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Abstract 

Integrating worked examples with problem solving yields 
more effective and efficient learning, as does intelligent 
tutoring support for problem solving. This study examines the 
impact of integrating worked examples and intelligent tutor 
support for algebra modeling problems. Students in three 
conditions alternately studied worked examples (either static 
graphics, interactive graphics or static tables) and solved 
Algebra Cognitive Tutor problems. A control group solved all 
the problems with the Cognitive Tutor. Students in the four 
groups developed equivalent problem-solving skills, but 
students learned more efficiently in the interleaved worked 
example conditions, requiring 26% less time to complete the 
problem set. There were no differences among the four 
groups in two measures of robust learning – a retention test 
and a transfer test. But students in the static table condition 
could more accurately describe what algebraic model 
components represent in problem situations than could 
students in the other three conditions. 

Keywords: Education; Problem solving; Learning; 
Classroom Study; Intelligent Tutors; Worked Examples.  

Introduction 
Extensive research has documented the beneficial impact on  
learning of interleaving worked examples with problem 
solving  (Kalyuga, et al 2001; Pashler, et al, 2007; Sweller 
& Cooper, 1985; von Gog, Paas, & Van Merrienboer, 
2004). Novices learn more quickly and deeply from a 
sequence of problems if they are asked to alternate between 
explaining worked-out examples of problem solutions and 
solving problems than if they are asked to solve all the 
problems in the sequence. 

Typically in this research problem solving is supported by 
whole-answer feedback. After students complete a problem 
solution, whether successfully or not, they are given an 
example of a correct solution. This comparison condition is 
relatively weak, since step-by-step assistance in problem 
solving has been shown to be both more effective (improved 
learning outcomes) and more efficient (less learning time to 
achieve the same learning outcome) than whole answer 
feedback. For instance, Corbett & Anderson (2001) 
compared step-by-step feedback and whole-answer 
feedback in the Lisp Programming Cognitive Tutor and 
found that students in the former condition finished a fixed 
set of problems in one-third the time required by those in 
the latter condition, and made 40% fewer errors on posttests. 

As a result, the question arises whether interleaving 
worked examples with problem solving scaffolded by 
intelligent tutoring systems might also yield improved 
learning outcomes and/or  improved learning efficiency. 
McLaren, Lim and Koedinger (2008) examined this 
question in an intelligent tutor for chemistry problem 
solving and found that interleaving worked examples with 
problem solving yielded the same learning outcome as the 
baseline problem-solving condition, but in less time, thereby 
increasing learning efficiency. 

Several studies have examined the impact of 
incorporating “faded” worked examples into Geometry 
Cognitive Tutor (GCT) modules in which students solve 
geometry problems and justify each step with a problem-
solving principle (Aleven & Koedinger, 2002). In example 
fading (Renkl & Atkinson, 2003) the first problem is 
presented as a complete worked example, and in successive 
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problems students complete progressively more steps 
themselves until students are finally solving complete 
problems. When faded worked examples were incorporated 
into GCT, learning was more efficient (students spent less 
time to reach the same level of skill) and some evidence was 
obtained that the worked-example condition yielded deeper 
understanding (Salden, et al, 2008; Schwonke, et al, 2009). 

The present study examines the impact of interleaved 
worked examples in a Cognitive Tutor (CT) module for 
Algebra problem solving. The study has two purposes. First, 
the study examines the impact of interleaving worked 
examples on students’ learning time, their problem-solving 
skill and their depth of understanding. Second, the study 
evaluates three alternative types of worked examples: (1) 
Static Graphics in which problem components are 
represented graphically; (2) Interactive Graphics in which 
students participate in constructing the graphical problem 
representation; and (3) Static Tables in which problem 
components are represented symbolically in a table, 
analogous to the problem-solving interface. 

This study compares four learning conditions; three 
conditions in which each type of worked example is 
interleaved with Cognitive Tutor problem solving and a 
fourth, Cognitive Tutor problem-solving baseline condition. 

The following sections describe the problem solving 
domain, the Cognitive Tutor problem-solving environment 
and the three types of worked examples. 

The Domain: Algebraic Modeling 
In this study students are asked to solve “mixture 
problems,” for example: 

You have an American Express credit card with a 
balance of $715 at an 11% interest rate and a Visa 
credit card with a 15% interest rate. If you pay a total of 
$165 in annual interest, what is the balance on your 
Visa card? 

The problem-solving goal is to construct a symbolic model 
of the situation that can be used to solve the problem, e.g.: 

(.11 x $715) + (.15 x V) = $165 

The problem-solving curriculum consists of four problem 
types: Two types of “arithmetic problems,” in which the 
unknown value is naturally represented as an isolated 
variable on one side of the equation, and two types of 
“algebra problems” in which the unknown quantity is more 
naturally represented as a variable that is embedded in one 
or in two expressions in the equation. See Figure 1 for an 
example of each type. 

Cognitive Tutor Problem Solving 
Figure 2 displays the interface for the Cognitive Tutor at the 
end of a problem. Each problem describes a mixture 
scenario and provides a table to scaffold the  relationship   
between  the  scenario  components  and   the   mathematical 
representations of the components. Students enter a number, 
variable  or  operation  into  each  cell.  After completing the 

  

[Arithmetic Type 1] You have a MasterCard with a 
balance of $532 at a 21% interest rate. You also have a 
Visa credit card with a balance of $841 at a 16% interest 
rate. How much money are you paying in total interest? 

(.21 x $532) + (.16 x $841)=T 
 

[Arithmetic Type 2] Shelly owed $475 in total interest on 
her MasterCard and Visa accounts. Her MasterCard 
charges 19% interest and her Visa Card charges 22% 
interest. She paid the interest on her Visa Card debt of 
$1100. How much interest does she still owe on her 
MasterCard? 

$475 - (.22 x $1100)  =  M 
 

[Algebra Type 1] You have an American Express credit 
card with a balance of $715 at an 11% interest rate and a 
Visa credit card with a 15% interest rate. If you pay a 
total of $165 in annual interest, what is the balance on 
your Visa card? 

(.11 x $715) + (.15 x V) = $165 
 

[Algebra Type 2] You have a total balance of $1405 on 
two different credit cards— an American Express credit 
card with a 12% interest rate and a Discover credit card 
with a 24% interest rate. If you owe a total of $224 in 
annual interest, what is your balance on the Discover 
card? 

(.24 x D)+(.12 x [$1405 - D]) = $224 

Figure 1: An example problem situation and symbolic 
model for each of the four problem types. 

table, the student enters an equation to model the situation in 
the text cell at the bottom of the screen. The activities were 
created with the Cognitive Tutors Authoring Tools (CTAT) 
environment (Aleven, et al, in 2009). As in all cognitive 
tutors, students received accuracy feedback on each step, 
could request advice on any step, and were required to 
complete a correct solution to each problem. 
 

 
Figure 2: The Cognitive Tutor interface at the completion of 
a problem. 

Worked Examples 
Three types of worked examples were developed, in the 
Animation Tutor environment (Reed, 2005), each consisting 
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of multiple successive screens. In each case the first screen 
presented a problem statement alone. Successive screens 
developed an analysis of the problem’s component structure 
in graphical or tabular form. 

(1) Static Graphics (SG). Figure 3 shows the final screen 
of a static graphics worked example. The first screen 
displayed just the problem statement at the top. Students 
successively press the Continue arrow to see (1) the first 
stack of money which represents an account balance and 
interest owed, (2) the second stack of money which 
represents the second account balance and interest owed, 
and (3) both the third stack, which represents the total 
interest, and the symbolic model at the bottom of the screen. 

 

 
Figure 3: A static graphics worked example at the 
completion of the example. 

 (2) Interactive Graphics (IG). Interactive graphics 
worked examples are the same as the SG worked examples, 
except that students construct the total interest stack. 
Students click on the interest component at the bottom of 
each of the other two stacks and drag that component over 
to the total interest stack to add up the total interest. 
Interactive worked examples were developed for all the 
algebra problems and introduced with a single arithmetic 
problem. Students in the IG condition viewed static graphic 
examples for the other arithmetic problems. 

(3) Static Table (ST). Figure 4 displays the final screen of 
a static table worked example. As with the graphics 
examples, the first screen displays the problem statement 
alone. Students successively click the Continue arrow to see 
(1) the column labels and first row of the table, which 
represents an account balance and interest owed, (2) the 
second row of the table which represents the second account 
balance and interest owed, and (3) the symbolic model of 
the situation beneath the table. 

Design Principles. The three types of worked examples 
all follow two principles of multimedia design (Sweller, 
2003; Mayer 2001; Moreno & Mayer, 2007). The first is the 
proximity principle that different media be closely 
integrated in space. Verbal explanations are therefore placed 
immediately above, and the equation immediately below, 

either the bars or the table in the worked examples. The 
second principle, minimize cognitive load, is achieved by 
presenting the solution in successive segments. 

 

 

Figure 4: A static table worked example at the completion 
of the example. 

Predictions 
Time and Learning efficiency. Time-on-task in learning is 
expected to be less in the worked example conditions than 
in the problem-solving condition. Students typically study 
worked examples in less time than they can generate 
problem solutions, even with intelligent tutoring support 
(McLaren, et al, 2008; Salden, et al, 2008; Schwonke, et al, 
2009). However, interleaved worked examples are only  
more efficient if students in those conditions acquire as 
good, or better, problem-solving skills as students in the 
problem solving condition. 

Robust Learning. There are several reasons to expect that 
students may acquire a deeper understanding of problem 
solving in the interleaved worked example conditions. 
Cognitive Load theory (Sweller, 2003) suggests that worked 
examples can eliminate the cognitive load associated with 
generating problem solutions, and free up capacity that 
students can devote to understanding the solutions. In this 
study, all the worked-example conditions describe the 
mapping between the mathematical representations and the 
problem situations, so students may acquire a better 
understanding of the underlying semantics, an 
understanding that should support better retention and 
transfer to novel problem situations. In addition, the two 
graphics conditions may promote better retention than the 
other two conditions, since they encourage visual thinking 
(Reed, 2010), thereby creating multiple memory codes, both 
graphical and symbolic (Mayer, 2001; Paivio, 1986). 
Finally, interactive graphics may foster still better retention 
than static graphics, since interactively constructing key 
quantities in the graphics representation, (Moreno & Meyer, 
2007), creates  a third, motor code (Engelkamp, 1998; 
Glenberg, et al, 2004; Reed, 2006, 2008).  
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Robust Learning Measures 
A problem-solving pretest and posttest were employed to 
measure gains in students’ algebra problem-solving skills. 
In addition, three “robust learning” tests were employed to 
measures students’ depth of understanding. 
(1) Retention. A retention test examined students’ arithmetic 
and algebra problem solving skills after a one-week interval. 
(2) Transfer. A transfer test described “mixture” situations 
with novel quantitative structures and asked students to 
generate mathematical models of the situations, which also 
had novel structures. 
(3) Model Description. The Cognitive Tutor Model Analysis 
Tool (Corbett, et al, 2000, 2007; Corbett, Wagner & Raspat, 
2003) was employed to ask students to explain the structure 
of arithmetic and algebraic models. As displayed in Figure 
5, each problem presents a problem description and a 
mathematical model of the situation. Students select entries 
from menus to describe what each hierarchical component 
of the symbolic model represents in the problem situation. 
As in all Cognitive Tutors, students receive feedback on 
each problem step, can request advice on each step, and are 
required to complete a correct solution to the problem.  
 

 
Figure 5: The Model Analysis tool partway through a 
problem. 

Method 

Participants 
128 students enrolled in Cognitive Tutor Algebra courses in 
three Pittsburgh-area high schools participated in the study. 

Design 
The study was completed over the course of three computer 
sessions in the students’ Algebra Cognitive Tutor courses. 
In the first two sessions, students completed 16 mixture 
problems, eight problems per day. The students in each of 
the three courses were randomly assigned to one of four 
learning conditions. Students in the three worked example 
conditions studied example solutions for the odd numbered 

problems and solved the even numbered problems with the 
Cognitive Tutor each day. Students in the fourth condition 
solved all the problems each day with the Cognitive Tutor. 

Learning Materials 
Four types of mixture problems were developed, two 
“arithmetic” types and two “algebraic” types, as displayed 
in Figure 1. Four problems of each type were developed, for 
a total of 16 problems. Two problems of each type involved 
interest payments on two credit cards, as displayed in the 
figures. The other two were mining problems, about 
extracting metals from two ores of different quality. The 
four problems of each kind were presented in succession, 
with the two equivalent interest problems first, followed by 
the two equivalent ore problems. 

Test Materials 
Four test measures of student learning were developed. 

Day-2 Problem-Solving Test. Paper-and-pencil tests were 
developed consisting of two problems, equivalent to the two 
types of algebra problems students solved with the online 
tutor that day. Each problem presented a mixture problem 
situation and students were asked to generate an equation to 
model the situation. Two test forms were developed and 
within each condition, each form served as the pretest for 
half the students, who then switched to the other form for 
the posttest, so that the pretests and posttests were matched 
across the full set of students, but for each student the 
pretest and posttest were different. 

Day-3 Retention Test. This test consisted of four 
problems, equivalent to the four types of problems students 
had solved with the online tutor. Again, each problem 
presented a mixture problem situation and students were 
asked to generate an equation to model the situation. 

Day-3 Transfer Test. The Day-3 transfer test consisted of 
an arithmetic problem and an algebra problem in which 
students were asked to generate symbolic models of 
situations with novel structures. 

Day-3 Model Component Descriptions. Four Model 
Analysis problems were developed. Each problem 
corresponded to one of the four problem types students had 
solved on the prior two days of the study. Each problem 
presented a mixture scenario and presented a symbolic 
model of the scenario. Students were asked to describe what 
each hierarchical component of the equation represents in 
the real-world situation, by selecting entries from menus.  

Procedure 
In the first session, the online problem solving and worked 
example activities were introduced, then students worked 
through the eight arithmetic mixture problems. In the second 
session, students completed a two-problem paper pretest, 
worked through eight algebraic problems, then completed a 
two-problem paper posttest. In the third session, which 
followed a week later, students completed the four-problem 
paper retention test, followed by the two-problem paper 
transfer test and finally the four Model Analysis problems. 
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Results and Discussion 
Four students were excluded from the analyses because they 
missed the second session and seven others were excluded 
for talking to others as they worked on the problems. 

Day-2 Pretest-Posttest Learning Gains 
As displayed in Table 1, there were substantial pretest-
posttest learning gains in all four learning conditions, 
averaging 26 percentage points. In an analysis of variance, 
this main effect of test type was significant F(1,105) = 
52.14, p < .001. There was no significant difference of 
learning condition F(3,105) < 1, and no significant 
interaction of test type and learning condition F(3,105) < 1. 

Table 1: Learning Time per problem for Day 1 and Day 2 
(minutes) and Day-2 pretest and posttest accuracy (percent 
correct). 

Learning 
Conditions 

Day 1 
Time 

Day 2 
Time 

Pretest 
%correct 

Posttest 
% correct 

CT 2.30 2.15 7 37 
IG 1.52 1.68 7 28 
SG 1.68 1.52 4 34 
ST 1.75 1.72 8 28 

Mean 1.81 1.77 6 32 

Learning Efficiency 
Table 1 displays average learning time per problem for the 
first two sessions. Elapsed time was not measured for the 
first worked example in each session (since the environment 
did not directly record time), so the first pair of equivalent 
problems in each session is excluded from this analysis for 
all four groups. In addition, 13 students were excluded from 
the Day-1 analysis and 16 students from the Day-2 analysis 
because of missing data. While there were no differences in 
skill acquisition outcomes among the four conditions, 
students in the three interleaved worked example conditions 
spent less time in learning, and so learned more efficiently.  

Students in the three worked example conditions averaged 
28% less time per problem on Day 1 than students in the 
problem solving condition (1.65 vs 2.30) and 24% less time 
per problem on Day 2 (1.64 vs. 2.15). The main effect of 
condition is significant for Day 1, F(3,100) = 6.88, p < .001 
and for Day 2, F(3,97) = 6.33, p < .001. Bonferroni 
comparisons revealed that the CT group differed from each 
one of the three worked example groups both on Day 1 and 
on Day 2,  p < .02 in each case. The three worked example 
groups did not differ from each other.  

These average times mask a highly significant Group x 
Problem interaction on Day 1, F(3,100) = 93.12, p < .001, 
and on Day 2, F(3,97) = 90.19, p < .001. On Day 1 the three 
worked example (WE) groups averaged 0.78 min. on the 
worked examples, while the CT group averaged 2.98 min. 
solving the corresponding problems.  The WE groups 
averaged 2.53 min. on solving the subsequent equivalent 
problems, while the CT group averaged 1.63 min. on those 
problems. On Day 2, the WE groups averaged 0.62 min. on 

the worked examples and the CT group averaged 2.82 min. 
solving those problems. The WE group averaged 2.67 min. 
solving the subsequent problems and the CT group averaged 
1.50 min. on those problems. 

Robust Learning 
Of the 117 students included in the study, 102 completed 
the day 3 robust learning activities. Table 2 displays results 
of the three robust learning measures included in the study: 
(1) retention of problem-solving skill; (2) transfer of 
problem-solving skill; and (3) explanations of symbolic 
model components. 

Retention Test. Table 2 displays students’ test accuracy on 
the one-week retention test of problem-solving skill. 
Retention test accuracy did not vary significantly across the 
four learning conditions, F(3,90) < 1.  

Transfer Test. As can be seen in Table 2, students in the 
four learning conditions averaged 17% correct on the 
transfer test of problem-solving skill. The main effect of 
learning condition was not significant F(3,90) < 1.  

Model Component Descriptions. The model analysis task 
required students to describe what a total of 31 hierarchical 
equation components represented in the four real-world 
problem situations. Table 2 displays the average percentage 
of these 31 descriptions on which students’ first menu 
selection was correct. There was no significant difference 
among the groups in an ANOVA, F(3,97) < 1. But the ST 
group performed consistently best in describing the model 
components, achieving the highest accuracy for 18 of the 31 
components (vs. 5 for the IG and SG groups and 3 for the 
CT group). This difference is significant in a Friedman two-
way ANOVA of rank ordering, χ2(3) = 20.00, p < .001. 

Table 2: Day-3 Robust learning measures: Retention,  
transfer and model analysis accuracy (percent correct). 

Learning 
Conditions 

Retention 
%correct 

Transfer 
% correct 

Model 
Analysis 
% correct 

CT 32 15 52 
IG 29 18 52 
SG 29 21 53 
ST 26 13 58 

Mean 29 17 54 

Conclusion 
The main results confirm earlier conclusions in chemistry 
and geometry that incorporating worked examples into 
intelligent tutor-supported problem solving can improve 
learning efficiency. While students developed similar 
problem-solving skills across the four conditions, students 
spent 26% less time completing the sixteen problems in the 
three interleaved worked-example conditions than in the 
problem-solving comparison condition. 
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However, there is relatively thin evidence that 
incorporating worked examples yielded a deeper 
understanding of problems solving, as expected by 
Cognitive Load theory. Students in the static table worked 
example condition demonstrated a better understanding of 
the referential semantics that link the mathematical 
representations and real-world problem situations than 
students in the problem solving condition. However, this 
deeper knowledge did not support greater problem solving 
accuracy, retention or transfer. Students in the two graphics 
worked example conditions also did not show more robust 
learning than students in the problem solving condition.  
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