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Cell fate decisions play a pivotal role in development, but technologies for dissecting them
are limited. We developed a multifunction new method, Topographer, to construct a
“quantitative” Waddington’s landscape of single-cell transcriptomic data. This method is
able to identify complex cell-state transition trajectories and to estimate complex cell-type
dynamics characterized by fate and transition probabilities. It also infers both marker gene
networks and their dynamic changes as well as dynamic characteristics of transcriptional
bursting along the cell-state transition trajectories. Applying this method to single-cell
RNA-seq data on the differentiation of primary human myoblasts, we not only identified
three known cell types, but also estimated both their fate probabilities and transition
probabilities among them. We found that the percent of genes expressed in a bursty
manner is significantly higher at (or near) the branch point (~97%) than before or after
branch (below 80%), and that both gene-gene and cell-cell correlation degrees are
apparently lower near the branch point than away from the branching. Topographer
allows revealing of cell fate mechanisms in a coherent way at three scales: cell lineage
(macroscopic), gene network (mesoscopic), and gene expression (microscopic).

Keywords: cell fate decision, single-cell data, developmental landscape, cell-type dynamics, cellular process
INTRODUCTION

Multi-cell organisms start as a single cell that matures through complex dynamic processes
involving multiple cell fate decision points, leading to functionally different cell types, many of
which have yet to be defined (Trapnell, 2015). While cellular processes such as proliferation,
differentiation, and reprogramming are governed by complex gene regulatory programs, each cell
makes its own fate decisions by integrating a wide array of signals and executing a complex
choreography of gene regulatory changes (Moris et al., 2016; Tanay and Regev, 2017). Since the
structure of a multi-cell tissue is tightly linked with its function (Perié et al., 2015), elucidating the
integrative (from gene to cell) mechanism of cell fate decisions is crucial yet challenging.

Single-cell measurement technologies (Svensson et al., 2017; Ziegenhain et al., 2017) which can
simultaneously measure the expressions of many genes in a large number of single cells, provide an
unprecedented opportunity to elucidate developmental pathways and dissect cell fate decisions.
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Several algorithms [see a recent review (Saelens et al., 2019)] have
been developed to organize single cells in pseudo-temporal order
based on transcriptomic divergence and cell-state classification.
It has been a major challenge to illuminate the dynamic
mechanisms of cellular programs governing fate transitions
from single-cell data that lacks temporal information (Trapnell,
2015). The current methods have mainly focused on identifying
trajectories between the most phenotypically distant cell states,
and they are usually less robust in reconstructing trajectories
from early states towards intermediate or transitory cell states
[e.g., Wishbone (Setty et al., 2016), Diffusion Pseudotime
(Haghverdi et al., 2016), Cycler (Gut et al., 2015), and
CellRouter (Lummertz da Rocha et al., 2018)]. Some of the
methods have focused on gaining insights into the regulatory
mechanisms driving cell differentiation [e.g., Monocle (Trapnell
et al., 2014), ERA (Kafri et al., 2013), Waterfall (Shin et al., 2015),
and PIDC (Chan et al., 2017)], and they seem not to consider
how discontinuous, stochastic fate transition events are driven by
the dynamic nature of the developmental landscape (which can
change in response to activity of gene regulatory networks and
extracellular signals) and reflected in the observed increased
transcriptional heterogeneity at transition points. In all the
existing methods, cell-type dynamics are mainly characterized
qualitatively, providing little quantitative information on in-
depth characterization of complex cellular ecosystems
involving cell fate decisions. For a system of multiple cell fate
decision points, it has been difficult for the current methods to
estimate cell types and their transitions. How fate transitions in
the single cell data are related to cell-state gene regulatory
networks and the characteristics of transcriptional bursting
remains largely unknown.

To overcome the above challenges and to address the
important issues on cell fate decisions, we developed
Topographer, an integrated pipeline. It first constructs a data-
driven “quantitative” (i.e., each cell is endowed with
spatiotemporal information) developmental landscape, which
provides a global view for differentiation processes together with
the cartoon landscapes (Waddington, 1957) and the model-
driven landscapes (Wang et al., 2011; Li and Wang, 2013; Li
and Wang, 2013; Li and Wang, 2014; Li and Wang, 2015), and
then reveals stochastic dynamics of cell types by estimating both
their fate probabilities and transition probabilities among them,
and infers dynamic characteristics of transcriptional bursting
kinetics along the identified developmental trajectory. In
addition, it can also both identify various branched (e.g., bi-
and tri-) cell-state transition trajectories with multiple
branching points from single-cell data and infer networks of
marker genes and their pseudo-temporal changes. Together,
Topographer enables construction of complex cell lineages,
resolving intermediate developmental stages, and revealing
multilayer mechanisms of cell fate decisions in a coherent way
at three different levels: cell lineage, gene network, and
transcriptional burst (referring to Supplementary Figure 1).

We demonstrated effectiveness of Topographer by analyzing
single-cell RNA-seq data on the differentiation of primary
human myoblasts (Trapnell et al., 2014) while showing
Frontiers in Genetics | www.frontiersin.org 2
appl icat ions to other examples in Supplementary
Information. We first identified three known cell types:
proliferating cells, differentiating myoblasts, and interstitial
mesenchymal cells, and then constructed a quantitative
developmental landscape where each cell is endowed with
spatiotemporal information. Furthermore, by estimating the
fate probabilities of the identified cell types and transition
probabilities among them, we found that the probability of
transition from the proliferating cell type to the interstitial
mesenchymal cell type was approximately twice that of
transition from the former to the differentiating myoblast type,
and that the fate probability of the differentiating myoblast type
was approximately equal to that of the interstitial mesenchymal
cell type. We also found that the relative number of the genes
expressed in a bursty manner was apparently higher at (or near)
the branch point (~97%) than before or after branch (below
80%). In addition, the mean burst size (MBS)/mean burst
frequency (MBF) monotonically decreased/increased before
branch but monotonically increased/decreased after branch,
with the identified trajectories.
RESULTS

The Outline of Topographer
In order to infer the stochastic dynamics of cell fate decisions
from single-cell transcriptomic data, Topographer makes the
following assumption about the data: the information on the
entire development process is adequate, or a snapshot of primary
tissue represents a complete developmental process. The data
need pre-processing (Supplementary Information for detail) so
that Topographer achieve a good performance. The overall
Topographer, a multifaceted single-cell analysis platform,
comprises five functional modules: (Trapnell, 2015) the
backbone module (Figure 1B); (Tanay and Regev, 2017) the
landscape module (Figure 1C); (Moris et al., 2016) the dynamics
module (Figure 1D); (Perié et al., 2015) the network module
(Figure 1E); and (Svensson et al., 2017) the burst module
(Figure 1F). The backbone module is independent of the
remaining 4 modules that depends on the former since they
make use of information on cell-state transition trajectories
identified in the first module. All the five modules are logically
related but each module achieves an independent function.

Two important notes on this method are (Trapnell, 2015)
Topographer is unsupervised and needs no prior knowledge of
specific genes that distinguish cell fates, and is thus suitable for
studying a wide array of dynamic processes involving fate
transitions. (Tanay and Regev, 2017) Except for the backbone
module, the other four functional modules only use the
pseudotime information derived in that module (Materials and
Methods), so they can also use the result on pseudo-temporal
ordering of single cells obtained by other existing algorithms
(Saelens et al., 2019) to achieve their respective purposes.
However, the backbone module is established based on a
different approach (see the following content for details), and
has its own advantages, e.g., it can identify not only cell-state
December 2019 | Volume 10 | Article 1280
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transition trajectories with multiple branching points, but also
intermediate or transitory cell states.

Below we introduce each of the five functional modules
separately (Materials and Methods give more details and
Supplementary Information provides a complete description).

Identifying the Backbone of Cell
Trajectories From Single-Cell Data
The backbone module is a fast and local pseudo-potential-based
algorithm. Here the pseudo-potential is defined as the negative of
the logarithm of a local density function (Eq. (1), Materials and
Methods), which aims to identify the “backbone” (i.e.,
“planimetric” contour) of cell-state transition trajectories cross
development and find valley floors in a developmental landscape
from single-cell data.

Starting from an initial cell (Figure 2A) selected either based
on the global minimal pseudo-potential or the prior knowledge,
Topographer calculates an adaptive step (Supplementary Eq.
(5)) and searches for pseudo-potential wells (i.e., “pits” where
pseudo-potentials are relatively lower) on a super-ring (i.e., a
high-dimensional circular tube, referring to Figure 2A, which
shows a flatten super-ring) centered at this initial cell and with
the radius equal to the step length (also Figure 2A). In this
search method, which clusters cells on super-rings, cluster
centers are characterized by a lower pseudo-potential than
their neighbors and by a relatively larger distance from points
with lower pseudo-potentials (e.g., the only two pseudo-
potential wells with “green ball” in Figure 2D are desired),
Frontiers in Genetics | www.frontiersin.org 3
providing the basis of a procedure to find pseudo-potential
wells on a super-ring. In this procedure, the number of pseudo-
potential wells arises naturally, outliers are automatically
spotted, and pseudo-potential wells are recognized regardless
of their shape and the dimensionality of the space in which they
are embedded. We stress that although there is an analogy
between our method and a density-based approach developed
originally by Rodriguez and colleagues (Rodriguez and Laio,
2014), the difference is that the former is carried out on a super-
ring rather than in the full cell state space. Clearly, if the
number of the found pseudo-potential wells (but not
including the one found on the “reverse” search direction) is
more than one, this implies the occurrence of branch. The
segments linking the center and the newly found pseudo-
potential well/or wells on the super-ring can be viewed as
part/or parts of the entire developmental trajectory. Similar
processes are repeated recursively on sequential super-rings
along search directions until no new pseudo-potential wells are
found (Figure 2B). By linking all the centers and all the pseudo-
potential wells found on super-rings, Topographer thus, builds a
tree-like developmental backbone (Figure 2C). Note that the
identified backbone is actually a projection of the pseudo-
potential landscape. By projecting every cell onto this
backbone (see subsection Cell Projection and Pseudotime
Assignment, Materials and Methods) and by selecting a root
node in the tree (e.g., based on the prior knowledge),
Topographer thus orders all the single cells in the dataset, and
equips each cell with a pseudotime if this root node is set as an
FIGURE 1 | Overview of Topographer. Topographer comprises five functional modules with each (B, C, D, E, or F) achieving an independent function. (A) Single-
cell data are represented by a matrix. (B) The backbone module identifies the main cell trajectories from the data. (C) The landscape module constructs a
quantitative Waddington’s landscape where each cell is endowed with spatiotemporal information (Materials and Methods), and the thick colored lines represent the
backbone of cell trajectories identified in the backbone module. This panel is not schematic, but is plotted using an artificial set of data generated by a toy model
(Supplementary Eq. (24)). (D) The dynamics module reveals stochastic dynamics of cell types by estimating the fate probabilities of cell types and the transition
probabilities (indicated by symbols) among them (Materials and Methods), where numbers 1–5 represent cell types, the size of circle represents that of fate
probability, and the thickness of line with arrow represents the size of transition probability. (E) The network module infers marker gene networks and their changes
along the identified cell trajectories (or along the pseudotime), where the orange ball represents a marker gene, and the thickness of connection line represents the
strength of correlation. (F) The burst module infers dynamic characteristics of transcriptional bursting kinetics (characterized by both burst size and burst frequency)
along the pseudotime, where arrows represent the pseudotime direction.
December 2019 | Volume 10 | Article 1280
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initial moment (without loss of generality, the full pseudotime
may be set as the interval between 0 and 1).

Figures 2E, F showed respectively a doubly bi-branched
trajectory identified from one simulated dataset and a tri-
branched trajectory identified from another artificial set of data.
Figure3Abelowdemonstrateda two-dimensional projectionof the
de novo cell trajectories identified from single-cell RNA-seq data on
the differentiation of primary human myoblasts and Figure 3B
demonstrated the evolutions offive marker genes (MYOG, MYF5,
MYH2, CDK1, and MEF2C) with branches along the along the
pseudotime. Supplementary Figure 12 and Figure 14
demonstrated results of other two examples, which further
showed the power of Topographer in pseudo-temporally ordering
single cells in single-cell data.

Because of its ability to find pseudo-potential wells on super-
rings, Topographer can identify de novo developmental
trajectories with non-, bi-, and multi-branches (referring to
Figures 1E, F) (note: a low resolution of experimentally
sampling data may lead to tri-branches).

Constructing a Quantitative
Developmental Landscape of
Single-Cell Data
The backbone module used pseudo-potentials to construct the
contour of cell-state transition trajectories, which extracted the
information on both branch and cellular ordering from single-
cell data. Note that this kind of potential would not correctly
reflect transitions between cells since the probability fluxes would
exist between them due to cell division, cell death and/or other
factors, and have been quantified from gene network models (Li
and Wang, 2014). For example, precursor cells should in
principle have higher pseudo-potentials (Eq. (8), Materials and
Methods) in a developmental landscape in contrast to their
Frontiers in Genetics | www.frontiersin.org 4
generations, but if the precursor cells have higher densities,
they have lower pseudo-potentials. Apparently, both are
inconsistent. In addition, pseudo-potential lacks the temporal
information on differentiation or development.

Because of both the above shortcoming of pseudo-potential and
the intuition of theWaddington’s developmental landscape (in fact,
it has been extensively viewed as a powerful metaphor for how
differentiated cell types emerge from a single, totipotent cell 1), the
landscape module (an algorithm) is designed to construct a
“stereometric” developmental landscape (by “stereometric” we
mean that each cell is loaded with spatiotemporal information) in
contrast to the “planimetric” contour identified by the backbone
module. This constructed landscape can provide a more intuitive
understanding for the whole developmental process. The principle
of the landscape module is simply stated below.

Since single-cell data are noisy due to both cellular heterogeneity
and gene expression noise, transitions among the cells scattered
randomly in the cell state space can be considered as a random
walker (this consideration is inspired by Rosvall and Bergstrom’s
work 23). Topographer first constructs a weighted directed graph
based on the pseudotime information obtained in the backbone
module, and then defines a conditional probability (Eq. (Svensson
et al., 2017),Materials andMethods) that the randomwalkermoves
from one cell to another with relative weight strengths. Then,
Topographer estimates the visit probability for each cell by solving
amaster equation (Eq. (6),Materials andMethods), anddetermines
the potential of every cell in the dataset, where the potential is
defined as the negative of the logarithm of the visit probability,
seeing Eq. (8) with Eq. (7) in Materials and Methods. All these
potentials are then used to construct a Waddington’s
developmental landscape. For this, a dimension reduction
(van der Maaten and Hinton, 2008) is used for visualization, the
nearest neighbor interpolation is used to fit a landscape function of
FIGURE 2 | Topographer identifies the backbone of branched trajectories from a dataset. (A, B, C) A workflow chart (indicated by arrows): Topographer first selects
an initial cell as the center of a super-ring in the cell state space and searches for pseudo-potential wells on this ring (A). Then, Topographer repeats recursively on
every newly found pseudo-potential well (B), where symbol “X” represents a pseudo-potential well found on the reverse search direction, which needs to be
excluded in the search process, until no pseudo-potential wells are found, thus building a tree-like backbone of cell trajectories (C). Finally, Topographer projects
every cell onto the backbone, thus ordering all the cells in the dataset. (D) shows a super-ring example, where one undesired pseudo-potential well is indicated.
(E) Bi-branching trajectories identified from an artificial set of data. (F) Tri-branching trajectories identified from another artificial set of data.
December 2019 | Volume 10 | Article 1280
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two variables in a 2-dimension space, and a Gaussian kernel is
applied to smooth interpolation (see subsection Scatter Plot of
Developmental Landscape, Materials and Methods or subsection
Scatter Plot of Developmental Landscape, Supplementary
Information). In this constructed landscape, each cell is equipped
with both potential and pseudotime: two important attributes of a
cell. Therefore, the identified backbone of cell-state transition
trajectories, which considers pseudo-potentials rather than
potentials, can be viewed as an aerial photograph of the
constructed Waddington’s developmental landscape (comparing
Figure 3A with Figure 3C).

To demonstrate effectiveness of the landscape module, we
analyzed two examples: the one for the same set of artificial data
used in Figure 2E, with the result demonstrated in Figure 1C, and
the other for a set of single-cell data on thedifferentiationofprimary
human myoblasts, with the results demonstrated in Figure 3C.
Consequently, we constructed a Waddington’s developmental
landscape shown in Figure 3C from a realistic set of data. Note
Frontiers in Genetics | www.frontiersin.org 5
that it is different from a cartoon landscape, such as Figure 5 in
references (Olsson et al., 2016). Supplementary Figure 13
demonstrated another Waddington’s developmental landscape
constructed using single-cell data on the development of somatic
stem cells.

It is worth noting that: (1) In contrast to the backbone module
that is mainly used to identify a main “road” but ignores
“bumpiness” of the road, the landscape module considers both
the road (actually a valley floor of the constructed Waddington’s
landscape) and its bumpiness (reflected by the height of potentials).
(2) Bothmodules can identify cell-state transition trajectories from
a dataset, but the former uses pseudo-potentials that rely on neither
pseudotime nor cell type whereas the latter uses potentials that
depend on both pseudotime and cell type (Eq. (8) with Eq. (4),
Materials and Methods). (3) Pseudo-potential cannot correctly
reflect the motion of a “ball” (i.e., progenitor cell progression) in
the constructedWaddington’s landscape inwhich theball has lower
potential at the beginning than at the end, since a lower cell density
FIGURE 3 | Results obtained by analyzing single-cell RNA-seq data on the differentiation of primary human myoblasts. (A) Topographer constructs a pseudo-
potential landscape, where PCA1 and PCA2 represent components, and every empty circle represents a cell. (B) Pseudo-temporal kinetics of five marker genes
(indicated by different colors) underlying cell fate decisions, where dashed lines represent the expression levels after branch. (C) Topographer constructs a
Waddington’s landscape, where a thick, green line with branch corresponds to the “backbone” of cell-state transition trajectories identified by the backbone module,
and every small, grey circle represents one cell. The normalized potential is shown with the depth of color representing the size of potential. (D) Topographer reveals
stochastic dynamics of cell types along the identified trajectories by estimating both the fate probabilities of cell types (distinguished by colors) and transition
probabilities among them. Three known cell types: proliferating cells, differentiating myoblast, and interstitial mesenchymal cells, are indicated by dashed ellipses and
circles. The large, dashed ellipse shows that the proliferating cell type (top panel) can further be divided into two subtypes (below panel), where the fate probabilities
of cell subtypes and the transition probabilities between them are also indicated.
December 2019 | Volume 10 | Article 1280
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means a higher pseudo-potential.Supplementary Figure 5 shows a
difference between potential and pseudo-potential.

Estimating Fate and Transition
Probabilities From Single-Cell Data
Gene regulatory programs underlying cell fate decisions drive
one cell type toward another. Quantifying such a transition using
single-cell data is challenging due to both cellular heterogeneity
and the noise in gene expression in the data.

In order to estimate cell-type dynamics characterized by fate
and transition probabilities from single-cell RNA-seq data, it is
first needed to determine types of the cells in the dataset.
Topographer determines cell type according to the following
rules: (1) each branch of the identified developmental trajectory
is viewed as a cell type with a different branch representing a
different cell type; (2) At each branch, the found potential well is
taken as a cell subtype with a different potential well representing
a different cell subtype. Thus, the number of cell types is equal to
the number of branches whereas the total number of cell
subtypes is equal to that of potential wells. We will not
distinguish cell type and cell subtype unless confusion arises.
The cell types determined using this method depend on the
shapes of rugged potential wells (prior knowledge can provide
additional information in some cases). Therefore, the
classification of cell types in this approach is relative rather
than “absolute”. For example, in Figure 3D, the proliferating cell
type indicated by a dashed ellipse can be further divided into two
subtypes. In some situations, a potential well in the constructed
Waddington’s developmental landscape might not be apparent,
but still represents a small cell subtype or an intermediate cell
state, which may have important biological implications.

In the dynamics module, Topographer considers that
transitions among the cells scattered randomly in the cell state
space is a random walker who randomly moves from a cell state
to another, and then estimates two kinds of probabilities: the fate
probability for each cell type and the transition probabilities
between every two cell types (Materials and Methods). In these
estimations, Topographer makes use of the cell-state transition
trajectories identified in the backbone module.

Specifically, Topographer first defines a weight of the directed
edge from one cell to another based on the pseudotime (Eq. (4),
Materials and Methods), and then uses all the possible weights to
estimate the visit probability that the random walker visits a cell
in the state space, and further the conditional probability defined
as a relative link weight (Eq. (5), Materials and Methods). With
these two kinds of probabilities, Topographer further estimates
the probability that the random walker visits each cell type, and
the transition probabilities between every two cell types (Eq. (9),
Materials and Methods). These estimations indicate that
transitions between cell types are in general not deterministic,
but stochastic (referring to Figure 3D). In addition, Topographer
estimates the fate probability of each cell type (Eq. (12),Materials
and Methods).

In order to demonstrate stochastic cell-type dynamics estimated
by the dynamics module, we again analyzed a simulated data with
results shown in Supplementary Figure 6, and a realistic set of
Frontiers in Genetics | www.frontiersin.org 6
single-cell RNA-seq data on the differentiation of primary human
myoblasts with results demonstrated in Figure 3D (as well as
another realistic set of single-cell RNA-seq data on the
development of somatic stem cells, with results demonstrated in
Supplementary Figure 13). From Figure 3D, we observed that the
fateprobability (~0.53) for theproliferatingcell type is about thehalf
of that for the differentiating or interstitial mesenchymal cell type
(this is not strange since the proliferating cells are root ones), but the
fate probabilities for the latter two (~0.99 and ~0.98, respectively)
are approximately equal. In addition, the proliferating cells
differentiate into the differentiating cells at the ~0.16 probability,
but the inverse differentiation probability is very small (~0.001).On
the other hand, the proliferating cells differentiate into the
interstitial mesenchymal cells at the ~0.31 probability but the
inverse differentiation probability is also very small (~0.01),
implying that the proliferating cells tend to differentiate into the
interstitial mesenchymal cells. Figure 3D also showed the fate
probabilities of cell subtypes and the transition probabilities
between them (low panel).

Apart from the above three main functional modules,
Topographer can also infer both marker gene networks and
their pseudo-temporal changes as well as pseudo-temporal
characteristics of transcriptional bursting kinetics. We point
out that these inferences can in turn be used to infer whether
and when (along pseudotime) the branches of a developmental
trajectory occur.

Inferring Marker Gene Networks and Their
Pseudo-Temporal Changes
The network module aims to infer the trend of how marker gene
networks dynamically change along the identified cell-state
transition trajectories. For this, Topographer uses the network
neighborhood analysis method (Li and Horvath, 2007) (or
section The Network Module Infers Marker Gene Networks and
Their Pseudo-Temporal Changes, Materials and Methods) to
explore dynamic changes in gene regulatory networks (GRNs)
across development.

First, Topographer uses GENIE3 (Huynh-Thu et al., 2010) to
generate a series of GRNs along the pseudotime. Then, based on
these GRNs,Topographer further analyzes the covariation partners
of some particular gene (or genes) using a topological network
analysis scheme (Klein et al., 2015) that can identify those genes
most closely correlated with a given gene (or genes) of interest and
most closely correlate to each other (SeeMaterials andMethods for
details). We stress that before these two steps, transcriptomic data
of interest need pre-processing (Supplementary Information)
since they are noisy and would contain many zeros that must be
removed in our method.

Here, we used the network module to analyze single-cell data
on the differentiation of primary human myoblasts, and obtained
dynamic changes in the connections of marker gene networks
along the identified cell-state transition trajectories (Figure 4A,
where the PEBP1 gene is a core node of the networks). From the
dependences of mean gene-gene correlation degrees (Figure 4B)
and mean cell-cell correlation degrees (Figure 4C) on the
pseudotime, we observed that before branch, both degrees were
December 2019 | Volume 10 | Article 1280
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a monotonically decreasing function in pseudotime (the blue
line, Figure 4B or C), but after branch, each became first
monotonically increasing and then monotonically decreasing
on one branch (the orange line, Figure 4B or C), and
monotonically increasing on the other branch (the green line,
Figure 4B or C). However, the change tendency for the ratio of
the gene-gene correlation degree over the cell-cell correlation
degree was just opposite to that described above (Figure 4D).
Note that a decrease in the overall gene-gene correlation
indicates that there are less regulations in the cells. And a
decrease in the cell-cell correlation reflects an increase in the
amplitude of random fluctuation in gene expression due to the
weakening attracting force in the flattening basin of attraction
prior to the bifurcation. The ratio of GeneCorr/CellCorr is a
quantitative index for predicting critical transitions. This index
increases toward a maximum when cells go through the critical
state transition that is similar to the index proposed by Chen
et al., (2012) and Mojtahedi et al., (2016).
Inferring Pseudo-Temporal Characteristics
of Transcriptional Bursting Kinetics
Transcription occurs often in a bursty manner, and single-cell
measurements have provided evidence for transcriptional
bursting both in bacteria and in eukaryotic cells (Larson, 2011).
By analyzing a simplified stochastic model of gene expression, Xie,
et al. previously showed (Friedman et al., 2006) that the number of
mRNAs produced in the bursty fashion following a Gamma
distribution determined by two parameters: MBF (i.e., the mean
number of mRNA production bursts per cell cycle) and MBS (i.e.,
the average size of the mRNA bursts). We point out that if a Beta-
Frontiers in Genetics | www.frontiersin.org 7
Poisson distribution (Kim and Marioni, 2013) is used or other
distributions are used, the result is similar (data are not shown).

There is great interest in analyzing single cell data to understand
the transcriptional changes that occur as cells differentiate and the
genes and regulatory mechanisms controlling differentiation
processes and cell-fate transition points (Moignard and Göttgens,
2016;Tanay andRegev, 2017).Theburstmodule is designed to infer
the trend of how transcriptional bursting kinetics dynamically
changes across development. For this, Topographer uses the
maximum likelihood method (Cam, 1991) to infer the two
parameters of MBF and MBS from single-cell RNA-seq data (see
section The Burst Module Infers Pseudo-Temporal Characteristics
of Transcriptional Bursting Kinetics, Materials and Methods), thus
revealing dynamic characteristics of transcriptional bursting
kinetics before branch, near the branching point and after
branch of the developmental trajectory.

We used the burst module to analyze single-cell data on the
differentiation of primary human myoblasts. Figures 5A–E
showed how the cells at four pseudotime points (two before
branch, one at branch point, and one after branch) were
distributed in the logarithmic plane of BF and BS. A reference
system (two orthogonal blue lines indicated by blue: the
horizontal line for BF and the vertical line for BS) was used to
guide visual comparison between the rates (i.e., the percents
indicated) of gene numbers over the total gene number at a
particular pseudotime point. The four quadrants of the reference
system clearly showed how the genes in the dataset were
expressed, e.g., the fourth quadrant showed that the genes were
expressed in a manner of high frequency (i.e., the BF is more
than 0.33) and small burst (i.e., the BS number is less than 200).
We observed that the genes expressed in a bursty manner (i.e.,
FIGURE 4 | Topographer infers dynamic changes in the local connection network of a marker gene along the pseudotime from single-cell transcriptomic data on the
differentiation of primary human myoblasts. (A) Dynamic changes in a connection network of seven genes along the pseudotime, where the PEBP1 gene (orange) is
taken as a core node of neighborhood networks. (B) Dynamic changes in the gene-gene correlation degree along the pseudotime before and after branch (different
colors), where 6 empty circles correspond to the networks at 6 stages indicated in (A), respectively. (C) Dynamic changes in the cell-to-cell correlation degree along
the pseudotime before and after branch. (D) Dynamic changes in the ratio of the gene-to-gene correlation degree over the cell-to-cell correlation degree along the
pseudotime before and after branch.
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the other three cases except for the case in the fourth quadrant)
were more at the branching point (97%) than before or after
branch (approximate or below 80%). In other words, the percent
of the genes expressed with high frequency and small burst was
apparently lower at the branching point. From these figures, we
can conclude that during the differentiation of primary human
myoblasts, there are more genes expressed in a bursty manner at
the branching point than before or after branch.

From the dependences of MBF and MBS on the pseudotime
(Figures 5F, G), we observed that there were apparently different
change trends before and after branch. Figure 5H showed the
dependence of the mean mRNA expression level on the
pseudotime, demonstrating a change tendency opposite to that
of MBF. Although fundamentally similar to the change trend of
MBS on the whole, the mean mRNA level (which is
approximately equal to the product of the MBS and the MBF)
for the branched pseudo trajectory of points 1, 2, 3, and 4 has an
increasing tendency with the increase of the pseudotime (Figure
5H). These three subfigures implied that MBF or MBS can be
taken as a better indicator of the branch occurrence than the
mean mRNA expression level. They also imply that cell fate
decisions would not be inferred from the changes in the mean
gene expression levels but can be inferred from the changes in the
transcriptional bursting kinetics characterized by BS and BF.
Recently, Larsson, et al., showed that a separation of expression
into bursting kinetics was required to identify the effects of core
promoter elements on transcriptional dynamics that were
masked at mean expression levels (Larsson, 2019).
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DISCUSSION

We have developed a computational pipeline— Topographer for
construction of developmental landscapes, identification of de
novo continuous developmental trajectories, and quantification
of fate transitions. One unique feature of Topographer is its
capability of characterizing both transcriptional bursting
kinetics and changes in connections of marker gene networks
along developmental trajectory. When identifying the backbone
of cell-state transition trajectories from single-cell data,
Topographer was robust to the noise in the dataset
(Supplementary Figures 8–10). When applied to the
differentiation of primary human myoblasts, Topographer first
constructed an intuitive developmental landscape for an order
and timing of events that closely recapitulated previous studies of
this system. In addition, it estimated the fate probabilities for cell
types and the transition probabilities between them. Together, the
results suggested that the fate transition during the differentiation
of primary human myoblasts occurred in a probabilistic rather
than deterministic manner, and the transitions between cell types
might be unidirectional and bidirectional. These two new insights
challenge the traditional view that the development of primary
human myoblasts was tree-like or that the process from a
predecessor to its generations was both deterministic and
unidirectional (Svensson et al., 2017).

When ordering single cells, Topographer (like existing methods
in the literature) needs to assume sufficient number of cells in the
dataset because the backbone module is established essentially
FIGURE 5 | Topographer infers dynamic characteristics of transcriptional bursting kinetics along the pseudotime from single-cell RNA-seq data on the differentiation
of primary human myoblasts. (A–E) Scatter plot of the genes in the logarithmic plane of burst size (BS) and burst frequency (BF) at four pseudotime points, where
every circle represents a gene in the dataset. Four percents are indicated in a reference system (two orthogonal blue lines at every subfigure, which correspond to
mean BS and BF, respectively). Numbers 4 and 5 actually represent the same pseudotime point. (F) Evolution of the mean BF along the pseudotime, where the
branching point is indicated and two empty circles after the branching point correspond to (D and E), respectively. (G) Evolution of the mean BS along the
pseudotime (H) Evolution of the mean mRNA expression level along the pseudotime.
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based on the estimation of cell density.A small number of cells (e.g.,
less than 100), would lead to inaccuracy offinding pseudo-potential
well/orwells on a super-ring in the backbonemodule. Asmore cells
can simultaneously bemeasured (Klein et al., 2015), the accuracy of
Topographer will improve. In principle, Topographer can also be
used to analyze other single-cell data such as mass cytometry data
and single-cell PCR data (Bendall et al., 2011).

Cell fate decisions may involve hierarchy of cell types
including intermediate cell states or cell subtypes. Identifying
such (e.g. rare) sub-cell types is important yet challenging.
Topographer has shown its ability to identify cell subtypes,
which may correspond to shallow or small potential wells in
the constructed developmental landscape (right below, Figure
3D). Moreover, Topographer can estimate the fate probability of
each identified cell subtype and the transition probabilities
between every two identified cell subtypes (right below, Figure
3D), which is one main advantage of Topographer compared to
many existing methods (Saelens et al., 2019). In particular,
Topographer enables identification of non-, bi-, and multi-
branches (Figures 2C, D).

It is worth noting that Topographer only provides a general
framework connecting three interplayed major components based
on single-cell data: cell lineage committing dynamics
(macroscopic), gene network dynamics (mesoscopic), and
transcriptional bursting kinetics (microscopic). First, Topographer
provides useful information on their relationships that are implied
by the pseudotime, but this kind of time only reflects the impact of
the former on each of the latter two. The issues of how and in what
degree the inferred gene connection networks or/and
transcriptional bursting kinetics influence or/and determine cell
fates in the underlying developmental process, remain unexplored.
In order to study the relationship between the mesoscope/
microscope and the macroscope, a possible way is to establish the
so-called balance equation (Wu and Tzanakakis, 2012). Second, in
order toestimate the fateprobabilitiesof cell typesand the transition
probabilities between them (Eq. (12) and Eq. (9), Materials and
Methods, respectively), Topographermakes an assumption that the
transition from one cell to another along a cell-state transition
trajectory is linear (Eq. (4) in Materials and Methods or
Supplementary Eq. (6)). In many cases, such transition may be
nonlinear due to, e.g., cell-cell communication through signal
molecules. Third, the traditional Waddington’s landscape (e.g.,
tumor pathobiology 39) is often used as an intuitive tool to
describe a differentiation process through the trajectory of a ball
into branching valleyswith each representing a developmental state
(Furusawa and Kaneko, 2012). Topographer uses the potential of
each cell to quantify developmental landscape, which allows
estimation of the transition probabilities between cell types and
their fate probabilities to characterize cell lineage committing
dynamics. These probabilities have physical meanings as they
actually represent the Krammer escape rates (van Kampen, 1992)
between potential wells. However, how cell fate decisions including
cell-state dynamics are related to Krammer escape rates remain
unclear. Fourth, based on the transition probabilities between cell
types, one can establish a model of cell population dynamics
[referring to Supplementary Eq. (21)], and further study
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stochastic state transitions from a dynamical-system perspective.
Fifth, Topographer uses a simple Gamma distribution to infer
transcriptional bursting kinetics. For this reference, a more
reasonable distribution used would be a Beta-Poisson
distribution, but the result is similar (data are not shown). In fact,
our reference method is suitable to any distribution.

Finally, using “relatively smaller pseudo-potential and
relatively larger distance” (Materials and Methods) as a rule in
the backbone module is a robust approach in finding cell
trajectories (referring to Supplementary Figures 8–10); In our
method, the transitions among cells are considered as a random
walker who moves randomly between the data points scattered in
the cell state space. These two ground rules used in Topographer
can be viewed as new principles of mining single-cell data to
uncover mechanisms of cell fate decisions.
CONCLUSION

As the single-cell field progresses towards analyzing the
transcriptomic data of large-scale individual cells in parallel, it
will become increasingly important to develop statistical methods
to reveal cell fate mechanisms in a coherent way at three levels: cell
lineage (macroscopic), gene network (mesoscopic), and gene
expression (microscopic). In this context, we anticipate that the
Topographer presented here, and other related approaches, will be
vital in maximizing the amount of biological insight that can be
obtained from these data.
MATERIALS AND METHODS

The overall Topographer, a multifunctional algorithm, comprises
five functional modules: the backbone module, the landscape
module, the dynamics module, the network module, and the
burst module. Main details of these modules are separately stated
below and the complete description including data pre-
processing is given in Supplementary Information.

The Backbone Module Identifies the
Backbone of Cell-State Transition
Trajectories From Single-Cell Data
Assume that there arem cells and n genes in single-cell RNA-seq
data of interest, which can in principle be represented as m
points in the n -dimensional space (X) of gene expression (called
the cell state space for convenience).

The backbone module aims to identify the backbone of cell-
state transition trajectories across development from the dataset.
The essence is to find valley floors in a developmental landscape.
Specifically, Topographer finds valleys with local minimal
pseudo-potentials, where pseudo-potential is defined as

~E(x) = − log r(x) (1)

with

r(x) = o
y∈X

exp −
d x, yð Þ2
2s2

� �
: (2)
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In Eq. (2), d is the Euclidean distance between two state points x
and y in the cell state space X (note: other kinds of distances are also
suitable forTopographer).Note thatr represents the local cell density,
mostly accounting for the number of cells in a neighborhood defined
bys. The value of parameters is set as the correspondingquantile for
all pair-wise distances of cell states in the dataset.

Roughly speaking, Topographer starts by cell state x0 (i.e., an
initial cell) and then searches for pseudo-potentials wells on super-
rings (which are actually circular tubes in the cell state space) by
recursively applying an extended version of the cluster algorithm
(Rodriguez andLaio, 2014) Finally, all the centers of the super-rings
are represented in a tree, T. Main details are stated below andmore
details are given in Supplementary Information.

Constructing a Developmental Tree
Startingbyan initial cell thathas the globalminimalpseudo-potential
or by the cell that the user chooses according to the prior knowledge,
Topographer calculates an adaptive radius or an adaptive step length
(see subsection Setting Step Length, Supplementary Information)
and searches for pseudo-potential wells on a super-ring centered at
this cell and with the radius (referring to Figure 2A). The search
method (called the pseudo-potential well search algorithm) is based
on the idea that cluster centers on the super-ring are characterized by
a lower pseudo-potential than their neighbors and by a relatively
larger distance from points with locally lower pseudo-potentials.
Specifically, Topographer first defines

d(x) =
max
y≠x

d x, yð Þ if~E(x) = min
y∈X

~E(y)

min
y : ~E yð Þ<~E xð Þ

d x, yð Þ otherwise,

8><
>: (3)

and then finds local pseudo-potential well/or wells on the super-
ring, based on the combination of relatively smallerẼ and relatively
larger d. Therefore, there is an analogy between the pseudo-
potential well search algorithm and a density-based approach
developed originally by Rodriguez and colleagues (Rodriguez and
Laio, 2014). The segments linking the center and the pseudo-
potential wells found on the super-ring can be taken as
approximate part/or parts of the entire developmental trajectory.

Then, taking every found pseudo-potential well as the center of a
new super-ring with a new adaptive radius, Topographer performs
similar calculations as at the previous step, thus finding pseudo-
potential well/or wells on this new super-ring. Again, the segments
linking the new center and the newly found pseudo-potential wells
on the new super-ring can be taken as other approximate part/or
parts of the entire developmental trajectory. This process is repeated
until no new pseudo-potential wells are found. By linking the cluster
centers, Topographer thus builds a tree-like developmental
backbone, which is actually composed of valleys.

Note that for a super-ring center, rather than the starting point,
the newly found valleys would include valleys on the “reverse
direction” in the processes of searching for local pseudo-potential
wells on super-rings, which are not expected in our algorithm. To
handle such an exception, Topographer excludes those valleys that
are too close to the found valleys. In addition, any two newly found
valleys with the distance of smaller than the step length are merged
by discarding the valleys with larger pseudo-potentials. Such a
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treatment may greatly improve the algorithm’s robustness against
the noise in the dataset (referring toSupplementary Figures 8–10).

Also note that a complete valley floor is constructed by
terminating the recursive process for some super-ring on
which no desired pseudo-potential wells can be found. Since
no loops are assumed to exist in the developmental trajectory,
there is definitely a boundary, implying that the search process
necessarily stops within finite steps.

After the above search process is completed, all the foundpseudo-
potential valley floors are represented in an undirected acyclic graph
(a tree with branches). To achieve better accuracy and coverage,
Topographer refines a pseudo-potential valley tree by searching for
pseudo-potentialwell/orwells on the line linking twocentersonevery
edge of the tree (referring to Supplementary Figures 9 and 10). To
that end, Topographer finishes construction of the backbone of a
developmental tree from a given set of single-cell data.

Cell Projection and Pseudotime Assignment
After constructing a developmental tree, Topographer then
projects every cell point in the cell state space onto some edge
of the tree according to the shortest distance principle (i.e., the
perpendicular distance from the cell point to the edge is
shortest). Thus, every cell has its unique relative position in the
identified backbone (or in the constructed tree).

Next, Topographer assigns a pseudotime for every cell in the
dataset. Before that, however, it is needed to determine a root node
in the constructed tree. Topographer chooses a root cell in such a
manner that the distances between this cell and those cells that are
initially set according to, e.g., the prior knowledge, are as short as
possible. An initial pseudotime is first assigned to this root node.
Every other cell in the dataset is then assigned in order with a
pseudotime according to its relative position in the constructed
tree. Without loss of generality, the full pseudotime may be set as
the interval between 0 and 1 (i.e., 0 ≤ t ≤ 1).

The Landscape Module Constructs a
Quantitative Waddington’s Developmental
Landscape of Single-Cell Data
Calculation of Cell Potential
After the backbone of a developmental trajectory has been
identified and every cell has been endowed with a pseudotime
value, the landscape module first estimates the potential of every
cell in the dataset and then uses these potentials to construct a
quantitative developmental landscape. It is expected that the
potential to be introduced can be avoid shortcomings of the
pseudo-potential as pointed out in the main text. For this
estimation, Topographer analogizes transitions between cells at
distinct stages of the differentiation process to a random walker
who moves randomly between the data points that are randomly
scattered in the cell state space. This analogy, which is inspired by
Rosvall and Bergstrom’s work (Rosvall and Bergstrom, 2008), is
reasonable due to both cellular heterogeneity and gene
expression noise in the dataset. In addition, it is important that
Topographer uses the pseudotime information to construct a
weighted directed graph W.

Specifically, Topographer defines the weight of the directed
edge from cell a to cell b as
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Wa!b = W0e
−c ta−tbð Þ: (4)

(Supplementary Information gives a reason for this
definition), where ta and tb represents the pseudotime points
for cells a and b respectively, and positive constant c represents
a linearly changing rate that cell a transitions to cell b (this
setting implies an assumption, i.e., the evolutional process from
one cell to another along the pseudotime is assumed to be
linear). The setting of the c value in general depends on the
dataset under consideration (see subsection 3.2.1 in Supplementary
Information gives a simple discussion) but it may be set as 30 in our
cases (i.e., c=30). It is worth pointing out that the weight defined in
such a manner has used the information on the pseudo-temporally
ordered cell trajectories, which is a key for the entire calculation.

Then, in order to estimate cell visit probability on a random
walk, Topographer defines a conditional probability that the
random walker moves from cell b to cell a as the relative link
weight, given by

pb!a =
Wb!a

obWb!a
, (5)

which is apparently independent of initial W0. If the stationary
visit probability of cell a is denoted by pa, then pa can in
principle be derived from a recursive system of the form

pa =o
b
pbpb!a , (6)

which represents the probability that the random walker visits
the a cell from all the other possible cells. Note that Eq. (6) is
actually a master equation (van Kampen, 1992) and can
efficiently be solved with the power-iteration method (Booth,
2006). However, to ensure that the unique solution of this
equation is independent of the starting node in the directed
network, the random walker instead teleports to a random node
at a small rate e with 0< e <1 (in simulation, we set e =0.01). In
addition, to obtain more robust results that depend less on the
teleportation parameter e, it is most often to use teleportation to
a node proportional to the total weight of the links to the node
(Rosvall and Bergstrom, 2008). Because of these considerations,
the resulting stationary visit probability for cell a is modified as

pa = 1 − ϵð Þo
b
pbpb!a + ϵ obWa!b

oa ,bWb!a
: (7)

Finally, Topographer quantifies the potential of every cell in
the dataset, according to

Ea = − log pa , (8)

where pa is given by Eq. (7). Apparently, the potential defined in
such a manner has again made use of the information on the
identified cell-state transition trajectories due to Eq. (4). We
point out that the potential of a cell depends on pseudotime but
the pseudo-potential lacks the information on pseudotime.

Scatter Plot of Developmental Landscape
After all the cells in the dataset have been equipped with potentials,
all these potentials are then used to construct a Waddington’s
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landscape for the developmental process. The method is stated as
follows. First, dimension reduction is needed for visualization (the
tSNE method (van der Maaten and Hinton, 2008) or the PCA
method (Hastie et al., 2001)may beused to achieve this purpose). In
general, dimension reduction cannot explicitly reflect the
information on coordinates in a visualized landscape, e.g., PCA1
andPCA2inFigure3Cdonot actually represent components in the
dataset. Second, Topographer uses the nearest neighbor
interpolation method to perform interpolation on a 3-
dimensional scattered data set. Specifically, Topographer uses
ScatteredInterpolant (a function of the MATLAB software) to
establish the corresponding relationships between a set of points,
(x,y), and a set of cell potentials, E. These relationships, denoted by
E=F (x,y), in principle define a curved surface in the 3-dimensional
space for the developmental landscape, which in return passes
through all the sampling points in the space under consideration.
Topographer then uses the nearest neighbor interpolation to
evaluate this surface at any query point (xq,yq), thus obtaining an
interpolating value of every known potential given by Eq. (8), i.e.,
Eq=F(xq,yq). Third, a Gaussian kernel is used to smooth
interpolation. Finally, the identified developmental trajectory is
drawnonthe constructeddevelopmental landscape (referring to the
thick colored line inFigure 1Aor the thick green line inFigure 3C).

We point out that pseudo-potential cannot correctly reflect the
motion of a “ball” in the constructedWaddington’s developmental
landscape in which the moving ball has lower potential at the
beginning than at the end, since a lower cell density implies a higher
pseudo-potential according todefinitions.SupplementaryFigure5
shows a difference between potential and pseudo-potential.

The Dynamics Module Estimates Fate
Probabilities of Cell Types and Transition
Probabilities Between Them From Single-
Cell Data
Determining Cell Types
Cell-type dynamics can be characterized by fate and transition
probabilities. In order to estimate these probabilities, it is first
needed to determine the types of cells in the dataset. For this,
Topographer adopts the following rules: First, each branch in the
identified developmental trajectory is defined as one cell type,
and a different branch is defined as a different cell type. Then,
each potential well on each branch is defined as one cell subtype,
and a different potential well is defined as a different cell subtype.
These definitions imply that the number of cell types is equal to
that of branches whereas the number of cell subtypes is equal to
that of potential wells. It should be pointed out that the cell type
determined in such a manner is not unique but depends on the
choice of Ẽ and d (their respective definitions above). In the
following, we will not distinguish cell type and cell subtype unless
confusion arises.

Estimating Transition Probabilities Between Cell Types
Equation (5) has given the conditional probability (pb!a) that
the random walker moves from cell b to cell a, whereas Eq. (7)
has given the stationary visit probability of cell a, i.e.,pa. On the
basis of these, Topographer estimates the transition probability at
which a random walker visits the jth cell type from the ith cell
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type (denoted by qi↷), according to

qi↷ j = o
a∈i,b∉j

qa!b , (9)

and the transition probability at which the random walker exits
the ith cell type (denoted by qi↷), according to

qi↷ = o
a∈i,b∉i

qa!b , (10)

where the unrecorded visit rate on a link, qb!a is given by

qb!a = pbpb!a : (11)

Estimating Fate Probabilities of Cell Types
The fate probability for cell type i, denoted by fatei, is defined as

fatei = 1 − qi↷, (12)

which implies that a larger transition probability at which the
random walker exits cell type i corresponds to a smaller fate
probability for this cell type. This definition is in accordance with
our intuition, so it is reasonable.Again,we emphasize that the above
formulae for transition probability (qi↷j) and fate probability (fatei)
have all made use of the pseudotime information.
The Network Module Infers Marker Gene
Networks and Their Pseudo-Temporal
Changes
In a complex mixture of cells, correlations of gene expression
patterns would arise from differences between different cell
lineages. To explore the correlation between the patterns of
gene expression across development, Topographer constructs a
series of GRNs along the pseudotime, which are directed
networks for gene-gene interactions. Unsupervised GRNs are
then created by GENIE3 (Huynh-Thu et al., 2010) that takes
advantage of the random forest machine learning algorithm.

Based on the constructed GRNs, Topographer further explores
the covariation partners of some particular gene (or genes) using a
topological network analysis scheme (Li and Horvath, 2007). The
method is to identify the set of those genes that are most closely
correlated with a given gene (or genes) of interest and that most
closely correlate to each other, at a given pseudotime point (in
practical calculations, we use data at a pseudotime window to
improve accuracy) (in Figure 4 of the main text, however, we
showed how neighborhood networks of a marker gene change at
several representative pseudotime points). Supplementary
Information provides more details of the method.

The Burst Module Infers Pseudo-Temporal
Characteristics of Transcriptional Bursting
Kinetics
Transcriptional bursting kinetics can be characterized by BS and
BF. As is well known, Gamma distributions can well capture this
bursty expression in some cases. Topographer uses a Gamma
distribution to infer dynamic characteristics of transcriptional
bursting kinetics along the cell-state transition trajectories
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identified from single-cell RNA-seq data. Assume that this
distribution takes the form (Friedman et al., 2006)

p(x) =
xa−1

baG að Þ e
−x
b , (13)

where x represents the number of transcripts, a represents the
mean BF (i.e., the mean number of mRNA production bursts per
cell cycle) whereas b does the mean BS (i.e., the average size of the
mRNA bursts), and G(·) is the common Gamma function.

Thus, in order to infer pseudo-temporal characteristics of
transcriptional bursting dynamics, the key is to estimate two
parameters a and b from the dataset at every pseudotime point.
For this,Topographermakes use of themaximum likelihoodmethod
(Hastie et al., 2001). Since the number of cells at a single pseudotime
pointwouldbevery few,Topographeruses thecelldata inawindowof
this point to obtain more reliable estimations of a and b.
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