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Abstract

In the construction and analysis of a planar Pythagorean–hodograph
(PH) quintic curve r(t), t ∈ [ 0, 1 ] using the complex representation, it
is convenient to invoke a translation/rotation/scaling transformation
so r(t) is in canonical form with r(0) = 0, r(1) = 1 and possesses just
two complex degrees of freedom. By choosing two of the five control–
polygon legs of a quintic PH curve as these free complex parameters,
the remaining three control–polygon legs can be expressed in terms of
them and the roots of a quadratic or quartic equation. Consequently,
depending on the chosen two control–polygon legs, there exist either
two or four distinct quintic PH curves that are consistent with them. A
comprehensive analysis of all possible pairs of chosen control polygon
legs is developed, and examples are provided to illustrate this control–
polygon paradigm for the construction of planar quintic PH curves.
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1 Introduction

The origins of the ubiquitous control–polygon paradigm for constructing and
manipulating free–form curves can be traced to the pioneering ideas of Paul
de Casteljau and Pierre Bézier, two French engineers who were employed by
the automotive companies Citroën and Renault, respectively. Although their
original approaches differed from modern formulations based on the Bernstein
polynomial basis (and its B–spline extension to piecewise–polynomial forms),
they exhibit clear links with them. De Casteljau’s courbes et surfaces à pôles,
based on using “pilot points” to design curves and surfaces [1, 2], is closer in
spirit to the modern formulation than Bézier’s original approach [3, 4]. The
focus of the present study is to elucidate use of the control–polygon paradigm
in the context of the planar Pythagorean–hodograph (PH) curves.

The algebraic structure of the PH curves facilitates an exact computation
of various properties (arc lengths, offset curves, rotation–minimizing frames,
etc.) that otherwise necessitate numerical approximations [11]. However, the
non–linear nature of the PH curves makes their construction, consistent with
prescribed geometrical constraints, more challenging — as evident in diverse
algorithms addressing this task [7, 12, 13, 17, 18, 19, 22, 25, 26, 27, 28].

Since they can match first–order Hermite data and exhibit inflections [6],
planar quintic PH curves have sufficient shape flexibility to satisfy free–form
design requirements. In order to simplify the construction and shape analysis
of a planar quintic PH curve r(t), t ∈ [ 0, 1 ] it is advantageous to first invoke
a translation/rotation/scaling transformation to eliminate all non–essential
degrees of freedom, so that r(0) = (0, 0) and r(1) = (1, 0) — the planar PH
quintic r(t) is then said to be in canonical form.

The canonical form has been employed to facilitate construction of planar
[7] and spatial [8] quintic PH curve interpolants to G1 data (end points and
unit tangents) with prescribed arc lengths, and also in identifying the planar
quintic PH curve that is closest to any given “ordinary” Bézier curve [9]. The
canonical form also provides a convenient point of departure in characterizing
the intrinsic shape features of planar PH quintic Hermite interpolants.

Alternative PH curve control–polygon formulations have been proposed
that, unlike the Bézier control polygon, represent the actual number of shape
freedoms. The Gauss–Legendre (or rectifying) control polygon matches the
end points (but not tangents) of a PH curve, and the polygon length coincides
with the curve arc length [20, 24]. The Gauss–Lobatto control polygon [21]
matches both the end points and end tangents, but relinquishes the arc length
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property. However, these formulations forfeit some desirable features of the
Bézier form (e.g., the convex hull and variation–diminishing properties, and
the association of a unique curve with any given control polygon).

Employing the complex representation [5], wherein a planar PH quintic
is generated from a quadratic pre–image polynomial w(t) by integrating the
expression r′(t) = w2(t), a canonical–form quintic PH curve embodies just
two complex degrees of freedom. Identifying two of the five control–polygon
legs of a PH quintic as free parameters, it is shown herein that the other three
control–polygon legs can be determined by simple algorithms involving only
the solution of a complex quadratic or quartic equation, whose coefficients
depend on the two prescribed control–polygon legs.

The remainder of this paper is organized as follows. After a brief review of
the complex representation and basic properties of planar quintic PH curves
in Section 2, the system of control–polygon constraints that identify the PH
quintics among all planar quintic Bézier curves is summarized in Section 3.
Based on these constraints, algorithms are developed in Section 4 that allow
for any two of the five control–polygon legs of a canonical–form PH quintic
to be prescribed, with an automatic “filling in” of the remaining three legs.
Some computed examples are presented in Section 5 to illustrate results from
these algorithms. Finally, Section 6 summarizes the key results of the present
study, and identifies some aspects that deserve further investigation.

2 Planar quintic PH curves

In terms of the Bernstein basis on t ∈ [ 0, 1 ] defined by

bni (t) =

(
n

i

)
(1− t)n−iti , i = 0, . . . , n ,

a planar PH quintic r(t) may be constructed [5] from a quadratic polynomial

w(t) = w0 b
2
0(t) + w1 b

2
1(t) + w2 b

2
2(t) (1)

with complex coefficients w0,w1,w2 by integrating r′(t) = w2(t). This yields
the complex control points p0, . . . ,p5 of the Bézier form

r(t) =
5∑

k=0

pk b
5
k(t)
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as

p1 = p0 +
1

5
w2

0 ,

p2 = p1 +
1

5
w0w1 ,

p3 = p2 +
1

5

2 w2
1 + w0w2

3
,

p4 = p3 +
1

5
w1w2 ,

p5 = p4 +
1

5
w2

2 , (2)

where p0 is a freely–chosen integration constant.
The parametric speed σ(t) = |r′(t)| = |w(t)|2, i.e., the derivative ds/dt

of arc length s with respect to the curve parameter t, is a polynomial in the
parameter. We focus on curves r(t) = (x(t), y(t)) with primitive hodographs
satisfying gcd(x′(t), y′(t)) = 1, that generate regular curves with σ(t) 6= 0 for
t ∈ [ 0, 1 ]. With w(t) = u(t) + i v(t), regular curves are characterized by the
condition gcd(u(t), v(t)) = 1. Note also that, since r(t) has the end–point
derivatives r′(0) = w2

0 and r′(1) = w2
2, we must have w0 6= 0 and w2 6= 0.

Remark 1. One may also consider non–primitive Pythagorean hodographs
r′(t) = f(t) w2(t), where f(t) is a real polynomial and gcd(u(t), v(t)) = 1,
that generate regular PH curves when f(t) has no roots on t ∈ [ 0, 1 ]. Such
curves have less shape freedom than PH curves of equal degree with f(t) = 1,
since f(t) influences the magnitude of r′(t) but not its direction. For example,
PH quintics with deg(w(t)) = 1 and deg(f(t)) = 2 cannot have inflections,
unlike the PH quintics with deg(w(t)) = 2 and f(t) = 1.

The curvature of a PH curve r(t) generated by the pre–image polynomial
w(t) may be expressed [6] as

κ(t) = 2
Im(w(t)w′(t))

|w(t)|4
. (3)

In the case of a PH quintic, the numerator in this expression is the quadratic
polynomial

2 Im(w0w1) b
2
0(t)− Im(w2w0) b

2
1(t) + 2 Im(w1w2) b

2
2(t) , (4)
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whose (odd–multiplicity) real roots, if any, identify inflections of r(t). There
are two inflections — not necessarily within the [ 0, 1 ] parameter domain —
if the discriminant

∆ = Im2(w2w0)− 4 Im(w0w1) Im(w1w2) (5)

of (4) is positive, and none if it is negative. If ∆ = 0, the expression (4) has a
double root, which identifies a point where κ(t) = κ′(t) = 0. The end–point
curvatures are κ(0) = 4 Im(w0w1)/|w0|4 and κ(1) = 4 Im(w1w2)/|w2|4.

Choosing the integration constant r(0) = 0 on integrating r′(t) = w2(t),
the canonical–form end point r(1) = 1 is achieved by satisfying the condition∫ 1

0

r′(t) dt = r(1)− r(0) = 1 , (6)

which reduces [7] to the quadratic equation

2 w2
1 + 3 (w0 + w2)w1 + 3 (w2

0 + w2
2) + w0w2 − 15 = 0 . (7)

3 Control-polygon constraints

Given a complex pre–image polynomial w(t) of degree m, a planar PH curve
r(t) of degree n = 2m+1 is generated by integrating r′(t) = w2(t). Choosing
the integration constant r(0) = 0 and imposing the condition (6) yields a
curve r(t) in canonical form with r(1) = 1, which may be expressed in terms
of control points p0, . . . ,pn as

r(t) =
n∑
i=0

pi b
n
i (t) ,

where p0 = 0 and pn = 1. The complex values

Li = pi − pi−1 , i = 1, . . . , n

identify the control–polygon “legs” of r(t), which satisfy L1 + · · · + Ln = 1.
Whereas a control polygon uniquely specifies a PH curve constructed in this
manner, not all choices for L1, . . . ,Ln will define a PH curve.

A planar PH curve of degree n is generated from a pre–image polynomial
w(t) of degree m = 1

2
(n− 1) that has m+ 1 = 1

2
(n+ 1) complex coefficients.
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Hence, the control–polygon legs L1, . . . ,Ln must be subject to n− 1
2
(n+1) =

1
2
(n−1) complex constraints. However, for a canonical–form planar PH curve,

also imposing the end–point condition (6) increases the number of constraints
to 1

2
(n+1), and reduces the number of complex degrees of freedom to 1

2
(n−1)

— namely, one for a PH cubic, two for a PH quintic, etc.
The simplest non–trivial PH curves are the cubics, which are identified

[5] by the constraint
L2

2 = L1L3 (8)

on the control–polygon legs. The simplicity of this relation reflects the fact
that all PH cubics are merely translated/scaled/rotated segments of a unique
non–inflectional curve — the Tschirnhaus cubic [15].

The quintics are the lowest–order PH curves that are generally considered
to be suitable for free–form design applications. For a planar PH quintic r(t)
in canonical form, the coefficients of the pre–image polynomial (1) satisfy
the constraint (7), and from (2) the control–polygon legs are related to the
coefficients w0,w1,w2 of (1) by the equations(

w2
0,w0w1,

2 w2
1 + w0w2

3
,w1w2,w

2
2

)
= 5 (L1,L2,L3,L4,L5) . (9)

It was shown in Proposition 5.1 of [5] that — for the generic case with
Li 6= 0, i = 1, . . . , 5 — the satisfaction of

L1L
2
4 = L5L

2
2 (10)

and any one of the four equations

3 L1 L2 L3 − L2
1 L4 − 2 L3

2 = 0 , (11)

3 L5 L4 L3 − L2
5 L2 − 2 L3

4 = 0 , (12)

3 L1 L4 L3 − L5 L1 L2 − 2 L2
2 L4 = 0 , (13)

3 L5 L2 L3 − L1 L5 L4 − 2 L2
4 L2 = 0 , (14)

is sufficient and necessary for a quintic Bézier curve to be a PH curve. For a
canonical–form curve, the control–polygon legs must also satisfy

L1 + L2 + L3 + L4 + L5 = 1 . (15)

Remark 2. The canonical–form constraint (15) is not appropriate to curves
with r(1) = r(0) that are intended to form closed loops, and must be replaced
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by L1 +L2 +L3 +L4 +L5 = 0 in such cases. An arc length constraint may be
imposed [7] to ensure that such curves do not degenerate to a single point.
Their construction through control–polygon constraints is closely analogous
to that developed below using (15) in the case r(1) 6= r(0).

Note that equations (11) and (12) are equivalent under a reverse–ordering
of the control–polygon leg indices (which amounts to the reparameterization
t → 1 − t), and this also holds for equations (13) and (14). Moreover, each
of the equations (11)–(14) furnishes a different expression for L3 in terms of
L1,L2,L4,L5 — the satisfaction of equation (10) guarantees consistency of
these different expressions. It is possible to identify further constraints that
are invariant with respect reverse–ordering of the indices, for example

9 L1L5L
2
3 = (2 L2L4 + L1L5)

2 , (16)

but this is quartic, rather than cubic, in L1,L2,L3,L4,L5.

Remark 3. In the degenerate case L2 = L4 = 0, there are only four distinct
control points p0,p1 = p2,p3 = p4,p5 and all of the equations (10)–(14) are
trivially satisfied. This case occurs [5] when the condition

9 L2
3 = L1L5 (17)

is satisfied — any two of L1,L3,L5 may be chosen, the remaining one being
determined from (17). Equation (17) is analogous to the PH cubic condition
(8), so the control polygons of these PH quintics have identical interior angles
and sides satisfying 3L3 =

√
L1L5, by analogy with the PH cubic case [5].

Since canonical–form quintic PH curves satisfy three complex constraints
— namely, equations (10) and (15) and any one of equations (11)–(14) — on
the control–polygon legs L1, . . . ,L5, they incorporate only two free complex
parameters. Thus, if we choose any two of the control–polygon legs L1, . . . ,L5

the remaining three should be expressible in terms of the chosen two.
The existence of control–polygon constraints for PH curves complicates

their design through manipulation of control points, as in the standard Bézier
curve paradigm. However, we show here that any two of the control polygon
legs L1, . . . ,L5 may be freely assigned, with the remaining three being then
automatically “filled in” through a simple algorithm. This may be considered
a more “geometrical” approach to constructing PH quintics than first–order
Hermite interpolation [13], which is largely algebraic in nature.
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4 Construction of quintic PH curves

We now present a comprehensive analysis of how the quintic PH curves can be
constructed by choosing any two of the five control–polygon legs L1, . . . ,L5

with the remaining three being determined by solving a quadratic or quartic
equation whose coefficients depend on the chosen two. As is typical with PH
curve constructions [13], this yields a multiplicity of formal solutions, among
which the “good” solution must be identified by a suitable shape measure.

There are ten possible ways to choose two among the five control–polygon
legs, of which only two — L1,L5 and L2,L4 — have symmetric indices. The
remaining eight cases can be assembled into four pairs, whose members are
equivalent under reverse–ordering of the control–polygon leg indices.

4.1 Symmetric choices

We consider first the two symmetric choices (L1,L5 and L2,L4) of the control–
polygon legs, and treat the asymmetric cases in Section 4.2.

4.1.1 L1,L5 as free parameters

Pre–assigning L1 and L5 is equivalent to the first–order Hermite interpolation
problem with canonical–form PH quintics, since r′(0) = 5 L1 and r′(1) = 5 L5.
Although established algorithms for this problem are already available [13],
the present approach offers a rather different perspective.

Remark 4. For any complex number x 6= 0, the expression
√

x henceforth
denotes the principal value of its square root, satisfying Re(

√
x ) ≥ 0 if x is

not a negative real number, and Im(
√

x ) ≥ 0 if it is. The two square roots
of x can then be specified by s

√
x with s = ±1.

Proposition 1. The control polygon of a canonical–form PH quintic can be
expressed in terms of L1 and L5 as free parameters through the relations

L2 = z s1
√

L1 , L4 = z s2
√

L5 , (18)

L3 = 1− L1 − L5 − z (s1
√

L1 + s2
√

L5 ) , (19)

where s1, s2 = ±1 are independent sign choices, and z is a root of the complex
quadratic equation

2 z2 + 3 (s1
√

L1 + s2
√

L5 ) z + 3 (L1 + L5 − 1) + s1s2
√

L1

√
L5 = 0 . (20)
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Proof : For non–zero L1,L5 equation (10) implies that L2,L4 must be of the
form (18) for some complex number z. Substituting L3 = 1−L1−L2−L4−L5

from (15) and the expressions (18) for L2,L4 into (11) yields the quadratic
equation (20) for z, and L2,L3,L4 are then determined in terms of L1,L5

and a root z of (20) by the expressions (18)–(19).

By Proposition 1, the control points of a canonical–form PH quintic with
prescribed control–polygon legs L1,L5 can be expressed in terms of them and
a root z of equation (20) as

p0 = 0 , p1 = L1 , p2 = L1 + z s1
√

L1 ,

p3 = 1− L5 − z s2
√

L5 , p4 = 1− L5 , p5 = 1 .

Since equation (20) has two solutions for each of the four possible s1, s2
combinations, it might seem that there are in total eight solutions. However,
these solutions occur in pairs that identify identical curves, so there are only
four distinct PH quintics consistent with any prescribed L1,L5. This may be
verified as follows. The complete set of roots of equation (20) is specified by

z =
− 3 (s1

√
L1 + s2

√
L5 ) + s3

√
∆

4
, (21)

where s3 = ±1, and the discriminant ∆ of (20) may be written as

∆ = 24− 15 (L1 + L5) + 10 s1s2
√

L1

√
L5 .

Now the control–polygon legs (18)–(19) depend only on the quantities

z s1 =
− 3 (

√
L1 + s1s2

√
L5 ) + s1s3

√
∆

4
,

z s2 =
− 3 (s1s2

√
L1 +

√
L5 ) + s2s3

√
∆

4
.

Hence ∆ and z s1, z s2 — and consequently also the control polygon — remain
unchanged on replacing any choice of signs (s0, s1, s2) by (−s0,−s1,−s2).

To generate the four distinct solutions without replication, it suffices to
fix s3 = 1 in (21) and exercise only the two sign choices s1, s2. An analogous
situation holds in the first–order PH quintic Hermite interpolation problem
[13], although the specific details in that context are rather different.
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Corollary 1. For a canonical–form PH quintic with specified control–polygon
legs L1,L5 and a root z of equation (20), the coefficients of the pre–image
polynomial (1) may be identified as

w0 = s1
√

5 L1 , w1 =
√

5 z , w2 = s2
√

5 L5 . (22)

Proof : From the first and last of equations (9), we have w0 = s1
√

5 L1 and
w2 = s2

√
5 L5, where s1, s2 = ±1 are independent sign choices. Substituting

these expressions into the second and fourth of equations (9), and invoking
equations (18), then yields w1 =

√
5 z. It remains to check that these values

are consistent with the third of equations (9). Substituting from (18)–(19)
and (22) into that equation and simplifying yields equation (20), so the third
of equations (9) is also satisfied when z is a root of (20).

One of the four solutions is a curve of fair shape, and the remaining three
typically exhibit tight loops at one or both ends of the curve — the “good”
solution is usually identified as that with the smallest absolute rotation index
[13], defined by

Rabs =
1

2π

∫ 1

0

|κ(t)|σ(t) dt , (23)

where κ(t) is the curvature (3) and σ(t) = |w(t)|2 is the derivative ds/dt of arc
length s with respect to the parameter t. Rabs indicates the total turning of
the curve tangent (without cancelling clockwise and anti–clockwise rotation),
and admits exact evaluation [13] for quintic PH curves. An alternative to (23)
for identifying the good interpolant is based on comparing the four solutions
with the “ordinary” cubic interpolant to the given Hermite data. It has been
shown [23] that a specific choice of signs identifies the good interpolant when
L1,L5 have positive real parts and magnitudes satisfying |L1|, |L5| < 3/5.

4.1.2 L2,L4 as free parameters

As a novel approach to constructing planar PH quintics, we now consider pre–
assigning the control–polygon legs L2,L4 — this case admits a fairly simple
analysis, but (unlike the L1,L5 case) there are only two distinct solutions.

Proposition 2. The control polygon of a canonical–form PH quintic can be
expressed in terms of L2 and L4 as free parameters through the relations

L1 = z L2
2 , L3 = 1− (L2 + L4)− z (L2

2 + L2
4) , L5 = z L2

4 , (24)
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where z is either root of the complex quadratic equation

(3 L2
2 + 3 L2

4 + L2L4) z2 + 3 (L2 + L4 − 1) z + 2 = 0 . (25)

Proof : For non–zero L2,L4 equation (10) implies that L1,L5 must satisfy,
for some complex number z, the expressions specified in (24). Substituting
L3 = 1−L1−L2−L4−L5 from (15) and the expressions for L1,L5 into (11)
and simplifying then yields the quadratic equation (25) for z, with L1,L3,L5

defined in terms of L2,L4 by (24).

Thus, by Proposition 2, the control points of a canonical–form PH quintic
with prescribed control–polygon legs L2,L4 can be written as

p0 = 0 , p1 = z L2
2 , p2 = z L2

2 + L2 ,

p3 = 1− z L2
4 − L4 , p4 = 1− z L2

4 , p5 = 1 ,

where z is a root of equation (25). Since equation (25) has (in general) two
distinct complex roots, there are usually two distinct canonical–form quintic
PH curves consistent with the specified control polygon legs L2,L4.

Corollary 2. For a canonical–form PH quintic with specified control–polygon
legs L2,L4 the coefficients of the pre–image polynomial (1) are determined by

w0 =
√

5 z L2 , w1 =
√

5/z , w2 =
√

5 z L4 . (26)

Proof : From the first and fifth of equations (9), together with the relations
(24), we obtain w0 = s1

√
5 z L2 and w2 = s2

√
5 z L4, where s1, s2 = ±1 are

independent sign choices. Substituting these expressions into the second and
fourth of equations (9), we obtain w1 = s1

√
5/z and w1 = s2

√
5/z, and for

consistency we must have s1 = s2. Since (w0,w1,w2) and (−w0,−w1,−w2)
generate the same hodograph r′(t) = w2(t), we set s1 = s2 = 1 without loss
of generality. This gives the expressions (26), and substituting from (24) and
(26) into the third of equations (9) yields equation (25) for z.

Example 1. Consider the choices L2 = 0.20 + 0.12 i and L4 = 0.20− 0.12 i.
In this case, the coefficients of the quadratic equation (25) are all real, and it
has a positive discriminant, so the two roots z are both real. Together with
the corresponding L1,L3,L5 values, we obtain

z = 1.30916253 ,

L1 = 0.03351456 + 0.06283980 i ,

L3 = 0.53297088 + 0.00000000 i ,

L5 = 0.03351456− 0.06283980 i ,
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z = 7.34468362 ,

L1 = 0.18802390 + 0.35254481 i ,

L3 = 0.22395220 + 0.00000000 i ,

L5 = 0.18802390− 0.35254481 i .

The two PH quintics incorporating the specified L2,L4 control–polygon legs
are illustrated in Figure 1.

Figure 1: The quintic PH curves that incorporate the two prescribed control–
polygon legs L2 = 0.20 + 0.12 i and L4 = 0.20− 0.12 i in Example 1. L2,L4

are indicated as solid lines, and the “filled in” legs L1,L3,L5 as dotted lines.

Remark 5. Note that in this case the control–polygon legs L2,L4 determine
the relative orientation of the curve end tangents, since r′(0) = 5 z L2

2 and
r′(1) = 5 z L2

4, and consequently

arg(r′(1))− arg(r′(0)) = arg

(
r′(1)

r′(0

)
= arg

(
L2

4

L2
2

)
= 2 [ arg(L4)− arg(L2) ] .

The absolute orientations of the end tangents, relative to the real line segment
[ 0, 1 ] is determined also by the factor z in (24).

4.2 Asymmetric choices

Consider now asymmetric choices of two of the control–polygon legs L1, . . . ,L5

as the free parameters. The principal cases, together with their counterparts
under reverse–ordering of the control–polygon legs, are:

� L1,L2 or L4,L5 as free parameters;
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� L1,L3 or L3,L5 as free parameters;

� L2,L3 or L3,L4 as free parameters.

� L1,L4 or L2,L5 as free parameters.

The first case admits a fairly straightforward characterization, incurring only
a quadratic equation. The remaining three cases are more involved, resulting
in a quartic equation, and the Maple computer algebra system was employed
to develop their characterizations. It should be noted that, in general, there is
no unique solution to the problem of expressing three of the control–polygon
legs in terms of the other two, under the constraints specified by the equations
(10)–(15). The formulations presented below are the simplest found through
testing several different approaches to this problem.

4.2.1 L1,L2 or L4,L5 as free parameters

Consider the asymmetric cases in which the first or last two control–polygon
legs are free parameters. The case L1,L2 may be characterized as follows.

Proposition 3. The control polygon of a canonical–form PH quintic can be
expressed in terms of L1 and L2 as free parameters through the relations

L3 = 1− (1 + z2) L1 − (1 + z) L2 , L4 = z L2 , L5 = z2 L1 , (27)

where z is any root of the complex quadratic equation

3 L2
1 z2 + (L1 + 3 L2) L1 z + 3 L1(L1 + L2 − 1) + 2 L2

2 = 0 . (28)

Proof : For any non–zero L2, we may set L4 = z L2 for some complex value
z. Substituing this in equation (10) then yields L5 = z2 L1, so we have the
relations L4 = z L2 and L5 = z2 L1 between the first and last two control–
polygon legs. Substituting L3 = 1− L1 − L2 − L4 − L5 from (15) and these
expressions for L4,L5 into (11) then yields the quadratic equation (28) for z,
with L3,L4,L5 defined in terms of L1,L2 by the expressions (27).

In this case, the control points are defined in terms of L1,L2 and z as

p0 = 0 , p1 = L1 , p2 = L1 + L2 ,

p3 = 1− z2 L1 − z L2 , p4 = 1− z2 L1 , p5 = 1 .
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Corollary 3. For a canonical–form PH quintic with specified control–polygon
legs L1,L2 the coefficients of the pre–image polynomial (1) are

w0 =
√

5 L1 , w1 =
√

5/L1 L2 , w2 = z
√

5 L1 . (29)

Proof : From the first and fifth of equations (9), together with the relations
(27), we obtain w0 = s1

√
5 L1 and w2 = s2 z

√
5 L1, where s1, s2 = ±1 are

independent sign choices. Substituting these expressions into the second and
fourth of equations (9), we obtain w1 = s1

√
5/L1 L2 and w1 = s2

√
5/L1 L2,

and consequently we must have s1 = s2. As in Corollary 2, we set s1 = s2 = 1
without loss of generality. This yields the expressions (29) for w0,w1,w2 and
by substituting from (27) and (29) into the third of equations (9) we obtain
the quadratic equation (28) for z.

When L4,L5 are chosen as the free parameters, we obtain a counterpart
to the above results through the substitutions L1 ↔ L5 and L2 ↔ L4.

Remark 6. Choosing L1 and L2 allows the initial curvature κ(0) of r(t) to
be assigned, since

κ(0) =
(r′(0)× r′′(0)) · k

| r′(0) |3
=

4

5

(L1 × L2) · k
|L1 |3

, (30)

where complex values are interpreted as vectors in R2 and k is a unit vector
orthogonal to the plane.

Example 2. For the choices L2 = 0.15 + 0.12 i and L4 = 0.30 + 0.18 i, the
roots of equation (28) and corresponding L3,L3,L5 values are

z = 0.14546403− 0.98211688 i ,

L3 = 0.43680178 + 0.12451760 i ,

L4 = 0.22042025− 0.26845154 i ,

L5 = − 0.10722202− 0.15606606 i ,

z = −2.28367541 + 1.22601932 i ,

L3 = 0.22701936 + 0.13775883 i ,

L4 = − 0.90578610− 0.04325578 i ,

L5 = 1.22876674− 0.39450305 i .

The two quintic PH curves that incorporate the given L1,L2 control–polygon
legs are illustrated in Figure 2 — there is one “good” solution, and the other
solution with a tight loop should be discarded.

13



Figure 2: The quintic PH curves that incorporate the two prescribed control–
polygon legs L1 = 0.15 + 0.12 i and L2 = 0.30 + 0.18 i in Example 2. L1,L2

are indicated as solid lines, and the “filled in” legs L3,L4,L5 as dotted lines.

We omit proofs for the control–polygon characterizations in the remaining
three cases with asymmetric choices of the prescribed legs, as they are closely
analogous to the proofs in the preceding cases.

4.2.2 L1,L3 or L3,L5 as free parameters

The case with L1 and L3 as free parameters may be characterized as follows.

Proposition 4. The control polygon of a canonical–form PH quintic can be
expressed in terms of L1 and L3 as free parameters through the relations

L2 = z L1 , L4 = − 2 z3 L1 + 3 z L3

L5 = 2 z3 L1 − z (L1 + 3 L3)− L1 − L3 + 1 ,

where z is any root of the complex quartic equation

4 L2
1 z4−2 L2

1 z3−12 L1L3 z2 +(L1 +3 L3) L1 z+9 L2
3 +(L1 +L3−1) L1 = 0 .

The control points are determined in terms of L1,L3 and z as

p0 = 0 , p1 = L1 , p2 = (1 + z) L1 ,

p3 = (1 + z) L1 + L3 , p4 = (1 + z− 2 z3) L1 + (1 + 3 z) L3 , p5 = 1 .

In this case, z is a root of a quartic equation — which admits a closed–
form solution through Ferrari’s method [29]. Consequently, we may in general
expect four distinct PH quintics consistent with prescribed control–polygon
legs L1,L3. A result analogous to Proposition 4 holds if L3,L5 are the free
parameters, through the substitutions L1 ↔ L5 and L2 ↔ L4.

14



Figure 3 illustrates the four distinct PH quintics with prescribed control–
polygon legs L1 = 0.2+0.2 i and L3 = 0.20. The two solutions on the left may
be considered fair curves, having reasonable values of the absolute rotation
index (23), while the other two solutions have undesirable tight loops.

Figure 3: The quintic PH curves that incorporate the two prescribed control–
polygon legs L1 = 0.2 + 0.2 i and L3 = 0.20 — L1,L3 are indicated as solid
lines, and the “filled in” legs L2,L4,L5 as dotted lines.

4.2.3 L2,L3 or L3,L4 as free parameters

Consider now the case with L2 and L3 chosen as the free parameters.

Proposition 5. The control polygon of a canonical–form PH quintic can be
expressed in terms of L2 and L3 as free parameters through the relations

L1 = z , L4 = (3 z L3 − 2 L2
2) L2/z

2 , L5 = (3 z L3 − 2 L2
2)

2/z3 ,

where z is any root of the complex quartic equation

z4 + (L2 + L3 − 1) z3 + 3 (L2 + 3 L3) L3 z2 − 2 (L2 + 6 L3) L2
2 z + 4 L4

2 = 0 .

The control points can then be expressed in terms of L2,L3 and z as

p0 = 0 , p1 = z , p2 = z + L2 ,

p3 = z + L2 + L3 , p4 = 1− (3 z L3 − 2 L2
2)

2/z3 , p5 = 1 .
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Figure 4 illustrates the four distinct PH quintics with prescribed control–
polygon legs L2 = 0.25 + 0.25 i and L3 = 0.20 + 0.15 i. Three of the solutions
may be considered fair curves, with reasonable values of the absolute rotation
index (23), while the fourth solution has an undesirable tight loop.

Figure 4: The four quintic PH curves that incorporate L2 = 0.25 + 0.25 i and
L3 = 0.20 + 0.15 i as prescribed control–polygon legs — L2,L3 are indicated
as solid lines, and the remaining “filled in” legs L1,L4,L5 as dotted lines.

When L3,L4 are chosen as the free parameters, we obtain a counterpart
to the above result through the substitutions L1 ↔ L5 and L2 ↔ L4.

4.2.4 L1,L4 or L2,L5 as free parameters

The final case concerns the choice of L1,L4 as free parameters.

Proposition 6. The control polygon of a canonical–form PH quintic can be
expressed in terms of L1 and L4 as free parameters through the relations

L2 = z L4 , L3 = (2 z3 L2
4 + L2

1)/(3 z L1) , L5 = L1/z
2 , (31)

where z is any root of the complex quartic equation

2 L2
4 z4 + 3 L1L4 z3 + 3 (L1 + L4 − 1) L1 z2 + L2

1 z + 3 L2
1 = 0 . (32)

16



The control points can be expressed in terms of L1,L4 and z as

p0 = 0 , p1 = L1 , p2 = L1 + z L4 ,

p3 = 1− L1/z
2 − L4 , p4 = 1− L1/z

2 , p5 = 1 .

Figure 5 illustrates the four distinct PH quintics with prescribed control–
polygon legs L1 = 0.25−0.5 i and L4 = 0.20+0.15 i. The solutions on the left
may be considered fair curves, with reasonable values of the absolute rotation
index (23), but those on the right exhibit loops. Further examples of curves
with prescribed control–polygon legs L1,L4 may be found in Section 5.4.

Figure 5: The quintic PH curves that incorporate the two prescribed control–
polygon legs L1 = 0.25− 0.5 i and L4 = 0.20 + 0.15 i — L1,L4 are indicated
as solid lines, and the “filled in” legs L2,L3,L5 as dotted lines.

When L2,L5 are chosen as the free parameters, we obtain a counterpart
to the above result through the substitutions L1 ↔ L5 and L2 ↔ L4.
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5 Control–polygon design of PH quintics

We now present some preliminary examples showing how the control–polygon
constraint paradigm can be exploited in designing quintic PH curves. These
examples focus primarily on the simpler cases with L1 and L5, L2 and L4, or
L1 and L2 as the free parameters (which incur only quadratic equations), but
an example with L1 and L4 as free parameters is also included. The examples
are only illustrative in nature — a detailed analysis of the possibilities offered
by this approach deserves a separate comprehensive treatment.

5.1 Symmetric convex curves defined by L2,L4

Suppose L2,L4 are specified as complex conjugates: L2 = L ei θ, L4 = L e−i θ.
Then equation (25) has real coefficients, namely

(6 cos 2 θ + 1)L2 z2 + 3 (2L cos θ − 1) z + 2 = 0 , (33)

and if it has real roots z, the expressions (24) indicate that L1 and L5 are also
conjugates, and L3 is real. In this case, the control polygon is symmetric and
it defines a convex PH quintic. For real roots, the discriminant ∆ of equation
(33) must be non–negative. By setting cos 2 θ = 2 cos2θ − 1 and simplifying,
we obtain

∆(L, θ) = 20 (2− 3 cos2 θ)L2 − 36L cos θ + 9 ,

and the condition ∆(L, θ) ≥ 0 defines a domain in the (L, θ) plane identifying
symmetric convex planar PH quintics. Figure 6 illustrates this domain over
(L, θ) ∈ [ 0, 1 ]× [ 0, 1

2
π ], with four sub–domains D1,D2,D3,D4 identified that

correspond to distinctive properties of the resulting PH curves.

Figure 7 illustrates some examples of the quintic PH curves corresponding
to each of the four sub–domains D1,D2,D3,D4 of the domain D over which
∆(L, θ) ≥ 0. By choosing (L, θ) ∈ D1 ∪ D2, both the PH quintic solutions
are observed to be well–behaved curves.

5.2 Quintic PH curves with L2 = L4 = 0

As noted in Remark 3, equations (10)–(14) are trivially satisfied if L2 = L4 =
0, and the corresponding PH quintics are characterized by the condition (17)
instead. This condition implies that L1,L5 must be of the form

L1 = 3 z L3 and L5 = 3 L3/z

18
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Figure 6: The domainD defined by ∆(L, θ) > 0 (shaded area) where equation
(33) admits real roots. Some representative quintic PH curves corresponding
to of each the four sub–domains D1,D2,D3,D4 are illustrated in Figure 7.

for some complex number z. Substituting these expressions and L2 = L4 = 0
into (15) then results in the quadratic equation

3 L3 z2 + (L3 − 1) z + 3 L3 = 0

for z, dependent on the single complex parameter L3. The control points

p0 = 0 , p1 = p2 = 3 z L3 , p3 = p4 = (1− 3/z) L3 , p5 = 1

define a family of “cubic–like” quintic PH curves, and by the analogy between
conditions (8) and (17) they are all convex curves.

Example 3. It is interesting to compare the shapes of true PH cubics and
“cubic–like” PH quintics. To accomplish this, we first note that a canonical–
form PH cubic has control–polygon legs of the form

L1 = z L2 , L2 , L3 = L2/z ,

where z is a root of the quadratic equation

L2 z2 + (L2 − 1) z + L2 = 0 .

19



-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 7: Quintic PH curves with prescribed control–polygon legs L2,L4 as in
Section 5.1, with (L, θ) values (0.15, 0.15 π) ∈ D1 upper left; (0.25, 0.15π) ∈
D2 upper right; (0.2, 0.4π) ∈ D3 lower left; (0.7, 0.375π) ∈ D4 lower right.

Comparing equation (8) with equation (17) written in the form(
L3

3

)2
= L1L5 ,

we see that, upon choosing L2 = L for the PH cubic, we should take L3 = L/3
for the “cubic–like” PH quintics to achieve comparable control polygons,1 as
shown in Figure 8 for L = 0.5, 0.6, . . . , 1.

Figure 9 compares the curvature graphs for the “cubic–like” PH quintics
(left) and true PH cubics (right). To facilitate the comparison, the curvature
is plotted in term of the fractional arc length s(t)/s(1), t ∈ [ 0, 1 ] where s(t)
is the polynomial arc length function of the PH curves.

Remark 7. Planar PH quintics with L2 = L4 = 0 have previously been used
as G2 blending curves, with associated feedrate functions, to smooth sharp

1Real L values in the intervals (−1, 1/3) and (−1/5, 1/7) should be avoided for the PH
cubic and “cubic–like” PH quintic, since the resulting curves degenerate to straight lines.
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Figure 8: The “cubic–like” PH quintics with L3 = L/3 (left) and true PH
cubics with L2 = L (right) for L = 0.5, 0.6, . . . , 1 as described in Example 3.
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Figure 9: Curvature plots for the “cubic–like” PH quintics with L3 = L/3
(left), and the true PH cubics with L2 = L (right), for L = 0.5, 0.6, . . . , 1.
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corners for efficient execution of piecewise–linear tool paths in the context of
high–speed machining [14].

5.3 Initial G2 data determined by L1,L2

By prescribing L1 and L2 one can construct families of quintic PH curves that
have identical tangents, but varying curvatures at the initial point r(0) = 0.
Consider the choices L1 = L ei θ, L2 = L ei (θ+φ) where θ is the initial tangent
angle of r(t), and L > 0 and φ are free parameters. Then from (30) we have

κ(0) =
4

5

sinφ

L
, (34)

so κ(0) is proportional to sinφ, and inversely proportional to L. Substituting
for L1 and L2 under the assumption L 6= 0, the quadratic equation (28) can
be simplified to obtain

3L z2 + (1 + 3 eiφ)L z + 3 (L+ L eiφ − e− i θ) + 2L ei 2φ = 0 .

For any given θ and L, φ this equation has two complex roots z defining the
remaining control–polygon legs L3,L4,L5 through expressions (27), such that
the resulting curves have initial tangent angle θ and curvature κ(0) defined
by (34). One can vary L and φ to achieve any desired κ(0) value.2 Another
free parameter can be introduced using distinct magnitudes L1, L2 for L1,L2.

The PH quintics in Figure 11 (left) are obtained by varying L from 0.1 to
0.7 for fixed angles θ = π/4, φ = −π/10, while in Figure 11 (right) the initial
curvature is assigned as κ(0) ∈ [−2.50,−0.35 ] and L is computed from (34).

5.4 Inflectional curves defined by L1,L4

From (31) we observe that a PH quintic with prescribed control–polygon legs
L1,L4 can satisfy L2 = L4 and L5 = L1 if equation (32) has z = 1 as a root.
For z = 1 to be a root of equation (32), L1 and L4 must satisfy the condition

2 L2
4 + 6 L1L4 + 7 L2

1 − 3 L1 = 0 ,

which determines L4 in terms of L1 as

L4 =
−3 L1 ±

√
(6− 5 L1)L1

2
. (35)

2κ(0) and sinφ must have the same sign if L is derived from them, to ensure that L > 0.
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Figure 10: PH quintics with given control–polygon legs L1,L2 (Section 5.3).
Left: L = 0.1, 0.2, . . . , 0.7. Right: κ(0) varying uniformly in [− 2.50,− 0.35 ]
with L computed from (34). Both cases are for θ = π/4, φ = − π/10. L1,L2

are indicated as solid lines, and the “filled in” legs L3,L4,L5 as dotted lines.

For any chosen L1 and either of the corresponding L4 values as defined above,
we obtain inflectional PH quintics defined by the control–polygon legs

L1,L4, 1− 2 L1 − 2 L4,L4,L1 .

Example 4. For the choice L1 = − 0.1 + 0.1 i, we determine from (35) the
two L4 values 0.35060983 − 0.28617004 i and −0.05060983 − 0.58617004 i.
The remaining control leg L3 assumes the values 0.49878033− 0.772340084 i
and 1.30121967 + 0.97234008 i. The two quintic PH curves defined by these
control polygons are illustrated in Figure 12.
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Figure 11: Inflectional quintic PH curves satisfying L1 = L5 and L2 = L4 as
in Example 4. The two solutions for L1 = − 0.1 + 0.1 i are shown — L1,L4

are indicated as solid lines, and the “filled in” legs L2,L3,L5 as dotted lines.
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5.5 Construction of Hermite interpolants

The problem of constructing planar PH quintic interpolants to C1 end–point
data admits 4 formal solutions [13], among which the “good” solution (free of
extreme curvature variations) can be identified a posteriori using the absolute
rotation index (23). As noted in Section 4.1, the 4 solutions can be generated
without replication by choosing a specific root of the discriminant of equation
(20) and utilizing both square roots of L1 and L5.

Example 5. Consider the choices L1 = L5 = 0.25 + 0.40 i. For the four sign
combinations s1 = ±1, s2 = ±1 the roots of the quadratic equation (20) and
the corresponding control polygon legs L2,L3,L4 are

s1 = −1 , s2 = −1 ,

z = 2.01370914 + 0.27472185 i ,

L2 = − 1.11818414− 0.83547327 i ,

L3 = 2.73636827 + 0.87094654 i ,

L4 = − 1.11818414− 0.83547327 i ,

s1 = −1 , s2 = +1 ,

z = 1.04970668− 0.47632354 i ,

L2 = − 0.78915421− 0.06335897 i ,

L3 = 0.50000000− 0.80000000 i ,

L4 = 0.78915421 + 0.06335897 i ,

s1 = +1 , s2 = −1 ,

z = 1.04970668− 0.47632354 i ,

L2 = 0.78915421 + 0.06335897 i ,

L3 = 0.50000000− 0.80000000 i ,

L4 = − 0.78915421− 0.06335897 i ,

s1 = +1 , s2 = +1 ,

z = 0.21158657− 0.72410033 i ,

L2 = 0.36818414− 0.36452673 i ,

L3 = − 0.23636827− 0.07094654 i ,

L4 = 0.36818414− 0.36452673 i .
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The four quintic PH curves incorporating the specified L1,L5 control–polygon
legs are illustrated in Figure 13. These curves are found to be identical to
those generated [13] by first–order Hermite interpolation with planar PH
quintics, for the data r(0) = 0, r′(0) = 5 L1 and r(1) = 1, r′(1) = 5 L5.

Figure 12: The four distinct quintic PH curves with specified initial and final
control–polygon legs L1 = L5 = 0.25 + 0.40 i, as in Example 5 — L1,L5 are
indicated as solid lines, and the “filled in” legs L2,L3,L4 as dotted lines.

Example 6. For the case L5 = L1 = (L, say), equation (20) using opposite
signs s1, s2 reduces to

2 z2 + 5 L− 3 = 0 .

Setting c =
√

(3− 5 L)/2, we obtain from (18)–(19) the control polygon legs

(L1,L2,L3,L4,L5) = (L,± c
√

L, 1− 2 L,∓ c
√

L,L) .

Thus, when L5 = L1 and s1s2 = −1, we obtain two solutions with L4 = −L2,
and it is observed that these solutions both have the absolute rotation index
Rabs = 1

2
. In the remaining two solutions (generated whens1, s2 = 1), it can

be seen from (18) that the control–polygon legs satisfy L4 = L2.

Example 7. When L1,L5 are the conjugates Le i θ and L e− i θ, equation (20)
with identical signs s1, s2 has real coefficients, namely

2 z2 ± 6
√
L cos 1

2
θ z + (1 + 6 cos θ)L− 3 = 0 ,
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where the + and − signs correspond to s1 = s2 = 1 and s1 = s2 = −1, and
its roots will be real when the discriminant

∆(L, θ) = 24 + 10L(1− 3 cos θ)

is positive. As seen in Figure 14, ∆ is positive for (L, θ) ∈ [ 0, 1 ]× [− π, π ].

Figure 13: Graph of ∆(L, θ) for (L, θ) ∈ [ 0, 1 ]× [− π, π ] in Example 7.

Figure 15 shows the family of PH quintics obtained with θ = 2π/3 and
L = 0.1, 0.2, . . . , 0.7, and s1 = s2 = 1. A set of 100,000 randomly–generated
examples with 0 ≤ L ≤ 1 and 0 ≤ θ < 2 π indicate the following properties
— (1) the case with s1 = s2 = +1 always has the smallest Rabs value; (2) the
two cases with opposite signs s1, s2 have equal Rabs values; and (3) the two
cases with equal signs s1, s2 have Rabs values that sum to 1.

5.6 Other PH quintic forms

Before concluding, we briefly consider how the methods described above can
be adapted to accommodate the quintic PH curves specified (see Remark 1)
by a real quadratic polynomial f(t) and a complex linear polynomial w(t)
through r′(t) = f(t) w2(t). To preclude non–essential free parameters, we set

f(t) = f0(1− t)2 + 1
2
(1− f0 − f2) 2(1− t)t+ f2t

2 ,

which ensures that f(t) is monic, i.e., on expansion the coefficient of t2 is 1.
Together with

w(t) = w0(1− t) + w1t ,
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Figure 14: PH quintics with complex conjugate control–polygon legs L1,L5

as in Example 7, for θ = 2π/3, L = 0.1, 0.2, . . . , 0.7 and s1 = s2 = 1 — L1,L5

are indicated as solid lines, and the “filled in” legs L2,L3,L4 as dotted lines.

the control–polygon legs are determined in terms of f0, f2,w0,w1 through

5 L1 = f0w
2
0 ,

20 L2 = (1− f0 − f2)w2
0 + 2f0w0w1 ,

30 L3 = 2 (1− f0 − f2)w0w1 + f0w
2
1 + f2w

2
0 ,

20 L4 = (1− f0 − f2)w2
1 + 2f2w0w1 ,

5 L5 = f2w
2
1 .

To obtain a system of control–polygon constraints analogous to equations
(10)–(14), characterizing this type of PH quintic, one can appeal to a Gröbner
basis calculation — as in [5] — and identify those basis elements independent
of f0, f2,w0,w1. However, the Gröbner basis computation is more involved
in this case, in part because four variables are to be eliminated, rather than
the three variables w1,w1,w2 yielding equations (10)–(14), and the result is
rather involved. As previously noted, the PH quintics identified in Remark 1
have less shape freedom than those defined by quadratic complex pre–image
polynomials, so we shall not further dwell on them.
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6 Closure

Since planar PH curves incorporate fewer intrinsic degrees of freedom than
are indicated by their Bézier control points, it is customary to construct them
through a largely algebraic Hermite interpolation process for prescribed end
points and derivatives. Control–polygon constraints that characterize quintic
PH curves have long been known [5] but have not been much exploited.

A canonical–form quintic PH curve r(t) in complex form, with r(0) = 0
and r(1) = 1, embodies two free complex parameters that must be chosen so
as to ensure that its five control–polygon legs satisfy the constraints [5] that
identify quintic PH curves. In the present study it is shown that, when any
two of the control–polygon legs of a PH quintic are specified, the remaining
three can be “filled in” by a simple algorithm that requires only the solution of
a quadratic or quartic equation with complex coefficients. Several examples
are included to illustrate how this approach can be employed in the practical
design of planar PH quintics with desired shape features.

Although it seems natural to seek a generalization of the methodology to
spatial PH curves, this is not a trivial task. Whereas spatial PH cubics admit
a relatively simple characterization in terms of their control polygons [16], no
system of control–polygon constraints for the spatial PH quintics (analogous
to those [5] for the planar PH quintics) is currently known. This difficulty is
further compounded by the fact that, in the quaternion representation, the
spatial PH quintic interpolants to given first–order Hermite data comprise a
two–parameter family [10] rather than a discrete set as in the planar case.
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