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Abstract

In human visual cognition, there are two types of cognition:
holistic cognition, in which the whole is perceived as it is, and
featural cognition, in which attention is directed to the com-
ponents of an object. Navon figures are images that are com-
monly used for the study of holistic and featural processing in
vision. In this paper, we propose a machine learning model that
performs unsupervised learning to separate the global and local
shapes of Navon figures. In the experiments, by introducing a
model that learns image features by exploiting algebraic inde-
pendence, the global and local shapes of Navon figures were
successfully separated and the latent space representing each
feature was learned. It was also shown that the feature separa-
tion ability was improved by making the structure of the neural
network asymmetric. However, the components of the Navon
figures used in this study were identical; the proposed model
cannot direct attention to each component of Navon figures.
Therefore, a model that can direct attention to each component
and learn its feature is required in the future.
Keywords: unsupervised learning; global perception; local
perception; algebraic independence; Navon figure

Introduction
One of the differences between human and robot perception
is the diversity of perception. Humans are capable of multi-
ple visual perceptions of a single image, whereas robots of-
ten have only a single interpretation. Two examples of such
types of visual perception are holistic and featural perception.
Holistic cognition in human vision is a type of cognition in
which the whole of an object is taken as it is. Featural cogni-
tion is a type of cognition that focuses on the components of
an object.

Navon figures are often used in cognitive science to inves-
tigate the properties of global and local processing of vision
(Martin, 1979; Navon, 1977; Paquet & Merikle, 1984). Fig-
ure 1 shows an example of a typical Navon figure, which is
a hierarchical visual stimulus that consists of several smaller
components. When the local elements of such a Navon fig-
ure are relatively small in comparison with the global shape,
the local elements are treated as texture and do not affect
the overall perception of the figure, even if they are differ-
ent sub-elements (Kimchi, 1992); only the positions of the
local elements are important for perceiving the overall shape
(Pomerantz, 2017). In such Navon figures, when two figures
are compared, it is possible that the overall structure is “the
same” even if the local elements are different, as shown in
Figure 2a. Conversely, it is possible that the local elements
that compose the Navon figure are “the same” even if the

Figure 1: Navon figure.

(a) Same global cognition (b) Same local cognition

Figure 2: Various perceptions of Navon figures.

overall image is different, as shown in Figure 2b. Garner
(2014) described a separable-dimension stimulus as one in
which one attribute does not affect the other. The Navon fig-
ure is a visual stimulus that has such a separable-dimension
property.

Related to these types of visual perception, there are some
machine learning models that deal with such global and local
processing, using Navon figures as an evaluation target. One
example of such a model is the dual skipping network (Cheng
et al., 2018). This model is a neural network based on the idea
that the right hemisphere of the brain processes low-spatial-
frequency stimuli and the left hemisphere processes high-
spatial-frequency stimuli (Kauffmann et al., 2014). Cheng et
al. showed that dual skipping networks can recognize global
and local shapes of Navon figures with high accuracy. Navon
figures were also used as an evaluation target in a study that
investigated whether convolutional neural networks (CNNs)
have a texture bias, and showed that CNNs can learn both
shape and texture elements (Hermann et al., 2020). In the
above studies, neural networks were constructed for global
and local recognition of Navon figures. However, these mod-
els perform supervised learning in which the global and local
shapes of Navon figures are provided as teacher data for train-
ing.

In the case of humans, even infants as young as three to
four months old are capable of both global and local cogni-
tion, to some extent (Ghim & Eimas, 1988), and some stud-
ies have shown the existence of grouping of local elements
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(a) Color and shape indepen-
dence

(b) Global and local indepen-
dence

Figure 3: Independent features.

by newborns (Cassia et al., 2002; Farroni et al., 2000). These
findings indicate that humans are able to perform such visual
cognition to some extent without being taught. Therefore,
machine learning models that can learn such global and lo-
cal processing through unsupervised learning are expected.
In this regard, Hsiao et al. (2013) developed Autoencoder
models where the distribution of connections between the en-
codings and the input units differs between the global per-
ception model and the local perception model. They demon-
strated the global and local cognition bias using Navon stim-
uli. This model represents a prior unsupervised machine
learning model for global and local perception.

In contrast, this study proposes an unsuperved machine
learning model for global and local recognition of Navon fig-
ures using a novel machine learning approach recently intro-
duced by Ohmura et al. (2023). We develop a model that uses
the algebraic independence (Simpson, 2018) of the global and
local features of Navon figures and simple asymmetric struc-
tures to separate them into different latent spaces.

Machine Learning Model Using Algebraic
Independence

We selected a recently conceived model that uses algebraic
independence to learn image features by unsupervised learn-
ing (Ohmura et al., 2023) and used it as the basis of a model to
separate the global and local recognition structures of Navon
figures. The model of Ohmura et al. (2023) differs from con-
ventional unsupervised representation learning methods us-
ing statistical independence (Higgins et al., 2016; Kingma &
Welling, 2013) in that it does not assume a prior distribution
of latent variables. In addition, it can learn image features in
different spaces, rather than on different axes of latent vari-
ables.

Algebraic Independence
This section describes the algebraic independence introduced
in the method of Ohmura et al. (2023). The method focuses
on transformations of independent features between image
patterns, and learns independent features of images by ex-
ploiting the algebraic constraints that these transformations
have. Algebraic independence of transformations of indepen-
dent features requires the following three conditions to hold.

• Identity condition. There exists an identity transformation.

(a) Autoencoder structure

(b) Processing flow in the training step

Figure 4: Schematic of the model using simple Navon figures.
Note that Image 1 and Image 2 in Figure 4b are intermediate
images generated after proper training, not images during the
training process.

• Injectivity condition. Each feature can be transformed sep-
arately, and the transformations do not affect each other.

• Commutativity condition. When two features are to be
changed, the same transformation occurs regardless of the
order in which the two features are changed.

These conditions are derived from the independence structure
defined by Simpson (2018). For example, for a transforma-
tion that changes color and shape, there exists a transforma-
tion that does not change either feature, namely the identity
transformation; color and shape can be changed separately;
and the transformation of an object has the same result if color
is changed before shape or vice versa, as shown in Figure 3a.
Therefore, color and shape transformations satisfy the three
conditions for algebraic independence. By learning transfor-
mations that satisfy such algebraic independence conditions
from raw image patterns, this model is able to separate the
independent features, color and shape, as different qualia by
unsupervised learning.

In this study, we applied the method of Ohmura et al.
(2023) to Navon figures to experimentally separate the global
shapes and local shapes of the figures into two latent spaces.
As shown in Figure 3b, there exist global and local trans-
formations on Navon figures that satisfy the conditions for
algebraic independence, such as changes to color and shape.
Therefore, it is expected that the latent space for global and
local recognition can be learned through unsupervised learn-
ing using the method of Ohmura et al. (2023). Using this
method to learn features of Navon figures would also pro-
vide new insights into the study of global and local cognitive
models. This method enables the learning of global and local
perception models through the interaction of these models,
as detailed in the following section, whereas the prior model
(Hsiao et al., 2013) learned each model independently.
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Learning Method
We now explain in more detail how the method of Ohmura et
al. (2023) separates independent features using simple Navon
figure images, as shown in Figure 4. This model consists
of an encoder Gp that computes features from an image and
a decoder Gn that generates an image from the features, as
shown in Figure 4a.

(x0,x1) = Gp[X] (1)
X = Gn(x0,x1) (2)

The model learns to make each latent vector represent an in-
dependent feature of the input image. In the learning process,
the method requires two image patterns as inputs, as shown
in Figure 4b. The first image X is the original image pattern
before transformation and the second image Y is the image
pattern after transformation. The model learns the two in-
dependent transformations that transform image X to image
Y. It should be noted that the model performs unsupervised
learning. Therefore, the two input images are randomly sam-
pled from the same datasets and it is not always possible to
transform X to Y in two transformation steps. In such cases,
the model learns the identity transformation.

First, from images X and Y, pairs of latent vectors (x0,x1)
and (y0,y1) that represent the features of each image are pro-
duced by encoder Gp. Second, pairs of latent vectors (y0,x1)
and (x0,y1) are created by replacing one of the latent vectors
in (x0,x1) with the corresponding latent vector in (y0,y1).
Finally, from these pairs of latent vectors, images 1 and 2 are
generated by decoder Gn.

Image1 = Gn(y0,x1) (3)
Image2 = Gn(x0,y1) (4)

The generated images (1 and 2) are the images in which one
of the features of image X has been exchanged for the corre-
sponding feature of image Y. Therefore, this step represents
one of the two transformations required to obtain image Y
from image X. In the second step, pairs of latent vectors are
computed from the generated images (1 and 2), again using
encoder Gp. This time, the other latent vector, which was not
exchanged in the previous step, is exchanged. Images Y′

1 and
Y′

2 are generated from these latent vectors by decoder Gn.
These two image generation steps result in two transforma-
tions from image X to image Y. If these transformations sat-
isfy algebraic independence, images Y′

1 and Y′
2 are the same

as image Y.

(y′
0,x

′
1) = Gp[Image1] (5)

(x′
0,y

′
1) = Gp[Image2] (6)

Y′
1 = Gn(y

′
0,y1) (7)

Y′
2 = Gn(y0,y

′
1) (8)

The final loss L to be optimized is defined as follows.

L = MSE(Y−Y′
1)+MSE(Y−Y′

2) (9)

Figure 5: Training dataset.

In this equation, MSE represents the mean squared error be-
tween image Y and image Y′. This method learns the encoder
Gp and decoder Gn by minimizing this loss to ensure that
the transformations between the two image patterns are alge-
braically independent. That is, the two latent vectors com-
puted by the encoder Gp are learned to be independent fea-
tures and these vectors form latent spaces that represent each
independent feature.

The model can learn to satisfy the identity condition when
the two input images are identical, and can satisfy the com-
mutativity condition by minimizing the loss. However, it can-
not be trained to explicitly satisfy the injectivity condition;
the features to be learned cannot be fully separated but may be
mixed into one latent space. Therefore, we propose a model
in which the structure of the neural network is asymmetric
to promote the differentiation of the features to be learned
instead of using the symmetric network used in the study of
Ohmura et al. (2023). To confirm the effect of the asymmetric
structure, we conducted experiments to compare the separa-
tion performance of the asymmetric and symmetric models.

Experiments and Results
This section describes experiments to learn representations of
the global and local shapes of Navon figures using the meth-
ods described in the previous section.

Training Dataset
The visual stimuli used for training are shown in Figure 5.
We created 64 × 64 pixels and 3ch Navon figure datasets in
which both global and local shapes represent a digit between
0 and 9 for the training dataset. The images are black-and-
white and all components (local shapes) of each Navon figure
are the same. In this study, we evaluated how well the model
was able to learn the features of the training dataset. It should
be noted that, although there are 100 distinct images, 10,000
pairs of input images X and Y are used in the training process.

Experiment 1: Separating the Global and Local
Features of Navon Figures
In this experiment, we used the algebraic independence of
Navon figures to separate global and local features into dif-
ferent latent spaces by unsupervised learning. We used the
method described in the previous section. Figure 6 and Ta-
ble 1 describe the network architecture of encoder Gp and
decoder Gn used in this experiment. The model’s architecture
was based on the model by Ohmura et al. (2023), originally
designed for 32 × 32 images. To accommodate 64 × 64 im-
ages, an additional convolutional layer was added. Further-
more, we introduced an asymmetric structure whereby the
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Figure 6: Network structure.

Table 1: Asymmetric network structure.

(a) Encoder Gp

Gp0,Gp1
Conv2d(3, 32, 4, 2, 1), ReLU

Conv2d(32, 32×2, 4, 2, 1), ReLU
Conv2d(32×2, 32×4, 4, 2, 1), ReLU
Conv2d(32×4, 32×4, 4, 2, 1), ReLU

Flatten
Linear(32×4×4×4, 32×4×4×4), ReLU

Linear(32×4×4×4, 64)

(b) Decoder Gn

Gn L0 Gn L1
Linear(64, 4×64), ReLU Linear(64, 128×64), ReLU

Linear(4×64, 4×64), ReLU Linear(128×64, 128×64), ReLU
Linear(128×64, 128×64), ReLU

Unflatten(4×4, 4, 4) Unflatten(128×4, 4, 4)
Gn Deconv

Deconv2d((4 + 128)×4, (4 + 128)×4, 4, 2, 1), ReLU
Deconv2d((4 + 128)×4, (4 + 128)×2, 4, 2, 1), ReLU
Deconv2d((4 + 128)×2, (4 + 128)×2, 4, 2, 1), ReLU

Deconv2d((4 + 128)×2, (4 + 128), 4, 2, 1), ReLU
Conv2d((4 + 128), 3, 1)

features to be learned are less likely to be mixed in a sin-
gle latent space. Specifically, we constructed the asymmet-
ric model by making the structure of linear layers Gn L0 and
Gn L1 in decoder Gn asymmetric. Gn L1 has more linear layers
and parameters than Gn L0. This asymmetric structure facili-
tates the construction of unbalanced latent spaces for the two
latent vectors. The model was trained with a batch size of 100
for 300 training epochs (until the loss fully converged), using
RAdam as the optimizer.

Result 1
Figure 7 shows the distributions of the two latent vectors of
the 100 Navon figures generated in the final training process.
Each latent space was analyzed by principal component anal-
ysis and plotted in a three-dimensional space. The red circles
and arrows in these figures show several Navon figures that
are included in the circles in a magnified form. Figure 7a and
7b show that Navon figures with the same global shape are
distributed in the same part of the latent space that represents
the global shape, and those with the same local shape are dis-
tributed in the same part of the latent space that represents the
local shape. In summary, by using a machine learning model
based on algebraic independence, we were able to construct
different recognition structures for global and local shapes of
Navon figures.

Experiment 2: Effect of the Asymmetric Structure
In this experiment, we tested the effect of the asymmetric
structure by comparing the learning performance of several
asymmetric structures with corresponding symmetric struc-
tures. We conducted four comparative experiments, creat-
ing an asymmetric model and two corresponding symmet-
ric models for each. Table 2 shows the layer depths of the

(a) Global latent space

(b) Local latent space

Figure 7: Latent spaces of Navon figures.

Figure 8: Quantitative evaluation method.

asymmetric and symmetric structures. The layer depths of
the asymmetric structures are the same as those used in Ex-
periment 1, with two-depth linear layers for Gn L0 and three-
depth layers for Gn L1. The asymmetry can be strengthened
by adjusting the values of n0 and n1 in decoder Gn. We con-
structed two symmetric models in which the layer depths and
parameters of the linear layers of decoder Gn were the same
for the two latent vectors. Symmetric model 1 has two-depth
linear layers and symmetric model 2 has three-depth linear
layers for both Gn L0 and Gn L1. For the asymmetric mod-
els, we fixed the hyperparameter n0 = 4 and only changed the
hyperparameter n1 = 4,66,128,190. The n0 and n1 in both
symmetric models were set so that the numbers of learnable
parameters of decoder Gn were similar to those of the corre-
sponding asymmetric models. The values of hyperparameters
and the numbers of learnable parameters for this experiment
are shown in Figure 9. The other experimental conditions,
such as the datasets used, batch size, number of epochs, and
optimizer, were the same as for Experiment 1.

Evaluation Method This section describes the quantitative
evaluation method used for Experiment 2. As shown in Fig-
ure 8, we calculated the mean squared error (MSE) between
the ideally transformed images and the generated images re-
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Table 2: Decoder Gn structure. Symmetric models 1 and 2 have the same depth of linear layers for Gn L0 and Gn L0, while the
asymmetric model has different depths of linear layers. The red parameters n0 and n1 can be used to strengthen the asymmetry
of the neural network by changing their respective values.

Symmetric model 1 Symmetric model 2 Asymmetric model
Gn L0 Gn L1 Gn L0 Gn L1 Gn L0 Gn L1

Linear(64, n0×64)
ReLU

Linear(64, n1×64)
ReLU

Linear(64, n0×64)
ReLU

Linear(64, n1×64)
ReLU

Linear(64, n0×64)
ReLU

Linear(64, n1×64)
ReLU

Linear(n0×64, n0×64)
ReLU

Linear(n1×64, n1×64)
ReLU

Linear(n0×64, n0×64)
ReLU

Linear(n1×64, n1×64)
ReLU

Linear(n0×64, n0×64)
ReLU

Linear(n1×64, n1×64)
ReLU

Linear(n0×64, n0×64)
ReLU

Linear(n1×64, n1×64)
ReLU

Linear(n1×64, n1×64)
ReLU

Unflatten(n0×4, 4, 4) Unflatten(n1×4, 4, 4) Unflatten(n0×4, 4, 4) Unflatten(n1×4, 4, 4) Unflatten(n0×4, 4, 4) Unflatten(n1×4, 4, 4)
Gn Deconv

Deconv2d((n0 +n1)×4, (n0 +n1)×4, 4, 2, 1), ReLU
Deconv2d((n0 +n1)×4, (n0 +n1)×2, 4, 2, 1), ReLU
Deconv2d((n0 +n1)×2, (n0 +n1)×2, 4, 2, 1), ReLU

Deconv2d((n0 +n1)×2, (n0 +n1), 4, 2, 1), ReLU
Conv2d((n0 +n1), 3, 1)

sulting from the conversion of the global or local shape of
image X to that of image Y. That is, we calculated the MSE
between the intermediate images 1 and 2 of Figure 4b and the
ideal images. Because the intermediate generated images are
not binary images, an appropriate threshold value (0.2 in this
experiment) was set and the images were binarized for the
calculation. It is difficult to determine which of the two latent
spaces learns the global information and which learns the lo-
cal information. Therefore, there are two ways to calculate
the MSE for the two intermediate images. In this study, the
MSE was calculated for each learning step; we determined
which latent spaces learned global and local information from
the combinations with smaller MSE values in the final learn-
ing step, and then used these MSE values for evaluation.

Result 2
Figure 9 shows the mean values of MSE between the two
intermediate images and the ideal images at each training
step after 30 trials for each comparative experiment using an
asymmetric model and two corresponding symmetric mod-
els. We employed Bonferroni method to analyze the results
of each comparative experiment and the differences among
the asymmetric structures. In all cases except for compara-
tive experiment 1 using the asymmetric model with n0 = 4
and n1 = 4, the final values of MSE for the asymmetric
model were lower than those for symmetric models 1 and 2
(p < 0.0167 between the asymmetric model and symmetric
model 1 and p < 0.0167 between the asymmetric model and
symmetric model 2 for each comparative experiment), indi-
cating that, in most cases, the asymmetric model more appro-
priately transformed the global and local shapes of the Navon
figures. However, in the case of comparative experiment 1 us-
ing the asymmetric model with n0 = 4 and n1 = 4, the effect
of the asymmetric structure is not evident, and the final MSE
value was the highest (the average values are 0.0376, 0.0120,
0.0100 and 0.0157 for the asymmetric models of compar-
ative experiment 1, 2, 3 and 4) and significantly different
from the other asymmetric models (p < 0.00833 between the
asymmetric model with n0 = 4 and n1 = 4 and each of the
other asymmetric models). It is thought that the asymmetric
model has a lower representation ability to learn the features

Figure 9: Variation of MSE with the number of learning steps
for four comparative experiments with different hyperparam-
eters. The table below each graph shows the hyperparameters
and the numbers of learnable parameters of decoder Gn.

of Navon figures due to the low number of learnable parame-
ters in this particular case.

Figure 10 shows the intermediate images generated during
the learning process in symmetric model 1 and the asymmet-
ric model of comparative experiment 3. In this figure, we de-
fine Image 1 as a globally transformed image and Image 2 as
a locally transformed image. This figure shows that, in both
models, global learning was completed in the early stages
of learning and local learning was achieved in the (approx-
imately) 200 epochs since then. However, in the symmetric
model, the local shape was converted along with the global
shape and the global feature was not separated from the local
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Figure 10: Difference between the symmetric and asymmetric models’ learning of the Navon figures.

Figure 11: Navon figure with different local component.

feature. The same phenomenon was also apparent in sym-
metric model 2. This suggests that the asymmetric structure
improves the differentiation of the features to be learned.

In human visual cognition, there is a phenomenon of the
lateralization of global and local cognition through hemi-
spheric asymmetry in the processing (Han et al., 2002; Ivry
& Robertson, 1998). The differentiation effect of process-
ing features based on asymmetric structure in this study may
serve as one hypothesis to explain such a phenomenon. How-
ever, since this study only used simple asymmetric structures,
further research using models based on actual neuroscientific
findings is needed to confirm this connection to lateralization.

Experiment 3: Recognition of Navon Figures With a
Different Component
In this experiment, we tested the recognition of Navon fig-
ures with a different local element using a model that was
already trained. We used Navon figure images with one local
element differing from the others, as shown in Figure 11, as
evaluation datasets. Specifically, using the model trained in
Experiment 1, we generated reconstructed images from the
evaluation images and conducted a qualitative evaluation of
how the images were recognized.

Result 3
Figure 12 shows the reconstructed image of the Navon fig-
ures with one different local element. The left image is the
image input to encoder Gp and the right image is the image
reconstructed by decoder Gn. This figure shows that, in the
reconstructed images, the different local element has been re-
placed by the surrounding local elements. In this study, we
ensured the algebraic independence of global and local trans-
formations of Navon figures by constructing a training dataset
that contained only images with unified local features. There-
fore, this result is a consequence of the fact that the images in
the training dataset that were most similar to the input images

Figure 12: Input image (left) and reconstructed image (right).

contained uniform local components. The proposed model
is not one that can direct attention to each local feature; the
construction of such a model is a topic for future research.

Conclusion
In this paper, we proposed an unsupervised learning model to
form different visual cognitive structures of global and local
features. Applying a model that learns image features by op-
timizing transformations between input patterns to increase
their algebraic independence, we proposed a model with an
asymmetric structure and conducted experiments to separate
global and local features of input images. The experiment
used Navon figures, which are hierarchical visual stimuli. We
succeeded in generating two latent spaces representing the
global and local shapes of the Navon figures by unsupervised
learning, exploiting the algebraic independence of the global
and local shapes of the Navon figures. We also demonstrated
that the asymmetric structure of the model facilitates the dif-
ferentiation of features to be learned in the learning process.
This result suggests a potential correlation with the lateraliza-
tion of the human brain but further research utilizing models
grounded in actual neuroscientific principles is necessary to
establish a definitive connection between the observed asym-
metric effect and neuroscientific phenomena. And the pro-
posed model was able to learn to satisfy algebraic indepen-
dence because the local elements of the Navon shapes in the
training datasets were all uniform. However, it was unable to
recognize hierarchical visual stimuli with different local ele-
ments. To learn and recognize such image patterns, a model
that can direct attention to each individual element would be
required. The construction of such a model is expected in our
future research.
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