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Dissertation abstract

Viruses are abundant in soil, and by infecting other soil biota, viruses have the potential to impact soil

food webs, and carbon and nutrient cycling. While viruses are an important component of the soil

microbiome, they are relatively understudied. To explore viral diversity and ecology in plants and natural

and agricultural soil systems, in this thesis, I used a combination of total soil metagenomics, viral

size-fraction metagenomics (viromics) and dsRNA metatranscriptomics to investigate the viral communities

in Minnesotan peatland soils, various oak and conifer plant species, California wetland soils and

agricultural bulk and rhizosphere soils. In chapter one of this thesis, we determined that viral communities

are mainly structured by depth and water content in a Minnesota peatland. In Chapter two we found that

the viral communities of oak and conifer species are predominantly structured by host tree phylogeny. In

Chapter three, we uncovered that habitat characteristics, such as soil salinity and plant community, play

an important role in structuring the soil virome in a California wetland ecosystem with a salinity gradient.

In Chapter four, we determined that viruses are abundant in the rhizosphere microbiome, and that soil

compartment, moisture content, and spatial location of the field all have significant impact on viral

community composition. Moreover, we created a database for reference-based viral genome recovery, named

Phages and Integrated Genomes Encapsidated Or Not (PIGEON), in order to explore viral biogeographical

patterns. In conclusion, viruses are an important, diverse and understudied component of the soil

microbiome, and here, we explored viral diversity and community structuring in a variety of habitats.
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CHAPTER 1

Introduction

Viruses are the most abundant biological entities on Earth, harboring a substantial reservoir of genetic

diversity [1]. In soil, current estimates suggest that viruses of bacteria (bacteriophages) are as abundant as,

or even more abundant than their bacterial hosts [2], at an estimated amount of 107 - 109 viruses per gram

of soil [3]. Viruses impact food webs, nutrient and carbon cycling, and host mortality [2,4]. Through

infection and lysis of their hosts, viruses influence host metabolic function and soil chemistry [4,5]. For

example, upon lysis, cells release their carbon and nutrient contents into the soil, which then become

available for other members of the soil community [4,6,7]. Recent methodological improvements have

made it possible to investigate soil and plant-associated viral communities in detail. Although shotgun

metagenomic data can be mined to retrieve viral sequences bioinformatically, most sequences in total soil

metagenomes are from bacterial (and occasionally eukaryotic) genomes [8,9], which dilute the viral signal.

By purifying the viral size fraction through a 0.22 µm filter prior to DNA extraction and deep

metagenomic sequencing (defined as viromics) [10], a much higher viral diversity can be recovered than via

shotgun metagenomics [8,11]. To investigate soil viruses with RNA genomes, metatranscriptomic (shotgun

RNA sequencing) data mining has been used to identify virus-encoded RNA-dependent RNA polymerase

(RdRP) genes, for example, revealing significant differences in viral communities between soil

compartments (bulk, rhizosphere and detritusphere) in grassland microcosms [12]. However, similar to

shotgun metagenomes, total metatranscriptomes are dominated by non-viral sequences, such that targeted

approaches to enrich the RNA viral signal are needed to advance the field, particularly in host-associated

environments like plant tissues, from which the majority of sequences are host-derived. Such advances

include RNA viromics, which has been successfully applied to grassland and peatland soils [13], and here

(Chapter 3) we report dsRNA extraction and sequencing of oak and conifer leaves to explore viral

communities associated with asymptomatic trees. In this dissertation, we report a new laboratory protocol

for recovering DNA viromes from rhizosphere soils (Chapter 5), and we apply a suite of cutting-edge

approaches (total metagenomics, viromics, total metatranscriptomics, and dsRNA sequencing) to assess

soil and plant-associated viral biogeography across a range of ecosystems from the field to global scale.

1



To comprehensively investigate soil and plant-associated viral ecology, the studies reported here span a

variety of ecosystems, from peatlands to fresh- and saltwater wetlands to agricultural soils, tomato

rhizospheres, and oak and conifer phyllospheres (leaf surface and endophytic viruses). Wetlands are

important ecosystems that are estimated to store between 20 and 30% of the global soil carbon [14], and

microorganisms play key roles in carbon cycling and the emission of greenhouse gasses from these

ecosystems [15]. Given the evidence for viral impacts on microbial ecology and biochemistry in other

ecosystems [16,17], viruses are likely to play key roles in wetland ecosystem dynamics as well, but little is

known about viral wetland ecology [4,15]. Forest trees, such as oaks and conifers, are of economic

importance and have a broad ecological distribution, but there is a relative lack of knowledge about their

associated viral diversity [18,19,20,21]. By expanding our knowledge of the natural tree virome, we might

be able to better predict tree responses to emerging pathogens. The rhizosphere microbiome is an

important factor for plant growth, health and nutrient acquisition [22,23,24], and viruses are likely

impacting the rhizosphere microbiome by infecting rhizosphere microbes [4,25,26]. However, very little is

known about the rhizosphere virome [4,25,26], and it remains to be seen if rhizosphere viral communities

display similar patterns to those of their presumed host bacteria and fungi.

Prior to this dissertation, local and global distributions of soil viral species, as well as their habitat

preferences, were unknown. Recent studies, including Chapter two of this dissertation, have shown that soil

viral communities differ substantially at local-to-regional scales, with few viral species shared even in the

same habitat meters apart [7,11,27,28]. To expand these studies to the global scale, we developed the

viral population genomic reference database, Phages and Integrated Genomes Encapsidated Or Not

(PIGEON), introduced in chapter two. In chapters two, four, and five of this dissertation, we leverage

PIGEON to show that the same viral ‘species’ (viral operational taxonomic units, vOTUs, ≥ 10 kbp, ≥

95% average nucleotide identity [29]) can be recovered on different continents, usually in the same type of

habitat [11]. This dissertation demonstrates that, at both local and global scales, soil viral communities

tend to differ most significantly by habitat type, for example, with freshwater wetland viruses differing

from those in saltwater, agricultural soil viruses differing from those in natural soils, and viruses in

peatlands differing from those in most other environments.

In chapter two, we sought to explore local and global peatland viral biogeography in climate-vulnerable

peatlands, as well as compare methods for analyzing peat viral communities. We leveraged total soil

metagenomes from the Spruce and Peatland Responses Under Changing Environments (SPRUCE) whole

ecosystem warming experiment in the Marcell Experimental Forest (MEF) in northern Minnesota, and we
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generated viromes from the bog surrounding the SPRUCE experiment [30,31]. Viral species (vOTU)

recovery was 32 times higher from viromes compared to total soil metagenomes [11], indicating that a

viromic approach vastly improved resolution of soil viral diversity and thus is more appropriate for soil

viral ecological investigations. Whole ecosystem warming treatments did not significantly affect soil viral

community composition during the first two years of the experiment, but viral communities differed

significantly by peat depth, water content, and carbon chemistry, indicating local habitat characteristics as

important drivers of viral biogeography [11]. Evidence for strong viral species boundaries between

terrestrial and aquatic ecosystems was found at both local and global scales, with viral species shared in

similar habitats. These results suggest that there may be specific niches for viruses in similar habitats,

presumably partially driven by host niche preferences.

In chapter three, we explored viral diversity in 16 healthy oak and conifer tree species, as the diversity

and role(s) of phyllosphere viruses are virtually unknown in asymptomatic trees [18,19,20,21]. While

most research on plant viruses has been focused on viruses that cause disease in economically important

crops [32,33], trees and other wild plants can harbor viruses as well. Some of these can cause disease

within wild plant communities, and others can be reservoirs of emerging diseases in crops [34,35,36].

Some plant-associated viruses have positive, mutualistic, or neutral interactions with the plant host and

can play important roles in the phytobiome [32,37,38,39,40,41,42,43,44,45,46]. Here, we found that

oak and conifer phyllosphere viral communities were significantly correlated to host plant phylogeny,

suggesting that these viruses were highly host lineage-specific, potentially adapted to the host’s

physiological environment and/or its phytobiome. Many of these viruses were phylogenetically related to

viruses with known plant and/or fungal hosts, suggesting that their primary hosts were plants or fungi,

suggesting persistent, asymptomatic infection of the host plant and/or infection of members of the host

plant microbiome. Interestingly, we recovered the greatest diversity of putative mycoviruses (fungal

viruses) in an oak tree with senescing leaves (known to support saprobic fungi that feed on the decaying

tissue [47]), suggesting increased mycoviral infection with increased host activity and hinting at a dynamic

role for viruses in phyllosphere microbiomes that bears further exploration.

In chapter four, we investigated viral community biogeography across wetland habitats at a local scale

(within one field site), and how habitat, plant community composition, and soil salinity affected viral

community composition. We generated 63 viromes and total soil metagenomes from a California freshwater

and saltwater wetland ecosystem. Viral communities were distinct at each wetland site, but they were

secondarily structured by habitat characteristics, such as soil salinity and plant community composition,
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indicating environmental filtering. Globally, 1.5% of the vOTUs were previously recovered elsewhere in the

world, and global biogeographical patterns were largely linked to habitat characteristics, suggesting

wetland habitat-specific niches for these viruses. Together, these results suggest that environmental

filtering, dispersal and dispersal limitation are likely drivers of both local and global wetland viral

biogeographical patterns.

In chapter five, we investigated viral community biogeography and dynamics in rhizosphere and

adjacent bulk soil microbiomes of tomato plants over one growing season. While the structure and function

of microbial and fungal communities in rhizosphere microbiomes is better understood (for example, plant

species, temporal (plant developmental stage) and spatial scales are known to shape the rhizosphere

prokaryotic and fungal communities [48,49,50,51,52]), rhizosphere viral community composition and its

underlying drivers are virtually unknown [4,23,25,26,53]. Viromic processing of rhizosphere samples had

not been done previously, and here we report that viromics can be successfully applied to rhizosphere

samples. Results showed that viral community composition was primarily structured by soil compartment

(differing between rhizosphere and bulk soils) and, within bulk soils, by soil moisture contents. Plot

location secondarily structured both bulk and rhizosphere viral communities, counter to the observed

trends in host prokaryotic community composition, which most significantly separated by soil

compartment, and, within each compartment by time. As of now, explanations for these differences are

unknown, but there could be differences in dispersal limitation, or viruses may represent more active

members of the host microbiome. 15% of the vOTUs were previously detected at the same field site in a

different sampling year, suggesting stable or recurring viruses in these agricultural soilsover time. An

additional 10% of the vOTUs had been previously detected elsewhere, nearly all from other agricultural

sites, suggesting habitat specificity. Taken together, results suggest that tomato rhizosphere viral

communities are a dynamic part of the rhizosphere microbiome, that respond to changes in the

environment (such as soil moisture level and other members of the soil microbiome) and have greater

dispersal limations compared to prokaryotes and fungi.

Overall, this dissertation demonstrates that applying viromic methods to plant ecosystems increased the

knowledge on phyllosphere viral ecology in asymptomatic trees, where host plant phylogeny seems to play

an important role. Applying viromic methods to soil ecosystems has resulted in a better understanding of

host-virus interactions and the ecology and local and global biogeography of soil viral communities.
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Abstract

Background: Peatlands are expected to experience sustained yet fluctuating higher temperatures due

to climate change, leading to increased microbial activity and greenhouse gas emissions. Despite mounting

evidence for viral contributions to these processes in peatlands underlain with permafrost, little is known
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about viruses in other peatlands. More generally, soil viral biogeography and its potential drivers are

poorly understood at both local and global scales. Here, 87 metagenomes and five viral size-fraction

metagenomes (viromes) from a boreal peatland in northern Minnesota (the SPRUCE whole-ecosystem

warming experiment and surrounding bog) were analyzed for dsDNA viral community ecological patterns,

and the recovered viral populations (vOTUs) were compared to our curated PIGEON database of 266,125

vOTUs from diverse ecosystems.

Results: Within the SPRUCE experiment, viral community composition was significantly correlated

with peat depth, water content, and carbon chemistry, including CH4 and CO2 concentrations, but not

with temperature during the first two years of warming treatments. Peat vOTUs with aquatic-like

signatures (shared predicted protein content with marine and/or freshwater vOTUs) were significantly

enriched in more waterlogged surface peat depths. Predicted host ranges for SPRUCE vOTUs were

relatively narrow, generally within a single bacterial genus. Of the 4,326 SPRUCE vOTUs, 164 were

previously detected in other soils, mostly peatlands. None of the previously identified 202,371 marine and

freshwater vOTUs in our PIGEON database were detected in SPRUCE peat, but 0.4 % of 80,714 viral

clusters (VCs, grouped by predicted protein content) were shared between soil and aquatic environments.

On a per-sample basis, vOTU recovery was 32 times higher from viromes compared to total metagenomes.

Conclusions: Results suggest strong viral “species” boundaries between terrestrial and aquatic

ecosystems and to some extent between peat and other soils, with differences less pronounced at higher

taxonomic levels. The significant enrichment of aquatic-like vOTUs in more waterlogged peat suggests that

viruses may also exhibit niche partitioning on more local scales. These patterns are presumably driven in

part by host ecology, consistent with the predicted narrow host ranges. Although more samples and

increased sequencing depth improved vOTU recovery from total metagenomes, the substantially higher

per-sample vOTU recovery after viral particle enrichment highlights the utility of soil viromics.

2.1. Introduction

Peatlands store approximately one-third of the world’s soil carbon (C) and have a significant role in the

global C cycle [1]. Microbial activity in peatlands plays a key role in soil C and nutrient cycling, including

soil organic C mineralization to the greenhouse gases, methane (CH4) and carbon dioxide (CO2) [2,3,4,5].

Given the abundance of viruses in soil (107 to 1010 per gram of soil [6,7,8,9]) and evidence for viral

impacts on microbial ecology and biogeochemistry in other ecosystems [10,11,12], it is likely that viral

infection of soil microorganisms influences the biogeochemical and C cycling processes of their
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hosts [13,14,15]. In marine ecosystems, viruses are estimated to lyse 20-40% of ocean microbial cells daily,

impacting global ocean food webs and the marine C cycle [16,17,18], and viral contributions to terrestrial

ecosystems are presumed to be similarly important but are less well understood [6,13,15,19,20,21].

Our current understanding of soil viral ecology stems from pioneering studies on viral abundance,

morphology, amplicon sequencing, and lysogeny of bacteria [7,22,23,24,25,26], along with early viral

size-fraction metagenomic (viromic) investigations [27,28,29]. More recently, total soil and wetland

metagenomic datasets have been mined for viral sequences [10,14,30], revealing thousands of previously

unknown viral populations (vOTUs) and suggesting habitat specificity for some of these viruses.

Metatranscriptomic data mining has recently been used to explore RNA viral communities, revealing

differences in bulk, rhizosphere, and detritusphere (plant litter-influenced) soil compartments [31], along

with potential viral contributions to the ecology of the Sphagnum moss microbiome [32]. In addition to

mining omic data for viral signatures, viromics (the laboratory enrichment of viral particles prior to DNA

extraction and metagenomic sequencing) has recently been paired with high-throughput sequencing to

investigate viral communities in soil [13,14,33,34]. Although we now have an array of laboratory and

bioinformatics methods for soil viral ecology [8,14,22,30,33,35,36,37,38,39,40], we lack a thorough

comparative understanding of these approaches and best practices.

Thawing permafrost peatlands have been the focus of several recent studies of viral diversity and

virus-host dynamics, in order to better understand the ecological patterns underlying C emissions from

these climate-vulnerable ecosystems [13,14,41,42,43]. Thawing permafrost peat has been characterized

by relatively high viral diversity (thousands of vOTUs), including viruses predicted to infect methanogens

and methanotrophs responsible for CH4 cycling [14]. Evidence for more direct viral impacts on ecosystem

C cycling has been revealed by the recovery of putative viral auxiliary metabolic genes (AMGs) [13,14],

specifically, virus-encoded glycosyl hydrolases capable of degrading complex C into simple sugars [14].

Although we are gaining insights into soil viral ecology within specific ecosystems, our understanding of

global soil viral biogeographical patterns is limited and is thus far derived predominantly from

cultivation-based efforts [43,44].

In this study, we examined peat viral communities at the southern edge of the boreal zone in the

Marcell Experimental Forest (MEF) in Minnesota, USA [45,46]. MEF has been the site of numerous

studies on greenhouse gas emissions, C sequestration, hydrology, biogeochemistry, and

vegetation [47,48,49,50,51,52]. To investigate the response of peatlands to increasing temperature and

atmospheric CO2 concentrations, the US Department of Energy (DOE) established the Spruce and
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Peatland Responses Under Changing Environments (SPRUCE) experiment in MEF. This experiment is

within an intact peat bog ecosystem, consisting of Picea mariana (black spruce) and Larix laricina (larch)

trees, an ericaceous shrub layer, and a predominant cover of Sphagnum with minor contributions of other

mosses [45,46,53]. SPRUCE researchers are studying whole-ecosystem responses to temperature and

elevated CO2 (eCO2), including the responses of plants, above- and belowground microbial communities,

and whole-ecosystem processes, such as greenhouse gas emissions [1,45,46,54,55,56,57,58], but as yet,

the peat viral communities in this experiment remain unexplored.

Here, we used a combination of total soil metagenomics and viromics to: 1) investigate peat viral

community composition and its potential drivers in the SPRUCE experiment, 2) place the recovered

vOTUs in biogeographical and ecosystem context, and 3) compare the two approaches (total metagenomics

and viromics) for recovering soil viral population sequences. We are also contributing a new database for

reference-based viral genome recovery: the Phages and Integrated Genomes Encapsidated Or Not

(PIGEON) database of 266,125 vOTU sequences from diverse ecosystems.

2.2. Results and Discussion

2.2.1. Dataset overview and peat viral population (vOTU) recovery.

To improve our understanding of peat viral diversity, we leveraged 82 peat metagenomes from cores

collected from the SPRUCE experiment in northern Minnesota, USA in 2015 and 2016, along with five

paired viromes and metagenomes that we collected along a transect outside the experimental plots from

the same bog in 2018 at near-surface (top 10 cm) depths. In the field experiment, deep peat heating

(DPH) and whole ecosystem warming (WEW) treatments heated the peat (to a depth of 2 m) and air

inside 8 chambered enclosures (two per treatment) to target temperatures of +2.25, +4.5, +6.75 and +9 °C

above ambient temperature [1,46,53,59]. There were also two ambient experimental chambers and two

unchambered ambient plots (Table S1). Peat samples for metagenomics were collected from four depths

(10-20 cm, 40-50 cm, 100-125 cm and 150-175 cm) per year in each chamber and unchambered ambient

plot (38 and 44 total soil metagenomes were successfully sequenced in 2015 and 2016, respectively), with

approximate sequencing depths of 6 Gbp per metagenome in 2015 and 15 Gbp in 2016. From each of the

five transect peat samples (Supplementary Figure 1), a viral size-fraction metagenome (virome) and total

soil metagenome were sequenced, each to a depth of approximately 14 Gbp.

Reads from the SPRUCE experiment metagenomes (82), transect viromes (5), and transect total soil

metagenomes (5) were assembled into contigs ≥ 10 kbp, from which viral contigs were identified [37,38]
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and clustered into 5,006 approximately species-level viral populations (viral operational taxonomic units,

vOTUs [60]). These vOTUs were then clustered with 261,799 vOTUs from diverse habitats in our

PIGEON database (see methods, Table S2, available on Dryad (https://datadryad.org/, by DOI of this

paper) [10,13,14,30,33,61,62,63,64,65]. The resulting clustered database of 266,125 “species-level”

vOTUs was used as a reference for read mapping from each of our metagenomes. In total, we detected

4,326 vOTUs through read mapping from the SPRUCE experiment and adjacent peatlands. Henceforth,

“SPRUCE” refers to our data from the SPRUCE experiment and/or transect, unless otherwise specified.

2.2.2. Investigating patterns and potential drivers of peat viral community composition

in the SPRUCE experimental plots.

To characterize peat viral community compositional patterns and their potential drivers, vOTU

abundances from the 82 SPRUCE experiment metagenomes were compared to environmental

measurements. Using the 4,326 SPRUCE vOTUs as references, we recovered 2,699 vOTUs from the

SPRUCE experimental plots through read recruitment and tracked their abundances (average per bp

coverage depth) across the experimental plot metagenomes. No significant differences in viral community

composition were detected according to temperature treatment (Mantel ρ = 0.0057, p = 0.56), as discussed

in more detail below. Viral community composition was significantly correlated with depth (Fig 2.1A),

even across different temperature treatments and years (Mantel ρ = 0.57, p=0.00001), consistent with

previous evidence that viral community composition varies with depth in Swedish peatlands [14] and other

soils [66]. These results are also consistent with observations of microbial communities in SPRUCE peat,

where depth explained the largest amount of variation in peat microbial community composition, and

temperature effects have thus far (from 2015-2018) not been significant [1,56]. We also measured a

significant difference in viral community composition between the two sampling years (June 2015 and June

2016, PERMANOVA p=0.009). Other factors that significantly (p < 0.05) correlated with viral community

composition included microbial community composition, porewater CO2 and CH4 concentrations, and the

calculated fractionation factor for carbon in porewater δ13CH4 relative to δCO2 (αC) [67] (Table S3),

which can be used to infer CH4 production and consumption pathways [3,14,67,68]. Although all of these

factors also co-varied with depth, interestingly, viral community composition was more significantly

correlated with αC and porewater CH4 concentrations than with depth. Together, these results prompted

further exploration of potential explanations for these compositional patterns with depth, including links

between SPRUCE vOTUs and water content, peat C cycling, and microbial hosts.
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To investigate potential drivers of viral community compositional patterns with depth, we identified 121

vOTUs that exhibited significant differential abundance patterns across peat depth levels (adjusted-p <

0.05, Likelihood Ratio Test). We assigned these vOTUs to one of three groups via hierarchical clustering

(Fig 2.1B): vOTUs abundant in the near-surface (10-20 cm) but depleted at other depths, vOTUs

abundant from 40-50 cm but depleted at other depths, and vOTUs abundant in only the two deepest depth

ranges (100-125 and 150-175 cm). Given that near-surface peat had significantly higher gravimetric soil

moisture measurements than deeper peat (p=0.002, Student’s T-test), we used a trait-based approach to

assign an “aquatic-like” trait to vOTUs that were found in the same viral clusters (VCs, based on

predicted protein content) as vOTUs from freshwater and/or marine environments in our PIGEON

database , and then we compared the proportion of aquatic-like vOTUs in the three depth-range groups.

Near-surface depths displayed the highest proportion of aquatic-like vOTUs, followed by mid-depth s, while

the deepest peat had zero recognizable aquatic-like vOTUs (Fig 2.1C). The proportion of aquatic-like

vOTUs in the near-surface group was significantly higher than the aquatic-like proportion of the total set

of 2,699 vOTUs (p < 0.05, Hypergeometric Test) ,suggesting that vOTUs in the surface horizons (and/or

their hosts) might be better adapted to water-rich environments. Consistent with this interpretation , we

did not exclude porewater from our samples [3,8,14,43], so it is likely that some of the vOTUs were

derived from the porewater directly. Also, although water table depth measurements indicated that the

entire sampled peat column was saturated for each of the samples, qualitatively, there was substantially

more volumetric water content (waterlogging) in the near-surface depths compared to the deeper, more

compacted peat. Although peat viral community composition was significantly correlated with both depth

and measured soil moisture content (Mantel p < 1E-5), the Mantel r value was higher for the correlation

with depth (r = 0.569) than with soil moisture (r = 0.298, Table S3), suggesting that differences in

aquatic-like vOTUs alone do not fully explain the patterns in viral community composition with depth.

Indeed, the underlying explanation for the observed enrichment of aquatic-like vOTUs in the near surface

could be due to a variety of ecological similarities between near-surface peatlands and aqueous systems

beyond simply water content (e.g., redox chemistry, substrates, and dissolved oxygen content [41,69]) and

warrants further exploration in the future.

Under the assumption that patterns in viral community composition were at least partially indirect,

resulting from interactions with hosts, we attempted to bioinformatically link SPRUCE vOTUs to

microbial host populations [14]. All 4,326 vOTUs and a total of 486 bacterial and archaeal

metagenome-assembled genomes (MAGs, 443 from the SPRUCE experiment metagenomes (Table S4) and
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43 from the transect (>60% complete, <10% contaminated, Table S5)), were considered in this analysis. A

total of 2,870 CRISPR arrays were recovered from the metagenomes via Crass [70], and 29

CRISPR-derived virus-host linkages were made between 23 vOTUs and 21 host MAGs (Fig 2.2, Table S6).

For 25 of the 29 linkages, 0 mismatches were found between the CRISPR spacers and linked viral

protospacers, and four linkages had a one-nucleotide mismatch. All 21 of the MAGs were bacterial and

could be taxonomically classified to at least the family level, and for each of the six vOTUs linked to more

than one host, the predicted hosts were all in the same family.Where genus-level host classification was

possible, all vOTUs were predicted to infect the same host genus.

To investigate potential connections between virus-host dynamics and environmental conditions, along

with viral community links to carbon chemistry, we attempted to assess virus-host abundance ratios and

their patterns across samples, and we explored the auxiliary metabolic gene (AMG) content of the vOTUs.

Only 10 virus-host pairs (10 vOTUs linked to 9 MAGs) were identified for which both the vOTU and the

MAG were detected together in at least one sample, and significant patterns in virus-host abundance were

not found for any of these pairs according to any of the parameters considered, including depth, year, αC,

CH4 and CO2 concentrations, and moisture content. To further investigate the significant correlation

between αC and viral community composition, we also looked for vOTU linkages to methanogen or

methanotroph MAGs. HMM searches for McrA (a methanogenesis biomarker) [71,72], sMMO, pMMO,

and pXMO (methanotrophy biomarkers) [3] predicted proteins were performed on the 443 SPRUCE

experiment MAGs. Nine MAGs were found to contain McrA-encoding genes, and evidence for

methanotrophy was found in 22 MAGs, but none of these MAGs had a CRISPR linkage to a vOTU. Thus,

we infer either that αC co-varies with an unmeasured variable that better explains viral community

composition and/or that important virus-host linkages associated with CH4 cycling were not identified

through these approaches. Finally, consistent with potential viral roles in the soil C cycle, we identified 287

putative AMGs encoded by viral genomes predicted to be involved in 18 C-cycling processes, based on

VIBRANT and DRAM-v output [39,40] (Supplementary discussion table S7, S8, S9). These results are

consistent with previously identified glycosyl hydrolase genes encoded in peat viral genomes [13,14], along

with other putative C-cycling AMGs from soil [73,74] (see Supplementary Discussion).

As indicated above, no significant influence of temperature on viral community composition was

detected over the first two years of experimental warming. Consistent with these findings, no differences in

microbial community composition were found according to temperature treatments in these samples over

the first five years of whole ecosystem warming, although warming exponentially increased CH4 emissions
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and enhanced CH4 production rates throughout the entire soil profile [56]. These results are also consistent

with prior studies that have shown that soil microbial community responses to similar temperature

increases can take multiple years to manifest [26,75,76]. Warming has been shown to substantially alter

the community composition, diversity, and N2 fixation activity of peat moss microbiomes [57], and in

microcosms of surface peat collected from the SPRUCE site, microbial diversity was negatively correlated

with temperature, suggesting that prolonged exposure of the peatland ecosystem to elevated temperatures

will lead to a loss in microbial diversity [77]. In the SPRUCE experiment, the fractional cover of

Sphagnum mosses [45] and plant phenology (the timing of different traits throughout the growing

season) [53] have changed in response to temperature, suggesting that differences in belowground viral and

microbial community composition may follow after a longer period of warming.

2.2.3. Placing SPRUCE peat viruses in global and ecosystem context.

Of the 4,326 “species-level” vOTUs from SPRUCE, 4,162 were assembled from SPRUCE-associated

metagenomes (including the viromes), and 164 were recovered through read mapping to our PIGEON

database of vOTUs from diverse ecosystems (Fig 2.3A). The 164 previously recovered vOTUs were first

reported from other globally distributed sites, mainly peatlands (160 of 164), including peat vOTUs from

Sweden (147), Germany (5), Alaska, USA (4), Wisconsin, USA (2), and Canada (2) (Fig 2.3B). The

recovery of hundreds of viral species (4% of the dataset) in geographically distant peatlands suggests that

there may be a peat-specific niche for these viruses. In addition, four vOTUs recovered from SPRUCE peat

were first identified in a wet tropical soil in Puerto Rico, suggesting some global species-level sequence

conservation across soil habitats (Table S10). Existing deeply sequenced soil viromic datasets are

predominantly from peat [8,13,14,33], so the extent to which these patterns reflect database bias or true

differences between peat and other soils will require additional sampling.

Interestingly, despite the overwhelming dominance of marine vOTUs in our database (190,502 vOTUs,

71%), zero species-level vOTUs from the oceans were recovered in the SPRUCE peatlands. Freshwater

vOTUs (predominantly from freshwater lakes) have less representation in our database (11,869 vOTUs,

4.45%), but similarly, no freshwater vOTUs were recovered from SPRUCE peat (though, as described

above, vOTUs that shared higher-level taxonomy with aquatic viruses were recovered in SPRUCE

peatlands). No other vOTUs from our PIGEON database, including bioreactor, hot spring, non-peat

wetland, human-, plant-, and other host-associated vOTUs, were recovered in SPRUCE peat. These results

suggest viral adaptation to soil and/or strong viral species boundaries between terrestrial, aquatic, and

15



other ecosystems, as previously observed for bacterial species[80,81], though data for soil viruses are

limited, so further studies across diverse soils will be necessary to assess the generalizability of these results.

To further compare vOTUs from diverse soil ecosystems, we constructed a phylogenetic tree of the

terminase large subunit (terL) gene from 1,045 PIGEON soil vOTUs (81 from SPRUCE, 143 from other

peat, and 821 from other soil) and 1,613 RefSeq prokaryotic viral genomes from which a terL sequence

could be recovered (Figure 2.4a). Overall, the tree revealed two large superclades, one with predominantly

RefSeq viral sequences and one with predominantly soil viral sequences (phylogenetic dispersion, D=-0.25,

with D < 0 indicating significant phylogenetic separation of RefSeq and soil sequences [78,79]. As

expected, these results indicate that known isolates do not adequately capture soil viral diversity. A second

terL tree was constructed from only the soil sequences without RefSeq (Figure 2.4b), revealing

approximately even phylogenetic distributions across soil habitats and no detectable soil habitat-specific

phylogenetic groupings (D=0.58 for all peat vs. other soil, D=0.41 for SPRUCE vs. all other soil).

To assign taxonomy to vOTUs and group them at higher taxonomic levels for cross-ecosystem

comparisons, the 4,326 SPRUCE vOTUs were clustered according to shared predicted protein

content [80,81] with all other vOTUs in our PIGEON database, including 2,305 RefSeq viral genomes

(release 85) [64]. The SPRUCE vOTUs formed 3,114 viral clusters (VCs), 2,193 of which were singletons

and 921 of which contained at least two vOTUs (Table 1, Supplementary figure 2A). We note that,

although singletons are not technically clusters, each VC has been suggested to represent a distinct viral

“genus” [80,81], so we include singletons in VC counts for ease of interpretation. We describe each VC as

a “genus”, in accordance with previously described terminology for this approach [84,85], but viral

taxonomy is in flux [82,83], and an analysis of average amino acid identity (AAI) within 100 randomly

chosen PIGEON VCs revealed that most VCs represent the equivalent of bacterial family or higher

taxonomy. Briefly, vOTUs within most VCs shared an average of 45-65% AAI (for bacteria, that AAI

range approximates the same family but different genera [84]), though ∼1/3 of the VCs had average AAIs

above or below this range. Only fourteen of the SPRUCE VCs, containing 61 vOTUs (1.4% of the

dataset), were taxonomically classifiable (Fig 2.3C, Supplementary figure 3). This is a lower proportion

than a prior study [14], which we attribute at least in part to differences in the size of the dataset used for

clustering (for example, 17% of peat vOTUs from northern Sweden were previously taxonomically

classifiable [14], but only 3.9% of those same vOTUs could be taxonomically classified in our analysis,

which included orders of magnitude more vOTUs but was otherwise similar, apart from use of the updated

vConTACT2.0 pipeline instead of vConTACT). The taxonomically classifiable vOTUs from SPRUCE
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included 45 Myoviridae, five Podoviridae, four Siphoviridae, and seven Tectiviridae, consistent with the

more abundant viral taxa previously reported from thawing permafrost peatlands [14], but we note that

Myo-, Podo-, and Siphoviridae have been recommended for removal as taxonomic groups [81]. Although

most SPRUCE VCs were not taxonomically classifiable, 562 included a vOTU that was also found in

another dataset in PIGEON, meaning that just under 1/3 of the SPRUCE VCs had been observed before

(compared to previous detection of only 4% of SPRUCE vOTUs, or viral “species”).

All 31,049 of the vOTUs from soil in our PIGEON database, including those from SPRUCE and

globally distributed soils, grouped into 20,939 VCs (Table 1). Of these, 16,524 included only a single

vOTU, meaning that most of the known “genus”-level soil viral sequences have only been recovered from a

single study and/or location so far. In total, 12.8% of the soil VCs were exclusively found in SPRUCE

peatlands , 0.7% included at least one vOTU each from SPRUCE, other peat habitats, and other soils (Fig

2.3D), and 0.9% contained a vOTU from SPRUCE and other peat sites but not other soils. Together, these

data suggest that, although much of soil viral sequence space remains to be explored, species-level

similarities may be relatively restricted to specific soil habitat types, while similarities at higher taxonomic

levels may be more common across soil habitats.

To investigate similarities between viruses from soil and aquatic (marine and freshwater) ecosystems,

233,420 vOTUs from our PIGEON database (31,049 soil [10,14,30,34], 190,502 marine [30,62,63], and

11,869 freshwater [30]) were clustered into 80,714 VCs (Table S11). Of the soil VCs, 0.4% shared a cluster

with vOTUs from one or both aquatic systems, indicating a small amount of “genus”-level similarity

between aquatic and soil viruses (Fig 2.3E). However, most VCs were found in only one habitat, consistent

with differences in microbial community composition in aquatic compared to soil and sediment habitats

and between freshwater and saltwater environments [85].

2.2.4. Comparing viral recovery from viromes and total soil metagenomes.

Metagenomic studies of viral community composition typically take one of two approaches: either the viral

signal is mined from total metagenomic assemblies, which predominantly tend to contain bacterial

sequencing data [13,14,30], or viral particles are physically separated from other microbes in the

laboratory (e.g., through filtration), and then viral size-fraction enriched metagenomes (viromes) are

sequenced and analyzed [12,13,14,18]. To directly compare results from both approaches, we first

analyzed the paired total soil metagenomes and viromes from the five transect samples. Considering all

assembled contigs ≥ 10 kbp, only 0.8% of the metagenomic contigs were classified as viral after passing
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them through viral prediction software (see methods), relative to 16% of the virome contigs. This ∼20-fold

improvement is consistent with our observed ∼30-fold improvement in viral contig recovery from viromes

relative to total metagenomes in agricultural soils [34], and similar differences in the composition of

metagenomes and viromes have been reported from grassland soils [86]. When accounting for read

mapping to all vOTUs in the PIGEON database (including all of the SPRUCE vOTUs), 1,952 vOTUs

were detected in the viromes, relative to 401 in the metagenomes from the same samples (Fig 2.5A,

Supplementary figure 4A). Only 37 vOTUs were detected in the metagenomes alone. Although far more

vOTUs were recovered from the viromes, vOTU accumulation curves were still climbing steeply after five

samples for both viromes and metagenomes (Fig 2.5B, Supplementary figure 4B, 4C), suggesting that more

viral diversity remains to be recovered . A comparison of the five viromes indicated that there was no

spatial relationship between the samples (Supplementary figure 5A), but there was high variability in the

number of recovered vOTUs per sample (Supplementary figure 5B).

To place these comparisons from the same samples in the context of the larger SPRUCE dataset, we

compared the five viromes from 2018 to the 82 metagenomes from 2015 and 2016, again with vOTU

recovery assessed through read recruitment to all vOTUs in the PIGEON database. We note that the

samples in this set of comparisons differ in multiple ways beyond the extraction method, including the

sampling year, depth range, location, and (in some cases) temperature treatment, all of which could

contribute to the observed trends. On a per-sample basis, the viromes recovered far more vOTUs than the

metagenomes, as indicated by the much steeper accumulation curve slope for viromes after only five

samples (Fig 2.5B). However, the much larger number of samples in the SPRUCE experimental plot

metagenomes resulted in a higher total vOTU recovery of 2,699 in the 82 metagenomes, compared to 1,952

in the five viromes (Fig 2.5A).

We next considered the metagenomes from 2015 and 2016 separately, because the sequencing

throughput from 2016 was 1.4 times higher than in 2015. The first of these comparisons was based on read

recruitment only to vOTUs derived from contigs that assembled from samples in the same category,

considering four categories: the five transect viromes, five transect metagenomes, 38 metagenomes from

2015, and 44 metagenomes from 2016. These “self-mapped” analyses were meant to simulate a situation in

which only the vOTUs from that particular dataset would have been available. The perceived viral richness

per sample was 32 times higher in viromes (mean 649 vOTUs) compared to their paired metagenomes

(mean 20 vOTUs) but was nine and three times higher, respectively, in viromes compared to the 2015 and

2016 metagenomes (mean 72 and 207 vOTUs) (Fig 2.5C). The perceived viral richness was 2.8 times higher
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in the 2016 metagenomes compared to 2015 metagenomes, indicating that a greater sequencing depth of

total soil metagenomes (in this case from 6 to 15 Gbp on average) likely increased vOTU recovery, though

we cannot exclude the possibility of a true difference in viral richness between the two years. A further

comparison of vOTU recovery from the transect viromes and the three sets of metagenomes was based on

read recruitment to all 266,125 PIGEON vOTUs from SPRUCE and other datasets. In this case, the

perceived viral richness in the viromes (mean 721 vOTUs) was 5.7 times higher than in the paired

metagenomes (mean 127 vOTUs), 3.5 times higher than in the 2015 metagenomes (mean 200 vOTUs), and

two times higher than in the 2016 metagenomes (mean 370 vOTUs, Fig 2.5D). Thus, the availability of

reference vOTUs, particularly from the SPRUCE viromes, substantially improved recovery from the total

metagenomes.

Lastly, we compared the VCs formed by vOTUs from the 2018 viromes, the 2018 metagenomes, and the

2015/2016 metagenomes to determine whether there were differences in the taxonomic space recovered by

the different approaches. When comparing the five paired total metagenomes and viromes, all of the

metagenome vOTUs shared a VC with at least one vOTU from the viromes, whereas 1,401 vOTUs were in

VCs exclusively recovered from the viromes, indicating that viromes expanded the recoverable viral

taxonomic space relative to paired metagenomes (Supplementary figure 2A, 2B). However, the vOTUs

recovered from the unpaired 2015/2016 metagenomes recovered substantially different VCs compared to

the 2018 viromes. We suspect that these differences were largely due to the different collection years,

locations, and, particularly, numbers of samples, as opposed to differences between extraction methods.

Few direct comparisons of viromes and total metagenomes from the same samples have been reported

from any ecosystem. Consistent with these results from peat, agricultural and grassland soil viromes have

been shown to be enriched in both viral sequences and genomes from ultrasmall cellular organisms (which

would be more likely to pass through the 0.2 µm filters used for viral enrichment) but depleted in

sequences from most other cellular organisms, compared to total metagenomes [34,86]. In aqueous

systems, water samples are often separated into multiple size fractions (for example, 3-20 µm, 0.8-3 µm,

0.2-0.8 µm, post-0.2 µm), such that previous studies have compared viral sequences recovered across

different size fractions, and generally, the viruses recovered from different size fractions seem to be

distinct [87,88]. A recent meta-analysis of human gut viral data recovered from viromic and metagenomic

sequences suggested that more viral contigs could be recovered from metagenomes than from viromes [83].

However, of the 2,017 viromes considered in that study, 1,966 were multiple-displacement amplification

(MDA) treated, and, as the authors acknowledged, MDA of viromes has known methodological biases (for
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example, MDA preferentially recovers circular ssDNA viruses [6]) and thus would result in artificially

lower-richness viral communities. Although differences in the environments could have contributed to the

observed differences in viral recovery from viromes compared to total metagenomes in the human gut study

compared to our work, the large difference in the number of total metagenomes (680) compared to

non-MDA amplified viromes (51) in the human gut study could also have contributed to the greater

recovery of viral sequences from total metagenomes in that study. Consistent with that interpretation, here

we have shown that increasing the number of samples, in combination with deeper sequencing and the

availability of relevant reference vOTU sequences, improved vOTU recovery from total soil metagenomes,

which have the added advantage of accessing virus and host population sequences from the same dataset.

2.3. Conclusions

We analyzed dsDNA viral diversity in a climate-vulnerable peat bog, revealing significant differences in

viral community composition at different soil depths and according to peat and porewater C chemistry.

Aquatic-like SPRUCE vOTUs were significantly more abundant at near-surface depths, suggesting

potential adaptation of these viruses to water-rich environments. Some viral species-level similarities were

observed across large geographic distances in soil: 4% of the vOTUs found in SPRUCE peat were

previously recovered elsewhere, predominantly in other peatlands. Interestingly, zero marine or freshwater

vOTUs were recovered from SPRUCE peat, suggesting the potential for viral species boundaries between

terrestrial and aquatic ecosystems. When comparing vOTU recovery from viromes and total soil

metagenomes, increasing the dataset size through deeper sequencing and more samples improved vOTU

recovery from metagenomes, but viromics was a better approach for maximizing viral recovery on a

per-sample basis. Together, these results expand our understanding of soil viral communities and the

global soil virosphere, while hinting at a vast diversity of soil viruses remaining to be discovered.

2.4. Materials and Methods

2.4.1. Sample collection.

In June 2018, five peat samples were collected along “Transect 4” in the S1 bog ∼ 150 m from the

SPRUCE experimental plots in the Marcell Experimental Forest in northern Minnesota, USA (For GPS

coordinates, see Table S12). Avoiding green Sphagnum moss capitula at the surface (∼ 2 cm), the top 10

cm of peat (5 cm diameter) was collected for each sample with a sterile spatula and placed in 50 mL
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conical tubes on dry ice. Samples were stored at -80°C for 6 months prior to DNA extraction for total

metagenomes and viromes.

Within the SPRUCE study, temperature treatments were applied in large (∼115 sq m) open-topped

enclosures. Temperature treatments in the 10 enclosures were as follows: +0, +2.25, +4.5, +6.75 and +9,

with two chambers assigned to each temperature treatment. Data were also collected from two ambient

environment plots where there was no enclosure but within the treatment area on the south end of the S1

Bog. In each enclosure, warming of deep soil started in June 2014 [46], and aboveground warming began in

August 2015 with continuous whole ecosystem warming (365 days per year) operating since late in 2015. A

more detailed explanation of deep soil heating procedures and construction of the enclosures and warming

mechanics can be found in Hanson et al., 2017 [45,46,53].

Peat samples for 82 total soil metagenomes were collected from the SPRUCE experiment in June 2015

and June 2016 from cores that were extracted using defined hand sampling near the surface and via

Russian corers below 30 cm. Samples for analysis were obtained from depth ranges 10-20 cm, 40-50 cm,

100-125 cm, and 150-175 cm from a total of 10 chambers in 2015 (no samples were analyzed from the open,

ambient plots that year), with the exception of only two samples collected from chamber 19 (control plot,

no temperature treatment, only 10-20 cm and 40-50 cm samples collected), for a total of 38 samples from

2015. In 2016, samples were collected from the same depth ranges from all 10 chambers, plus two samples

from each of the two ambient, open plots (depth ranges 10-20 cm and 40-50 cm), for a total of 44 samples

from 2016. These 82 samples were used for DNA extraction and total metagenomic analysis and MAG

recovery, as described below. Soil temperature, moisture content, CH4 and CO2 concentrations, and αC

measurements (see supplementary methods) were collected from the same samples (Table S13).

2.4.2. DNA extraction.

All samples from the peatland transect were stored at -80°C until further processing. 24 hours prior to

DNA extraction, samples were placed at -20 °C. For total metagenomes from the transect, DNA was

extracted from 0.25 g peat per sample with the QIAGEN DNeasy Powersoil Kit (QIAGEN, Germany),

according to the manufacturer’s protocol. For viromes, 50 g of peat per sample was divided between two 50

mL conical tubes, and 37.5 mL of Amended Potassium Citrate Prime buffer (AKC’, 0.02 µm filtered, 1%

K-citrate + 10% PBS + 150 mM MgSO4) [33] was added per tube, for a total of 75 mL buffer. Tubes were

shaken at 400 rpm for 15 min, then centrifuged at 4,700 g for 20 min. Excluding the pelleted soil, the

supernatant was filtered through a 0.2 µm polyethersulfone filter (Corning, USA) and ultracentrifuged in a
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Beckman LE-8K ultracentrifuge with a 70 Ti rotor for 3 hours at 32,000 RPM at 4 °C under vacuum. The

supernatant was decanted, and the pellet containing virions was resuspended in 200 µl UltraPure water

and added to the QIAGEN DNeasy PowerSoil Kit bead tubes (QIAGEN, Germany) for DNA extraction

according to the manufacturer’s instructions with one exception: instead of vortexing for 10 minutes with

the beads, samples in the bead tubes were incubated at 70 °C for 10 min, vortexed briefly, and incubated

at 70 °C for another 5 min. Consistent with our prior work on hypersaline lake viromes, which showed that

a DNase treatment of viromes stored frozen resulted in removal of all DNA [89], a DNase treatment was

not included prior to virion lysis. For the 82 2015 and 2016 peat samples used in metagenomic analysis and

MAG recovery, DNA was extracted from homogenized samples of each depth interval using the MO BIO

Powersoil DNA extraction kit (QIAGEN, Germany). Six replicate 0.35 g extractions were combined and

re-purified with the MO BIO PowerClean Pro kit (QIAGEN, Germany) and eluted in 50 mL of 10 mM Tris

buffer.

2.4.3. Library construction and sequencing.

Library construction and sequencing for the five viromes and five total soil metagenomes from Transect 4

were conducted by the DNA Technologies and Expression Analysis Cores at the UC Davis Genome Center.

Libraries were prepared with the DNA Hyper Prep library kit (Kapa Biosystems-Roche, Basel,

Switzerland), as previously described [34]. Paired-end sequencing (150 bp) was done on the Illumina

NovaSeq platform, using 4% of a lane per virome and 8% of a lane per total soil metagenome. Sequencing

of the 82 metagenomes from the SPRUCE experiment and ambient plots was done by the DOE Joint

Genome Institute (JGI), using standard protocols for Nextera XT metagenomic library construction.

These barcoded libraries were sequenced on an Illumina HiSeq 2500 instrument in 2x150 bp mode.

2.4.4. Sequencing read processing, assembly, viral population (vOTU) recovery, and read

mapping.

Raw reads from the SPRUCE experiment metagenomes (82), transect viromes (5), and transect total soil

metagenomes (5) were first quality-trimmed with Trimmomatic v0.38 [90] with a minimum base quality

threshold of 30 evaluated on sliding windows of 4 bases and minimum read length of 50. Reads mapped to

the PhiX genome were removed with bbduk [91]. Reads were assembled into contigs ≥ 10 kbp in length,

using MEGAHIT v 1.1.3 [92] with standard settings. All 92 metagenomes underwent single-sample

assemblies, and two additional co-assemblies were generated from the transect, one each for the five

viromes and five total soil metagenomes, respectively. For co-assemblies, the preset meta-large option was
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used. 82 previously existing assemblies from the SPRUCE experiment metagenomes were also used.

Briefly, for those assemblies, raw metagenomic fastq sequences were quality trimmed with bbduk from the

BBTools software package (options: qtrim=window,2 trimq=17 minlength=100) [93] and assembled with

IDBA-UD [94] (options: -mink 43 –maxk 123 –step 4 –min contig 300).

DeepVirFinder [38] and VirSorter [62] were used to recover viral contigs from each assembly. Briefly,

DeepVirFinder is a machine-learning approach that recognizes viral sequence signatures, and VirSorter

searches for viral hallmark genes in PFAM annotation. Consistent with established recommendations,

contigs with DeepVirFinder scores > 0.9 and p < 0.05 were considered viral [63], and DeepVirFinder

results were filtered with a custom python script (parse dvf results.py, all scripts are available on GitHub,

see Data Availability Statement below) to only retain results in compliance with this score. VirSorter was

run in regular mode for all total metagenomes and in virome decontamination mode for the viromes. Only

contigs from VirSorter categories 1, 2, 4 and 5 (high-confidence) were retained, as previously

recommended [62]. All resulting viral contigs were clustered into vOTUs using CD-HIT [95] at a global

identity threshold of 0.95 across 85% of the length of the shorter contig [60]. Different sets of vOTUs were

used as references for read mapping throughout the manuscript (see main text), with the most commonly

used and most comprehensive reference database being PIGEON (see below). In all cases, read mapping

was performed with BBMap [96] at ≥ 90% identity, following thresholds set previously [14,60,97], and

vOTU coverage tables were generated with BamM [98], using the ‘tpmean’ setting, and bedfiles were

generated using bedtools [99]. Custom python scripts (percentage coverage.py, filter coveragetable.py)

were used to implement the thresholds for detecting viral populations (vOTUs) in accordance with

community standards (≥ 75% of the contig length covered ≥ 1x by reads recruited at ≥ 90% nucleotide

identity) [60]. The final vOTU coverage table of per-bp vOTU abundances in each metagenome was

normalized by the number of metagenomic sequencing reads for each sample [14].

2.4.5. Construction of the PIGEON reference database of vOTUs.

An in-house database, Phages and Integrated Genomes Encapsidated Or Not (PIGEON), was created,

containing 266,125 species-level vOTUs, of which 190,502 came from marine environments, 11,869 from

freshwater, 31,049 from soil (including 4,326 from SPRUCE), 2,305 RefSeq viral genomes (release 85) [64],

and 30,400 from other environments in a meta-analysis, including human microbiomes, other animal

microbiomes, plant microbiomes, and other environments). Available viral contigs were downloaded from

published datasets [10,13,14,30,33,37,61,63,64,65], compiled from ongoing work in Alaskan peat soil
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and Puerto Rican soils (see supplementary methods), and those recovered from SPRUCE (see above). For

most of the previously published datasets, viral contigs were derived from viromes, or a combination of

viromes and total soil metagenomes, but two datasets only considered viral recovery from total soil

metagenomes [10,30]. For all but one of the datasets, VirSorter [62], VirFinder [100], DeepVirFinder [38],

or a combination of these programs was used for viral contig recovery (Contigs with DeepVirFinder scores

> 0.9 and p < 0.05 were considered viral [63], and only contigs from VirSorter categories 1, 2, 4 and 5 were

considered). The exception was the meta-analysis dataset of Paez-Espino et al. (2016), which used its own

viral discovery pipeline [30]. From all of these datasets, viral contigs were downloaded, and those >10 kbp

were retained and then clustered into vOTUs using CD-HIT [95] at a global identity threshold of 0.95

across 85% of the shorter contig length to generate PIGEON v1.0. PIGEON v1.0 (the version used in this

manuscript) is available on Dryad (https://datadryad.org/, by DOI of this paper). We are actively

improving PIGEON and expect to release a new version in the future.

2.4.6. Viral taxonomic classification and protein-based viral clustering.

Viral taxonomic classifications for the 4,326 SPRUCE vOTUs (detected in the SPRUCE dataset through

read mapping) were assigned using vConTACT2 (options: –rel-mode ‘Diamond’ –db

’ProkaryoticViralRefSeq85-Merged’ -pcs-mode MCL –vcs-mode ClusterONE) [80,81]. The vOTUs were

clustered according to shared predicted protein content with the 261,799 other vOTUs in our PIGEON

database, including 2,305 RefSeq viral genomes [64]. The viral cluster overview output file was used for

further analysis, including to manually identify SPRUCE vOTUs that shared a viral cluster with one or

more vOTUs from marine and/or freshwater (aquatic) environments. For the analysis of AAI within

PIGEON VCs, a random set of 100 VCs was analyzed with CompareM (standard settings) [101]. For each

VC, the mean pairwise AAI between vOTUs was calculated.

2.4.7. Metagenome-assembled genome (MAG) reconstruction.

MAG reconstruction from the five transect total metagenomes was done as follows: quality-trimmed reads

were assembled using MEGAHITv 1.1.3 [92] with a minimum contig length of 2,000, using the meta-large

preset. After individual assembly of each sample, quality-filtered and trimmed reads were mapped to the

resulting contigs using bbmap [96] with standard settings, and this abundance information was used to bin

the contigs into MAGs using MetaBAT [102], using the –veryspecific setting and the coverage depth

information. Quality and identification of bins was done with CheckM [103], following Sorensen et

al., [104].
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From the 82 SPRUCE experiment metagenomes, metagenome assembly, recovery, and analysis of

metagenome-assembled genomes (MAGs) was performed as described in Johnston et al., [105]. Briefly,

metagenomic sequences were assembled with IDBA-UD [94] (options: -mink 43 –maxk 123 –step 4

–min contig 300). Resulting contigs ≥ 2.5 kbp were used to recover microbial population genomes with

MetaBAT2 (options: –minCVSum 10) [102] and MaxBin2 [106]. Before binning, Bowtie2 was used to

align short-read sequences to assembled contigs (options: –very-fast) [107], and SAMtools was used to sort

and convert SAM files to BAM format [108]. Sorted BAM files were then used to calculate the coverage

(mean representation) of each contig in each metagenome. The quality of each resulting MAG was

evaluated with the CheckM v1.0.3 taxonomy workflow for Bacteria and Archaea separately [103]. The

result from either evaluation (i.e., taxonomy workflow for Archaea or Bacteria) with the highest estimated

completeness was retained for each MAG. MAGs with a quality score ≥ 60 were retained (from Parks et

al., 2017 [109] calculated as the estimated completeness – 5 × contamination). MAGs recovered from

different metagenomes were dereplicated with dREP [110], and the GTDB-tk classify workflow [111,112]

was used to determine MAG taxonomic affiliations. MAG gene prediction, functional annotation, and

assessment of metabolic pathway completeness (e.g., for assessing methanogenesis potential) was performed

as described in Johnston et al., 2019 [105]. Taxonomic classification, source dataset SRA ID, basic genome

statistics, and CheckM summaries for each MAG can be found in Table S4.

Using the parameters described above for vOTU coverage table generation, a microbial contig coverage

table was generated. From this coverage table, we calculated the coverage of each population genome as

the average of all of its binned contig coverages, weighting each contig by its length in base pairs. In-house

scripts for this are available on GitHub. Hmm searches were done on both MAGs and vOTUs for proteins

involved in methanogenesis or methanotrophy (McrA (a methanogenesis biomarker) [71,113], sMMO,

pMMO, and pXMO (methanotrophy biomarkers) [3]). The MAG and vOTU contigs were annotated with

prodigal (standard settings) [114], and an HMM search was done on these annotations with hmmr [115],

using hmmsearch (standard settings) with an e-value cutoff of 1E-5 [72].

2.4.8. Reconstruction of microbial CRISPR arrays and virus-host linkages.

CRISPR repeat and spacer arrays were assembled with Crass v0.3.12 [70], using standard settings, and

BLASTn was used to match spacer sequences with vOTUs and repeats to MAGs, in order to link viruses to

putative hosts. Briefly, for protospacer-spacer matches (i.e., matches between vOTUs and CRISPR spacer

sequences), the BLASTn-short function was used, with ≤ 1 mismatch to spacer sequences, e-value threshold
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of 1.0×10−10, and a percent identity of 95 [30,116]. For MAG-repeat matches, the BLASTn-short

function was used, with an e-value threshold of 1.0×10−10 and a percent identity of 100 [14].

2.4.9. Phylogenetic tree construction.

A phylogenetic tree of bacterial host MAGs with CRISPR matches to one or more vOTUs (i.e., a repeat

match to a MAG and a spacer from the same CRISPR array with a match to a vOTU protospacer) was

constructed with CheckM [103] via a marker-gene alignment of 43 conserved marker genes with largely

congruent phylogenetic histories, defined by [103]. This alignment was used to construct a

maximum-likelihood tree with MEGA [117], with the LG plus frequencies model [118]. A total of 500

bootstrap replicates were conducted under the neighbor-joining method with a Poisson model.

For the terminase large subunit (TerL) tree, we predicted proteins on all viral contigs from PIGEON

soil-associated vOTUs (n=31,346) with Prokka [119], (std settings, –kingdom viruses, –norrna –notrna),

resulting in 1,045 large terminase subunit predictions. We downloaded the terminase large subunits

(n=2799) that were available from RefSeq and clustered the Refseq terminase sequences at 95% AAI using

USEARCH, following [31,120], resulting in 1,613 terminase sequences from RefSeq. We then aligned

predicted terminase sequences from PIGEON soil vOTUs with those from RefSeq (2,658 sequences total),

using MAFFT v7.471 [121] with the G-INS-1 algorithm and otherwise standard settings [122]. Ambiguous

aligned regions were removed using the TrimAl v1.41 program with the ‘gappyout’ setting [121,123]. The

best model of amino acid substitution was determined using ProtTest v1.5, standard settings [124].

Phylogenetic trees were constructed with IQ-TREE v1.6.12, [125], using -st AA -m LG+I+G4+F -bb 1000

-alrt 1000 options. Trees were visualized using iTol [126]. Bootstrap support was calculated, using an

approximate likelihood ratio test (aLRT) with the Shimodaira–Hasegawa-like procedure (SH-aLRT), using

1000 bootstrap replicates.

2.4.10. Data analysis (ecological statistics).

The following statistical analyses were performed in R using the Vegan [127] package: accumulation curves

were calculated using the speccacum function, vOTU coverage tables were standardized using the

decostand function with the Hellinger method, and Bray-Curtis dissimilarity matrices were calculated

using the vegdist function. Mantel tests were performed with the mantel function, using the Pearson

method, and permutational multivariate analyses of variance (PERMANOVA) were performed with the

Adonis function. Venn diagrams were created with the VennDiagram package, using the draw.triple.venn

function. The differential abundance analysis of vOTUs across depth levels was performed using the
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likelihood ratio test implemented in DESeq2 [128]. Hierarchical clustering of the viral abundance patterns

of the five viromes was done with the hclust function (method=complete), and heatmaps were created with

the pheatmap and dendextend libraries. The world map was created with the maps library.

2.4.11. Detection of putative viral auxiliary metabolic genes (AMGs).

VIBRANT [39] and DRAM-v [40] were used to identify putative AMGs in SPRUCE vOTU sequences.

Briefly, these tools consider gene annotation in order to identify genes in the input contigs (in this case, our

vOTUs) that have predicted functions in cellular metabolism [39,40]. Since there is no standardized

approach for AMG identification, we sought to compare results from both tools. VIBRANT was run (using

standard settings) on all SPRUCE viral contigs that we had previously identified by either VirSorter or

DeepVirFinder (n=2,802 vOTUs). Because DRAM-v requires VirSorter output,we could not use all of the

DeepVirFinder-derived vOTUs. We re-ran the 4,326 SPRUCE vOTUs through VirSorter, resulting in

3,780 vOTUs, of which 2,645 also appeared in the VIBRANT output. DRAM-v was applied (using

standard settings) to these 2,645 vOTUs. VIBRANT output was manually screened to determine whether

predicted AMGs had viral genes upstream and downstream [14], and in many cases, they did not (see

supplementary discussion). DRAM-v includes an analysis to assess the presence of viral genes upstream

and downstream of the putative AMG, producing an ‘auxiliary score’ as a measure of confidence in the

AMG prediction. From the DRAM-v output, only putative AMGs with auxiliary scores < 4 were retained

(a low auxiliary score indicates a gene that is confidently viral), and no viral flag (F), transposon flag (T),

viral-like peptidase (P), or attachment flag (A) could be present. Putative AMGs that did not have a gene

ID or a gene description were also discarded. See supplemental discussion for more information.
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[5] E A G Schuur, A D McGuire, C Schädel, G Grosse, J W Harden, D J Hayes, G Hugelius, C D Koven, P Kuhry, D M

Lawrence, S M Natali, D Olefeldt, V E Romanovsky, K Schaefer, M R Turetsky, C C Treat, and J E Vonk. Climate

change and the permafrost carbon feedback. Nature, 520(7546):171–179, April 2015.
[6] Kurt E Williamson, Jeffry J Fuhrmann, K Eric Wommack, and Mark Radosevich. Viruses in soil ecosystems: An

unknown quantity within an unexplored territory. Annu Rev Virol, 4(1):201–219, September 2017.

[7] Kurt E Williamson, K Eric Wommack, and Mark Radosevich. Sampling natural viral communities from soil for
culture-independent analyses. Appl. Environ. Microbiol., 69(11):6628–6633, November 2003.

[8] Gareth Trubl, Natalie Solonenko, Lauren Chittick, Sergei A Solonenko, Virginia I Rich, and Matthew B Sullivan.
Optimization of viral resuspension methods for carbon-rich soils along a permafrost thaw gradient. PeerJ, 4:e1999, May

2016.

[9] Anja Narr, Ali Nawaz, Lukas Y Wick, Hauke Harms, and Antonis Chatzinotas. Soil viral communities vary temporally
and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting

approach (fRAPD). Front. Microbiol., 8:1975, 2017.

[10] Paula Dalcin Martins, Robert E Danczak, Simon Roux, Jeroen Frank, Mikayla A Borton, Richard A Wolfe, Marie N
Burris, and Michael J Wilkins. Viral and metabolic controls on high rates of microbial sulfur and carbon cycling in

wetland ecosystems. Microbiome, 6(1):138, August 2018.

[11] Bonnie L Hurwitz and Jana M U’Ren. Viral metabolic reprogramming in marine ecosystems. Curr. Opin. Microbiol.,
31:161–168, June 2016.

[12] Simon Roux, Jennifer R Brum, Bas E Dutilh, Shinichi Sunagawa, Melissa B Duhaime, Alexander Loy, Bonnie T Poulos,
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Joannie Ferland, Stefanie Kandels, Yunxiao Liu, Claudie Marec, Stéphane Pesant, Marc Picheral, Sergey Pisarev, Julie
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Figure 2.1: Peat viral community and population (vOTU) abundance patterns
with depth in the SPRUCE experimental plots. A: Principal coordinates analysis
(PCoA) of viral community composition in 82 samples (total soil metagenomes) from peat
bog soil from the Marcell Experimental Forest in northern Minnesota (USA) collected from
the SPRUCE experimental plots and chambers (temperature treatmentsranging from ambi-
ent to +9 ◦C above ambient), based on Bray-Curtis dissimilarities derived from the table of
vOTU abundances (read mapping to vOTUs, n=2,699). Each point is one sample (n=82).
B: Mean relative abundances (Z- transformed) of vOTUs significantly differentially abun-
dant by depth (adjusted-p<0.05, Likelihood Ratio Test). Groups were identified through
hierarchical clustering and are colored according to the depths in panel A. C: Percentage
of vOTUs classified as “aquatic-like” in each of the groups identified in panel B (Groups
1-3) and in the whole dataset of 2,699 vOTUs (Total). SPRUCE vOTUs were considered
“aquatic-like” if they shared a genus-level viral cluster (VC) with at least one vOTU from
a marine or freshwater habitat in the PIGEON database. Note that the y-axis maximum
is 10%. *** denotes a significantly larger proportion of aquatic-like vOTUs in that group,
relative to the proportion of aquatic-like vOTUs in the full SPRUCE dataset (Total) (P <
0.05, Hypergeometric test)
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Figure 2.3: Habitat and global distribution of SPRUCE vOTUs and viral clus-
ters (VCs), using the PIGEON database for context. A: Composition of the
PIGEON database of vOTUs (n=266,805) by source environment. RefSeq includes iso-
late viral genomes from a variety of source environments (prokaryotic viruses in RefSeq
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Figure 2.4: Unrooted phylogenetic trees of terminase large subunit (TerL) protein se-
quences from RefSeq prokaryotic viral genomes and soil vOTUs in the PIGEON database.
Trees are color-coded by sequence source (RefSeq or soil category within PIGEON). Trees
were constructed using IQ-tree and the LG+I+G4+F model of sequence evolution, using
ultrafast bootstrapping and an SH-aLRT test. Bootstrap values are not displayed but can
be found for each of the branches in Supplemental File 1. A: Phylogenetic tree of TerL
protein sequences from RefSeq prokaryotic viral genomes (n=1,613) and PIGEON soil vO-
TUs (n=1,011). Outer ring color represents viral family of RefSeq genomes. Phylogenetic
dispersion was estimated by using Fritz and Purvis D (D). D=-0.25 when comparing TerL
sequences from RefSeq viral genomes and TerL sequences from soil vOTUs, with D < 0
indicating phylogenetic clustering. B: Phylogenetic tree of TerL protein sequences from PI-
GEON soil vOTUs. D=0.58 for other soil (n=634) compared to peat, including SPRUCE
(n=377), and D=0.41 when comparing SPRUCE (n=51) to all other soil sequences (n=960).
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Figure 2.5: Comparison of vOTU recovery from SPRUCE viromes and total
soil metagenomes. A: Distribution of vOTUs recovered in each of three extraction groups
(grouped by extraction method and collection date), based on read mapping to the PIGEON
database (n=5 viromes from 2018, 82 total soil metagenomes from 2015 and 2016, and 5
total soil metagenomes from 2018). B: Accumulation curves of distinct vOTUs recovered
as sampling increases for each extraction method; 100 permutations of sample order are
depicted as open circles, line shows the average of the permutations for each method. C:
Number of vOTUs recovered per metagenome when reads were only allowed to map to
vOTUs that assembled from metagenomes in the same category (self-mapped), considering
four categories: 2018 bulk (n=5), 2015 bulk (n=38), 2016 bulk (n=44), 2018 viromes (n=5);
bulk = total soil metagenomes. One outlier was excluded from the plot for ease of visual-
ization; the y-axis value of the outlier in the 2018 viromes was 1,328. Letters above boxes
correspond to significant differences between groups (Student’s T-test, significant when p
< 0.05). D: Similar to C, but reads were allowed to map to all vOTUs in the PIGEON
database (PIGEON-mapped), including all vOTUs assembled from any of the SPRUCE
metagenomes. Three outliers were removed from the plot for ease of visualization; the y-
axis values of the two outliers from 2016 bulk were 1,415 and 1,818, and the value of the
outlier from the 2018 viromes was 1,558.
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Abstract

Wild plants can suffer devastating diseases, experience asymptomatic, persistent infections, and serve as

reservoirs for viruses of agricultural crops, yet we have a limited understanding of the natural plant

virosphere. To access representatives of locally and globally distinct wild plants and investigate their viral

diversity, we extracted and sequenced dsRNA from leaves from 16 healthy oak and conifer trees in the UC

Davis Arboretum (Davis, California). From de novo assemblies, we recovered 389 RNA-dependent RNA

polymerase (RdRp) gene sequences from 384 putative viral species, and identified 580 putative viral contigs

via a virus prediction software followed by manual confirmation of virus annotation. Based on similarity to

known viruses, most recovered viruses were predicted to infect plants or fungi, with the highest diversity

and abundance observed in the Totiviridae and Mitoviridae families. Phyllosphere viral community

composition differed significantly by host plant phylogeny, suggesting the potential for host-specific viromes.

The phyllosphere viral community of one oak tree differed substantially from other oak viral communities

and contained a greater proportion of putative mycoviral sequences, potentially due to the tree’s more
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advanced senescence at the time of sampling. These results suggest that oaks and conifers harbor a vast

diversity of viruses with as-yet unknown roles in plant health and phyllosphere microbial ecology.

3.1. Introduction

Trees and other wild plants can act as reservoirs of viruses that can cause disease in economically

important crops [1,2,3], but most research on plant viruses has been focused on viruses that cause disease

in crops and ornamental plants [4,5]. Very little is known about the prevalence and effects of viral

infection in wild plants [5,6], although these viruses can play important ecological roles in the phytobiome,

even in asymptomatic plants [1,2,3]. In particular, forest trees, such as oaks and conifers, have a broad

ecological distribution and substantial economic importance, yet there is a relative lack of information

about their associated viral diversity [7,8,9,10].

Forests are among the world’s most important ecosystems. They cover 30% of the Earth’s land surface,

preserve most of Earth’s terrestrial biodiversity, are an important carbon sink, and play a role in climate

regulation [11,12,13]. Moreover, the forestry industry in the United States provides four percent of the

total manufacturing Gross Domestic Product (GDP), which equals an estimated contribution of over $200

billion per year [14]. The increase in global trade has accelerated the spread of invasive pathogens to

forests [15,16]. These pathogens are either introduced by accident, and/or adapt to new host trees [13]

and are responsible for major economic and ecological damages [17,18]. Unravelling the natural tree

virome may help predict forest responses to these perturbations and increasing pathogen emergence.

With the emergence of next generation sequencing (NGS), great advances have been made in the

discovery of plant viruses, and these studies have shown diverse viruses in wild plants [1,2,19]. Currently

little is known about the functions of these viruses, but it is clear that viruses can be symbiotic members of

their plant host microbial community [20], and recent research has uncovered many novel RNA

viruses [21,22]. Viruses associated with plants, including viruses that infect the plant and viruses that

infect members of the plant microbiome, are known to play various roles with respect to plant health. Even

though most plant viruses have been studied in the context of disease [20], some plant-associated viruses

have been shown to have positive, mutualistic, or neutral interactions with the plant host [5,23,24,25],

either directly [26,27] or indirectly [28,29,30,31,32]. For example, the mycovirus Cryphonectria

hypovirus 1 causes hypovirulence (reduced virulence) of the fungus, Cryphonectria parasitica, that causes

chestnut blight. [28,29,30,31,32]. As part of the plant microbiome, bacteria and fungi can have diverse
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ecological interactions with the plant host, but the role of viruses that infect these plant-associated

microbiota is relatively poorly understood.

To better expand the natural plant virome, we used a double-stranded RNA enrichment protocol to

obtain RNA viral nucleic acids from plant leaves. This dsRNA enrichment protocol has fostered in-depth

analyses of virus-specific sequences from plants in the past [5,19], and we chose it over other common

techniques for viral community analyses with the expectation that it could facilitate better access to the

phyllosphere viral community. Further, the majority of RNA viruses have a dsRNA life stage [33],

including most known plant-infecting viruses and mycoviruses [34,35]. In previous studies, enrichment of

virus-like particles followed by nucleic acid extraction and sequencing has had variable results in

plants [25,36], and extraction of total DNA or RNA followed by bioinformatic mining of viral sequences

has resulted in less viral ‘signal’ in the sequencing data, as the majority of the sequencing reads tend to be

derived from cellular organisms [4]. Thus, this approach allowed us to directly target the phyllosphere viral

community in line with previous viral phyllosphere studies.

In this study, we sequenced dsRNA derived from leaves of 16 oak and conifer species in order to

reconstruct RNA viral contigs and assess the RNA viral diversity within and among these host tree species.

The assembled contigs were examined for RNA-dependent RNA polymerase (RdRp) genes, a conserved

gene found in RNA viruses that lack a DNA stage [21], along with other viral signatures, and viral

communities were compared across tree species. This study is one of the first to look at natural tree

virosphere in conifer and oak trees, and provided a robust picture of putative novel viruses.

3.2. Results and Discussion

3.2.1. Dataset overview and viral contig recovery.

To investigate the diversity and abundance of RNA viruses in conifer and oak trees, we extracted dsRNA

from the leaves of 16 tree species (5 Cupressaceae, 5 Pinaceae, and 6 Fagaceae, commonly called cypresses,

pines, and oaks, respectively, Supplementary table 1) from the UC Davis Arboretum. Samples were

sequenced to an approximate depth of 6.6 Gbp each. Reads were assembled into contigs ≥ 200 bp, which

were searched for viral signatures using 1) established Hidden Markov Models (HMMs) to identify viral

RdRp genes [21], 2) VIBRANT [37] virus prediction software, and 3) BLASTp and BLASTn [38] searches

against the NCBI nr (BLASTp) and nt (BLASTn) databases to manually investigate the putative viral

contigs found via the first two approaches (Supplementary Figure 1). Of 186,591 total contigs ≥ 200 bp in

the dataset, 1,166 were tentatively predicted as viral using approaches 1 and 2, and 202 of those were
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removed after manual investigation revealed an ambiguous or likely non-viral origin using approach 3, most

often due to evidence that the contig was derived from a retrotransposon, not a virus. We note that,

despite the dsRNA extraction that should have yielded predominantly viral RNA, many contigs were not

predicted to be viral. Although we do not know the reason for certain, our virus detection approach was

meant to be conservative to limit false positives, so we have likely missed some viruses, and a BLASTp

search of all 192,336 predicted protein sequences revealed 69.5% of the sequences to be of likely plant origin

(Supplementary Figure 3.1).

We detected 389 RdRp gene sequences on 384 contigs and a further 614 putative viral proteins on 580

contigs via VIBRANT, for a total of 964 putative viral contigs (average length 955 bases, Supplementary

Table 2) that passed the manual curation step. Of those, eight had three or more predicted proteins and a

genome length > 1 kb, deemed sufficient for genome analysis, which revealed their divergence from known

viruses on account of the presence of >30% hypothetical proteins and/or best BLAST hits to viruses of

diverse taxa (e.g., fungi and plants) within the same genome (Supplementary Figure 3.2). In order to

maximize recovery of viral sequences that may not have assembled into contigs and to calculate the relative

abundance of each putative virus in each sample, we mapped reads from each of the 16 samples to both the

964 viral contigs recovered de novo and 4,495 RefSeq viral genomes [39]. We detected 963 viral contigs

through read mapping (889 from the Arboretum contigs and 74 from RefSeq). The 389 RdRp sequences

from the Arboretum were translated to protein as described in the following section, and used for

phylogenetic analyses, and the remaining analyses of viral populations and communities within and among

trees considered the 963 viral contigs recovered through read mapping.

3.2.2. Viral RdRp diversity in leaves from 16 oak and conifer species.

To investigate viral diversity within the 16 tree species (Supplementary Table 1), we explored the

phylogenies of the recovered RdRps in the context of known RdRps in the RefSeq database. We first

translated the 389 predicted RdRp contigs into protein sequences and then dereplicated them at 99%

amino acid identity (AAI) into 337 putative RdRp protein sequences, which were phylogenetically grouped

via BLASTp searches against RefSeq RdRp sequences into 14 viral families. A phylogenetic tree of our

discovered RdRps and 635 RefSeq RdRps from these 14 viral families was then constructed (Figure 3.1A,

Supplementary table 3). Most of our RdRps grouped phylogenetically with unclassified viruses (n=92),

followed by Totiviridae (n=38), Bunyaviridae (n=33), and Secoviridae (n=30) (Figure 3.1A). Totiviridae

are known to infect fungi and protozoa [40], Bunyaviridae are known to infect plants, insects, and

42



vertebrates [41], and Secoviridae are known to infect plants [42]. Our results suggest that both

plant-infecting viruses and viruses that infect members of the phytobiome were recovered.

In a comparison of viral taxonomic diversity according to tree family (the Pinaceae and Cupressaceae

families of conifers and the Fagaceae family of oaks), viral taxonomic composition was similar overall, but

substantially more viruses were identified from oaks (n=247) than from the two conifer tree families (n=68

in Cupressaceae and n=22 in Pinaceae) (Figure 3.1B). For both the Cupressaceae and Fagaceae families,

the ‘taxonomic’ category that represented the most RdRps was the ‘unclassified viruses’ group, at 29% and

28% of total RdRps, respectively. The largest taxonomic group associated with the Pinaceae was the

Bunyaviridae family (18%). Besides unclassified viruses, most RdRps in all three tree families were

associated with Totiviridae, Bunyaviridae, and Secoviridae, consistent with the dominance of these groups

in the dataset overall.

To better understand the potential ecological implications of the recovered viruses we next sought to

consider the potential hosts of the recovered viruses, based on phylogenetic affiliation of their RdRps with

those of viruses with known hosts in RefSeq (Figure 3.1C). Of the 337 RdRps in the dataset, 32% were

phylogenetically affiliated with viruses currently only known to infect plants (Bromoviridae,

Closteroviridae, Secoviridae, Solemoviridae or Tombusviridae [43]), 20% were associated with viruses

known to infect fungi (Mitoviridae or Totiviridae [43]), and 19% were aligned with viral families known to

infect both plants and fungi (Alphaflexiviridae, Betaflexiviridae, Partitiviridae [43]). A further 18%

grouped with unclassified viruses and thus could not be assigned to a putative host, while 10% were

associated with viral families known to infect both plants and animals such as insects (Bunyaviridae [41]).

Overall, the dataset was dominated by putative plant and fungal viruses.

However, 2% of the RdRps were associated with viruses from the Caliciviridae or Flaviviridae [43] that

are thus far only known to infect Animalia (Figure 3.1C). Four of these RdRps aligned with the

Flaviviridae, which are known to infect vertebrates and are transmitted by arthropods [44], and two

aligned with Caliciviridae, which are known to only infect vertebrates [41]. Since both the Caliciviridae

and Flaviviridae are primarily recovered in research central to human and animal pathogens [44,45], these

RdRps are well represented in the RefSeq database [39]. Thus, we suspected that the Caliciviridae and

Flaviviridae RdRps in our dataset could have been erroneously assigned to these groups, partly on account

of this database bias.

To further investigate whether these RdRps could represent true Caliciviridae or Flaviviridae, we

performed a manual, web-based BLASTp search against the NCBI non-redundant protein database. Two
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of our RdRp sequences had significant alignments with RdRps of totiviruses, one with partitiviruses, one

with mitoviruses, one with tombus-like viruses, and one with tymoviruses. All of these virus groups include

known plant and/or fungal viruses [43,46], thus we believe all of the RdRps originally assigned to

Caliciviridae or Flaviviridae were more likely of plant or fungal virus origin.

Overall, results are consistent with plant and/or fungal viruses dominating the RNA viral communities

in these oak and conifer phytobiomes. Interestingly, RdRps from bacteriophages were not detected in our

dataset, despite potential host bacteria presumably representing a large component of the phyllosphere and

endosphere microbiome [21,47]. We infer that either bacteriophages with RNA genomes were not

abundant in these samples or that they were not amenable to the laboratory and/or bioinformatic

approaches used for viral recovery. Most known bacteriophages have dsDNA genomes [48], which would

not have been recovered through our dsRNA library preparation. Therefore, the lack of detectable

bacteriophage RdRps does not suggest that bacteriophages were absent from these plant phytobiomes.

3.2.3. Viral population composition detected within and across tree families.

We next sought to investigate the extent to which specific viruses were shared within and among the three

tree families. We used the 389 RdRp-containing contigs, 580 putative viral contigs identified by

VIBRANT [37], and 4,495 viral genomes from RefSeq as a reference database for read mapping from the

16 dsRNA metagenomes to assess the presence of each virus in each tree. Only viruses that were detected

in two or more tree species were taken into account in this analysis, in order to compare within and

between families. Viruses were most commonly shared among tree species within the same family, with the

Pinaceae having the most shared viruses in the dataset (164), followed by the Fagaceae (78), and then the

Cupressaceae (70) (Figure 3.2). After similarities within families, the Cupressaceae and Pinaceae together

shared the most viral contigs (63). These results are unsurprising, since both of these tree families belong to

the order Pinales (conifers) and are more closely related to each other than they are to the Fagaceae. More

viral contigs were shared across all three tree families (i.e., detected in at least three trees, with at least

one species from each tree family) than were shared between the Fagaceae and either the Cupressaceae or

Pinaceae alone. These results could indicate that there are both specific, host-associated viromes that align

with tree phylogeny (for example, due to the presence of specific plant metabolites and/or host-associated

microbiomes that could in turn select for specific viruses), as well as suggest a core virome common across

the three tree families, perhaps due to their shared location within the UC Davis Arboretum.
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3.2.4. Comparing viral community composition to host tree phylogeny.

Given that more viruses were shared within than among tree families, we wanted to see whether leaf viral

communities would separate according to host tree phylogeny. Based on read mapping from each sample to

all viral contigs and RefSeq viral genomes, we we generated a presence/absence matrix and computed

pairwise correlations between viral communities using the Pearson method and compared the resulting

hierarchical cluster of viral community composition with a phylogenetic tree of the tree species, derived

from the chloroplast rbcL gene (commonly used to define tree phylogeny [49,50]). As in the phylogenetic

tree of the trees, the hierarchical cluster of viral communities showed clear separation between the oaks and

the conifers, along with separation according to the two families within the conifers (Cupressaceae and

Pinaceae), yielding three primary clusters of viral community composition separated by tree family (Figure

3.3A). In fact, for all 10 conifer species, the dendrogram of viral community composition and the

phylogenetic tree of trees aligned exactly, suggesting strong ties between host plant phylogeny and viral

community composition, presumably due to host specificity for the viruses to the plants themselves and/or

to their specific microbiomes. In contrast, within the oak (Fagaceae) family, the dendrogram of viral

communities and the host phylogenetic tree exhibited slight differences. We partially attribute these

differences to the phylogenetic dispersion captured in the oaks compared to the conifers: all of the oaks

were from the same genus (Quercus), whereas the conifers spanned seven genera. Consistent with this, the

three conifer species in the Pinus genus had viral communities that were more similar to each other than to

the other two members of the Pinaceae family from different genera. We speculate that, at the shorter

phylogenetic distances captured within a tree genus, the influence of host phylogeny on properties that

would influence viral community composition was much smaller than at longer phylogenetic distances,

where, in all cases, viral community composition aligned with tree phylogeny.

To further investigate the viral communities across the 16 tree species, we performed a principal

coordinates analysis (PCoA, Figure 3.3B). This analysis now considers the relative abundances of all of the

viruses recovered in the dataset through read mapping, whereas the analysis above was based solely on

detection (presence/absence). Consistent with the presence/absence analysis, viral communities differed

significantly by tree family (PERMANOVA p = 0.001) (Figure 3.3B). Viral community similarity in the

PCoA plot followed approximately the same patterns as in the dendrogram derived from viral

presence/absence data. However, the ‘outlier’ viral community from the Q. douglasii oak was particularly

pronounced as separate from the other oaks in the PCoA plot, and this ‘outlier’ sample warranted further

consideration, as described in the next section.
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3.2.5. Evidence for differences in leaf viral community composition linked to senescence.

The viral community of the oak tree Q. douglasii differed substantially from the viral communities of all

other oak trees (Figure 3.3A, 3.3B), likely in part because the largest number of viral contigs (333) was

recovered from that tree. This recovery was starkly different from other samples, where the second-largest

number of viral contigs recovered from a tree was nearly 100 less than Q. douglasii (n=251 in Pinus

sylvestris), and the average number for all other tree species was 130 (Supplementary Figure 3). Q.

douglasii was the only species in this study known to be drought deciduous, meaning that leaves are shed

in response to drought [51,52]. Consistent with the drought deciduous lifestyle resulting in earlier

senescence and loss of leaves, we found that the leaves of Q. douglasii were in a further state of senescence

compared to other samples, as shown by their brown color (Supplementary Figure 4). As plants senescence

and turn into dead organic matter, saprobic fungi have been shown to increase in activity as they

decompose this fresh organic matter [53]. We hypothesized that viruses of these fungi might have become

more active as a response to increased host activity and abundance. This was of particular interest, since

viral communities of symbiotic and saprotrophic fungi are poorly understood [54,55]. To investigate

whether the senescing Q. douglasii sample contained more mycoviral sequences than other samples, we

focused on the subset of RdRp HMM searches with matches to Mitoviridae, which was the most abundant

viral family in the dataset exclusively known to infect fungi. A total of 83 matches to the Mitoviridae

RdRp HMM was found in the dataset overall, and 87% of these (72 out of 83) were recovered through read

mapping in the Q. douglasii sample, compared to a maximum of 15% in all other samples. Of all the Q.

douglasii RdRp HMM matches that were recovered through read mapping (n=231), 31% matched the

Mitoviridae HMM (72 out of 231), compared to a maximum of 16% (27 out of 170) in all other samples.

Thus, both the diversity and proportion of Mitoviridae sequences was higher within Q. douglasii than in

any of the other trees. We infer that Q. douglasii had more mycoviral sequences than any of the other

trees, and we suspect that this may have been due to increased fungal and subsequent mycovirus activity

within the leaves as the tree went into senescence.

3.3. Conclusions

By extracting dsRNA from tree leaves and mining the assembled contigs for viral signatures, we

recovered 964 putative viral contigs from asymptomatic oak and conifer plants. The phylogenetic affiliation

of many of these viruses with known plant and fungal viruses suggests that their primary hosts are plants

or fungi, potentially indicating persistent infection of the host plant and/or infection of members of the
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plant microbiome. Although some viruses were detected in all three tree families examined, suggesting the

potential for a core virome (e.g., due to close proximity within the UC Davis Arboretum), most viruses

that were detected in more than one tree were limited to tree species within the same tree family,

suggesting host- and/or host microbiome-specific factors that could be structuring these viral communities.

Interestingly, more putative mycoviruses were recovered from senescing oak leaves than from any other

sample in the dataset, suggesting the potential for increased mycoviral activity coinciding with increased

activity of saprobic fungi during senescence. Much viral diversity remains to be discovered, and here we

have provided a framework to further investigate viral diversity in wild tree species for a more complete

understanding of the plant holobiont and for identifying potential reservoirs of emergent plant diseases.
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[48] Möıra B Dion, Frank Oechslin, and Sylvain Moineau. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol.,
18(3):125–138, March 2020.

[49] J R Manhart. Phylogenetic analysis of green plant rbcl sequences. Mol. Phylogenet. Evol., 3(2):114–127, June 1994.

[50] Yong Kang, Zhiyan Deng, Runguo Zang, and Wenxing Long. DNA barcoding analysis and phylogenetic relationships of
tree species in tropical cloud forests. Sci. Rep., 7(1):12564, October 2017.

[51] D. D. McCreary. Native california oaks losing leaves early. university of california. Available at
https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=8276, 2021.

[52] Marc D. Abrams. Adaptations and responses to drought in Quercus species of North America. Tree Physiology,

7(1-2-3-4):227–238, 12 1990.
[53] Björn D Lindahl and Anders Tunlid. Ectomycorrhizal fungi - potential organic matter decomposers, yet not saprotrophs.

New Phytol., 205(4):1443–1447, March 2015.

[54] Suvi Sutela, Anna Poimala, and Eeva J Vainio. Viruses of fungi and oomycetes in the soil environment. FEMS
Microbiology Ecology, 95(9), 07 2019. fiz119.

[55] Suvi Sutela, Marco Forgia, Eeva J Vainio, Marco Chiapello, Stefania Daghino, Marta Vallino, Elena Martino, Mariangela

Girlanda, Silvia Perotto, and Massimo Turina. The virome from a collection of endomycorrhizal fungi reveals new viral
taxa with unprecedented genome organization. Virus Evolution, 6(2), 10 2020. veaa076.

49



Figures and tables

Tree scale: 10

Alphaflexviridae
Astroviridae
Betaflexviridae
Bromoviridae
Bunyaviridae
Caliciviridae

Viral family

Closteroviridae
Flaviridae
Mitoviridae

Novel sequences

0

20

40

60

80

100

R
el

at
iv

e 
ab

un
da

nc
e 

of
 p

ut
at

iv
e

vi
ra

l f
am

ilie
s 

(%
)

Solemoviridae

Fa
ga

ce
ae

 

n=247

Pi
na

ce
ae

 

Cu
pr
es

sa
ce

ae
 

n=68 n=22

Reference
Putative RdRp

Sequence origin

Bootstrap value ≥60

Host range of viral family

Fungi

Animalia

Plants

Tree scale: 1
Betaflexviridae

Tree scale: 1
Bromoviridae

Tree scale: 10
Bunyaviridae

Tree scale: 1
Alphaflexviridae

Tree scale: 1
Partitiviridae

Tree scale: 1
Secoviridae

Tree scale: 10
Totiviridae

Tree scale: 10
Unclassified viruses

Caliciviridae
Tree scale: 1 Tree scale: 1

Closteroviridae
Tree scale: 10
Mitoviridae

A B

C

Partitiviridae
Secoviridae

Tombusviridae
Totiviridae
Tymoviridae
Unclassified viruses
Other viruses

Tree scale: 10
Tombusviridae

Tree scale: 1
Flaviviridae

Tree scale: 10
Solemoviridae 

(Continued on the following page)

50



Figure 3.1: Phylogenetic classification of viral contigs, based on alignment of
RdRp gene sequences from RefSeq and this dataset. A) Unrooted phylogenetic
tree (concatenated predicted protein alignment) of RdRp sequences from all newly identified
contigs (‘Novel sequences’, this dataset, n=337) and RefSeq (n=635). The tree is colored
by viral family phylogeny from RefSeq. ‘Unclassified viruses’ and ‘Other viruses’ are also
from RefSeq but did not have a taxonomic assignment or were assigned to other viral
groups, respectively. B) Average relative abundances of viral taxa within tree families, based
on putative taxonomic assignments for RdRp contig sequences (derived from significant
BLAST hits for the RdRp gene to known RdRp sequences in RefSeq). Colors correspond
to the legend in panel A. ‘Unclassified viruses’ indicate RdRps from our dataset that had
significant best BLAST hits to unclassified viruses in RefSeq. Relative abundances of each
RdRp-containing contig in each sample were derived from read mapping to the 384 RdRp-
containing contigs, and relative abundances were summed for each taxon and averaged across
tree species within each tree family to generate the stacked bar charts. Numbers at the tops
of bars indicate the total number of RdRp-containing contigs detected for each tree family.
C) Unrooted phylogenetic trees of RdRp protein sequences. The most significant RdRp
BLAST bit score was used to assign each contig to a viral family, and phylogenetic trees
were constructed separately for each family. Bootstrap support values ≥ 60% are shown
as circles on nodes, and were calculated using an approximate likelihood ratio test (aLRT)
with the Shimodaira–Hasegawa-like procedure (SH-aLRT), using 1000 bootstrap replicates.
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drivers of local and global wetland viral biogeography
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Abstract

Wetlands store 20-30% of the world’s soil carbon, and identifying the microbial controls on these carbon

reserves is essential to predicting feedbacks to climate change. Although viral infections likely play

important roles in wetland ecosystem dynamics, we lack a basic understanding of wetland viral ecology.

Here 63 viral size-fraction metagenomes (viromes) and paired total metagenomes were generated from three

time points in 2021 at seven fresh- and saltwater wetlands in the California Bodega Bay Marine Reserve.

We recovered 12,826 viral population genomic sequences (vOTUs), 4.4% of which were also detected at the

same field site two years prior, indicating a small degree of population stability or recurrence. Viral

communities differed most significantly across the seven wetland sites and were also structured by habitat

(plant community composition and salinity). Read mapping to a new version of our reference database,

PIGEONv2.0 (now with 515,763 vOTUs), revealed 196 vOTUs present over large geographic distances,

often reflecting shared habitat characteristics. Wetland vOTU microdiversity was significantly lower locally

than globally and lower within than between time points, indicating greater divergence with increasing

spatiotemporal distance. Viruses tended to have broad predicted host ranges via CRISPR spacer linkages

to metagenome-assembled genomes (whether this reflects true biology remains to be seen), and increased

SNP frequencies in CRISPR-targeted major tail protein genes suggest viral eco-evolutionary dynamics,
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potentially in response to both immune targeting and to changes in host cell receptors involved in viral

attachment. Together, these results highlight the importance of dispersal, environmental selection, and

eco-evolutionary dynamics as drivers of local and global wetland viral biogeography.

4.1. Introduction

Wetlands are an important carbon sink, estimated to store between 20-30% of the global soil carbon [1].

They also provide ecosystem services, such as flood control, drought prevention, and water quality

protection, and they support a rich biodiversity [1,2,3,4]. However, these ecosystems are currently being

lost at an estimated annual rate of 1.5% globally, releasing stored carbon into the atmosphere [2,5].

Moreover, due to climate change, soil salinity is increasing in formerly freshwater wetlands, causing changes

to microbial and plant communities [6,7,8] and potentially leading to biodiversity loss [9]. Microorganisms

play central roles in carbon turnover and the emission of greenhouse gasses from wetland ecosystems [10],

and, by infecting, controlling the metabolism of, and lysing microorganisms, viruses also likely impact these

biogeochemical cycles [10,11]. It is therefore important to characterize fresh- and saltwater wetland

microbial and viral communities, in order to understand the ecological and biogeochemical responses of

these fragile ecosystems under a changing climate [12,13,14].

While viruses are highly abundant in peat wetlands and other soils [15,16,17,18], we still know

relatively little about wetland viral ecology, as methodological improvements have only recently made it

possible to study soil viral communities in detail. While some prior efforts have focused on bioinformatic

mining of viral sequences from total soil metagenomes [19,20], by purifying the viral size fraction through

0.22 µm filtration prior to metagenomic sequencing (viromics), a much higher viral diversity can be

recovered [11,15,21]. Application of these methods to peatlands and a variety of other soils is beginning

to reveal ecological factors important to soil viral biogeography.

Recent studies have shown substantial differences in soil viral community composition among habitats

at both regional and global scales [15,22]. For example, soil viral ‘species’ (vOTUs) were rarely shared

among four different habitats (grasslands, shrublands, woodlands, and wetlands) in northern

California [22], and similarly, few RNA viral sequences were shared between grasslands and peatlands in

the United Kingdom [23]. Despite repeated observations of soil viral community heterogeneity at regional

or continental scales [18,24], the same viral ‘species’ (vOTUs) can be found on different continents, usually

in the same habitat (e.g. peat viruses tend to be restricted to other peatlands) [15]. While habitat seems
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to be an important contributor to soil viral biogeography, given the sparseness of the data, further studies

are needed to assess the generalizability of these patterns.

At more local scales, soil viral community spatial structuring and temporal turnover have been

observed, with viral communities showing seasonal dynamics [25] and exhibiting stronger spatial and

temporal distance-decay relationships than bacterial communities [18,21]. However, those studies were

conducted within the same habitat or soil type; differences in viral community composition across habitats

have rarely been considered at local scales. In two studies that did compare viral communities by habitat

in the same Swedish ecosystem, viral communities were found to be distinct among three habitats along a

peatland permafrost thaw gradient [16,19]. However, those three habitats were also spatially separated,

making the relative influences of habitat and spatial location difficult to disentangle. Similarly, viral

community compositional differences along a grassland pH gradient also reflected spatial separation, but

pH was seemingly the predominant factor driving viral community composition, which was corroborated in

a meta-analysis of other soil and peat viral datasets [26]. Disentangling the relative impacts of habitat

characteristics and spatial location on soil viral community composition is thus an important near-term

goal for advancing the field, but appropriate spatiotemporal scales for sampling soil viral communities are

still unknown.

Building on our prior regional study of 30 viromes from four habitat types with very little overlap in

viral ‘species’ (vOTUs) across samples [22], here we hypothesized that reducing complexity from the

regional to local scale and restricting the diversity of habitats considered (only wetlands) would yield

sufficient vOTU co-occurrence to link viral ecological patterns to their potential underlying drivers. We

sampled seven different wetland sites across a 0.6 km2 area at three time points in 2021 at the Bodega

Marine Reserve on the California Pacific Coast (USA). We generated 63 viral size-fraction metagenomes

(viromes) and 63 total soil metagenomes to profile the dsDNA viral communities and bacterial and

archaeal (prokaryotic) communities, respectively, in these wetlands. We also compared results to our

viromic dataset from Bodega Bay collected two years prior (in 2019) [22]. Here we explore local and global

wetland viral biogeography, investigate which factors among spatial distance, plant and microbial

community composition, soil physicochemical properties, and time have the strongest influence on viral

community composition, and evaluate the influences of spatial and temporal distance on viral population

microheterogeneity and virus-host eco-evolutionary dynamics.
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4.2. Results and discussion

4.2.1. Dataset overview.

To investigate wetland dsDNA viral biogeography on a local scale, we sampled seven nearby wetland sites

within a 0.6 km2 area in the Bodega Marine Reserve, California, USA (Figure 4.1A, map). Sampling sites

were initially selected to represent freshwater, brackish, and saltwater wetlands, based on institutional

knowledge of plant community composition, and we subsequently measured both plant communities and

salinity to empirically define the sampled habitats. Near-surface (top 15 cm) wetland soils were collected at

three time points (March, May, and July of 2021), with three replicate samples per time point per wetland

site. Replicates were collected on average 17 m apart, with the closest samples within a site (regardless of

the time point) 1.7 m apart and the farthest 89 m apart (Supplementary Table 1). All 63 samples (7 sites x

3 replicates x 3 time points) underwent viral size-fraction metagenomics (viromics) and total metagenomics

to measure viral and prokaryotic community composition, respectively. A suite of soil physicochemical

properties was also measured for each sample (Supplementary Table 2). In total, 12,826 viral operational

taxonomic units (vOTUs, ≥ 10 kbp, ≥ 95% average nucleotide identity, approximately species-level

taxonomy [27]) and 219 metagenome-assembled genomes (MAGs,≥ 50% complete, ≤ 10%

contaminated [28]), Supplementary Table 3) were detected in our samples. From the viromes, we

assembled 17,703 viral contigs de novo, which clustered into 12,261 vOTUs, and we recovered an additional

565 vOTUs by read mapping to our Phages and Integrated Genomes Encapsidated Or Not (PIGEONv2.0)

database of 515,763 vOTUs from diverse ecosystems, including 369 vOTUs recovered from Bodega Bay

viromes collected in 2019 [22]. Read mapping to these sets of vOTUs and MAGs yielded the estimated

relative abundances of each vOTU and MAG in each sample, used for downstream community

compositional analyses (Supplementary Tables 4,5).

4.2.2. Habitat features (plant community composition and salinity).

We identified 32 plant species across the seven sites (Supplementary Table 6), and plant communities

separated the sites into two vegetation groups, based on the presence or absence of halophytes (salt-tolerant

plants). There were no overlapping plant species between the two groups, and while most sites in the same

vegetation group shared at least one dominant plant species, plant community composition differed at each

of the seven sites (Supplementary Table 6). We also used salinity measurements to define habitats, with

electrical conductivity measurements ranging from 0 to 82 mmhos/cm in our wetlands, and those between

0 to 2 mmhos/cm considered non-saline, 2 to 4 slightly saline, 4 to 8 moderately saline, 8 to 16 strongly
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saline, and 16 or greater extremely saline wetlands [29]. Although vegetation tended to be indicative of soil

salinity, our salinity measurements varied both within and among sites, and two sites had consistently

mismatched salinity and vegetation measurements (site M1 had a ‘no halophyte’ plant community with

non-to-strongly saline soils, and site M2 had a ‘halophyte’ plant community with non-saline soils). These

seemingly contradictory vegetation and salinity results left us initially concerned that our salinity

measurements might have been faulty, but evaporation during dry periods, seasonal waterlogging,

precipitation, and leaching of water can all influence soil salinity in short time spans [30]. Halophytic plants

outcompete non-halophyte plants in saline environments [31], and coastal salt marshes such as site M2

experience tidal flooding with seawater, leading us to believe that M2 likely sometimes experiences higher

soil salinity than we measured, promoting halophyte growth. Halophytes are not competitive in non-saline

habitats [32], and since there were no halophytes at site M1 despite the moderate salinity measurements,

we speculate that M1 soil is often non-saline. Regardless of the underlying mechanism(s) for the

differences, we separated the seven sites into four habitat groups: “Halophyte (H)” for the two sites with

halophyte plants and overall medium to extreme soil salinity (H1 and H2), “No Halophyte (NH)” for the

three sites with no halophytes and low to slight soil salinity (NH1, NH2, and NH3), and two “Mismatched

(M)” groups (M1 and M2) for the two sites for which the vegetation did not correspond with soil salinity.

Importantly, the mismatched (M) sites did not share the same vegetation and salinity mismatch, so they

do not represent the same habitat type, leading to four habitat groups (H, NH, M1, M2).

4.2.3. Viral and prokaryotic communities were distinct at each of the seven wetland sites

but were more similar within than between habitat types.

Most (90%) of the viral ‘species’ (vOTUs) were restricted to only one of the seven wetland sites. While

38% of the vOTUs were detected in only one of the 63 viromes (Supplementary Figure 1), the proportion

of these ‘singleton’ vOTUs was substantially reduced, compared to our prior regional-scale comparison of

30 viromes across grassland, shrubland, woodland, and wetland habitats, in which 81% of the vOTUs were

detected in only one virome [22]. Thus, the localized focus in one area and restriction to wetland habitats

here, as well as increased spatiotemporal resolution, improved our ability to identify vOTUs shared across

samples, as is necessary for recognizing biogeographical patterns. Of the 62% of vOTUs detected in more

than one virome, 6,680 (52%) were recovered only within one wetland site, and viral community

composition was significantly different at each site (PERMANOVA p < 0.001, Figure 4.1B, 4.1C). Viral

community beta-diversity was significantly negatively correlated with spatial distance (Supplementary
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Figure 4.2A), implicating dispersal limitation as one potential driver of these patterns (as also suggested in

previous work [18,21,22]).

Despite overarching differences among wetland sites, viral communities grouped secondarily according

to habitat type (Figure 4.1B, 4.1C), with significant differences among the four habitat groups (H, NH,

M1, and M2, PERMANOVA, p < 0.001). Consistent with edaphic factors as potential drivers of these

differences, viral community composition correlated significantly with soil chemical measurements

(Supplementary Figure 4.2B, Supplementary Table 2), such as pH, moisture content, and sulfate

concentrations (Supplementary Figure 4.2C). Considering only between-habitat beta-diversity, the viral

communities from sites NH1 and NH2 were the most similar (Figure 4.1C), despite being physically far

apart (Figure 4.1A), perhaps related to their similar salinity and plant communities (Supplementary Table

6). This is consistent with prior work that has suggested that plant cover type could play an important

role in shaping soil viral communities [33]. Similar salinity and plant communities were likely also drivers

of viral community compositional similarity at sites H1 and H2. Those sites are also connected by a culvert

(a human-made water tunnel beneath a road) (Figure 4.1A), presumably facilitating dispersal between the

sites. Finally, the two mismatched sites each had distinct viral communities, potentially due to their

unique combinations of plant composition and salinity.

A co-occurrence analysis revealed that vOTUs were most often shared across samples from the same

habitat type. Specifically, vOTUs from all three non-halophyte soils (NH1, NH2, and NH3) tended to

co-occur, as did vOTUs from wetlands with halophyte plants (H1 and H2). Perhaps reflecting the lack of

other samples from the same habitat types in this dataset, vOTUs from each of the mismatched sites

tended to co-occur only with other samples from the same site. Interestingly, a small subnetwork of vOTUs

from the halophyte site H2 co-occurred with vOTUs from the non-halophyte wetlands. All of those

co-occurring vOTUs were either the most abundant in or only detected in one particular H2 sample,

H2-1-T2, which had low salinity (1.69 mmho/cm) (Supplementary Table 2). This suggests that

environmental selection (presumably by way of microbial hosts) can act on wetland viral communities on

very short time scales, and/or that an influx of new vOTUs was brought to site H2, being already adapted

to conditions in the less saline water that brought them there.

The two sites with the most within-site vOTU co-occurrences also had the highest moisture content,

consistent with hydrological mixing facilitating greater viral community homogeneity. Specifically, site NH3

harbored viral communities distinct from all other sites (Figure 4.1B), despite its similar salinity and plant

community composition to the other two non-halophyte sites and its close proximity to NH2 (Figure 4.1A,

59



Supplementary Table 2). A comparatively large percentage of vOTUs was shared across samples within the

NH3 site (35% of vOTUs were shared among five or more NH3 samples, relative to only 8% on average for

the other two non-halophyte sites, Supplementary Figure 1). Similarly, communities from site M1 were also

distinct, with 30% of their vOTUs detected in five or more samples from the same site, whereas the five

other sites (not NH3 or M1) shared only 9% of their vOTUs across five or more samples from the same

site. Soil moisture content was highest at sites NH3 (83% on average) and M1 (52% on average), compared

to 34% on average at the other five sites, likely facilitating more mixing and greater viral community

homogeneity due to greater hydrologic connectivity. Overall, the viral community compositional and vOTU

co-occurrence patterns revealed both dispersal (and dispersal limitation) and environmental selection

(biotic and abiotic habitat characteristics) as likely drivers of local wetland viral biogeographic patterns.

To determine whether prokaryotic communities exhibited similar patterns to the viral communities,

prokaryotic community composition and co-occurrence were also investigated. Briefly, the relative

abundances and co-occurrences of MAGs and, separately, of 16S rRNA gene fragments recovered from total

metagenomes were used for these analyses. While most of the prokaryotic communities were significantly

different at each of the wetland sites (Figure 4.1E, Supplementary Figure 3A), the communities from the

Halophyte sites (H1 and H2) were not significantly different from each other (PERMANOVA, p=0.055),

grouping more by habitat type than did the viral communities. Co-occurrence networks for MAGs showed

similar patterns to those of the viral communities, largely reflecting shared MAGs within the same habitat

type, though relatively few MAGs were recovered from the non-halophyte wetlands (Supplementary Figure

3B,C). Although OTUs also showed the most co-occurrence within habitat types, OTUs were detected in

multiple habitats far more often than were MAGs, suggesting that increased resolution (i.e., not requiring

assembly into MAGs) revealed more co-occurrence, presumably due to increased access to rare community

members. Overall, patterns for prokaryotic communities were similar to those of their viruses, and viral

community composition was significantly correlated with prokaryotic community composition (Mantel test,

p < 0.001), suggesting that at least some of the observed viral biogeographical patterns were due to

habitat filtering (environmental selection) by way of their hosts.

4.2.4. Global distribution patterns for Bodega Bay vOTUs suggest that wetland viral

biogeography reflects habitat and salinity.

To compare vOTUs recovered at Bodega Bay to the global viral metacommunity, we leveraged a new

version of our Phages and Integrated Genomes Encapsidated Or Not (PIGEONv2.0) database, which we
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introduce here. Since the first iteration of PIGEON (PIGEONv1.0), which contained 266,125 vOTUs [15],

PIGEONv2.0 has almost doubled in size, now including 515,763 vOTU sequences. Most notably, we

increased the number of soil vOTUs from 15,892 to 61,757, predominantly from our in-house soil viromics

data, including previously unpublished datasets that we are now making publicly available in

PIGEONv2.0. The number of freshwater vOTUs also substantially increased, largely due to the addition of

viruses from aquatic viromes from Lake Baikal in Russia [34]. Here, these PIGEON improvements have

facilitated global comparisons of Bodega Bay vOTU occurrence patterns.

Of the 12,826 vOTUs recovered at Bodega Bay, 196 (1.5%) were previously detected at other sites

throughout the world (Figure 4.2A), recovered here through read mapping to PIGEONv2.0 (Figure 4.2B,

Supplementary Table 7). Bodega Bay vOTUs were previously recovered from non-wetland soils (83),

freshwater lakes (57), marine ecosystems (33), non-peat freshwater wetlands (14), and peat wetlands (8),

indicating globally present viruses in relatively similar ecosystems throughout the world (Figure 4.2A,

Supplementary Figure 4A). Notably, zero vOTUs from human-associated habitats were detected in these

wetlands, perhaps indicating species boundaries between these very different habitat types. Most vOTUs

that were detected in non-saline or slightly saline wetlands at Bodega Bay were originally recovered from

non-wetland soils (62) or freshwater ecosystems (46), whereas most vOTUs from saline wetlands were

previously recovered from marine (34) or non-wetland soil (28) ecosystems (Supplementary Figure 4.4B),

again suggesting that habitat characteristics underlie global viral biogeographic patterns. Similarly, we also

considered the relationship between vegetation group at Bodega Bay and the habitat in which a given

vOTU was originally recovered (Figure 4.2D) and found that vOTUs from the non-halophyte sites were

most often previously detected in non-wetland soils (79) or freshwater ecosystems (57), while vOTUs from

the halophyte sites were most often previously detected in marine ecosystems (24) (Figure 4.2C). The

detection of marine vOTUs in these wetlands is counter to our previous study of freshwater peatlands in

Minnesota, USA, in which zero marine vOTUs from PIGEONv1.0 were detected [15], consistent with

salinity as a habitat filter for vOTUs in both oceans and wetlands. Together, these results indicate that

habitat characteristics – in this case, salinity and salinity indicators (halophyte or non-halophyte plant

community composition) – can drive wetland viral community biogeography on a global scale.

4.2.5. Wetland viral microdiversity was lower locally than globally and lower within than

between time points.

To investigate the contributions of viral genotypic heterogeneity to local and global viral ecology, we used
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inStrain [35]to calculate vOTU microdiversity profiles and compared dominant allelic variants over time

and space. Specifically, we compared vOTU reference sequences initially recovered from PIGEONv2.0 (not

assembled from Bodega Bay, 196), assembled from Bodega Bay in 2019 (2,377) [22], and assembled from

Bodega Bay in 2021 (this study, 12,261) to their variants recovered in different samples at Bodega Bay. For

each vOTU, we calculated pairwise average nucleotide identities (ANIs) between each sample-specific

consensus variant sequence from Bodega Bay and the reference vOTU sequence. Genomic similarity

between Bodega Bay variants and PIGEON references was significantly lower on average (average ANI

97.48%) than that for variants that were both assembled and recovered from Bodega Bay (average ANI

99.55%, Figure 4.3A, p < 0.001, Student’s T-test). Given the global scale of PIGEON and local scale of

Bodega Bay, this indicates greater viral population allelic variance (genomic heterogeneity) with increasing

distance and/or time between samplings, a pattern known as ‘isolation by distance’ that has been studied

for geographic distance, whereby populations in closer proximity are more genetically similar than

populations that are farther away [36].

A relatively small number of the Bodega Bay vOTUs detected in 2021 were also recovered from Bodega

Bay in 2019 (568 vOTUs, 4.4% of the 2021 dataset). This suggests that a small part of the wetland soil

virosphere was stable or consistently recurrent over time. However, for vOTUs that were assembled and

recovered through read mapping in the same year, the genomic similarity of dominant allelic variants was

higher (99.86%) than for vOTUs that were assembled and recovered in different years (99.25%, Student’s

T-test, p < 0.001, Figure 4.3B). Thus, although these viral ‘species’ persisted over time, their strain-level

heterogeneity increased over the two years, consistent with temporal ‘isolation by distance’ [36], with

populations farther apart in time exhibiting more genomic divergence.

Sub-population dynamics for vOTUs that were recovered multiple times within the same Bodega Bay

wetland site in 2021 were also compared to assess short-term eco-evolutionary dynamics. Genomic

similarity of dominant allelic variants was highest for vOTUs recovered through read mapping at the time

point from which they were assembled (Figure 4.3C) and was significantly lower at both of the other time

points. This indicates that, even over short time scales of one to two months, variants significantly

fluctuated in abundance and/or diverged. Given that there was no linear trajectory in variant ANI

divergence with time (variants were just as different between adjacent time points as between the first and

third time points), abundance fluctuations seem more likely to explain these patterns than divergence.

We also used inStrain to compare MAG allelic variants in the 2021 Bodega Bay dataset. MAG variants

recovered and assembled at the same time point were most genomically similar (had the highest ANI),
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whereas MAGs from different time points had significantly lower ANI (Supplementary Figure 4.3D).

Interestingly, in contrast to the vOTU variants, MAG sub-population dynamics exhibited temporal

progression, with sub-population pairs from the same time point most similar, those from the first and last

time points most distinct, and those from adjacent time points (i.e., from time points 1 and 2 or 2 and 3)

exhibiting intermediate similarity in their ANIs. Additional time points would be required to determine

whether this is likely due to divergence over time, but results show sub-population dynamics for both viral

and prokaryotic populations over months.

4.2.6. Viral ‘species’ (vOTUs) tended to have broad predicted host ranges, and on

average, MAGs had evidence for interactions with more than 10 vOTUs past.

To investigate putative host ranges, we bioinformatically linked vOTUs to MAGs, using CRISPR

arrays [37]. All 12,826 vOTUs and 219 MAGs (210 Bacteria and 9 Archaea) were used for this analysis. A

total of 29,709 CRISPR arrays was recovered from the metagenomes, and 683 virus-host linkages were

predicted between 378 vOTUs and 53 MAGs. All identified host MAGs were bacteria and could be

classified to at least the phylum level, with Proteobacteria and Actinobacteriota among the most

commonly reconstructed MAGs (Figure 4.4A). Samples from medium to extremely saline wetlands had

significantly more CRISPR arrays and spacers than others, perhaps suggesting increased viral predation,

but there was no significant relationship between the number of CRISPR arrays or spacers and the number

of vOTUs in a given sample (Supplementary Figure 5). The average MAG was linked to 13 vOTUs,

indicating that wetland prokaryotic populations can be infected by (or otherwise interact with [38])

multiple, diverse viral species. On average, each vOTU was linked to four MAGs, and 164 vOTUs (45% of

those with predicted hosts) had putative linkages to MAGs in different phyla (Figure 4.4A, 4.4B). The

average vOTU was linked to MAGs in two phyla, and when only considering vOTUs linked to more than

one MAG, vOTUs were linked to MAGs across three or more phyla on average.

These results suggest either that CRISPR spacer matches to viral proto-spacers are imperfect for

predicting virus-host linkages associated with infections in these systems, or that wetland viruses have

much broader host ranges than previously appreciated. Recent studies have suggested that viral

interactions with hosts may be far less specific than previously understood, with viruses infecting (or

otherwise interacting with) prokaryotes across different phyla [38,39]. The mechanisms that could

routinely enable viruses to infect different phyla are unknown, but recent evidence for diverse

plasmid-dependent phages [40] (which target conjugation proteins encoded by horizontally transferrable
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plasmids) offers one interesting possibility for cross-infection that bears further exploration. Cross-phylum

CRISPR linkages could also reflect non-specific interactions (e.g., uptake of viral particles or DNA by

non-primary hosts, or horizontal transfer of CRISPR regions), as opposed to infections, and these

interactions have been suggested to be more common than previously appreciated [38].

To investigate viral evolution in response to host immunity, we calculated the allelic variance within

and outside of the viral genomic regions linked to CRISPR spacers, using the originally assembled vOTU

sequence as the reference for SNP identification for each vOTU. Viral genomic regions with a

CRISPR-spacer match had on average 5.6 SNPs/Kbp, whereas the genome outside of the match had on

average 3.3 SNPs/Kbp, indicating more allelic variance in CRISPR-targeted regions, compared to the rest

of the viral genome. This has been seen previously, for example in Streptococcus thermophilus phage-host

coevolution experiments and in an acid mine drainage system [41,42], and it suggests increased phage

genome diversification in CRISPR targeted regions to promote immune evasion. Of the predicted proteins

in the CRISPR-targeted viral genomic regions with SNPs, 87% were annotated as hypothetical proteins,

and 9% were putative major tail proteins. A significantly larger proportion of putative tail proteins were

found in these regions than were annotated as putative major tail proteins in the whole dataset (0.93%, p

< 0.00001, Z-test). This suggests that there is selection for accelerated evolution in viral genomic regions

targeted by CRISPRs, particularly in tail proteins likely involved in attachment to host cell receptors [43].

Evidence for higher mutation rates in phage tail protein genes is presumably due to viral adaptation to

changes in host cell receptors to facilitate attachment, as previously suggested [44,45].

4.3. Conclusions

Here, we analyzed dsDNA viral communities from the Bodega Bay, California wetland ecosystem and

showed significant differences in viral community composition across seven wetland sites, with evidence for

dispersal, dispersal limitation, and habitat filtering as underlying drivers of the observed patterns.

Although wetland viral communities differed predominantly by location within Bodega Bay, perhaps

reflecting local dispersal limitation, the two wetland sites with the most homogeneous communities had the

highest soil moisture content, suggesting hydrologic mixing and more opportunities for within-site dispersal

with increasing moisture content. Local wetland viral communities were secondarily structured by habitat

characteristics, such as plant community composition and soil salinity, indicating environmental filtering,

perhaps by way of host adaptation. A small fraction (1.5%) of the vOTUs were previously recovered

elsewhere, with global biogeographical patterns largely linked to habitat characteristics; marine vOTUs
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tended to be recovered in saline wetlands, freshwater vOTUs in non-saline wetlands, and soil vOTUs across

wetland habitats.

In addition to dispersal and environmental filtering, eco-evolutionary dynamics (e.g., diversification

and/or compositional shifts among dominant allelic variants) contributed to local and global viral

biogeographical patterns. Pairwise ANI % between dominant allelic variants (sub-populations) differed

significantly between years and over the four-month timescale of this study. In addition, Bodega Bay

vOTU variants tended to be more divergent from reference vOTUs recovered elsewhere globally than from

reference sequences assembled from Bodega Bay. The observed greater divergence over larger

spatiotemporal scales is consistent with patterns of ‘isolation by distance’, whereby variants closer together

in time and/or space likely had greater opportunities for gene flow. On a global scale, this may reflect local

diversification and global dispersal limitation of most variants. Our limited ability to link viruses to their

hosts (a limitation of the current state of the field) makes the contributions of virus-host co-evolutionary

dynamics to biogeographic patterns difficult to evaluate, but we did see evidence for virus-host interactions

spanning multiple phyla. Taken together, these results highlight dispersal, environmental filtering, and

eco-evolutionary dynamics as likely drivers of both local and global wetland viral biogeographical patterns,

expanding our understanding of the highly diverse and dynamic global soil virosphere.

4.4. Materials and Methods

4.4.1. Field site and sample collection.

Samples were collected three times over six months at the University of California, Davis Bodega Marine

Reserve, in seven wetland soil ecosystems within the reserve (Supplementary Table 2). Sample collections

were performed on March 17th, May 13th,and July 15th, 2021 (T1, T2 and T3, respectively) from each of

seven distinct wetland sites.The plant community at each site was used as an indicator for soil salinity

(Supplementary Table 6), such that the seven wetland sites were initially selected to represent three

low-salinity and four high-salinity habitats, but subsequent analyses revealed more nuance in these habitat

types (see main text). At each time point, three replicate surface soil samples (0-15 cm deep, 2.5 x 2.5 cm

square area) were collected per wetland site, using a soil knife. The soil within each sample was

homogenized and stored at -80 ◦C until further processing.

4.4.2. Virome DNA extraction, library construction, and sequencing.

Soil virions were enriched using a modified version of a previously published protocol [46]. For each
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sample, 10 grams of soil were suspended in 30 mL of protein-supplemented phosphate-buffered saline

solution (PPBS: 2% bovine serum albumin, 10% phosphate-buffered saline, 1% potassium citrate, and 150

mM MgSO4 in ultrapure water), briefly vortexed, placed on an orbital shaker (30 min, 400 rpm, 4 ◦C), and

then centrifuged (10 min, 3,095 x g, 4 ◦C). Supernatant was then centrifuged twice (8 min, 10,000 x g, 4

◦C) to remove residual soil particles. The purified supernatants were then filtered through a 0.22 µm

polyethersulfone membrane to remove most cells. The resulting filtrate was ultracentrifuged (2 hrs 25 min,

32,000 rpm, 4 ◦C) to pellet the virions, using an Optima LE-80K ultracentrifuge with a 50.2 Ti rotor

(Beckman-Coulter Life Sciences). Supernatants were decanted, and pellets were resuspended in 100 µl of

ultrapure water. DNase treatment was not performed, as soil samples were stored frozen prior to

processing, due to COVID-19 lockdown restrictions, and avoiding DNase treatment on such samples has

been shown to improve viromic DNA yields without substantially compromising the viral ‘signal’ in the

data [47]. DNA was extracted from the viral-enriched fraction, using the DNeasy PowerSoil Pro kit

(Qiagen, Hilden, Germany), following the manufacturer’s instructions, with an added step of a 10-min

incubation at 65 ◦C before the bead-beating step. Libraries were constructed by the UC Davis DNA

Technologies Core, using the DNA Hyper Prep library kit (Kapa Biosystems-Roche, Basel, Switzerland),

and paired-end 150 bp sequencing was done using the NovaSeq S4 platform (Illumina) to an approximate

depth of 10 Gbp per virome.

4.4.3. Total DNA extraction, library construction, and sequencing.

Total DNA was extracted from 0.25 g of soil per sample with the DNeasy PowerSoil Pro kit (Qiagen,

Hilden, Germany), following the manufacturer’s instructions, with an added step of a 10-min incubation at

65 ◦C before the bead-beating step. Libraries were constructed by the UC Davis DNA Technologies Core,

using the DNA Hyper Prep library kit (Kapa Biosystems-Roche, Basel, Switzerland), and paired-end 150

bp sequencing was done using the NovaSeq S4 platform (Illumina) to approximate depth of 20 Gbp per

total metagenome.

4.4.4. Soil chemistry and moisture.

Soil moisture was defined by calculating the gravimetric water content of the soil. Soil chemistry

measurements were performed by Ward Laboratories (Kearney, NE, USA). Briefly, soil pH and soluble

salts were measured using a 1:1 soil:water suspension. Soil organic matter was calculated as percent mass

loss on ignition. Nitrate was measured using a KCl extraction. Potassium, calcium, magnesium and

sodium were measured using an ammonium acetate extraction. Zinc, iron, manganese and copper were
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measured using a DTPA extraction. Phosphorus was measured using the Olsen method and sulfate was

measured using a Mehlich-3 extraction.

4.4.5. Virome bioinformatic processing.

Reads were trimmed using Trimmomatic v0.39 [48] to remove Illumina adapters and for quality trimming,

using paired-end trimming, a sliding window size of 3:40, and a minimum read length of 50 bp. PhiX

sequences were removed using BBDuk, from the BBMap v38-72 package [49], using k=31 and hdist=1. De

novo assemblies were generated separately for each virome from the quality-trimmed, phiX-free reads,

using MEGAHIT v1.0.6 [50], with k-min of 27, presets meta-large, and a minimum contig length of 1000

bp. Contigs were renamed, using the rename command from the BBMap package [49], using standard

settings, and only contigs ≥10kbp were retained, using reformat from BBmap with the setting

minlength=10000. Viral contigs were predicted using VIBRANT v1.2.0 [51], in virome mode and retained

for downstream analyses if VIBRANT classified the contig as viral. Viral contigs were dereplicated into

vOTUs using dRep v3.2.0 [52] at 95% ANI with a minimum coverage threshold of 85%, using the ANImf

algorithm. Reads were mapped to the vOTUs, using Bowtie2 v2.4.2 [53] in sensitive mode, and the

resulting samfiles were converted to bamfiles via SAMtools v1.15.1 [54]. A coverage Table was produced

using CoverM v0.6.1 [55], using CoverM contig with the mean coverage and a minimum covered fraction

(breadth) of 75% (Supplementary Table 4). Reads were subsequently mapped back to our PIGEONv2.0

database, using CoverM with the same settings.

4.4.6. Total metagenome bioinformatic processing.

Read trimming, PhiX removal, and assembly were done the same way as for the viromes. Contigs were

renamed using using the rename command from the BBMap package [49], using standard settings, and

only contigs ≥2 kbp were retained, using reformat from BBmap with the settings minlength=2000. CD-hit

v2007-013 [56] was used to deduplicate the contigs at approximately 99% ANI, using the -c 0.99 -aS 0.99

settings. Bowtie2 v2.4.2 [53] was used to map reads to the contigs, using sensitive mode, and the samfiles

were converted to bamfiles using SAMtools v1.15.1 [54]. A depth file for binning was created using

MetaBAT2 v2.12.1 [57], using jgi summarize bam contig depths. Bins were then created using MetaBAT2

v2.12.1, using standard settings. dRep v3.2.0 [52] was used to dereplicate the bins, using primary clustering

at 90%, secondary clustering at 95%, coverage method larger, a contamination threshold of 5%, and a

coverage threshold of 30% [58]. CheckM v1.0.13 [59] was used to estimate completeness and contamination

of genome bins, and bins ≥ 50% complete and ≤ 10% contaminated were retained [28]. RefineM
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v0.1.2 [60] was used to refine the recovered bins, using standard settings. Reads were mapped to these bins

(metagenome-assembled genomes, MAGs) using Bowtie2 v2.4.2 [53] with default settings except setting

–min-covered-fraction to 0.5 [61] (Supplementary Table 5). Phylogenetic trees were constructed using

gtdbtk v2.1.0 [62], using the classify-wf command for phylogenetic inference and for aligning the identified

marker genes. After this, gtdbtk infer was used to create the phylogenetic tree, using standard settings.

4.4.7. Recovery and analysis of 16S rRNA gene sequences from metagenomes.

SortMeRNA v4.2.0 [63] was used against the bacterial and archaeal SILVA databases [64] to recover reads

containing 16S rRNA gene sequences from the total soil metagenomes. RDP tools v11 [65] was used to

taxonomically classify the sequences, using the RDP database v18 as a reference [66]. A count Table of the

16S rRNA gene OTUs was generated using the hier2phyloseq() function from the RDPutils package [67].

4.4.8. PIGEONv2.0.

To build further upon PIGEON 1.0 [15], we added more viral sequences mostly from in-house soil data,

both published [18,22,47] and currently unpublished, and from recent publications of viral ecology in

soil [26], lakes [34,68] and oceans [69,70]. We also mined a total soil metagenome dataset for viral

sequences [71]. A prefix was added to all sequence headers, in order to quickly identify what dataset the

original sequence came from (Supplementary table 9). All sequences were dereplicated using cd-hit

2007-0131 [56], because the dataset was too large to use other programs for dereplication.

4.4.9. Microdiversity profiles.

Within-population genetic diversity was calculated using inStrain v1.4.0 [35]. The bam files created by

bowtie2 from the viromes were used as input for the inStrain profile option to identify divergent sites for

each of the vOTUs. Variants were only called if they had a minimum coverage of 5 reads. MAG population

genetic diversity was calculated the same way, using the bam files created by bowtie2 from the total

metagenomes as input for InStrain.

4.4.10. CRISPR-spacer analyses for virus-host linkages.

Crass v1.0.1 [37] was used to assemble spacer and repeat sequences in the total metagenomes, using -l 4.

All spacer sequences were then compared to the vOTUs, using blastN v2.7.1 [72], retaining hits with fewer

than two mismatches and >95% nucleotide identity. All repeat sequences were compared to the MAGs

using blastN, retaining hits that had no mismatches and 100% nucleotide identity (Supplementary Table 8).
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4.4.11. Data analysis and visualization.

All statistical analyses were done using R v 4.1.0 [73]. Analysis for viral community composition were done

on the mean coverage vOTU abundance Table, unless otherwise noted. Bray-Curtis dissimilarities were

calculated on log-transformed relative abundances, using the vegdist function from the vegan package

v2.6-2 [74]. PERMANOVA analyses were done using the adonis2 function from vegan. Principal

coordinates analyses were performed with the pcoa() function from ape v5.4-2 [75]. The BIO-ENV analysis

was done using the bioenv function from vegan. Co-occurrence analyses for vOTUs, MAGs and 16S rRNA

OTUs were done using the coocur package in R [76], using a presence-absence version of the abundance

Tables. Only significantly positive co-occurrences (p<0.001) were used for visualization. Co-occurrence

networks were visualized using Cytoscape v3.7.1 [77], using the edge-weighted spring embedded model,

placing vOTUs that co-occur more frequently in closer proximity to each other in the figure. Upset plots

were created using the UpSetR package v1.4.0 [78], using a presence-absence version of the vOTU

abundance Table. All maps were created using the R package ggmaps [79]. Pie charts and bar charts were

created with Python v3.8, using matplotlib v3.4.2 [80] and seaborn v0.11.2. The phylogenetic tree was

created using the iTOL website [81], and the CRISPR-repeat network linking viruses to hosts was created

using Cytoscape. All other plots were created, using the R package ggplot2 v3.3.5 [82]. Correlation tests

between community Jaccard Dissimilarity and spatial or environmental distance were done using the

cor.test() function, using the pearson method with the alternative parameter set to two-sided. The linear

regression slopes were calculated using the lm function, as has been done previously [18]. All scripts are

available at https://github.com/AnneliektH/BodegaBay2021.

69



Bibliography

[1] A M Nahlik and M S Fennessy. Carbon storage in US wetlands. Nat. Commun., 7:13835, December 2016.

[2] Charles S Hopkinson, Wei-Jun Cai, and Xinping Hu. Carbon sequestration in wetland dominated coastal systems—a

global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 4(2):186–194, May 2012.
[3] William J Mitsch and James G Gosselink. The value of wetlands: importance of scale and landscape setting. Ecol. Econ.,

35(1):25–33, October 2000.
[4] William J Mitsch, Blanca Bernal, and Maria E Hernandez. Ecosystem services of wetlands. Int. J. Biodivers. Sci. Eco.

Srvcs. Mgmt., 11(1):1–4, January 2015.

[5] Stephanie A Yarwood. The role of wetland microorganisms in plant-litter decomposition and soil organic matter
formation: a critical review. FEMS Microbiol. Ecol., 94(11), November 2018.

[6] Minghua Zhou, Klaus Butterbach-Bahl, Harry Vereecken, and Nicolas Brüggemann. A meta-analysis of soil salinization
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Figure 4.1: Sampling design and overarching compositional patterns for Bodega
Bay viral and prokaryotic communities. A) Sampling locations for all Bodega Bay
samples. Center: locations of the seven wetland sites within the Bodega Marine Reserve,
Left and Right: locations of each of the nine samples per site (a zoomed in view of each
site with individual sample labels is in Supplementary Figure 1). Per the legend below the
images, circles correspond to locations with halophyte vegetation and saline soils, triangles
correspond to locations without halophytes and non-saline soil, and squares correspond to
mismatched locations. The ‘culvert’ label indicates the location of a human-made pipe below
the road that allows for water movement. B-C) Principal coordinates analysis (PCoA), based
on Bray-Curtis dissimilarities derived from the table of vOTU abundances (read mapping
to vOTUs). Each point is one sample (one virome), with viral communities from B) all 63
viromes, and C) the 45 viromes indicated by the dashed rectangle in B. Panel C is a new
PCoA to better show separation among overlapping samples in B. D) Co-occurrence network
of vOTUs detected in more than one Bodega Bay virome, colored by the site in which they
were most abundant (had the highest average per-bp coverage depth). Nodes represent
vOTUs, and edges represent a significant co-occurrence between the vOTUs, calculated
using a probabilistic co-occurrence model with the R package cooccur. E) PCoA based on
Bray-Curtis dissimilarities of 16S rRNA gene OTU community composition from 63 total
metagenomes. For all PCoA plots (B, C, E), the percent variance explained by each axis is
indicated in parenthesis.
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Figure 4.2: Global distribution and habitat context of Bodega Bay vOTUs,
leveraging the PIGEONv2.0 database. A) vOTUs (n=196) from PIGEONv2.0 re-
covered at Bodega Bay by read mapping, according to the location where they were first
recovered, colored by the environment in which they were originally recovered. Circle size
indicates the number of vOTUs. B) Composition of the PIGEONv2.0 database of 515,763
vOTU sequences, colored by environment. C) Relative proportions of all vOTUs recovered
from PIGEONv2.0 at Bodega Bay, colored by the original environment from which they
were recovered. D) Relative proportions of vOTUs recovered from PIGEONv2.0 at Bodega
Bay, as in panel C, but separated by the Bodega vegetation group in which they were recov-
ered, colored by original source environment. If a vOTU was recovered in both vegetation
groups, it appears twice in the chart.

76



92.5

95

97.5

100

vO
TU

 v
ar

ia
nt

 A
N

I (
%

) v
s.

 re
fe

re
nc

e

Reference vOTU source
Bodega Bay PIGEONv2.0

A ***

Same year

99.2

99.6

99.8

100

Reference vOTU year

99.4

Different year

B

vO
TU

 v
ar

ia
nt

 A
N

I (
%

) v
s.

 re
fe

re
nc

e

*** 100 

Same time point 
Reference vOTU time point 

T ± 1

99.75

T ± 2

99.50

99.25

C a b b

vO
TU

 v
ar

ia
nt

 A
N

I (
%

) v
s.

 re
fe

re
nc

e

Figure 4.3: Comparisons of viral variant (sub-population) diversity in local and
global contexts. Pairwise average nucleotide identities (ANIs) between vOTU
variants, calculated between each sample-specific vOTU consensus sequence and
the originally assembled (reference) vOTU sequence, using inStrain. Each point
is the ANI for one vOTU variant in one Bodega Bay virome compared to the
reference sequence for that vOTU. A) Variant ANIs for: (left) vOTUs both assembled
and recovered through read mapping from the Bodega Bay dataset (Bodega Bay reference
sequences), and (right) vOTUs recovered at Bodega Bay via read mapping but originally de-
rived from PIGEONv2.0 (PIGEONv2.0 reference sequences). Stars above boxes correspond
to significant differences between groups (Student’s T test, significant when p < 0.0001).
B) Variant ANIs for vOTUs both assembled and recovered via read mapping from Bodega
Bay, either: (left) assembled and recovered in the same year (2019-2019 or 2021-2021), or
(right) in different years (2019-2021 or 2021-2019). C) Variant ANIs for vOTUs assembled
from Bodega Bay in 2021, either assembled and recovered through read mapping at the
same sampling time point, or at different time points, where T±1 equals 2 months between
samplings, and T±2 equals 4 months. Letters above boxes correspond to significant differ-
ences between groups (Student’s T test, significant when p < 0.0001). In all three panels,
boxes show the median and interquartile range (IQR), and whiskers extend to Q1-1.5*IQR
and Q3+1.5*IQR.
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nated predicted protein alignment of 43 marker genes defined by CheckM) of prokaryotic
metagenome-assembled genomes (MAGs) with at least one vOTU linked by CRISPR se-
quence homology. The numbers for MAGs correspond to numbers in the network in panel
B. Tree was constructed using gtdbtk under the WAG model. B) Virus-host linkage net-
work for MAGs with at least one vOTU linked through CRISPR homology. Circle nodes
represent MAGs and are colored by phylum, while triangles represent vOTUs.

78



CHAPTER 5

Soil and rhizosphere viral communities are differently structured

by plot location, treatment with mycorrhizal fungi, and time

during the tomato growing season
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Abstract

The rhizosphere microbiome plays an important role in plant health, growth, and nutrient acquisition,

and by infecting rhizosphere microbes, viruses have the potential to impact these processes. To interrogate

viral communities in rhizosphere soils, here we collected tomato rhizosphere and bulk soil samples just

prior to and during the 2021 tomato growing season (four time points) in Davis, CA, USA, and we

generated 78 viral size-fraction metagenomes (viromes) and associated 16S rRNA gene and ITS amplicon

sequencing datasets, as well as metatranscriptomes from 33 rhizospheres from these samples. Half of the

plants were treated with arbuscular mycorrhizal fungi (AMF). We recovered 63,924 viral ‘species’

sequences (vOTUs), and rhizospheres had significantly higher viral richness than bulk soils, counter to the

usual trend of higher diversity in bulk soils for other microbiota, although this trend is management

dependent. Bulk soil viral communities differed most significantly by soil moisture content, and at high but

not low moisture content, bulk soil viral communities were similar to those from the rhizosphere,

suggesting viral compositional similarities in areas of high host activity. In both bulk and rhizosphere soils,
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viral community composition differed significantly by plot location and over time, but only rhizosphere

viromes exhibited significant differences between AMF-treated and untreated samples. Approximately 25%

of the vOTUs had been previously recovered in other datasets, predominantly in agricultural systems,

suggesting habitat filtering for these vOTUs. RNA viral communities recovered from rhizosphere

metatranscriptomes differed significantly over time and plot location, but not by AMF treatment.

Prokaryotic and fungal community composition differed most significantly by soil compartment, but when

considering bulk and rhizosphere soils separately, they both differed most significantly over time, which was

a substantially less important factor in structuring viral communities. These results indicate that viruses

are dynamic members of the tomato rhizosphere microbiome that, presumably by way of their hosts,

respond to changing environmental conditions, plant growth stages, and soil microbiota.

5.1. Introduction

Plants exude a significant amount of their fixed carbon into the rhizosphere, thereby feeding

plant-associated soil microbial communities and influencing their composition and activity [1,2,3]. In

return, beneficial soil microbes aid in plant pathogen resistance, nutrient uptake, and synthesis of growth

promoting hormones [1,3,4,5,6]. As such, there has been an increasing interest in using microbial

amendments in agricultural management to improve crop production [7,8]. One such group of organisms is

represented by the arbuscular mycorrhizal fungi (AMF), which can aid the plant in phosphorus uptake [9].

While AMF can benefit plant productivity in natural systems, it is up for debate whether these benefits

extend to production-oriented agricultural systems [10]. The effects of AMF inoculation on rhizosphere

microbiomes and, particularly, viromes are unknown.

Whereas some previous research has relied on bioinformatically mining viral sequences from total soil

metagenomes [11,12], improvements in laboratory methods have recently made it possible to explore soil

viral communities in more detail [13,14,15,16,17,18,19]. By purifying the viral fraction through 0.22 µm

filtration, it is now possible to obtain a much higher viral diversity within each sample [13,14,16],

revealing previously unrecognized viral ecological patterns. For example, recent studies have found that soil

viral communities are extremely heterogeneous over meters-scale distances and are significantly different

across habitats (e.g. grasslands, peatlands, woodlands and wetlands) at both regional and global

scales [16,20,21,22]. However, the same viral species can be observed across the globe in similar habitats

(e.g. viruses from wetlands can be found in other wetland ecosystems) [16,23]. Locally, soil viral

communities display stronger spatial and temporal distance-decay relationships than prokaryotic
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communities [14,21]. Differences between natural and agricultural soils are also beginning to be revealed,

but how these biogeographical patterns translate to rhizosphere viral communities is virtually

unknown [2,24,25,26,27].

Recent advances in sequencing techniques have revealed important information about the structure and

function of the microbial and fungal communities in rhizosphere microbiomes, providing some clues about

the ecological patterns that we might expect in rhizosphere viromes. Many studies have shown that soil

type an soil management practices have an effect on rhizosphere prokaryotic and fungal

communities [28,29,30], but plant species, temporal (plant developmental stage) and spatial scales are

important factors in shaping rhizosphere prokaryotic and fungal communities as well [28,31,32,33,34].

However, even though different plant species assemble relatively different rhizosphere microbiomes [35],

these communities can still be relatively similar, even over spatial distance and in different

environments [36,37], because plants select for specific microbes from the bulk soil pool, in order to

improve plant fitness, thereby reducing microbial diversity in the rhizosphere [38].

It still remains to be seen whether rhizosphere viral communities follow similar patterns to those known

for their likely host bacteria and fungi, for example, whether the significant differences between bulk soil

and rhizospheres are generalizable across plants and soil conditions.

Although we know very little about rhizosphere viral communities, some early studies of viruses in the

rhizosphere offer some hints of expected patterns [2,24,25,26,27]. In 2009, a transmission electron

microscopy study found that, while viruses were present in the rhizosphere, no difference in virion

abundances could be found between rhizosphere and bulk soils [27]. A more recent study of RNA viral

communities mined from metatranscriptomes revealed significant differences among bulk, rhizosphere, and

detritosphere compartments of wild oat [39]. A comparison of four bulk and four rhizosphere soils showed

significantly different DNA viral community composition between bulk and rhizosphere soils in a maize

cropping system [24]. Here, we generated 78 viral size-fraction metagenomes (viromes) to characterize viral

community composition in 36 tomato plant rhizospheres and their associated bulk soils (as well as bulk

soils before planting) throughout one growing season in an agricultural field in Davis, CA, USA. We also

generated 33 rhizosphere metatranscriptomes to investigate the RNA viral community and 78 16S rRNA

gene and ITS amplicon sequencing datasets to investigate the microbial and fungal communities in bulk

and rhizosphere soils. Half of the tomato plants were treated with arbuscular mycorrhizal fungi (AMF) as

part of an ongoing study to test the impacts of AMF on tomato yield. We also compared the recovered

vOTUs to our PIGEONv2.0 reference database of 466,057 vOTUs [23] from diverse ecosystems, in order to
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investigate global soil viral biogeographical patterns. We explored viruses as dynamic members of the

tomato rhizosphere microbiome and investigated what factors, such as plant growth stage, plot location,

AMF treatment condition, and composition of other microbiota influenced viral community composition.

5.2. Results and discussion

5.2.1. Dataset overview.

To investigate tomato rhizosphere and bulk soil viral community composition and its underlying drivers

over five months, we sampled three conventionally managed plots, which received biocides, (64 × 64 m)

within the UC Davis Russell Ranch Century Experiment [40,41], where tomato plants were either

untreated controls or inoculated with EndoMaxx Prime, an arbuscular mycorrhizal fungi

(AMF)-containing formula from Valent (Valent, CA, USA). Near-surface (top 15 cm) bulk soils were

collected at four time points [March (pre-planting), June (vegetative state), July (flowering), and August

(harvest) of 2021], and rhizosphere (root-adherent) soils were collected at the three time points with plants.

For both bulk and rhizosphere soils, two replicate samples were collected per time point per treatment per

plot, and bulk soils accompanying rhizosphere soils were collected approximately 30 cm from the plant

base. All 78 samples [2 compartments (bulk/rhizosphere) x 2 replicates x 2 treatments x 3 plots x 3 time

points + 6 bulk soils from March], went through total DNA extraction for 16S rRNA gene and ITS

amplicon sequencing and viral-size-fraction metagenome (virome) generation for viral community analyses,

and total RNA was extracted from all 36 rhizosphere soil samples (RNA extraction of three samples failed,

for a total of 33 metatranscriptomes analyzed).

A total of 116,884 viral contigs was recovered via de novo assembly of the viromes, and a further 17,332

were recovered through read mapping to our PIGEONv2.0 database [23], of which 10,173 had been

recovered at the same field site (Russell Ranch Century Experiment) in 2018 [15]. Together, these viral

contigs clustered into 67,038 viral operational taxonomic units (vOTUs, ≥ 10 kbp, ≥ 95% average

nucleotide identity, approximately species-level taxonomy [42]). Of these vOTUs, 2% could be

taxonomically classified via vConTACT2 [43] clustering with viral genomes from RefSeq (version 85 [44]).

A total of 16,146 16S rRNA sequences and 6,684 ITS1 sequences were obtained, and we recovered 380 viral

RNA-dependent RNA polymerase (RdRp) genes from the metatranscriptomic data. Relative abundances of

these sets of vOTUs, RdRp containing sequences, and OTUs, were derived from read mapping (vOTUs and

RdRps) or clustering-based counts (OTUs) and used for downstream community compositional analyses.
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5.2.2. Viral community composition was structured by a combination of soil

compartment and moisture content, but within each compartment, different relative

influences of plot location, AMF treatment, and time were revealed.

Considering the full 78-sample viromic dataset, most vOTUs were recovered in more than one virome

(87%). This is counter to the typical recovery of only 38-81% of vOTUs in single viromes in natural soil

systems [20,23] and similar to a prior study of viromes from the same field site in 2018 [45], perhaps

indicating greater viral community homogeneity in agricultural relative to natural soil systems. We

hypothesize that these differences could be due to tilling (mixing) of the soil and relatively uniform

fertilizer and irrigation inputs, as well as crop homogeneity in agricultural systems, compared to less

mixing and greater biotic and abiotic heterogeneity in natural soils.

To interrogate ecological patterns in our dataset, we first sought to explore what variables structured

the viral communities in both bulk and rhizosphere soils. Although viral community composition differed

significantly between bulk and rhizosphere soils (PERMANOVA p < 0.00001), rhizosphere soils from all

three sampled time points had similar communities to bulk soils from March and June, whereas bulk soils

from July and August had significantly different viral communities from all of the other samples (Figure

5.1A). At one of the time points for which bulk soil viromes appeared similar to those from rhizospheres (in

March), tomatoes were not yet planted, eliminating similarity in paired bulk-rhizosphere samples as a

predominant driver of this pattern and suggesting the potential for other habitat and/or microbial host

community similarities between some bulk soil and all rhizosphere samples. Over the course of the growing

season, the soil dried down from an average of 12% soil moisture in March and June to 6% on average in

July and August (Figure 5.1B), with the higher moisture content in the bulk soil samples with viromes most

similar to rhizospheres. Soil moisture has already been shown to be an important factor in shaping soil

viral communities [46,47], and it is an important driver of microbial community activity [48,49,50]. As

rhizosphere soils are also zones of high microbial activity [31,51,52] similar viral communities in different

soil compartments were associated with more active microbial communities, suggesting that microbial

activity could be a more important driver of viral community composition than soil compartment alone.

Consistent with greater viral production and diversity under conditions known to increase the activity of

other microbes, here vOTU richness was highest in rhizosphere soils, followed closely by wetter bulk soils

from March and June, and was significantly lower in drier bulk soils from July and August (Figure 5.1C).

83



We next sought to explore the relative importance of soil moisture and other physicochemical properties

(measured for bulk soils only), treatment with AMF, plot location, and time on viral community

composition within the two soil compartments (bulk and rhizosphere soils). Bulk soils were primarily

structured by soil moisture content (Figure 5.2A, p<0.00001) and secondarily by plot location in the field

(p=0.001) (Figure 5.2B). Bulk soil viral communities were not significantly structured by AMF treatment

condition or by time point (apart from the aforementioned temporal differences in moisture content).

Rhizosphere viral communities separately most significantly by AMF treatment condition (Figure 5.2C)

and secondarily but still significantly by plot location (Figure 5.2D).

As might be expected, viral community composition correlated significantly with host prokaryotic

community composition (Mantel test, p < 0.00001), suggesting environmental filtering by way of hosts.

However, prokaryotic community composition separated most significantly by soil compartment (Figure

5.3A), and, within each compartment, by time for both bulk soil (Supplementary figure 5.1A) and

rhizosphere communities (Figure 5.3B). Rhizosphere prokaryotic communities were also significantly

different in AMF treated versus untreated plants per plot (Figure 5.3C), but treatment with AMF alone

did not have a significant effect (PERMANOVA, p=0.03). Like prokaryotic community structure, fungal

community structure correlated with compartment, then by time and then, within the rhizosphere, by plot

location, followed by treatment with AMF per plot. Here, treatment with AMF alone also did not have a

significant effect on fungal community composition (PERMANOVA, p=0.025).

Spatial distance appeared to influence the viral community more significantly than the prokaryotic

community, whereas prokaryotic communities were more affected by temporal shifts. Both of these

patterns have been observed before [14,21]. As viruses rely on hosts for replication, explanations for these

differences are unknown, but, as suggested previously, there could be differences in the scales of

measurement, with viruses representing more active members of the microbiome, or, dispersal limitation

may play a bigger role in viral community assembly compared to prokaryotic community assembly.

5.2.3. Approximately 25% of the vOTUs had been previously recovered in other datasets,

with global distribution patterns suggestive of habitat filtering for agricultural vOTUs.

To investigate the global habitat distribution of vOTUs recovered at Russell Ranch, we leveraged our

Phages and Integrated Genomes Encapsidated Or Not (PIGEONv2.0) database [23] (Figure 5.4A). Of the

67,038 vOTUs recovered at Russell Ranch in this study, 17,332 (25.8%) were previously detected, including
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10,173 (15.1%) previously recovered at the same field site in 2018 [15], suggesting that part of the

agricultural soil virome is stable and/or recurring. Interestingly, 63.3% of those vOTUs were from two

deeply sequenced viromes with DNA that had been density gradient fractionated to capture different GC%

in different ‘mini-metagenome’ viromes to facilitate better assembly, resulting in substantially greater

vOTU recovery in those samples compared to our typical viromes. These results suggest both that deeper

and more targeted sequencing can facilitate greater access to the rare virosphere and that the rare

virosphere contains a substantial seed bank, perhaps similar to previous intensive sequencing of soil

microbes, in which the diversity in Central Park, USA reflected most of the known global diversity [53] and

deep sequencing of marine microbes, in which one deeply sequenced sample captured most of the diversity

in the English Channel over a longer, more shallowly sequenced time series [54]. Perhaps everything is (or

can get) mostly everywhere [55].

For the global habitat analysis, we leveraged PIGEONv2.0 but excluded all vOTUs previously

recovered from Russell Ranch (n=21,839). The remaining 7,159 (10.7%) previously recovered vOTUs were

previously detected at other locations, primarily (98.7%) at other agricultural sites in California (Figure

5.4B). This result almost certainly reflects geographic sampling bias, as most (90.1%) of the soil vOTUs in

PIGEONv2.0 are from our group’s locally sampled viromes in California. For example, of the previously

detected vOTUs in this study that were not from earlier samplings of the same field site, 80% were found

in rhizosphere or bulk soils from almond orchards in California [56], which, to our knowledge, is the only

other large-scale investigation of rhizosphere viromes. More generally, vOTUs from our dataset were

previously recovered in other agricultural bulk soils (3,086), other agricultural rhizosphere soils (3,978),

and natural soils (67) (Figure 5.4C). The skew towards vOTUs from other agricultural systems, despite

substantial representation of natural soil vOTUs in the PIGEONv2.0 database (5.9% of PIGEONv2.0

vOTUs) suggests that similar viruses may be adapted to similar ecosystems and/or host communities, as

has been suggested previously for peat and other wetland viruses [16,23]. However, in contrast to wetland

ecosystems, from which 0.7% of the vOTUs were previously recovered from marine or freshwater

environments, no vOTUs from marine ecosystems were recovered here, and only one vOTU was recovered

from freshwater, suggesting that there are strong habitat boundaries for these agricultural soil viruses.

To spatially compare the vOTUs recovered at Russell Ranch and elsewhere in California, we used our

almond dataset, in an attempt to minimize other confounding factors, such as the crop grown. We only

compared vOTUs recovered at Russell Ranch and at almond orchards throughout California [56]. A total

of 75,375 vOTUs was used for this analysis, of which 37.9% came from Davis, 12.8% came from Woodland,
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14.6% came from Escalon, and 34.7% came from Madera (all cities in California). Most vOTUs recovered

at Russell Ranch and at an almond orchard came from an almond orchard in Davis (n=4,820, 83.9%),

followed by vOTUs from Woodland (n=523, 9.1%), then Madera (n=289, n=5%, then Escalon (n=115,

2%), suggesting that space may also play a role in the global distribution of soil viruses, but that the size

of the reference database also may influence the number of vOTUs recovered. Together, these results show

that viruses can be conserved over large spatial distances, and that habitat characteristics play an

important role in shaping the global soil virome.

5.2.4. Rhizosphere RNA viral communities were structured by plot location and time

more than by AMF treatment.

To investigate the RNA viral community of the rhizosphere microbiome, we leveraged total soil

metatranscriptomes to recover RdRp genes [39,57,58]. We recovered 380 RdRp sequences, including 174

putative viruses of fungi (mycoviruses), 166 putative viruses of prokaryotes, 20 putative viruses of animals

(insects and vertebrates), 15 putative viruses of animals and/or plants, and 3 putative viruses of plants.

Significant differences in RNA viral community composition were observed by plot location

(PERMANOVA p = 0.001) and by time point (PERMANOVA p=0.001), but these were not immediately

visible in the first three principal coordinates axes, so we opted instead to show them via a canonical

analyses of principal coordinates (CAP, Figure 5.5 A, B). AMF treatment alone did not have a significant

effect on RNA viral community composition (PERMANOVA p=0.7) , but location in the field and

treatment together significantly impacted the RNA viral community composition (p=0.007).

Counter to our previous study of RNA viral communities in oak leaves, in which a greater proportion of

putative mycoviral sequences was associated with senescing leaves (presumably dominated by saprobic

fungi feeding on the decaying material, compared to healthy plant leaves with presumably less fungal

activity), here we found no significant enrichment in putative mycoviral sequences in samples treated with

AMF. There could be a number of potential reasons for this result, including unsuccessful AMF

establishment (AMF growth was confirmed in our companion study, excluding this explanation, data not

shown) and/or a lack of viruses in the soil or AMF inoculum that were capable of successfully infecting the

‘invading’ AMF. It is also possible that our laboratory methods failed to sufficiently recover or our

bioinformatic methods failed to recognize these viruses. Still, given the observed shifts in RNA viral
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community composition, these results indicate that RNA viruses are active members of the tomato

rhizosphere microbiome that turnover during the growing season.

5.3. Conclusions

Here, we investigated viral community assembly patterns and their underlying drivers in the

rhizosphere microbiome of tomato plants over one growing season in Davis, CA. We analyzed dsDNA and

RNA viral communities from tomato rhizosphere soils and their accompanying bulk soils and showed

significant differences in viral community composition between bulk and rhizosphere soils, where bulk soil

viral communities with higher soil moisture content were more similar to rhizosphere viral communities

than to bulk soil communities with lower soil moisture. Rhizosphere viral communities were primarily

structured by treatment with AMF and secondarily by plot location, whereas viral communities in bulk

soils were primarily structured by soil moisture and secondarily by location in the field (though we note

that soil moisture was not measured in the rhizosphere due to sample size limitations). Prokaryotic and

fungal community composition were primarily structured by time instead of plot location for both bulk and

rhizosphere soils, perhaps indicating dispersal limitations for viruses in soil compared to prokaryotes and

fungi. 25% of the vOTUs were previously detected, 15.1% at the Russell Ranch field site, suggesting that

part of the soil virome is stable or recurring, and 10.6% of the vOTUs were recovered at other locations,

primarily other agricultural sites, suggesting habitat filtering for these viruses. Together, these results

indicate that tomato rhizosphere viral communities are a dynamic part of the rhizosphere microbiome, that

respond to changes in the environment, such as soil compartment, soil moisture level, and other members

of the soil microbiota such as AMF, that form different communities on a relatively small spatial scale.

5.4. Materials and methods

5.4.1. Sample collection and processing.

Samples were collected at the Russell Ranch Sustainable Agriculture Facility (Davis, California, United

States, 38.54’N, 121.87’W) at four time points during one tomato growing season in 2021: March

(pre-planting), June (6 weeks post-planting), July (10 weeks post-planting), and August (pre-harvest, 16

weeks post-planting)). The Heinz 1662 tomato cultivar was used for all experiments, and three plots were

sampled at each time point. All three plots were conventionally managed. Briefly, each plot received 156 kg

per hectare of mineral fertilizer (urea ammonium nitrate solution), via drip line fertilization 3-4 times

throughout the growing season and were left fallow during the winter months. At each time point, two
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plants and their accompanying bulk soil (30 cm from the base of the plant) were randomly selected for

processing. This is with exception of the March time point, from which only bulk soils were sampled (in

approximately the same location, i.e., 30 cm from where plants were to be planted), since this was prior to

planting. Seedlings with the first two true leaves were transplanted into the field, and immediately prior to

transplanting dip inoculated. Plants that underwent treatment with EndoMaxx Prime were inoculated

using a root-dip method, following manufacturer instructions, and control plants were inoculated with

autoclaved EndoMaxx Prime (Valent, San Ramon, CA, USA).

5.4.2. Virome DNA extraction, library construction, and shotgun sequencing.

Soils were processed immediately after collection for viromics. To enrich the samples for soil virions, a

modified version of a previously published protocol was used [59]. Per sample, 10 grams of soil were

suspended in 30 mL of protein-supplemented phosphate-buffered saline solution (PPBS: 2% bovine serum

albumin, 10% phosphate-buffered saline, 1% potassium citrate, and 150 mM MgSO4 and then briefly

vortexed and placed on an orbital shaker (30 min, 400 rpm, 4 ◦C). For rhizosphere samples, the roots were

vigorously shaken to remove loose soil particles, and only the adhered portion was analyzed. The roots

were suspended in the above-mentioned buffer and shaken as defined above, and we made no difference

between the rhizosphere and endosphere. The shaken soil buffer solution was then centrifuged (10 min,

3,095 x g, 4◦C) and the resulting supernatant was then centrifuged two times (8 min, 10,000 x g, 4◦C) to

remove residual soil particles. The centrifuged supernatants were then filtered through a 0.22 µm

polyethersulfone membrane to remove cells. The filtrate was then ultracentrifuged (2 hrs 25 min, 32,000 x

g, 4 ◦C) to pellet the virions, using a Optima LE-80K 293 ultracentrifuge with a 50.2 Ti rotor

(Beckman-Coulter Life Sciences). Supernatant was discarded, and pellets were resuspended in 100 µl of

ultrapure water and treated with DNase to remove free DNA not encapsidated in a virion, using 10 U of

RQ1 RNase-free DNase and 10 µl of 10× DNase buffer (Promega Corp., Madison, WI, USA). Samples were

incubated at 37 ◦C for 30 min, and the reaction was stopped by adding 10 µl of the DNase stop solution

(Promega Corp., Madison, WI, USA) and incubating the samples at 65 ◦C for 10 min. DNA was then

extracted from the viral fraction, using the DNeasy PowerSoil Pro kit (Qiagen, Hilden, Germany),

following the manufacturer’s instructions, with an added step of a 10-minute incubation at 65 ◦C before

the bead-beating step. Libraries were constructed using the DNA Hyper Prep library kit (Kapa

Biosystems-Roche, Basel, Switzerland). Paired-end 150 bp sequencing was done using the NovaSeq S4

platform (Illumina), to an approximate depth of 10 Gbp per virome.
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5.4.3. Total DNA extraction, amplicon library construction, and sequencing.

Total DNA was extracted from 0.25 g of soil with the DNeasy PowerSoil Pro kit (Qiagen, Hilden,

Germany), following the manufacturer’s instructions, with an added step of a 10-minute incubation at 65

◦C before the bead-beating step. For rhizosphere samples 0.25 g of soil was brushed off the roots into the

extraction tube. Construction of the amplicon libraries followed a previously described dual-indexing

strategy [60,61]. To target the V4 region of the 16S rRNA gene, universal primers 515F and 806R were

used, using the following PCR protocol: an initial denaturation step at 98 ◦C for 2 min, followed by 30

cycles of 98 ◦C for 20 s, 50◦C for 30 s and 72 ◦C for 45 s, and a final extension step at 72 ◦C for 10 min.

To amplify the ITS1 region, we used the universal primers ITS1-F and ITS2 [62,63,64] and the following

PCR program: an initial denaturation step at 95◦C for 2 min, followed by 35 cycles of 95◦C for 20 s, 50◦C

for 30 s, and 72◦C for 50 s, followed by a final extension at 72◦C for 10 min. All PCR reactions were

performed using the Platinum Hot Start PCR Master Mix (Invitrogen). Libraries were cleaned using

AmpureXP magnetic beads (Beckman Coulter), quantified (Qubit 4 fluorometer), and pooled in equimolar

concentrations. Paired-end sequencing (250 bp) was performed on the MiSeq platform (Illumina), using a

standard flow cell per library (one for 16S and one for ITS.

5.4.4. RNA extraction, library construction, and sequencing.

Rhizosphere samples for RNA extraction were immediately put into liquid nitrogen in the field and stored

at -80 ◦C until further processing. Total RNA was extracted using the RNeasy PowerSoil Pro Kit (Qiagen,

Hilden, Germany), following the manufacturer’s instructions. RNA was submitted to Genewiz (San

Francisco, CA, USA) for ribodepletion, cDNA preparation, and library construction via the NEBNext

Ultra II RNA library prep kit (New England Biolabs, Ipswitch, MA, USA). Paired-end sequencing (150 bp)

was done using the NovaSeq 6000 platform (Illumina) to an approximate sequencing depth of 10 Gbp per

sample.

5.4.5. Virome bioinformatic processing.

Sequencing reads were trimmed using Trimmomatic v0.39 [65], removing Illumina adapters and quality

trimming reads, using paired-end trimming, a sliding window size of 3:40, and a minimum read length of 50

bp. PhiX sequences were removed using bbduk from from the BBMap v38-72 package [66], using k=31 and

hdist=1, and host plant reads were removed using Bowtie2 v2.4.2, using the sensitive setting, mapping

against the genome of tomato (S. lycopersicum), GenBank accession number GCA 012431665. The

remaining reads were assembled into contigs, using MEGAHIT 1.0.6 [67], with settings k-min 27, minimum
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contig length of 10 kb, and presets meta-large. Resulting contigs were renamed using the rename function

from BBMap, and viral contigs were predicted using VIBRANT v1.2.0 [68], in virome mode. All predicted

viral contigs were used for subsequent analysis. Viral contigs were dereplicated into vOTUs, using dRep

v3.2.0 [69], at 95% ANI with a minimum coverage threshold of 85%, using the ANImf algorithm. Reads

were mapped to the vOTUs and to the PIGEONv2.0 database using Bowtie2 v2.4.2 [70], using sensitive

mode, and vOTUs from the PIGEONv2.0 database that were recovered in this dataset were clustered with

the vOTUs assembled in this dataset using dRep, using the same settings as above. Reads were then again

mapped to this non-redundant dataset of vOTUs, using Bowtie2, and the resulting samfiles were converted

to bamfiles using SAMtools v1.15.1 [71]. A coverage table was created using CoverM v0.6.1 [72], using

CoverM contig with the mean coverage and a minimum covered fraction of 75%. The resulting coverage

table was used for statistical analysis, unless otherwise noted. All scripts for bioinformatic processing are

available on Github (https://github.com/AnneliektH/TomatoRhizo).

5.4.6. Metatranscriptome bioinformatic processing.

Sequencing reads were trimmed and PhiX and host plant reads were removed as described above. The

remaining reads were assembled into contigs, using MEGAHIT v1.0.6 [67], with settings k-min 27,

minimum contig length of 200 bp and presets meta-large. The resulting sequences were translated into

proteins using prodigal v2.6.3 [73], using standard settings. HMMER v3.3.2 [74] was used to recover

RNA-dependent RNA polymerase (RdRp) sequences, as described previously [39,58], using a p-value of

0.00001. DIAMOND v0.9.22.123 [75] was used for a protein-protein blast of the assembled proteins against

the NCBI nr prokaryotic database (v203), using a p-value of 1e-6. Contigs with a prokaryotic gene were

used for read mapping, and reads that mapped to these contigs were removed from the read pool, in order

to reduce prokaryotic RNA presence. The remaining reads were re-assembled using MEGAHIT, and this

process was iterated three times. The final set of contigs that had a predicted RdRp sequence was

clustered using dRep v3.2.0 [69] at 95% ANI with a minimum coverage threshold of 85%, using the ANImf

algorithm. Metatranscriptomic reads were mapped back to these sequences and to RefSeq v203 RNA viral

sequences (n=4,472) using Bowtie2 as described above, and a coverage table was created for downstream

analyses using CoverM.

5.4.7. Amplicon sequence bioinformatic processing.

Paired-end reads assembly into single sequences was done using PANDAseq v2.9 [76], chimeric sequence

removal, dereplication, error rate inference, denoising and read merging was done using DADA2
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v1.12.1 [77]. Taxonomy was assigned using the RDP classifier implementation in DADA2 [78] via the

SILVA database v132 [79] for 16S rRNA gene sequences, and via the UNITE database v2021-05-10 for ITS

sequences [80]. OTU tables with counts of each OTU in each sample were generated using the

makeSequenceTable function in DADA2.

5.4.8. Statistical analysis.

All statistical analyses were performed using R v 4.1.0 [81], using the mean coverage vOTU abundance

table or the other coverage tables prepared as described above (for RdRps, 16S rRNA OTUs, and ITS

OTUs, respectively), unless otherwise noted. Bray-Curtis dissimilarities were calculated on log-transformed

relative abundances, using the vegdist function from Vegan v2.6-2 [82], and principal coordinates analyses

were performed with the pcoa() function from ape v5.4-2 [83]. All maps were made using the R package

ggmaps [84] and all other plots were created using the R package ggplot2 v3.3.5 [85]. All scripts are

available at https://github.com/AnneliektH/TomatoRhizo.

5.5. Data availability

Raw sequencing reads for viromes, 16S and ITS are available on NCBI under bioproject PRJNA937255 and

vOTU sequences are available on Dryad within the PIGEONv2.0 database

(https://doi.org/10.25338/B8C934)
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Effects of agricultural management on rhizosphere microbial structure and function in processing tomato plants. Applied

and Environmental Microbiology, 85(16):e01064–19, 2019.

[30] Jennifer E. Schmidt, Angela D. Kent, Vanessa L. Brisson, and Amélie C.M. Gaudin. Agricultural management and plant
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Figure 5.1: Soil viral community and vOTU abundance patterns with soil mois-
ture A: Principal coordinates analysis (PCoA), based on Bray-Curtis dissimilarities derived
from the table of vOTU abundances of viral community composition in the 78 viromes. B:
Soil moisture percentage in bulk soils for each time point C: Total number of vOTUs recov-
ered per time point, in bulk soils versus rhizosphere soils (colors correspond to the legend
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36 rhizosphere soils, colored by treatment with AMF. D: the 36 rhizosphere soils, colored
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