the final tumor
weight was significantly increased in Dox-induced vs. the non-induced tumors. Moreover, induced expression of
PKD1 promoted bombesin-induced cell proliferation of HNSCC and resulted in sustained ERK1/2 activation in
response to gastrin-releasing peptide or bombesin stimulation, suggesting that PKD1 potentiates GRP/bombesin-
induced mitogenic response through the activation of ERK1/2 in HSNCC cells.

Conclusions: Our study has identified PKD1 as a frequently downregulated gene in HNSCC, and functionally, under
certain cellular context, may play a role in GRP/bombesin-induced oncogenesis in HNSCC.
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Background
The protein kinase D (PKD) family of serine/threonine
kinases belongs to the Ca2+/calmodulin-dependent pro-
tein kinase (CaMK) superfamily. The three isoforms
(PKD1, 2, 3) of PKD are widely distributed in a variety
of tissues and show high sequence homology [1–3]. Sev-
eral conserved structure domains are present in PKD, in-
cluding a diacylglycerol-binding C1 domain and a PH
domain that exerts an autoinhibitory function to the kin-
ase activity. PKD can be activated by PKC-mediated
trans-phosphorylation of two conserved serine residues
(Serine 738/742 in human PKD1) in the activation loop
of PKD [4]. Sustained PKD activation can be maintained
via PKC-independent autophosphorylation events [5].
Through the DAG/PKC/PKD axis, PKD plays an import-
ant role in propagating signals from G protein-coupled
receptors (GPCRs) and growth factor receptors at the
cell surface.
PKD has been implicated in multiple cancers. Altered

PKD expression and activity have been demonstrated in
prostate, breast, pancreas, skin, and gastric cancers [1, 6].
PKD1 is the most intensely studied PKD isoform to date.
In certain cancers including pancreatic and skin cancer,
higher PKD1 expression and activity were detected in tu-
mors as compared to normal tissues and increased PKD1
expression was associated with hyper-proliferative pheno-
type and increased tumor aggressiveness [6, 7]. Interest-
ingly, in other cancer types including breast, gastric and
prostate cancer, PKD1 was found to be downregulated in
primary tumors or metastases [8–11]. Reduced PKD1 ex-
pression was associated with increased tumor invasiveness
and its overexpression in prostate cancer cells was shown
to inhibit tumor cell proliferation [10, 12]. Thus, the func-
tional relevance of PKD1 to tumor initiation and progres-
sion remains to be determined.
Head and neck squamous cell carcinoma (HNSCC) is

one of the most common type of human cancers. The
annual incidence is more than 500,000 cases worldwide.
There are more than 40,000 new cases of HNSCC re-
ported in the United States, and nearly 12,000 will die
from the disease [13]. The origin of HNSCC involves
multiple organs, including the oral cavity, pharynx, and
larynx. HNSCC at early-stage (Stage I and II) can be cu-
ratively treated with surgery or radiotherapy. However,
advanced HNSCC (stage III and IV) remains an aggres-
sive disease that is associated with high morbidity and
mortality. The 3-year survival rate for patients with ad-
vanced disease under standard therapy is only 30–50%,
and a large number of these patients (nearly 40% to
60%) subsequently develop locoregional recurrences or
distant metastases [13–15]. Despite the advances in
treatment strategies, the survival rates for patients with
advanced HNSCC have not improved significantly,
underscoring an urgent need to better understand the

molecular mechanisms underlying the pathogenesis of
HNSCC. The role of PKD in HNSCC has not been fully
investigated. The current study was undertaken to evalu-
ate the expression of PKD1 in HNSCC tumor specimens
and cell lines to gain insights into its clinical signifi-
cance. The study also sought to investigate the func-
tional implication of PKD1 in HNSCC by systematically
determining its cancer-associated biological properties in
HNSCC cells in vitro and in vivo and to assess the po-
tential value of targeting PKD1 for cancer therapy.

Methods
Materials
Doxycylcline hyclate, 5-Aza-2′-deoxycytidine (5-aza-dC),
gastrin-releasing peptide, and DMSO were obtained
from Sigma-Aldrich (St. Louis, MO). The histone deace-
tylase HDAC inhibitor suberoylanilide hydroxamic acid
(SAHA) was purchased from Cayman Chemical (Ann
Arbor, MI). Bombesin was obtained from Fisher Scien-
tific (Pittsburgh, PA).

Immunohistochemistry (IHC)
The normal and malignant human head and neck tissue
sections were obtained from US Biomax (Rockville, MD,
www.biomax.us) and Pantomics (Richmond, CA,
www.pantomics.com). The patient-paired tumor speci-
mens were obtained from Dr. Yehai Liu at the Depart-
ment of Otolaryngology, Head and Neck Surgery, First
Affiliated Hospital of Anhui Medical University, Hefei,
Anhui, China. A written informed consent from the
donor or the next of kin was obtained for the use of
these samples in research. The tissues were collected fol-
lowing a named medically prescribed procedure during
standard treatment without authors’ involvement. The
fully randomized and de-identified samples were pro-
vided to the authors. These samples are exempt from
the requirement of IRB approval (Exempt Category 4)
since they are de-identified and publicly available. For
IHC staining, the tissue sections were dewaxed with xy-
lene and rehydrated through gradient ethanol into water.
For antigen retrieval, sections were heated in citrate buf-
fer (pH 6.0) for 10 min at 95 °C. The sections were then
digested with 0.05% trypsin for 10 min at 37 °C. En-
dogenous peroxidase activity was quenched with 0.3%
H2O2 in methanol for 30 min at room temperature.
After washing with PBS, slides were pre-blocked with
10% normal goat non-immune serum at 37 °C for
30 min. Sections were incubated with primary antibody
targeting PKD1 (1:150) at 4 °C overnight, washed with
PBS, and incubated with biotinylated secondary antibody
at a 1:200 dilution for 30 min. The sections were then
developed by incubating first in Vectastain ABC reagent
(Vector Laboratories, Inc., Burlington, CA) and then
with 3,3′-diaminobenzidine (Sigma-Aldrich). Slides were
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counterstained with hematoxylin, dehydrated, and
mounted on coverslips. Negative controls were obtained
by omitting the primary antibody. The staining was
scored independently by two experienced researchers ac-
cording to the number and intensity of immunopositive
cells in a blinded fashion. The percentage of positive
tumor cells was determined semi-quantitatively by asses-
sing the entire tumor section and each sample was
scored based on the following criteria: 0 (0–4%), 1 (5–
24%), 2 (25–49%), 3 (50–74%), or 4 (75–100%). The in-
tensity of immunostaining was categorized as 0 (nega-
tive), 1+ (weak), 2+ (moderate) or 3+ (strong). A final
immunoreactive score between 0 and 12 was calculated
by multiplying the two scores. These procedures were
adapted from previously published studies [16–18].

Cell lines and culture conditions
HNSCC cell lines UMSCC-1, UMSCC-10A, UMSCC22B,
Cal33, UPCI 4B, UPCI 15B, 1483 and 686LN were ob-
tained from Dr. Jennifer R. grandis (University of Califor-
nia, San Francisco, CA) as described previously [19].
Het-1A (CRL-2692), a human esophageal squamous epi-
thelial cell line, was obtained from ATCC (Manassas, VA)
and cultured in Airway Epithelial Cell Basal Growth
Medium with supplement mix (Promo Cell, Heidelberg,
Germany). UMSCC-1, Cal33, UMSCC-10A, UMSCC22B,
UPCI 4B, UPCI 15B and 1483 cells were maintained in
Dulbecco’s Modified Eagle Medium (DMEM) (Fisher
Scientific, Pittsburgh, PA) supplemented with 10% fetal
bovine serum (FBS) (Invitrogen, Carlsbad, CA), penicillin
(100 U/ml)/streptomycin (100 μg/ml) at 37 °C in a hu-
midified atmosphere of 5% CO2. OSC19 cells were cul-
tured in Eagle’s Minimum Essential Medium (EMEM)
(Fisher) plus 10% FBS and Non-Essential Amino Acid
(Fisher). 686LN cells were maintained in Ham’s F-12
medium (Fisher) containing 10% FBS, 100 units/ml peni-
cillin, and 100 μg/ml streptomycin. All cell lines were au-
thenticated by the Research Animal Diagnostic Laboratory
by species-specific PCR testing within 6 months of use.

Development of stable doxycycline (Dox)-inducible PKD1
expression cell lines
The doxycycline-inducible PKD1 expression cell lines
were developed using the Tet-On 3G System from Clon-
tech (Mountain View, CA). Briefly, wild-type or
constitutive-active (CA) PKD1 gene was sub-cloned into
a pTRE3G-based expression vector to generate the
pTRE3G-PKD1 or pTRE3G-PKD1-CA plasmid. Mean-
while, UMSCC-1 and 686LN cells were transfected with
the pCMV-Tet3G plasmid and selected with G418 to
generate stable Tet-On 3G cell lines that constitutively
expressed the Tet-On 3G transactivator protein. The
stable Tet-On 3G cell lines were then transfected with
the pTRE3G-PKD1 or pTRE3G-PKD1-CA plasmid,

along with a linear selection marker for puromycin. The
cells were then selected with puromycin to generate
double-stable cell lines that expressed PKD1 or
PKD1-CA in response to Dox treatment. The stable
clones were isolated and the induction of PKD1 was
confirmed by Western blotting analysis. Optimal Dox in-
duction condition was determined in a time- and
concentration-response experiment, and 500 and 50 ng/
ml for 48 h were selected as the optimal induction con-
ditions for UMSCC-1 and 686LN cells, respectively.

Western blotting
Western blotting analysis was conducted as previously de-
scribed [20]. Primary antibodies used for Western blotting
were from the following sources: PKD1, p-S916-PKD1,
p-S744/748-PKD1 antibodies were obtained from Cell Sig-
naling Technology (Danvers, MA); p-Ser742-PKD1 anti-
body was from Invitrogen (Carlsbad, CA); PKD2 antibody
was from Abcam (Cambridge, MA); glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) antibody was ob-
tained from Enzo (Farmingdale, NY); tubulin antibody
was from Santa Cruz Biotechnology (Santa Cruz, CA).

Quantitative real-time RT-PCR
Total RNA was prepared using RNeasy Mini Kit accord-
ing to manufacturer’s instructions (Qiagen, Valencia, CA).
Reverse-transcription and real-time quantitative PCR were
performed as previously described [21]. Sequences of the
primer pairs used were as follows: PKD1, CGCACATCA
TCTGCTGAACT (forward) and CTTTCGGTGCACAA
CGTTTA (reverse); PKD2, GGGCAGTTTGGAGTG
GTCTA (forward) and ACCAGGATCTGGGTGATGAG
(reverse); PKD3, CATGTCCACCAGGAACCAAG (for-
ward) and GACGGGTGTAAGAGTGAACAGC (reverse);
GAPDH, GCAAATTCCATGGCACCGT (forward) and
TCGCCCCACTTGATTTTGG (reverse). The PCR proto-
col included 1 cycle at 95 °C for 30 s, then 40 cycles
of a 95 °C for 5 s step followed by 5 s at either 62 °
C or 65 °C, depending on the optimal annealing
temperature for each primer set. Melt curves were
conducted to assure specificity of the primer sets as
well as absence of primer-dimers.

siRNA-mediated knockdown of PKD1
Transient knockdown of PKD1 was achieved using mul-
tiple siRNAs targeting different regions of PRKD1 gene.
Two validated Stealth PKD1 siRNAs (si-PKD1–1 and
si-PKD1–2) and a BLOCK-iT PKD1 siRNA (si-PKD1–3:
GUCGAGAGAAGAGGUCAAATT) were obtained from
Invitrogen. The sequence for the PKD2-targeting siRNA
(si-D2–2) is UCAUCACCCAGAUCCUGGUGGCUUU.
The HNSCC cell lines were transiently transfected using
DharmaFECT Reagent 3 (Dharmacon, Lafayette, CO)
according to the manufacturer’s instructions. Cells were
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harvested after two days and the levels of PKD1 or
PKD2 knockdown were assessed by Western blotting
analysis.

Cell proliferation assay, wound healing assay, and
Matrigel invasion assay
Cell proliferation was determined for UMSCC-1 cells
transfected with PKD1 siRNAs and stable PKD1-inducible
UMSCC-1 and 686LN clones by counting cell numbers
for seven consecutive days as previously reported [22].
Growth media with or without Dox was refreshed every
2 days. Cell migration was measured by wound healing
assay as previously described [23]. The average % wound
healing was determined based on 4 measurements of the
wound area. Cell invasion was determined by Matrigel in-
vasion assay as described before [24]. For stable inducible
clones, cells were incubated with Dox for 48 h prior to
seeding in BD Matrigel invasion or control inserts (BD
Biosciences, San Jose, CA). Dox was added to the top and
bottom chambers of control and invasion inserts.

Subcutaneous xenograft mouse model
Six-week old female athymic (NCr) nu/nu mice (NCI--
Frederick Cancer Research Facility, Frederick, MD) were
randomized into two groups (10 mice/group) for injec-
tion of control cells expressing empty vector (control
group) or cells expressing stable inducible PKD1 (PKD1
group). The cells (4 × 106 cells) mixed 1:1 with Matrigel
(BD Biosciences) were injected subcutaneously into both
flanks of mice. Once tumors were palpable, mice in each
group were divided to receive either drinking water or
Dox-containing driving water (1 mg/mL). Water was
changed every 2 days. Tumor size and mouse weight
were monitored 2–3 times per week. Tumor size was
measured as described [21]. The experiment was termi-
nated after 25 days and tumors were dissected for subse-
quent analysis. All animal studies were conducted in
accordance with IACUC guidelines at the University of
Pittsburgh.

Statistical analysis
All statistical analyses were performed using GraphPad
Prism software. The significance between data points
from cell proliferation, wound healing, and invasion ex-
periments was assessed by Student’s t-test. The
Mann-Whitney-Wilcoxon test was used for the tumor
xenograft study. A p-value of < 0.05 was considered sta-
tistically significant.

Results
Expression of PKD1 was downregulated in human HNSCC
cell lines and tumor specimens
The expression of PKD isoforms was evaluated in a
panel of nine head and neck cancer cells, including

Cal33, UMSCC-1, UMSCC-10A, UMSCC22B, UPCI 4B,
UPCI 15B, OSC19, 686LN, and 1483. Het-1A, a normal
human esophageal squamous epithelial cell line, was in-
cluded as a control. As shown in Fig. 1a, PKD1 protein
levels were significantly lower in all of the HNSCC cell
lines examined as compared to the control Het-1A cells.
In contrast, levels of PKD2 protein were similar or slightly
higher in HNSCC cell lines than in Het-1A with the ex-
ception of three lines showing reduced PKD2 expression
(UMSCC-1, UMSCC22B and 1483). PKD3 was minimally
expressed in the control and in almost all HNSCC cell
lines examined. A similar trend was found in the tran-
script levels of PKD1 and 2 (Fig. 1b). PKD1 transcript
levels were significantly lower in all 9 HNSCC cell lines as
compared to that in Het-1A. Additionally, levels of PKD2
were higher in UMSCC-10A, UPCI 4B, UPCI 15B, and
OSC19, and lower in Cal33, UMSCC-1, UMSCC22B,
686LN, and 1483 cells, which correlates to the protein
levels of PKD2 found in these cell lines (Fig. 1a). Taken to-
gether, among members of the PKD family, PKD1 was the
only isoform whose protein and transcript levels were per-
sistently downregulated in HNSCC cell lines.
PKD1 expression was further analyzed by immunohis-

tochemistry in a total of 124 sporadic head and neck
tumor tissues and 74 normal tissue specimens, among
which 56 were normal tissues adjacent to the tumors
(sporadic). As shown in Fig. 1c, PKD1 expression in pri-
mary HNSCC tissues was significantly lower as com-
pared to the normal and adjacent normal tissues (p =
0.0001). Among the tumor specimens, six (5%) showed
strong PKD1 expression, ten (8%) moderate, 49 (40%)
weak, and 58 (47%) were negative. In contrast, in the
normal tissues, 26 (35%) showed strong PKD1 expres-
sion, seven (9%) moderate, 27 (36%) weak, and 14 (19%)
were negative. There was no significant correlation be-
tween PKD1 expression and pathologic grade or depth
of primary tumor invasion (T status), neither was there
significant association with age and gender (Table 1). In
normal squamous mucosa, strong membranous pattern
of PKD1 staining as well as diffused or granular cyto-
plasmic staining of PKD1 were observed, which is in
contrast to the weak and diffused cytoplasmic staining of
PKD1 in tumor tissues. The stroma surrounding the tu-
mors showed little PKD1 staining. Interestingly, in a small
cohort of metastases (15 lymph node metastases and one
liver metastasis), a significant reduction of PKD1 expres-
sion was observed in distal metastases as compared to
the localized primary tumors (p = 0.002), suggesting a re-
verse correlation with tumor metastasis (Fig. 1d).
The pattern of PKD1 expression was further con-

firmed in a small cohort of patient-paired head and neck
normal and tumor tissue samples. As shown in Fig. 2a,
quantitative RT-PCR was performed on RNAs obtained
from 10 patient-paired normal and tumor tissues of
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HNSCC. Seven out of the ten (70%) paired samples
showed significant downregulation of PKD1 transcript in
tumors compared with the normal, and the remaining 3
out of 10 (30%) showed equal levels of PKD1. In con-
trast, transcript levels of PKD2 and PKD3 showed the
opposite trend, i.e. increased PKD2 or PKD3 expression
in tumor vs. normal tissue. Specifically, for PKD2, the
numbers of patient paired samples that showed in-
creased, reduced or unchanged PKD2 expression in
tumor vs. normal tissues were 7, 2 and 1, and for PKD3,
the numbers were 6, 2 and 2, respectively. Thus, PKD2
and PKD3 were differentially implicated in HNSCC as

compared to PKD1. PKD1 protein expression was fur-
ther assessed by IHC in a set of 6 patient-paired head
and neck normal and tumor tissue samples. PKD1
expressed abundantly in the normal squamous mucosa
(enlarged image, left), but little was detected in the
adjacent tumor tissues (enlarge image, right) (Fig. 2b).
Quantitative analysis indicated a nearly ten-fold reduc-
tion in PKD1 expression in the adjacent tumors (p <
0.001) (Fig. 2c). Additionally, analysis of the mRNA ex-
pression data from the TCGA cohort via cBioPortal
demonstrated low mRNA expression in most tumor tis-
sues (Additional file 1: Figure S1A), and PKD1 mRNA

A

C D

B

Fig. 1 Levels of PKD proteins and transcripts in HNSCC cell lines and analysis of PKD1 expression in normal and malignant human head and neck
tissues. a PKD expression in normal (Het1A) and malignant head and neck cancer cell lines. Cells were cultured under standard conditions. Cell
lysates were subjected to Western blotting for PKD1–3 and GAPDH. The experiment was repeated at least three times and a representative image
is shown. b PKD mRNA levels in HNSCC cells. PKD transcript levels were determined by quantitative real time RT-PCR analysis, GAPDH was
measured as control. Each experiment was repeated three times and representative data are shown. c Expression of PKD1 in sporadic head and
neck tissue specimens, including 124 cases of head and neck tumor samples and 18 normal or 56 adjacent normal samples. Left, representative
images of IHC staining of PKD1 in normal and tumor tissue. Negative control, no primary antibody added. Magnification, 200x. Right, total score
of PKD1 expression. A final PKD1 expression score was calculated by multiplying the scores for intensity and frequency of PKD1 staining in a
given tissue specimen. d Summary of PKD1 expression in 107 primary tumors and 16 metastases (15 Lymph nodes and 1 liver). Statistics was
performed using SPSS. *, p < 0.05
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was downregulated in 87% HNSCC tumors (459 out of
530 cases with over 2-fold mRNA downregulation),
which is consistent with our findings. Taken together,
these results indicated that PKD1 expression was fre-
quently reduced in tumors of head and neck cancer
patients.

PKD1 downregulation was independent of DNA
methylation or histone acetylation in most head and neck
cancer cells
PKD1 gene expression has been shown to be regulated
by epigenetic modifications [8, 11] and DNA methyl-
transferase inhibitors can induced PKD1 expression [8].
To determine if DNA methylation or histone acetylation
accounts for the reduced PKD1 gene expression in
HNSCC, head and neck cancer cells were treated with
DNA methyltransferase inhibitor, 5-aza-2′-deoxycytidine
(5-aza-dC), and/or histone deacetylase HDAC inhibitor
suberoylanilide hydroxamic acid (SAHA) and trichosta-
tin A (TSA), and levels of PKD1 gene and protein ex-
pression was examined. Interestingly, in contrast to
previous reports, treatment with SAHA or 5-aza-dC did
not significantly alter PKD1 expression at both mRNA
and protein levels in four out of five HNSCC cell lines
examined with the exception of UMSCC-1 (Fig. 3 and
Additional file 1: Figure S2). As shown in Fig. 3a-b,
UPCI 15B cells treated with either SAHA or 5-aza-dC
did not significantly impact the expression of PKD1 at
both mRNA and protein levels. In contrast, UMSCC-1
cells incubated with SAHA (5 μM) for 48 h significantly
restored PKD1 expression at both mRNA and protein
levels. Although treatment with 5-aza-dC (10 μM) alone
had little effect, the combined treatment with increasing
concentrations of 5-aza-dC (1, 5, 10 μM) enhanced the

effect of SAHA, indicating a potential additive action of
the two inhibitors. Data obtained with TSA treatment
were similar to those with SAHA in UPCI15B cells
(Additional file 1: Figure S2D). Thus, epigenetic modifi-
cation did not play a major role in the control of PKD1
gene expression in most of the HNSCC cell lines exam-
ined, with the exception of UMSCC-1 cells in which his-
tone acetylation appeared to be the major cause of
reduced PKD1 gene expression. An analysis of 530
HNSCC tumors from the TCGA via cBioPortal demon-
strated low levels of DNA methylation on PRKD1 gene
(Additional file 1: Figure S1B). Further analysis indicated
13% cases (67 out of 530 cases) of PKD1 had loss of het-
erozygosity (LOH), while only three cases (< 1%) of
PKD1 showed homozygous deletion. Thus, a combin-
ation of genetic and epigenetic alterations contributed to
the downregulation of PKD1 expression.

PKD1 did not significantly alter the proliferation of
HNSCC cells
The frequent PKD1 downregualtion in HNSCC tumors
and cell lines suggests a potential role of this protein in
the pathogenesis of head and neck cancer. To examine
this possibility, the functional relevance of PKD1 to
tumor-associated biology of HNSCC cells was analyzed
systematically in vitro and in vivo. PKD1 has been
shown to regulate tumor cell proliferation, survival, mi-
gration, and invasion in multiple cancers [1, 20, 25].
Here, the role of PKD1 in HNSCC cell proliferation was
first examined by altering PKD1 expression using RNAi
or ectopic gene expression approaches. UMSCC-1 cells
had been shown to express low but detectable level of
PKD1 (Fig. 1a). Using this cell line, endogenous PKD1
was silenced with three siRNAs that target different

Table 1 Correlations between PKD1 expression and clinicopathological characteristics of human head and neck cancer

Number Score of PKD1 expression P

Gender

Female 18 4.611 ± 0.852 0.116

Male 105 3.514 ± 0.248

Age

≤ 35 12 3.083 ± 0.988 0.579 (Group I vs. Group 2)

35–55 79 3.557 ± 0.325 0.629 (Group I vs. Group 3)

≥ 55 36 3.527 ± 0.353 0.958 (Group 2 vs. Group 3)

Depth of invasion

T1 + T2 45 4.644 ± 0.287 0.063

T3 + T4 41 3.512 ± 0.269

Clinical stages

Grade I 24 3.521 ± 0.462 0.253 (Grade I vs. Grade II)

Grade II 19 4.447 ± 0.476 0.726 (Grade I vs. Grade III)

Grade III 43 3.756 ± 0.455 0.341 (Grade II vs. Grade III)
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Fig. 2 Expression of PKD1 in patient-paired head and neck tissue specimens. a mRNAs of patient-paired normal (N) and cancerous (C) head and
neck tissue specimens were analyzed for PKD1, 2 and 3 expression by real time RT-PCR. GAPDH was determined as control. b IHC staining of
PKD1 in patient-paired head and neck tissue specimens (6 pairs of cancer/normal tissues). A representative image of PKD1 staining is shown with
a section of tumor and its adjacent normal tissues enlarged. Magnification, 200x. c Summary of PKD1 expression in patient-paired head and neck
tissue specimens. Statistics was performed using SPSS. *, p < 0.05
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regions of the PKD1 gene (si-D1–1, si-D1–2, si-D1–3).
A non-targeting siRNA (si-NT) was used as the control.
The levels of PKD1 knockdown was confirmed by West-
ern blotting analysis (Fig. 4a). Our data indicate that the
rate of proliferation of UMSCC-1 cells transfected with
si-NT or three different PKD1 siRNAs were not signifi-
cantly different (Fig. 4b). Thus, knockdown of PKD1 did
not significantly affect the proliferation of UMSCC-1 cells.
To determine if enhanced PKD1 expression affect

HNSCC cell proliferation, PKD1 was expressed in
UMSCC-1 cells using a doxycycline-inducible stable gene
expression system. Stable PKD1 clones expressing both
Tet-On 3G transactivator protein and PKD1 gene, as well
as control clones expressing Tet-On 3G and an empty
vector, were established. A total of 7 out of 48 isolated
clones were identified as positive PKD1 clones. Addition-
ally, stable clones of a constitutive-active PKD1 harboring
a S738/742E mutation in the activation loop (PKD1-CA)
were also established. As shown in Fig. 4c, Dox treatment
for 48 h concentration-dependently induced PKD1 ex-
pression in a stable PKD1 expressor (PKD1-c1). Two posi-
tive PKD1 clones (PKD1-c1 and PKD1-c45) and one
positive PKD1-CA clone (PKD1-CA-c37) were selected
for proliferation assay along with a control clone (Con-c9).
There were no significant differences in the proliferation
of Con-c9, PKD1-c1, PKD1-c45, and PKD1-CA-c37
clones in the presence or absence of Dox treatment in
UMSCC-1 cells (p > 0.05) (Fig. 4d). Western blot analysis

confirmed that PKD1 was induced upon Dox treatment
(Fig. 4e). Additionally, increased PKD1 expression corre-
lated well to enhanced basal phosphorylation of PKD1 at
S738/742 and S916, indicating activation of PKD1. The
basal PKD1 activity was also examined by immunoprecipi-
tating (IP) PKD1 and directly measuring kinase activity.
Our data showed that there was a > 30 fold increase in
PKD1 basal activity in PKD1-c1 and PKD1-c45 clones as
compared to that in the control PKD1-c9 after 5 days of
Dox induction. To ensure that this was not a cell
line-specific effect, stable PKD1-inducible clones derived
from 686LN were also established and their proliferative
properties were evaluated in the presence or absence of
Dox treatment. As shown in Fig. 4h, the rate of prolifera-
tion was identical for the control (Con-c1) and the PKD1
expressing clones (PKD1-c14, PKD1-c16) with or without
Dox treatment. The induction of PKD1 in PKD1-c14,
PKD1-c16 clones was confirmed by Western blotting ana-
lysis (Fig. 4g). Taken together, these data indicated that the
expression and activity of PKD1 were not essential for the
proliferation of HNSCC cells.

PKD1 was not required for the survival of HNSCC cells
PKD1 has been shown to promote cell survival upon acti-
vation in many studies [1, 26, 27]. In this study, its role in
the survival of HNSCC cells was examined upon the treat-
ment of two chemotherapeutic agents, cisplatin and the
EGFR inhibitor erlotinib. UMSCC-1 control (Con-c9),
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PKD1 (PKD1-c1), and/or PKD1-CA (PKD1-CA-c37)
expressors induced with or without Dox were treated with
increasing concentrations of cisplatin, followed by the meas-
urement of cell viability by MTT assay. As shown in Fig. 4i,
cell survival was not affected by the induced wild-type or
constitutive-active PKD1. Similarly, there was no significant
difference in the sensitivity of UMSCC-1 control (Con-c9)
and PKD1 (PKD1-c1) clones upon treatment of increasing
concentrations of erlotinib with or without PKD1 induction
by Dox (Fig. 4j). These results demonstrated that overex-
pression of PKD1 did not affect the sensitivity of UMSCC-1
cells to apoptotic- or cell death-inducing agents, implying
that PKD1 is not critical for the survival of HNSCC cells.

Induced expression of PKD1 potentiated the growth of
HNSCC tumor xenografts in nude mice
To evaluate the impact of PKD1 expression on tumor
growth in vivo, the growth of tumor xenografts derived
from Dox-inducible stable PKD1 overexpressor (PKD1-c1)
and the control cells (Con-c9) were examined. PKD1-c1
and Con-c9 were injected subcutaneously in both flanks
of female nude mice. Once tumors became palpable, the
mice were randomized into four groups with two groups
(PKD1-c1/+Dox and Con-c9/+Dox) receiving Dox treat-
ment and two groups (PKD1-c1/−Dox and Con-c9/−Dox)
receiving placebo. As shown in Fig. 5a, although the differ-
ence in the growth profiles of the tumor xenografts were
not statistically significant (p > 0.05), the PKD1-c1 clone
displayed a trend of faster growth rate, as reflected in the
median tumor volume over time, as compared to the con-
trol Con-c9. Accordingly, a significant difference in final
tumor weight was detected between Dox-treated and un-
treated PKD1-c1 clones (PKD1-c1/−Dox and PKD1-c1/
+Dox) with a higher tumor weight for PKD1-c1/+Dox
(**p < 0.01), while there were no statistically significant dif-
ference among other groups (p > 0.05) (Fig. 5c-d). Notably,

no significant signs of toxicity were associated with the
Dox treatment or the induction of PKD1, as reflected by
the absence of weight loss during entire experiment period
(25 days) (Fig. 5b). Tumor tissues were subsequently ana-
lyzed by Western blotting for PKD1 expression and down-
stream signaling activity. As shown in Fig. 5e, PKD1 was
induced by Dox treatment in PKD1-c1 mice, while there
was no induction of PKD1 in the absence of Dox in
PKD1-c1 mice and in the Con-c9 control mice treated with
Dox. Dox-treated PKD1-c1 mice also showed elevated
p-EKR1/2 and reduced IκBα, indicative of the activation of
the MEK/ERK1/2 and the NF-κB signaling pathways. In
contrast, the PI3K/Akt signaling pathway was not affected
since p-Akt level was not altered. Accordingly, IHC stain-
ing showed increased cell proliferation (Ki67) in tumor ex-
plants of the Dox-treated PKD1-c1 group as compared
with the controls (Fig. 5g). Thus, overexpression of PKD1
promoted the growth of HNSCC tumor xenografts.

Induced PKD1 expression did not significantly affect the
migration and invasion of HNSCC cells
The role of PKD1in cell migration and invasion has been
shown in multiple cancers. Although earlier studies have
demonstrated a positive role of PKD1 in regulating cell
movement [28–30], later studies provide evidence sup-
porting an opposite effect of PKD1 on cell migration
and invasion [8, 10, 31]. In particular, studies conducted
in prostate, breast and gastric cancer cells have showed
that altered PKD1 expression or activity suppressed
tumor cell motility [8, 10, 11]. In this study, the effects
of PKD1 on HNSCC cell migration and invasion were
examined using wound healing assay and Matrigel inva-
sion assay. PKD1 expression was first induced by treat-
ment with Dox for 48 h in control (Con-c9), PKD1
(PKD1-c1, PKD1-c45), and PKD1-CA (PKD1-CA-c37)
expressors. Wound closure was measured 12 h after

(See figure on previous page.)
Fig. 4 PKD1 was not required for the proliferation and survival of HNSCC cells. a and b Knockdown of endogenous PKD1 did not affect
proliferation of UMSCC-1 cells. Cells were transiently transfected with non-targeting siRNA (si-nt) and three PKD1 siRNAs (si-D1–1, si-D1–2 and
si-D1–3). Two days later, transfected cells were replated in triplicates in 24-well plates. Cell growth was determined by counting cell numbers for
7 consecutive days. The experiment was repeated thrice and representative data from one experiment are shown. ns, not significant (p≥ 0.05) by
Student’s t test. Knockdown of PKD1 was confirmed by Western blotting. Cell lysates were subjected to immunoblotting for endogenous PKD1–3
and GAPDH (a). c PKD1 induction by Dox in UMSCC-1 stable PKD1 expression clone (D1-c1). Cells were treated with increasing concentrations of
Dox for 48 h before harvesting for Western blotting analysis. d Induced PKD1 expression did not alter the proliferation of UMSCC-1 cells. Control
(Con-c9), PKD1 (PKD1-c1 and PKD1-c45), and constitutive-active PKD1 (PKD1-CA-c37) expression clones were pre-treated with 500 ng/ml Dox for
2 days. Cells were replated for proliferation assay, as described above. e The induction of PKD1 expression by Dox was confirmed by Western
blotting. f Induction of PKD1 correlated to enhanced basal phosphorylation. Stable inducible clones were treated with Dox at 500 ng/ml for
5 days. The cells were lysed and subjected to Western blotting using p-S738/742-PKD1 and p-S916-PKD1 antibodies. g and h Induced PKD1
expression did not affect the proliferation of 686LN cells. Control (Con-c1) and PKD1 expression clones (PKD1-c14 and PKD1-c16) were pre-treated
with 50 ng/ml Dox for 2 days. Cells were replated for analysis of proliferation by counting cell numbers. The induction of PKD1 expression by Dox
was confirmed by Western blotting (g). Representative data from one of three independent experiments are shown. ns, not significant (p≥ 0.05)
between Dox-treated and -untreated clones. i and j Induced PKD1 expression did not affect the sensitivity of UMSCC-1 cells to cisplatin and
erlotinib. UMSCC-1 cells were seeded in triplicate into 96-well plates and treated with varying concentrations of cisplatin (i) and erlotinib (j).
Media containing fresh cisplatin and erlotinib were replenished every 48 h. The number of viable cells was measured after 72 h using MTT assay.
One of two independent experiments is shown. ***P < 0.001
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wounding and % wound healing was calculated. As
shown in Fig. 6a, induction of PKD1 or PKD1-CA ex-
pression did not significantly affect the rate and extent
of wound closure. Similarly, induced expression of PKD1
or PKD1-CA did not significantly alter the invasive
properties of these cells as compared to the non-induced
controls (Fig. 6b). Thus, PKD1 was not essential for the
migration or invasion of HNSCC cells.

PKD 1 and PKD2 promoted bombesin-induced
proliferation of HNSCC cells
Bombesin and gastrin-releasing peptide (GRP), the mam-
malian counterpart of the amphibian tetradecapeptide
bombesin [32], exert diverse biological functions in nor-
mal and neoplastic tissues through a G protein-coupled
receptor known as GRP receptor (GRPR). It has been
shown that GRPR mRNA and protein levels are elevated
in both HNSCC tumors and adjacent normal mucosa
compared with their normal counterparts, and increased
GRPR associates with decreased survival in HNSCC pa-
tients [33]. Further analysis has identified a GRP-GRPR
autocrine loop which contributes to HNSCC growth in
vitro and in vivo [33]. The activation of GRPR by GRP
and bombesin stimulates the activation of the
mitogen-activated protein kinase (MAPK) pathway
through transactivating the epidermal growth factor re-
ceptor (EGFR) which potentiates HNSCC cell prolifera-
tion and invasion [34–36]. Since bombesin-like peptides
have been shown to activate PKD and potentiate DNA
synthesis in swiss 3T3 cells [37–39], we sought to deter-
mine if PKD plays a role in GRP/bombesin-induced mito-
genic response in HNSCC. As shown in Fig. 7, in a
Dox-inducible PKD1 overexpressing 686LN cell line,
bombesin induced potent time-dependent biphasic ERK1/

2 activation in the absence of Dox, which peaked at
10 min and 1 h after GRP or bombesin stimulation. In
contrast, upon the induction of PKD1, the activation of
ERK1/2 was significantly elevated and sustained through-
out the treatment period (0–4 h), indicating that overex-
pression of PKD1 promoted GRP- and bombesin- induced
ERK1/2 activity. Functionally, increased PKD1 expression
significantly potentiated bombesin-stimulated cell prolifer-
ation (Fig. 7b, ‘+Dox’) as compared to the control without
PKD1 induction (Fig. 7c, inset ‘no Dox’). PKD2 was the
predominant isoform expressed in HNSCC cells. It is pos-
sible that endogenous PKD2 contributes to GRP- or bom-
besin- induced ERK1/2 activation and cell proliferation in
HNSCC cells. In 686LN cells, GRP induced PKD2 activa-
tion, as measured by the increased PKD2 autophosphoryl-
ation at S876 (Fig. 8a). Depletion of endogenous PKD2 by
siRNA (si-D2–2) significantly blocked GRP-induced
p-ERK1/2 signal (most prominently at 1 h), while did not
affect GRP-induced Akt phosphorylation. In accordance,
despite a limited mitogenic effect was detected in 686LN
cells, knockdown of PKD2 completely blocked this effect
of bombesin (Fig. 8b), indicating the PKD2 contributes to
the bombesin-stimulated mitogenic effect in HNSCC cells.
Taken together, these data imply that PKD plays a role in
GRP-GRPR induced tumor promotion in HNSCC.

Discussion
The PKD family has been implicated in a variety of bio-
logical processes associated with cancer initiation and
progression. PKD1, the most extensively studied PKD
isoform, has been shown to be dysregulated in a number
of cancer types and plays important roles in tumor cell
biology [1, 6, 24, 25]. Interestingly, both tumor suppres-
sive and tumor promoting functions of PKD1 have been
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constitutive-active PKD1 (PKD1-CA-c37) expression clones were pre-treated with 500 ng/ml Dox for two days. Monolayers were wounded and
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control (Con-c9), PKD1 (PKD1-c1), and constitutive-active PKD1 (PKD1-CA-c37) stable expression cell lines (1.0 × 105/ml) were seeded into the
upper control or invasion chamber. After 22 h, non-invading cells were removed and cells that invaded through the matrigel were fixed, stained,
and photographed under a microscope. Magnification, 200x. Percent invasion is expressed as the number of cells that invaded through the
matrigel matrix relative to the number of cells that migrated through the control insert. Cell number is determined by counting total cell number
in random 10 fields. The experiment was repeated thrice and a representative one is shown. ** P < 0.01
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reported, which couples to its up- or down-regulation in
these tumors, implying a tumor type-specific function of
PKD1 in cancer. Specifically, it has been shown that PKD1
is downregulated in invasive human breast tumors as com-
pared to normal breast tissues. Overexpression of
constitutively-active PKD1 inhibits the invasion of breast
tumor cells, while knockdown of PKD1 confers invasiveness
to non-invasive breast cancer cells, an effect that is poten-
tially mediated through negative regulation of MMP expres-
sion [8, 40]. In gastric cancer, PKD1 expression is decreased

in gastric tumors and cell lines due to PKD1 promoter
hypermethylation, and knockdown of PKD1 increased the
invasiveness of gastric tumor cell lines [11]. In prostate can-
cer, PKD1 was downregulated in androgen-independent
prostate cancer and increased PKD1 expression blocks cell
proliferation and motility [9, 10, 12]. In human osteosar-
coma, PKD1 expression in osteosarcoma is significantly
lower than that in benign schwannoma samples, and the
expression pattern correlated with metastatic potential [41].
Overexpression of PKD1 inhibits osteosarcoma cell
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proliferation, invasion, and migration and reduced matrix
metalloproteinase 2 (MMP2), while knockdown of PKD1
has the opposite effects. Overexpression of PKD1 has also
been shown to suppress the growth of osteosarcoma xeno-
grafts in vivo [41]. On the other hand, several studies in pan-
creatic cancer and basal cell carcinoma have demonstrated
an opposite role of PKD1 in cancer. PKD1 has been shown
to be upregulated both in expression and activity in pancre-
atic ductal adenocarcinoma as compared to normal pancre-
atic ducts [27, 42]. The activation of PKD1 promotes
pancreatic cancer cell proliferation and increased PKD1
expression contributes to therapy resistance [6, 27, 43–
45]. Meanwhile, overexpression of PKD1 significantly pro-
moted DNA synthesis, anchorage-dependent/−independ-
ent growth, tumor cell invasion, and angiogenesis in
pancreatic cancer cells [44, 45]. In skin cancer, increased
PKD1 expression has been demonstrated in basal cell car-
cinoma lesions as compared to normal epidermis [7].
PKD1 has been associated with pro-proliferative and
anti-differentiative phenotypes in epidermis and keratino-
cytes, implying that PKD promotes hyperproliferative dis-
orders of the skin [7, 46, 47].
HNSCC originates from the mucosal lining of the head

and neck regions and accounts for 90% of head and neck
cancers. There have not been any studies investigating
the role of PKD in head and neck cancer. In this study,
we conducted systematically analysis on the expression
and function of PKD1 in HNSCC. Our data revealed
that the expression of PKD1 was significantly lower in
localized HNSCC tumors and metastases, a finding that
was further confirmed in patient-paired tumor tissues
where PKD1 was downregulated at both mRNA and
protein levels in tumors as compared to the normal mu-
cosa. Interestingly, reduced PKD1 expression was
re-expressed in only one of five HNSCC cell lines fol-
lowing treatment with histone deacetylase and/or DNA
methyltransferase inhibitors. This finding was consistent
with the results obtained from cBioPortal analysis of 530
HNSCC tumors from TCGA where low level of DNA
methylation on PRKD1 gene was indicated. Additionally,
based on the TCGA data, genetic alteration (LOH or
homozygous deletion) only accounts for a fraction of
PKD1 mRNA downregulation (~ 13%). Thus, the mecha-
nisms responsible for the downregulation of PKD1
mRNA and protein expression in majority of HNSCC
tumors remain to be determined.
Functional analyses of PKD1 using RNAi and stable indu-

cible cell lines revealed that altered PKD1 expression did
not significantly affect the proliferation, survival, migration,
or invasion of HNSCC cells in the basal state. To ensure
that the lack of function was not due to insufficient kinase
activity associated with the wild-type protein, a
constitutive-active PKD1 mutant was generated and
introduced into HNSCC cells and similar results were

obtained. Depletion of endogenous PKD1 also did not
affect proliferation of UMSCC-1 cells. However, in spite of
these findings, some discrepancies were noted when prolif-
eration assays were conducted at different initial seeding
density, for example, when the cells were seeded at lower
density, such as in Fig. 7c (3000 cells/well), Dox-induced
PKD1 appeared to reduce the proliferation of 686LN cells
at basal level [comparing Dox-induced and un-induced
cells in the absence of bombesin]. However, when the cells
were seeded at higher density, such as in Fig. 4h (20,000
cells/well), no difference was observed among cells with or
without PKD1 overexpression. Thus, there might be transi-
ent and context-dependent growth inhibition by PKD1 at
certain cellular context, but this effect is not sustained.
Overall, our data consistently showed that either knock-
down or overexpression of PKD1 did not significantly alter
the proliferation of HNSCC cells in vitro. However, inter-
estingly, induction of PKD1 in vivo by Dox provided a
slight growth advantage to the HNSCC tumor xenografts
and resulted in a significant increase in final tumor weight
in Dox-induced vs the non-induced tumors. This correlated
to increased ERK1/2 and NF-κB signaling activity, and en-
hanced tumor cell proliferation in vivo. Later, we demon-
strated that in the presence of a mitogen (bombesin or
GRP) that activates PKD, overexpression of PKD1 potenti-
ated the mitogenic effects of bombesin in HNSCC, and de-
pletion of endogenous PKD2, the predominant PKD
isoform expressed in HNSCC cells, abolished such effect.
At molecular level, overexpression of PKD1 promoted
bombein- or GRP-induced ERK1/2 activation, while knock-
down of PKD2 reduced EKR1/2 activation. It has been
shown that the mitogenic effects of GRP is mediated by the
activation of the MEK/EKR1/2 MAPK pathway through
transactivating EGFR in HNSCC cells [34]. Our findings
imply that PKD1 and PKD2 may contribute to the mito-
genic effect of GRP and bombesin by facilitating the activa-
tion of ERK1/2. This is a novel interesting finding that
unlike other reports showing a significant functional role
that associates with altered PKD1 expression in different
tumors, our data indicate that PKD1 has limited functional
impact in the proliferation, survival, migration, and invasion
of HNSCC cells at the basal state, despite frequent down-
regulation of PRKD1 transcript and protein expression in
HNSCC tumors and cell lines. Importantly, under in vivo
condition or in the presence of an activating mitogen such
as GRP or bombesin, PKD1 and PKD2 act to promote
tumor cell proliferation. Our results and others suggest that
the biological functions of PKD may be cancer type- and
cell context- dependent. Perhaps the function of PKD is
contingent on another yet unknown protein/pathway in
certain cancer types. Meanwhile, high expression of another
PKD isoform, such as PKD2, may substitute the need for
other PKD isoforms. In a recent report in gastric cancer
where low PKD1 and high PKD2 expression were detected
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in poorly differentiated adenocarcinoma, overexpression of
PKD1 had no/minimal effects on tumor cell survival and
proliferation, which is consistent with our findings [26]. In
HNSCC, PKD2 was the predominant PKD isoform
expressed in HNSCC cells. PKD2 mRNA was upregulated
in seven out of ten tumors vs normal in patient-paired
HNSCC tissue specimens. Thus, it is possible that PKD2
plays a predominant role in the growth, survival, and
motility of HNSCC cells, and these functions have com-
pensated the loss of PKD1 in tumors, our data from
PKD2-knockdown cells support this claim.

Conclusions
Our study has demonstrated significant downregulation of
PKD1 in HNSCC tumors and metastases. However, despite
its reduced expression,, PKD1 remains a pro-proliferative
signaling protein in HNSCC cells upon activation by GRP
or bombesin, implying an important role of PKD1 in GRP/
bombesin-induced oncogenesis in HNSCC. Our study also
highlights the complexity of PKD-associated biology and
the need for caution when analyzing biological functions of
frequently downregulated genes in certain cancers.
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