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EPIGRAPH

We are just an advanced breed of monkeys on a minor planet of a very average star. But we can

understand the Universe. That makes us something very special.

—Stephen Hawking
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ABSTRACT OF THE DISSERTATION

Statistical Approaches for Big Data Analytics and Machine Learning:
Data-Driven Network Reconstruction and Predictive Modeling of Time Series

Biological Systems

by

Farzaneh Farhangmehr

Doctor of Philosophy in Engineering Science (Mechanical Engineering)

University of California, San Diego, 2014

Professor Daniel M. Tartakovsky, Chair

Ever-increasing quantity of data generated by modern technologies necessitates the de-

velopment of advanced approaches for big data analytics. The ultimate goal of such approaches

is to capture insightful patterns and turn them into actionable information. This information not
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only reveals the hidden patterns underlying complex systems but also facilitates the design and

development of new mechanisms to overcome multidisciplinary challenges. The data mining

process can be divided into two steps: network reconstruction - to determine the structure and

details of interactions, and predictive modeling - to represent constructed networks as predictive

models capable of predicting the performance of systems under new conditions.

The main goal of this research is to develop algorithms and methodologies to overcome

challenges in big data analytics. Statistical approaches for data-driven network reconstruction

and predictive modeling developed in this research have several advantages: First, unlike most

data-mining methods, they do not make any assumptions about the linearity, functional or para-

metric forms of variables. Second, they decrease the complexity of computations for time-series

data sets. Finally, these algorithms are applicable to multiple systems, ranging from social net-

works to complex biological systems which are the main focus of this research.

We propose a Bayesian and information-theoretic approach for data-driven network re-

construction and predictive modeling of phosphoprotein-cytokine signaling networks in RAW

264.7 macrophages. To decrease computational complexities associated with dynamic networks,

an algorithm is presented for network reconstruction of large-scale systems from time-course

microarray data sets. The applicability of this algorithm is demonstrated by constructing the net-

work of pathway interactions in yeast cell-cycle. This algorithm is implemented to also capture

predictive models of dynamic networks and applied to reverse engineer E. coli under Ampicillin.

Finally, we demonstrate a data-mining methodology for linking changes in gene expressions and

health over time by reverse engineering a GEO dataset in which gene expressions of Multiple

Sclerosis (MS) patients under Interferon-β therapy have been measured over a 10-year time

interval.
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Chapter 1

Introduction

1.1 Motivation

Ever-increasing quantity of data generated by modern technologies necessitates the de-

velopment of advanced approaches for big data analytics to help understand the underlying

mechanisms and networks. The main goal of all data mining techniques is to dig into data,

extract the insightful patterns and turn them into actionable information. The process of data

mining and reverse engineering of complex networks can be categorized into two main tasks:

network reconstruction - to determine the structure and details of interactions, and predictive

modeling - to represent the constructed network as a predictive model capable of predicting

outputs for a given input.

Data mining techniques are typically grouped into three categories: optimization-based

methods, regression analysis and statistical approaches. Optimization-based methods minimize

the objective function on a feasible set. Regression techniques focus on the relationship between

dependent variables and one or more independent variable(s). Finally, statistical approaches

1
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analyze statistical dependencies of interactions by using correlation measurements as metrics to

identify significant connections.

Since most of the above-mentioned techniques have been developed to analyze steady-

state data sets, only a few of them work efficient for dynamic networks. In addition, most of these

methods require assumptions of the linearity or functional and parametric forms of the variables.

These shortcomings necessitate development of new algorithms and methodologies for reverse

engineering of large-scale networks. A proper data-mining approach should not only accurately

extract the hidden patterns behind massive amounts of data but also minimize the computational

time and complexity. Our efforts are focused on developing such methodologies and applying

them to several problems in computational systems biology and bioinformatics.

1.2 Challenges

The research described in the subsequent chapters is motivated by the following chal-

lenges.

Simplifying assumptions: As mentioned before, most of the current approaches for reverse

engineering of big data make assumptions about the linearity or functional and parametric forms

of the system. The majority of these methods often fail to reach their objectives when these

assumptions are violated. We develop probabilistic methods capable of dealing with both linear

and nonlinear systems, without resorting to simplifying assumption about their structure.

Computational cost: Analysis of large-scale data sets is a complex endeavor typically asso-

ciated with significant computational cost. Developing specific methodologies to decrease these

complexities is one of the most important challenges in data science. The proposed algorithms
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decrease the computational cost and complexity by identifying potentially inter-related compo-

nents and by using copula entropy as an estimator of mutual information.

Time-course data sets: Dealing with dynamic systems and time-course data sets is one of the

most challenging task in data mining, primarily, due to their (often prohibitive) computational

cost. Since most of data mining approaches are developed to deal with steady-state data, only

a few of them can accurately and efficiently address challenges in extracting hidden patterns

of time-course data sets. We develop algorithms specifically designed to address challenges in

reverse engineering of dynamic networks from time-course data sets.

1.3 Objectives

The research described in the subsequent chapters aims to

1. Develop an information-theoretic method to data-driven network reconstruction, which

does not require assumptions about the nature of an underlying complex system;

2. Develop a probabilistic method to infer a network of interactions in dynamic systems from

time-course data sets, which is computationally tractable; and

3. Develop a probabilistic method for predictive modeling and use it to reconstruct predictive

network models of biological systems.

1.4 Dissertation Outline

Information-theoretic approaches to data-driven network reconstruction. Chapter 2 of

this dissertation presents an information-theoretic-based model to data-driven network recon-
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struction of complex systems. Our approach provides a statistical method to reconstruct the

networks of interactions without the necessity of taking the linearity, functional and paramet-

ric forms of variables into account. We use this method to overcome a significant challenge in

systems biology which is the reconstruction of biological networks from measured data of dif-

ferent components. We demonstrate the applicability of the proposed approach by constructing

phosphoprotein-cytokine signaling networks in RAW 264.7 macrophage cells. Since cytokines

are secreted upon activation of a wide range of regulatory signals transduced by the phosphopro-

tein network, identifying these components can help identify regulatory modules responsible for

the inflammatory responses.

Our approach to capture phosphoprotein-cytokine signaling patterns is based on estima-

tion of mutual information of interactions by using kernel density estimators. Mutual informa-

tion provides a measure of statistical dependencies between interacting components. Then, using

the topology of the derived network, we develop a linear data-driven parsimonious input-output

model of the phosphoprotein-cytokine network. For the phosphoprotein-cytokine network, this

approach not only captures most of the known signaling components involved in cytokine release

but also predicts new signaling components involved in the release of cytokines. The results of

this study are important for gaining a clear understanding of macrophage activation during the

inflammation process.

A Bayesian and information-theoretic approach to data-driven predictive modeling and

network reconstruction. In chapter 3, we present a probabilistic algorithm, which employs

information-theoretic and Bayesian approaches for predictive modeling and network reconstruc-

tion of complex systems. This algorithm does not assume the linearity of an underlying system

and can be extended to dynamic systems.
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We deploy this method to reconstruct the network model of signaling phosphoprotein-

cytokine in Raw 264.5 macrophage (initially constructed in Chapter 2) from a data set including

the concentrations of signaling phosphoproteins and to predict probability distributions of the

released cytokines. To quantify the accuracy and robustness of this methodology, we compute

the values for accuracy and F-measure of the predicted model and compare the reconstructed

network with the initial and predicted networks obtained by other methods relying the linearity

assumptions. The results of this study provide a probabilistic and systematic framework for

nonlinear predictive modeling of complex networks.

Development of a statistical framework for network reconstruction from time-course data.

In chapter 4, we address a challenging task of building network models from time-course data

sets. A properly developed algorithm for time-course data sets should reduce the computation

complexity and computational cost by identifying and avoiding unnecessary calculations. We

introduce a probabilistic algorithm, which is designed to overcome these challenges without

relying on assumptions about the nature (linearity, functional and parametric forms, etc.) of a

system.

We demonstrate the applicability of this algorithm by employing it in systems biology.

Specifically, we build a network model of genetic pathway interactions in yeast cell-cycle from

time-course microarray data. Grouping genes into KEGG pathways, identifying potentially de-

pendent pathways, and using copula entropy to measure the maximum mutual information of

candidate pathways over all possible time intervals, helps us to identify the functional behavior

and topology of significant pathway interactions in yeast cell cycle while significantly decreasing

the computational cost and complexity.
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Statistical approach to reverse engineering of dynamic networks from time-course mi-

croarray data. In Chapter 5, we combine the two algorithms described in Chapters 3 and

4 to reconstruct a network of gene interactions from a time-course data set of E. coli. This al-

lows us to both capture the structure of parameters behind a biological system and predict the

system’s response to a certain condition.

The proposed method doesn’t make any assumptions about the system and decreases

the computational complexity by identifying the potentially related interactions. It uses copula

entropy to measure statistical dependencies and then builds a network model using maximum

mutual information over all possible time intervals. Using this network model and the predictive

process suggested by this study, we estimate the performance of our system for any input. The

developed methodology enables one to capture, predict and design biological mechanisms and

responses.

Reverse Engineering of Gene Expression Data from Multiple Sclerosis Patients Undergoing

Interferon-β Therapy. In Chapter 6 we apply the algorithm developed in Chapter 5 to a GEO

data set, which consists of the gene expressions of multiple sclerosis (MS) patients undergoing

Interferon-β treatment over a time interval of ten years.

Reconstruction of the network of gene interactions for MS patients undergoing Interferon-

β therapy helps us understand the impact of Interferon-β therapy on humans. It also provides

a potential diagnostic tool and therapeutic solutions for problems caused by changes in gene

expressions for these patients. The suggested algorithm can be used in pharmaceutical industry

for design and development processes, as well as for making informed decisions and developing

mechanisms to forecast and overcome potential pitfalls.



Chapter 2

Information Theoretic Approach to

Complex Biological Network

Reconstruction: Application to

Cytokine Release in RAW 264.7

Macrophages

7
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Important Symbols used

f Probability Density Function
I Mutual Information
h Bandwidth
fh Kernel Density Estimator Using Bandwidth h
MISE Mean Integrated Squared Error
I0 Threshold
p p-Value
R2 Coefficient of Determination
RMSE Root Mean Squared Error

2.1 Introduction

Cellular functions and biological processes are the result of and are regulated by com-

plex biochemical reactions within and between the cells [124, 74]. Bimolecular techniques

can be used to measure concentrations of various molecular components, such as proteins and

metabolites, allowing a partial reconstruction of the networks involving these components. A

goal of systems biology is to reconstruct these underlying networks and to infer associated bi-

ological phenomena from large scale measurements [15]. More specifically, reconstruction of

biological networks yields a framework for understanding the relationship between molecular

measurements and higher-level phenotypes [4, 54].

Analyses of diverse read-outs from cells allow one to map an input onto responses asso-

ciated with a given phenotype, i.e., to reconstruct the underlying biological network that results

in the phenotype. Current computational approaches for network reconstruction include princi-

pal component regression (PCR) [58], partial least squares (PLS) regression [69], linear matrix

inequalities (LMI) [30], and Bayesian Networks (BNs) [95]. These approaches are briefly de-

scribed below.

PCR is a regression procedure that uses a principal component analysis to estimate re-
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gression coefficients [58]. Usually, principal components with the highest variance are selected

in three steps. First, a principal component analysis is performed on the data matrix of explana-

tory variables. Second, a least-squares regression is applied between the selected components

(latent variables) and the output/response variables. Finally, the model’s parameters are calcu-

lated for the selected explanatory variables by combining the two steps [111]. In contrast to PCR,

PLS regression captures the maximum variance in the output variables while capturing sufficient

variance in the input variables [69, 129]. PLS makes a linear model by projecting the input and

output variables onto a new space [138, 32]. LMI converts nonlinear convex optimization prob-

lems into linear optimization problems [19]. The basic idea of the LMI is to approximate a given

input/output modeling problem posed as a quadratic optimization problem with a linear objective

and so-called LMI constraint [30]. Approaches such as PCR and PLS essentially work based on

a linear model template. Bayesian networks are graphical models that describe causal or pseudo-

causal interactions between variables [95, 43]. Nodes of a BN represent random variables in the

Bayesian sense and edges represent conditional dependencies among the random variables [50].

BNs have a number of drawbacks related to the so-called representation problem: they require

one to choose between discrete or continuous variables and parametric or non-parametric forms

of the conditional probability distribution, and to decompose the joint probability distribution

into conditional probability distributions among the relevant variables [105, 22].

Information-theoretic approaches provide a non-parametric alternative to Bayesian net-

works. They construct parsimonious models of biological networks by establishing statistical de-

pendencies of interactions based on their uncertainty reductions [20, 70, 52]. Unlike PCR/PLS,

this approach does not make any assumptions about the linearity of the system and the func-

tional form of the statistical distribution of the variables [126, 97]. We describe our information-
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theoretic approach to the reconstruction of biological networks in 2.2. This method is used

in 2.3 to develop a parsimonious model of phosphoprotein-cytokine network in RAW 264.7

macrophages. In 2.4 and 2.5, we compare the regulatory components captured by our approach

with those identified by previous approaches and the knowledge available in scientific literature.

2.1.1 Shannon’s Information Theory

Building upon Hartley’s conceptual framework [47], which relates the information of

a random variable with its probability, Shannon [119] defined entropy of a random variable in

terms of its probability distribution. For a random variable X given a random sample {x1, ...,xn}

with probabilities P(xi), entropy H is defined as

H(X) =
n

∑
i=1

P(xi) ln[P(xi)]. (2.1)

Shannon’s information theory defines mutual information as the amount of information about

a random variable X that can be obtained by observing another random variable Y . This defi-

nition implies that the information that Y provides about X reduces uncertainty about X due to

the knowledge of Y . Intuitively, mutual information infers the information that Y and X share

by measuring how much knowing one of the variables can reduce the uncertainty about the

other [64]. Then, the mutual information of Y relative to X , or X relative to Y , is given by

I(X ,Y ) = H(X)+H(Y )−H(X ,Y ) = I(Y,X). (2.2)

Mutual information provides a metric for measuring statistical dependencies of interactions. It

has several advantages over other methods [20, 70, 52]: It does not make any assumption about
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the functional form of the statistical distribution of variables [97]; and, information theoretic

approaches are not dependent on the linearity assumption of the model for the ease of computa-

tion [126].

2.1.2 Threshold Selection on Mutual Information

A parsimonious model of a complex system has to capture a necessary and sufficient

model of the entire system, while minimizing the number of interacting components, from the

measured data for the system. The ultimate goal of data-driven network reconstruction methods

is to achieve such a necessary and sufficient model. Information theoretic approaches analyze

the statistical dependencies of interacting components by measuring the mutual information co-

efficients of interactions. A mutual information network of a complex system is obtained by

computing the mutual information matrix (MIM) and selecting the threshold of mutual informa-

tion (TMI). MIM is a square matrix, whose elements MIMi j = I(Xi,Yj) are the mutual informa-

tion between the variables Xi and Yj. TMI defines the threshold of statistical dependencies of

interactions. Choosing an appropriate TMI is a nontrivial problem. A straightforward but com-

putationally demanding approach is to perform permutations of measurements several times and

to recalculate a distribution of the mutual information for each permutation. Then permuted dis-

tributions are averaged and the largest mutual information in the averaged permuted distribution

represents the threshold [13]. Some of the algorithms for network reconstruction and threshold

selection in biological networks are discussed below.

The Relevance Network (RelNet) constructs a network in which a pair of random vari-

ables Xi and Yj is linked by an edge if the mutual information I(Xi,Yj) is larger than a given

threshold [14]. The Context Likelihood of Relatedness (CLR) algorithm derives a score from
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the empirical distribution of the mutual information for each pair of random variables Xi and Yj

[35]. CLR estimates a score

Zi j =
√

Z2
i +Z2

j (2.3)

where

Zi = max
[

0,
I(Xi,X j)−µi

σi

]
. (2.4)

Here µ and σ are the mean and standard deviation of the distribution of the mutual information

of Xi and all other variables Yj, ( j = 1, . . . ,n).

The Minimum Redundancy Network (MRNet) relies on the conditional mutual infor-

mation to make inference. MRNet is applied to determine regulatory targets and pathways.

If two random variables X and Y have a large mutual information but are conditionally inde-

pendent given a third random variable Z, MRNet considers no statistical dependency between

them [104]. ARACNE (Algorithm for the Reconstruction of Accurate Cellular NEtworks) as-

signs to each pair of nodes a weight equal to their mutual information and removes the weakest

edges by applying a proper threshold [83]. ARACNE applies Kernel Density Estimation (KDE)

approaches to measure mutual information between nodes and selects the bandwidth of kernels

by minimizing the Kullback-Leibler distances between kernel density distributions of variables

before and after removing the i-th observation. It also applies an information-theoretic property

called the Data Processing Inequality (DPI) to remove statistically weak connections. DPI states

that, if Xi interacts with X j through a random variable Xk then

I(Xi,X j)< min[I(Xi,Xk), I(X j,Xk)]. (2.5)
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We employ an information-theoretic approach both to reconstruct complex biological

networks and to establish a parsimonious model of the entire system. Our strategy is to deter-

mine mutual information of interactions using kernel density estimators based on an unbiased

cross-validation [121] estimation of kernel bandwidths and to analyze statistical dependencies

of nodes by selecting a threshold obtained by applying the large deviation theory [20] employed

by ARACNE [83].

2.2 Information-Theoretic Approach for Biological Network Recon-

struction

As mentioned before, MI measures the information that X and Y share by measuring

how much knowing one of these variables will reduce the uncertainty of the other and reflects

the statistical dependencies of two variables. Hence, higher MI between an input and an output

indicates a larger reduction in uncertainty and suggests a stronger input-output connection. Small

(statistically zero) MI between two random variables indicates that variables are independent.

Measuring mutual information with a kernel density estimator (KDE)—a non-parametric

method for estimating probability densities of variables—is more advantageous than histogram-

based methods in terms of a better mean square error rate of convergence of the estimate to

the underlying density [109]. A disadvantage of KDE is the need to specify an optimal kernel

bandwidth [90]. Once the optimal kernel bandwidth is obtained and the MI coefficients of the

network are measured using KDE, the next step is to select a proper threshold to determine the

boundary of statistically significant connections and the weak connections to be removed. Fol-

lowing these three steps, information theoretic model of the network is obtained. It provides a
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parsimonious network in which the number of false connections are reduced considerably.

The following subsections present a description of the above-mentioned steps to create

a data-driven model of complex networks. These steps are applied to decipher, in a lumped

manner, regulatory mechanisms involved in the release of 7 cytokines by activation of 22 sig-

naling proteins in RAW 264.7 macrophage. The Alliance for Cellular Signaling (AfCS) has

generated a systematic profiling of signaling responses and cytokine releases in RAW 264.7

macrophage [44, 1]. This dataset consists of data from stimulation of macrophages by both

Toll and non-Toll receptor ligands. The objective is to create an input-output model, in which

signaling responses (22 inputs) are used to predict cytokine release (7 outputs).

2.2.1 Nonparametric Estimations of Mutual Information

Kernel Density Estimation (KDE) is a non-parametric method to determine the Proba-

bility Density Function (PDF) of a random variable. Given a sample {x1, ...,xn} of a univariate

random variable X with an unknown PDF fX(x), a kernel density estimator (KDE) estimates the

shape of this function as [109]

f (x) =
1

nh2
√

2π

n

∑
i=1

exp
[
−(x− xi)

2

2h2

]
, (2.6)

where h is the kernel bandwidth and n is the size of the sample. A bivariate kernel density

function of two random variables X and Y given their samples {x1, ...,xn} and {y1, ...,yn} is

defined as

fXY (x,y) =
1

2nh2π

n

∑
i=1

exp
[
−(x− xi)

2 +(y− yi)
2

2h2

]
. (2.7)
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The mutual information of X and Y is computed as [87]

I(X ,Y ) =
1
n

n

∑
i=1

ln
[
−

fXY (xi,y j)

fX(xi) fY (y j)

]
. (2.8)

2.2.2 Selection of Optimal Kernel Bandwidth

The use of KDEs to evaluate the MI coefficients requires the optimal selection of the

kernel bandwidth h. The main criterion used to determine the optimal kernel width is the min-

imization of the expected risk function, defined as the mean integrated squared error (MISE)

between the computed and true (unknown) distributions [109, 90],

MISE(h) = E
∫
[ fh(x)− f (x)]2 dx, (2.9)

where fh(x) is the kernel density estimate of the PDF fX(x) with bandwidth h. MISE cannot

be used directly since it involves the unknown density function fX(x). To address this issue,

several algorithms have been developed to get an estimate of the optimal bandwidth. One of the

most commonly used algorithms employs a cross-validation type approach [132]. Based on this

approach, if fh(x) is the kernel density estimation at x for a bandwidth of h using all of the data

to fit the KDE, then a cross-validated estimate of the bandwidth is the value for h that minimizes

[122, 121] ∫
f 2
h (x)dx− 2

n

n

∑
i=1

f(−i),h(xi). (2.10)

Here f(−i),h(xi) is the kernel density estimator using the bandwidth h at xi obtained after removing

ith observation. For two vectors X and Y , the cross-validation method determines the optimal

kernel width for each pair of randomly selected set of n pairs of variables and the mean of
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optimal kernel widths for these n pairs is used as an approximated kernel width for the entire

dataset [133].

2.2.3 Network Reconstruction and Threshold Selection

Once the optimal kernel width has been selected and the MI matrix has been computed,

the next step is to find an appropriate threshold of MI, I0. Based on large deviation theory used

by ARACNe algorithm [83], the probability that an empirical value of mutual information I is

greater than I0, provided that its true value is Ī = 0, is

P(I > I0 | Ī = 0)≡ p∼ e−cNI0 (2.11)

where c is a constant. Taking the natural logarithm of both sides yields

ln p = a+bI0 (2.12)

where b is proportional to the sample size N. Therefore, ln p is a linear function of I0 with

the slope b. Using these results, for any dataset with sample size N and a desired p-value, the

corresponding threshold can be obtained where a and b are fitted from the data. This threshold

is used to remove statistically weak edges. Since each cytokine is explicitly an output we do not

employ any further analysis such as DPI [20] to identify and remove indirect connections.

Using the network thus obtained, a predictive model is developed (see Appendix A for

detail).
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2.3 Application to Phosphoprotein-Cytokine Signaling Network

We employ this information theoretic approach to to reconstruct the phosphoprotein-

cytokine network in RAW 264.7 macrophages. To achieve this goal, the first step is the creation

of the MI matrix (MIM) interactions for each Toll and non-Toll data set separately and then

finding a proper threshold for each network.

Macrophages play key roles in both innate and adaptive immunity, regulating the im-

mune responses and the development of acute and chronic inflammations by producing a wide

array of powerful chemical substances and regulatory factors such as cytokines [89]. Cytokines

are a group of proteins and act as mediators between cells. Cytokines locate and interact with

the target immune cells by binding to their receptor [114, 40]. The release of immune-regulatory

cytokines is regulated by a complex signaling network [125, 107]. Multiple stimuli generate

different signals and these signals generate different cytokine responses. Clear delineation of

these signaling pathways is a prerequisite for understanding the causes of cytokine releases.

In order to determine the signaling components involved in the cytokine release, we

used the AfCS data on the phosphoproteins and cytokines under Toll and non-Toll conditions.

The information theoretic approach was employed to construct a reduced model that predicts

the responses of seven cytokines (Tumor Necrosis Factor alpha or TNFα; Interleukin-1α or

IL-1α; Interleukin-6 or IL-6; Interleukin-10 or IL-10; Granulocyte Macrophage Colony Stim-

ulating Factor or GM-CSF; Regulated on Activation, Normal T Expressed and Secreted or

RANTES; and Macrophage Inflammatory Protein-1α or MIP-1α) from the activation of 22

signaling proteins in RAW 264.7 macrophages. The latter include Signal Transducers and Ac-

tivator of Transcription (STAT) 1α (STAT1α), STAT1β , STAT3, STAT5, Ribosomal Protein S6

(Rps6), Ribosomal S6 kinase (RSK), Glycogen Synthase Kinase (GSK) 3A (GSK3A), GSK3B,
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Extracellular-signal Regulated Kinases (ERK) 1 (ERK1), ERK2, cyclic Adenosine Monophos-

phate (cAMP), c-Jun N-terminal Kinases (JNK) long (JNK lg), JNK short (JNK sh), AKT, p40

Phagocyte Oxidase (p40Phox), Ezrin [Ezr]/Radixin [Rdx](Ezr/Rdx), Membrane-organizing Ex-

tension Spike Protein (Moesin or MSN), P38, Sma and Mad related proteins 2 (SMAD2), Nu-

clear Factor Kappa-light-chain-enhancer of activated B cells p65 (NF-κβ p65), Protein Kinase

C Delta (PKCD) and Protein kinase Cµ2 (PKC µ2).

Our data consist of Toll and non-Toll sets. A reduced model of each set was obtained

by applying the principles of information theory described above. Combining these two models,

we obtained the network model based on the entire data set. The resulting network provides

a parsimonious phosphoprotein-cytokine model, in which the number of signaling components

involved in cytokine releases is minimized considerably. This model not only successfully cap-

tures most of the known signaling components involved in cytokine releases, but also predicts

new signaling components involved in releases of cytokines.

2.4 Results

The proper kernel bandwidth has been estimated by applying the above-mentioned cross-

validation approach (Eq. (2.10)). For the Toll data set, the bandwidth h = 0.14 and for the

non-Toll data set, h = 0.17. Figure 2.1 shows the probability density functions of 7 released cy-

tokines, as inferred by the KDE in Eq. (2.6) computed through the MATLAB function ksdensity

[2] using the estimated value of h. All of the estimated densities are highly non-Gaussian. In this

figure, the x-axis shows the measured values of cytokines after being normalized and the y-axis

demonstrates their densities by applying KDE.

Using these kernel density estimators, we used Eq. (2.6) to compute the MI coefficients
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of all protein-cytokine connections for the Toll and non-Toll datasets. Figure 2.2 shows these

coefficients as a bar-graph, with the corresponding thresholds shown by the dashed lines (I0 =

0.19 for Toll data and I0 = 0.17 for non-Toll data). The MI coefficients below these thresholds

are considered to be statistically insignificant and discarded without any significant impact.

Figure 2.3 shows the reconstructed networks obtained from the non-Toll (left panel and

orange nodes) and Toll (right panel and pink nodes) data for 22 signaling phosphoproteins and 7

cytokines. These two networks are combined to yield the network of the entire system, which is

shown in Figure 2.4. Blue nodes in Figure 2.4 show phosphoproteins involved in both datasets.

This network captures most of the known signaling components involved in cytokine releases

and confirms the potentially important novel signaling components that have been suggested

recently by other methods, such as PCR [107]. Our approach also identifies new signaling

components involved in the release of cytokines, including Ribosomal S6 kinase on TNFα .

Since phosphoproteins may also have regulatory impacts on other phosphoproteins,

the above mentioned process is applied again to capture all the significant phosphoprotein-

phosphoprotein and phosphoprotein-cytokine connections in one network. The mutual infor-

mation matrix of all interactions is built again and the proper kernel bandwidth and threshold

is selected (h = 0.14 and I0 = 0.20 for Toll data and h = 0.17 and I0 = 0.17 for non-Toll data).

Figure 2.5 shows the reconstructed networks obtained from the non-Toll (left panel and orange

nodes) and Toll (right panel and pink nodes) and Figure 2.6 is the final network obtained by com-

bining the two networks in Figure 2.5 containing significant phosphoprotein-phosphoprotein and

phosphoprotein-cytokine connections in the entire system.

To demonstrate the robustness of our results, this network is built again by capturing

the networks of each cytokine individually and combining the seven reconstructed networks.
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Figure 2.7 shows the networks obtained from node-by-node analysis for TNFα (left panel) and

IL-6 (right panel). In comparison with the network of Figure 2.6, such a network does not

capture the regulatory effect of PKCµ2 on G-CSF for Toll-data and cAMP on IL-6 and AKT

on TNFα from non-Toll data. As the lower panel in Figure 2.2 shows, the mutual information

of these interactions are very close to the selected threshold. All other connections present in

Figure 2.6 are also included in such a network.

Figure 2.1: Kernel density estimations (y-axis) of seven released cytokines (x-axis) in RAW264.7
macrophage cells upon stimulation with ligands, using kernel bandwidth h = 0.14 (Toll data).
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Figure 2.2: Mutual information of all phosphoprotein-cytokine pairs from Toll (the upper bar)
and non-Toll (the lower bar) datasets. Thresholds (I0 = 0.19 for Toll data and I0 = 0.17 for
non-Toll data) are shown by dashed lines.

Figure 2.3: Reconstructed networks of signaling phosphoproteins-cytokines obtained from the
non-Toll (left panel with orange nodes for the phosphoproteins) and Toll (right panel with pink
nodes for the phosphoproteins) data.
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Figure 2.4: The reconstructed phosphoprotein-cytokine network obtained by combining net-
works from non-Toll dataset (orange nodes) and Toll da-taset (pink nodes). Blue nodes are
phosphoproteins involved in both datasets and white nodes represent the cytokines (outputs).
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Figure 2.5: Reconstructed networks of phosphoprotein-phosphoprotein / phosphoprotein-
cytokine obtained from the non-Toll (left panel and orange nodes) and Toll (right panel and
pink nodes) data.

2.5 Discussion

The information theoretic approach accurately identifies the main signaling phospho-

proteins involved in cytokine release (Figure 2.4) and the corresponding linear model predicts

the quantitative levels of cytokine releases (Figure A.1) reasonably well. We analyzed both Toll

and non-Toll datasets. Non-Toll data is required to identify the regulatory effects of STAT1α ,

STAT1β , STAT3, STAT5 and cAMP and Toll-data provides information about PKCµ2, JNK lg,

JNK sh and NF-κβ P65 and ERK2. ERK1, AKT, P38 and RSK are identified as significant in

both datasets. We provide a comparison of the regulatory components necessary for cytokine

releases identified by the information theoretic approach and other computational methods and

biochemical knowledge available in literature such as PCR with statistical significance testing

[107]. The results of this comparison are summarized in Table 2.1. Activated macrophages

secrete cytokines [78]. Various pathways transmit the signals that initiate cytokine production
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Figure 2.6: The reconstructed phosphoprotein-phosphoprotein/cytokine network from combin-
ing networks from non-Toll dataset (orange) and Toll dataset (pink).
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Figure 2.7: Node-by-node reconstructed networks of TNFα(left panel) and IL-6 (right panel)
after combining non-Toll dataset (orange nodes) and Toll dataset (pink nodes). Blue nodes are
involved in cytokine regulation from both datasets and green nodes are not directly involved in
cytokine regulation.

[120, 66]. Cytokines are classified based on their functions or their sources [78, 101]. They can

be grouped into anti-inflammatory and pro-inflammatory cytokines based on their functional

role in inflammatory responses. Pro-inflammatory cytokines such as TNFα , IL-1α and GM-

CSF induce both acute and chronic inflammatory responses. Anti-inflammatory cytokines, such

as IL-10 limit the magnitude of inflammation and chemokines, such as MIP and RANTES are

involved in chemotaxis of leukocytes.

Pro-inflammatory Cytokines. Granulocyte/macrophage Colony Stimulating Factor (G-CSF)

regulates the production of neutrophil G granulocytes and stimulates the function of mature

neutro-phils [98]. We identify the phosphoproteins PKCµ2 [67], NF-κβ p65 [[140], JNK lg/sh

[16], P38, RSK [60] and ERK1/2 [128] as the main regulators for the production and release

of G-CSF. Tumor Necrosis Factor alpha (TNFα) is involved in normal host defense in both

mediating inflammatory and immune responses [8]. Our study captures the largest network of
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regulatory components for TNFα which consists of twelve signaling phosphoproteins: RSK,

AKT, RPS6, PKCµ2, GSK3A, cAMP, ERK1/2, JNK sh/lg, NF-κβ p65 and P38. Some studies

suggest the regulatory impact of STAT1α and STAT1β , on TNFα [136]. Both our network

and the network from PCR minimal model [107] missed these connection. Interleukin-1alpha

(IL-1α ) is produced by activated macrophages and is responsible for inflammation [28]. The

information theoretic approach identifies cAMP, JNK lg/sh, ERK1/2, P38 and NF-κβ p65 as the

main regulators of production/release of IL-1α .

As Table 2.1 shows, this study identifies most of signaling components of pro-inflammatory

cytokines captured by other computational methods and strongly confirms the regulatory effect

of P38 which has been proposed by the PCR minimal model in 2006 [107]. Unlike the PCR

minimal model [107], our approach successfully captures the regulatory effects of ERK1 and

ERK2 on GCS-F [128] and TNFα [84]. It confirms the regulatory effect of GSK3A on TNFα

[33] which have been suggested by studies. NF-κβ , ERK, JNK (targets c-Jun [27]) and Sp1

are the transcriptional activators of TNFα [71, 131]. In this light, our results show good agree-

ment with other studies by capturing all signaling components identified by the PCR minimal

model, in addition to predicting the known regulatory effects of ERK1/2, GSK3A (regulated by

c-Jun which is affected by JNK) [140, 33, 131]. The information theoretic approach also identi-

fies RSK, a substrate of ERK [42], as a potentially novel regulatory component involved in the

release of TNFα .

P38 (from Toll data) has the strongest and ERK1 (from non-Toll data) has the weakest

regulatory impact on TNFα . As Figure A.1 shows, TNFα yields the best linear fit in terms

of the coefficient of determination (R2 = 0.62), which is in good agreement with other models

obtained by PCR [107] and PLS [140] methods. NF-κβ p65 represents the highest statistical
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dependency while PKCµ2 has the lowest mutual information coefficient among the captured

regulatory network components of GCS-F. JNK lg (from Toll data) shows the highest regulatory

effects on IL-1α .

Anti-inflammatory cytokines. Interleukin-10 (IL-10) is an anti-inflammatory cytokine that

has important roles in immune regulation and inflammation [112]. Our approach shows the

regulatory effects of PKCµ2 [130], P38 [29], RSK [94], ERK1/2 [108], NF-κβ p65 [137] and

JNK sh/lg, on IL-10. Macrophage Inflammatory Protein-1α (MIP-1α) belongs to the group of

CC chemokines that regulate several inflammatory responses including trafficking and activation

of leukocytes, as well as the fever response [23]. We capture the regulatory effects of cAMP [5],

AKT [72], RSK, ERK1/2 [11], P38 [24], JNK sh/lg [73] and NF-κβ p65 [12] on MIP-1α .

One study suggests the regulatory effects of STAT1α/β and STAT3 on MIP-1α [46]. The PCR

minimal model [107] only identifies STAT1α as a significant component of MIP-1α . Regulated

on Activation, Normal T Expressed and Secreted (RANTES), is a CC chemokine and has a key

role in recruiting leukocytes into inflammatory sites [113]. The information theoretic approach

suggests that STAT3, STAT5, STAT1α , NF-κβ p65, PKCµ2, P38 JNK lg/sh, ERK1/2 and RSK

regulate RANTES and unlike the PCR minimal model [107], it is in good agreement with the

cytokine literature.

As indicated in Table 2.1, the network identified by our study includes most of known

identified signaling components of anti-inflammatory cytokines described in the literature and

unlike the PCR minimal model [107], captures the regulatory effects of NF-κβ p65, ERK1/2

on MIP-1α . Some studies suggest that the TLR ligand pathways that activate IL-10 are P38

dependent and NF-κβ signaling pathway has no contribution on the activation of IL-10 [10, 80].

However, our study and the PCR model [107] identify the regulatory effects of JNK lg/sh which
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are activated through NF-κβ p65.

The information theoretic approach and PCR [107] models both yield low coefficient of

determination for cytokines (R2 < 0.8) possibly due to their regulations by unmeasured pathways

and/or a nonlinear relationship between the levels of cytokines and the phosphoproteins. In

comparison to the PCR approach, information theoretic approach shows a better agreement with

known regulatory components in the literature. The high variability of data (low coefficient of

determination) might explain this by considering the fact that when noise or variability is high,

the threshold used in the PCR approach is high so that it identifies a relatively lesser number

of components as being significant. The non-linear nature of the biological processes might be

an explanation for the failure of PCR to identify the regulatory effects of ERK1/2, cAMP and

RSK on cytokines. JNK lg (from Toll data) has the strongest effect and AKT (from non-Toll

data) has the weakest effect on MIP-1α . Our network shows the highest mutual information

(from non-Toll data) for NF-κβ and IL-10. PKCµ2 has the weakest regulatory effects on IL-10.

JNK lg has the strongest regulatory effect on RANTES and STAT3 shows the lowest statistical

dependencies to it.

Interleukin-6. Interleukin-6 (IL-6) is secreted by macrophages and T cells and acts as both

a pro-inflammatory and anti-inflammatory cytokine [117]. Our model identifies the regulatory

effects of phosphoproteins RSK, PKCµ2, ERK1/2, JNK sh/lg, P38, NF-κβ and cAMP. The

regulatory roles of cAMP [26] and P38 [3] which could not be captured by the PCR minimal

model [107], are identified by the information theoretic approach. JNK lg (from Toll data) yields

the strongest regulatory effect and cAMP (from non-Toll data) yields the weakest regulatory

effect on IL-6.

Overall, our network model and quantitative predictions are in good agreement with
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other studies available in literature and captures most of known regulatory components involved

in cytokine release. Our model confirms the regulatory effect of P38 on G-CSF that has been

suggested by the PCR minimal model several years ago [107] and captures one potentially novel

regulatory effect of RSK on TNFα . The advantages of the information theoretic method has

been demonstrated by comparing the accuracy of its parsimonious model to the models obtained

by other computational methods such as PCR minimal models in predicting the regulatory com-

ponents for cytokines with high variability and low coefficient of determination.

2.6 Conclusion

Identifying the regulatory components for cytokines is critical for understanding the

mechanisms that control their production and release in immune cells. In recent years, several

computational methods have been applied to develop networks which have led to an improved

understanding of cytokine releases in macrophages. In this work, we developed a parsimonious

input-output model of regulatory phosphoprotein-cytokine network based on an information the-

oretic approach. Our model demonstrated the applicability of this approach to the data-driven

reconstruction of biological network. The data, which consisted of a systematic profiling of sig-

naling responses in RAW 264.7 macrophage cells upon treatment with Toll- and non-Toll recep-

tor ligands, was provided by the Alliance for Cellular Signaling (AfCS). Information theoretic

approach as a non-parametric method identified the regulatory components (phosphoproteins)

on which specific cytokines showed significant statistical dependence (measured in terms of mu-

tual information). The reconstructed network also was able to capture the regulatory network of

phosphoproteins interactions. We calculated mutual information of interactions by using kernel

density estimator (KDE) and discarded weak connections using proper thresholds. Using such
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a parsimonious list of significant inputs, a predictive model was also developed for each of the

cytokines which predicted a separate test data well. Most of the significant connections are val-

idated against the known literature. Some novel connections, such as Ribosomal S6 kinase for

Tumor Necrosis Factor are also identified by the mutual information approach, which were not

detected by the PCR approach. These novel regulatory components serve as testable hypotheses.
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Table 2.1: A Comparison of phosphoprotein-cytokine regulatory connections identified by
information-theoretic approach (’MI’), PCR (’PCR’) and the literature knowledge (’Lit’).

Interactions MI PCR Lit. Interactions MI PCR Lit.
G-CSF NF-KB Y Y Y [140] IL-6 RSK Y N Y [110]
(Pro-infl.) JNK lg Y Y Y [16] (Anti-infl. JNK lg Y Y Y [141]

JNK sh Y Y Y [16] and JNK sh Y Y Y [141]
P38 Y Y N Pro-infl.) P38 Y N Y [3]
PKCµ2 Y N Y [67] PKCµ2 Y N Y [115]
ERK1 Y N Y [128] NF-KB Y Y Y [34]
ERK2 Y N Y [128] ERK1 Y N Y [110]
RSK Y N Y [60] ERK2 Y N Y [110]

cAMP Y Y Y [26]
TNFα RSK Y N N IL-10 JNK lg Y Y N
(Pro-infl.) AKT Y Y Y [102] (Anti-infl. P38 Y N Y [29]

P38 Y Y Y [24] and ERK1 Y N Y [108]
RPS6 Y N Y [71] Pro-infl.) ERK2 Y N Y [108]
GSK3A Y N Y [33] JNK sh Y Y N
GSK3B N N Y [33] NF-KB Y Y Y [137]
PKCµ2 Y N Y [57] PKCµ2 Y N Y [130]
cAMP Y Y Y [100] RSK Y N Y [94]
NF-KB Y Y Y [33]
JNK lg Y Y Y [27]
JNK sh Y Y Y [27]
ERK2 Y N Y [84]
ERK1 Y N Y [84]

MIP-α P38 Y Y Y [24] RANTES STAT3 Y N Y [68]
(Anti-infl.) NF-KB Y Y Y [12] (Anti-infl.) STAT5 Y N Y [63]

cAMP Y Y Y [5] STAT-1α Y Y Y [99]
RSK Y N Y [11] NF-KB Y Y Y [51]
JNK lg Y Y Y [73] P38 Y N Y [21]
JNK sh Y Y Y [73] PKCµ2 Y N Y [59]
AKT Y N Y [72] JNK sh Y Y Y [51]
ERK1 Y N Y [11] JNK lg Y Y Y [51]
ERK2 Y N Y [11] RSK Y N Y [142]
STAT1α N Y Y [46] ERK2 Y N Y [142]
STAT1β Y N Y [46] ERK1 Y N Y [142]
STAT3 Y N Y [46]

IL-1α ERK2 Y N Y [53]
(Pro-infl.) ERK1 Y N Y [53]

RSK Y N Y [9]
P38 Y N Y [48]
JNK lg Y Y Y [6]
JNK sh Y Y Y [6]
NF-KB Y Y Y [88]
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Important Symbols used

f Probability Density Function
I Mutual Information
h Bandwidth
fh Kernel Density Estimator of f Using Bandwidth h
MISE Mean Integrated Squared Error
I0 Threshold
p p-Value

3.1 Introduction

A central challenge in information science is the reverse engineering of complex net-

works to capture the underlying structure of interactions and then, by representing these interac-

tions as a network, build a predictive model that best predicts the performance of this network

(output) under a specific situation (a given dataset as input). Therefore, data-mining tasks can be

broken up into two tasks: descriptive tasks and predictive tasks.

A predictive modeling process builds a model that expresses the target variable as a func-

tion of the explanatory variables [65]. Hence, the goal of this model would be to minimize the

difference between the predicted values and the real values. Predictive modeling and analytics

techniques can itself be categorized in three general approaches [85]: traditional, data-adaptive

and model dependent. The traditional approach involves estimation of parameters for linear

interactions. Data-adaptive approaches are data-driven and adapt to the available data to repre-

sent non-linear relationships among variables. Hence, data-adaptive approaches search through

data to find the useful non-linear relationships. Model-dependent approaches, such a simulation

methods, specify a model first and then use this model to generate data and make predictions.

Predictive modeling techniques are applied in various areas such as marketing - to find

uncertainties (risks/opportunities) of a given customer or a specific decision to be made, model-
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based design and decision making − to predict the behavior of a complex engineered systems

when the physical phenomenon is not accessible or measurable, and climate science− to capture

the dynamics in climate data. Accordingly, this paper is presenting a data-adaptive approach for

data-driven predictive modeling of complex systems in application of systems biology.

In this paper, we provide a novel algorithm providing a Bayesian and information-

theoretic framework for predictive modeling of complex networks to capture a model capable of

predicting output for a given dataset and reconstructing the network again using the predicted

output. To show the applicability of our approach, we apply this framework to predict the prob-

ability densities of seven released cytokines from the activation of 22 signaling phosphoproteins

in a constructed network model of Raw 264.5 macrophage. Then, using information-theoretic

approaches, we reconstruct this signaling phosphoprotein-cytokine network again and compare

the obtained network with the original network model regarding of the number of false posi-

tive and false negative interactions, which is an indication of the accuracy and F-measure of

the obtained network. This methodology is applied to develop predictive models of two differ-

ent phosphoprotein-cytokine networks constructed under two different p-values (p=0.0001 and

0.005). A comparison of these predicted models with a non-probabilistic predictive model ob-

tained from least square method will be presented in discussion section. The proposed method-

ology and its application in phosphoprotein-cytokine signaling network are presented in 3.2

and 3.3 In this section, a brief description of the methods and materials used by our proposed

methodology is presented.
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3.1.1 Kernel Density Estimation (KDE)

Suppose we are given a sample {x1, . . . ,xn} of a random variable X , whose probability

density function (PDF), fX(x), is unknown. A kernel density estimation (KDE) of fX(x) is

computed as [109]

fX(x) =
1

nh2
√

2π

n

∑
i=1

exp
[
−(x− xi)

2

2h2

]
(3.1)

where h is the kernel bandwidth and n is the sample size. Suppose further that we are also given

a sample {y1, . . . ,yn} of a random variable Y . A KDE of the joint PDF, fXY (x,y), of random

variables X and Y is

fXY (x,y) =
1

2nh2π

n

∑
i=1

exp
[
−(x− xi)

2 +(y− yi)
2

2h2

]
. (3.2)

KDE has several advantages over other estimation methods. It is a nonparametric method,

and has a better mean square error rate of convergence of the estimate to the underlying PDF [109].

However, the use of KDEs requires the selection of an optimal kernel bandwidth h [90]. The pro-

cess of selecting the optimal kernel bandwidth is described below.

3.1.2 Bayesian Network

A Bayesian network, as a statistical approach, is a probabilistic graphical model that rep-

resents a set of random variables and their conditional dependencies via a directed acyclic graph

(DAG). In a Bayesian network, nodes V are random variables and edges E between the nodes

represent probabilistic dependencies among the corresponding nodes (or random variables). A

network is considered a Bayesian network if its joint PDF can be written as the product of the

individual (marginal) PDFs of its nodes, conditional on their parents variables [103, 95]. Hence,
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if G = (V,E) is a Bayesian network and X = {Xv : v ∈V} is a set of n random variables indexed

by V , then

fX(x) =
n

∏
v=1

fXv|X j(x) (3.3)

for each X j that is a parent of Xv. Equation (3.3) implies that variables Xv are conditionally

independent from their non-descendants, given the values of their parent variables.

Bayesian models play a significant role in many fields, such as risk and reliability engi-

neering, machine learning and bioinformatics. We propose a methodology, which combines the

principles underlying Bayesian networks and information theory. It results in a framework for

predicting PDFs of variables and reconstructing predictive models of (biological) networks. The

proposed methodology is described below.

3.2 A Probabilistic Approach for Predictive Modeling of Complex

Networks

The proposed methodology develops a strategy capable of predicting output values from

any given input dataset; then, using these values, it builds a predictive network model. This al-

gorithm relies on two probabilistic frameworks, Bayesian nets and an information-theoretic ap-

proach. It is free of any assumptions about the functional form and linearity of the system. If the

input has the same PDF as that of the original network, regardless of the method used for initial

reconstruction of the original network, then the predicted PDFs of the output should ideally be

the same as the PDFs of the output in the original network. Therefore, a predictive model should

ideally be able to predict a network’s performance with 100% accuracy and reconstruct the same

network for a test dataset (assumed to have the PDF of training data).
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Our goal is predict the PDFs of a system from the input test data. The original network

used for this prediction is a constructed network model of signaling phosphoprotein-cytokines

in Raw 264.5 macrophage cells [37]. We deploy an information-theoretic approach to recon-

struct the initial network using these predicted values. This reconstructed network shows a good

agreement with the original network. High values for accuracy and F-measure of this model

demonstrate the applicability of this approach.

The proposed algorithm consists of the following six steps, the first three of which are

predictive (i.e., used to predict a system’s performance) and the remaining three are descriptive

(i.e., used to reconstruct the predicted network model).

1. From an initial network (or a training dataset), detect sets of random variables responsi-

ble for regulating each node of output. In our examples, these are significant signaling

phosphoproteins and released cytokines in the original network identified in [37].

2. Measure prior distributions and likelihood functions.

3. Predict posterior density functions for outputs and build the prediction matrix.

4. Find mutual information (MI) of interactions for new measurements.

5. Select a proper MI threshold and remove connections below this threshold.

6. Reconstruct the network by considering only remaining interactions (connections, whose

MI is above the threshold).

A detailed description of these steps is presented below, followed by a discussion of the results

in Sections 3.3 and 3.4.
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3.2.1 Predictive Module (Steps 1-3)

Suppose that a probabilistic network reconstruction procedure (e.g., the one described in

the previous Chapter) has identified a network in which a node (random variable) Yj is connected

to (regulated by) a set of n nodes (random variables) X = {Xi}n
i=1. Among other information,

this procedure has yielded a PDF fYj(y) of Yj. The predictive component of our algorithm aims

to probabilistically forecast the behavior of Yj from a new set of k measurements {xi1, . . . ,xik} of

each of the random variables Xi. We accomplish this by employing a Bayesian data assimilation

technique [139], which treats fYj(y) as a prior PDF of Yj.

To assimilate a set of measurements xtest (an n× k matrix), we treat them as indepen-

dent random variables Xtest (an n× k matrix) that follow a Gaussian (conditioned on y) data

model [139]

fXi,test|Y j(xi,test|y) =
k

∏
ν=1

1√
2πσ2

i

exp
[
−(xiν − y)2

2σ2
i

]
, i = 1, . . . ,n (3.4)

where σ2
i is the variance of Xi. This is a likelihood function to be used in Bayes’ rule,

fYj|Xtest(y|xtest) =
fXtest|Yj(xtest|y) fY j(y)

fXtest(xtest)
, fXtest(xtest) =

∫
fXtest|Y j(xtest|y) fYj(y)dy (3.5)

The posterior PDF fY j|Xtest(y|xtest) represents an updated distribution of Yj obtained from new

data xtest. Assuming the independence of {Xi}n
i=1, this yields

fY j|Xtest(y|xtest) =
fY j(y)∏

n
i=1 fXi,test|Y j(xi,test|y)∫

fY j(y)∏
n
i=1 fXi,test|Y j(xi,test|y)dy

. (3.6)

This procedure is repeated for all nodes Yj ( j = 1, . . . ,m) of the network.
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This approach provides a probabilistic prediction of the system’s response to any input

xtest. The predicted PDFs fYj|Xtest(y|xtest) ( j = 1, . . . ,m) are then used to reconstruct an updated

network model. Within a mutual information (MI) framework, this is accomplished by following

the steps described below.

3.2.2 Descriptive Module (Steps 4-6)

A typical MI-based network reconstruction procedure consists of two stages: building

an MI matrix, and selecting a proper threshold. The MI matrix of a system is a square matrix,

whose elements are MI of each pair of components. The threshold determines which interactions

can be considered statistically insignificant and, hence, discarded. The interactions above this

threshold are considered significant and used to reconstruct the network.

Calculation of Mutual Information Matrix. If X and Y are two random variables with ran-

dom samples {x1, . . . ,xn} and {y1, . . . ,ym}, MI between X and Y is computed as [87]

I(X ,Y ) =
m

∑
j=1

n

∑
i=1

fXY (xi,y j) ln
fXY (xi,y j)

fX(xi) fY (y j)
(3.7)

where fX(xi) and fY (y j) are the marginal PDFs of Xi and Yj, and fXY (xi,y j) denotes the joint PDF

of Xi and Yj. The MI matrix of the predicted network, I(Xtest,Ypred), is evaluated from (3.7).

After evaluating the MI matrix, a proper boundary to determine whether or not a connec-

tion should be considered significant is determined by selecting a proper threshold. Interactions,

whose MI is above this threshold, are considered statistically significant. The methodology to

select the threshold is described below.
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3.2.3 Threshold selection

Selecting a proper threshold is a non-trivial problem. A traditional approach is to per-

form permutations of measurements several times to calculate the MI for each permutation and

average these MIs to select the largest MI as the threshold [13].

To select the appropriate threshold as a metric to identify the boundary of statistically

weak and significant connections, we apply the large deviation theory. The latter can be traced

back to Laplace and has formally defined by Varadhan [134]. Consider a set of N outcomes

{x1, . . . ,xN} of a random variable X , whose sample mean is MN = N−1
∑

N
i=1 xi. The large devia-

tion theory states the probability P(MN > x) decays exponentially as N→ ∞ at a rate depending

on x [135], i.e.,

P(MN > x)≈ e−NR(x), MN =
1
N

N

∑
i=1

xi (3.8)

where R(x) is called a rate function. The large deviation theory was first used in 1937 in the

insurance business [36], and introduced by Thomas M. Cover [20] to information science. It has

since been used to provide a systematic methodology for the threshold selection in MI-based

networks.

Bioinformatics applications of the large deviation theory, e.g., in ARACNE algorithm

[83], compute the probability of an empirical value of mutual information I exceeding a value

I0, provided that its true value is Ī = 0, as

P(I > I0 | Ī = 0)≡ p∼ e−cNI0 (3.9)
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where c is a constant. Taking the natural logarithm of both sides yields

ln p = a+bI0 (3.10)

where b is proportional to the sample size N. Therefore, for any dataset of sample size N and

a desired p-value, the corresponding threshold is obtained by fitting a and b to the data. Using

this methodology, we calculate a proper threshold for the MI matrix obtained above. The final

predicted network is built by removing the statistically weak connections. In the next section,

we demonstrate the applicability of the proposed algorithm by applying it in a systems biology

case study, which deals with the signaling phosphoprotein-cytokines network in RAW 264.5

macrophages.

3.3 Application to Systems Biology: Phosphoprotein-Cytokine Sig-

naling Network

Ever-increasing quantity of biological data in systems biology necessitates the devel-

opment of various high-through methodologies for the measurement and analysis of data to

extract the underlying mechanisms. We demonstrate the applicability of our approach in sys-

tems biology by predicting the performance and reconstructing the predicted network model of

phosphoprotein-cytokine signaling networks in RAW 264.7 macrophage cells.

Macrophage cells produce a wide variety of regulatory substances, such as cytokines, to

regulate both acute and chronic inflammations [89]. Cytokines, which are a group of proteins,

bind to a target immune cell’s receptor and hence, play a critical role in interacting with the

immune cells as mediators [114, 40]. A complex signaling network transduced by the signaling
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phosphoprotein network regulates cytokine releases [125, 107]. Understanding the underlying

structure of this network can help identify regulatory modules that are responsible for the in-

flammatory responses during the activation of macrophage.

Following steps 1-3 in Section 3.2, we use the constructed cytokine-phosphoprotein

network model [37] (for p values of 0.0001 and 0.005) to predict the behavior of cytokines for

the given dataset. The predicted network model is then reconstructed by following steps 4-6.

Since we use the test dataset, as the given dataset, for signaling phosphoproteins, we expect

the predicted output values for released cytokines to show the same behavior as the original

model. To evaluate the accuracy of the obtained network model, we compute the accuracy and

F-measure of this model.

The original network model has also been constructed by using information-theoretic

approaches and developed for two different p-values of p = 0.0001 and 0.005 for the thresh-

old selection in Eq. (3.10). Alternatively, this network could have been obtained by any other

methodology. We chose this network since it has a higher accuracy than other network models

available in the literature [58, 140]. The dataset is borrowed from the AfCS data, which include

data on the phosphoprotein and cytokine in RAW 264.7 macrophage under Toll and non-Toll

conditions [44, 1]. The Toll dataset represents the data in which one of the ligands activates Toll-

like receptors (TLRs). The non-Toll dataset refers to the data in which the ligands do not activate

one or more of the TLRs [107]. The network models obtained from the Toll and non-Toll dataset

are combined to provide the final reconstructed network.

We deal with two different datasets obtained from AfCS [1]: Train and test datasets.

The train data are used to build an initial network model; we use it to estimate prior densities.

The test data are used as input of the predicted model to predict the performance of the system.
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Ideally, the test dataset has the same PDF as that of the train dataset. This would indicate that

the predicted PDF of output under the test dataset as input should be the same as that of the train

dataset. In this light, using the test dataset as input enables us to evaluate the strength of our

methodology. In an ideal situation, where the PDFs of test data are the same as that of the train

data, the two predicted models must be exactly the same.

Both the train and test dataset include 22 phosphoproteins and 7 cytokines. The phos-

phoproteins include: Signal Transducers and Activator of Transcription (STAT) 1α (STAT1α),

STAT1β , STAT3, STAT5, Ribosomal Protein S6 (Rps6), Ribosomal S6 kinase (RSK), Glyco-

gen Synthase Kinase (GSK) 3A (GSK3A), GSK3B, Extracellular-signal Regulated Kinases

(ERK) 1 (ERK1), ERK2, cyclic Adenosine Monophosphate (cAMP), c-Jun N-terminal Ki-

nases (JNK) long (JNK lg), JNK short (JNK sh), AKT, p40 Phagocyte Oxidase (p40Phox),

Ezrin [Ezr]/Radixin [Rdx](Ezr/Rdx), Membrane-organizing Extension Spike Protein (Moesin

or MSN), P38, Sma and Mad related proteins 2 (SMAD2), Nuclear Factor Kappa-light-chain-

enhancer of activated B cells p65 (NF-κβ p65), Protein Kinase C Delta (PKCD) and Pro-

tein kinase Cµ2 (PKC µ2. The cytokines include: − Tumor Necrosis Factor alpha (TNFα);

Interleukin−1α (IL−1α); Interleukin−6 (IL-6); Interleukin-10 (IL-10); Granulocyte Macrophage

Colony Stimulating Factor (GM-CSF); Regulated on Activation, Normal T Expressed and Se-

creted (RANTES) and Macrophage Inflammatory Protein- 1alpha (MIP-1α .

Figure 3.1 shows the original phosphoprotein-cytokine network borrowed from [37] us-

ing the p-value of 0.0001. Figure 3.2 demonstrates this network using p-value of 0.005. In

these figures, each node (circle) represents a protein or a cytokine and the edges, shown by solid

lines, represent significant interactions between nodes. White nodes in both figures demonstrate

the released cytokines. A pink color-coded node states that the phosphoprotein is connected to
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the associated cytokines from the information obtained from the Toll-data and an orange node

indicates that the phosphoprotein is considered to have statistically significant regulation effect

on the cytokine from the information obtained from the non-Toll data. Blue nodes indicate that

both the Toll and non-Toll data show regulatory effects of the phosphoprotein on the associated

cytokine.

To find the marginal PDFs of these data, we first calculate the optimal kernel bandwidth

that minimizes the risk functions. The bandwidths are selected by using Eq. (2.10), and then the

marginal and joint PDFs are measured using Eqs. (3.1) and (3.2). Knowing both the input and

output from the train dataset, we measure the joint PDFs of each interacting phosphoproteins

and cytokines in the initial network model (Figs. 3.1 and 3.2).

To understand the robustness of our test data (how similar its PDFs are to those of the

train dataset), we compare the PDFs of the inputs of both data sets computed with Eq. (3.1).

Figure 3.3 shows a visual color-coded comparison of the PDFs of signaling phosphoproteins

from the train and test dataset. The PDFs of the test dataset (blue) and train dataset (red) are not

exactly the same, indicating that the predicted PDF of released cytokines and, hence, the final

network model might not be exactly the same as the initial network due to inaccuracy in the

input model.

Figures 3.1 and 3.2 show that, for each cytokine (white nodes), there is a set of related

signaling phosphoproteins that are responsible for its release. For example, in Figure 3.1, IL-1α ,

which is represented by Yj in Eq. (3.6), is regulated by a set of five regulating phophoproteins

JNK sh,JNK lg,ERK1, ERK2, P38, and NF-κβ p65, which are represented by X = {Xi}5
i=1 in

Eq. (3.6). After finding the prior PDFs and likelihood functions of the interactions, we use these

measurements to develop the predicted model using Eq. (3.6).
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Figure 3.1: The initial network model of phosphoprotein-cytokine built with p-value of 0.0001.
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Applying Eq. (3.6) provides the predicted PDFs that indicates the behavior of the re-

leased cytokines under the test dataset as input. Each of the seven rows in this matrix ( j =

1, . . . ,7) represents the predicted PDF of each of the released cytokines.

Figure 3.2: The initial network model of phosphoprotein-cytokine built with p-value of 0.005.

Figures 3.4 and 3.5 provide a comparison of the predicted PDFs of released cytokines

obtained from the test dataset as input (blue) and the PDFs of cytokines directly measured from

the train dataset (red) for p-values of 0.0001 and 0.005. As these two figures indicate, for the

p-value of 0.0001 the predicted PDFs of released cytokines are more similar to the PDFs of

cytokines in the train data (indicating a more reliable model).

The prediction of the PDFs of cytokines, using the test dataset as input, enables us to

measure MI of interactions and to use these values to reconstruct the final predicted network

models. Next, we obtain the MI matrix by using Eq. (3.7). The following step is to select of a
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proper threshold by using Eqs. (3.9) and (3.10), a proper threshold for this MI matrix is selected

for p-values of 0.0001 and 0.005. Interactions whose MI is below these thresholds are removed

and the final network models are reconstructed for both p-values by considering the interactions

with MI above the threshold.

Figure 3.6 shows the predicted network model from the initial network built with p =

0.0001. This model has a higher accuracy than the model built with p = 0.005. The number

of false positive and false negatives is measured for the two constructed network models to

determine the accuracies and F-measures. In the next section, a comparison of these values is

presented. A non-probabilistic predictive methodology also will be applied to develop linear

predictive models of phosphoproteins-cytokines signaling networks.

3.4 Discussion

The applicability of the proposed probabilistic methodology was demonstrated in Sec-

tion 3.2. The network models from these predictions were captured for both p-values after

predicting the probability density of outputs following the six steps described in Sections 3.2

and 3.3. In comparison with the predicted PDFs of output (Fig. 3.5) measured from the initial

network built upon the p-value of 0.005 (Fig. 3.2), the predicted PDFs (Fig. 3.4) built using

the initial network with p-value 0f 0.0001 (Fig. 3.1) provides a more accurate prediction of the

performance of the system. As Figure 3.4 indicates, it makes a better estimation for the pre-

dicted PDFs of cytokines G-CSF, IL-1α , IL-10 and TNFα . For IL-6, MIP-1α and RANTES,

both models contains some sort of inaccuracy in comparison with the measured PDF of the train

dataset.

The inaccuracy in the predictions of the output PDFs is due to the inaccuracy in the input
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Figure 3.3: Comparison of phosphoproteins’ probability densities measured from train dataset
(red) and test dataset (blue)
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Figure 3.4: Comparison of probability densities of released cytokines measured from train
dataset (red) and predicted dataset (blue) for p-value=0.0001

Figure 3.5: Comparison of probability densities of released cytokines measured from train
dataset (red) and predicted dataset (blue) for p-value=0.005
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Figure 3.6: The predicted network model of signaling phosphoprotein-cytokine in RAW 264.5
macrophage cell for p-value=0.0001.

model. Intuitively, since the PDFs of the input test data are not exactly the same as those of the

train data, there is some inaccuracy in the predicted PDFs. In addition, phosphoproteins may also

have regulatory effects on each other, which were considered negligible in the initial network.

Using the predicted PDFs in Figs. 3.4 and 3.5, the final network models for both p-values are

obtained. The number of true positives and true negatives for both networks is measured and the

accuracy of the models are obtained as

Accuracy =
T P+T N

n
(3.11)

where T P denotes the number of true positives, T N denotes the number true negatives, and n

represents the total number of significant interactions. The accuracies of the two models are then

compared to quantitatively determine the relative accuracy of their predictions. To have a better
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metric for understanding the accuracy of the proposed probabilistic approach, the accuracies

are then compared with the accuracy of a predictive model constructed using another approach

(Table 3.1).

We develop a linear predictive model from a non-probabilistic approach, called least

square method (LSM). Consider a sample X = (x1, . . . ,xn) that represents the set of significant

inputs interacting with Yj. A linear model of this network is

Yj = b̂X + ε (3.12)

where b is the coefficient matrix and ε represents the white noise. In the least square method, X

is mean-centered and normalized by the standard deviation, and Yj is mean-centered. Based on

the least square method [11], the matrix b is obtained as

b̂ = (XT X)−1(XTYj). (3.13)

If the coefficient matrix b is determined by using the training dataset, the values of output

from the test data are predicted by substituting the Xtest with

Yj,pred = b̂Xtest. (3.14)

A commonly used metric to determine the accuracy of Yj,pred is called coefficient of

determination [25],

R2 = 1− ∑
n
i=1 (y j,i− yi,pred)

2

∑
n
i=1 (y j,i− ȳ j)2 (3.15)

where n is the number of data points, and ȳ j is the mean of all data points in the selected Yj.
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The coefficient of determination lies between 0 and 1 and indicates the accuracy of the predicted

values for the Yj. A higher coefficient of determination represents a higher accuracy in the

predicted data points.

Following Eq. (3.14), Yj,pred for all outputs (seven cytokines) are obtained by applying

the LSM methodology. Using these values, coefficients of determinations for all output are

measured. Figure 3.7 shows the scatter-platter of the predicted data points (from the test data)

versus measured data points (from the train data). The coefficients of determination for all seven

cytokines have low values ranging from 0.33 to 0.59. The low coefficients of determination

indicate the inability of this approach to predict the performance of the system.

To be able to measure the accuracy of LSM in prediction, we reconstruct its predicted

network model from the predicted values of output data points. Optimal kernel bandwidths of

data points are obtained using Eq. (2.10) and KDE estimations of marginal and joint PDFs are

measured. The mutual information is then calculated using Eq. (3.7) and the threshold is selected

using Eq. (3.7).

Figure 3.8 shows the PDFs obtained from the predicted data points using Eq. (3.14).

Comparing this figure with Figs. 3.4 and 3.5 provides a simple visual way to compare the ability

of the methods to predict the PDF of released cytokines. To obtain a quantitative metric for this

comparison, the network model of this predictive model is obtained and its accuracy is evaluated

against the proposed probabilistic methodology for both p-values.

Table 3.1: Comparison of the accuracy of the predicted network models obtained using the
proposed methodology (under two p-values) and least square method.

Method p-Value False Positive False Negative Accuracy
Proposed Methodology 0.0001 2 6 88%
Proposed Methodology 0.005 5 7 83%
Least Square Method NA 8 11 61 %
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As Table 3.1 indicates, in comparison with the least square model, the proposed ap-

proach significantly increases the accuracy of the prediction (about 27%) when the most robust

model with p-value of 0.0001 is chosen. For p = 0.005 using the proposed methodology in-

creases the accuracy 22%. To investigate the built models further, we also measure the preci-

sions, recalls and hence, F-measures of the models.

Precision is referred to the probability that a positive prediction is correct and recall

or sensitivity represents the probability that a prediction is correct [76]. Therefore, recall and

precision are defined by

Recall =
T P

T P+FN
, Precision =

T P
T P+FP

(3.16)

Measuring recall and precision enables us to predict F-measures of models. F-measure is the

harmonic mean of precision of recall and can be used as a single measure of performance [106]

F-measure =
(2×Precision×Recall)
(Precision+Recall)

. (3.17)

Table 3.2 lists a comparison of recalls, precisions and F-measures of the three con-

structed predictive models. Similar to accuracy table (Table 3.1), the F-measure of the predicted

model with p = 0.0001 is the highest (17% higher than the least square method) and the least

square method has the lowest F-measure. The F-measure of the predictive model obtained with

p = 0.005 is 15% higher than the least square method.

The advantage of the proposed approach is its ability to develop predictive models of

systems regardless of their applications, functional or parametric forms, and linearity of the

system. The very high accuracies and F-measures of the predicted networks (listed in Table 3.1
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and Table 3.2) captured by the proposed methodology confirms this claim. As expected, the most

reliable predictive model is obtained when the p-value of 0.0001 is selected for the selection of

the threshold.

Table 3.2: Comparison of the F-measure of the predicted network models obtained from using
the proposed methodology (under two p-values) and least square method.

Method p-Value Recall Precision F-measure
Proposed Methodology 0.0001 0.88 10.95 92 %
Proposed Methodology 0.005 0.89 0.92 90 %
Least Square Method NA 0.78 0.73 75 %

3.5 Conclusion

Reverse engineering is the process of discovering a complex system through analysis

of its structure or performance. In recent years, several computational methods in different

areas have attempted to systematize this process and develop methodologies capable of capturing

the most accurate models. These methodologies vary depending on different assumptions that

are made and various applications in different areas. Most of these approaches make some

assumptions about the functional or parametric forms of systems or rely on the linearity of the

system.

We attempted to develop a systematic framework, which is applicable in all kinds of sys-

tems and areas ranging from economy to systems biology. The proposed probabilistic methodol-

ogy first predicts the PDFs of output for any given input dataset and then, constructs the predic-

tive network models of systems using Bayesian and information-theoretic approaches. To show

the applicability of this framework, we used it to build predictive models of phosphoprotein-

cytokine signaling networks in RAW 264.7 macrophage cells. The values of accuracy and F-

measure of this model were calculated and compared with values of a predictive model obtained
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Figure 3.7: The predicted values (y-axis) for seven released cytokines vs. measured values (train
data) for signaling phosphoprotein-cytokine in RAW 264.5 obtained by least square method.



56

Figure 3.8: Comparison of probability densities of released cytokines measured from train
dataset (red) and predicted densities of cytokines using least square method (blue)

by applying another methodology (least square method). Significantly high values for accuracy

and F-measure of the predicted network models obtained by this methodology indicate the abil-

ity of the proposed approach to develop predictive models of all kinds of systems making no

assumptions about functional and parametric forms and the linearity of the system.
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Important Symbols used

f Probability Density Function
I Mutual Information
h Bandwidth
fh Kernel Density Estimator Using Bandwidth h
MISE Mean Integrated Squared Error
I0 Threshold
p p-Value
S Subnetwork
e Subnetwork Activity
ETCA Earliest Time of Change in Activity
Tup Up Threshold
Tdown Down Threshold
HC Copula Entropy
C Copula Density
R Rank of Observation
u Pseudo Copula Sample

4.1 Introduction

Most (if not all) network reconstruction approaches have been developed to deal with

static systems and data. Generalizations and extensions necessary to adapt them for analysis of

time-dependent networks are challenging due to the complexity of biological systems and a large

number of interactions among components. For example, time-delay is a common phenomenon

in gene regulatory networks since the expression-level of a gene at a certain time may depend

on the activation of another protein (gene-product) at a previous time [75]. Reconstructing such

a complex network may require analysis of the behavior of all gene interactions during entire

time-course.

We propose an information-theoretic algorithm to reconstruct networks of pathway in-

teractions from microarray time-course data. The proposed methodology employs mutual in-

formation as a metric for capturing the causality of pathways from microarray data during time

periods. This approach avoids unnecessary computations by grouping genes into pathways they
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belong to and then identifying the pathways that may potentially regulate each other. Another

feature of our approach is the use of copula entropy to detect the mutual information between

pathways, which significantly reduces computational cost. Finally, we build the mutual infor-

mation matrix from the maximum values of mutual information between each pair of flagged

pathways over all possible time delays. This facilitates identification of the significant interac-

tions among subnetworks to reconstruct the final pathway interaction network. We apply our

approach to reconstruct the pathway interaction network of yeast-cell cycle using microarray

time-course data by identifying the significant interactions of underlying pathways.

4.2 Background

4.2.1 Mutual-Information Networks

The amount of information about a random variable X that can be obtained by observing

a random variable Y is often referred to as mutual information (MI) [119]. The higher the mutual

information I(X ,Y ), the higher the statistical dependence between X and Y . Consider two sets

of measurements {x1, . . . ,xn} and {y1, . . . ,ym} of random variables X and Y , respectively. Using

these data, we use the kernel density estimators (see previous Chapter) to compute the joint PDF

fXY (x,y) and the marginal PDFs fX(x) and fY (y). Then mutual information I(X ,Y ) of X and Y

is defined as

I(X ,Y ) =
m

∑
j=1

n

∑
i=1

fXY (xi,y j) ln
fXY (xi,y j)

fX(xi) fY (y j)
. (4.1)

A typical MI-based network reconstruction procedure consists of two stages: building

the mutual information matrix, and selecting a proper threshold. The MI matrix of a system is a

square matrix whose elements are mutual information of each pair of components. The thresh-
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old determines which elements can be considered statistically negligible and be discarded. The

interactions above this threshold are considered significant and used to reconstruct the network.

Selecting a proper threshold is a nontrivial problem. A traditional approach is to perform per-

mutations of measurements several times to calculate the distribution of the mutual information

for each permutation and average these distributions to select the largest mutual information in

the averaged permuted distribution as the threshold [13].

4.2.2 ARACNE

ARACNE (Algorithm for the Reconstruction of Accurate Cellular NEtworks) [83] relies

on MI to reconstruct gene regulatory networks. It assigns to each pair of interactions a weight

equal to their MI and eliminates the weak edges by measuring and applying a proper threshold.

It calculates probability density function (PDF) of variables using non-parametric kernel density

estimators (KDEs). ARACNE employs large deviation theory [20] to determine a proper thresh-

old by approximating the PDF of mutual information by an exponential function. Through such

an approximation, for any dataset with sample size N and a desired p-value, the correspond-

ing threshold can be obtained. ARACNE also applies an information-theoretic property called

the data processing inequality (DPI) to identify indirect connections. The DPI states that if Xi

interacts with X j through a random variable Xk then

I(Xi,X j)< min[I(Xi,Xk), I(X j,Xk)]. (4.2)

For each gene triplet, whose MI exceeds the threshold, ARACNE applies the DPI to identify

and eliminate indirect connections. TimeDelay-ARACNE [5] allows ARACNE to capture time-

delay gene regulatory networks. This framework first detects the time point of the initial changes
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in the expression for all genes and then carries out network pruning and construction steps.

We present an ARACNE-based algorithm to reconstruct networks from time-course data by

detecting significant connections among pathways.

4.2.3 KEGG Pathways

A biological pathway is defined as a set of processes or biochemical transformations that

accomplishes specific functions and leads to a change in a specific set of products [118]. Various

types of biological pathways range from metabolic pathways to genetic and information pro-

cessing pathways. The complexity of a biological network can be reduced by first decomposing

it into pathways and then constructing a network of interactions from pathways [56]. Analysis

of the structure of such networks facilitates understanding of key aspects of functionality of and

causality in complex biological processes [127]. It enables one to model functional behavior of

biological systems.

Our algorithm for reconstruction of interaction networks treats each pathway as a sub-

network. Each sub-network represents a set of interconnected genes belonging to the same path-

way with functional similarity. These genes have a higher probability of co-evolution than un-

related ones [31]. An information-theoretic approach is used to identify significant interactions

between these sub-networks, enabling reconstruction of networks from time-course microarray

data. The topology of underlying sub-networks is captured by assigning to each pathway a score

that depends on the pathway’s activity. This score, called sub-network activity, enables treatment

of each pathway as a sub-network of a biological process and provides a metric to determine the

activity of each sub-network, i.e., its role in the associated biological process.

Alternative ways to calculate sub-network activities include their treatment as an ag-
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gregate expression profile of genes belonging to that sub-network [17, 45] or as the mean of

expression levels of genes belonging to that sub-network [41]. To group genes into pathways,

we use the information from KEGG (Kyoto Encyclopedia of Genes and Genomes) database

[62]. The latter is a collection of manually curated pathway maps representing our knowledge

of molecular interactions and reaction networks [61]. A gene may belong to more than one

pathway and it may or may not actively participate in the same pathway(s) at any given time.

Grouping genes into pathways enables us to measure the activity of pathways at each time point

after normalizing the gene expression data. These scores are used to build mutual information

network of pathways. In Section4.4 we use our algorithm to reconstruct a network of pathways

using data from yeast cell cycle progression.

4.3 Methodology

Our algorithm adapts an ARACNE-like information-theoretic framework to network re-

construction from time-course microarray data. This is done as follows. First, the genes are

grouped into pathways, and then a sub-network activity is assigned to each pathway at each

time point. The pathways that may potentially regulate each other are identified by measuring

the minimum amount of time necessary to observe a significant change in the activity of a sub-

network. It is assumed that sub-network A can potentially regulate sub-network B only if the

time necessary to observe a significant change in the activity of sub-network A does not exceed

its counterpart for sub-network B. For two sub-networks that may potentially have regulatory

effects, the algorithm identifies the maximum MI among all possible time points and then con-

structs the mutual information network by removing mutual information below the measured

threshold and applying the DPI. The proposed algorithm consists of the following four steps.
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1. Group genes into n sub-networks Si (i= 1, . . . ,n) based on the pathways they belong to. As

defined in [41] for static data, activity of sub-network Si at time point t, et
si

, is computed

as the mean of expression of genes belonging to Si at time t,

et
si
=

1
m

m

∑
j=1

et
j. (4.3)

Here m is the number of genes in pathway Si and et
j is the expression of jth gene in

pathway Si, after being normalized. Next, activities of all sub-networks during all time

points are calculated. This step provides a good measure of the activity and significance

of a sub-network at a given time point.

2. Find the minimum amount of time necessary for a significant change in the activity of

a sub-network to occur. We refer to this time as Earliest Time of Change in Activity

(ETCA) of sub-networks. This property is specified by using two up and down thresholds,

Tdown = 1.18 and Tup = 0.85. The values of these thresholds may vary (for example,

TimeDelay-ARACNE [143] uses Tdown = 1.2 and Tup = 0.83). ETCA is calculated as

ETCA(Si) = argmint

{
e0

si

et
si

≥ Tup or
et

si

e0
si

≤ Tdown

}
. (4.4)

Then, we postulate that sub-network Si can regulate sub-network S j only if

ETCA(Si)≤ ETCA(S j). (4.5)

Interactions between the sub-networks, which do not satisfy Eq. (4.5), are ignored, elim-

inating unnecessary calculations. This step speeds up the algorithm by identifying the
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pathways that potentially have regulatory impacts.

3. For each pair of sub-networks detected by Eq. (4.5), obtain mutual information matrix

considering all possible time delays and select the maximum mutual information. A chal-

lenge in extending methods of steady-state mutual information measurements to time-

course data is to find the joint PDF of two variables. we rely on copula distributions of

marginal PDFs of the two variables.

A copula entropy, HC(X ,Y ), of two random variables X and Y is defined as [79]

HC(X ,Y ) =−
∫

c(u) ln[c(u)]du (4.6)

where u = [FX ,FY ]; FX and FY are marginal densities of random variables X and Y given

their random samples {x1, . . . ,xn} and {y1, . . . ,ym};

c(u) =
∂ 2C(u)
∂u1∂u2

(4.7)

and C(u) denotes the copula density of u. In d dimensions, a d-dimensional empirical

copula for random variables {xi
1, ...,x

i
d} is given by [96]

Cd(u) =
1
n

n

∑
j=1

I (ũi
1 ≤ u1, . . . , ũi

d ≤ ud) (4.8)

where I is the indicator function, ũi
k = Ri

k/n is called a pseudo copula sample, Ri
k is the

rank of observation xi
k. In the case study presented in 4.4, we used two-dimensional em-

pirical copulas to find mutual information between pathways. Finally, the copula entropy



65

HC(X ,Y ) in (6.1) is related to I(X ,Y ) by [79]

I(X ,Y ) =−HC(X ,Y ). (4.9)

This approach avoids unnecessary computations made by other information-theoretic al-

gorithms (such as [143]), which apply copula measurements to Eq. (4.1). To the best of

our knowledge, the use of Eq. (6.4) is new in the context of information-theoretic recon-

struction of biological networks from time-course data.

4. Select maximum values of mutual information for each pair of potentially dependent path-

ways over all possible time delays, and use these values to build a mutual information

matrix. Similar to TimeDelay-ARACNE [143], this matrix is then used to reconstruct a

network by employing the ARACNE framework. The weak connections are removed by

measuring a proper threshold, and the DPI is used to eliminate indirect connections.

Figure 4.1 shows a flow diagram of our information-theoretic approach to reconstruction

of biological networks from time-course data. We apply this algorithm to identify significant

interactions of pathways and to construct a network from microarray data during one complete

cycle of yeast cell-cycle.

4.4 Case Study

In this section, we demonstrate the ability of our algorithm to construct a network for

Saccharomyces cerevisiae (yeast) cell cycle [123]. Yeast cell cycle is a series of events that

takes place in a yeast cell leading to its replication. The microarray data consist of 7728 probes

representing 5961 genes. There are fourteen time points, and samples are taken every seven
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Figure 4.1: Flow chart of our algorithm to reconstruct pathway interaction networks of dynamic
systems from time-course microarray data.

minutes as cells go through one complete cell cycle. After normalizing and removing genes with

low expression, we group them into 94 pathways from information available in KEGG database.

KEGG pathway maps for yeast cell cycles consist of four major pathways: metabolism, genetic

information processing, environmental processing and cellular processes. The activity of each

of 94 pathways is computed with Eq. (4.3), and the Earliest Time of Change in Activity (ETCA)

in Eq. (4.4) is evaluated for each pathway. The pairs of pathways that do not satisfy Eq. (4.5)

are considered non-dependent and removed from calculations. This avoids unnecessary compu-

tations for about 15% of pathway pairs. Phenylalanine metabolism (sce00360) does not satisfy

Eq. (4.5) in terms of having potentially regulatory impact on other pathways. However, it sat-

isfies Eq. (4.5) as a potential target of all other pathways. Table I lists pathways with lowest

potential impact on other pathways as regulators.

Mutual information of potentially dependent pathways is obtained by computing the

copula entropy in Eq. (6.4). Figure 4.2 shows the histogram of the mutual information distribu-

tion of potentially dependent pathways. The x-axis represents mutual information of all pathways
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identified in step 2 and the y-axis refers to their frequencies. The solid line fits a kernel density

function to the histogram. The dashed line indicates the measured threshold for N = 1000 and

p-value = 0.0001. This threshold is used to detect significant interactions and discard indirect

connections by applying DPI. The nodes that are not discarded are used to reconstruct the final

network.

Figure 4.2: Histogram of maximum mutual information values. The dashed line indicated the
selected threshold for p-value = 0.0001.

Figure 4.3 represents the reconstructed genetic interaction network obtained by our

methodology. The nodes in this network (shown by rectangles) represent KEGG pathways

(KEGG annotations have been used), and the edges (solid lines) indicate significant interactions

among pathways. Arrows in this picture represent the direction of pathway interactions (since

I(X ,Y ) 6= I(Y,X) in this methodology; I is the maximum mutual information over all possible

time delays).

N-Glycan biosynthesis (belonging to Glycan biosynthesis and metabolism) shows the
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Table 4.1: KEGG pathways with lowest potential impact on other pathways as regulators
KEGG Annotation name TYPE

sce00360 Phenylalanine metabolism Metabolism
sce00380 Tryptophan metabolism Metabolism
sce00040 Pentose and glucuronate interconversions Metabolism
sce0330 Arginine and proline metabolism Metabolism

Data is from : [39].

highest activity among metabolic pathways; Ribosome (belonging to translation) has the highest

activity among genetic information processing pathways; MAP Kinase signaling pathway (signal

transduction) is the most active environmental information processing pathway and cell cycle

represents the highest activity among the pathways related to cellular processes. Table II lists

the most active pathway in each of the four major KEGG pathway maps in terms of the number

of significant interactions with other pathways.

Table 4.2: KEGG pathways with largest interactions with other pathways
KEGG Annotation name TYPE

sce00510 N-Glycan biosynthesis Metabolism
sce03010 Ribosome Genetic Info.s Processing
sce04011 MAPK signaling pathway Environmental Info. Processing
sce04011 Cell cycle-yeast Cellular Processes

Data is from : [39].

4.5 Future Improvement

The proposed algorithm can be improved in several ways. As part of future work, we

are investigating the use of conditional mutual information in addition to the DPI to detect in-

direct connections. The use of the DPI in mutual information-based network reconstruction

(such as the ARACNE algorithm) may lead to identification of false-positive interactions for

co-regulations. This is because the mutual information between two co-regulated components
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Figure 4.3: The reconstructed network for yeast cell cycle. Each rectangle represents a pathway
(sub-network), and lines indicate significant connections between the associated pathways. The
KEGG pathway annotations have been used as pathways identifiers.
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may exceed the mutual information between regulating components, causing the DPI to identify

false positive links between co-regulated components. We expect that using conditional mutual

information in addition to mutual information will enable our algorithm to detect co-regulations.

In addition, mutual information by itself is not a good metric in this case of interactive connec-

tions since the mutual information between components regulated by an XOR interaction will

turn out to be negligible. This problem can also be overcome by computing conditional mutual

information. Another limitation of the current mutual information-based methods is the lack of

systematic methods to accurately ascertain a predictive model from the reconstructed network,

which is necessary to model dynamic behavior of biological systems. Future work will involve

development of such predictive models.

Delineation of pathway interactions is essential both to understand the underlying struc-

ture of interaction networks and to identify the pathways associated with genes not reported in

KEGG database. We are investigating the functionality of poorly characterized genes, whose

associated pathways are not yet identified by KEGG database.

4.6 Conclusions

We proposed an ARACNE-based algorithm for reconstruction of biological networks

from time-course microarray data. This algorithm speeds up the computation by avoiding un-

necessary calculations by grouping genes into their associated pathways and identifying poten-

tially related pathways by measuring their activities. Measuring mutual information from copula

entropy simplifies the process of building mutual information matrices of potentially related

pathways considering all time delays. The applicability of this method has been demonstrated

by developing a pathway interaction network using the yeast cell-cycle data. Our reconstructed
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network shows a good agreement with the information available in the literature. In the future,

we will improve our algorithm by developing probabilistic approaches to demonstrate predictive

models of reconstructed dynamic networks and by supplementing DPI with conditional mutual

information measurements.
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Important Symbols used

f Probability Density Function
I Mutual Information
h Bandwidth
fh Kernel Density Estimator of f with a Bandwidth h
MISE Mean Integrated Squared Error
I0 Threshold
p p-Value
ETCA Earliest Time of Change in Activity
Tup Up Threshold
Tdown Down Threshold
HC Copula Entropy
C Copula Density
R Rank of Observation
u Pseudo Copula Sample

5.1 Introduction

Understanding a (typically nonlinear) relationship between inputs and outputs in dy-

namic systems is at the forefront of modern data science. This task is often formulated in terms of

reconstruction and prediction of complex networks from time-series measurements. The struc-

ture and dynamics of networks can then be used to predict the behavior of the system and to

detect new functions for its components [55].

Statistical approaches analyze input-output dependencies by using correlation measure-

ments as a metric, without resorting to the linearity assumption. Bayesian networks (BNs) are

a typical example of statistical methods. In essence, they are graphical models for describing

causal interactions between variables [95, 43]. Nodes of a BN represent random variables, while

its edges represent their conditional dependencies [50]. If used for network reconstruction, one

chooses either a parametric or nonparametric form [91] of the conditional probability densities,

and then decomposes the joint probability density into conditional probability densities among

relevant nodes [105, 22].
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Information-theoretic approaches provide an alternative to BNs for network reconstruc-

tions, which does not require one to specify functional and parametric forms of the random vari-

ables involved. Instead, they identify network models of systems by using mutual information

(or uncertainty reduction) of interactions as a metric to establish statistical dependencies between

interactions [20, 70, 52]. We propose a probabilistic algorithm that combines the strengths of

Bayesian and mutual information networks. We use this algorithm to build a network model

of gene interactions from microarray time-course data. We then extend this method to provide

predictive models of the constructed network.

To demonstrate the applicability of the proposed methodology, we apply it to reverse-

engineer gene interactions in E. coli from a time-course data set obtained from the GEO database.

The final network identifies significant gene interactions among all possible interactions in E.

coli, obtained over multiple time points. To decrease the computational cost, our algorithm de-

tects pairs of genes that may potentially have regulatory effects on each others and performs the

proposed computations only on the candidate pairs of genes. The algorithm computes a property,

called maximum mutual information, over all possible time intervals for the genes satisfying the

regulatory tests in the previous step. The use of empirical copula entropy to measure mutual in-

formation allows us to overcome challenges in measuring joint probabilities of time-dependent

data and to further reduce the computational cost. The final network is constructed after selecting

a proper threshold and removing statistically weak connections.

This strategy significantly decreases the computational complexity in constructing very

large-scale networks from time-course data. It also facilitates the development of predictive

models of the constructed network. The main idea of this predictive step is to capture the pos-

terior probability densities of the nodes given measurements using the initially constructed net-
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work.

The remainder of this section is devoted to a brief overview of the basic concepts of

Bayesian networks and information-theoretic approaches to network reconstruction. In 5.2, we

describe our methodology for reverse engineering of dynamic systems from time-course data.

Section 5.3 contains an application of this method to E. coli.

5.1.1 Mutual-Information Networks

Mutual-information (MI) networks are networks reconstructed by using mutual infor-

mation as a metric of statical significance of inter-node interactions. The process of developing

MI networks consists of two majors steps: measurement of MI to compute a MI matrix, and

selection of a proper threshold.

Measurement of Mutual Information. Consider two random variables X and Y , whose un-

known (marginal and joint) probability density functions (PDFs) are to be inferred from their

measurements {x1, . . . ,xn} and {y1, . . . ,yn}. We use nonparametric kernel density estimators

(KDEs) to accomplish this task. Specifically, a KDE represents fX(x), the PDF of random vari-

able X , as [109]

fX(x) =
1

nh2
√

2π

n

∑
i=1

exp
[
−(x− xi)

2

2h2

]
. (5.1)

where the parameter h is called a kernel bandwidth. A KDE of fXY (x,y), the joint PDF of random

variables X and Y , is

fXY (x,y) =
1

2nh2π

n

∑
i=1

exp
[
−(x− xi)

2 +(y− yi)
2

2h2

]
. (5.2)
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Finally, MI between X and Y is defined as [87]

I(X ,Y ) =
n

∑
j=1

n

∑
i=1

fXY (xi,y j) ln
[

fXY (xi,y j)

fX(xi) fY (y j)

]
. (5.3)

Mutual information plays an important role in identifying indirect connections between

multiple random variables. If a random variable Xi interacts with a random variable X j through

a random variable Xk then, according to a Data Processing Inequality (DPI) [83],

I(Xi,X j)< min{I(Xi,Xk), I(X j,Xk)}. (5.4)

For each triplet of random variables, whose mutual information exceeds the threshold, the DPI

is applied to identify and eliminate indirect connections.

Computation of MI from time-series data can be prohibitively expensive, especially

when data sets include high-dimensional vectors with different sample sizes. To speed up this

computation, we will use the copula entropy. The latter is calculated by using Eqs (6.1)–(6.4)

from Chapter 4.

Threshold Selection. The large deviation theory [20] states that the probability that an em-

pirical value of mutual information I exceeds a given threshold I0, provided that its true value

is Ī = 0, is an exponential function of the threshold. In other words, P[I ≤ I0] ≡ p ∼ exp(I0).

Taking the natural logarithm of both sides yields

ln p = a+bI0, (5.5)
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where p represents the p-value, and a and b are fitting parameters obtained by fitting this straight

line to data. Equation (5.5) determines the threshold I0 for any desired accuracy p (p-value).

Any MI value that falls below this threshold represents a non-significant connection and is re-

moved. This large-deviation-theory-based approximation is used in several biological network-

reconstruction methods, e.g., ARACNE (Algorithm for the Reconstruction of Accurate Cellular

NEtworks) [83].

To the best of our knowledge, a combination of large deviation theory for threshold

selection and DPI for removing indirect connections was first introduced by ARACNE [83]. It

is now widely used by various methodologies in computational systems biology.

5.1.2 Bayesian Networks

There are several equivalent definitions of a Bayesian network. According to the factor-

ization theorem [103, 95], a network is considered a Bayesian network if the joint PDF of all of

its nodes can be written as the product of the individual (marginal) PDFs of individual nodes,

conditional on their parent variables. Suppose a network consists of n nodes X = (X1, . . . ,Xn),

which are treated as random variables. It is called a Bayesian network if, for each Xv with a

parent X j,

fX(x1, . . . ,xn) =
n

∏
v=1

fXv|X j(xv | x j) =
n

∏
v=1

fXv|X j(xv | parents(xv)) (5.6)

The analysis presented below assumes conditional independence of the variables from

any of their non-descendants, given the values of their parent variables.
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5.2 Methodology

We propose a Reverse Engineering of GEnetic NeTworks (REGENT) algorithm for net-

work reconstruction and modeling from time-course data. It consists of the following steps.

1. Find the minimum amount of time necessary for a significant change in the activity of a

node (e.g., a gene) occurs. We refer to this time as Earliest Time of Change in Activity

(ETCA). It is determined by using two up and down thresholds, Tup and Tdown, respectively.

The values of these thresholds may vary; for example, the thresholds used by TimeDelay-

ARACNE [143] are Tup = 0.83 and Tdown = 1.2. We set their values to Tup = 0.85 and

Tdown = 1.18. For the ith node (gene), the ETCA is calculated as

ETCA(Gi) = argmint

{
G0

i
Gt

i
≥ Tup or

Gt
i

G0
i
≤ Tdown

}
(5.7)

where Gi denotes the expression of ith gene, and After computing the ETCAs for all genes,

we assume that the expression of the ith gene (Gi) can regulate the expression of the jth

gene (G j) only if

ETCA(Gi)≤ ETCA(G j). (5.8)

Interactions of gene pairs, which do not satisfy Eq. (6.7), are ignored. This assumption

significantly reduces the unnecessary calculations by accounting only for the interactions

of genes that may potentially regulate each others and ignoring the rest.

2. For each pair of nodes (genes) detected by Eq. (6.7), obtain MI over all possible time inter-

vals and determine the Maximum Mutual Information (MMI). A challenge in measuring

MI for time-course data is to find joint PDFs of variables with different sample sizes. To
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decrease the complexity and increase the efficiency of computations, we determine the

mutual information I from the empirical copula entropy HC in Eq. (6.1) as [79]

I(X ,Y ) =−HC(X ,Y ). (5.9)

This procedure significantly reduces unnecessary computations needed to obtain joint

PDFs and MI. This is in contrast to other methods (e.g., [143]), which apply Gaussian

(or other types of) copula distribution to calculate joint PDFs and then use Eq. (5.3) to find

MI. To the best of our knowledge, the use of empirical copula to measure MI in Eq. (5.9)

is new in the context in data mining and systems biology.

3. Build a MMI matrix (MMIM) using maximum values of MI for potentially dependent

genes over all possible time intervals. Eq. (5.5) is then applied to find a proper threshold

for this matrix. Interactions, whose MI falls below this threshold, are removed and the DPI

in Eq. (5.4) is applied to eliminate indirect connections. Finally, the network is constructed

using the remaining interactions.

4. Predict posterior densities of target nodes given the measurements. Suppose that the net-

work reconstruction procedure consisting of Steps 1-3 has identified a set XB of m nodes

{XB1 , . . . ,XBm} that affect a node Yj (Fig. 5.1). (In other words, {XB1 , . . . ,XBm} are expres-

sions of the regulator genes for a gene Yj.). Using Bayes’ theorem and with the assumption

that XB (s) are conditionally independent given Yj, the posterior density of Yj, given Xtest

(or measurements) is obtained by:

Predict posterior densities of target nodes given the measurements. As Fig. 5.1 indicates,

assume a probabilistic network reconstruction procedure (for example, the one described
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in the previous step) has identified a network in which a node (random variable) Yj is

connected to (regulated by) a set of n nodes (random variables) X = {Xi}n
i=1. If this

procedure has yielded a PDF fYj(y) of Yj, this step seeks to probabilistically forecast the

behavior of Yj from a new set of k measurements {xi1, . . . ,xik} of each of the random

variables Xi. We emply a Bayesian data assimilation technique [139] and treat fYj(y) as

a prior PDF of Yj. we treat a set of measurements xtest (an n× k matrix) as independent

random variables Xtest (an n× k matrix) that follow a Gaussian (conditioned on y) data

model [139]

fXi,test|Yj(xi,test|y) =
k

∏
ν=1

1√
2πσ2

i

exp
[
−(xiν − y)2

2σ2
i

]
, i = 1, . . . ,n (5.10)

where σ2
i is the variance of Xi. This is a likelihood function to be used in Bayes’ rule,

fY j|Xtest(y|xtest) =
fXtest|Y j(xtest|y) fYj(y)

fXtest(xtest)
, fXtest(xtest) =

∫
fXtest|Yj(xtest|y) fY j(y)dy

(5.11)

The posterior PDF fYj|Xtest(y|xtest) represents an updated distribution of Yj obtained from

new data xtest. With the independence assumption of {Xi}n
i=1, this yields

fYj|Xtest(y|xtest) =
fYj(y)∏

n
i=1 fXi,test|Yj(xi,test|y)∫

fYj(y)∏
n
i=1 fXi,test|Yj(xi,test|y)dy

. (5.12)

This procedure is repeated for all nodes of the network, Yj ( j = 1, . . . ,m). This step pro-

vides a probabilistic prediction of the system’s response to any input xtest. The predicted

PDFs fYj|Xtest(y|xtest) ( j = 1, . . . ,m) are then used in next step to construct a predictive
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network.

Figure 5.1: A schematic representation of a directed sub-network in which a set of nodes
{XB1 , . . . ,XBn} are connected to a node Yj, i.e., “genes XB1 , . . . ,XBn regulate gene Yj".

5. Repeat steps 1 to 3 to reconstruct the predicted regulatory network by replacing the given

network with the predicted network.

Figure 6.1 exhibits a flowchart of the algorithm that comprises Steps 1-5. This flowchart

indicates that our algorithm can be extended to detect interactions among pathways in addition

to genes. To capture pathways interactions, genes are grouped into their associated pathways

first and then the mean of the genes expressions in each pathway is calculated for all possible

time points. Finally, Steps 1-5 are applied to determine the pathway interactions networks. A

gene might belong to more than one pathway and the mean of the gene expressions for one

pathway might change at different time points. Developing genetic pathway networks would

provide valuable information about the functional behavior of genes during time-course.

Some of the key features of the REGENT algorithm are listed below.

• Steps 1-3 reconstruct an initial network, while Steps 4 and 5 predict the network’s perfor-

mance and build a predictive network model.

– Step 1 reduces the computational cost by identifying the pairs of nodes, which might

potentially regulate each others.
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Figure 5.2: Flowchart of the proposed algorithm to data-driven network reconstruction and pre-
dictive modeling of time-course data.
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– Step 2 reduces the complexity of computing the MI for time-series data by using

copula entropy.

– Step 3 constructs a final network model by relying on the maximum MI matrix

(MMIM) and selecting a proper threshold to detect significant interactions.

– Step 4 uses this network to predict posterior densities of target nodes given new

measurements.

– Step 5 reconstructs a predictive network model by repeating Steps 1-3 with the new

(predicted) data set.

• The predictive model (Steps 4 and 5) allows one to predict the behavior of nodes under

new conditions, i.e., to predict posterior density of target nodes for any given data set

containing information about its associated regulators.

• These predictive model can also be used to validate the initial network (built in Steps 1-3)

if the same data set is used to predict posterior density of all nodes given measurements.

This algorithm reduces the complexity associated with data analysis for dynamic net-

works. It is worthwhile emphasizing that the constructed and predicted networks obtained in

Steps 3 and 5 are built without making any assumptions about the linearity or functional forms

of nodes (random variables). Instead, it assumes these variables (nodes) to be conditionally

independent of variables from any of their non-descendants, given the values of their parent

variables.
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5.3 Case Study: E. coli Treated with Ampicillin

As an example, we analyze genes interactions of MG1655 cells in Escherichia coli

(E. coli) at various time points up to 75 minutes following their treatment with 100 µg/ml of

ampicillin. The ampicillin was added to cells grown in M9 media supplemented with glucose.

The data used in our analysis are reported in NCBI’s Gene Expression Omnibus (Edgar et al.,

2002) [7] and are accessible through GEO Series accession number GSE4357. The data are part

of a study tracking transcriptional responses of E. coli to over 30 chemical and physiological

perturbations [116].

After normalizing and filtering the microarray data, we follow steps 1 to 3 to construct

the network of gene interactions in E. coli. First, we identify and select interactions only if they

satisfy Eq. (6.7). This significantly decreases the computational time and decreases unnecessary

calculations by about 60%. Next, we use Eq. (5.9) to compute the maximum MI (MMI) of

selected interactions during all possible time intervals. The result is a square matrix of maximum

mutual information (MMIM). Figure 5.3 shows the histogram of the MMIs. The dashed line

indicates the selected threshold. Only the interactions that exceed this threshold (right of the

dashed line) are used for network construction.

The network is reconstructed in Step 3 by applying the DPI in Eq. (5.4) and selecting the

proper threshold in Eq. (5.5) for p-value p = 0.0001. Figure 5.4 exhibits the resulting network

of gene interactions of MG1655 cells in E. coli, which underwent treatment with 100 µg/ml

of ampicillin. The nodes of this network represent the genes that are actively involved in the

regulatory activity, and the lines indicate significant interactions.

Table 5.1 lists the most active genes in this network with respect to the number of in-

teractions with other genes. Table 5.2 lists genes with highest activities as regulators. The third
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Figure 5.3: Histogram of Maximum Mutual Information (MMI) of interactions. The x-axis and
y-axis in this figure indicate MMI and frequency. The red line shows the selected threshold.

columns of both tables provide definitions of the associated genes based on information available

in KEGG database [61].

Table 5.1: Genes with highest activities with respect to the number of significant interactions
with other genes

Gene Name Interactions Definition
flhE 97 proton seal during flagellar secretion [61]
yedY 97 membrane-anchored, periplasmic TMAO, DMSO reductase [61]
deaD 96 ATP-dependent RNA helicase[61]
mazG 90 nucleoside triphosphate pyrophosphohydrolase[61]
metL 89 Bifunctional aspartokinase/homoserine dehydrogenase 2 [61]
rhsE 87 pseudogene[61]
nlpA 85 cytoplasmic membrane lipoprotein-28[61]
fliY 51 cystine transporter subunit [61]
rnb 40 ribonuclease II[61]

After constructing the network in Step 3 (Figure 5.4), we use Steps 4 and 5 to develop

a predictive model. This model is then used to validate the reconstructed network in Fig. 5.4 by

using (5.12) and predicting the posterior densities of outputs given new measurements node by
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Figure 5.4: Network of gene interactions in E. coli subjected to treatment with 100 µg/ml ampi-
cillin.
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Table 5.2: Genes with highest activities with respect to the number of significant interactions
with other genes as regulators

Gene Name Interactions Definition
hisJ 23 histidine/lysine/arginine/ornithine transporter subunit[61]
purH 22 fused IMP cyclohydrolase [61]
speA 22 biosynthetic arginine decarboxylase, PLP-binding [61]
upp 21 uracil phosphoribosyltransferase [61]
gatB 21 galactitol-specific enzyme IIB component of PTS [61]
yoaC 21 DUF1889 family protein [61]
gdhA 21 glutamate dehydrogenase, NADP-specific [61]
pyrF 21 orotidine-5′-phosphate decarboxylase[61]
pyrC 21 dihydro-orotase[61]
proS 21 prolyl-tRNA synthetase [61]

node. Finally, we build the predictive model by following Steps 1-3.

Figure 5.5 shows the predicted network model of E. coli following the above-mentioned

steps. This network includes 16 false-positive and 21 false-negative interactions (see Table 5.3).

The low numbers of false positives and false negatives and the high values of f-measure and

accuracy demonstrate the accuracy of the initially network built in Step 3. To avoid the bias

associated with using the same methodology to construct the final network, we repeat the pre-

diction step using Eq. (5.3) to measure the maximum MI of candidate interactions. Although the

predicted network model built using this method does not show any difference from Figure 5.5

obtained with REGENT, it takes about twice as long to compute as applying the empirical copula

entropy.

Table 5.3: False Positive (FP), False Negative (FN), Precision, Recall, and f-measure of the
predicted network

FP 16
FN 21

Precision 0.984
Recall 0.983

f-measure 0.983
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Figure 5.5: Predicted network model of E. coli following treatment with 100 µg/ml ampicillin.
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5.4 Conclusions

We developed an algorithm, called REGENT, to accurately capture and predict the net-

work of interactions in large-scale dynamic systems from time-course data sets. It is developed

to address specific challenges in data analysis of dynamic networks. This methodology decreases

the computational complexity by using a metric called ETCA and relying on empirical copula

entropy to estimate mutual information. To the best of our knowledge, the latter procedure is

new in the context of systems biology and data mining. The data-driven network reconstruction

and predictive modeling framework make no assumptions about the linearity and functional or

parametric forms of the variables. This algorithm also allows one to reverse-engineer networks

of genetic pathways from time-course microarray datasets. Figure 6.1 presents the proposed

methodology as a flowchart.

To demonstrate the applicability of REGENT algorithm to systems biology, we applied

it to analyze data collected in E. coli subjected to an ampicillin treatment. Figure 5.4 shows the

network of its genetic interactions and Figure 5.5 provides its predictive network model. Using

the same densities as those estimated from the initial dataset for regulator nodes, predicting

the posterior densities of regulated nodes given measurements and reconstructing the predictive

model (Fig. 5.5), enabled us to validate our results (Fig. 5.4). Table 5.3 includes more details

about this network model.

The results of this study enable one to identify hidden patterns behind dynamic biolog-

ical systems, turning them into actionable information that can be used to design and develop

mechanisms to engineer the system’s performance. We expect REGENT algorithm to have sig-

nificant applications in pharmaceutical industry, since it helps scientists and decision-makers to

understand the underlying patterns and then predict the system’s performance under designed
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conditions.
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6.1 Introduction

Multiple sclerosis (MS) is an inflammatory disease, in which the insulating covers of

nerve cells (myelin sheath) in the brain and spinal cord are damaged. Demyelination com-

promised the nervous system’s ability to communicate and causes a wide range of signs and

symptoms ranging from physical disabilities to cognitive dysfunctions [18]. The underlying

mechanism of MS is not known but thought to be either destruction by the immune system

or failure of the myelin-producing cells [93]. MS may have several forms, which are typi-

cally categorized as either relapsing-remitting forms (occurring in single attacks) or progressive

forms (building up over time) [77]. Approximately 85% of MS patients are initially diagnosed

with relapsing-remitting MS (RRMS) followed by improvement after relapses, compared to 10-

15% with progressive forms or gradual worsening over time without periods of recovery [86].

While no current (as of 2014) treatment can change the course of progressive MS, nine disease-

modifying treatments have been approved for RRMS [49, 82]. In 1993, Interferon-β (IFNβ )

became the first FDA-approved drug for the treatment of RRMS [81]. IFNβ -1a is a cytokine

in the interferon family, which is produced by mammalian cells; IFNβ -1b is produced in modi-

fied E. coli [92]. It is claimed that IFNβ decreases the rate of MS relapses about 18-38%. The

mechanism by which IFNβ produces these therapeutic effects is not known; it is assumed to be

associated with its immunomodulatory properties [81].

The main focus of this study is to identify novel gene patterns that may explain MS

mechanisms and be used to develop new therapeutic targets by analyzing data from microarray

experiments. Analyzing gene expression changes in microarray experiments may also reveal

novel cellular functions associated with this disease. We use the REGENT (Reverse Engineer-

ing of GEnetic Networks from Time-series) [38] methodology presented in the previous Chapter
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to construct models of genetic networks in MS patients undergoing IFNβ (both 1a and 1b) ther-

apies. Then, we link these representative and predictive models of gene expression changes to

phenotypes observed in these patients. We use the dataset that was obtained from NCBI’s Gene

Expression Omnibus [7] microarray experiment; it is accessible through GEO Series accession

number GSE26104. In this experiment, gene expressions of RRMS patients treated with IFNβ -

1b (Betaferon) or IFNβ -1a (Rebif) have been measured during a time period of 10 years [81].

The results of this study are important in discovering novel patterns that may elucidate

MS mechanisms and explain how changes in gene expressions in MS patients under IFNβ ther-

apy influence their health over time. Capturing these mechanisms not only provides new thera-

peutic solutions for MS patients but also allows medical professionals to make more-informed

decisions.

6.2 Background: Reverse Engineering of GE Networks from Time-

series (REGENT)

We use REGENT (Reverse Engineering of GEnetic Networks from Time-series) [38]

approach to construct genetic networks. REGENT is a statistical approach, which relies of

information-theoretic and Bayesian approaches. REGENT reconstructs a network in three main

steps. First, it calculates mutual information between potentially related nodes by measuring a

property called ETCA (Earliest Time in Change of Activity). Second, it builds MMIM (Maxi-

mum Mutual Information Matrix) whose elements are maximum values of mutual information

between two nodes over all possible time intervals. Finally, a proper threshold is selected using

large deviation theory and for a desired p-value the final network is constructed after removing
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interactions whose mutual information falls bellow this threshold. This algorithm can also be

used to develop interactions of genetic pathways. To construct pathway networks, genes are first

grouped into pathways. Activity of a pathways is defined as the mean of expressions of genes

belonging to the pathway.

6.2.1 Calculation of Mutual Information

To find mutual information, REGENT uses a quantity called copula entropy. A copula

entropy, HC(X ,Y ), of two random variables X and Y is defined as [79]

HC(X ,Y ) =−
∫

c(u) ln[c(u)]du (6.1)

where u = [FX ,FY ]; FX and FY are marginal PDFs of variables X and Y given their samples

{x1, . . . ,xn} and {y1, . . . ,ym};

c(u) =
∂ 2C(u)
∂u1∂u2

(6.2)

and C(u) is the copula density of u. A d-dimensional empirical copula for random variables

{xi
1, ...,x

i
d} is obtained by [96]

Cd(u) =
1
n

n

∑
j=1

I (ũi
1 ≤ u1, . . . , ũi

d ≤ ud) (6.3)

where I is the indicator function, ũi
k = Ri

k/n is called a pseudo copula sample, and Ri
k is the

rank of observation xi
k.

The copula entropy HC(X ,Y ) in (6.1) represents mutual information between X and Y ,

I(X ,Y ), by [79]

I(X ,Y ) =−HC(X ,Y ). (6.4)
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6.2.2 Threshold Selection

Based on Large Deviation theory, a proper threshold for any desired p-value p is ob-

tained as [83]

ln p = a+bI0, (6.5)

where a and b are fitted to the dataset and I0 represents the selected threshold.

6.2.3 Earliest Time of Change in Activity (ETCA)

For a gene, Gi, ETCA (Earliest Time of Change in Activity) is defined as

ETCA(Gi) = argmint

{
G0

i
Gt

i
≥ Tup or

Gt
i

G0
i
≤ Tdown

}
(6.6)

where Tup and Tdown are up and down thresholds selected by the user, and Gi denotes the gene

expression of the ith gene in the microarray experiment. We assume that Gi can regulate the

expression of the jth gene (G j) only if

ETCA(Gi)≤ ETCA(G j). (6.7)

In this research, we use Tdown = 1.18 and Tup = 0.85. Figure 6.1 represents the flowchart of

REGENT algorithm.
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Figure 6.1: Flow .
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Chapter 7

Summary and Conclusions

The conclusions reached in in each chapter of this dissertation are as follows.

7.1 Information-Theoretic Approach to Reconstruction of Complex

Biological Networks

We used an information-theoretic approach to build an input-output model of regula-

tory phosphoprotein-cytokine signaling network in RAW 264.7 macrophages. The network

constructed with this model was based on mutual information of interactions. The latter was

computed using a nonparametric Kernel Estimation Estimator. An appropriate threshold was

selected by applying the large deviation theory. According to this theory, the probability that an

empirical value of mutual information exceeds a given threshold, provided that its true value is

zero, is related exponentially to the threshold value. Interactions below this threshold were con-

sidered statistically insignificant and removed. The final network model was constructed using

interactions above the threshold.

98
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We developed a linear predictive model applying the Least Square Method to a test

dataset. The low coefficient of determination values for this model indicate the nonlinear nature

of the system. However, our methodology, which makes no assumptions about the linearity or a

functional and parametric form of variables, successfully identified most of the known interac-

tions. The network model captured by this method was validated against the published results. It

also detected several new connections, such as Ribosomal S6 kinase for Tumor Necrosis Factor,

which have not been previously detected by other methods. These novel regulatory components

serve as testable hypotheses. Identifying the regulatory components for cytokines is critical for

understanding the mechanisms that control their production and release in immune cells.

7.2 A Bayesian and Information-Theoretic Approach for Data-Driven

Predictive Modeling and Reconstruction of Complex Networks

Combining Bayesian-net and information-theoretic approaches, we developed a frame-

work for predictive modeling of complex systems. Our approach first predicts joint PDFs of

output for a given input test dataset. Then, using these values, it constructs predictive network

models. To demonstrate the applicability of this approach, we used it to construct predictive

models of phosphoprotein-cytokine signaling networks in RAW 264.7 macrophage cells for two

different networks initially constructed by using two different p-values of 0.005 and 0.001. The

values for the accuracy and F-measure of these models were obtained and compared with values

of a predictive model obtained by applying another methodology (the least square method used

in our previous research).

High values of the accuracy and F-measure of the network models obtained with this
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methodology indicate its potential uses for development of predictive models. The method is

free of assumptions about the functional and parametric forms and the linearity of the systems.

7.3 An Information-Theoretic Algorithm for Data-Driven Recon-

struction of a Genetic Pathway Interaction Network

We proposed an algorithm for construction of large-scale biological networks from time-

course microarray data. This algorithm alleviates computational challenges in systems biology,

which are related to data analysis for dynamic systems. It speeds up the computations by iden-

tifying potentially related nodes to avoid unnecessary calculations, and by using copula entropy

as an estimator of maximum mutual information of interactions over all possible time intervals.

The applicability of this method was demonstrated by developing a pathway interaction

network from a yeast cell-cycle microarray dataset. To construct this network, our algorithm

first groups genes into their associated KEGG pathways and then captures the network model of

interactions among pathways during one complete yeast cell-cycle. The proposed methodology

not only decreased the complexity and computational cost of the calculations, but also showed a

good agreement with the information available in the literature. The results of this study provide

an important framework for capturing the functionality of genes by constructing time-course

genetic pathway networks.
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7.4 Statistical Approach to Reverse Engineering of Dynamic Net-

works from Time-Course Microarray Data

We developed an algorithm for data-driven network reconstruction and predictive mod-

eling of large dynamic networks. This algorithm, called REGENT, first constructs a network of

statistically significant interactions in large-scale systems and then, using a predictive method-

ology, develops a predictive network model of the constructed network for any given dataset.

This approach captures the patterns of underlying systems and provides a new tool to engineer

complex systems and make better-informed decisions.

We demonstrated the applicability of this algorithm in computational systems biology

by applying it to E. coli that underwent treatment with Ampicillin. First, a network model of

gene interactions in E. coli was constructed. Then, a predictive network was obtained using the

initially constructed network. Using the same dataset as initial data for source nodes. and then

predicting the probability distributions of target nodes, enabled us to computationally validate

the initial network.

This algorithm detected significant gene interactions among millions of possible inter-

actions in E. coli over all possible time intervals. It significantly decreased the computational

time by detecting pairs of genes that may potentially have regulatory effects on each other. The

main idea of the prediction step was to capture the joint PDFs of nodes using the initially built

network and then, using a Bayesian-net assumption, decompose the joint PDFs into conditional

PDFs among relevant nodes. This algorithm enabled us to capture and predict the performance

of large-scale complex systems under various situations.
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7.5 Reverse Engineering of Gene Expression Data from Multiple

Sclerosis Patients Undergoing Interferon-β Therapy

This research focuses on the application of our REGENT algorithm for reverse engi-

neering of time-course networks in a real-world problem in computational systems biology. We

demonstrated how genes influence changing health over time. We applied our algorithm to a

GEO data set in which the gene expressions of Multiple Sclerosis (MS) patients under Interferon-

β have been measured over ten years. Capturing gene interactions and associated phenotypes

provides significant information about health-related issues associated with MS patients under-

going this therapy.

Extracting the network of gene interactions for MS patients helps one to understand the

impact of Interferon-β therapy on humans. It also provides potential diagnostic and therapeutic

solutions for problems caused by changes in expressions of genes for MS patients. The result

of this research will have significant applications in pharmaceutical industry for medical design

and development. It will help medical designers and decision makers to make better-informed

decisions. This research is under preparation.

7.6 Future Work

The various components of this dissertation contribute to increasing our understanding

of hidden patterns and mechanisms underlying large-scale datasets. Our proposed methodolo-

gies provide solutions for reverse engineering of complex biological systems to capture these

patterns and develop novel mechanisms to overcome multidisciplinary challenges associated

with these complex and large-scale systems.
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The future direction of our work will focus on applications of these methodologies to

real-world problems. We will apply our algorithms to develop a comprehensive framework for

providing potential diagnostic and therapeutic solutions for health-related problems caused by

changes in genes expressions over time. We will link captured patterns of changes in expression

of genes to their associated phenotypes to extract actionable information.

At the scale of technical improvement, we will use conditional mutual information in ad-

dition to mutual information. This will enable our algorithms to detect potential co-regulations.

In addition, these algorithms will be more accurate (not necessarily more time efficient though),

without having to rely on naive Bayesian-net logic of conditional independence assumptions.

Finally, developing a user-friendly software for automating the network construction and predic-

tive modeling processes would be a great addition to this research.



Appendix A

Development of a Linear Predictive

Model

A.1 Least Square Method

To develop a predictive model using the reconstructed network, we build the following

linear model between the significant inputs (X) and a chosen output (Y ):

Y = b̂X + ε, (A.1)

where ε represents white noise. Generally, one deals with one output at a time because the set of

significant inputs differs for different outputs. Here X is mean-centered and normalized by the

standard deviation and Y is mean-centered. The coefficient matrix b is estimated by least square

104
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method [11] using training dataset:

b̂ = (XT X)−1(XTY ). (A.2)

Once b̂ is estimated, the model can be tested on a test dataset. The test dataset generally

has the same probability distribution as training dataset. Thus, given the input test data Xtest

(normalized by using the mean and standard deviation parameters obtained for the training set),

the output test data Ytest (offset by the mean of Y ) is predicted as

Y pred
test = b̂Xtest. (A.3)

Two metrics used to measure the accuracy of the prediction are Root Mean Square Error (RSME)

and coefficient of determination (R2). They are calculated as [25]

RMSEtest =

√
1
n

n

∑
i=1

(Ytest,i−Y pred
test,i)

2 (A.4)

and

R2 = 1−
∑

n
i=1 (Ytest,i−Y pred

test,i)
2

∑
n
i=1 (Ytest,i− Ȳtest)2 (A.5)

where n is the number of data points, and Ȳtest is the mean value of the n data points for the

chosen output. R2 is a good quantitative metric indicating the quality of prediction by the linear

model.

The scatter-plot in Figure A.1 illustrates the predictive power of the linear models made

from the reconstructed network (Figure 2.4) for training (dots) and test (open circles) datasets

on cytokine releases. Most of the training and test data points are inside within two root-mean-
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Figure A.1: Predicted (y-axis) vs. measured (x-axis) values of training (dots) and test (open
circles) data for the seven cytokines.
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squared errors of the training data. To provide a measure of the predictive quality of these linear

models, we also computed the coefficient of determination R2 for each cytokine as described

in 2.4. The R2 values range from 0.32 to 0.62. TNFα and MIP-1α yield the best fit (R2 >

0.6) and IL-6 and RANTES yields the lowest coefficients of determination. Although the linear

model derived based on the significant components identified through the information theoretic

approach is in a good agreement with the predictive models obtained with other methods, such

as PCR [107] and PLS [140], the low coefficient of determination in these models demonstrate

the highly non-linear nature of the phosphoprotein-cytokine signaling networks.
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