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Regional flux analysis for discovering and quantifying 
anatomical changes: An application to the brain morphometry in 
Alzheimer's disease

M. Lorenzi*, N. Ayache, X Pennec, and Alzheimer's Disease Neuroimaging Initiative (ADNI)1

Asclepios Research Project, INRIA Sophia Antipolis, 2004 route des Lucioles BP 93, 06 902 
Sophia Antipolis, France

Abstract

In this study we introduce the regional flux analysis, a novel approach to deformation based 

morphometry based on the Helmholtz decomposition of deformations parameterized by stationary 

velocity fields. We use the scalar pressure map associated to the irrotational component of the 

deformation to discover the critical regions of volume change. These regions are used to 

consistently quantify the associated measure of volume change by the probabilistic integration of 

the flux of the longitudinal deformations across the boundaries. The presented framework unifies 

voxel-based and regional approaches, and robustly describes the volume changes at both group-

wise and subject-specific level as a spatial process governed by consistently defined regions. Our 

experiments on the large cohorts of the ADNI dataset show that the regional flux analysis is a 

powerful and flexible instrument for the study of Alzheimer's disease in a wide range of scenarios: 

cross-sectional deformation based morphometry, longitudinal discovery and quantification of 

group-wise volume changes, and statistically powered and robust quantification of hippocampal 

and ventricular atrophy.
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Introduction

Deformation based morphometry is a fundamental instrument for discovering and 

quantifying the dynamics of biological processes, for instance growth, or pathological 

changes. We can broadly identify two main paradigms for the analysis of volume changes in 

T1 magnetic resonance (MR) images: hypothesis-free and regional analysis. In the first case, 

the volume changes are modeled at finer scales in the whole brain such as in the voxel/tensor 

1Data used in preparation of this article were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database 
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or 
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: 
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
*Corresponding author. marco.lorenzi@inria.fr (M. Lorenzi), nicholas.ayache@inria.fr (N. Ayache), xavier.pennec@inria.fr (X. 
Pennec). 
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based morphometry and in the cortical thickness analysis (Fox et al., 2001; Thompson et al., 

2003).

On the one hand these methods are useful for exploratory purposes at the population level, 

but usually lack robustness for a reliable quantification of the changes at the subject level. 

On the other hand, regional analyses are focused on the detection of significant changes in 

regions which are identified thanks to a preliminary segmentation. For instance, the 

boundary shift integral measures the longitudinal atrophy as a function of the displacement 

of segmented boundaries (Freeborough and Fox, 1997). These approaches can provide 

robust assessment of longitudinal atrophy (Leung et al., 2010b), but are limited to previously 

defined regions of interest. Therefore they might fail to detect the complex and spread 

pattern of changes which is likely to characterize the biological variation. For example the 

failure in the recent trials on AD to show significant treatment effects on the hippocampal 

volume changes led to question whether a more general but still powered analysis would be 

able to detect possible improvements (Raschetti et al., 2007).

Unifying regional and hypothesis free-approaches

Providing a measure of volume change which can at the same time consistently identify and 

reliably quantify the volume changes is crucial for understanding the dynamics of the 

pathological evolution and for providing stable measures for the clinical setting.

Non-linear registration encodes the morphological changes between pairs of longitudinal 

MRIs as deformation fields. It was employed both for the whole brain exploratory analysis 

and for the regional quantification, for instance through the Jacobian determinant analysis 

(Boyes et al., 2006). However, the identification of atrophy regions through group-wise 

voxel-by-voxel analysis of Jacobian determinant maps, like in tensor based morphometry 

(TBM) (Riddle et al., 2004), is prone to statistical issues such as multiple comparisons 

problems. Moreover, the robustness of the regional quantification of the Jacobian is 

inherently dependent on the accuracy of the underlying anatomical segmentation, and is 

highly sensitive to numerical biases introduced by the spatial derivatives. For these reasons, 

tools like TBM are mainly employed in research and found limited applications in the 

practical clinical routine.

The above limitations might be overcome by noticing that the topology of deformation fields 

implicitly encode the spatial location of relevant atrophy processes, and thus we might not 

really require the explicit definition of anatomical regions for the Jacobian determinant 

analysis (Davatzikos et al., 2009). The aim of this paper is indeed to develop novel analysis 

techniques to simultaneously extract and analyze these regional features encoded by the 

deformations.

Helmholtz decomposition of anatomical deformations

It was proposed in Hansen et al. (2009) to parametrize the deformations by irrotational and 

divergence-free components, according to the Helmholtz decomposition of vector fields. If 

we assume that atrophy is described by the change of volume associated with the 

deformation, then it is completely identified by the irrotational part of the deformation, 

while the divergence-free part only accounts for volume preserving (“locally rigid”) 
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processes which can be interpreted as tissue reorganization. With such a decomposition, the 

locations of the maximum/minimum irrotational potential define the centers of expanding 

and contracting regions (Lefevre et al., 2009). These extrema may represent a promising 

feature for localizing brain atrophy.

A different measure of volume change associated to the deformation field is the flux across 

surfaces (Chung et al., 2001), which may be seen as the infinitesimal formulation of the 

boundary shift. However flux-based analysis has been seldom used in morphometric studies, 

due to the complexity of reliably integrating vector normals on segmentations of the regional 

boundaries.

Expanding on the conference article (Lorenzi et al., 2012) we propose to merge these 

approaches, leading to the regional flux analysis of deformations, a novel method for 

reliably discovering and robustly quantifying volume changes based on the Helmholtz 

decomposition.

In Section 2 we introduce the Helmholtz theorem, and the relationship between pressure and 

flux of deformations. These measures are used in Section 3 to provide a probabilistic 

formulation for the definition of the group-wise regions involved in the atrophy process. We 

then apply the proposed framework to the study of Alzheimer's disease (AD), to identify and 

quantify the brain atrophy in three different scenarios: explorative group-wise morphological 

comparison (Section 4), discovery and quantification of group-wise longitudinal atrophy 

(Section 5), and robust and statistically powered quantification of hippocampal and 

ventricular atrophy (Section 6). All the experiments are performed on large cohorts of the 

ADNI dataset (for details on the experimental data please refer to Appendix A).

Helmholtz decomposition for stationary velocity fields

The present work is based on the image registration framework parameterized by stationary 

velocity fields (SVF), which has been already applied for the longitudinal analysis of 

deformations (Lorenzi et al., 2011), and for which an implementation of the LCC-

logDemons algorithm is available (Lorenzi et al., 2013a).

Stationary velocity field parameterization of deformations

In the registration setting parameterized by SVFs the diffeomorphic transformation ϕ which 

maximizes the similarity between a given pair of images belongs to the subset of 

diffeomorphisms generated by the flow of a tangent SVF v (Arsigny et al., 2006). Such a 

deformation is parametrized through the Lie group exponential of v, denoted exp(v), defined 

by the solution of the ODE: ∂ϕ(x, t)
∂t = v(ϕ(x, t)), with initial condition ϕ(x, 0) = id(x), where 

id(x) is the identity transformation. This ODE defines a one parameter subgroup, ϕt(x) = ϕ(x, 

t) since ϕs + t(x) = ϕ(x, s) ○ ϕ(x, t) = ϕ(x, s + t). The transformation is obtained at the 

parameter value t =1, i.e. ϕ(x) = ϕ(x, 1).

The advantage of the SVF parameterization lies in the simplification of mathematical 

operations on diffeomorphic transformations, for instance for inverse computing and 

composition (Arsigny et al., 2006). More generally, the tangent nature of SVF simplifies the 
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definition of statistical quantities, like the group-wise barycenter (Pennec and Arsigny, 2012) 

or local principal components analysis of variations (Seiler et al., 2011).

In the following sections we show how the SVF framework can be used to define a 

consistent statistical setting for the group-wise analysis of longitudinal anatomical volume 

changes.

Pressure potential and flux through a region

The Helmholtz theorem states that a vector field v (which in our case is a SVF) which 

vanishes at infinity can be uniquely factored as the sum of an irrotational and a divergence 

free component, v = ∇p + ∇ × A (Fig. 1) (Arfken and Weber, 1995).

The irrotational component ∇p is the gradient of a scalar pressure (potential) field p, while 

the divergence-free component is the curl of the vector potential A. Since ∇ × ∇p = 0, the 

scalar pressure component encodes the information concerning all the volume change.

Please note that the diffeomorphic transformation ϕ(x, t) = exp(∇(tp))(x) is the flow of an 

irrotational velocity field ∇p(x) = dϕ(x, t)/dt, for every t. On the other hand the divergence-

free component is by definition such that ∇ ⋅ ∇ × A = 0 and therefore it describes the 

incompressible part of the deformation.

Finally, the flux of a stationary velocity field across a given surface ∂V is given by the 

Divergence (or Ostrogradsky's) theorem, and can be rewritten as ∮ ∂vv ⋅ ndS = ∫ v ∇ ⋅ vdV.

Recently the Helmholtz decomposition was introduced in the Demons registration in order 

to estimate incompressible deformations (Mansi et al.). Here we propose to use it for the 

analysis of the compressible part, which encodes the observed matter loss as a smooth 

compression/expansion process. In such a model, the associated divergence quantifies the 

apparent anatomical changes as the flux of the estimated SVF across surfaces (Fig. 3).

Topology of pressure fields

Theoretically, given the irrotational field ∇p one could partition the whole space into critical 
regions of positive and negative divergence ∇ ⋅ ∇p, each of them containing a critical point 

of local maximal/minimal pressure p (Fig. 2). From the divergence theorem, the flux across 

the boundaries of these regions is flowing either inward or outward. The saddle points for 

the pressure are on the boundaries of those regions, and identify a change in the flow.

The analysis of the critical points of a pressure map can be addressed by the Morse-Smale 
theory as a topological problem, leading to the representation of incompressible fields as a 

geometrical complex of regions, boundaries, edges and vertices (Morse, 1934). Although 

intriguing, the application of such concepts to medical imaging is still difficult, due to the 

missing statistical version (and implementation) of the Morse theory. In order to obtain a 

tractable approach to the problem, we propose in this study to focus on the statistical 

definition of a consistent subset of critical regions in a sample of observed pressure maps. 

This way we can robustly describe group-wise irrotational fields as a spatial process 

governed by key critical regions. In the following section we provide a framework for the 
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statistical definition of these critical regions, and for the quantitative analysis of the 

associated scalar flux, in order to provide a robust measure of volume changes in anatomical 

studies.

Probabilistic group-wise definition of the critical regions

The aim of this section is to provide a statistical definition of the group-wise pressure field 

associated to a set of observed pressure images pi i = 1
N . We rely on the standard 

deformation based morphometry setting, in which the anatomies observed in a given 

population of images Ii i = 1
N  are represented by the non-linear transformations 

parameterized by SVFs, φi, = exp(vi), obtained by non-linear registration to a reference 

anatomical template T. According to the Helmholtz decomposition, the group-wise volume 

changes are encoded in the set of scalar pressure fields pi i = 1
N  associated to the SVFs vi.

The group-wise pressure field p is unknown and must be inferred from the set pi i = 1
N . In 

particular we are interested in characterizing the common topological properties among the 

observed scalar pressures, i.e. in the localization of the group-wise critical points, and of the 

associated boundaries between critical regions of contraction and expansion. For this reason 

we cannot simply rely on the standard statistical tests based on the sample mean 

pavg = 1
N ∑i = 1

N pi since its topology might not be representative of the group-wise one. In 

fact since the scalar pressure fields are integral quantities they might differ by a constant 

value and cannot be directly compared. Moreover the set of maxima, minima and boundary 

points of the sample mean can be importantly affected by the presence of outliers, and thus 

the topology associated to the average pressure field might be biased. For this reason, we 

propose here to implicitly estimate the group-wise pressure p by relying on simple 

geometrical assumptions about the spatial distribution of the pressure fields, and on robust 

statistics of the group-wise divergence maps. This approach avoids the direct identification 

(and subsequent manual selection) of the critical points associated to the average pressure 

map, differently from the approach previously proposed in Lorenzi et al. (2012).

Based on these considerations we provide in this section an alternative definition of the 

group-wise pressure p by relying on simple geometrical assumptions about the spatial 

distribution of the pressure fields. We recall from Section 2 that the critical regions of 

expansion and contraction of p form a binary partition of the whole space that we denote by 

R+ ∪ R−.

For a given location x, we note by 𝒩(x) the neighborhood of radius σ centered in x, and by 

pi
σ(x)  the set of pressure fields pi i = 1

N  observed in 𝒩(x). We are interested in evaluating 

p(x ∈ R+ ∣ pi
σ(x) ), i.e. the probability of x to belong to R+, given observed group-wise 

pressure fields in the neighborhood 𝒩(x). Since the critical regions define a binary partition 

of the space we have p(x ∈ R+ ∣ pi
σ(x) ) = p(x ∉ R− ∣ pi

σ(x) ) = 1 − p(x ∈ R−, ∣ pi
σ(x) ). The 

critical regions of expansion (resp. contraction) are characterized by strictly positive (resp. 

Lorenzi et al. Page 5

Neuroimage. Author manuscript; available in PMC 2019 January 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



negative) divergence, which can be measured by H(Δpi(x)) = 1 (resp. H(Δpi(x)) = 0), where 

the Laplacian Δpi(x) is the divergence of the irrotational field ∇pi, and H is the step function: 

H(j) = 1 if j > 0 and 0 elsewhere.

Thus, we may identify the probability q = p(x ∈ R+ ∣ pi
σ(x) ) with the parameter of a 

Bernoulli distribution, and compute the estimate q  of q as the sample mean:

q = 1 ∕ N ∑
i = 1

N
H(Δpi(x)) . (1)

Such a formulation identifies the critical regions through a robust statistic of the pressure 

fields, since it accounts only for the sign of the divergence map, and not for its magnitude. In 

particular the proposed computation is motivated by the definition of the discrete Laplacian:

Δpi(y) = − pi(y) +
∑x ∈ 𝒩(y)w(x)pi(x)

∑x ∈ 𝒩(y)w(x) , (2)

for specific coefficients w(x), defined for instance by the heat kernel associated to the 

Laplace-Beltrami operator (Belkin and Niyogi, 2001). Formula (2) shows that the step 

function H(Δpi(y)) evaluates whether the value of pi(y) is extremal in 𝒩(y) with respect to 

the neighboring voxels, thus providing a quantification of the local topological properties of 

the pressure field. The quantity q  can be generalized to any neighborhood size σ and weights 

w(x) to define a coarse Laplacian operator for the detection of critical regions at different 

resolution levels, similarly to what has been in (Ollivier, 2007) for the coarse Ricci 

curvature.

Probabilistic cross-sectional comparison of the critical regions

The probabilistic formulation presented in Section 3 enables us to define the group-wise 

critical regions associated to a given set of observed pressure fields. In this section we 

extend the proposed model to the comparison between the group-wise critical regions 

associated to two different sets of pressure fields. We then provide an application to the 

group-wise comparison of the brain morphology between AD patients and healthy controls.

Given two groups of images A = In
A  and B = Im

B  with the associated set of pressure maps 

pn
A  and pm

B , the proposed probabilistic setting provides a straightforward way to compare 

the associated critical regions. In fact, the differences between the modelled sets of critical 

regions can be initially evaluated by the difference between the beliefs 

ΔFluxAB
+ = p(x ∈ R+ ∣ pn

A ) − p(x ∈ R+ ∣ pn
B ). We note that by definition 

ΔFluxAB
− = p(x ∈ R− ∣ pn

A ) − p(x ∈ R− ∣ pn
B ) = ΔFluxBA

+ . However, as for the Jacobian 

analysis in TBM, the above measure is informative about the presence of significant group-

wise volume differences only, and it does not provide any information concerning the 
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specificity of the critical regions. In fact volumetric differences can be equally due to the 

different spatial localization of the critical regions as well as to the same set of critical 

regions leading to different associated flux.

For this reason we are interested in assessing the set of critical regions R+ jointly associated 

to the groups A and B, and the set of critical regions which are specific for a given group. 

The former test is assessed by evaluating 

pAB
+ = p(x ∈ RA

+, x ∈ RB
+ ∣ pn

A, pm
B ) = p(x ∈ R+ ∣ pn

A, pm
B ), while the latter is associated to

pA
+ = p x ∈ RA

+, x ∉ RB
+ ∣ pn

A , pm
B

= p x ∈ R+, x ∈ RB
− ∣ pn

A , pm
B

= p x ∈ RA
+, x ∈ RB

+ ∣ pn
A , − pm

B

= p x ∈ R+ ∣ pn
A , − pm

B

In the same way we can estimate pAB
− = 1 − pAB

+ , and pA
− = 1 − pB

+.

Group-wise analysis of atrophy in Alzheimer's disease

We selected the baseline MR T1 images for 142 patients affected by AD and for 200 healthy 

controls from the ADNI dataset. The images were affinely aligned to a previously estimated 

anatomical template and non-linearly registered with the LCC-logDemons algorithm 

(Lorenzi et al., 2013a) in order to obtain the set of subject to template SVFs vn n = 1
N . The 

Helmoltz decomposition was performed on the SVFs by solving the discrete Poisson 

equation Δpi = ∇ ⋅ vi with a finite differences scheme, and by imposing pi = 0 outside the 

brain boundaries. The proposed framework was applied to the resulting sets of pressure 

maps pn
AD  and pm

HC  in order to assess 1) group-wise differences between the probability 

measure of the critical regions, 2) the locations of the joint critical regions, and 3) of the 

AD-specific critical regions.

The proposed analysis was compared to the standard TBM analysis of the group-wise log-

Jacobian determinant associated to the subject-to-template transformations. The log-

Jacobian maps were robustly computed as proposed in (Lorenzi et al., 2013a), and the voxel-

wise statistical analysis was performed by using the SPM software2 (Ashburner and Friston, 

2000). Statistical results were corrected for family wise error at the statistical threshold of p 
< 0.05.

Results

The difference ΔFlux between the group-wise probability of the critical regions is shown in 

Fig. 4. We observe that the AD patients have increased probability with respect to the 

healthy controls of showing critical regions of expansion (i.e. apparent volume gain) located 

generally in the CSF areas and in particular in the ventricles, in the temporal horns of the 

2http://www.fil.ion.ucl.ac.uk/spm/.
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hippocampi and around the temporal poles. On the other hand, critical regions of contraction 

(i.e. apparent volume loss) are more likely for the AD patients in the temporal regions, 

hippocampi, and around the ventricles. The latter result is due to the smoothly construction 

of the non-linear diffeomorphic registration, which associates to the apparent ventricles 

expansion a complementary matter contraction in the surrounding regions. We note that the 

map of volume differences described by ΔFlux is strikingly similar to the one obtained with 

TBM after correction for multiple comparisons (family wise error rate), and leads to highly 

significant results as shown by the statistical analysis performed by permutation test (2000 

bootstrap samples).

Fig. 5 shows the modelled joint and specific critical regions of volume change. Interestingly 

most of the regional differences highlighted in Fig. 4 are of joint volume change, i.e. are 

consistently detectable in both groups, even though they are characterized by different 

magnitude between the volume changes measured in AD patients and in healthy controls. 

The specific critical regions are instead localized in the temporal lobes, in the temporal horn 

of the hippocampi, in the frontal lobes and around the ventricles.

Probabilistic longitudinal flux analysis

In this section we define a consistent framework for the discovery and quantification of 

longitudinal group-wise atrophy. In particular, the probabilistic model of Section 3 is applied 

in order to discover the critical regions associated to the longitudinal evolution of a group of 

AD patients. The resulting regions are then used for the quantification of the longitudinal 

atrophy in an independent group of AD patients and healthy controls.

Consider the longitudinal observations from a group of subjects composed of a baseline 

image I0
n and follow-up I1

n brain scans. For each subject n, the LCC-logDemons non-linear 

registration of the pair I0
n, I1

n estimates the longitudinal trajectory of changes as a 

diffeomorphism parametrized by the SVF exp(vn), such that I0
n ∘ exp(vn) ≃ I1

n. Let T be the 

population-specific anatomical template estimated as in (Guimond et al., 2000) from the 

group of baseline images. By nonlinearly registering every baseline image I0
n to T we obtain 

the correspondent subject-to-template deformation ψn. In order to perform group-wise 

statistics of the longitudinal SVF vn in this anatomical reference we use the deformation ψn 

to normalize them to the template space.

In the context of the flux analysis, several strategies are possible in order to normalize the 

irrotational component in the group-wise anatomical reference space through the change of 

coordinate ψn. A simple normalization strategy consists in the scalar interpolation of the 

pressure potential in the reference coordinate system to obtain the resampled pressure field 

pn(x) = pn ψn
−1(x) . However further investigation of the irrotational component associated to 

the resampled pressure field is required, for instance to assess the invariance of the volume 

change associated to the resampled regions. One may also take advantage of the 

mathematical framework of the diffeomorphic registration, in order to parallel transport the 

longitudinal SVF vn on the reference space T. The parallel transport is a mathematical 
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operation which consists in translating the tangent vector vn along the geodesic defined by 

the change of coordinates according to the geometrical properties of the manifold of the 

diffeomorphisms (do Carmo, 2012). The parallel transport is however dependent on the 

geometrical properties of the transformation space, and therefore its implementation is not 

unique. One may refer to (Bossa et al., 2010; Younes, 2007; Lorenzi and Pennec, 2012) for 

different parallel transport schemes employed in the context of morphometric analysis. 

Concerning the proposed application in the context of the flux analysis we ideally require to 

preserve the flux properties of the parallel transported trajectory vn, or eventually of the 

parallel transported irrotational component ∇pn. For instance, volume preserving parallel 

transport methods are currently under investigation, as proposed in (Niethammer and 

Vialard, 2013) in the LDDMM setting applied to the registration of 2D shapes. In this work 

the parallel transport is performed by the Pole ladder, a method that was shown to be stable 

in the context of SVF-based registration (Lorenzi and Pennec, 2014), to obtain the 

normalized trajectory vn. In particular, empirical evidence showed that the Pole ladder 

outperforms other standard transport methods in preserving the local measures of volume 

changes, and thus the irrotational component, when applied to longitudinal trajectories 

(Lorenzi and Pennec, 2014). In particular, the Pole ladder improves our previous discrete 

parallel transport methods based on the Schild’s ladder by reducing the computational time, 

along with the potential numerical inaccuracies introduced by the multiple registration 

involved.

The ensemble of SVFs vn  is now defined in the common template reference, and can thus 

be compared voxel-wise. Let ∇pn be the irrotational component of vn computed as the 

solution of the Poisson equation.

The approach proposed in Section 3 can be applied to the set of longitudinal pressure fields 

{pn} in order to identify associated group-wise critical regions of volume change. In 

particular a set of group-wise probabilistic critical regions {Tk} can be defined by 

opportunely thresholding the resulting probabilistic maps. Given a novel subject I, the 

regions {Tk} can be resampled in the subject space thanks to the previously estimated 

subject-to-template non-linear mapping, and thus they can be used as prior weights for the 

integration of the subject-specific regional flux.

Discovery and quantification of longitudinal atrophy in AD

Baseline and 1-year follow-up brain scans of 200 healthy controls, 150 MCI, and 142 AD 

patients from the ADNI dataset were linearly aligned and non-linearly registered with the 

LCClog-Demons. The longitudinal SVFs vi of 20 randomly selected AD patients were 

transported into a previously defined anatomical reference along the subject-to-template 

deformations ψi, and the correspondent pressure maps pi were computed. Those 20 AD 

patients were discarded from the subsequent analysis.

Fig. 1 shows the associated mean pressure map corresponding to the group-wise longitudinal 

trajectories. The figure shows that most of the local pressure maxima are located in the 

ventricels and around the hippocampi, and that these regions are characterized by the lowest 

divergence values. Interestingly the divergence-free component appears to be highly 
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localized in the temporal poles. This is indicative of a local rotational component detected 

by the non-linear registration, which might be associated to a process of structural 

readjustment.

The critical regions were estimated in a neighborhood of size σ = 3 voxels. The whole set 

{Tk} of critical regions was obtained by thresholding the probabilistic map at p > 0.8, and 

was composed of respectively 44 regions of minimal and 18 of maximal pressure. Fig. 6 

shows a sample of the automatically defined critical points corresponding to those regions. 

We notice that critical regions of expansions are always localized in CSF, while critical 

regions of contractions are in white/grey matter regions.

The framework illustrated in Section 5 was used for the regional probabilistic integration of 

the flux for the remaining patients and the healthy controls. Therefore, we associate to each 

participant of this study the series of 62 scalar flux measures obtained by the probabilitic 

integration of the longitudinal divergence in the critical regions defined in Section 5. Fig. 7 

shows an example of the resulting probabilistc regions obtained for a given AD subject.

Quantification of the longitudinal regional flux for clinical applications

In order to determine the most relevant regions of group-wise atrophy we performed a 

discriminative analysis with random forests, to define the regions for which the regional flux 

is most discriminative between respectively AD and MCI vs healthy subjects. The analysis 

was performed with the R package randomForest (Liaw and Wiener, 2002)3, carried out 

through 2-folds cross-validation with 1000 permutations. Fig. 8 shows the regions associated 

to the most discriminative flux measures between the considered clinical groups, with 

associated average values of group-wise longitudinal flux. We notice that patients have 

consistently higher regional flux (and thus associated apparent volume change) than 

controls. The resulting atrophy patterns of AD and MCI are characterized by several 

common regions, denoting similar underlying anatomical process. In particular, common 

regions of longitudinal volume change are located in temporal areas and in ventricles/

temporal horns of hippocampi.

Sample size analysis of the longitudinal regional flux

Binary classification tasks through random forest are based on the majority votes of the 

trained set of binary decision trees. Thus, the above mentioned discriminative analysis 

assigns to each test subject a probability to belong to patients or healthy group, defined as 

the average vote of the set of decision trees. The votes represent the degree of similarity of 

the measured regional flux with respect to the healthy (vote approaching to 0) or to the 

patient (vote approaching to 1) group, and they can thus be used as outcome measure for an 

hypothetical clinical trial for measuring significant reduction of detected pathological 

longitudinal atrophy. For each permutation of the cross validation we evaluated the statistical 

power associated to the outcome votes by estimating the associated sample size for a 

randomized two-arm placebo controlled clinical trial with the classical formula proposed in 

(Fox et al., 2000):

3http://cran.r-project.org/web/packages/randomForest/.
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Sample Size = (u + v)2(2σ)2 (Δμ)2 . (3)

Here u = 0.841 (80% power), v = 1.95 (5% significance level), Δμ = 0.25 * 

(mean(votespatients) − mean(votesheaithy)) is the 25% change of atrophy rate controlled by 

normal aging, and σ is the pooled standard deviation of the votes of patients and healthy 

controls. Average and 95% confidence interval were finally estimated from the obtained 

sampling distribution of the sample size.

For illustrative purposes we compared the resulting sample size with the one provided by 

annual hippocampal volume change, a clinically recognized and validated marker of AD 

progression. We considered baseline and 1-year hippocampal volumes reported by ADNI 

and measured by a semi-automated method based on atlas propagation (here called SNT) 

(Haller et al., 1997). The method was validated for hippocampal volumetry in AD and MCI 

(Hsu et al., 2002; Schuff et al., 2009) and is commercially distributed by Medtronic Surgical 

Navigation Technologies (Louisville, CO).

SNT follow-up measures were available for 140 healthy subjects, 139 MCI, and 104 AD 

patients. The annualized hippocampal volume changes were computed relatively to baseline 

as (Vol1 − year − Volbaseline)/Volbaseiine and the associated sample size was evaluated with 

Formula (3). The 95% confidence interval was computed by bootstrap.

Table 1 reports the head-to-head comparison of the sample size associated to regional flux 

and SNT for this ADNI sub-cohort. The regional flux requires 243 subjects per arm for an 

hypothetical trial on AD patients, and 556 for MCI, in order to detect 25% significant 

changes of longitudinal progression when controlled for normal aging. We note that sample 

size as well as upper and lower bounds associated to regional flux are significantly lower 

than those provided by SNT. Moreover, even though evaluated on different sub-cohorts, our 

measures are compatible with those reported by Leung et al. (2010b), in which they 

proposed to measure longitudinal hippocampal atrophy rates by multi-atlas segmentation 

combined with hippocampal boundary shift integral. For that study the estimated sample 

size was of 135 for AD and 511 for MCI, compared to respectively 221 and 2545 for SNT.

Regional flux analysis in specific anatomical regions

The flux analysis proposed in the previous sections does not rely on prior hypothesis on the 

location of the regional atrophy. We propose here a different approach for the quantification 

of the longitudinal atrophy in a limited number of specific regions, with a specific focus on 

the measurement of hippocampal and ventricular atrophy in AD.

This section builds upon the work initially presented to the “Novel Imaging Biomarkers For 

Alzheimer's Disease And Related Disorders” (NIBAD) Challenge helded in 2012 within the 

conference MICCAI.

In particular we aim to test the reliability of flux-based measures of atrophy to provide 

accurate, robust and unbiased quantification of regional volume change over time. These 
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factors are crucial for the use of automatic volumetric measures in the clinical setting, as 

recently pointed in (Fox et al., 2012). In this last work the authors identify a set of “quality 

criteria” that an imaging tool should satisfy in order to find successful application in clinical 

trials and for diagnostic purposes:

• Biological plausibility. The algorithm should provide atrophy measurements 

consistent with the known pathophysiology.

• Symmetry. The atrophy quantified from A to B should be consistent with the one 

quantified from B to A.

• Transitivity. The atrophy quantified from A to C should be equivalent to the 

cumulative one from A to B and B to C.

• Comparison with the “state of art”. The atrophy measurements should be 

validated on shared data and compared to those obtained from more established 

algorithms.

• Reproducibility on back-to-back images. The atrophy measure on same day 

scans should be zero.

• Statistical validation. The accuracy of the measurements should be evaluated by 

sample size analysis based on the differential progression between AD and 

normal aging.

In the following sections the framework will be illlustrated and validated on the ADNI 

dataset with respect to the above-mentioned quality criteria.

Probabilistic flux analysis of hippocampal and ventricular atrophy in AD

Given a sequence of follow-up images Ii (i = 0,…,N) for a given subject, the region specific 

flux analysis is applied as follows.

Alignment of the sequence to the template space

In this step (Processing Step 1) the images are aligned and normalized to a pre-defined 

anatomical template estimated from a group of healthy elderly subjects of the ADNI cohort. 

The alignment to the Template space is needed for the subsequent propagation of the 

anatomical regions through non-rigid registration. The global affine transformation is 

estimated by the FLIRT software (Jenkinson and Smith, 2001). The resampling is performed 

by linear interpolation on the intensities.

Algorithm 1. Consistent alignment of the time series.

Given a sequence of follow-up images Ii (i = 0,…,N):

1. Estimate the “9 parameters affine” global transformation to the baseline Ai: I0 ≃ 
Ii ○ Ai (i = 0,…,N).

2. Skull strip the baseline I0 (ROBEX software (Iglesias et al., 2011)). Mask the Ii (i 

= 0,…,N) with the estimated brain mask to get Ii
M.
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3. Refine the initial transformation.

Estimate the “9 parameters affine” global transformation Ai
M : I0

M ≃ Ii
M ∘ Ai

M (i = 

0,…,N).

4. Register the baseline I0
M to the template space T.

Estimate the 12 parameters global affine transformation A0
T :T ≃ I0 ∘ A0

T.

5. Compute the aligned time series Ii
T = Ii ∘ (A0

T ∘ Ai
M ∘ Ai).

We notice that all the images undergo only one interpolation, and are therefore consistently 

processed in order to not introduce biases on the intensities due to asymmetric resamplings 

(Yushkevich et al., 2010).

Definition of consistent spatial regions of atrophy

Prior group-wise regions for the quantification of the hippocampal and ventricular 

longitudinal changes were defined in the template space T. The regions were estimated from 

a mixture of anatomical segmentation and of prior information of the longitudinal AD 

atrophy, here quantified by the divergence of the modeled average longitudinal progression 

modelled in Section 5.1. The regions were defined as follow:

• Region of ventricular expansion Rv. The prior region of ventricular expansion 

was decomposed in two complementary parts Rv = Rv
+ ∪ Rv

− (Fig. 9A) of 

respectively compression and expansion (red and yellow in the figure). These 

areas are defined by the maximal and minimal average divergence (Fig. 9B) 

within a predefined ventricle mask (Fig. 9C, blue).

• Region of hippocampal atrophy Rh. The prior region of longitudinal 

hippocampal atrophy was decomposed in two complementary parts Rh = Rh
+ ∪ Rh

−

of respectively hippocampal atrophy and temporal horn expansion. The first one 

(Rh
−) is the anatomical mask of the hippocampi computed by segmentation 

propagation in the template space of the automatically segmented ADNI subject-

specific hippocampal masks (Patenaude et al., 2011) (Fig. 9A, green). The 

resulting probabilistic hippocampal mask is the region for the quantification of 

the longitudinal matter loss. The second one (Rh
+) is defined similarly for the 

ventricles from the locations of maximal average divergence in the hippocampal 

mask (Fig. 9C red), and encodes the expansion of the temporal horn which is 

complementary to the hippocampal atrophy (Fig. 9A purple).

The subject specific regional longitudinal changes are computed by following the Processing 

Step 2.

Algorithm 2. Quantification of subject-specific regional atrophy Given the sequence of 

aligned follow-up images Ii
T(i = 0, …, N):
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1. Non linearly register the follow-up images to the baseline with the LCC-Demons 

algorithm. Estimate vi such that I0
T ≃ Ii

T ∘ exp(vi).

2. Compute the average longitudinal divergence map D = ∇ . vi.

3. Transport the regions Rh and Rv in the subject space through the subject-to-

template deformation to define Rv
s and Rh

s .

4. Restrict the hippocampal region to the subject specific regions of compression/

expansion:

Rh
−s ∩ x ∣ D(x) < 0 ,

Rh
+s ∩ x ∣ D(x) > 0 .

5. Define the atrophy rate at the time point i as the algebraic sum of the average 

divergence Di in the compression and expansion regions of the resulting 

ventricular and hippocampal regions.

Longitudinal atrophy on the ADNI dataset

The presented method was applied to the quantification of the longitudinal hippocampal 

atrophy in a sample of 96 AD subjects and 160 healthy controls from the ADNI dataset. 

Images of 0, 12, and 24 months were aligned according to the Step 1 and the longitudinal 

atrophy was evaluated as in Step 2 to test the following quality criteria:

• Consistency with the clinical condition. As indicated by Table 2 the AD group 

has significantly higher ventricular expansion and hippocampal atrophy for all 

the considered intervals (p < 0.001, standard t-test). The estimated atrophy rates 

are consistent with those reported in the literature (Frisoni et al., 2010; Schott et 

al., 2010; Leung et al., 2010a).

• Symmetry. The longitudinal atrophy measure is perfectly symmetric, due to the 

symmetry of the registration algorithm. Therefore the absolute changes measured 

from A to B are equal (with opposite sign) to those from B to A.

• Linearity over two years. Table 3, first row, shows the estimated mean and 

standard deviation for the ratio of the estimated atrophy between 2- and 1-year 

atrophy rate. The ratios are never significantly different from the reference value 

of 2.

• Transitivity. Table 3, second row, shows the compatibility in time of the atrophy 

measures computed as the error between the measure from A to C and the 

cumulative one from A to B and B to C. As indicated, the transitivity error is 

never significantly different from 0, even though it is close to significance for the 

hippocampal atrophy in AD. We notice that this error is however small relatively 

to the atrophy rate at 24 months (about 1%).

• Sample size analysis. Based on the reported atrophy rates, we estimated the 

sample size required to detect a 25% difference in the AD longitudinal 
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progression relative to the normal aging (80% power, 0.05 significance). The 

sample size values listed in Table 4 are in line with those reported in the previous 

studies (Leung et al., 2010a), (Schott et al., 2010). We observe that the regional 

flux analysis in the specific anatomical regions generally provides better results 

than those obtained from the group-wise longitudinal analysis. These results can 

be explained by observing that the approach presented in this section is 

optimized in order to provide subject-specific measures of longitudinal changes.

Discussion and conclusions

In this study we presented the regional flux analysis of deformations, a novel approach to 

deformation based morphometry which combines the flexibility of TBM-like voxel based 

approaches with the robustness of ROI based methods for the atrophy quantification.

We proposed to decompose the longitudinal trajectories according to the Helmholtz theorem, 

in order to analyze the atrophy processes through the pressure potential map and the 

associated flux. This new approach studies the morphological changes as a topological 

problem, and paves the way to new analysis methods based on graph and complex theory. 

The proposed work provided precise and statistically powered quantifications of the group-

wise regional atrophy processes. Moreover the presented method describes and compares the 

patterns of dynamic changes between clinical populations, and might thus lead to potentially 

new anatomical findings, such as differential atrophy trajectories at different disease stages.

We showed the potential and the flexibility of the flux analysis in the analysis of the 

morphological changes in AD across very diverse settings: cross-sectional comparison, 

longitudinal group-wise analysis, and atrophy quantification on specific regions.

A central aspect of the regional flux analysis is the reliable identification of the critical 

points of the pressure field. In this paper we contributed a probabilistic inference algorithm 

which makes the presented method fully operator independent, contrarily to the manual 

definition of Lorenzi et al. (2012). Moreover, the proposed framework circumvents the 

explicit search of extremal points, since it is based on the detection of the critical regions 

through robust statistics of the group-wise divergence maps. In fact, in our previous 

experiments we noticed that the local search of pressure extrema can be biased by local 

noise, and usually leads to the detection of a number of spurious extremal points which are 

not necessarily informative about the underlying topology of the pressure field.

Our first implementation of the flux analysis (Lorenzi et al., 2012) was based on the simple 

scalar interpolation of the pressure field, which is generally a robust and efficient operation. 

However, we believe that further investigation of the properties of the associated irrotational 

field is still required, for instance concerning the resulting volume change of the resampled 

regions. In this work we opted for the Pole ladder since in previous experiments it provided 

good results in terms of preservation of the regional volume change, as measured by the 

average Jacobian determinant of the deformation in specific regions (see (Lorenzi and 

Pennec, 2014) for more details). We believe that this is a crucial aspect as the ultimate goal 
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of our study is the quantitative analysis of brain atrophy, even though we cannot exclude 

potential numerical inaccuracies introduced by the parallel transport operation.

As a future perspective, the present work might be extended to the different spatial scales of 

the atrophy process. Critical regions can be contained in larger zones of pressure extrema, 

and the global irrotational field is therefore the contribution of several components acting 

differently across scales. It is therefore of interest to introduce a scale space analysis of the 

topology of pressure fields in order to disentangle and separately analyze its different 

components. This issue was addressed in our recent work (Lorenzi et al., 2013b), in which 

we proposed a robust framework for the reliable scale-space identification of critical regions 

associated to irrotational fields of anatomical deformations. The framework was based on 

the scale-space decomposition of the pressure field through difference of Gaussians. Future 

extensions of the present study will aim to combine proper scale-space analysis of pressure 

fields to the robust atrophy quantification.

The present study is a step towards the consistent topological analysis of deformations. For 

example, one can define a tree-like structure of the pressure field, where each level of the 

tree is a given spatial scale, and the branches connect critical regions which are nested across 

scales. This way, topology of deformations can be studied with Morse-Smale or graph 

theory.

Further appealing approaches to the topological analysis of the pressure fields are 

represented by the random field theory which was extensively developed for the analysis of 

statistical parametric maps (Worsley et al., 1996, 2004; Friston et al., 1994), or by the study 

of the homological properties of the scalar fields as proposed in Chung et al. and Pachauri et 

al., 2011.

The presented work can be also extended to the analysis of sequences of deformations, for 

instance for detecting anatomical changes in time series of several images. For this purpose, 

the consistent extension of the presented framework to 5-dimensional data (space + scale + 

time) is required.

Finally, thanks to the Helmholtz decomposition of velocity fields, we illustrated for the first 

time that the evolution of AD is not exclusively associated to volume changes represented by 

the irrotational component, but is also characterized by a complementary rotational part (Fig. 

1). This component accounts for local matter reorganization associated to the disease 

progression. We believe that future analysis of the rotational part of the deformation might 

provide novel and informative insights about the dynamics of morphological changes in AD.
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Appendix A. Experimental data

Data used in the preparation of this article were obtained from the Alzheimer's Disease 

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 

2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging 

and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private 

pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-

private partnership. The Principal Investigator of this initiative is Michael W. Weiner, MD, 

VA Medical Center and University of California - San Francisco. ADNI is the result of 

efforts of many coinvestigators from a broad range of academic institutions and private 

corporations, and subjects were recruited from over 50 sites across the U.S. and Canada. For 

up-to-date information, see www.adni-info.org.
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Fig. 1. 
Helmholtz decomposition of the average longitudinal trajectory in AD, and pressure 

potential and divergence maps associated to the irrotational component. The divergence 

describes the critical regions of local expansion and contraction.
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Fig. 2. 
Topology of pressure fields. Black arrows indicate the irrotational component. The pressure 

field summarizes the observed contraction/expansion processes.
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Fig. 3. 
We can draw analogies between the flux analysis and the study anticyclones and depressions 

fronts in meteorological charts. Critical regions are identified by extremal pressure points, 

and are such that the flux (wind) across the boundaries is maximum.
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Fig. 4. 
Cross-sectional comparison of the average volume changes in AD patients vs healthy 

controls. Top: statistical comparison of the log-Jacobian determinant (TBM), significance is 

assessed at p < 0.05 corrected for family-wise error. Bottom: difference ΔFlux between the 

group-wise probability of the critical regions, and statistical assessment by permutation test 

(2000 bootstrap samples). The map of volume differences described by ΔFlux is strikingly 

similar to the one obtained with TBM after correction for multiple comparisons.
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Fig. 5. 
Group-wise comparison of critical regions. Top: probabilistic estimation of the critical 

regions of joint maximal expansion and contraction for AD and healthy subjects. Bottom: 

probabilistic estimation of the critical regions of specific volume change in AD compared to 

healthy subjects.
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Fig. 6. 
Sample critical regions associated to the AD average pressure map. Pressure extrema map to 

anatomically relevant areas for AD, and show an asymmetric distribution between left and 

right hemispheres.
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Fig. 7. 
From group-wise to patient specific quantification. The figure shows a sample of critical 

regions for the probabilistic integration of the flux estimated for a specific AD patients. Red 

regions: expanding critial regions. Blue regions: contracting critical regions.
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Fig. 8. 
Average regional flux for the most discriminative regions between AD and MCI (green) with 

respect to healthy controls (blue). The resulting atrophy patterns of AD and MCI are 

characterized by several common regions, denoting similar underlying anatomical process. 

In particular, common regions of longitudinal volume change are located in temporal areas 

and in ventricles/temporal horns of hippocampi.
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Fig. 9. 
Prior region of longitudinal atrophy in AD. A) Prior anatomical areas for the hippocampal 

(purple and green), and ventricular (yellow and red) expansion and contraction. B) Average 

divergence map for the longitudinal atrophy in AD. C) Ventricular and hippocampal mask 

for the extraction of the maximal/minimal divergence areas.
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Table 1

Sample size analysis for the global group-wise longitudinal flux analysis. Estimated sample size 

(mean(95%CI)) to detect a 25% difference of the yearly AD progression measured by the regional flux by 

controlling for normal aging with 80% power.

AD vs CT MCI vs CT

Regional flux 243 (125,441)  556 (244,1273)

SNT 383 (211,810) 1413 (565,7175)
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Table 2

Estimated percentage volume changes (SD) in the ventricular and hippocampal regions for the time intervals 

[0,12], [0,24], and [12,24] months.

Hippocampi Ventricles

Time interval Ctrls AD Ctrls AD

[0,12] −2.38 (1.64) −5.28 (2.38) 1.89 (2.09) 4.03 (2.79)

[0,24] −3.52 (2.04) −10.09 (4.5) 3.56 (2.82) 8.9 (5.32)

[12,24] −1.19 (1.4) −4.89 (2.94) 1.72 (2.19) 4.9 (3.3)
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Table 3

Linearity and transitivity of the estimated atrophy rates. First row: mean (SD) of the ratio 2-years over 1-year 

atrophy. The p-value indicates the significance of the difference relative to the reference value of 2. Second 

row: mean (sd) of the transitivity error. The p-value indicates the significance of the difference relative to 0 

(paired t-test).

Hippocampi Ventricles

Ctrls AD Ctrls AD

[0,24]/[0,12] 1.77 (1.19) 1.98 (0.67) 1.48 (5.65) 2.65 (3.96)

p 0.44 0.8 0.39 0.11

[0,12] + [12,24] − [0,24] 0.04 (0.3) 0.09 (0.5) 0.05 (0.61) 0.08 (0.75)

p 0.1 0.08 0.28 0.3
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Table 4

Sample size analysis provided by the estimated atrophy rates. Average sample size (95% CI) to detect a 25% 

difference in the AD progression relative to the normal aging with 80% power and significance level of p = 

0.05.

[0–12] [0–24]

Hippocampi 169 (119,255) 117 (89,162)

Ventricles 426 (249,880) 249 (168,410)
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