
Lawrence Berkeley National Laboratory
LBL Publications

Title
Efficient block preconditioned eigensolvers for linear response time-dependent density 
functional theory

Permalink
https://escholarship.org/uc/item/8rf6x4kg

Authors
Vecharynski, Eugene
Brabec, Jiri
Shao, Meiyue
et al.

Publication Date
2017-12-01

DOI
10.1016/j.cpc.2017.07.017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8rf6x4kg
https://escholarship.org/uc/item/8rf6x4kg#author
https://escholarship.org
http://www.cdlib.org/
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Abstract

We present two efficient iterative algorithms for solving the linear response eigen-

value problem arising from the time dependent density functional theory. Although

the matrix to be diagonalized is nonsymmetric, it has a special structure that can

be exploited to save both memory and floating point operations. In particular, the

nonsymmetric eigenvalue problem can be transformed into a product eigenvalue prob-

lem that is self-adjoint with respect to a K-inner product. This product eigenvalue

problem can be solved efficiently by a modified Davidson algorithm and a modified
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locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that

make use of the K-inner product. The solution of the product eigenvalue problem

yields one component of the eigenvector associated with the original eigenvalue prob-

lem. However, the other component of the eigenvector can be easily recovered in a

postprocessing procedure. Therefore, the algorithms we present here are more efficient

than existing algorithms that try to approximate both components of the eigenvectors

simultaneously. The efficiency of the new algorithms is demonstrated by numerical

examples.

1 Introduction

Within the linear response (LR) framework of the time-dependent density functional theory

(TDDFT), the absorption spectrum of a molecule can be estimated by solving an eigenvalue

problem of the form
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where A and B are n×n real symmetric matrices. If we use no and nv to denote the number

of occupied and virtual states of the ground state Kohn–Sham Hamiltonian, respectively,

then the dimension of A and B is n = nonv, which can be extremely large. In addition, A

and B are often not stored explicitly. They are available through a procedure that multiplies

A and B with a vector or a block of vectors.

In most cases, A− B and A + B are both positive definite. Although the matrix in (1)

is nonsymmetric in general, it has a special structure which ensures that its eigenvalues are

real and come in positive and negative pairs. Moreover, it can be shown (see, e.g.,1) that a

structured eigendecomposition of this matrix is given by
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where Λ = diag {λ1, . . . , λn} consists of the positive eigenvalues, and the eigenvectors are

normalized by






U −V

−V U







∗ 





U V

V U






= I. (2)

From the eigendecomposition, we immediately obtain that if λ > 0 is an eigenvalue with cor-

responding right eigenvector [uT , vT ]T , then the corresponding left eigenvector is [uT ,−vT ]T ;

in addition, the right and left eigenvectors of −λ are [vT , uT ]T and [−vT , uT ]T , respectively.

The positive eigenvalues of (1) correspond to absorption energies of a molecular system.

The corresponding eigenvectors are related to the likelihood of these excitations. If λi is

the ith positive eigenvalue of (1) sorted in increasing order, associated with an eigenvector

[uT
i ,−vTi ]T , then the absorption spectrum of the molecular system is defined by

σ(ω) =
n

∑

i=1

[d̂T (ui + vi)]
2δ(ω − λi), (3)

where d = [d̂T , d̂T ]T is the dipole vector and δ(·) is the Dirac-delta function. In (3), the

eigenvectors are required to be normalized as uT
i ui − vTi vi = 1, which is consistent with the

condition (2).

In many applications, only the lowest excitation levels up to energy cutoff are of interest.

Therefore, we only need to compute a handful of the smallest positive eigenvalues of (1). In

this case, it is not efficient to use dense diagonalization methods, such as the ones available in

the ScaLAPACK2 software package to compute these eigenpairs. Instead, iterative methods

that only require multiplying A and B with vectors are more attractive. When one is only

interested in the overall shape of the absorption spectrum instead of precise values of the

excitation energies and their corresponding oscillator strengths, it is also possible to use

iterative methods that do not compute any eigenvalue or eigenvector explicitly to obtain a

rough estimate of the absorption spectrum.3

Iterative methods for solving (1) have been developed in the last few decades.4–8 Some
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of them have been implemented in modern quantum chemistry software packages.9 Many

of these algorithms make use of the observation that the eigenvalue problem (1) can be

transformed via a unitary similarity

J =
1√
2







In In
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, (4)

where K = A − B and M = A + B,10 respectively. The eigenvalues of (4) are exactly the

same as those of (1). The eigenvectors of these two problems are related by

u =
1√
2
(y + x), v =

1√
2
(y − x).

The paired eigenvalues ±λ of (4) have the corresponding eigenvectors [±yT , xT ]T .

It follows from (4) that solving (1) is equivalent to solving a product eigenvalue problem

of the form

MKx = λ2x, (5)

or

KMy = λ2y. (6)

Each eigenpair (λ2, x) of (5) yields two eigenvalues ±λ of (4), with the corresponding eigen-

vectors [±yT , xT ]T , where

y = λ−1Kx, (7)

for λ 6= 0. Similarly, the eigenpairs (λ2, y) of (6) define the eigenpairs of (4), with x = λ−1My.

In this paper, we focus on the product formulation of the eigenvalue problem (5). It is

important to recognize that the y component of the eigenvector of (4) can be easily recovered
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in a postprocessing procedure once the x component, which can be obtained by solving (5),

is available. That is, it is not necessary to try to approximate x and y simultaneously in

an iterative procedure for solving (4) or (1). By only focusing on the solution to (5) or

(6), we can achieve significant savings in both the number of operations and storage. To

solve (5) efficiently, we use the observation that MK is self-adjoint with respect to the

K-inner product and modify two widely used algorithms for solving standard symmetric

eigenvalue problems by simply replacing the standard Euclidean inner product with the

K-inner product. We discuss how to construct preconditioners for these algorithms that

use K-inner product to generate search subspaces and extract approximate eigenpairs from

these subspaces. We show that these algorithms use fewer matrix vector multiplications and

have a smaller storage requirement compared to existing algorithms. Our computational

experiments indicate that the algorithms we propose in this paper are more efficient than

existing approaches for a number of test problems.

The paper is organized as follows. In Section 2, we review two state-of-the-art techniques

for solving the LR eigenvalue problem (1). We present our K-inner product based algo-

rithms in Section 3. Issues regarding practical implementation are discussed in Section 4.

Computational results are reported in Section 5 to illustrate and compare the efficiency of

our proposed new algorithms with existing algorithms.

2 Existing algorithms

We start by discussing several existing approaches for solving the eigenvalue problem (1).

2.1 The Davidson algorithm

One of the widely used approaches is based on a modification of the Davidson’s algorithm11

for solving symmetric eigenvalue problems. It was presented in,8 and is currently imple-

mented and used in many quantum chemistry software packages.9,12–14

5



The basic idea behind the Davidson algorithm8 is to extract approximations to both the

x and y components of the k desired eigenvectors of (4) from a subspace spanned by columns

of a matrix S that is constructed iteratively. To be specific, the x and y components are

written as

X = SX̂ and Y = SŶ ,

respectively, where STS = I and the columns of
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form the approximations to the k desired eigenvectors of (4). It then follows from the

Galerkin condition
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that the unknowns X̂, Ŷ , and Θ can be obtained by solving the reduced eigenvalue problem
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Θ, (8)

where K̂ = STKS and M̂ = STMS. Note that (8) preserves the structure of (4). The

solution to (8) can be obtained by first transforming (8) into the product form

M̂K̂X̂ = X̂Θ2, (9)

and then symmetrizing the problem by multiplying (9) from the left by K̂1/2 to yield

K̂1/2M̂K̂1/2Q = QΘ2, (10)

where Q = K̂−1/2X̂. Once the k eigenvalues of (10), which appear on the diagonal of Θ2,
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and the corresponding eigenvectors Q have been computed, approximation to the desired

eigenvectors of (9) are obtained by X̂ = K̂1/2Q. It follows from (7) that Ŷ = K̂X̂Θ−1

satisfies K̂M̂Ŷ = ŶΘ2.

The residuals associated with the x and y components of the approximations to the

desired eigenvectors of (4) are

RK = KSX̂ − ŶΘ and RM = MSŶ − X̂Θ.

If neither RK nor RM is small in norm, then both of these two matrices are used to expand

S as

S ← orth
{

S, T−1
K RK , T−1

M RM

}

,

where TK and TM are appropriately chosen preconditioners, and orth{X} returns an or-

thonormal basis of X. Such an expansion allows constructing a search space that contains

approximations to both the left and right eigenvectors of MK. This process is repeated

either until the convergence is achieved or till the storage for S reaches its limit. In the

latter case, the Davidson iteration can be restarted by simply replacing S with the current

approximation to X̂ and Ŷ . The major steps of the simplest version of such a Davidson

algorithm are outlined in Algorithm 1.

We should emphasize that Algorithm 1 aims at solving the eigenvalue problem (4) in

which the x and y components of the eigenvector are coupled. As a result, approximations

to both x and y are generated, and two sets of residuals of the form Ky − θx and Mx− θy

are computed and used to enlarge the subspace spanned by the columns of S. Therefore,

the projection of K and M onto S in Step 3 of the algorithm requires multiplications of M

and K with both T−1
K RK and T−1

M RM .

As we shall see in the next section, it is not necessary to generate approximations to

both x and y simultaneously because y can be easily recovered once x is available. This

observation motivates the alternative algorithms to be presented in Section 3, which have a
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Algorithm 1: The Davidson algorithm8 for solving the linear response eigenvalue
problem (4).

Input: Positive definite matrices K and M , preconditioners TK and

TM , and a starting guess
[

Y (0)

X(0)

]

.

Output: A diagonal matrix of k smallest positive eigenvalues Λ of (4),

and the associated right eigenvectors
[

Y
X

]

.

1: X ← X(0); Y ← Y 0; S ← [X, Y ];
2: while convergence not reached do

3: S ← orth{S}a; compute K̂ ← STKS and M̂ ← STMS;
4: Compute k eigenpairs (Θ2, Q) of (9) associated with the smallest pos-

itive eigenvalues; Ŷ ← K̂1/2Q; X̂ ← K̂−1/2QΘ; Λ← Θ;
5: Y ← SŶ ; X ← SX̂;
6: RK ← KX − Y Λ; RM ←MY −XΛ;
7: for j = 1→ k do

8: λ← Λ(j, j); rK ← RK(:, j); rM ← RM (:, j);
9: rK ← T−1

K rK ; rM ← T−1
M rM ;

10: S ← [S, rK , rM ];
11: end for

12: end while

aorth{S} returns an orthonormal basis of the subspace spanned by the columns
of S.

lower memory requirement and perform fewer multiplications with K and M .

2.2 Locally optimal block preconditioned conjugate gradient al-

gorithms

It is well known that the k algebraically smallest eigenvalues of an n× n symmetric matrix

A can be obtained by solving the trace minimization problem

min
XTX=I

trace(XTAX), (11)

whereX is of size n×k; see, e.g.,.15 If a good preconditioner for A is at hand, then (11) can be

efficiently solved by the locally optimal block preconditioned conjugate gradient (LOBPCG)

algorithm.16
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Because the matrix in (1) is nonsymmetric and the desired eigenvalues are not the small-

est, we cannot apply the trace minimization principle directly. However, it has been noticed

in17 that (4) can be recast as a constrained minimization problem in which the objective

function is the Thouless functional

̺(x, y) =
xTKx+ yTMy

2|xTy| . (12)

The minimizer (x, y) of (12) yields the eigenvector associated with the smallest positive

eigenvalue of (4); see.17–19

The minimization principle based on (12) was recently extended to subspaces.10 It has

been shown that the eigenvectors associated with the k smallest positive eigenvalues of (4)

are determined by the two biorthogonal n × k matrices X and Y that minimize the trace

functional

1

2
trace(XTKX + Y TMY ), (s.t. XTY = I). (13)

The x and y components of each eigenvector in (4) are then given by the corresponding

columns of X and Y that minimize (13). In particular, this has allowed adapting the

LOBPCG algorithm16 to seek the minimizer of (13). One example of such a scheme is the

LOBP4DCG algorithm presented in.4 Another example is the recently developed indefinite

LOBPCG (ILOBPCG) algorithm,6 which is mathematically equivalent to LOBP4DCG when

solving (4).

In contrast to the Davidson algorithm, LOBP4DCG does not expand the search sub-

space at every step. Instead, in the ith iteration, the LOBP4DCG algorithm updates the

approximation to X and Y by minimizing (13) within a set of subspaces spanned by

{X(i), TKR
(i)
K , X(i−1)} and {Y (i), TMR

(i)
M , Y (i−1)}, (14)

where X(i), Y (i) are the parts of the approximate eigenvectors at iteration i, and R
(i)
K , R

(i)
M are
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Algorithm 2: The LOBP4DCG algorithm4 for solving the linear response eigenvalue
problem (4).

Input: Positive definite matrices K and M , preconditioners TK and

TM , a starting guess
[

Y (0)

X(0)

]

.

Output: A k×k diagonal matrix Λ that contains the k smallest positive

eigenvalues of (4), and the associated right eigenvectors
[

Y
X

]

.

1: X ← X(0); Y ← Y (0); PM ← [ ]; PK ← [ ];
2: Λ(j, j)← ̺(X(:, j), Y (:, j)), j = 1→ k;
3: while convergence not reached do

4: RK ← KX − Y Λ; RM ←MY −XΛ;
5: V ← orth{Y, T−1

M RM , PM}; U ← orth{X,T−1
K RK , PK};

6: Compute nonsingular W1 and W2, such that UTV = W T
1 W2;

7: Compute k eigenpairs (Θ, G) of

[

0 W−T
1 UTKUW−1

1

W−T
2 V TMVW−1

2 0

]

associated with the smallest positive eigenvalues, where the eigenvec-

tors G are of the form G =
[

Ŷ
X̂

]

;

8: Y ← VW−1
2 Ŷ ; X ← UW−1

1 X̂;
9: Λ(j, j)← ̺(X(:, j), Y (:, j)), j = 1→ k;
10: end while

components of the projected gradient of (13) along the tangent of the constraint XTY = I.

The operators TK and TM are appropriately chosen preconditioners. A basic version of the

LOBP4DCG algorithm is outlined in Algorithm 2.

Compared to the Davidson algorithm,8 described in the previous section, LOBP4DCG

performs only one multiplication of K with k vectors and one multiplication of M with k

vectors in each iteration. On the other hand, the limited size of the search subspaces spanned

by the columns of (14) may lead to a larger number of iterations to reach convergence. There

are also a few practical issues, such as potential numerical instability that may arise in the

biorthogonalization procedure (Steps 6 through 8 of Algorithm 2), one must address in order

to make the algorithm robust and efficient. Similar issues can also appear in the ILOBPCG

algorithm6 because it uses an indefinite inner product that can potentially be numerically

unstable.
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3 New algorithms

In this section, we present two new algorithms that are based on the product formulation (5)

of the LR eigenvalue problem. Our main observation is that, while nonsymmetric in the

standard Euclidean inner product, the matrix MK is self-adjoint (symmetric) with respect

to the K-inner product, that is,

〈v,MKv〉K = vTKMKv = (MKv)TKv = 〈MKv, v〉K ,

where 〈X, Y 〉K ≡ XTKY . Hence, we can solve the following constrained minimization

problem

min
〈X,X〉K=I

trace〈X,MKX〉K , (15)

which is a direct K-inner product based analogue of minimizing the trace functional (11) for

computing eigenpairs of symmetric matrices. Note that the optimization in (15) is performed

on the set of all n× k matrices whose columns are K-orthonormal.

The gradient of the Lagrangian L(X,Λ) associated with (15) with respect to X in the

K-inner product is

∇KL(X,Λ) = 2(MKX −XΛ2) ≡ 2R, (16)

where Λ2 is an k × k matrix of Lagrange multipliers. The first order optimality condition

associated with (15) yields the eigenvalue problem

MKX = XΛ2, and XTKX = I.

Therefore, indeed minimization of the trace functional in (15) solves the product eigenvalue

problem (5), and hence the problem (4). Note that Λ2 may not necessarily be a diagonal ma-

trix in (16). However, it can always be diagonalized through an orthogonal transformation.

When Λ2 is diagonal, columns of X contain the eigenvectors associated with the k smallest
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eigenvalues of MK.

We should note that (15) is clearly equivalent to

min
XTKX=I

trace(XTKMKX). (17)

The first order optimality condition associated with (17) in the standard Euclidean inner

product yields a generalized eigenvalue problem

KMKX = KXΛ2, XTKX = I. (18)

One can use existing algorithms such as the Davidson algorithm or the LOBPCG algorithm to

solve (17) or (18). However, these algorithms will in general perform one extra multiplication

of K with a block of vectors unless a special preconditioner is used.

We should also point out that, because (7) holds, it is reasonable to impose the additional

constraint Y = KXΘ for some Θ in the minimization of (13). It is not difficult to show that

solving the constrained minimization problem

min
Y=KXΘ,Y TX=I

trace(XTKX + Y TMY ) (19)

is equivalent to solving (17).

3.1 The K-inner product Davidson algorithm

The use of the K-inner product in the objective function (15) does not change the way a

subspace is constructed in a standard Davidson algorithm,11,20 although, as we shall see, it

will affect the eigenvector extraction phase of the algorithm. Starting from an initial guess

of the desired eigenvectors X(0), we define a sequence of search spaces S(i) successively by

S(i) ← span{S(i−1), T−1R(i)},
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where S(0) = span{X(0)}, R(i) is the projected gradient associated with X(i) defined in (16),

that is,

R(i) = MKX(i) −X(i)Λ(i)2, (20)

where Λ(i)2 = 〈X(i),MKX(i)〉K , and T is a properly chosen preconditioner.

Since the geometry of problem (15) is based on the K-inner product, it is natural to

use it for orthonormalizing the basis of the search subspace, i.e., at each step ensure that

〈S(i), S(i)〉K = I. Then projectingMK with respect to the K-inner product onto the subspace

spanned by S(i) yields the reduced eigenvalue problem

〈S(i),MKS(i)〉KC = CΘ2, CTC = I, (21)

where Θ2 is a k × k diagonal matrix containing k smallest eigenvalues of 〈S(i),MKS(i)〉K ,

whose associated eigenvectors are given by the orthonormal columns of the matrix C. As a

result, the approximations to the targeted eigenvectors of MK are given by S(i)C, whereas

the approximate eigenvalues are determined directly by Θ2. We summarize the basic steps

of the algorithm, which we call K-Davidson, in Algorithm 3.

The choice of the preconditioner T plays a crucial role in achieving fast convergence for

the K-Davidson algorithm. Because K and M are typically diagonally dominant for linear

response TDDFT calculations, it is natural to choose T to be a diagonal matrix of the form

DKDM , where DK and DM are diagonal matrices that are close to K and M , respectively.

It is also possible to choose DK and DM to be the same, so that both are equal to some D.

For example, we can set the diagonal entries of D to εa− εj, where εa and εj are unoccupied

and occupied single-particle energies, respectively, at the ground state.

It is also possible to construct different preconditioners for different columns of R(i).

In particular, we can apply a shifted preconditioner of the form DKDM − θ
(i)2
j I to the

jth column of R(i), where θ
(i)2
j is the jth eigenvalue of the projected problem (21). This

type of construction makes the Davidson algorithm behave more like the Jacobi–Davidson

13



Algorithm 3: The K-inner product Davidson (K-Davidson) algorithm

Input: Positive definite matrices K and M , a preconditioner T , a
starting guess X(0).

Output: Approximate eigenvalues of (4) contained in a diagonal
matrix Λ and the corresponding right eigenvector approxi-

mation
[

Y
X

]

.

1: X ← X(0); S ← [X];
2: while convergence not reached do

3: S ← K-orth{S};a
4: Solve the projected eigenvalue problem (21) to obtain eigenvalue and

eigenvector approximations (Θ2, X)
5: R←MKX −XΘ2;
6: S ← span{S, T−1R};
7: end while;
8: Λ← Θ;
9: Y ← KXΘ−1;

aK-orth{S} returns an K-orthonormal basis of the subspace spanned by the
columns of S.

algorithm21 in which the approximation to each desired eigenvector is corrected by an inexact

Newton iteration.

In contrast to Algorithm 1, the K-Davidson algorithm requires only k multiplications of

K and M with vectors (that is, a total of 2k matrix–vector multiplications) per iteration.

Because the cost of these multiplications dominates the overall computational cost, each

step of the K-Davidson algorithm is two times faster than each step of Algorithm 1. Fur-

thermore, the subspace S constructed in Algorithm 3 is expanded with only one set of the

preconditioned residual vectors instead of two sets of vectors. Its memory cost is half of that

of Algorithm 1 also. Note that the K-Davidson algorithm does not try to approximate the Y

component of the eigenvectors in (4) directly in the iterative process. Approximation to this

component can be obtained in a postprocessing step by using the relationship Y = KXΛ−1

once approximation to the X component of the eigenvector is obtained. In fact, as we will

discuss in Section 4, the vectors KX(i) are computed and stored as a by-product of the

computation, and hence approximations Y (i) (up to a diagonal scaling) are readily available
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at each iteration.

When the amount of available memory is limited, we may restrict the size of S(i) and

restart theK-Davidson algorithm with the current approximationX(i), exactly the same way

it is done for the standard Davidson algorithm. If some of the eigenvectors have converged,

it is necessary to deflate them and remove the corresponding residual columns from R(i). We

will further discuss these implementation details, also in Section 4.

We note that it is also possible to derive Algorithm 3 by formally applying the stan-

dard Davidson algorithm to the equivalent trace minimization problem (17). Although a

straightforward implementation of such a scheme would require performing matrix–vector

multiplications of the form KMKX in each iteration, the second multiplication with K can

be avoided by choosing the preconditioner T to be of the form KDKDM .

Finally, let us remark that Algorithm 3 can be viewed as a modification of the old ver-

sion of the Davidson algorithm in.22 The latter fully discards the underlying K-symmetry

of the matrix MK and handles (5) as a general nonsymmetric eigenvalue problem, which in

practice results in the occurrence of complex eigenvalue approximations that hinder conver-

gence.7 In contrast, the use of the K-inner product in Algorithm 3 redefines the eigenvector

extraction procedure, resulting in a symmetric reduced eigenvalue problem (21) that yields

only real approximations. The efficiency of the K-Davidson algorithm will be demonstrated

in Section 5.

3.2 The K-inner product LOBPCG algorithm

TheK-inner product can also be easily incorporated into the LOBPCG algorithm16 to obtain

its variant that solves the trace minimization problem (15). In this case, the search subspace

S(i) constructed by LOBPCG will be spanned by

{X(i), T−1R(i), X(i−1)}, (22)
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Algorithm 4: The K-inner product LOBPCG (K-LOBPCG) algorithm

Input: Positive definite matrices K and M , a preconditioner T , a
starting guess X(0).

Output: A diagonal matrix of k smallest positive eigenvalues Λ of (4),

and the associated right eigenvectors
[

Y
X

]

.

1: X ← X(0); P ← [ ];
2: while convergence not reached do

3: R←MKX −X(XTKMKX);
4: S ← [X, T−1R, P ]; S ← K-orth{S};
5: Compute k smallest eigenpairs of of (21) to obtain (Θ2, C);
6: X ← SC; P ← X;
7: end while

8: Λ← Θ;
9: Y ← KXΘ−1;

where X(i) is an approximate solution at the ith iteration, T−1R(i) is the matrix of precon-

ditioned residual vectors with the projected gradient R(i) defined in (20), and X(i−1) is the

approximation from the previous step. We then use the K-inner product to project MK

onto S(i), defined by (22), and obtain approximations to the desired eigenpairs by solving

the generalized eigenvalue problem

〈S(i),MKS(i)〉KC = 〈S(i), S(i)〉KCΘ2, CT 〈S(i), S(i)〉KC = I. (23)

If the columns of S(i) are K-orthonormalized first, then (23) reduces to a standard eigenvalue

problem (21). We outline the major steps of the K-inner product LOBPCG algorithm,

further referred to as K-LOBPCG, in Algorithm 4.

Compared to the K-Davidson algorithm, the K-LOBPCG algorithm has smaller mem-

ory requirement unless the K-Davidson algorithm is restarted when the dimension of the

subspace S(i) reaches 3k, where k is the number of eigenpairs to be computed. We will show

in the next section that K-LOBPCG typically outperforms K-Davidson when the dimension

of S(i) is fixed at 3k for both methods.

Similar to the K-Davidson algorithm, Algorithm 4 can also be implemented with only
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one multiplication of a block of k vectors by K and M , i.e., at most of 2k matrix–vector

products per iteration are needed. A natural choice of the preconditioner T for K-LOBPCG

is given by the matrix of the form DKDM , where DK and DM are approximations of K and

M . Since K and M are diagonally dominant in the linear response TDDFT computations,

both DK are DM are often chosen be the same diagonal matrix D, and diagonal entries of

D are chosen to be the differences between the virtual and occupied energies obtained in a

ground state calculation. It is possible to choose shifted D’s as a preconditioners. However,

our numerical experiments indicate that shiftingD does not seem to improve the convergence

of the K-LOBPCG algorithm.

4 Practical issues

We now discuss a number of algorithmic details that are essential for a proper implementation

of the K-Davidson and K-LOBPCG algorithms. We also provide a detailed description of

both methods that can be readily used as a guideline for their efficient implementation.

4.1 The conjugate direction in K-LOBPCG

Similar to the original LOBPCG algorithm, in practice, the proposed K-LOBPCG algorithm

should not explicitly place the approximations X(i−1) from the previous iteration into the

search subspace defined by (22). Instead, a block P (i) of the so-called conjugate directions

is defined, such that

P (i) = X(i) −X(i−1)C
(i−1)
X ,

where C
(i−1)
X is a k × k matrix of coefficients defined from the previous iteration. It can

then be observed that the span of the columns of {X(i), W (i), P (i)} is the same, in exact

arithmetic, as that of {X(i), W (i), X(i−1)}. Therefore, it is possible to replace X(i−1) in

the definition (22) of the LOBPCG search subspace by the above defined block P (i). While,

mathematically, this does not change the search subspace, the use of the conjugate directions
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is preferred in practice, as it leads to a more stable numerical behavior in the presence of

roundoff errors.16

4.2 K-orthonormality

To obtain an orthonormal basis of S(i) in each K-Davidson iteration, we need to first K-

orthogonalize the preconditioned residual block T−1R(i) against S(i−1). This can be achieved

by performing

W = T−1R(i) − Z〈Z, T−1R(i)〉K , (24)

where Z = S(i−1). The columns of W can be subsequently K-orthonormalized by first

performing a Cholesky factorization of 〈W,W 〉K , that is, computing a lower triangular matrix

L such that 〈W,W 〉K = LLT , and then solving a number of triangular systems W+ ←

WL−1. When columns of W are close to be linearly dependent, the Cholesky factorization

of 〈W,W 〉K may break down numerically. In this case, a more stable algorithm based on a

truncated SVD of 〈W,W 〉K may be used. We refer readers to23–25 for more details.

Similarly, the K-LOBPCG search subspace is K-orthonormalized by first applying (24)

with Z = X(i) to obtain a block of preconditioned residuals W that are K-orthogonal to

the current eigenvector approximations X(i). This block is then K-orthonormalized, e.g.,

using the Cholesky factorization based scheme described above, so that the columns of

Z = [X(i), W+] are K-orthonormal. Finally, the conjugate directions P (i) are made K-

othogonal to this Z by P = P (i)−Z〈Z, P (i)〉K , and are then themselves K-orthonormalized,

which completes the construction of an K-orthonormal basis of the search subspace in the

K-LOBPCG algorithm.

4.3 Convergence criterion and deflation

The linear dependence among columns of W is partially caused by a relatively small mag-

nitude of some of its columns. The presence of such columns indicates that approximations
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to certain eigenpairs have converged. Unlike some of the existing implementations in which

the differences between approximate eigenvalues obtained in two consecutive iterations are

used to check the convergence, we use the following convergence criterion: an approximate

eigenpair (θ2j , xj), with xj properly normalized, is considered converged if

‖MKxj − θ2jxj‖ ≤ τ(‖MK‖+ θ2j ), (25)

where τ is a predefined convergence tolerance. The 2-norm of MK can be estimated by

a few steps of a power method. When a converged eigenpair is identified, we remove the

corresponding column from the matrix of preconditioned residuals. In the K-LOBPCG

algorithm, we also exclude the corresponding column from P (i). At the same time, the

converged eigenvector is retained in the matrix X(i) and is used in the subsequent iterations.

This type of technique for deflating converged eigenvectors is often called soft locking.

4.4 The detailed description

Algorithm 5 gives a detailed description of the K-Davidson algorithm.

As has been already mentioned, one of the key differences between the K-Davidson and

K-LOBPCG algorithms is that the storage requirement for K-LOBPCG is fixed whereas

K-Davidson can use an increasing amount of memory to store S(i). In practice, however,

the memory resources are limited. Therefore a user should specify a parameter, smax, that

determines the maximum dimension of the search subspace. Then if a search subspace

reaches the dimension of smax, the K-Davidson algorithm should be restarted. This simply

requires collapsing S(i) by initializing it with the current eigenvector approximations; see

Steps 14–16 of Algorithm 5.

In order to obtain an efficient implementation of the K-Davidson algorithm, it is crucial

to ensure that, at every iteration, it performs only one multiplication of a set of vectors with

K and one multiplication with M . This can be achieved by allocating additional memory
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Algorithm 5: A detailed description of the K-Davidson algorithm

Input: Positive definite matrices K and M , the preconditioner D, a
starting guess X(0), and the maximum subspace size param-
eter smax.

Output: The diagonal matrix of k smallest positive eigenvalues Λ

of (4) and the associated eigenvectors
[

Y
X

]

.

1: X ← K-orth
{

X(0)
}

; Y ← KX; Y (M) ←MY ;

2: Initialize S ← X; KS ← Y ; MKS ← Y (M); sdim← k; nact← k;
3: while convergence not reached (that is, nact > 0) do
4: Use S, KS, and MKS to form problem (21) and solve it for k lowest

eigenpairs;
5: Set Λ← Θ; X ← SC; Y ← (KS)C; Y (M) ← (MKS)C;
6: nact← 0; W ← [ ];
7: for j = 1→ k do

8: r ← Y (M)(:, j)−X(:, j)Λ2(j, j);
9: if ‖r‖ > τ then

10: r ← (D2 − Λ2(j, j)I)−1r;
11: W ← [W, r]; nact← nact+ 1;
12: end if

13: end for

14: if sdim+ nact > smax then

15: Collapse the subspace S ← X; KS ← Y ; MKS ← Y (M); sdim ←
k;

16: end if

17: W ←W − S((KS)TW ); W (K) ← KW ; W (MK) ←MW (K);
18: R ← chol(W TW (K)); W ← WR−1; W (K) ← W (K)R−1; W (MK) ←

W (MK)R−1;
19: S ← [S,W ]; KS ← [KS,W (K)]; MKS ← [MKS,W (MK)]; sdim ←

sdim+ nact;
20: end while

21: Y ← Y Λ−1.

to store the matrices KS(i) and MKS(i) along with the search subspace S(i). In this case,

the matrix–vector multiplications with K and M are performed only once per iteration to

compute W (K) ≡ KW and W (MK) ≡MKW at Step 17 of Algorithm 5.

The same trade-off between memory requirement and the cost of matrix–vector multipli-

cation exists in the K-LOBPCG algorithm, whose efficient implementation is described in

Algorithm 6.

To save extra multiplications with K and M , in addition to the blocks X, W , and P that
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Algorithm 6: A detailed description of the K-LOBPCG algorithm

Input: Positive definite matrices K and M , the preconditioner D,
and a starting guess X(0).

Output: The diagonal matrix of k smallest positive eigenvalues Λ

of (4) and the associated eigenvectors
[

Y
X

]

.

1: X ← K-orth
{

X(0)
}

; P ← [ ]; P (K) ← [ ]; P (MK) ← [ ];

2: Y ← KX; Y (M) ←MY ;
3: Solve the k-by-k eigenvalue problem (Y TY (M))C = (Y TX)CΘ2,

C(Y TX)C = I;
4: X ← XC; Y ← Y C; Y (M) ← Y (M)C; Λ← Θ;
5: while convergence not reached do

6: W ← D−2(Y (M) −XΛ2);
7: W ←W −X(Y TW ); W (K) ← KW ; W (MK) ←MW (K);
8: R ← chol(W TW (K)), W ← WR−1; W (K) ← W (K)R−1; W (MK) ←

W (MK)R−1;
9: G ← Y TP ; P ← P −XG; P (K) ← P (K) − Y G; P (MK) ← P (MK) −

Y (M)G;
10: R ← chol(P TP (K)), P ← PR−1; P (K) ← P (K)R−1; P (MK) ←

P (MK)R−1;
11: Set S ← [X, W, P ]; KS ← [Y, W (K), P (K)]; MKS ←

[Y (M), W (MK), P (MK)];
12: Use S, KS, and MKS to form problem (21) and solve it for k lowest

eigenpairs;
13: Set Λ ← Θ; CX ← C(1 : k, :); CW ← C(k + 1 : 2k, :); CP ←

C(2k + 1 : 3k, :);
14: P ←WCW + PCP ;
15: P (K) ←W (K)CW + P (K)CP ; P

(MK) ←W (MK)CW + P (MK)CP ;
16: X ← XCX + P ;
17: Y ← Y CX + P (K); Y (M) ← Y (M)CX + P (MK);
18: end while

19: Y ← Y Λ−1.

define the search subspace, the K-LOBPCG algorithm should keep in memory and update

the matrices KX, MKX, KW , MKW , KP , and MKP . Then, similar to K-Davidson, the

matrix–vector multiplications with K and M can be performed only once per iteration, at

Step 7 of Algorithm 5.
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Figure 1: The molecules HBDMI and Indigo.

5 Computational Results

In this section, we compare the performance of the new algorithms presented in this paper

with existing ones that have been implemented in widely used computational chemistry soft-

ware packages and other algorithms recently proposed4 to solve the linear response TDDFT

eigenvalue problem.

The test problems we use in this section include the Indigo and 4’-hydroxybenzylidene-

2,3-dimethylimidazoline (HBDMI)(Figure 1). All geometries were optimized in the ground

state DFT calculation using the B3LYP26 functional and 6-31G(d)27,28 basis set. HBDMI

system involves 57 occupied and 207 virtual orbitals, while Indigo has 68 occupied and 252

virtual orbitals, respectively. The dimension of K and M is thus 11799 for HBDMI and

12096 for Indigo (20 core orbitals were frozen in calculations).

The first set of tests were performed in MATLAB using the matrices K, M produced

by the TDDFT module of the NWChem program.9 We also use the ground state orbital

energies εj, where j is an occupied orbital, and εa, where a is a virtual orbital, to construct

a diagonal preconditioner T = D2, where the diagonal elements of D are εa − εj for all a

and j.
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In these tests, we compute only the five lowest eigenpairs of MK. Because the dominant

cost in all algorithms is in the multiplication of K and M with vectors, we measure the

performance of each algorithm by the number of matrix–vector multiplications it performs.

The cost of all other linear algebra operations is negligible.

We set the convergence tolerance τ in (25) to τ = 10−5 and require xj to have unit norm

in K-inner product for all algorithms. In all runs, the starting guess X(0) is chosen to be k

columns from D that contain the k smallest diagonal entries of D. We should note that this

initial guess is much better than a set of randomly generated vectors.

Two different settings of the Davidson and the K-Davidson algorithms are used in our

tests. In the first setting, we limit the dimension of S(i) in the K-Davidson algorithm to be

3k, where k = 5 is the number of eigenpairs to be computed. The dimension of the subspace

generated in the existing Davidson algorithm (as implemented in NWChem) is set to 4k.

Both versions of Davidson algorithms are restarted when convergence is not reached before

the limit on the subspace dimension is hit.

Figure 2 shows that both the K-Davidson and K-LOBPCG algorithms are much faster

than the existing Davidson algorithm implemented in NWChem. For the HBDMI test prob-

lem, the LOBP4DCG algorithm is slightly slower than the K-LOBPCG algorithm, but is

slightly faster than the K-Davidson algorithm. For the Indigo test problem, the performance

of K-Davidson, K-LOBPCG and LOBP4DCG are comparable. The K-LOBPCG algorithm

is slightly faster than the other two. Note that in all of our figures the plotted residual norm

is the norm of the maximum residual of the actual linear response eigenvalue problem (4)

evaluated at the approximations to the eigenvector components xj and yj available at the

current iteration.

In the second setting, we lift the restriction on the dimension of S(i) in the K-Davidson

algorithm and the dimension of S in the existing Davidson algorithm. Because the K-

LOBPCG algorithm does not take advantage of extra available memory, its convergence

behavior does not change. Both the K-Davidson algorithm and the existing Davidson algo-
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Figure 2: The number of multiplications as a measure of the performance of algorithms in
the low-memory scenario for (a) HBDMI (b) Indigo.

rithm exhibit faster convergence when more memory is available, as we can see from Figure 3.

However, it is clear from Figure 3 that the K-Davidson algorithm is still much faster than

the existing Davidson algorithm. The K-LOBPCG algorithm is unstandably slower than the

K-Davidson algorithm since the subspace from which approximate eigenpairs are extracted

is much smaller. However, we can see from Figure 3 that it appears to be faster than the

existing Davidson algorithm for both test problems.

To demonstrate the performance the K-Davidson algorithm for larger problems and

for problems in which a wider energy range needs to be examined, we implemented the

K-Davidson algorithm in the NWChem program, and tested the algorithm on the Indigo

molecule using the cc-pVTZ basis set. For this test, the dimension of K and M is no×nv =

53176. We compute the lowest 100 excitation energies and the corresponding eigenvectors.

We performed the computation on on the Cascade system, which is equipped with 1440

Xeon E5-2670 8C 2.6GHz 16-core CPUs, 128 GB memory per compute node and a Infiniband

FDR network, and maintained at the EMSL user facility located at the Pacific Northwest

National Laboratory. Both calculations utilized 128 CPU cores across 8 nodes.

In Figure 4, we plot the residual norm associated with the approximate eigenpairs ob-

tained at each K-Davidson and existing Davidson iteration against the wall clock time.
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Figure 3: The number of multiplications as a measure of the performance of algorithms in
the unlimited-memory scenario for (a) HBDMI (b) Indigo.

We used the same initial vectors for both algorithms. As we can see from this figure, the

K-Davidson algorithm converges much more rapidly. Even though the same number of it-

erations is used in both algorithms before reaching convergence, the cost per K-Davidson

iteration is roughly two times cheaper in the first few iterations. Furthermore, after the

fourth iteration, a significantly number of approximate eigenpairs have converged in the

K-Davidson algorithm. As a result, subsequent K-Davidson iterations are much cheaper

because fewer matrix–vector multiplications are used in these iterations. Overall, the K-

Davidson algorithm performed only 436 matrix–vector multiplications, which is much less

than 1162 multiplications performed by Davidson. The total wall clock time consumed by

K-Davidson is 3042 seconds, which is 2.8× less than the 8522 seconds used by the existing

Davidson algorithm.

6 Conclusions

Although the observation that the linear response eigenvalue problem (1) is equivalent to the

product eigenvalue problem (5) or (6) is well known, it appears that the existing algorithms

for solving this type of eigenvalue problem try to approximate both the x and y components of
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Figure 4: The residual norm as a function of execution time for the Davidson andK-Davidson
implementations. The Indigo system in cc-pVTZ basis set.

the eigenvector simultaneously. The algorithms we present in this paper have two features:

1) we compute the x component of the eigenvector in an iterative procedure designed to

solve the product eigenvalue problem. The y component of the eigenvector is recovered in

a postprocessing procedure. 2) we use the observation that the product eigenvalue problem

MKx = λ2x is self-adjoint with respect to the K-inner product and simply modify standard

Davidson and LOBPCG algorithms to make use of K-inner product to compute the desired

eigenvalues and eigenvectors of this problem. A similar set of algorithms can be developed by

noticing that KM is self-adjoint with respect to the M -inner product. We implemented our

algorithms in the NWChem software package and demonstrated that they are more efficient

than existing algorithms by numerical examples.
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