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Abstract. We present and evaluate a method for the three-dimensional (3-D) segmentation of breast masses on
dedicated breast computed tomography (bCT) and automated 3-D breast ultrasound images. The segmentation
method, refined from our previous segmentation method for masses on contrast-enhanced bCT, includes two
steps: (1) initial contour estimation and (2) active contour-based segmentation to further evolve and refine the
initial contour by adding a local energy term to the level-set equation. Segmentation performance was assessed
in terms of Dice coefficients (DICE) for 129 lesions on noncontrast bCT, 38 lesions on contrast-enhanced bCT,
and 98 lesions on 3-D breast ultrasound (US) images. For bCT, DICE values of 0.82 and 0.80 were obtained on
contrast-enhanced and noncontrast images, respectively. The improvement in segmentation performance with
respect to that of our previous method was statistically significant (p ¼ 0.002). Moreover, segmentation
appeared robust with respect to the presence of glandular tissue. For 3-D breast US, the DICE value was
0.71. Hence, our method obtained promising results for both 3-D imaging modalities, laying a solid foundation
for further quantitative image analysis and potential future expansion to other 3-D imaging modalities.©2014Society
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1 Introduction
Mammography has been widely used as a screening tool for
breast cancer, reducing the mortality rate by an estimated
30% to 40% in the screened population.1 However, sensitivity
is low for women with dense breasts,2 and the positive predictive
value (PPV) of mammography for biopsy can be poor (10% to
30%).2 In two-dimensional (2-D) mammography, superimposi-
tion of dense tissue over cancers, both of which have similar
x-ray attenuation, can lead to false-negative studies. For
small lesions not associated with calcifications, visualization
is even more difficult on mammography compared with lesions
with microcalcifications, especially for women with dense
breasts.3,4 To address this problem, three-dimensional (3-D)
breast imaging modalities that mitigate the superimposition
effects in mammography are being developed.1,2,5

One such 3-D imaging modality is dedicated breast com-
puted tomography (bCT) which uses cone beam x-ray CT to
image the entire breast.5 It has been shown that bCT retains
3-D morphological details, provides higher tumor contrast,
and yields better visual conspicuity for masses as compared
with mammography, as reported by clinical studies.6,7

Recently, interest in 3-D automated breast ultrasound (ABUS)8

of the entire breast was revived after initial attempts failed decades
ago due to poor ultrasound technology. The advantage of ultra-
sound, in general, is that it does not involve ionizing radiation,

but for hand-held ultrasound, disadvantages include operator
dependency and nonreproducibility. The advantages of ABUS
over hand-held ultrasound are not only that it is reproducible,
but also that it canvisualize images in the coronal plane in addition
to the traditional axial and sagittal planes. It was recently shown
thatABUS is capable ofdepicting small early-stagemammograph-
ically occult cancers.9–11 In a reader study,10,12 statistically signifi-
cant improvement in readers’ performance and reduction in
interreader variability in the detection of mammographically
occult cancers were demonstrated for a combination of screening
digital x-ray mammography and ABUS as compared with screen-
ing mammography alone.

It is likely that both bCTand ABUS will play a crucial role in
future breast cancer diagnosis, screening of high-risk popula-
tions, and perhaps even as an adjunct screening modality for
the general population. However, interpreting these 3-D
image volumes could be a very challenging and time-consuming
task for radiologists. In our bCT dataset, e.g., a typical image
volume of one breast included 512 slices for transverse and sag-
ittal planes and over 300 slices for coronal plane.

As an initial and essential step toward developing a com-
puter-aided diagnosis (CADx) scheme for bCT and ABUS,
this article proposes a 3-D computerized lesion segmentation
method that is fully automated except for the initiation by a radi-
ologist-indicated seed-point (i.e., the approximate lesion center).
Our proposed method consists of two steps: (1) initial estimation
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of the lesion margin by a radial-gradient index (RGI)-based
method and (2) further refinement by an active contour-based
method. The proposed method is an adaptation of our previous
segmentation method that we developed for contrast-enhanced
bCT.13 Here, we compare the performance of our prior method
with our new method on both noncontrast and contrast-
enhanced bCTs as well as on 3-D ultrasound.

Active contour models, or “snake,” originally proposed by
Kass et al.,14 have undergone a variety of development in the
past 20 years. An active contour model seeks to minimize
the energy function of the deformable contour, which is deter-
mined by the sum of internal and external energy terms. The
internal energy controls the smoothness of the contour under
the influence of the external energy, which attracts the contour
to deform toward the object boundaries, e.g., the margin of a
mass. This classical model, however, has difficulty in handling
topology changes of the contour,15 and the parameterization of
the evolving contour also hinders implementation in 3-D. In
order to address topology problems, geometry-based level-set
active contour methods16 have been used because they allow
for region splitting and merging in a more intuitive way.
Moreover, they can be implemented on Cartesian grids, improv-
ing computational efficiency. Since the work of Kass et al.,
active contour algorithms with level-set formulation have drawn
much attention in image segmentation techniques. Malladi
et al.17 and Caselles et al.18 proposed a level-set based active con-
tour model driven by curvature-dependent speed functions, F,
with an edge indicator, g, as a stopping function. Caselles
et al.19 later proposed the geodesic active contour model with
a level-set formulation that merges the classical energy minimi-
zation concept with geometric level-set active contour models.

Various active contour models have been widely applied to
medical image segmentation tasks.20–25 However, few works
have applied active contour models to breast lesion segmenta-
tion in bCT and 3-D breast ultrasound images. Ray et al.26 seg-
mented breast lesions on bCT using iterative watersheds,27 but
their algorithm requires users to manually draw several markers
to label the lesion and background for initializing the segmen-
tation. Chen et al.28 utilized a discrete dynamic contour model29

to segment lesions in 3-D breast ultrasound images; however,
their model represents the evolving lesion surface as an
N-point polygon, which is difficult to adapt to region topology
changes.

We have previously developed a 3-D lesion segmentation
technique based on the RGI,30 which tended to produce lesion
outlines that were undergrown and too spherical.31 To improve
upon this initial approach, we next developed an active contour
segmentation procedure,13 which was based on the Hamilton–
Jacobi-type level-set equation17 and a regularization term.32 Our
prior model yielded good segmentation performance of lesions
on contrast-enhanced bCT images based on the overlap ratio
between computer segmentation and human outline of 0.68,
which is equivalent to a Dice coefficient (DICE) value of
0.80. (Note that a value for the DICE larger than 0.7 has
been suggested as indicative of good overlap.33) However,
the resulting segmentations tended to produce lesion volumes
which were smaller on noncontrast images compared with con-
trast-enhanced images.34 Such conservative lesion outlines
could miss important morphological margin indicators, such
as spiculations, which are important for diagnosis. Therefore,
in this current investigation, we address this problem on noncon-
trast-enhanced bCT images with further modification to our

previous model and then assess the generalizability of our
new method by applying it to lesions on 3-D ABUS images.
In all of our segmentation methods, the only input required
is the approximate lesion center, which could be provided by a
radiologist or by a separate computer detection algorithm.

Our technique is a two-stage method that uses a RGI segmen-
tation method30,31 to first delineate the initial contour of the
lesion and an active contour model to evolve the initial contour
toward the lesion margins. As lesion margins are often ambigu-
ous, we employ a dynamic stopping criterion24 that is based on
information of the surrounding region to terminate the segmen-
tation procedure automatically. We evaluated the segmentation
performance across the two modalities. Moreover, we also
evaluated the relationship between the amount of existing breast
fibroglandular tissues and the segmentation performance on
bCT. This was conducted in order to investigate whether the pro-
posed method would yield acceptable results when a lesion was
surrounded by a large proportion of fibroglandular tissues, i.e.,
when a lesion was located in dense parenchyma. As an addi-
tional robustness analysis for 3-D ABUS, a comparison of
segmentation performance on mammographically positive and
mammographically occult lesions was conducted.

2 Materials
The bCT dataset included 35 breast volumes containing 38 con-
trast-enhanced masses (25 malignant and 13 benign) and 116
noncontrast breast volumes containing 129 masses (80 malig-
nant and 49 benign) acquired at the University of California
at Davis under an Institutional Review Board (IRB)-approved
protocol. The coronal slice spacing varied from 200 to 400 μm.
In coronal planes, the voxels were about 300 μm2. Lesions were
manually outlined in the coronal, sagittal, and axial planes by a
research specialist (A.E.) with over 15 years of experience in
mammography.

The ABUS images were acquired with a SomoVu system
(U-Systems, a GE Health Care Company, Sunnyvale,
California) at different clinical sites for a prior reader study10

under IRB-approved protocols. One should note that all patients
who had ABUS in this study had breast imaging-reporting and
data system breast density of 3 or 4, i.e., heterogeneously dense
or extremely dense breasts. To ensure full coverage of all breast
tissues with ABUS, each breast was imaged in three “views”
(craniocaudal, mediolateral, and lateral), each yielding 3-D
images and differing in transducer position and direction of
compression. Generally, a mass is not visible in all views,
and thus, the ABUS dataset included 98 images of 61 malignant
masses from 52 patients. Of these 61 breast cancers, 32 were
mammographically occult at the original clinical interpretation,
and 29 were mammographically visible. Spatial resolution in the
images was nonisotropic with spatial resolution in the axial
plane of ∼250 to 300 μm by ∼150 μm and slice spacing of
∼600 μm. Lesion locations had been previously indicated for
a prior reader study.10 In order to facilitate our evaluations,
lesions were manually outlined by an expert breast radiologist
with experience in breast ultrasound (C.A.S.).

3 Segmentation Methods
Our segmentation technique includes two stages—a contour
initialization stage including a RGI segmentation method30,31

that yields the initial contour of the lesion and an active contour
model stage that evolves the initial contour toward the lesion
margins (Fig. 1).
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3.1 Contour Initialization

Lesion boundaries in medical images can be complicated, and
therefore, it is not guaranteed that the corresponding energy
function is a simple convex function during the contour evolu-
tion process. Subsequently, an erroneous lesion contour might
result due to local minima conditions. For this reason, we chose
to initialize the active contour evolution with an approximate
initial contour using RGI segmentation.30,31

RGI segmentation, which has been extensively reported,
is a seeded lesion segmentation method in which the
determined lesion margin corresponds to the contour that max-
imizes the average proportion of gradients pointing radially
outward from the lesion center.30,31 In addition, to ensure
that the initial approximation of the lesion contour is entirely
inside the actual lesion, morphological erosion is performed
with an adaptive cubic structuring element, with a side length
of 1∕9 of the cube root of the RGI-segmented lesion volume.
We have found RGI segmentation combined with the erosion
process to be a reliable and fast method to generate initial
contours that serve as an input to the active contour
model in order to speed up and increase the robustness of
the contour evolution. Additional details can be found in
Kuo et al.13

3.2 Active Contour Model with Local Energy Term

The associated energy function, Eglobal, of the level-set active
contour model in our previous work13 is given as

Eglobal ¼
Z
φ

νgHðφÞdrþ μgs ·
1

2

Z
Ω

ðj∇φj − 1Þ2dr; (1)

where ν and μ are parameters that control the direction of evolv-
ing surface (negative for evolving outward and positive for
inward) and the strength of the second term13 in Eq. (1)
(regularization term32), respectively; φ is the level-set function

such that the evolving surface S ¼ frjφðrÞ ¼ 0g; r is the loca-
tion vector ðx; y; zÞ; and H is the Heaviside function

HαðxÞ ¼
1

π
arctan

�
x
α

�
; (2)

α is a parameter controlling the steepness of H. In Eq. (1), g is
the edge indicator function proposed by Caselles et al.18

g ¼ 1

1þ j∇Gσ1 ⊗ Ij2 ; (3)

where Gσ1 is a Gaussian kernel convolved with the given image
I; and gs is defined as13

gs ¼
1

1þ j∇Gσ1 ⊗ Ij : (4)

The first term in Eq. (1) is the main driving force term that
expands the surface uniformly. The second term in Eq. (1) is
the regularization term first introduced by Li et al.32 This
term allows for expression of the evolving surface as a signed
distance function without re-initialization, which is more
efficient.

Malignant masses often have irregular shapes and present
with vague lesion margins on breast CT (and other imaging
modalities). Our previous model tended to yield a coarse outline,
if a breast lesion lacked a clear margin (Fig. 2). To address this
problem, we adapted Eq. (1) to have a region-fitting energy
term, as originally proposed by Li et al.35 The region-fitting
energy term is based on the approximated intensities inside
and outside the evolving surface in a local region. In general,
the region-fitting energy function seeks optimal partitions of
the lesion and background within the local region as determined
by the size of a kernel mask, Gσ2. The region fitting energy is
defined as

Elocal ¼
X2
i¼1

Z
Gσ2ða − rÞjIðrÞ − fiðaÞj2Mi½φðrÞ�dr; (5)

Fig. 1 Flowchart of the 3-D automated breast lesion segmentation
method.

Fig. 2 The previous model can fail to segment lesions that are
embedded in fibroglandular tissue or lesions with a complex
shape. The figure shows a contour generated by our previous seg-
mentation model.
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where Gσ2 is a Gaussian kernel with standard deviation σ2, and
a is the location of the kernel center. M1 and M2 are defined as
[HðφÞ þ 0.5] and [0.5 −HðφÞ], respectively, where H is the
Heaviside function given in Eq. (2), and fi are the approximated
intensities inside and outside the local region (as explained in
more detail in the Appendix).

By including Eq. (5) into Eq. (1), we introduce our new
modified active contour model

εsnake ¼ εglobal þ εlocal: (6)

The Euler–Lagrange formulation corresponding to Eq. (6) is
the level-set evolution equation used for segmenting breast
masses in this study

∂φ
∂t

¼ φkþ1 − φk

¼ τ

�
νgδαðφÞ þ μgs

�
∇2φ − div

�
∇φ
j∇φj

���

− δαðφÞ
�Z

Gσ2ða − rÞjIðrÞ − f1ðaÞj2dr

−
Z

Gσ2ða − rÞjIðrÞ − f2ðaÞj2dr
�
; (7)

where τ is an iteration step constant. The derivation of Eq. (7)
from Eq. (6) is presented in the Appendix. Throughout the
remainder of this article, we will refer to Eq. (1) as our “previous
model” and Eq. (6) as our “proposed model.”

3.3 Implementation

The parameter settings in this study are listed in Table 1. The
selection of parameters follows our previous work.13 Based
on Kuo et al.,13 the value of τμ was selected to be 0.1. Due
to ultrasound images often lacking sharp edges, we used a
smaller τ (100) for a smaller iteration step, and thus requiring
μ to be 0.01.

3.4 Dynamic Stopping Criterion

Because lesion margins are often ambiguous in medical
images, it is necessary to use a stopping criterion for the active
contour model. We adopted the dynamic stopping criterion
proposed by Yuan et al.24 The stopping criterion is defined
as ðdIL∕dt − dIB∕dtÞ ¼ 0, where IL is the mean intensity
within the segmented region, IB is the mean intensity outside
the segmented region, and t refers to iteration. When

ðdIL∕dt − dIB∕dtÞ ≈ 0, the evolving contour is on the margin
of foreground and background, and thus the contour evolution
is terminated.

4 Segmentation Evaluation

4.1 Segmentation Performance in Terms of DICE

Due to the large number of slices contained in each image
volume, our expert was only able to outline each lesion in
the three central orthogonal planes throughout the database.
Therefore, computer-segmented margins were evaluated on
these three orthogonal slices through the lesion center in com-
parison to the manually delineated lesions. Segmentation perfor-
mance was presented in terms of the DICE, an overlap measure
between the manually delineated margins and computer-seg-
mented margins on the three orthogonal slices

DICE ¼ 1

3

��
2ðΩ ∩ ωmanÞ
Ωþ ωman

�
xy
þ
�
2ðΩ ∩ ωmanÞ
Ωþ ωman

�
yz

þ
�
2ðΩ ∩ ωmanÞ
Ωþ ωman

�
xz

�
; (8)

where Ω is the computer segmentation, and (xy), (yz), and (xz)
denote the orientations of each slice through the lesion center.
ωman is the human-delineated lesion margin in the same orthogo-
nal slice. Note that the DICE value for a given lesion is the aver-
age of the DICE values over the three orthogonal planes.
According to Zijdenbos et al.,33 a DICE ≥ 0.7 indicates
“good” overlap between computer and human outlines for medi-
cal images.

We compared the segmentation performance between the
previous model [Eq. (1)] and the proposed model [Eq. (6)].
Statistical significance of differences in performance was
assessed using paired t-tests of DICE.

4.2 Segmentation Performance and Presence of
Fibroglandular Tissue on bCT

Since fibroglandular tissue has an x-ray attenuation coefficient
similar to that of tumor tissue, the presence of fibroglandular
tissue adjacent to a lesion poses challenges for segmentation.
To investigate the dependence of lesion segmentation quality
on the presence of fibroglandular tissue in the immediate vicin-
ity of lesions, we used a fuzzy c-means-based segmentation
scheme to identify fibroglandular tissue.36 The proportion of
fibroglandular tissue in a lesion’s vicinity was calculated
from a 50 × 50-mm2 region on each of the three orthogonal cen-
tral slices, on which the manual lesion delineations were per-
formed, and was defined as the area of the fibroglandular
tissue (as identified by the fuzzy c-means method) relative to
the area of the three slices excluding the manually outlined
lesion area. Based on the work of Yaffe et al.,37 95% of
women have breast density of lower than 45% when imaged
with bCT with mean glandular fraction of 19.3%. Therefore,
for our local density categorization, we used 20% and 40%
as thresholds to divide our database into three categories
(≤20%, 20% to 40%, and ≥40%).

Table 1 Active contour model parameter values for segmentation of
bCT and ABUS lesions.

τ ν μ α
Maximum number

of iterations

bCT 1000 −10 0.001 0.2 300

ABUS 100 −10 0.01 0.2 300

See Eq. (6) for τ, Eq. (1) for ν and μ, and Eq. (2) for α.
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4.3 ABUS Segmentation Performance on
Mammographically Occult and
Mammographically Positive Breast Cancers

We assessed segmentation performance for all ABUS-imaged
lesions and investigated whether there were any differences
in performance between lesions that were occult on mammog-
raphy and those that were visible on mammography. Note that
all lesions in this 3-D US dataset were malignant. Since US is
known for its ability to detect mammographically occult cancers
and has recently been approved in the United States as an
adjunct screening modality for women with dense breasts, it

is important to assess the performance of our segmentation
methods for mammographically negative and mammographi-
cally positive lesions separately.

5 Results

5.1 Impact of the New Modifications to the Active
Contour Method: an Example

In this study, a new term Elocal [see Eq. (5)] was added to the
original active contour model. To illustrate the impact of this
term, Fig. 3 shows both contrast-enhanced and noncontrast breast

Fig. 3 (a–d) Noncontrast-enhanced images. (e–h) Contrast-enhanced images. (b and f) Research
specialist’s outlines. (c and g) Segmentations by our previous model. (d and h) Segmentations by
the proposed model. Note that these eight images are of the same patient (case), and they are displayed
in the central coronal plane through the lesion seed point. For this case, the proportion of fibroglandular
tissue is 12%.

Table 2 Segmentation results for contrast-enhanced and noncontrast-enhanced bCT.

Segmentation model
Performance in DICE

(mean� std)
Percentage of ≥0.7

DICE (%)

p-value of paired
t-test between the

two models

Contrast-enhanced bCT Benign cases (N ¼ 13) Previous model 0.81� 0.07 93 0.24
Proposed model 0.84� 0.09 93

Malignant cases (N ¼ 25) Previous model 0.80� 0.11 88 0.65
Proposed model 0.81� 0.08 92

All cases (N ¼ 38) Previous model 0.80� 0.10 90 0.30
Proposed model 0.82� 0.10 93

Noncontrast bCT Benign cases (N ¼ 49) Previous model 0.80� 0.10 89 0.005
Proposed model 0.83� 0.08 96

Malignant cases (N ¼ 80) Previous Model 0.76� 0.10 73 0.04
Proposed model 0.78� 0.12 85

All cases (N ¼ 129) Previous model 0.77� 0.10 79 0.0016
Proposed model 0.80� 0.11 89
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Table 3 Segmentation results for 3-D breast ultrasound.

Average size (mm) Segmentation model
Performance in DICE

(mean� std)
Percentage of
≥ 0.7 DICE (%)

p-value of paired
t-test between the

two models

Mammographically occult (N ¼ 54) 16.79� 13.20 Previous model 0.73� 0.15 77 0.57
Proposed model 0.72� 0.18 71

Mommographically positive (N ¼ 44) 19.41� 12.31 Previous model 0.69� 0.15 61 0.57
Proposed model 0.71� 0.13 63

All images (N ¼ 98) 17.97� 12.80 Previous model 0.72� 0.13 70 0.93
Proposed model 0.71� 0.16 68

Fig. 4 (a) The comparison of segmentation between the proposed and previous segmentation methods
on the contrast bCT benign dataset (N ¼ 13). (b) The comparison of segmentation between the proposed
and previous segmentations on the contrast bCT malignant dataset (N ¼ 25). (c) The comparison of
segmentation between the proposed and previous segmentations on the noncontrast bCT benign data-
set (N ¼ 49). (d) The comparison of segmentation between the proposed and previous segmentations on
the noncontrast bCT malignant dataset (N ¼ 80).
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CT images, manual delineations, and computer-determined
segmentations (using our previous and proposed methods) of
a lesion with a complicated shape.

For this example, the DICE values of our previous segmenta-
tion model were satisfactory, but were improved by including the
new term Elocal in the segmentation model for both contrast and
noncontrast images. As this example illustrates, the proposed seg-
mentation method was able to capture more shape detail.

5.2 Comparison of Previous and Proposed
Segmentation Models

We compared the proposed segmentation model, Eq. (6), to
our previous model, Eq. (1) (Tables 2 and 3). For the noncon-
trast bCT images, the proposed segmentation model obtained
significantly better segmentation with respect to our previous
model (p ≪ 0.05) for both malignant and benign lesions

(Table 2). It appeared to slightly improve the performance
for contrast bCT, but this improvement failed to reach statis-
tical significance (p ¼ 0.30). For the 3-D ABUS dataset
(Table 3), both models segmented the lesions well.
Figures 4 and 5 show the fraction of lesions correctly seg-
mented at various overlap (DICE) thresholds in bCT and
3-D ABUS, with several segmentation examples shown in
Figs. 7–9.

5.3 Segmentation Performance and Presenting
Fibroglandular Tissue

The relationship between the segmentation performance and the
proportion of fibroglandular tissue in the lesion vicinity on bCT
images is shown in Fig. 6 and Table 4. For noncontrast bCT,
the segmentation performance decreases when the proportion
of fibroglandular tissue exceeds 40%, but the DICE is still

Fig. 5 Segmentation performance in (a) 54 mammographically occult and (b) 44 mammographically
positive 3-D breast US images.

Fig. 6 Comparison of lesion DICE value for the previous and proposed segmentation models for (a) the
contrast-enhanced and (b) noncontrast bCT datasets across different fibroglandular density categories.
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above 0.7. Segmentation examples for different “local fibro-
density classes” are shown in Fig. 8.

5.4 ABUS Segmentation Performance for
Mammographically Occult and
Mammographically Positive Breast Cancer

Both our previous segmentation model and the proposed
model performed well for both mammographically occult

and mammographically positive breast cancers (Fig. 5 and
Table 3). There was no statistically significant difference
(Table 3) between the two segmentation methods
within each ABUS image category. However, overall,
the performance appeared to be slightly better for mammo-
graphically occult lesions than for mammographically
positive lesions for both segmentation procedures on the
ABUS images. Two segmentation examples are shown in
Fig. 9.

Fig. 7 A contrast-enhanced bCT image example. (a) Original volume of interest. (b) Research special-
ist’s outline. (c) Segmentation result by using previous procedure. (d) Segmentation result by using pro-
posed procedure. The proportion of fibroglandular tissue in the lesion vicinity is 29%.

Fig. 8 Three different noncontrast bCT segmentation examples for each of the fibroglandular density
classes. (a–d) 8% of fibroglandular proportion (low density). (e–h) 29% fibroglandular proportion (inter-
mediate density; this lesion is also depicted in Fig. 7). (i–l) 46% fibroglandular proportion (high density).
(b, f, and j) Research specialist’s outlines. (c, g, and k) Segmentation results by previous procedure. (d, h,
and l) Segmentation results by proposed procedure.
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6 Discussion and Conclusion
In this study, we modified our previous two-stage 3-D lesion
segmentation algorithm to allow for the inclusion of more
shape detail. The region-fitting energy term, which was intro-
duced in the new model, not only improved the delineation
of shape detail, but also helped smooth the lesion contour
and correct the contour evolution, if the main driving term
caused inaccuracies.

The proposed model showed statistically improved segmen-
tation performance for the noncontrast bCT images (p ≪ 0.05).
The previous model often missed shape details when a lesion
presented with a complex margin [e.g., Figs. 7(c) and 8(g)].
The improved ability to capture shape and margin characteristics
should be useful clinically, since such morphological informa-
tion plays an important role in diagnosis.38–43 Improvement in
diagnosis on noncontrast bCT images is important, since con-
trast-enhanced bCT requires the placement of an intravenous
and carries a risk of allergic reaction. Hence, the improved abil-
ity of the proposed method to capture shape details may have an
impact on future implementations in CAD and allow for more
accurate lesion classification. The proposed segmentation model

failed to yield significant improvement over our previous seg-
mentation model on contrast-enhanced bCT images, likely
because the conspicuity of cancers is significantly higher on
contrast-enhanced bCT (Prionas et al.7) and reasonable segmen-
tation performance with our prior methods was facilitated by
this conspicuity.

The computation time varied from case to case, depending
on the size of the lesion. The proposed segmentation model
requires a longer time for the segmentation process as com-
pared with the previous model, since an additional local energy
term is included. In Figs. 8(d) and 8(l), it took 208.8 and
710.9 s to reach the final contour, respectively. In general, seg-
mentation process is faster in ABUS than in bCT due to a
smaller number of voxels contained in each ABUS image
volume. In Figs. 9(d) and 9(h), it took 174.7 and 225.7 s,
respectively.

Breast density is a risk factor for breast cancer,41–43 and the
masking effect of dense tissue reduces the sensitivity of imaging
modalities in breast cancer diagnosis. Therefore, it is important
to successfully segment lesions within dense tissue. In contrast-
enhanced bCT, the segmentation performance appeared to

Fig. 9 Two examples of 3-D breast ultrasound segmentation on two cancerous lesions. (a–d)
Mammographically occult example. (e–h) Mammographically positive example. (b and f) Medical doc-
tor’s outlines. (c and g) Segmentation results by previous procedure. (d and h) Segmentation results by
proposed procedure. Unlike traditional ultrasound images displaying in axial or sagittal plane, the images
shown in this figure are displayed in coronal plane.

Table 4 Segmentation performance on bCT across different fibroglandular density categories.

Proportion of fibroglandular tissue in
lesion neighborhood

<20% 20% to 40% >40%

DICE� std Paired t-test p-value DICE� std Paired t-test p-value DICE� std Paired t-test p-value

Contrast-enhanced
bCT

Previous model 0.81� 0.08 0.15 (N ¼ 20) 0.78� 0.12 0.57 (N ¼ 15) 0.84� 0.01 0.23 (N ¼ 3)
Proposed model 0.82� 0.06 0.77� 0.13 0.82� 0.01

Noncontrast bCT Previous model 0.77� 0.09 ≪0.05 (N ¼ 56) 0.77� 0.16 0.01 (N ¼ 55) 0.71� 0.15 0.98 (N ¼ 18)
Proposed model 0.80� 0.08 0.79� 0.12 0.71� 0.14

Journal of Medical Imaging 014501-9 Apr–Jun 2014 • Vol. 1(1)

Kuo et al.: Segmentation of breast masses on dedicated breast computed tomography. . .



decrease with higher volume glandular fraction (Table 4).
However, the DICE for higher density (>40%) breasts is still
above 0.75 (Table 4, note that there are only three cases in
the high-density class for contrast-enhanced bCT). In noncon-
trast bCT, the segmentation performance was affected when the
proportion of fibroglandular tissues was high, but the DICE was
still above 0.7 for both segmentation models (Table 4).
According to Table 4, there is not much improvement for the
>40% category. Due to the similar x-ray attenuation of
tumor masses and fibroglandular tissues, the proposed segmen-
tation model could yield slightly oversegmented results and
leads to a decrease in DICE, since the proposed model possesses
better ability to capture edge details [Figs. 8(i)–8(l)]. Overall,
both segmentation models behaved similarly with respect to
the volume glandular fraction.

For 3-D breast ultrasound, our results showed similar good
performance for the previous and proposed segmentation
models (Table 3). The presence of ultrasound speckle and aniso-
tropic image resolution may be the cause of the lack of improve-
ment. It should be noted, however, that the performance of both
models was quite satisfactory, demonstrating the robustness of
our segmentation methods across 3-D imaging modalities since
they were initially developed for bCT, and that ultrasound-
specific preprocessing or model refinements could potentially
further improve segmentation.

Limitations to this study include that for each imaging
modality, only a single expert outlined the lesions which defined
the reference standard for segmentation. In future studies, we
will investigate how the different segmentation methods affect
computerized lesion characterization and classification for
malignancy. Furthermore, we did not attempt to optimize our
methods for the ABUS images, and further ultrasound-modal-
ity–specific improvements to the model may be possible. On the
other hand, it is important to note that the current study dem-
onstrated robustness across different 3D imaging modalities,
holding promise for potential future application to other 3D
breast images.

To conclude, we presented a 3-D segmentation method
adapted and refined from our previous model developed for con-
trast-enhanced breast CT13 and evaluated the methods across
two emerging 3-D breast imaging modalities—dedicated breast
CT (both contrast-enhanced and noncontrast bCTs) and ABUS.
We obtained promising results that warrant future implementa-
tion within computer-aided diagnosis software platforms and
quantitative imaging.

Appendix
In the appendix, we provide the derivation of the level-set evo-
lution function [Eq. (7)] from Eq. (6). We start with the need to
determine the level-set function φ that minimizes the energy
function by dEsnake∕dφ ¼ 0. In Eq. (6), the energy function com-
bines a main driving term [the first term in Eq. (1)], a regulari-
zation term [the second term in Eq. (1)], and a region-fitting
energy term [Eq. (5)]. For convenience, we denote the main
driving term as A, the regularization term as B, and the
region-fitting energy term as C. To derive Eq. (7) from
Eq. (6), one needs to compute the associated Euler–Lagrange
equation [Eq. (6)] using the first variation of calculus.44 The
minimum of Eq. (6) occurs when the following condition is
satisfied:

d

dx

�
∂ðAþ Bþ CÞ

∂φx

�
þ d

dy

�
∂ðAþ Bþ CÞ

∂φy

�

þ d

dz

�
∂ðAþ Bþ CÞ

∂φz

�
−
∂ðAþ Bþ CÞ

∂φ
¼ 0: (9)

We address A, B, and C separately. For term A

d

dx
∂νgHαðφÞ

∂φx
þ d

dy
∂νgHαðφÞ

∂φy
þ d

dz
∂νgHαðφÞ

∂φz
−
∂νgHαðφÞ

∂φ

¼ νgHα
0ðφÞ ¼ νgδαðφÞ; (10)

where δα is the derivative of Hα with respect to φ

δα ¼
1

π
·

α

α2 þ x2
: (11)

For term B, the partial derivative of ∂B∕∂φx with respect to x
is given as:

d

dx

∂μgs
h
1
2
ðj∇φj − 1Þ2

i
∂φx

¼ μgs
d

dx

�
φx −

φx

k∇φk
�
; (12)

and the partial derivative of ∂B∕∂φy with respect to y and the
partial derivative of ∂B∕∂φz with respect to z are similarly
derived. Given

∂μgs
h
1
2
ðj∇φj − 1Þ2

i
∂φ

¼ 0; (13)

we have

μgs

�
d

dx

�
φx −

φx

∇φ

�
þ d

dy

�
φy −

φy

∇φ

�
þ d

dz

�
φz −

φz

∇φ

��

¼ μgs

�
∇2φ − div

�
∇φ
j∇φj

��
: (14)

For term C, we employ the steepest descent method45 to
derive the associated Euler–Lagrange equation. By fixing the
approximated intensities f1ðaÞ and f2ðaÞ, the minimum of
the region-fitting energy term C occurs when

−δαðφÞðλ1a1 − λ2a2Þ ¼ 0; (15)

where

ai¼ λ1

Z
Gσ2ða−rÞjIðrÞ−f1ðaÞj2dr; i¼1;2: : : (16)

Using steepest descent method, assembling Eqs. (10), (14),
and (16), we reach the level-set formulation of the contour evo-
lution function Eq. (7) with an added time-step constant τ on the
first two terms.

Now, we give the derivation of the approximated intensities
a1 and a2. It is also obtained by using the steepest descent
method to minimize the region-fitting energy function with
the level-set function φ fixed. Given this condition, one can
find the minimum of the energy function C with respect to
f1ðaÞ and f2ðaÞ when the following satisfies:
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Z
Gσ2ðr− aÞMi½φðrÞ�jIðrÞ− fiðaÞjdr ¼ 0; i ¼ 1;2: : : ;

(17)

From Eq. (17), we can obtain fiðaÞ as

fiðaÞ ¼
Gσ2ðaÞ ⊗ ½MiðφðrÞ�IðrÞÞ

Gσ2ðaÞ ⊗ Mi½φðrÞ�
; i ¼ 1; 2: (18)
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