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ABSTRACT OF THE DISSERTATION 

 

Nanostructured Materials for Energy Storage Devices 

by 

 

Xiujun Yue 

Doctor of Philosophy in Nanoengineering 

University of California San Diego, 2019 

Professor Ping Liu, Chair 

 

Driven by the flourishing of renewable energy sources and increasing demands of 

portable electronics and electric vehicles, high-performance energy storage devices are 

required for applications at different scales. Benefiting from the small size, high surface 

area and hierarchical structures, nanostructured materials have been playing critical roles 

in the development of advanced energy storage devices. 



 xvii 

 This dissertation will discuss the applications of nanostructured materials to 

address performance challenges for different types of energy storage devices. Chapter 2 

provides a new strategy to fabricate a cation exchange membrane that features a dense, 

crack-free tungsten oxide coating layer on Nafion that also penetrates into the Nafion’s 

hydrophilic, ionic cluster regions. The hierarchical structural designs overcome the 

inherent tradeoff between conductivity and permeability of ion exchange membranes for 

redox flow batteries. In Chapter 3, a facile and scalable method is demonstrated to 

fabricate a 3D lithium metal anode with lithium nitrate, polyvinylidene difluoride, and 

nano-sized carbon black. The multi-functional 3D electrodes enable dendrite-free lithium 

metal cycling with high coulombic efficiency. In Chapter 4, a non-toxic, free-standing 

and flexible cathode is developed by grafting polydopamine on carbon nanotubes for 

aqueous zinc-ion battery. Cross-linked highly uniform active materials and the efficient 

conducting network overcome the long term cycling stability issue of aqueous zinc-ion 

batteries. 
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Chapter 1:  Introduction 
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1.1 The need for energy storage devices 

Since the invention of Voltaic Pile, the first battery invented in 1800, energy 

storage devices have been intensively studied, especially during the past decades driven 

by the explosive demanding from different fields.
1-4

 From biomedical and personal 

electronic devices to electric vehicles (EVs) and even the grids, energy storage devices 

play critical roles.
5-6

 

Due to the air pollution and many other issues of internal combustion engine 

vehicles (ICEVs), the market of EVs is developing rapidly.
7
 Plans to promote EVs or 

even ban the sale of ICEVs have been announced by several countries.
8-9

 However, even 

with much improved EV performances and encouraging policies by governments, many 

consumers still cannot fully accept EVs due to the worries on driving range and charging 

time.
9-11

 Correspondingly, high energy density and rate capability are required for the 

energy storage devices for EVs. In addition, the public’s awareness on the safety issue 

also has been aroused by reports about EVs’ accidents.
12

 

The electric grid has an intrinsic unbalancing issue as a result of varying demands 

over different periods of time in a day.
1
 The intermittent nature of renewable resources, 

including wind, solar, tides etc., aggravates such problems even more.
13-15

 Energy storage 

devices can serve as power banks to store extra energy during off-peak hours and make 

up the demand during peak hours. Energy storage will be a must for the grid when the 
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portions form renewable resources are larger than about 10%.
1
 Energy storage devices for 

grids are expected to be large-scale low-cost systems with high capacity. 

To meet the different requirements of various application scenarios, different 

types of energy storage devices have been developed: rechargeable batteries, redox flow 

batteries, fuel cells, supercapacitors etc.. All these energy storage devices have their own 

unique advantages and challenges. Our research is mainly focusing on redox flow 

batteries, lithium-ion batteries and zinc-ion batteries. 

 

1.2 Redox flow batteries and nanostructured materials 

Redox flow battery (RFB) is an electrochemical device which stores energy by 

two pairs of redox couples in two electrolytes. Catholyte and anolyte stored in two 

external tanks are pumped through porous electrodes. Two electrolytes are separated by a 

separator, which typically is a selective ion exchange membrane (IEM). With such a 

unique set up, the capacity of a RFB is decided by the size of external tanks rather than 

the battery itself.
16

 With low cost, long life, rapid response, high mobility and flexibility, 

RFBs can serve as suitable large-scale energy storage devices for the grids.
17-19

 

IEM is one of the key components of the RFB, which allows the diffusion of 

charge-carrying ions while preventing the mixing of catholyte and anolyte. An ideal IEM 

is supposed to have high conductivity to decrease the Ohmic loss and low crossover rate 

to prevent the self-discharging. Nafion, a tetrafluoroethylene based copolymer with 
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sulfuric acid functional groups, is one of the most widely used IEMs for RFB for its 

outstanding conductivity and stability.
20-21

 The conductivity of Nafion membranes is 

relied on nano-sized hydrophilic ionic clusters formed by phase segregation. But such 

structure also causes the crossover of active species which lead to self-discharging or 

irreversible contamination. Some other non-fluorinated polymers such as sulfonated 

poly(tetramethydiphenyl ether ether ketone) (SPEEK) also have been utilized as IEMs for 

redox flow batteries for lower cost.
22

 However, most of the polymeric IEMs suffer from 

serious crossover problem.
13, 23

 

Various nanostructured materials have been developed to overcome the trade-off 

relationship between conductivity and selectivity of polymeric IEMs. Teng et al 

fabricated a Nafion/SiO2 hybrid membrane with silicate nanoparticles in the ionic clusters 

of Nafion via in situ sol-gel reactions of tetraethoxysilane (TEOS) and 

diethoxydimethylsilane (DEDMS).
24

 The vanadium RFB with such composite membrane 

achieved an energy efficiency of 87.4% at 20 mA cm
-2

, while the one for Nafion is only 

73.8%. A series of low-cost SPEEK/nano oxides composite membranes with Al2O3, SiO2, 

and TiO2 were demonstrated to have improved flow battery performances than Nafion 

117 as a result of lower crossover rate.
22

 Beside nano fillers, Qiao et al developed a 

poly(ether sulfone) (PES)/SPEEK porous membrane with a slit-like layer which is consist 

of nano-sized channels.
25

 Compared with Nafion, the RFB performances were much 

enhanced by the highly selective skin layer. In another work by Yan et al, four orders of 
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magnitude lower VO
2+

 ion permeability than that of Nafion was achieved by a supported 

silica thin film with highly ordered, vertically aligned, and subnanosized channels.
26

 

 

1.3 Lithium-ion batteries and nanostructured materials 

Lithium-ion battery is regarded as the foundation of the mobile world.
27

 From the 

first commercial versions by Sony in 1991, modern lithium-ion batteries bring powerful 

devices to everyone’s life.
1, 28

 Closing to the theoretical limit, researchers are pursuing 

next-generation high-energy batteries in many approaches.
4, 28-30

 Nanostructured 

materials have had and will continue to have a profound impact on the development of 

lithium-ion batteries which play versatile roles according to different demands. Small 

sizes of nanostructured materials contribute to short diffusion distances. Large surface 

area enables more effective contact with electrolyte. Hierarchical structures of 

nanomaterials may provide electronic conduction network, encapsulate active materials, 

and mitigate volume change or mechanical stress. 

 For most cases, intercalation type cathode materials for lithium-ion battery take 

the advantages of high surface area and short transport length of the nanostructure. 

Longoni et al obtained a capacity retention of 77.7% at 20 C by in situ LiFePO4 

nano-particles grown on few-layer graphene flakes.
31

 Zhang et al developed a V2O5 

nanosheet/SWCNT hybrid electrodes with high capacities (370 mA h g
-1

 at 0.05 C), 
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excellent energy (555 W h kg
-1

), and power densities (2175 W kg
-1

) due to the synergistic 

effects from the high surface area nanosheets and the SWCNT conductive matrix.
32

 

 Silicon has a high capacity of 4200 mAh g
-1

 as an anode material for lithium-ion 

battery, but suffers from rapid capacity decay as a result of huge volume change 

(~320%).
33

 Nanostructured materials can effectively buffer the volume change.
34

 Tian et 

al developed a composite anode of nano-porous silicon with carbon coating which 

maintains 86.8% of initial capacity after 300 cycles at 500 mA g
-1

.
35

 Chen et al achieved a 

high capacity retention of 2925 mAh g
-1

 after 100 cycles at 0.5 A g
-1

 with silver treated 

hollow silicon nanospheres.
36

 

 Lithium-sulfur battery is attracting more and more interest for its high theoretical 

energy density and low cost.
37

 The commercialization of lithium-sulfur battery is 

hindered by the insulating nature, large volume variation, and dissolution problem.
38

 

Utilizing conductive and porous nano structure serving as volume mediator and sulfur 

trap is one of the most popular solutions.
39-40

 Chen et al developed a sulfur cathodes 

enabled by 3D hierarchically porous TiO2/graphene composite which delivered a high 

rate performance of 832 mAh g
-1

 at 2 C and excellent cycling stability for 300 cycles at 

0.2 C.
41

 Combining both physical confinement and chemical interaction, Liang et al 

realized an ultra-low fading rate of 0.039% per cycle over 1700 cycles by the nano-sized 

sulfur/MnO2 coreshell structure in Li-S cells.
42
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 Lithium metal anode has been considered as a key component to achieving 

next-generation high-energy batteries for the high theoretical capacity and low 

electrochemical potential.
29

 To realize the successful commercialization of lithium metal 

battery, safety and cyclability are two major challenges which mainly origin from the 

dendrite growth, solid electrolyte interphase (SEI) formation, and volume change.
28

 

Tremendous efforts have been made to solve those problems with nanostructured 

materials from different aspects. Kozen et al demonstrated a 14 nm thick ALD Al2O3 

layer can serve as a stable artificial SEI for lithium metal anode to deliver much 

improved capacity retention for 100 cycles.
43

 Yan et al designed a carbon nanocapsule, 

with gold nanoparticles decorated on the inner shell surface, which can guide lithium 

deposition solely inside the nanocapsules with well-defined morphology.
44

 Combining 

with stabilization effect of the nanocapsules, a high coulombic efficiency (98%) was 

achieved even in alkyl carbonate electrolyte. Shen et al developed a CNT sponge based 

3D host for lithium metal which manipulated the volume expansion and suppressed the 

dendrite growth as a result of confined lithium deposition.
45

 

 

1.4 Zinc-ion batteries and nanostructured materials 

Lithium-ion battery has been dominating the market, however, alternative 

batteries are also in demand due to concerns on the cost, safety, environmental 

friendliness, and long-term risk of shortage.
46

 Among monovalent (K
+
, Na

+
) or 
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multi-valent (Mg
2+

, Ca
2+

, Zn
2+

, Al
3+

) metal ions, Zn
2+

 is an attractive candidate since 

zinc-ion battery has unique advantages in all the mentioned aspects.
47

 A zinc-ion battery 

basically consists of a cathode as the host for zinc ions, zinc metal foil as anode, filter 

paper or glass fiber as separator and aqueous electrolyte in majority.
48

 Unlike lithium-ion 

battery, studies on zinc-ion battery are immature and mainly focusing the cathode. It is 

still challenging to develop advanced cathode materials for zinc-ion battery with high 

capacity, cyclability, and rate capability. 

Nano-scale structures are widely adopted by cathode active materials for zinc-ion 

batteries due to the high surface area which can enhance the electrode performance from 

several aspects: (1) Increase the electrode/electrolyte contacting area. (2) Decrease the 

particle size to reduce the diffusion distance. (3) Reduce electrical transportation distance 

to compromise the inherent low conductivity of many cathode materials. Li et al 

developed a flexible zinc-ion battery with MoS2 nanosheets which delivers a specific 

capacity of 202.6 mA h g
-1

 at 0.1 A g
-1

, as well as good cycle stability (98.6% capacity 

retention over 600 cycles).
49

 Sambandam et al demotrated Zn2V2O7 nanowire cathode has 

stable cyclability over 200 cycles at 300 mA g
-1

 while the cathode fabricated with the 

bulk material exhibited large capacity decay after only 35 cycles.
50

 

Nanostructured supporting matrix also has been combined with cathode materials 

to construct superior conductive network which is usually beneficial to the performances 

of batteries at high rate. H2V3O8 nanowire/graphene composite exhibited an excellent 
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high-rate capability of 270 mA h g
-1

 at 20 C as well as stable cycling for more than 2000 

cycles.
51

 Dai et al demonstrated VO2/rGO (reduced graphene oxide) composite structure 

can effectively enhance the high-rate capability: the capacity retention of the composite at 

16 A g
-1

 was increased by more than five times compared with pure VO2 powder.
52
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Chapter 2:  Hierarchical structural designs of ion exchange membranes for flow 

batteries 
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2.1 Introduction 

The utilization of renewable resources, such as wind, solar, and tides, has been 

growing rapidly. This growth is driven by the increasing energy demand and concerns 

regarding carbon emissions;
1-4

 however, large-scale energy storage solutions are required 

due to the intermittent nature of renewable resources.
5-6

 Redox flow batteries (RFBs) are 

one of the promising candidates due to their low cost, long life, rapid response, high 

mobility and flexibility.
5-13

 RFBs store energy in two solutions with different redox 

couples. The positive and negative electrodes are separated by a selective ion exchange 

membrane (IEM), which prevents the mixing of active species. Most of the leading flow 

batteries with chemistries such as all-vanadium, all-iron, and iron–chromium utilize 

cation exchange membranes (CEMs).
2, 5, 9-15

 Anion exchange membranes (AEMs) have 

also been used, especially for lowering crossover when cations serve as the active 

species.
3, 9-10, 14-15

 

Perfluorinated polysulfonic acid (PFSA) membranes, such as Nafion, are the most 

widely used CEMs in RFBs due to their high conductivity and good chemical and 

thermal stabilities.
10, 14-16

 However, Nafion membranes suffer from the crossover of active 

species, leading to severe self-discharge and decreased energy efficiency.
2, 7, 17-19

 Various 

strategies have been proposed to fabricate new composite membranes with reduced 

crossover.
20

 Physical blending with inorganic particles,
21-24

 nanotubes,
25-26

 graphene,
27-29

 

metal–organic frameworks (MOFs), and polymers has been extensively studied.
30-33

 The 
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crossover rate can be reduced by these added materials via reducing mobile water 

transport and the corresponding leakage of hydrated redox-active ions.
14

 Besides the 

simple mixing method, fillers such as SiO2 and TiO2 can also be synthesized during the 

membrane formation process via the sol-gel method to achieve uniform distribution.
34-37

 

In the “infiltration method”, fillers are formed in situ by infiltrating precursors into an 

existing polymer membrane, resulting in well-dispersed and extremely small particles 

inside the hydrophilic ionic cluster regions of phase-segregated polymer membranes.
20, 

38-40
 Reduced crossover rates can be achieved by the decreased size of the ionic cluster 

regions. Surface modification, mostly with organic coatings serving as highly selective 

layers, has been used to reduce the crossover of active species as well.
41-44

 

Inorganic ion conductors are ideal candidates to serve as ion exchange membranes. 

While perfect selectivity is theoretically possible, most of these conductors tend to be 

brittle and are difficult to handle and use. This difficulty can be circumvented by 

supporting thin films of ion conductors on porous polymer substrates. Unfortunately, a 

bilayer inorganic-polymer structure has not been widely adopted due to difficulties in 

integrating materials with significant differences in mechanical properties. Upon 

exposure to liquids, the polymer tends to swell, while the inorganic layer does not swell. 

This mismatch results in cracking, delamination, and failure of the membrane. 

Here, we developed a composite cation exchange membrane with a hierarchical 

structure; it consisted of a polymer membrane with tungsten oxide filling the ionic cluster 
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region and a dense tungsten oxide coating layer on the polymer surface (Figure 2-1). This 

hierarchical structure simultaneously enabled both high selectivity and conductivity 

during use in a flow battery. Tungsten oxide hydrates (HxWO3·yH2O) have been reported 

to show high proton conductivity (∼0.1 S cm
-1

, 25 °C) and are formed in situ in the ionic 

clusters of polymer membranes.
45-47

 By replacing water in the ionic clusters with oxides, 

we achieve several advantages. (1) Decrease in the permeability of active species: 

crossover of active species, such as Fe, Cr, and V ions, primarily relies on hydrated ionic 

clusters, which cannot permeate through the oxide structure. (2) Enhanced mechanical 

stability of the membrane: interactions between the filled oxide and polymer chains result 

in denser polymer packing and structural reinforcement. (3) Suppressed swelling of the 

polymer membrane via the interaction between oxide and polymer chain and decreased 

water uptake: a low swelling ratio is essential for the polymer membrane to be integrated 

with a rigid oxide coating layer without suffering from delamination and cracking. The 

dense oxide layer was coated via the sol-gel method on the polymer/oxide composite 

membrane. Tungsten oxide hydrates have been reported to have a layered structure with 

water molecules bonded between the layers, which can enable efficient proton conduction 

through the hydrogen bond network.
46

 Proton insertion/extraction reactions, such as WO3 

+ xH
+
 + xe

-
 ↔ HxWO3, convert tungsten oxide into tungsten bronze (HxWO3, 0 < x < 1). 

Protons are conducted through the movement of proton vacancies.
48

 Potassium ions are 

conducted through a similar solid-state ion conduction mechanism. However, multivalent 
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ions, such as Fe, Cr, and V, with high charge densities have strong interactions with water 

molecules, which make them too bulky to be inserted into the lattice structure of tungsten 

oxide hydrates. Nafion was used as a test case for the hierarchical structure, and future 

experiments can allow for further applications of this strategy to other polymer 

membranes at lower costs. Combining the oxide-in-polymer and oxide-on-polymer 

structures has promising potential for enhancing the performance of a variety of 

membranes. 

 

Figure 2-1 Fabrication of tungsten oxide/Nafion hierarchical composite membrane 

(h-DNf/oxide): (a) blank hydrated Nafion membrane; (b) polydopamine coating (DNf); (c) 

in situ formation of tungsten oxide in hydrophilic ionic cluster regions of Nafion 

membrane (c-DNf/oxide); (d) tungsten oxide coating on the surface (h-DNf/oxide). 

Green: fluorocarbon backbones of Nafion; red spheres: sulfonic acid groups of Nafion. 
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2.2 Fabrication of hierarchical composite membrane 

Figure 2-1 shows the fabrication steps for the hierarchical membrane structure. A 

hydrated Nafion membrane is coated with a thin polydopamine layer (DNf) to improve 

the hydrophilicity of the surface. DNf is then filled with tungsten oxide in its hydrophilic 

ionic cluster regions, resulting in a composite structure (c-DNf/oxide). A dense tungsten 

oxide film is then coated onto c-DNf/oxide to form the final membrane (h-DNf/oxide). 

In order to realize the hierarchical structure, strong adhesion at the interface 

between the oxide coating and Nafion is essential. However, Nafion has a hydrophobic 

surface due to the perfluoroalkane backbone structure. To enable tungstic acid aqueous 

solution to wet the Nafion surface, surface modification is required to render it 

hydrophilic. Inspiration was drawn from biological systems such as mussels that adhere 

to rocks through the use of dopamine.
49-50

 Dopamine monomers are readily oxidized in 

air under basic pH conditions at room temperature to self-polymerize.
42, 51

 The 

polydopamine layer adheres strongly to almost any material, including PTFE and other 

anti-fouling materials.
49

 Here, we utilized polydopamine as the adhesive layer to enhance 

the interaction between the Nafion membrane and tungsten oxide coating layer and its 

hydrophilicity to facilitate the coating process. The polydopamine layer formed on 

Nafion was presumably very thin (∼10 nm based on the literature)
52

 and could not be 

observed in the cross-sectional SEM images (Figure 2-11). A successful coating process 

was visually confirmed as the clear, transparent Nafion membrane became brown and 
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semi-transparent (Figure 2-10); it was also confirmed by a change in the surface wetting 

properties. The contact angle of the Nafion membrane decreased from 89° to 61° after 

polydopamine coating (Figure 2-12). 

Tungstic acid, which becomes tungsten oxide at an elevated temperature or at a 

low pH, is the precursor to both c- and h-DNf/oxide structures. The acid was synthesized 

at around 25 °C through the reaction of tungsten powder with hydrogen peroxide. 

Nano-sized particles were formed as the aging progressed and then served as nucleation 

sites during the transformation from tungstic acid to tungsten oxide, thus enhancing the 

formation of the coating layer. 

A c-DNf/oxide structure was achieved by filling the ionic channels and clusters 

with the oxide precursor. Due to the small sizes of the ionic clusters (∼5 nm) in Nafion,
53

 

directly soaking the dry membrane was ineffective; therefore, an infiltration method was 

used. The membrane was first soaked in methanol, causing it to swell; then, methanol 

was exchanged after soaking in the precursor solution. While there was no noticeable 

change in the color of the membrane after the exchange with the tungstic acid solution, 

the membrane became opaque and dark brown after a curing process, during which the 

precursor tungstic acid transformed into solid tungsten oxide. This indicated the 

successful filling of tungsten oxide into the polymer membrane matrix (Figure 2-10). 

Repeated solvent exchanges and curing further increased the oxide loading amount in 

Nafion with infiltrated tungsten oxide (c-DNf/oxide). 
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h-DNf/oxide was prepared by a simple dip-coating method followed by a curing 

process. As a result of the enhanced hydrophilicity due to the polydopamine coating, the 

surface of DNf was readily wetted when dipped in a tungstic acid solution. The solution 

formed a uniform thin liquid layer covering the entire surface when the membrane was 

pulled out of the solution. During the curing process, an elevated temperature promoted 

the solidification of the precursor solution layer, while humidity kept the membrane 

hydrated to avoid shrinkage and possible cracking or delamination of the surface oxide 

layer due to mismatch in the size changes between Nafion and oxide. Smooth and 

uniform dark-brown layers were coated on the membrane after repeated coating and 

curing processes (Figure 2-15 (b)). The quality of the coating was confirmed by SEM; the 

film is uniform and crack-free (Figure 2-2 (a and b)). At a very high magnification, the 

coating layer is found to be formed by the aggregation of small particles of 5-15 nm size 

(Figure 2-11 (b)). Additionally, a membrane with a tungsten oxide layer only on the 

surface but not in the bulk (l-DNf/oxide) was prepared by directly coating DNf to 

confirm the contribution of the oxide-in-polymer structure to the stability of the 

oxide-on-polymer structure (Figure 2-15). 



 22 

 

Figure 2-2 SEM images of h-DNf/oxide: (a, b) surface; (c, d) cross-sectional; (e) 

line-scan EDX at the interface of tungsten oxide coating layer and Nafion membrane. 
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2.3 Characterization of hierarchical composite membrane 

EDX mapping was conducted on the surface of h-DNf/oxide (Figure 2-13). 

Tungsten and oxygen are distributed homogenously in the coating layer. Cross-sectional 

SEM images also clearly show the dense and uniform coating layer when EDX mapping 

is conducted on the surface of h-DNf/oxide (Figure 2-13). Tungsten and oxygen are 

distributed homogenously in the coating layer. Cross-sectional SEM images also clearly 

show the dense and uniform coating layer with thickness of 1.6 μm, confirming that the 

structure is not porous even though it is formed from aggregation of particles (Figure 2-2 

(c and d)). The interface between the supporting Nafion membrane and coating layer is of 

exceptional quality with no visible voids, and the boundary at the interface is not visible, 

as observed in the high-magnification SEM image (Figure 2-2 (d)). Line-scan EDX 

shows a gradual compositional gradient across the interface, most noticeably for W 

(Figure 2-2 (e)). This observation confirmed that our original design has been realized: 

the tungsten oxide phase is a continuous film on the surface but extends deeply into the 

Nafion structure. Such a structure is expected to contribute to a robust composite 

membrane. Such excellent connection and adhesion can mitigate possible delamination at 

the interface, which is a critical problem for multilayered composite materials. EDX was 

also conducted on the cross-section of h-DNf/oxide (Figure 2-14). Low-magnification 

EDX mapping shows that the bulk polymer is mainly composed of carbon, oxygen, 

fluorine, and sulfur. The surface coating layer contains concentrated tungsten and oxygen, 
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while tungsten is also uniformly distributed in the bulk polymer matrix, further 

confirming the bilayer oxide-in-polymer and oxide-on-polymer structures. 

XRD was performed to investigate the structure of the membranes (Figure 2-3). 

The shifts in the Nafion peaks for h-DNf/oxide from 16.83° and 39.11° to 18.11° and 

39.98°, respectively, indicate denser packing of the polymer chains due to the interaction 

with tungsten oxide. The peak at 23.83° matches with several different types of tungsten 

oxide crystalline structures. As a result, the specific structure of filled tungsten oxide in 

Nafion cannot be determined based on XRD data. Further characterizations were 

performed to confirm the structure. 

 

Figure 2-3 XRD of Nafion and h-DNf/oxide. 

 

FTIR spectra were used to examine the chemical structures of Nafion and 

h-DNf/oxide (Figure 2-4). The peaks at 1200, 1144, and 512 cm
-1

 are related to the C-F 

bonds on the Nafion polymer backbone. C-O-C and C-S bonds on the side chain lead to 
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twin peaks at 980 and 968 cm
-1

 and a weak peak at 880 cm
-1

 respectively. The shoulders 

at 1300 and 1144 cm
-1

 are assigned to the SO3
-
 group. For h-DNf/oxide, the peaks in the 

range of 500-900 cm
-1

 are assigned to the W-O bond. Due to covering by a dense 

tungsten oxide coating layer, all peaks from Nafion decrease significantly. Raman 

spectroscopy was also performed on h-DNf/oxide (Figure 2-4 (b)). The C-C bond from 

the Nafion polymer backbone exhibits a broad peak at 1370 cm
-1

. The peaks observed at 

1000, 690, 254, and 130 cm
-1

 correspond to W=O, O-W-O, W-O-W, and W-W bonds. 

The peak at 800 cm
-1

, also corresponding to the O-W-O bond, is associated with the 

monoclinic structure of tungsten oxide. It is thus concluded that tungsten oxide is 

successfully formed in the ionic clusters and its structure is probably monoclinic. 

 

Figure 2-4 Spectra of Nafion and h-DNf/oxide: (a) FT-IR; (b) Raman. 

 

The thermal properties and compositions of the membranes were investigated by 

TGA (Figure 2-5). Both blank Nafion and h-DNf/oxide exhibited three-step thermal 

degradation: loss of water during the first step before 270 °C; desulfonation of Nafion 
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during the step around 350 °C; and decomposition of the Nafion polymer backbone 

during the last step above 400 °C. For both membranes, the first step can be ignored as a 

result of pre-drying. After incorporating tungsten oxide into Nafion, the peaks of the 

second and third steps in the derivative thermal gravimetric curves shift from 363.9 °C 

and 448.9 °C to 377.0 °C and 469.5 °C, respectively (Figure 2-5 (b)). The enhanced 

thermal stability of h-DNf/oxide provides evidence for the interaction between the oxide 

and polymer. The residual weight indicates that the tungsten oxide loading is 6.6%. 

 

Figure 2-5 Thermogravimetric analysis of Nafion and h-DNf/oxide: (a) TG; (b) DTG. 

 

High mechanical stability of PEM is necessary for long-term practical operation 

of flow batteries. The Nafion membrane in its dry state showed a Young's modulus of 

142.5 MPa, yield stress of 7.67 MPa with 8.5% strain, and failure stress of 25.9 MPa with 

223.3% strain (Figure 2-6, Table 2-2). The Nafion membrane became much weaker when 

hydrated; it exhibited Young's modulus of 35.5 MPa, yield stress of 4.95 MPa, and failure 

stress of 20.4 MPa. The yield strain increased by 2.6 times to 22%; however, the ultimate 
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strain remained almost the same. A decrease in the Young's modulus and change in the 

yield point after hydration were due to the high water uptake and swelling ratios of the 

Nafion membrane. High water content enables faster proton transport but also increases 

polymer chain mobility, leading to poor mechanical stability. h-DNf/oxide was 

significantly reinforced, achieving Young's modulus of 148.7 MPa and yield stress of 

9.29% at elongation of 9.1%; these performances were superior even when compared 

with those of dry Nafion membranes. The ultimate strain significantly decreased to only 

47.3% without a large drop in the ultimate stress. The coated tungsten oxide layer on the 

polymer contributed negligibly to the mechanical properties of bulk membrane due to its 

limited thickness. Tungsten oxide in the polymer probably changed the mechanical 

properties of the membrane in three aspects: (1) interactions between tungsten oxide and 

polymer chains suppress chain mobility and increase chain packing density; (2) tungsten 

oxide filled in ionic clusters forms a continuous rigid oxide network across the polymer 

matrix, serving as reinforced concrete to achieve outstanding mechanical stability; (3) 

tungsten oxide replaces water in the hydrated polymer, which can also reduce chain 

mobility. The mechanical stability of h-DNf/oxide is not only beneficial toward cell 

operation but also helps prevent the failure of the coating layer caused by mechanical 

deformation or dimensional variations due to humidity changes. 
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Figure 2-6 Stress-strain curves of Nafion and h-DNf/oxide. 

 

Water uptake (WU) and swelling (SW) are important parameters for composite 

ion exchange membranes (Table 2-1). While high water uptake usually facilitates ion 

transport, correspondingly high swelling might compromise the mechanical integrity of 

the composite structure, particularly for the oxide-on-polymer configuration. The DNf 

membrane exhibited water uptake of 38.2% and swelling of 44.1%, which were similar to 

those for baseline Nafion. Due to its very low thickness, the polydopamine coating layer 

has negligible influence on the water uptake and swelling of the bulk membrane. 
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Table 2-1 Water uptake, swelling ratio and ion conductivity of Nafion and composite 

membranes. 

 
WU 

[%] 

SW 

[%] 

σH
+ a 

[mS/cm] 

σH
+
/WU 

 

σK
+ a 

[mS/cm] 

σK
+
/WU 

 

Nafion 38.9 46.6 54.1 1.39 8.0 0.21 

DNf 38.2 44.1 4.6 0.12 - - 

h-DNf/oxide 12.1 16.9 22.8 1.88 4.6 0.38 

All data measured at room temperature. 
a
 through plane, at 100% RH 

 

Consequently, the significant reduction in the swelling ratio was due to the 

incorporation of tungsten oxide. Most failures of composite membranes with layered 

structures, especially those formed by coating rigid inorganic materials on soft polymer 

supports, are caused by delamination or cracks due to different swelling ratios of the 

layers. Controlling the water uptake and swelling can effectively enhance the stability as 

well as mechanical properties of the composite membrane. The tungsten oxide coating 

layer of l-DNf/oxide exhibited dramatic delamination after soaking in DI water for 24 

hours, while h-DNf/oxide maintained its original structure after one week, confirming the 

contribution of infiltrated tungsten oxide for membrane stability (Figure 2-15). 

Ionic conductivities (σ) were measured by a through-plane two-probe method at 

the hydrated state (Table 2-1). The proton conductivity (σH
+
) of DNf membranes was 4.6 

mS cm
-1

, which was only 8.5% of the conductivity of Nafion (54.1 mS cm
-1

). The 

dramatic conductivity drop caused by the additional layer with negligible thickness 

suggested that the conductivity of polydopamine is very low. Interestingly, after 
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introducing tungsten oxide, the conductivity of h-DNf/oxide increased to 22.8 mS cm
-1

, 

which represented manageable reduction from that of Nafion. Filling polydopamine with 

proton-conductive tungsten oxide and rebuilding the proton transport pathway probably 

contributed toward the recovery of conductivity. The ratio of conductivity over water 

uptake (σ/WU) is a metric that measures the effectiveness of water in promoting ion 

conduction. The σH+/WU ratio of h-DNf/oxide was 1.88 when compared with 1.39 for 

baseline Nafion. Hence, tungsten oxide filling in the ion channels appeared to help 

enhance water-facilitated proton conduction. 

We also measured the potassium ion conductivity (σK
+
) of Nafion and the 

composite membranes (Table 2-1). For flow batteries such as Fe/Fe and Cr/Fe, KCl is 

often used as the supporting electrolyte and K
+
 transports through the cell membrane. 

During ion exchange, we expected hydrated tungsten oxide to change into its potassium 

form. In this regard, hydrated potassium tungsten bronze is well-known. However, their 

K
+
 conductivities have not been well studied. Our measurement indicated conductivity of 

8.0 mS cm
-1

 for K
+
-exchanged Nafion or 14.8% of the proton conductivity. h-DNf/oxide 

showed K
+
 conductivity of 4.6 mS cm

-1
 or 20.2% of the proton conductivity. The σK

+
/WU 

value for h-DNf/oxide reached 0.38; in comparison, the value for Nafion was 0.21. The 

smaller difference in σ/WU for K
+
 vs. H

+
 when compared with that of Nafion indicated 

that h-DNf/oxide does not rely much on water to transport ions. 
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The permeability of active species is another key parameter of CEM for flow 

batteries. The permeabilities for Fe(II) and Cr(III) ions were measured simultaneously by 

filling two sides of an H-cell with solutions containing different ions. This represents the 

discharged state of an Fe/Cr flow battery. The crossover of Cr(III) ions could be visibly 

observed based on their dark-green color, while the crossover of Fe(II) ions could not be 

observed since their light-green color is similar to that of Cr(III) ions. h-DNf/oxide 

showed much smaller crossover for both Fe(II) and Cr(III) ions when compared with 

baseline Nafion. Figure 2-7 (a) and (b) show the test results for both ions while using 

three different membranes: baseline Nafion, h-DNf/oxide, and c-DNf/oxide. The Fe(II) 

ion crossover rate of Nafion is the highest; after 50 hours, it starts to decrease as the 

solution reaches concentration equilibrium. As shown in Figure 2-8 (a), for both Fe(II) 

and Cr(III) ions, h-DNf/oxide still maintains a constant low crossover rate after 210 hours, 

suggesting that the stability of the coating layer is not compromised over extended testing. 

For h-DNf/oxide, the permeabilities of Fe(II) and Cr(III) ions decrease by an order of 

magnitude (from 2.66 × 10
-7

 cm
2
 s

-1
 and 8.84 × 10

-8
 cm

2
 s

-1
 to 2.31 × 10

-8
 cm

2
 s

-1
 and 

8.34 × 10
-9

 cm
2
 s

-1
, respectively). Cr(III) ions exhibit lower permeability for both baseline 

and h-DNf/oxide due to their higher valence state. c-DNf/oxide also exhibited some 

capability to decrease metal ion crossover; the values were measured to be 8.14 × 10
-8

 

cm
2
 s

-1
 and 3.85 × 10

-8
 cm

2
 s

-1
 for Fe(II) and Cr(III) ions, respectively. The permeability 

difference between the membranes of h-DNf/oxide and c-DNf/oxide can be attributed to 
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the dense surface of the tungsten oxide layer. Considering the thicknesses of the Nafion 

membrane and coating layer, the dense tungsten oxide coating layer showed 

extraordinarily low permeability: 4.88 × 10
-10

 cm
2
 s

-1
 for Fe(II) ions, which is 0.18% of 

that of baseline Nafion and 1.94% of that of c-DNf/oxide; 1.48 × 10
-10

 cm
2
 s

-1
 for Cr(III) 

ions, which is 0.17% of that of bare Nafion and 1.77% of that of c-DNf/oxide. An 

empirical figure of merit (β) is defined as the ratio of conductivity to permeability to 

demonstrate the ratio between the diffusivities of the desired ions and undesired ions in 

the membrane. In Figure 2-8 (b), h-DNf/oxide shows increased β of H
+
 and K

+
 over that 

of Fe
2+

 and Cr
3+

. The H
+
/Cr

3+
 β value of h-DNf/oxide reaches 2.74 × 10

9
 mS s cm

-3
. 

Therefore, hierarchical composite structures considerably enhance the selectivity of 

membranes. 
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Figure 2-7 Ion-crossover tests of Nafion, c-DNf/oxide, and h-DNf/oxide: (a) Fe(II); (b) 

Cr(III). 

 

 

Figure 2-8 Comparisons of (a) ion permeabilities and (b) β values for Nafion and 

composite membranes. β is defined as the ratio of conductivity to permeability. 

 

2.4 Flow battery performances of hierarchical composite membrane 

The flow battery performances of membranes were evaluated in a lab-scale 

single-cell iron-chromium flow battery (Figure 2-17) as a proof of concept. For the 

galvanostatic charge and discharge experiments, relatively high capacity to the active 

membrane area was utilized to emphasize the effect of crossover by prolonging the time 

of each cycle (Figure 2-9). Although only a limited number of cycles were performed, the 
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total duration of tests was actually similar to those commonly reported in the 

literature.
54-56

 At a current density of 20 mA cm
-2

, the flow battery assembled with Nafion 

as the separator exhibited quick and dramatic discharge capacity decay, retaining only 

29.5 mA h after 42.2 hours from the first-cycle capacity of 106.6 mA h. The dark color of 

the catholyte after cycling indicated the high rate of irreversible crossover, which led to 

rapidly decreasing capacity (Figure 2-18). Benefiting from the much decreased crossover 

rate due to the hierarchical composite structure, the capacity decay was mitigated by the 

dense oxide layer of h-DNf/oxide (Figure 2-20). The flow battery with h-DNf/oxide 

delivered capacity of 87.9 mA h after 47.9 hours, which was about 3 times that of the 

battery with Nafion. The color change of the catholyte was also very small. Compared 

with Nafion, even without the dense surface oxide layer, c-DNf/oxide still showed 

significant improvement and maintained a discharge capacity of 55.4 mA h. As shown in 

Figure 2-9 (b), due to severe crossover, the flow battery with Nafion exhibits much larger 

overpotential than those with either h-DNf/oxide or c-DNf/oxide. Coulombic efficiency is 

a commonly used performance metric; we should note that for all the three batteries, the 

coulombic efficiencies were very similar (at about 85%) despite the large difference in 

capacity retentions. This indicated that the crossover in this case reduced the reversible 

capacity of batteries, while the coulombic efficiency was determined by other processes 

such as hydrogen evolution.4 In summary, the overall trend of flow battery performance 

is consistent with the permeability and selectivity results from static H-cell tests. With no 
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significant influence from the slight decrease in conductivity, the hierarchical composite 

structure can considerably mitigate the crossover of active species, which represents an 

important progress in addressing the well-known trade-off between conductivity and 

selectivity for flow battery membranes. 

 

Figure 2-9 Charge–discharge profiles of Nafion and composite membranes at 20 mA 

cm
-2

: (a) cycling; (b) comparison after similar cycling times. 

 

2.5 Conclusion 

A hierarchical composite ion exchange membrane was developed by integrating 

Nafion and tungsten oxide. Proton-conducting tungsten oxide infiltrated into ionic 

clusters of Nafion membranes to reduce water uptake and swelling ratios and enhance 

stability while maintaining reasonable conductivity. A dense, crack-free tungsten oxide 

layer was coated onto the surface to reduce the permeability of active species. A stable 

oxide-on-polymer structure was obtained due to the dimensionally stable 

oxide-in-polymer composite structure. An order-of-magnitude decrease in the 

permeabilities of Fe(II) and Cr(III) ions was observed for the hierarchical composite 
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membrane while maintaining comparable conductivities. The dense oxide coating layer 

showed three orders of magnitude lower permeability than Nafion. Such a composite 

membrane with a hierarchical structure provides a strategy to solve the trade-off between 

conductivity and permeability of ion exchange membranes. The positive effect of the 

reduced crossover was confirmed in a small lab-scale iron-chromium flow battery with 

improved capacity retention with cycling and time. Further work is needed to scale up the 

flow battery and optimize its design to fully realize the benefit of the composite 

membrane. Nevertheless, our method of fabricating a stable bilayer inorganic-polymer 

structure has the potential to be applied to many different ion conductors beneficial for 

energy conversion and storage devices. 

 

2.6 Experimental 

Materials: Nafion 117 membrane was purchased from Fuel Cell Store. Tungsten 

powder (12 μm, 99.9% trace metals basis) and bismuth oxide (Bi2O3, 10 μm, 99.9% trace 

metals basis) were purchased from Sigma-Aldrich. 3-Hydroxytyramine hydrochloride 

(dopamine, 99%) was purchased from ACROS Organics. 

Tris(hydroxymethyl)aminomethane (Tris, 99.8%), hydrogen peroxide solution (H2O2, 

30%), sulfuric acid (H2SO4, 95-98%), hydrochloric acid (HCl, 36.5-38%), potassium 

chloride (KCl, 99%), ferrous chloride tetrahydrate (FeCl2·4H2O, 99%), and chromium 

chloride hexahydrate (CrCl3·6H2O, 98%) were purchased from Fisher Scientific. 
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Membrane preparation: Polydopamine was coated onto a Nafion 117 

membrane according to a method provided in the literature.
52

 A commercial Nafion 117 

membrane was pre-treated by boiling in steps of deionized water, starting from pure to a 

mixture of 3% H2O2 and then 0.5 M H2SO4 solutions before being stored in deionized 

water at room temperature. The membrane was then immersed in 79 mL Tris–HCl buffer 

(pH 8.5), while 1 mL 160 mg mL
-1

 aqueous dopamine solution was added dropwise 

under mild stirring to induce spontaneous self-polymerization. The coated Nafion 

membrane (DNf) was taken out after 90 minutes and rinsed with deionized water. 

A tungstic acid solution was prepared by slowly dissolving 2.5 g tungsten powder 

in 30 mL 30% hydrogen peroxide in a room-temperature water bath while being stirred. 

Excess hydrogen peroxide was removed by placing a small piece of platinum foil in the 

solution and putting the solution in an oven at 80 °C for 20 minutes. The clear solution 

turned bright yellow. 

DNf was soaked in methanol for 24 hours under room temperature, followed by 

soaking in tungstic acid solution for another 24 hours. Then, the residues on the 

membrane were wiped off and it was cured for 1 hour under 100% RH and 80 °C; this 

environment was created by placing a capped bottle with water in an oven. All the above 

processes were repeated 3 times to get c-DNf/oxide. 

c-DNf/oxide was manually dip-coated in the tungstic acid solution, resulting in 

double-sided coatings. The coated Nafion was cured in the same way as the previous 
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method. The coating and curing steps were repeated three times to achieve h-DNf/oxide 

with the desired thickness of coating. 

Membrane characterization: The morphology and thickness of h-DNf/oxide 

were characterized using scanning electron microscopy (FEI Quanta 250 SEM and Zeiss 

Sigma 500 SEM for obtaining an ultrahigh magnification image) with atomic 

composition and elemental mapping analyses performed by an integrated 

energy-dispersive X-ray (EDX) spectrometer. The chemical composition of the 

membrane was characterized by Fourier transform infrared spectroscopy (FTIR, Perkin 

Elmer Spectrum Two) and Raman spectroscopy (Renishaw inVia). The crystal structure 

of the membrane was investigated by X-ray diffraction (XRD, Bruker D2 Phaser). The 

thermal stability of the membrane was characterized by thermal gravimetric analysis 

(TGA, PerkinElmer Pyris 1 TGA) from 25 to 650 °C (heating rate: 5 °C min
-1

). 

Mechanical properties: The mechanical properties of the membranes were 

measured using tensile tests (Instron 5960) to generate stress–strain curves at a strain rate 

of 0.01 mm s
-1

 at room temperature and sampled at 10 Hz rate. Membrane samples were 

cut into dog-bone-shaped specimens; overall dimensions: 25 mm × 15 mm, gauge 

dimensions: 15 mm × 2 mm. Dry and wet membranes were pre-treated with the 

mentioned methods for water uptake measurements. 

Water uptake and swelling: Water uptake (WU) and in-plane swelling ratio (SW) 

of the membranes were calculated based on the percent changes in the wet and dry 
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weights (WU) and areas (SW). All the measurements were carried out right after the 

treatment for obtaining accurate data. The dry membranes were dried at 80 °C under 

vacuum for 24 hours to remove residual water and then cooled to room temperature under 

vacuum. The wet membranes were immersed in deionized water at 60 °C for 24 hours to 

reach complete hydration. 

Conductivity: The proton and potassium ion conductivities of the membrane 

were measured in a conductivity cell using AC impedance spectroscopy, and the 

membrane resistance was probed with a potentiostat (Bio-Logic, VSP-300) at an 

oscillating voltage of 20 mV over a frequency range of 7 MHz to 1 Hz. Prior to testing, 

the membrane sample was fully hydrated in water. The conductivity (σ) was calculated 

with the following equation: 

σ[mS 𝑐𝑚−1] =
𝐿

𝑅𝑆
 

L is the distance (cm) between the two electrodes, R is the impedance (Ω) of the 

membrane, and S is the surface area (cm
2
) of the electrodes. 

Permeability: An H-cell setup was used for the permeability measurement of 

Fe(II) and Cr(III) ions. The left reservoir was filled with 1 M Fe(II) ion solution 

(FeCl2·4H2O) in 2 M HCl, and the right reservoir was filled with 1 M Cr(III) ion solution 

(CrCl3·6H2O) in 2 M HCl. The geometrical area of the exposed membrane was 1.77 cm
2
 

and the volume of the solution for each reservoir was 25 mL. Crossover contamination 
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was measured by ultraviolet-visible spectrometry (UV-vis) on the samples of solutions, 

which were taken from each reservoir at different time intervals. The samples were 

analyzed for Fe(II) concentration in right reservoir of Cr(III) solution and for Cr(III) 

concentration in left reservoir of Fe(II) solution. The measured absorbance of the samples 

from the H-cell was converted into concentration based on standard absorbance–

concentration curves. The permeability was calculated with the following equation: 

𝑉𝐵

𝑑𝑐𝐵(𝑡)

𝑑𝑡
= 𝐴

𝑃

𝐿
(𝑐𝐴 − 𝑐𝐵(𝑡)) 

here, cA is the ion concentration in the original reservoir, and cB(t) is the time-dependent 

concentration of ions in the other reservoir, which went through the membrane; VB is the 

volume of one reservoir, A and L are the area and thickness of the membrane, respectively, 

and P is the permeability of ions. P is assumed to be independent of the concentration. 

The permeability of the coating layer was calculated based on the data of h-DNf/oxide 

and c-DNf/oxide using the following equation: 

𝐿𝐴 + 𝐿𝐵

𝑃𝐴+𝐵
=

𝐿𝐴

𝑃𝐴
+

𝐿𝐵

𝑃𝐵
 

A represents c-DNf/oxide, B is the dense top oxide layer, and A + B is h-DNf/oxide. 

An empirical figure of merit (β) is defined in the form of β = σ/P to demonstrate the ratio 

between the diffusivities of the desired and undesired ions in the membrane, i.e., the ratio 

of proton conductivity (σ) to Fe(II) permeability. 
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Flow battery test: A flow battery hardware was designed and fabricated in-house. 

A picture of the device is shown in Figure 2-17 Activated by 3:1 sulfuric acid and nitrate 

acid for 6 hours at 50 °C, two pieces of 0.6 cm-thick graphite felt (AvCarb G200) were 

used as the electrodes. Viton® fluoroelastomer rubber gaskets were used to seal the 

hardware. The active area of the membrane was 1 × 1 cm
2
. Densified and resin-filled 

impervious graphite plates (Graphtek FC-GR347B) served as the current collectors, 

which were sandwiched between the copper end plates. The catholyte was prepared by 

dissolving 1 M FeCl2 in 2 M HCl solution, while the anolyte was prepared by mixing 1 M 

CrCl3 in 2 M HCl solution with 0.01 M Bi
3+

. Furthermore, we circulated 8.5 mL 

catholyte and anolyte at a flow rate of 5 mL min
-1

 by a two-channel peristaltic pump 

(EW-77921-75, Cole-Parmer). All the flow battery tests were performed at room 

temperature (25 °C). The galvanostatic charge and discharge experiments were conducted 

at 20 mA cm
-2

 with cut-off voltages between 0.7 and 1.2 V. Bismuth, serving as a catalyst 

for the anodic reaction, was plated onto the anode at 20 mA cm
-2

 before the initial 

charging.
57
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2.7 Appendix 

 

Figure 2-10 Photo of (a) Blank Nafion; (b) h-DNf/oxide; (c) c-DNf/oxide. 

 

 

Figure 2-11 SEM images: (a) cross section of DNf; (b) ultra-high magnification surface 

of h-DNf/oxide. 
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Figure 2-12 Contact angles of (a) Blank Nafion; (b) DNf. 

 

 

Figure 2-13 Surface EDX of h-DNf/oxide. 
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Figure 2-14 Surface EDX of h-DNf/oxide: (a) low magnification; (b) high magnification. 
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Figure 2-15 Stability of coating layer: (a) l-DNf/oxide soaked in DI water for 24 hours; 

(b) h-DNf/oxide soaked in DI water for 1 week. 

 

Table 2-2 Mechanical properties of Nafion and h-DNf/oxide. 

 

Young’s 

modulus 

[MPa] 

Yield 

stress 

[MPa] 

Yield 

strain 

[%)] 

Ultimate 

stress 

[MPa] 

Ultimate 

strain 

[%] 

Nafion-dry 142.5 7.67 8.5 25.9 223.3 

Nafion-wet 35.5 4.95 22.0 20.4 233.4 

h-DNf/oxide-wet 148.7 9.29 9.1 17.0 47.3 
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Figure 2-16 UV-vis on standard samples (a) UV-vis spectrums on Fe
2+

 standard samples; 

(a) UV-vis spectrums on Cr
3+

 standard samples; (c) concentration-absorbance standard 

curve of Fe
2+

; (d) concentration-absorbance standard curve of Cr
3+

. 

 

 

Figure 2-17 Photo of a flow battery hardware designed and fabricated in house. 
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Figure 2-18 Photo of catholytes of flow batteries after cycling for 50 hours at the current 

density of 20 mA cm
-2

 and the flow rate of 5 ml min
-1

: (a) Nafion, (b) h-DNf/oxide. 

 

 
Figure 2-19 Photo of catholytes of flow batteries with no applied current density after 70 

hours at the flow rate of 5 ml min
-1

: (a) Nafion, (b) h-DNf/oxide. 
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Figure 2-20 Capacity retention over time. 
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3.1 Introduction 

Li metal anode is currently being extensively studied to replace graphite in order 

to further raise the energy density of rechargeable batteries.
1
 Li metal anode, however, 

has been plagued by several well-known issues. Dendritic Li formation during repeated 

Li plating and stripping results in ever increasing surface area and may short the cell over 

time and cause safety issues. The loose deposition of Li anode also results in large 

volume expansion.
2-5

 Perhaps the most challenging is the low coulombic efficiency (CE). 

The continuous loss of active lithium does not satisfy the requirement of long cycling life 

when limited Li is used in order to achieve high energy density. These challenges have 

been well reviewed recently. The root causes of these problems are the high reactivity of 

Li metal and non-uniform Li ion flux.
1
 

Several approaches have been presented recently to address these challenges.
6-12

 

In order to mitigate the lithium metal reaction with the electrolyte, research has identified 

ether based electrolytes to be more stable than carbonate based ones, resulting in higher 

coulombic efficiency. Unfortunately, these electrolytes have poor oxidative stability and 

are usually unsuitable for high voltage, oxide based cathodes.
13-15

 Another widely used 

method is to employ electrolytes (often with additives) that promote the formation of 

high quality solid electrolyte interface (SEI) formation to protect lithium metal. This 

method is applicable to the more oxidatively stable, carbonate-based cathodes. For 

example, Xu simultaneously added LiAsF6 and cyclic carbonate into the electrolyte to 



 56 

generate a uniform and flexible SEI layer on the Li surface, which contributes to dendrite 

free Li deposition with enhanced coulombic efficiency.
16

 In order to address the large 

volume changes during Li plating and stripping, other researchers have introduced 3D 

hosts for Li metal, such as porous Cu, layered reduced graphene oxide, and carbon cloths, 

among others.
17-19

 These 3D hosts not only largely mitigate the volume changes during Li 

plating and stripping, but also suppress the Li dendrite growth. Although, the large 

surface area of the 3D host reduces the local current densities, the side reactions become 

more serious as well. An effective strategy would therefore require combining 3D host 

design with electrolyte engineering to address all the issues of the Li metal anode. 

In this work, a commercial carbonate electrolyte (1 M LiPF6 in 1:1 vol ratio 

EC/DMC, LP30) is chosen as the baseline. By adding vinylene carbonate and LiNO3, 

both Li metal morphology and coulombic efficiency are greatly improved. Later, this 

modified electrolyte is combined with a novel multi-functional 3D composite host for the 

Li metal anode. As shown in Figure 3-1 (a), this 3D composite host is prepared by simply 

casting a well-mixed slurry of LiNO3, carbon black, and PVDF on a Cu foil, followed by 

drying in the oven. As a result of the combination of electrolyte additive and 3D 

composite host, dense Li chunks with micron-sized particles are observed even at a high 

current density of 2 mA cm
-2

 after 70 cycles in a carbonate electrolyte. A high coulombic 

efficiency of 98.4% over 300 cycles has also been achieved at 0.25 mA cm
-2

 for 
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0.5 mAh cm
-2

. This work suggests that simultaneous use of electrolyte additives and 3D 

hosts are necessary to enable stable Li metal anode. 

 

Figure 3-1 (a) The process of making the 3D composite host; (b) SEM images of the 3D 

LiNO3 composite host. 

 

3.2 Enhanced lithium metal cycling with modified electrolyte. 

The coulombic efficiency of Li metal cycling depends on the electrolyte solvent. 

Due to its high compatibility with oxide based cathodes, it is critical to enhance the Li 

stability in carbonate based electrolytes. A commercial electrolyte (1 M LiPF6 in 1:1 vol 

ratio EC/DMC, LP30) was chosen as a baseline electrolyte in this work. Based on 

previous Si anode research, 5 wt% vinylene carbonate (VC) was chosen as an SEI 

formation additive in order to improve the uniformity and flexibility of the SEI film on Li 

surface.
16

 The effects of VC additive on Li metal CE were studied by testing Li-Cu coin 

cells. Li was plated on Cu substrate at 0.5 mA cm
-2

 for 1 mAh cm
-2

, and then stripped at 

the same current density until the cell potential reached 1 V. The results of LP30 
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electrolyte (E1) and LP30 + 5 wt% VC electrolyte (E2) are compared in Figure 3-9. The 

average CE over 80 cycles is improved from 90.5% to 96.9% with the help of the VC 

additive. 

Our second additive is LiNO3. Previous work has shown that LiNO3 is a universal 

electrolyte additive in Li-S batteries because it protects the Li metal and reduces the Sn
2-

 

shuttle by forming a layer of LixNOy species.
20-21

 The concentration of the LiNO3 in 

ether-based electrolytes for Li-S batteries is usually higher than 0.2 M. Because of the 

low solubility of LiNO3 in carbonates, LiNO3 has not been widely used in 

carbonate-based electrolytes yet.
21

 The LiNO3 salt was gradually added into the E2 until 

saturation; the overall concentration of LiNO3 was 0.02 M. As shown in Figure 3-9, this 

LP30 + 5 wt% VC + 0.02 M LiNO3 (E3) electrolyte further enhanced the CE of Li metal 

to 97.7%. 

In addition to the CE test, the Li deposition morphologies were also investigated 

in these electrolytes. Li was plated on the Cu substrate at a high current density of 

2 mA cm
-2

 for 1 h. Figure 3-2 and Figure 3-11 present the Li morphologies in these 

electrolytes. The Li plated in E1 is needle-like. Due to the loose deposition, most mossy 

Li is lost during cell disassembling. It is hard to determine the thickness of the plated Li 

in E1 through the cross sectional view. The VC promoted Li chunk formation, however, 

small amounts of dendrites were also observed in E2 at a high current density of 

2 mA cm
-2

. The Li chunk size distribution ranges from 0.5 to 2 µm. The thickness of the 
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Li film in E2 was 26 µm, which suggests that even though the morphology was improved, 

the deposition is still incompact. According to theoretical calculations, 2 mAh cm
-2

 of Li 

corresponds to a thickness of 9.7 µm and the porosity of Li in E2 is thus 62.7%. In the 

case of E3, the plated Li are all big chunks with sizes between 2 and 5 µm. The Li film 

was 11.5 µm thick with a low porosity of 15.7%, which indicates a dense Li film was 

deposited on Cu in E3. All the morphology studies of the deposited Li are consistent with 

the CE testing data. The bigger Li chunk with denser deposition delivers higher CE. The 

E3 was used as the optimized electrolyte for the rest of the studies. 

 

Figure 3-2 SEM images of the deposited Li metal film on Cu foil. (a), (b), (c) are the top 

view and (d), (e), (f) are the cross-section view of Cu after 1 hour Li deposition at 

2 mA cm
-2

 in 1 M LiPF6-EC/DMC electrolyte (E1), 1 M LiPF6-EC/DMC electrolyte with 

5 wt% VC (E2), and 1 M LiPF6 + 0.02 M LiNO3-EC/DMC electrolyte with 5 wt% VC 

(E3), respectively. 
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3.3 Enhanced lithium metal cycling with multi-functional 3D composite host. 

Although electrolyte formulas are effective in improving cycling efficiency, they 

don’t address the volume change issue during Li cycling. The 3D Li host is a promising 

strategy. However, the current proposed 3D Li hosts are either too complicated to 

fabricate, or too hard to implement into a real device.
3
 Most of the 3D Li hosts only serve 

as high surface area porous electrode. Here, a multi-functional 3D composite host was 

designed. The fabrication of this host is similar to the electrode making process in 

industry, which is schematically showed in Figure 3-1. The SEM images display the 

porous structure of the host. The porosity of the 3D composite electrode is calculated 

based on the following equation. 

 

where Vcomponent and Velectrode are the components (LiNO3, PVDF, and carbon black) and 

electrode volume, Melectrode is the mass of the electrode, and ρ and P are the density and 

mass fraction of the materials.
22

 The densities of the LiNO3, PVDF and carbon black used 

for calculating the porosity were 2.38, 1.76, and 2.0 g cm
-3

, respectively. The mass of the 

electrode is 1.30 mg cm
-2

, and the thickness of the host is 17.9 µm. The calculated 

porosity of the 3D host is 66.2%. Based on the porosity of the electrode, this 3D host is 

theoretically able to store 2.44 mAh Li per cm
2
. Once all the pores are filled by Li, the 
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mass of the deposited Li is calculated to be 0.63 mg cm
-2

, which corresponds to a high 

gravimetric capacity of 1264 mAh g
-1

. 

The performance of the 3D composite host was investigated by the CE test in E3. 

The bare Cu cycled in E3 was chosen as a baseline. Both bare Cu and 3D composite host 

were discharged versus Li at 0.5 mA cm
-2

 for 4 h, and then the Li was stripped to 1 V at 

0.5 mA cm
-2

 for one cycle. Figure 3-11 presents the Li plating and stripping voltage 

profiles of this conditioning cycle. The purpose of the conditioning cycle is to form an 

SEI layer on the substrate. The 3D host exhibited a much lower over-potential than the 

bare Cu, however, the large surface area contributed to the higher irreversibility during 

this condition cycle. Figure 3-3 systematically compared the CE of both substrates at 

various current densities after their condition cycles. Figure 3-3 (a) exhibited their CE at 

0.25 mA cm
-2

 for 0.5 mAh cm
-2

. At this mild condition, both substrates showed good 

stability for a long duration of 300 cycles. The 3D host delivered higher average CE than 

the bare Cu. The average CEs over 300 cycles were 97.5% and 98.4% for bare Cu and 3D 

host, respectively. Figure 3-4 shows the Li plating and stripping voltage profiles on both 

substrates. The voltage difference between the charge and discharge plateaus was only 

37.2 mV on 3D host, while a large voltage difference of 69.1 mV was detected on bare Cu. 

This lower over-potential was attributed to the porous structure in the 3D host, which 

decreased the local current density. Both substrates were evaluated at harsher conditions 

that were closer to the current densities in real batteries. When they were cycled at 
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1 mA cm
-2

 for 1 mAh cm
-2

, the bare Cu cell started to short before 80 cycles, while the 3D 

host showed stable Li plating and stripping over 200 cycles. Figure 3-3 (c) and Figure 

3-12 show their CEs and voltage profiles. The bare Cu achieved a CE of only 95.7% for 

79 cycles. As a comparison, the 3D host delivered a high CE of 97.9%. The bare Cu 

cycled at 2 mA cm
-2

 for 2 mAh cm
-2

 presented a much lower cycle life; the Li-Cu cells 

were usually shorted before 20 cycles. On the other hand, the 3D host still delivered a 

good CE of 97.1%. 
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Figure 3-3 The coulombic efficiency comparison of Li||Cu and Li||3D electrode cells 

cycled in 1 M LiPF6 + 0.02 M LiNO3-EC/DMC electrolyte with 5 wt% VC, (a) at 

0.25 mA cm
-2

 for 0.5 mAh cm
-2

; (b) at 0.5 mA cm
-2

 for 1 mAh cm
-2

; (c) at 1 mA cm
-2

 for 

1 mAh cm
-2

; (d) at 2 mA cm
-2

 for 2 mAh cm
-2

. 
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Figure 3-4 (a), and (b) the Li plating/stripping voltage profiles on Cu, at 0.25 mA cm

-2
 

for 0.5 mAh cm
-2

; (c), and (d) the Li plating/stripping voltage profiles on 3D LiNO3 

composite electrode, at 0.25 mA cm
-2

 for 0.5 mAh cm
-2

. 

 

The enhanced CEs were associated with the morphology of the deposited Li. 

Figure 3-5 and Figure 3-13 illustrated the Li morphology on the 3D substrate. The first 

deposition of 2 mAh cm
-2

 Li at 2 mA cm
-2

 showed big chunks of Li similar to the bare Cu 

substrate. Because the porosity of the 17.9 µm thick 3D host was 66.2%, the pores were 

able to store 11.8 µm of Li metal. Most of the Li was plated into the 3D host, which filled 

up all the pores inside the host. As a consequence, the thickness of the Li film was 

18.2 µm, which was only 1.7% larger than the original 3D host. Both bare Cu substrate 
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and 3D composite substrates showed dense Li chunks at the first deposition. However, 

the cells showed different performances after a few Li plating and stripping cycles at 

2 mA cm
-2

 for 2 mAh cm
-2

. Figure 3-5 (b), and e displayed the SEM images of the 20th 

deposition of the Li on the Cu substrate. All the Li chunks transformed to needles after 

only 20 cycles, and the thickness of the Li dramatically grew to 68 µm. The short life 

time of the Li-Cu cell in E3 was caused by the Li dendrite formation as a result of 

possible LiNO3 depletion. Meanwhile, the morphology of the Li on the 3D composite 

substrate at its 70th deposition is shown in Figure 3-5 (c), and f. The Li chunk 

morphology was not only well maintained, but also grew larger. Considering the fact that 

the CE of the 3D host at 2 mA cm
-2

 was less than 100%, there were accumulations of 

irreversible Li over 70 cycles. Theoretically, if all the deposited Li were 100% dense, the 

irreversible Li deposition contributed to 23.1 µm increase of the thickness. In reality, the 

thickness of the Li film increased to 45 µm, which is only 8.9% higher than assuming 

completely dense depositions (18.2 + 23.1 µm). The investigation on the evolutions of Li 

morphologies on different substrates verified that the 3D host maintained the dense Li 

chunks after long term cycling even at high current density. 
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Figure 3-5 SEM images of the deposited Li metal film in 1 M LiPF6 + 0.02 M 

LiNO3-EC/DMC electrolyte with 5 wt% VC. (a) is the top view and (d) is the cross 

section view of 3D LiNO3 composite electrode after 1 hour Li deposition at 2 mA cm
-2

; (b) 

is the top view and (e) is the cross section view of Cu on its 20th deposition; (c) is the top 

view and (f) is the cross section view of 3D LiNO3 composite electrode on its 70th 

deposition; Li depositing at 2 mA cm
-2

 for 2 mAh cm
-2

, then stripping to 1 V at 

2 mA cm
-2

. 

 

3.4 Anode free full cell performances 

Anode free cells with LiFePO4 cathode were fabricated to further evaluate the 

effectiveness of the 3D host. The area capacity loading of the LiFePO4 was 1.5 mAh cm
-2

. 

Figure 3-6 compared the performance of the cells with Cu and 3D host as anode. The 

cells were cycled between 2.0-4.0 V at 0.5 mA cm
-2

. The 3D host cell showed much 

higher CEs and better capacity retention than the Cu cell. The Cu cell exhibited an 

average CE of 97.3% over the course of 50 cycles, which led to a low capacity retention 

of 25.6% at the 50th cycle. The 3D host cell maintained 49.1% capacity at its 100th cycle 
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with a high average CE of 99.3%. Since an anode free cell does not contain excess 

lithium, the average CE of the cell was calculated as the nth root of X, where the n is the 

cycle number and the X is the capacity retention at the nth cycle. Note this efficiency is 

higher than the average CE of a Li metal cell where Li is only partially cycled. In that 

case, a fixed amount of Li is cycled during each cycle and CE is averaged over multiple 

cycles. As far as its performance in Li metal anode batteries with high voltage cathodes, 

for example, classical layered oxides,
23-24

 Li-rich layered oxides,
25-26

 and high voltage 

spinel,
27

 we do plan to report the test in our future works as we continue to improve the 

cycling efficiency. 
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Figure 3-6 The comparison of anode free full cell performance with LiFePO4 (LFP) as 

cathode in 1 M LiPF6 + 0.02 M LiNO3-EC/DMC electrolyte with 5 wt% VC. (a) is the 

comparison of capacities and coulombic efficiencies between Cu and 3D LiNO3 

composite electrode over the course of 100 cycles; (b), and (c) are the voltage profiles of 

Cu-LFP and 3D LiNO3 composite electrode-LFP cells, respectively. The voltage range is 

2.0-4.0 V at 0.5 mA cm
-2

. 
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The importance for both the 3D host structure and abundant LiNO3 reserve is 

further illustrated with two control experiments. 3D host electrodes without LiNO3 were 

prepared and compared with the bare Cu and 3D LiNO3 host. The CEs were tested at 

0.5 mA cm
-2

 for 1 mAh cm
-2

. The results in Figure 3-14 revealed that the 3D porous 

electrode with only carbon and PVDF could not lead to the superior performance without 

LiNO3. On the other hand, benefiting from the VC and LiNO3 SEI formation additives, 

the initial Li deposition on bare Cu was dense and full of chunks. However, due to the 

low solubility of LiNO3 in the carbonates, it was consumed to passivate the freshly 

deposited Li surfaces during repeated stripping and plating of Li metal. Once the LiNO3 

in the electrolyte was consumed, the dendritic Li started to form. As a comparison, the 3D 

composite host not only works as a conductive host to mitigate the volume expansion, but 

also supplies the LiNO3 additive to the electrolyte. In order to prove that the reserved 

LiNO3 was still maintained inside the 3D host after long term cycling, XRD 

measurements were performed on both cycled bare Cu and 3D LiNO3 composite host. 

Figure 3-7 (a) clearly demonstrated the diffraction peaks of LiNO3 on the 3D LiNO3 

composite host even after 70 cycles. A small diffraction peak related to the Li metal was 

also observed. In contrast to the 3D host electrode, the bare Cu electrode only presented 

signals from Li metal. XPS characterizations were also conducted on both cycled bare Cu 

and 3D LiNO3 composite host. Figure 3-15 compared the C 1s, O 1s, and N 1s spectra of 

both electrodes. The C 1s and O 1s spectra revealed that the surface of the 3D LiNO3 
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composite electrode formed more Li2CO3 and less Li-alkyl carbonate than the bare Cu. 

The comparison of the N 1s spectra between both electrodes showed that the LiNO3 

reduction compounds Li3N and LiNxOy were formed as SEI components on the surface of 

the deposited Li film.
28

 Moreover, the Li3N and LiNxOy signal on the surface of 3D 

LiNO3 composite electrode was more prominent, which suggested the 3D LiNO3 

composite electrode supplied the LiNO3 additive to the electrolyte. In addition, the LiNO3 

peak at 407.4 eV clearly showed the existence of LiNO3 in the 3D composite host after 70 

cycles, which is consistent with observations from XRD and SEM. Figure 3-1 (c) 

illustrated that the LiNO3 particles was well retained inside the host after long term 

cycling. Consequently, big Li chunk morphology with compact depositions was 

maintained, which led to the high CE. 
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Figure 3-7 (a) XRD patterns. (b) - (c) SEM images. (b) 3D LiNO3 composite host; (c) is 

the cross sectional view of 3D LiNO3 composite electrode on its 70th deposition, Li 

depositing at 2 mA cm
-2

 for 2 mAh cm
-2

, then stripping to 1 V at 2 mA cm
-2

. 

 

Figure 3-8 (a) illustrates the working mechanism of the 3D composite host. The 

carbon black in the host provides an electronic conductive network to reduce the local 

current density and serve as a substrate for Li deposition. The LiNO3 serves as both 

reserved additive source and a structural skeleton component. The PVDF binder holds all 

the components together to form the robust porous structure. 
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Figure 3-8 (a) The schematic illustration of Li plating/stripping on 3D LiNO3 composite 

host; (b) a summary of the Li metal anode coulombic efficiencies in carbonate based 

electrolytes. 

 

To put our results in the context of recently published work, a summary of the Li 

metal anode coulombic efficiencies in carbonate-based electrolytes was plotted and 

compared in Figure 3-8 (b) and Table 3-1. The CE tests in most of the published literature 
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are conducted at current densities of less than 1 mA cm
-2

 and the Li deposition capacities 

are lower than 1 mAh cm
-2

. The CEs of Li in the carbonate electrolytes are usually less 

than 96%. The solid symbols represent the CEs that are achieved in this work. A high CE 

of 98.4% is reached at a moderate current density of 0.25 mA cm
-2

. At a high current 

density of 2 mA cm
-2

, the CE remains above 97%. 

 

3.5 Conclusion 

In summary, a novel multi-functional 3D composite host is designed for Li metal 

anode. Due to the robust structure and abundant supplement of the LiNO3, dense Li 

chunks instead of dendrites are formed and retained after repeated Li plating and 

stripping at a current density of 2 mA cm
-2

. As a result, the coulombic efficiencies of Li 

metal on the 3D composite host are reasonably high in the carbonate electrolyte. A high 

coulombic efficiency of 98.4% has been achieved at 0.25 mA cm
-2

 for a long cycling 

duration of more than 1200 h. The fabrication process of the 3D host can be easily scaled 

up by battery manufacturers. This work provides a new route of designing low-cost 3D Li 

metal for high energy density safe batteries. 
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3.6 Experimental 

3D composite electrode preparation: The 3D composite electrode was prepared 

by mixing the LiNO3 (Sigma-Aldrich), with 20 wt % Super P carbon (TIMCAL) and 

20 wt % poly(vinylidene fluoride) (PVDF) in N-methylpyrrolidone (NMP, ACROS 

Organics). The slurry was cast onto a Cu foil using a doctor blade and dried in a vacuum 

oven overnight at 80 °C. The electrode discs were punched and dried again before being 

storing in an argon-filled glovebox (MTI corporation). 

Electrochemical test: Battery grade vinylene carbonate (VC) was acquired from 

Shenzhen CAPCHEM Technology Co. Ltd. The premixed LP30 electrolyte (1 M LiPF6 in 

1:1 vol ratio EC/DMC) was purchased from BASF. 

2032-type coin cells were used for all the electrochemical studies in this work. 

The 250 µm thick lithium was punched to 12.5 mm discs as the counter electrode. The 

Celgard 25 µm trilayer PP-PE-PP membrane was used as a separator. Galvanostatic 

cycling was conducted on an LBT-5V5A battery tester (Arbin instruments). The cycled 

electrode was recovered by disassembling the coin cell. All the samples were washed 

with DMC three times and dried in the glovebox antechamber under vacuum. 

Scanning electron microscopy: The morphology and thickness of the deposited 

Li metal film and 3D composite electrode were characterized using scanning electron 

microscopy (FEI Quanta 250 SEM). The sample was adhered to a double-sided carbon 

tape and placed on a specimen holder. The prepared sample was sealed in a laminate 
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plastic bag inside the glovebox for transferring to the SEM. The approximate time of 

sample exposed to air (from a sealed environment to the SEM stage) was less than 3 s. 

X-ray diffraction: The crystal structure of coating materials were identified by 

X-ray diffraction (XRD), acquired using a Bruker D2 phaser diffractometer with a Bragg- 

Brentano θ-2θ geometry and a Cu Kα source (λ = 1.54 Å). Samples were sealed inside the 

glovebox by kapton tape, which were scanned from 30° to 60° at a scan rate of 0.02° s
-1

. 

X-ray photoelectron spectroscopy: XPS (Kratos Analytical, Kratos AXIS Supra) 

was carried out using Al anode source at 15 kV was used and all the peaks were fitted 

based on the reference C-C bond at 284.6 eV. All XPS measurements were collected with 

a 300 mm × 700 mm spot size using a charge neutralizer during acquisition. Survey scans 

were collected with a 1.0 eV step size, and were followed by high resolution scans with a 

step size of 0.05 eV for C 1s, O 1s, and N 1s regions. 
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3.7 Appendix 

 

Figure 3-9 The comparison of Li metal coulombic efficiencies in 1 M LiPF6-EC/DMC 

electrolyte, 1 M LiPF6-EC/DMC electrolyte with 5 wt% VC, and 1 M LiPF6 + 0.02 M 

LiNO3-EC/DMC electrolyte with 5 wt% VC, (a) average CE over 80 cycles, (b) CEs over 

the course of 80 cycles. (c) comparison of the 80th plating/stripping voltage profiles in 

various electrolytes. Li depositing at 0.5 mA cm
-2

 for 1 mAh cm
-2

, then stripping to 1V at 

0.5 mA cm
-2

. 

 

 

Figure 3-10 SEM images of the deposited Li metal film on Cu foil. (a), (b), (c) are the 

top view and (d), (e), (f) are the cross section view of Cu after 1 hours Li deposition at 2 

mA cm
-2

 in 1 M LiPF6-EC/DMC electrolyte, 1 M LiPF6-EC/DMC electrolyte with 5 wt% 

VC, and 1 M LiPF6 + 0.02 M LiNO3-EC/DMC electrolyte with 5 wt% VC, respectively. 
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Figure 3-11 The comparison of Li plating/stripping voltage profiles between Cu and 3D 

LiNO3 composite electrode in their condition cycles. Li depositing at 0.5 mA cm
-2

 for 2 

mAh cm
-2

, then stripping to 1V at 0.5 mA cm
-2

. 

 

 

Figure 3-12 (a) the Li plating/stripping voltage profiles on Cu, at 1 mA cm
-2

 for 1 mAh 

cm
-2

; (b) the Li plating/stripping voltage profiles on 3D LiNO3 composite electrode, at 1 

mA cm
-2

 for 1 mAh cm
-2

. 
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Figure 3-13 SEM images of the deposited Li metal film in 1 M LiPF6 + 0.02 M 

LiNO3-EC/DMC electrolyte with 5 wt% VC. (a) is the top view and (d) is the cross 

section view of 3D LiNO3 composite electrode after 1 hour Li deposition at 2 mA cm
-2

; 

(b) is the top view and (e) is the cross section view of Cu on its 20th deposition; (c) is the 

top view and (f) is the cross section view of 3D LiNO3 composite electrode on its 70th 

deposition; Li depositing at 2 mA cm
-2

 for 2 mAh cm
-2

, then stripping to 1V at 2 mA 

cm
-2

. 
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Figure 3-14 The comparison of Li metal coulombic efficiencies in 1 M LiPF6 + 0.02 M 

LiNO3-EC/DMC electrolyte with 5 wt% VC, (a) Cu substrate, (b) 3D carbon electrode, (c) 

3D LiNO3 composite electrode, (d) average CEs, (e) comparison of the 200th 

plating/stripping voltage profiles on different substrates. Li depositing at 0.5 mA cm
-2

 for 

1 mAh cm
-2

, then stripping to 1V at 0.5 mA cm
-2

. 
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Figure 3-15 XPS spectra of the deposited Li metal film in 1 M LiPF6 + 0.02 M 

LiNO3-EC/DMC electrolyte with 5 wt% VC. (a), (b), and (c) are the C 1s, O 1s, and N 1s 

regions of Cu on its 20th deposition; (d), (e), and (f) are the C 1s, O 1s, and N 1s regions 

of 3D LiNO3 composite electrode on its 70th deposition; Li depositing at 2 mA cm
-2

 for 2 

mAh cm
-2

, then stripping to 1V at 2 mA cm
-2

. 
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Table 3-1 A summary of the Li metal coulombic efficiencies in carbonate electrolyte. 

Reference Electrolyte 

Current 

(mA 

cm
-2

) 

Capacity 

(mAh 

cm
-2

) 

Cycle 

# 
CE 

28 
1 M LiPF6-EC/DEC 

(1:1 vol.) 

1 1 242 92.20% 

2 1 240 93.70% 

4 1 120 92.70% 

1 2 217 95.10% 

1 5 160 98.30% 

2 5 100 96.80% 

29 

1 M LiPF6-EC/DEC 

(1:1 vol.) + 5 vol% 

FEC 

0.1 0.5 100 98% 

0.5 0.5 100 90%* 

30 

1 M LiPF6-EC/DEC 

(1:1 vol.) + 10 wt% 

FEC 

1 1 100 97.40% 

0.25 0.5 150 98% 

31 

1 M 

LiPF6-EC/DMC/EMC 

(1:1:1 vol.) 

1 1 100 89% 

32 
1 M LiPF6-EC/DEC 

(1:1 vol.) 

0.25 1 100 94% 

0.5 1 100 92% 

1 1 100 88% 

33 

1 M 

LiPF6-EC/DMC/DEC 

(1:1:1 vol.) with AlCl3 

additive 

0.5 2 150 98% 

34 
1 M LiPF6-EC/DEC 

(1:1 vol.) + 2 wt% VC 

0.25 1 200 93% 

0.5 1 100 90% 

1 1 100 89% 

35 

1 M LiPF6-EC/DEC 

(1:1 vol.) + 10% FEC 

+ 1 % VC 

0.5 1 300 98% 

36 
1 M LiPF6-EC/DEC 

(1:1 vol.) 
2 2 100 92% 

37 

1 M 

LiPF6-EC/EMC/FEC 

(3:7:1 vol.) 

0.5 1 200 98% 
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Table 3-1 A summary of the Li metal coulombic efficiencies in carbonate electrolyte 

(Continued). 

Reference Electrolyte 

Current 

(mA 

cm
-2

) 

Capacity 

(mAh 

cm
-2

) 

Cycle 

# 
CE 

38 

1 M 

LiPF6-EC/EMC/DEC 

+ 3% FEC 

0.5 1 300 98% 

39 

1 M LiPF6-EC/DMC 

(1:1 vol.) + 

Mg(TFSI)2 

0.5 1 240 88% 

1 2 130 91% 

40 

1 M LiPF6-EC/DEC 

(1:1 vol.) + 10wt% 

FEC + 1 wt% VC 

0.4 0.5 300 95.60% 

1 1 100 92.10% 

41 

1 M LiPF6-EC/DEC 

(1:1 vol.) + 5 vol% 

FEC 

0.5 1 350 98% 

42 
1 M LiPF6-EC/DMC 

+  2 vol% FEC 
0.5 1 150 97% 

This work 

1 M LiPF6-EC/DMC 

+  2 wt% VC + 0.02 

M LiNO3 

0.25 0.5 300 98.37% 

0.5 1 210 98.11% 

1 1 200 97.90% 

2 2 100 97.05% 
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Chapter 4:  Polymer grafted on carbon nanotubes as a flexible cathode for aqueous 

zinc ion batteries 
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4.1 Introduction 

Driven by the ever increasing demand of environmentally benign, low-cost 

electrical energy storage solutions, Zn based aqueous batteries are being extensively 

investigated due to potential advantages in cost, safety, abundancy, and environmental 

friendliness.
1-4

 With a very negative electrical potential of -0.76 V vs. SHE, zinc based 

batteries also offer highly competitive energy densities.
5-6

 

Finding a reversible cathode with high capacity has been a major challenge. 

Intercalation reaction based materials, including oxides of manganese and vanadium, are 

the current focus.
7-12

 Due to the large changes in crystal volume, structure, and 

morphology during zinc insertion and removal, cycling stability of these materials is 

usually a concern.
3, 13-14

 In addition, manganese oxides also suffer severe capacity fading 

due to Mn
2+

 dissolution associated with the Jahn-Teller effect.
1, 15-16

 Adding manganese or 

other salts into the electrolyte is required to alleviate such effects.
17-18

 Framework type 

(e.g., Prussian blue analogs) materials have also been investigated, which offer enhanced 

cycling stability at the expense of volumetric energy density.
19-20

 

Very recently, several attempts have been made to develop organic cathode 

materials utilizing an energy storage mechanism other than intercalation/deintercalation. 

For instance, quinone exhibits ion storage capability by coordinating with the metal ions 

with its oxygen atoms when the carbonyl groups are reduced at low potentials.
21-25

 Both 

high capacity and cycling stability has been achieved by calix[4]quinone (C4Q) when 
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used in a zinc ion battery.
26

 Moreover, polymers are expected to have minimal dissolution 

in the electrolyte and long cycle life due to the stable, covalently connected structure.
27

 

Herein, we demonstrate the application of polydopamine (PDA)/carbon nanotube 

(CNT) composite as a cathode material for aqueous zinc ion batteries (Figure 4-1). 

Inspired by the adhesive protein Mefp5 in mussels, PDA can be coated on a wide range 

of material surfaces through the spontaneous self-polymerization of dopamine in basic 

aqueous solution.
28-29

 In each building unit, two redox-active quinone groups are 

available for zinc ion storage via the reversible catechol/ortho-quinone reaction (Figure 

4-1 (c)).
30-32

 Compared to other organic cathodes for zinc-ion batteries, PDA has several 

advantages: (1) PDA has low solubility in water which mitigates capacity loss during 

cycling. Additionally, the hydrophilic nature of PDA ensures excellent wetting at the 

electrode/electrolyte interface, whereas many other polymer cathodes are hydrophobic;
33

 

(2) due to the bio-adhesion effect, PDA enhance the structural stability of composite 

electrode as it adheres to the conductive CNT strongly which results in high rate 

capability. In comparison, polymer cathodes are usually physically mixed with large 

amount of carbon, making it difficult to achieve a highly efficient conductive network; (3) 

with a similar structure and function to natural eumelanins, PDA exhibits high 

biocompatibility and low cytotoxicity.
34

 Indeed, a Zn/PDA battery with an aqueous 

electrolyte at a neutral pH would be substantially non-hazardous and highly desirable for 
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biomedical devices; and (4) the PDA/CNT electrode is highly flexible which makes it 

possible to fabricate conformal batteries, also essential for biomedical applications. 

 

Figure 4-1 (a) Fabrication of PDA electrode by the spontaneous self-polymerization of 

dopamine on CNT supporting in basic aqueous solution. (b) Photo of a flexible 

free-standing CNT supported PDA thin film electrode. (c) Schematic of zinc ion 

adsorption by catechol and desorption by ortho-quinone when PDA at discharged or 

charged states, respectively. (d) Scanning electron microscopy (SEM). (e) Transmission 

electron microscopy (TEM) images of PDA electrode. 
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4.2 Fabrication of PDA electrode 

We developed a flexible, free-standing, binder-free cathode for rechargeable 

aqueous zinc ion battery based on CNT supported PDA (Figure 4-1 (a and b)). PDA was 

coated on dispersed CNT by spontaneous polymerization of dopamine in a basic aqueous 

solution. Followed by vacuum-filtering the mixture dispersion, the free-standing thin film 

electrode was assembled while removing unreacted monomers. Outstanding flexibility of 

the thin film electrode is achieved due to the bio-adhesion nature of PDA. SEM images 

show the PDA coated CNTs in the electrode were well-dispersed but also well-connected 

(Figure 4-1 (d)). TEM images show that the PDA was uniformly coated onto CNT with a 

thickness of 8 nm (Figure 4-1 (e)). No aggregated PDA nanoparticles were found in 

either TEM or SEM images. 

 

4.3 Electrochemical performances of PDA electrode 

Cyclic voltammetry (CV) was first performed to assess the electrochemical 

behaviour of PDA as cathode material for zinc ion batteries (Figure 4-2 (a)). The PDA 

electrode was assembled into a coin cell with zinc foil as the anode, a filter paper as 

separator, and 3.3 M ZnSO4 aqueous solution as the electrolyte. CV curves were obtained 

by scanning between 0.3 and 1.4 V vs. Zn
2+

/Zn at a rate of 1 mV s
-1

. The scanning begins 

with reduction (zinc ion adsorption) since the pristine PDA electrode contains no zinc ion. 

In both initial anodic and cathodic scans, strong but not well-defined features were 
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observed (Figure 4-6). After about 20 cycles, the peak current decreases and the curve 

gradually develops into a pair of wide and well-defined reduction/oxidation peaks at 

0.91/1.15 V. Those two peaks correspond to the reversible reaction between catechol and 

ortho-quinone along with zinc ion adsorption/desorption. The CV curve shape change 

and capacity drop during initial cycles are likely related to the non-covalently bonded 

dopamine monomer and intermediate species assembled in the PDA structure, which will 

be discussed further later. The linear relationship between the peak current and scan rate 

indicated the redox reaction of PDA is controlled by a surface process (Figure 4-2 (b)), 

similar to the mechanism operating in pseudo-capacitors. 
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Figure 4-2 Electrochemical performances of PDA electrodes. (a) Cyclic voltammetry 

(CV) profiles at different scan rate. (b) CV peak current as a function of scan rate (c). 

Galvanostatic charge/discharge curves of PDA electrodes at different current densities 

and blank CNT thin film electrode at 200 mA g
-1

. 20 mA g
-1

 curves was from 30th cycle. 

All other data were from 100th cycle. (d) Long term cyclic performance at 200 mA g
-1

 for 

500 cycles. All tests were in coin cells at the potential range of 0.3-1.4 V, with zinc metal 

foil as anode and 3.3 M ZnSO4 aqueous solution as electrolyte. 
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The cycling stability of PDA was evaluated by galvanostatic charge and discharge 

at a potential range of 0.3-1.4 V vs. Zn
2+

/Zn. As shown in the Figure 4-2 (c), the PDA 

electrode delivered a capacity of 126.2 mA h g
-1

 at a low rate of 20 mA g
-1

. The electrode 

is capable of exceptionally high rates, delivering 43.2 mA h g
-1

 at 5000 mA g
-1

. Note that 

the majority of the loss is related to an IR drop which can be further improved by cell 

design. The high rate performance is consistent with the capacitive mechanism observed 

in CV studies. The capacity of CNT itself was also examined by fabricating free standing 

CNT thin film electrode with the same vacuum-filtration method. When discharged at 

200 mA g
-1

, the CNT thin film electrode can only deliver a capacity of 4.5 mA h g
-1

, thus 

contributing very little to the CNT supported PDA electrode. The volumetric capacity of 

PDA electrode is moderate as shown in Figure 4-8. However, this does not preclude the 

application in biomedical devices and grid storage since unique advantages in flexibility, 

environmental friendliness, and cycle life are our main concern. The cycling performance 

of PDA was evaluated at a constant current density of 200 mA g
-1

 (Figure 4-2 (d)). After 

about 20 cycles, the battery reached a steady state and delivered a stable capacity of PDA 

for over 500 cycles. The 500th cycle maintained 96% capacity of the 20th cycle, which is 

attributed to the stable covalent cross-linked PDA structure and the highly reversible 

redox reaction of catechol/ortho-quinone groups. The high coulombic efficiency of about 

99.4% also supports the outstanding reversibility of the redox reaction. 
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4.4 Energy storage mechanism of PDA electrode 

The energy storage mechanism of PDA as a cathode material for zinc ion batteries 

was investigated by a comparison of ex situ Fourier-transform infrared (FT-IR) before 

and after electrochemical oxidation (Figure 4-3 (a)). The complex spectra in the 3300 to 

3600 cm
-1

 region on the sample reduced at 0.3 V correspond to N-H, O-Zn-O and 

possible intermolecular bonds, which virtually disappeared when the electrode was 

charged (oxidized) to 1.4 V. In addition, a C=O bond signal at 1730 cm
-1

 appeared after 

charging, which supports the formation of a quinone structure. The double-peak at 2870, 

2960 cm
-1

 and signals below 1600 cm
-1

 belong to the features of the indole structure, 

which exist all the time. The changes of FT-IR spectra clearly prove the reversible redox 

reaction between catechol and ortho-quinone of PDA. 

 

Figure 4-3 Ex situ spectroscopic analysis of PDA electrodes at charged (1.4 V) and 

discharged (0.3 V) states. (a) FT-IR. (b) High resolution XPS Zn 2p. All electrodes were 

cycled between 0.3-1.4 V in 3.3 M ZnSO4 aqueous electrolyte for 20 cycles at 200 mA g
-1

, 

then charged or discharged to noted potentials. Peaks noted with the asterisk symbol 

represent N-H, O-Zn-O structure, and possible intermolecular bonds. 
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Ex situ X-ray photoelectron spectroscopy (XPS) tests were performed to further 

analyze the energy storage mechanism of PDA. The wide-range XPS spectra for charged 

and discharged PDA electrodes exhibit almost identical signals for H, C, N and O (Figure 

4-9). However, after repeated rinsing with water, only the spectra of discharged PDA 

electrode clearly shows a series of zinc features, including 2p, 3s, 3p, 3d and several 

auger LMM peaks, indicative of significant amounts of zinc ions binding to the catechols. 

The difference is more evident in the high resolution Zn 2p spectra (Figure 4-3 (b)). The 

charged PDA electrode exhibits negligible signal from Zn 2p1/2. The signal from Zn 2p3/2 

is less than 5% of the peak area of discharged PDA, which might be due to residual 

ZnSO4 electrolyte. It is well known that catechols have a strong binding affinity to 

multivalent cations and such interaction is significantly suppressed when oxidized to 

ortho-quinones.
35

 Our observation is consistent with such a mechanism involving the 

reversible reaction between PDA and zinc ions. 

We note that there is a capacity loss process during the first twenty cycles before 

stabilizing for hundreds of cycles. High resolution XPS was utilized to understand this 

phenomenon via examining the structure of PDA electrode. As-prepared pristine PDA 

electrode was first studied (Figure 4-10). The C 1s spectra can be deconvoluted into four 

peaks: CHx, C-NH2 and sp
2
-hybridized carbon at 284.20 eV, C-O and C-N at 285.25 eV, 

C=O at 287.75 eV, and π→π* for aromatic carbon species at 290.95 eV. The result 

matches with reported PDA materials.
36

 The O 1s signals at 531.45 and 532.85 eV 
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correspond to C=O and C-O in the quinone/catechol structure, respectively, indicating the 

PDA electrode is a mixture of quinone and catechol in its as-synthesized form. The N 1s 

spectrum can be deconvoluted into one dominating peak at 399.70 eV corresponding to 

secondary amine (R2NH), while the peaks at 401.45 eV and 398.45 eV can be assigned to 

primary amine (RNH2) and tertiary or aromatic amine groups (=N-R), respectively. The 

presence of three different peaks indicated that the pristine PDA electrode contains not 

only PDA but also dopamine monomers and some intermediate species, consistent with 

the formation mechanism of PDA proposed by several recent studies (Figure 4-5).
37-40

 

The primary amine peak, 21% of the total N 1s signal, is indicative of unreacted 

dopamine monomers even after an extended polymerization reaction time. The tertiary 

amine intermediate specie contributes to about 7% of the total. The secondary amine peak, 

contributing 72% to the N 1s signal, is associated with both PDA and intermediate 

species. This is because the tertiary amine intermediate specie is a tautomer of secondary 

amine intermediate species. The presence of one type of intermediate specie indicates the 

co-existence of the other. We hypothesize that the non-negligible amount of 

non-covalently assembled dopamine and intermediate species in the pristine PDA 

electrodes are responsible for the initial capacity loss due to their dissolution in the 

electrolyte in ionized forms. 
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Figure 4-4 Ex situ high resolution XPS N 1s spectrums of PDA electrodes. (a) Before 

cycling. (b) After cycling. 

 

To further confirm our hypothesis, ex situ XPS was performed. In the N 1s XPS 

spectrum of PDA electrode which has been cycled and reached steady-state capacity 

(Figure 4-4), the ratio of the primary amine peak, belonging to unreacted dopamine, 

decreases from 21% to 5% when compared with the pristine electrode. This indicates a 

loss of the primary amine during initial cycling. In the addition, no tertiary amine 

intermediate specie is observed in the cycled sample means the secondary amine peak is 

from only PDA. The total amount of non-covalent bonded species decreased from more 

than 28% to 5% during the process of PDA electrode reaching steady state. 

The presence of dopamine monomer in the PDA electrode prior to cycling was 

also confirmed via UV-vis spectroscopy (Figure 4-11). Since CNT has strong signals in 

the UV range, PDA nanoparticles were prepared for these tests. Even after repeated 

washing, a strong peak at 280 nm, attributable to the dopamine monomer, can still be 

observed in PDA particles. The peak at 320 nm can be assigned to intermediate species. 
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Hence, during the initial cycles, non-covalently bonded species provided the extra 

capacity, which was gradually lost due to their solubility in the electrolyte. This 

hypothesis was further examined by a pre-cycling process. The pristine PDA electrode 

was pre-cycled for 50 cycles at 200 mA g
-1

 first. The electrode was then washed, dried, 

and re-assembled into a new battery. As shown in Figure 4-12, when cycled at 200 mA g
-1

, 

the pre-cycled PDA electrode exhibited less significant initial capacity decay as 

compared with the pristine one. The stable capacity was increased from 86.0 mA h g
-1

 to 

92.9 mA h g
-1

, while many fewer cycles were needed for the capacity to stabilize. It is 

thus important to remove the encapsulated monomers as much as possible to obtain 

highly stable polymer cathodes. 

 

4.5 Conclusion 

In conclusion, we have demonstrated polydopamine (PDA) as a new organic 

cathode material for aqueous zinc ion battery. A flexible, free-standing, binder-free PDA 

cathode was fabricated with CNT as support. The PDA delivers a low-rate specific 

capacity of 126.2 mA h g
-1

. After an initial stabilization period, outstanding long term 

stability was observed: after 500 cycles, the PDA electrode still retained 96% of the 

stabilized capacity. CV studies indicate the electrode reaction is a surface process, similar 

to that in electrochemical capacitors. FT-IR and XPS studies have established the reaction 

mechanism to be the redox reaction between catechol and ortho-quinone accompanied by 
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zinc ion adsorption and desorption. The non-toxic, flexible PDA has great potential to 

broaden the application of aqueous zinc ion battery, including in biomedical devices. 

 

4.6 Experimental 

Materials: 3-Hydroxytyramine hydrochloride (dopamine, 99%) was purchased 

from ACROS Organics. Tris(hydroxymethyl)aminomethane (Tris, 99.8%), hydrochloric 

acid (HCl, 36.5-38%) and zinc sulfate heptahydrate (ZnSO4•6H2O, 99-103%) were 

purchased from Fisher Scientific. Carbon nanotube, multi-walled (MWCNT, >98% 

carbon basis) was purchased from Sigma-Aldrich. Zinc foil (0.25mm, 99.98% metals 

basis) was purchased from Alfar Aesar. 

Sample preparation: 1 mg/ml dopamine was added into the tris-HCl aqueous 

solution (pH 8.5) dispersed with 0.5 mg/ml CNT. After stirring for 16 hours, the solution 

was vacuum filtered by a hydrophilic separator (Dreamweaver Silver 20). The free 

standing film can be peeled off from the separator when dried under vacuum at 70 °C 

overnight. The loading amount of polydopamine was 38.1% which was calculated by 

comparing with the pristine CNT film prepared with similar method. The loading density 

in the film was 0.9-1.3 mg/cm
2
. Polydopamine particles were prepared with similar 

methods without adding CNT. 

Sample characterization: The morphology of polydopamine electrode was 

characterized using transmission electron microscopy (TEM, FEI Tecnai G2 Sphera at 
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200 KV) and scanning electron microscopy (SEM, FEI Quanta 250) with atomic 

composition and elemental mapping analysis by an integrated energy-dispersive X-ray 

(EDX) spectrometer. The chemical structure of the membrane was characterized by 

Fourier transform infrared spectroscopy (FTIR, Perkin Elmer Spectrum Two) and X-ray 

photoelectron spectroscopy (XPS, Kratos Analytical, Kratos AXIS Supra). The UV-vis 

spectroscopy was conducted on Hitachi UH-4150. Reduced or oxidized state samples for 

FTIR and XPS were cycled at 200 mA g
-1

 for 20 cycles then discharged or charged to 0.3 

V or 1.4 V respectively. 

Electrochemical test: 2032-type coin cells were used for all the electrochemical 

tests. Zinc foil was used as the anode and filter paper (Whatman grade 2) was used as the 

separator. Argon purged 3.3 M ZnSO4 aqueous solution (pH 4.5) was used as the 

electrolyte without pH adjustment. Cyclic voltammetry was performed on a potentiostat 

(Biologic VSP-300). Galvanostatic cycling was tested on a battery tester (Landt 

CT2001A). The pre-cycled sample was cycled for 50 cycles at 200 mA g
-1

 first. Then, 

after carefully washing and drying, the electrode was re-assembled into a new battery to 

test. 
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4.7 Appendix 

 

Figure 4-5 Possible reaction mechanism of PDA. 

 

 

Figure 4-6 Cyclic voltammetry profiles of initial cycles and steady state scan at 1 mV s
-1

. 
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Figure 4-7 SEM images of PDA electrode. (a)(b) Before cycling. (c)(d) After 400 cycles 

at 200 mA g
-1

 

 

 

Figure 4-8 Volumetric specific capacity at different current densities: (a) polydopamine 

(b) polydopamine electrode. Converted from Figure 4-2(c). 
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Figure 4-9 Ex situ low resolution XPS analysis of PDA electrodes at charged (1.4 V) and 

discharged (0.3 V) states. 

 

 

Figure 4-10 High resolution X-ray photoelectron spectroscopy (XPS) spectra of pristine 

PDA electrode. (a) C 1s, (b) O 1s, (c) N 1s. 
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Figure 4-11 UV-vis analysis (a) Dopamine monomer and washed PDA nanoparticles in 

water. (b) in situ characterization of the polymerization of dopamine. 

 

 

Figure 4-12 Cyclic performance of pristine and pre-cycled PDA electrode. 
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