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Abstract

Toward a More Reliable Power System:
Frequency Regulation from Buildings and Secure Estimation against Cyber Attacks

by

Qie Hu
Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley
Professor Claire Tomlin, Chair

This thesis presents progress in overcoming two challenges in achieving a reliable
electric power system: frequency regulation and secure state estimation against cyber
attacks.

Frequency regulation is a type of ancillary service used to control the grid fre-
quency around its nominal value. Recently, the higher penetration of renewable en-
ergy sources has increased the demand for frequency regulation reserves. This thesis
explores the feasibility of using commercial buildings for this application. Commer-
cial buildings are a tremendous untapped source because of their large consumption
and thermal inertia, as well as being able to adjust their electricity consumption con-
tinuously. However, large disturbances such as occupancy and the complexity of the
heating, ventilation and air conditioning system of commercial buildings make it chal-
lenging to: 1) identify a model that accurately describes its temperature evolution
and is amenable to control, 2) design a robust frequency regulation controller. This
thesis tackles both challenges. First, it proposes a physics-based and a data-driven
method to identify a building model that captures internal gains such as occupancy.
Both methods are used to identify models of the same testbed, and a quantitative
comparison of the resulting models is made including open-loop prediction accuracy
and closed-loop control performance. It is concluded that a data-driven model may
be suitable for temperature critical applications such as frequency regulation. Second,
this thesis improves on existing frequency regulation control schemes and proposes a
bilevel controller that is suitable for buildings subject to larger uncertainties, where
accurate models are unavailable. Finally, field experiments in accordance with the
Pennsylvania, New Jersey and Maryland Interconnection’s regulation market rules
are conducted on an occupied building during both daytime and nighttime, which
demonstrate the suitability of the data-driven building model and the performance
of the proposed frequency regulation controller.

Advanced instruments such as phasor measurement units that communicate over
wireless networks to achieve better efficiency of the power system are becoming in-
creasingly pervasive, especially under the smart grid initiatives. However, these com-
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munication networks are vulnerable to cyber attacks that can be erratic and difficult
to predict. To add to the challenge, the dynamics of the power system cannot be
approximated by a linear model when it’s under severe disturbances. This thesis first
develops a secure state estimation method for linear dynamical systems under sensor
attack, and then extends it to two classes of nonlinear systems and applies it to the
nonlinear power system. Both estimation methods assume that the attack signal can
be arbitrary and unbounded, and the set of attacked sensors can change over time.
More specifically, we use feedback linearization to transform the nonlinear system
into an equivalent linear system. We then formulate the secure estimation problem
into a classical error correction problem, from which we propose an l1-optimization
based estimator that is computationally efficient. In addition, we derive the maxi-
mum number of sensor attacks that can be corrected with our estimator and propose
to use pole placement techniques to design a feedback controller such that the re-
sulting secure estimator can guarantee accurate estimation. Finally, to improve the
estimator’s practical performance, we propose to combine our secure estimator with
a Kalman Filter (KF), where the KF serves to filter out both occasional estimation
attacks by the secure estimator as well as noisy measurements.
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Chapter 1

Introduction

The electric power grid is a complex system subject to natural disasters and
to both nuisance and potentially malicious attacks, in addition to the rapid system
dynamics and demand swings inherent in providing electric power across large areas.
A balance between electricity generation and consumption at all times is one necessary
condition for the normal operation of the power system, and large imbalances can
cause power outages, leading to economic losses, physical damage, or even bodily
harm. In addition, the power system is an example of a cyber-physical system (CPS),
which consists of physical components such as actuators, sensors and controllers that
communicate with each other over a network. Although communication networks
are often protected by security measures, cyber attacks can still take place when a
malicious attacker obtains unauthorized access. In a power system, cyber attacks
not only compromise information, but can also cause physical damage. Therefore, it
is desirable to protect the system against such cyber attacks. This thesis presents
progress in the path towards finding solutions to these two problems and consists
of two main parts. Chapters 2 and 3 describe first attempts at using commercial
buildings to provide frequency regulation – a type of reserve used by electricity grid
operators to balance electricity generation and demand. Chapters 4 and 5 focus on
developing methods that estimate the true state of a power system when it is under
cyber attack.

1.1 Frequency Regulation from Commercial Build-

ings

A balance of electricity generation and demand must be maintained at all times
to achieve the reliable operation of the power system. Any mismatch between them
is reflected through the grid frequency: if generation exactly meets demand, then the
grid frequency is at its nominal value of 60 Hz (in the U.S.); if generation exceeds
demand, then the frequency increases, and vice versa. Therefore, to maintain nor-
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mal operation of the power grid, the grid operator uses reserves known as ancillary
services (AS) to correct any mismatch between electricity generation and demand.
Amongst these reserves, frequency regulation is the highest quality AS over which
the grid operator has almost real-time control and is active continuously during nor-
mal operation of the grid. Recent rapid increase in the penetration of renewable
energy sources has aggravated the volatility and uncertainty of electricity generation,
which led to a greater demand for frequency regulation reserves. Traditionally, these
reserves have been provided by fast ramping power generators. However, an alterna-
tive is to explore the flexibility on the demand side, which may have less economic
and environmental cost in the long run. More specifically, loads can provide regula-
tion by increasing (decreasing) their electricity consumption when the grid frequency
increases (decreases).

In particular, commercial buildings are a tremendous untapped resource for this
application. First, they account for a large fraction of the total electricity consump-
tion (more than 35% in the U.S., 39% of which is due to heating, ventilation and
air conditioning (HVAC) systems [92]). Second, the building’s large thermal capacity
allows the power consumption of HVAC systems be partly shifted in time without
compromising occupant comfort. Third, many commercial buildings are equipped
with a variable frequency drive which can be controlled to vary the power consump-
tion of supply fans of the HVAC system quickly and continuously [39]. This greatly
simplifies tracking of the reference regulation signal, as opposed to resources with on-
off control. Fourth, about one third of commercial buildings in the U.S. are equipped
with a building automation system (BAS) [8] which facilitates the implementation of
new controllers.

On the other hand, there are a number of challenges in using commercial build-
ings for frequency regulation. First, obtaining a building model that is amenable to
control is not straightforward, because commercial buildings are often subject to large
disturbances such as occupancy, that are difficult to capture. In addition, buildings
are often not sufficiently excited, as they must satisfy strict regulatory requirements
during regular operation, which limits the type and duration of excitation experi-
ments that can be conducted. Second, about one third of commercial buildings in
the U.S. are equipped with variable air volume (VAV) HVAC systems [39], which are
typically complex with many control variables and interdependent control loops.

This thesis proposes procedures to develop both data-driven and physics-based
models for the thermodynamic behavior of commercial buildings, and provides a
quantitative comparison between them using both open- and closed-loop metrics. In
addition, this thesis presents an experimental demonstration of the feasibility of using
a VAV HVAC system for frequency regulation, where experiments are conducted in
full accordance with Pennsylvania, New Jersey, Maryland’s (PJM’s) requirements.
To the best of our knowledge, this is the first report where an occupied commercial
building equipped with a VAV HVAC system has been shown to successfully provide
frequency regulation.
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1.2 Secure Estimation against Cyber Attacks

A key element in the development of smart power transmission systems over the
past decade is the tremendous advancement of the synchrophasor technology. This is
enabled by phasor measurement units (PMUs) which record and communicate Global
Positioning System (GPS)-synchronized, high sampling rate dynamic power system
data, and they are currently being installed at different points in the North American
grid, especially under the smart grid initiatives of the U.S. Department of Energy.
Significant efforts have been made in using PMU measurements for wide area control
in a smart grid. In such a system, a wide area control system (WACS) communi-
cates with PMUs over a communication network to achieve increased efficiency and
reliability of the power system. However, communication networks are often vulner-
able to cyber attacks. For example, [57] describes a multi-switch attack, in which
different switches in a power network attacked at different times, can lead to stealthy
and wide-scale cascading failures in the power system. Therefore, in order to pro-
tect the system against cyber attacks, the WACS must estimate the system’s true
states before using the received data for computing control signals. However, this is
a challenging task as cyber attacks can be erratic and difficult to model.

Secure estimation problems study how to estimate the true system states when
measurements are corrupted and/or control inputs are compromised by attackers.
There has been tremendous amount of work in developing secure estimation algo-
rithms, mostly for linear dynamical systems and/or by assuming the attack signal
follows a certain distribution. However, the power system can only be approximated
by a linear model under small perturbations. Under a severe disturbance, such as
a single or multi-phase short-circuit or a generator loss, the linearized model does
not remain valid [52], [96]. Therefore, the existing linear estimation techniques lack
performance guarantees when the system undergoes large perturbations which are
typical of highly loaded practical systems. To overcome the above drawbacks, this
thesis focuses on sensor attacks and builds on previous results to first propose a secure
state estimation algorithm for linear dynamical systems without any assumption on
the sensor attacks or corruptions (i.e., corruptions can follow any particular model).
The only assumption concerning the corrupted sensors is about the number of sen-
sors that are corrupted due to attacks or failures. This thesis then extends the results
to two classes of nonlinear systems and demonstrates through numerical simulations
how the proposed estimation algorithm can be used to protect the nonlinear power
system against cyber attacks.
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Part 1

Commercial Buildings for
Frequency Regulation
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Chapter 2

Mathematical Modeling of
Commercial Buildings

According to [78], commercial buildings account for more than 35% of the total
electricity consumption in the U.S., with an upward trend. HVAC systems are a major
source of this consumption [92]. Nevertheless, their power consumption can be flexibly
scheduled without compromising occupant comfort, due to the thermal capacity of
buildings. As a result, commercial buildings’ HVAC systems have become the focal
point of research, with the goal of utilizing this source of consumption flexibility. From
the point of view of energy efficiency, researchers have studied optimization of building
control in order to minimize power consumption [76, 86]. More recently, it has been
proposed to engage buildings in supporting the supply quality of electricity and the
grid stability, by participating in the regulation of electricity’s frequency [4,5,56,95].

All of the above research activities are based on a valid mathematical model
describing the thermal behavior of buildings. Such a model should be identified using
actual experimental data and capture realistic disturbances. In addition, it should
describe the building’s temperature evolution with suitable accuracy and spatial gran-
ularity, without being too computationally expensive. However, there are many chal-
lenges in identifying such a building model. First, buildings often have different types
of spaces that are subject to very different uncertainties. Second, disturbances such as
occupancy are difficult to predict a priori. Third, buildings are often not sufficiently
excited, as they must satisfy strict regulatory requirements during regular operation,
which limits the type and duration of excitation experiments that can be conducted.

In this chapter, we present two methods for the identification of a building
model: a physics-based method and a data-driven method. We use both techniques
to identify building models for the same testbed using experimental data collected
from the building, and quantitatively compare the models using various metrics, in-
cluding open-loop prediction accuracy and closed loop control strategies.

This chapter is an adaptation of the paper in [101].
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2.1 Introduction

Traditionally, buildings have been modeled with high-dimensional physics-based
models such as resistance-capacitance (RC) models [37,62,88,89], TRNSYS [19] and
EnergyPlus [98]. These models are motivated by the thermodynamics of the building
and explicitly model the heat transfer between components of the buildings. The
advantage of such models is their high granularity of temperature modeling, but a
drawback is their high dimensionality which makes them computationally expensive.
Although there has been extensive work on model reduction, this remains to be
a non-trivial task. A large body of this work focuses on linear models, whereas
physics-based models for commercial buildings with a VAV HVAC system are bilinear
in nature. Furthermore, existing model reduction techniques often result in a loss
of interpretability of states [17] and a significant increase in the model’s prediction
error [32].

Motivated by these shortcomings, a new direction of research attempts to iden-
tify lower-dimensional, data-driven models, e.g. with Input-Output models [56] and
semiparametric regression [2]. The purpose is to alleviate the computational com-
plexity in expense for coarser and less accurate temperature predictions.

In this chapter, we propose both a physics-based method and a data-driven
method to identify models of a multi-zone building, that is easy to implement with the
building in regular operation, and captures internal gains such as occupancy, without
the need of additional instruments like carbon dioxide sensors. Our procedures use
excitation experiments that actively perturb the building and generate data that can
be used for more accurate parameter identification.

More importantly, we perform a quantitative comparison of the data-driven and
physics-based models in terms of open-loop prediction accuracy and closed-loop con-
trol strategies, based on the same testbed (the entire floor of an office building). We
conclude that a low-dimensional data-driven model is suitable for building control
applications, such as frequency regulation, due to its minor loss of prediction ac-
curacy compared to high-dimensional physics-based models, but significant gain in
computational ease. To the best of our knowledge, the extant body of literature has
analyzed data-driven and physical models for the identification of temperature evo-
lution in commercial buildings only in an isolated fashion (in particular not on the
same testbed) [61], [86], [56], [43]. In addition, some of these models were identified
for fictitious buildings with synthetic data [14,33,88], while others used experimental
data collected under environments with little or no disturbance, e.g. without oc-
cupants [56]. Our work differs from these existing works in two aspects. First, we
use experimental data to identify models for a multi-zone commercial building un-
der regular operation, which is subject to significant disturbances such as occupancy.
Second, although the existing literature mentions the differences between data-driven
and physics-based models, the prevailing isolationist approach does not provide any
quantitative comparison with respect to building control applications - a fact we
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would like to alleviate by juxtaposing a data-driven with a physics-based model.

2.2 Preliminaries

2.2.1 Building Description

We model the temperature evolution of the fourth floor of Sutardja Dai Hall
(SDH), a seven-floor-building on the University of California, Berkeley campus. The
fourth floor has a total area of 1300 square-meters and contains offices for research
staff and open workspaces for students, and is divided into six zones for modeling
purposes (Figure 2.1): Northwest (NW), Northeast (NE), West (W), Center (C),
East (E), South (S).

The building is equipped with a VAV HVAC system that is common to 30% of
all U.S. commercial buildings [91]. The system contains air handling units (AHU),
inside which large supply fans drive air through heat exchangers, cooling it down to
a desired supply air temperature (SAT). The cooled air is then distributed to VAV
boxes located throughout the building. The flow rate and the final temperature of the
supply air delivered to each room is then controlled by adjusting the damper position
and the amount of reheating performed at the VAV boxes.

Figure 2.1: Zones for the fourth floor of Sutardja Dai Hall (SDH).

2.2.2 Collection of Experimental Data

We collected 36 weeks of one-minute resolution temperature data for the six
zones along with the airflow rates of all 21 VAV boxes on the fourth floor, SAT
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and the outside air temperature from the simple Measurement and Actuation Profile
(sMAP). sMAP is a protocol that collects, stores and publishes time-series data from
a wide variety of sensors [15,16]. The hourly global horizontal solar radiation data was
obtained from a nearby weather station [71], from which the incidence solar radiation
of the four geographic directions was calculated with the PV LIB toolbox [87]. All
collected data were down-sampled or interpolated, respectively, to 15 minute intervals.
These 36 weeks of data span periods when the building was under normal operation
as well as periods with excitation experiments.

To increase identifiability of the building model, forced response experiments
were performed. These experiments were conducted during Saturdays to (a) minimize
effects due to occupancy on our collected data, and thus facilitate subsequent param-
eter identification; (b) minimize impact to building operation and exploit larger com-
fort bounds on room temperatures during the weekends. Indeed, the comfort bounds
were never violated during the forced experiments. Because of commercial buildings’
large thermal inertia, each forced excitation must last sufficiently long before tem-
perature changes are observable (we chose 2 hours for our excitation experiment).
More specifically, starting at 8 a.m., the supply air’s flow rate to one zone is set to its
maximum value every 2 hours. During this 2 hour period, all of its adjacent zones’
airflow rates are set to their minimum values, and each of the remaining zones’ airflow
rate is set to a random value. This procedure is repeated for each of the six zones.

2.2.3 Data Splitting

Next, we define the seasons “fall” (early September until mid December), “win-
ter” (mid December until late January), and “spring” (late January until mid May)
in order to account for different occupancy levels during the fall and spring semesters,
and the winter break. After the weeks have been assigned to the seasons, a random
portion of the data in each season (e.g. we chose 90%) was defined as the training
data, and the remaining weeks to be removed prior to the analysis were declared as
the test set, which were used to assess the accuracy of the building model fitted on
the training data.

2.3 Data-Driven Model

We identify a difference equation for the temperature evolution with semipara-
metric regression, using 36 weeks of experimental data collected from the fourth floor
of SDH. Semiparametric regression in buildings has been proposed by [2], where the
authors used only one week of historic data to model the temperature evolution and
used the HVAC’s SAT as the single control input. We extend this approach by tak-
ing into account multiple weeks, which we separate into three seasons (fall, winter,
spring) so as to characterize the different levels of the exogenous heating load for dif-
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ferent temporal seasons. In addition, we model the room temperatures as a function
of airflow rates from multiple VAVs to obtain a model which can be used for more
sophisticated control strategies.

Next, we first introduce the semiparametric method using a simple lumped zone
model of the fourth floor, and then identify a multi-zone model for the same floor
which we will use to make quantitative comparisons with the physics-based model.

2.3.1 Lumped Zone

2.3.1.1 Model Setup

In order to facilitate analysis, the entire fourth floor of SDH is treated as a single
zone, with the scalar temperature x corresponding to the average temperature on the
entire floor and the input u as the sum of the inflow of all 21 VAV boxes. Then, the
temperature evolution is assumed to have the following form:

x(k + 1) = ax(k) + bu(k) + c>v(k) + q(k) + ε(k), (2.1)

where v := [vTa, vTs, vsolE, vsolN, vsolS, vsolW]> is a vector of known disturbances that
describes ambient air temperature, the HVAC system’s supply air temperature, and
solar radiation from each of the four geographical directions. In addition, q represents
the internal gains due to occupancy and electric devices, and ε denotes independent
and identically distributed zero mean noise with constant and finite variance which is
conditionally independent of x, u, v, and q. Finally, a, b ∈ R and c ∈ R6 are unknown
coefficients to be estimated using semiparametric regression [40,82].

2.3.1.2 Smoothing of Time Series

The q term of Equation (2.1) is treated as a nonparametric term, so that (2.1)
becomes a partially linear model. By taking conditional expectations on both sides
of (2.1), we obtain

x̂(k + 1) = ax̂(k) + bû(k) + c>v̂(k) + E [q(k)|k] + E [ε(k)|k] , (2.2)

where the conditional expectations x̂(·) = E [x(·)|·], û(·) = E [u(·)|·], and v̂(·) =
E [v(·)|·] are used. Noting that E [ε(·)|·] = 0 and assuming E [q(·)|·] = q(·), subtracting
(2.2) from (2.1) gives

x(k + 1)− x̂(k + 1) = a (x(k)− x̂(k)) + b (u(k)− û(k))

+ c> (v(k)− v̂(k)) + ε(k).
(2.3)

The unknown internal gains term has been eliminated, and thus the coefficients a, b, c
in (2.3) can be estimated with any regression method.
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The conditional expectations x̂(·), û(·) and v̂(·) are obtained by smoothing the
respective time series [2]. We made use of locally weighted linear regression with a
tricube weight function, where we use k-fold cross-validation to determine the band-
width for regression. The error measure used for in-sample estimates is the Root Mean
Squared (RMS) error between the measured temperatures x̄(k) and the model’s pre-
dicted temperatures x(k) over a time horizon of N steps (e.g. we chose a 24 hour
time horizon, N = 96):

RMS error =

(
1

N

∑N
k=1 [x̄(k)− x(k)]2

)1/2

. (2.4)

2.3.1.3 Bayesian Constrained Least Squares

A main challenge in identifying the model is that commercial buildings are often
insufficiently excited. Take SDH for example, whose room temperatures under regular
operation only vary within a range of 2◦C and inflow of the VAV boxes hardly varies
at all. To overcome this, data collected during forced response experiments described
in Section 2.2.2 was used in training the model. To further compensate for the lack
of excitation, a Bayesian regression method is used, which allows our prior knowledge
of the building physics to be incorporated in the identification of coefficients. More
specifically, Gaussian prior distributions are used for the coefficients a and b, i.e., a ∼
N (µa,Σa) and b ∼ N (µb,Σb), where N (µ,Σ) denotes a jointly Gaussian distribution
with mean µ and covariance matrix Σ. In addition, a, b and c are constrained to
be identical for the different seasons, since they model the underlying physics of the
building which are assumed to be invariant throughout the year.

Let T = {1, 2, · · · , N} denote the N weeks of training data (e.g. we chose
N = 45), and define F = {i ∈ T such that i is a week in fall} as the set of training
weeks from the fall season. Similarly, define the sets of training weeks from the winter
and spring as W and S. The coefficient identification problem is then formulated as
follows:

(â, b̂, ĉ) = arg min
a,b,c

(JF + JW + JS) + ‖Σ−1/2
a (a− µa)‖2 + ‖Σ−1/2

b (b− µb)‖2

s.t. JX =
∑

i∈X ‖xi(k + 1)− x̂i(k + 1)− a (xi(k)− x̂i(k))

− b (ui(k)− ûi(k))− c> (vi(k)− v̂i(k)) ‖2 for X ∈ {F ,W ,S},
0 < a < 1, b ≤ 0, c ≥ 0.

(2.5)

In other words, JF , JW and JS represent the sum of squared errors between experi-
mentally measured temperatures and model’s predicted temperatures for fall, winter
and spring, respectively. The sign constraints on the parameters b and c translate
into the fact that the temperature to be estimated positively correlates with all com-
ponents in v and negatively correlates with the VAV airflow. The range of a is a
consequence of Newton’s Law of Cooling.
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To find the effect of the VAV inflow on the 15-minute temperature evolution, we
computed the 15-minute incremental reductions in temperature ∆x recorded during
the excitation experiments. It is assumed that the large inflow u dominates all other
effects such that we can assume

∆x = x(k + 1)− x(k) = b · u(k) (2.6)

for all k during the excitation period. The estimated prior µb can then be isolated
from (2.6). The prior µa was set as the optimal â identified by (2.5) without the prior
terms. The covariance matrices Σa and Σb were chosen subjectively.

2.3.1.4 Estimation of Internal Gains

With the estimated coefficients â, b̂, ĉ in hand, the internal gains q can be esti-
mated by manipulating (2.2):

q̂(k) = x̂(k + 1)−
(
âx̂(k) + b̂û(k) + ĉ>v̂(k)

)
. (2.7)

A distinct function of internal gains is estimated for each season. In other words,
(2.7) is used to estimate an instance of the internal gains function for each week i in
the training set T . The internal gains function for each season, q̂X is then defined as
the average of estimated weekly gains for all weeks i ∈ X and X ∈ {F ,W ,S}.

2.3.1.5 Results

The estimated internal gains for each season are shown in Figure 2.2. Observe
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Figure 2.2: Estimated internal gain q from the data-driven model by season, lumped
case.

that, for all three seasons, the internal gains exhibit a daily trend with local peaks
around the late afternoon and local minima at night. Moreover, the amplitudes of
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the internal gains are considerably smaller during the weekends, suggesting a lighter
occupancy. It can further be seen that the magnitude of the internal gains is smallest
for the winter season, which is in accordance with our intuition since most building
occupants are absent during that period.

Lastly, since the Bayesian Constrained Least Squares algorithm (2.5) has iden-
tified a set of parameter estimates â, b̂, ĉ valid for all three seasons to account for the
time-invariant physics of the building, the temperature predictions are of the same na-
ture for all three seasons. We thus conclude that the inherent differences between the
seasonal temperature data are captured by the internal gains and can be compared
between the seasons on a relative level.

The identified models for the different seasons found with (2.5) are

x(k + 1) = 0.80 · x(k)− 0.18 · u(k)

+ [0.0019, 0.028,0] v(k) + qX (k)

= 0.80 · x(k)− 0.18 · u(k)

+ 0.0019 · vTa(k) + 0.028 · vTs(k) + qX (k)

for X ∈ {F ,W ,S}.

(2.8)

The estimated coefficients of c corresponding to the solar radiation disturbances are
very small (< 10−6) compared to the other estimated coefficients. Since the temper-
atures are of the order 10◦C, air inflow around 1 kg/s and solar radiation about 100
W/m2, the effect of solar radiation on the room temperature is orders of magnitude
less than that of other factors and hence can be neglected.

The average RMS prediction errors are 0.22◦C, 0.17◦C and 0.23◦C for fall, winter
and spring, respectively, showing that our model predicts the temperature reasonably
well.

2.3.2 Individual Zones

2.3.2.1 Model Setup

Rather than approximating the entire fourth floor of SDH as a single zone, in this
section, we identify a multivariate model that describes the thermodynamic behavior
of each of the six individual zones:

x(k + 1) = Ax(k) +Bu(k) + Cv(k) + qX (k)

for X ∈ {F ,W ,S},
(2.9)

where x, qX ∈ R6, and the control input u ∈ R6 represent the temperatures, the
internal gains of each zone, and the total air flow to each zone, respectively. In the
lumped case, it was observed that solar radiation only had a negligible effect on the
building’s thermodynamics compared to the input and other disturbances, and thus
we omit the solar radiation in the subsequent analysis: v := [vTa, vTs]

> ∈ R2.
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Inspired by Newton’s Law of Cooling, only adjacent zones influence each other’s
temperature, which defines the sparsity pattern of the coefficient matrices that are to
be estimated. Hence

Aij =

{
6= 0, if i = j or (i, j) adjacent

0, otherwise.
(2.10)

The diagonal elements ofA denote autoregressive terms for zone temperatures, whereas
non-diagonal elements describe the heat exchange between adjacent rooms. The ma-
trix B is diagonal by definition of u. The sparsity pattern of C is found by physical
adjacency of a respective zone to an exterior wall of a given geographic direction.

2.3.2.2 Model Identification

The procedure for the estimation of the parameter matrices Â, B̂, Ĉ, and the
internal gains follows (2.5), but with a modified choice of the (now matrix-valued)
priors µa and µb: µb and the diagonal entries of µa are obtained by scaling the
corresponding priors from the lumped zone case in order to account for the thermal
masses of the individual zones, which are smaller than in the lumped case. The off-
diagonal elements of µa, which represent the heat transfer between adjacent zones,
were set to a value close to zero, according to our calculations with the heat transfer
equation q̇ = U · A ·∆x and [50].

2.3.2.3 Results

Figure 2.3 shows the estimated internal gains for the three seasons fall, winter,
and spring for the six single zones, computed with the smoothed time series (2.7).
It can be seen that the different zones exhibit different magnitudes of internal gains,
with average values of the internal gains ranging between 1.0◦C and 3.6◦C for different
zones and seasons. Similar to the lumped zone case (Figure 2.2), daily peaks of the
internal gains profiles can be recognized, with a slight decrease in magnitude on
weekend days. The average prediction RMS error by zone and season are reported in
Table 2.2.

2.4 Physics-Based Model

In this section, we identify a difference equation for the temperature evolution us-
ing the Resistance-Capacitance (RC) modeling method, via the Building Resistance-
Capacitance Modeling (BRCM) MATLAB toolbox [88]. To derive an RC building
model, we first decompose the building into building elements (BE), such as the bulk
volume of air in each room, walls, floors and ceilings. An electric analogy can then
be used to obtain an equivalent electrical circuit whose resistances and capacitances
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represent thermal resistances and thermal capacitances of the BEs, and voltages and
currents represent temperatures of BEs and heat transfers between those. The ther-
mal dynamic model can be obtained by applying Ohm’s law and Kirchhoff’s circuit
laws on the equivalent circuit. The resulting building model is bilinear in nature, due
to the physics of the HVAC system.

2.4.1 Model Setup

The physics-based building model has the following form [43]:

x(k + 1) = Ax(k) +Bvv(k) +Bqq(k) (2.11a)

+
∑21

i=1

(
Bxuix(k) +Bvuiv(k)

)
ui(k)

y(k) = Cx(k), (2.11b)

where the state vector x ∈ R289 represents temperatures of all building elements on
the fourth floor and y ∈ R6 represents the average temperatures of the six zones
shown in Figure 2.1. u ∈ R21 denotes the airflow rate from the 21 VAV boxes, and
v := [vTa, vTs]

> is the disturbance vector, which captures known disturbances from
ambient air temperature and the SAT. Note that from Section 2.3, heat gains due to
solar radiation are orders of magnitude less than those caused by other disturbances
and inputs, hence are not included here. Finally, q(k) : N → R6 captures internal
gains in each of the six zones on the fourth floor. For week m from the training set
T :

q(k) = q0 +


qF(k), if m ∈ F ,
qW(k), if m ∈ W ,

qS(k), if m ∈ S,
(2.12)

where q0 is an unknown constant vector representing background heat gains due to
idle appliances such as computers and printers. Functions qF(·), qW(·) and qS(·)
are unknown nonparametric functions that capture the time-varying heat gain due
to occupancy and equipments in fall, winter and spring, respectively. The sys-
tem matrices A, Bv, Bq, Bxui and Bvui are functions of tuning parameters: the
window heat transmission coefficient (Uwin), the convection coefficients of the in-
terior wall (γIW), the exterior wall (γEW), the floor (γfloor), and the ceiling (γceil).

Define γ :=
[
Uwin, γIW, γEW, γfloor, γceil, q

>
0

]> ∈ R11, then to identify the physics-
based model, we need to estimate the parameter vector γ as well as the functions
qX (·), X ∈ {F ,W ,S}. Next, we describe our approach for identifying this model.

2.4.2 Model Identification

For a fair comparison, the same data used to train and test the data-driven
model is used to train and validate the physics-based model. The model identification
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process is performed in two steps. First, the subset of the training data collected
during weekends is used to estimate the parameters, γ. Second, the nonparametric
functions qX (·) are estimated from the complete training dataset.

2.4.2.1 Parameter Estimation

For parameter estimation purposes, we first set qX (·) = 0 during the weekend
days, and evaluate them at a later point (Equations (2.17)). With qX (·) = 0, (2.11)
reduces to a purely parametric model:

x(k + 1) = Ax(k) +Bvv(k) +Bqq0

+
∑21

i=1

(
Bxuix(k) +Bvuiv(k)

)
ui(k),

y(k) = Cx(k).

(2.13)

The optimal model parameters are estimated by solving the following optimization
problem:

γ̂ = arg min
γ>0

∑
m∈T

∑
k ‖ym(k, γ)− ȳm(k)‖2

s.t. ym(k, γ) and xm(k, γ) satisfy (2.13) with

xm(0) = xKF,m(0), um(k) = ūm(k), vm(k) = v̄m(k) ∀ k,

(2.14)

where ū, v̄ and ȳ denote the measured inputs, disturbances, and zone temperatures,
respectively. In other words, we choose γ such that, when the model is simulated
with this set of parameter values and the measured inputs and disturbances, the
sum of squared errors between the measured zone temperatures and the simulated
temperatures is minimized. The initial state xm(0) is required to simulate the model,
however, not all states are measurable (the wall temperature for example is not),
thus we estimate the initial states using a Kalman Filter xKF,m(0), and set xm(0) =
xKF,m(0). Furthermore, to compensate for the lack of sufficient excitation of the
building, initial guesses for γ that are physically plausible are chosen. The optimal
parameter values are reported in Table 2.1.

2.4.2.2 Estimation of q(·) for Each Season

Let qm(·), m ∈ T be an instance of the internal gains function q(·) estimated for
week m in the training set. The optimal estimate for a given season, say fall, is then
defined as the the average of all estimates for that season:

q̂F(k) =

∑
m∈F qm(k)

‖F‖
for all k, (2.15)

where ‖F‖ represents the cardinality of set F .
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To estimate qm(·) for a given week m, let x̃(k) and ỹ(k) denote the predicted
states and zone temperatures at time k, with qm(k − 1) = 0, i.e.,

x̃(k) = Ax(k − 1) +Bvv(k − 1) +Bqq0

+
∑21

i=1

(
Bxuix(k − 1) +Bvuiv(k − 1)

)
· ui(k − 1),

ỹ = Cx̃(k).

(2.16)

By noting x(k) = x̃(k) + Bqqm(k − 1), qm(k − 1) can be estimated by solving the
following set of linear equations using Ordinary Least Squares:

(CBq) · qm(k − 1) = ȳ(k)− ỹ(k), (2.17)

where ȳ(k) is the measured zone temperatures at time k.

2.4.3 Results

The identified model is tested on holdout test weeks from different seasons. The
average daily prediction RMS errors by zone and season are reported in Table 2.2.
Figure 2.4 shows the estimated increase in zone temperatures due to internal gains
for fall, winter and spring. Similar average internal gains are observed for all zones
and seasons. The zones that correspond to open workspaces and conference rooms
(West, South, East and Center) show discernible daily peaks in their internal gains
profiles with a slight decrease during weekends. Furthermore, there is little variation
in the internal gains profiles across different seasons.

2.5 Quantitative Comparison of both Models

2.5.1 Prediction Accuracy

The high-dimensional physics-based model (Model B) is found to have a higher
prediction accuracy compared to the low-dimensional data-driven model for the indi-
vidual zones (Model A) presented in Section 2.3.2: According to Table 2.2, the mean
RMS error for Model B across zones is 0.11◦C lower than for Model A. This is also
illustrated in Figure 2.5, which shows 7-day open-loop predictions of the temperature
of a randomly selected holdout test week in the spring period, simulated with both
models initialized with the measured temperature. The increase in RMS error from
Model B to Model A is notably larger in the zones East (0.38) and Center (0.15),
compared to the other zones (0.11, −0.03, 0.07, and 0.08).

This provides new insight into the existing knowledge as we provide a quan-
titative comparison between the low-dimensional data-driven model and the high-
dimensional physics-based model’s prediction accuracy for the same multi-zone com-
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Figure 2.4: Estimated internal gain q from the physics-based model by zone and
season.
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Figure 2.5: Simulated temperatures from the data-driven model (blue), physics-based
model (orange) and actual temperatures (green).

mercial building, which is in regular operation. The existing literature merely men-
tions that data-driven models are likely to have lower prediction accuracies than
physics-based ones and, to the best of our knowledge, a quantitative comparison at
this level is non-existent, as previous building models were developed for different
testbeds, fictitious buildings or from simulated data.

Next, we explore the extent to which this slightly lower prediction accuracy of
Model A affects its resulting controller’s closed-loop performance in a building energy
efficiency example.

2.5.2 Energy Efficient Control

In this section, we compare the performance of Model A and Model B for the
purpose of energy efficiency. We formulate a model predictive control (MPC) problem
to find the optimal control strategy that minimizes the cost of HVAC operation over
the same week used in Figure 2.5, while guaranteeing the temperature to stay within
a comfort zone [Tmin, Tmax], which we chose as [20◦C, 22◦C] [36], and confining the
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control input to the physical limits of the HVAC system [umin, umax]. This problem is
formulated as follows:

min
u,ε

N∑
k=1

u(k)2 + ρ‖ε‖2

s.t. x(0) = x̄(0)

x(k + 1) =

{
(2.9), Model A

(2.11a), Model B

umin − ε ≤ u(k) ≤ umax + ε ∀k ∈ [0, N − 1]{
Tmin ≤ x(k) ≤ Tmax, Model A

Tmin ≤ Cx(k) ≤ Tmax, Model B (2.11b)
∀k ∈ [1, N ]

(2.18)

The temperature is initialized with the measured temperature x̄(0) at the beginning
of the week-long simulation. We use soft constraints on the control input with a
penalty parameter ρ to ensure the feasibility of the problem. The penalty represents
the cost of increasing the airflow beyond the operating limits (temporary shutdown
or overuse, both of which are harmful to the system). To find the optimal control
strategy, we make use of receding horizon control with a prediction horizon of three
15-minute time steps.

Figure 2.6 shows the temperature trajectory computed by the energy efficient
controller (2.18) computed with both models A and B, together with the measured
temperature as a reference. It can be seen that both control schemes are capable
of maintaining the temperature within [20◦C, 22◦C], with a control strategy that is
of comparable cost (1,006 and 1,731 for Model A and Model B, respectively, where
ρ = 100), shown in Figure 2.7. An interesting observation is that the largest difference
in the control strategies is detected in zones East and Center, which show a larger
increase in RMS error from Model B to Model A. Furthermore, it is interesting to
observe that variations in the control input do not impact the periodicity of the
temperature qualitatively, which can be explained by the regularity of the identified
internal gains.

These findings suggest that both models perform equally well in designing an
energy efficient control strategy. However, computing this strategy for Model A was
cheap (< 5 minutes) compared to Model B (≈ 20 hours) on a 2 GHz Intel Core i7, 16
GB 1600 MHz DDR3 machine. Further, we note that in real-world applications, the
MPC would use state feedback to initialize the temperature with sensor measurements
at every time step, whereas in our simulation, it operates in an “open loop” fashion
and hence propagates the estimation error with time. This will reduce the difference
in the prediction quality by both controllers even further, since the RMS error is now
to be evaluated on a much shorter prediction horizon, thereby further corroborating
the finding of almost identical control schemes.
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Figure 2.6: Optimal temperature for MPC with data-driven model (blue), MPC with
physics-based model (orange) and actual temperature (green).
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Figure 2.7: Optimal control strategy for MPC with data-driven model (blue), MPC
with physics-based model (orange) and actual input (green).
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Observing that Model A only suffers a negligible loss of accuracy compared to
Model B for an open loop optimal control scheme, our findings suggest the applica-
bility of Model A to other applications with temperature-critical zones in which even
more precise temperature estimates are needed, e.g. long-term planning of reserve
provision for frequency regulation.

2.6 Conclusion

We identified two state-space models for the thermal behavior of the same multi-
zone commercial building using experimental data collected during regular build-
ing operation. One of the models is a low-dimensional data-driven model identified
using semiparametric regression, the other one is a high-dimensional physics-based
resistance-capacitance model. Both models capture the effect of disturbances such
as occupancy and electrical appliances that commercial buildings are subjected to,
without installation of any additional hardware such as occupancy sensors.

The identification of both models on the same building enabled us to quanti-
tatively compare the performance of these types of models when applied to a real
building, which has not been done before. Our results showed that the RMS error
of the open-loop temperature prediction of the physics-based model across different
thermal zones and temporal seasons is 0.11◦C lower than in the data-driven model,
a 25% reduction. However, simulating energy efficient MPC schemes under both
models suggested both models perform equally well in terms of cost function mini-
mization and constraint satisfaction despite the significantly higher complexity of the
physics-based model.

It is widely known in this field that low-dimensional data-driven models have
lower prediction accuracy than high-dimensional physics-based models, and thus have
been only proposed for control of less temperature-critical buildings or zones. How-
ever, our work investigated an identification method for data-driven models for multi-
zone commercial buildings in regular operation and demonstrated that the lower
open-loop prediction accuracy of such data-driven models is insignificant in closed-
loop control schemes compared to a high-dimensional physics-based model. Based on
these findings, we suggest that such data-driven models may be suitable for applica-
tions that were previously considered inappropriate, e.g. frequency regulation.
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Parameter Description Value [Unit]
γEW Exterior Wall Convection Coeff. 50.0 [W/(m2K)]
γIW Interior Wall Convection Coeff. 12.8 [W/(m2K)]
γfloor Floor Convection Coeff. 50.0 [W/(m2K)]
γceil Ceiling Convection Coeff. 5.0 [W/(m2K)]
Uwin Window Heat Transmission Coeff. 5.5 [W/(m2K)]
q0,NW Background Heat Gain in Zone NW 25.6 [W/m2]
q0,W Background Heat Gain in Zone W 20.6 [W/m2]
q0,S Background Heat Gain in Zone S 15.9 [W/m2]
q0,E Background Heat Gain in Zone E 16.4 [W/m2]
q0,NE Background Heat Gain in Zone NE 19.9 [W/m2]
q0,C Background Heat Gain in Zone C 6.8 [W/m2]

Table 2.1: Optimal parameter values of physics-based model.

Data-Driven Model
Season NW W S E NE C Mean

Fall 0.98 0.61 0.28 0.42 0.28 0.36 0.488
Winter 1.41 0.34 0.29 0.26 0.25 0.21 0.460
Spring 0.56 0.25 0.31 0.71 0.17 0.34 0.390

Physics-Based Model
Season NW W S E NE C Mean

Fall 0.61 0.46 0.39 0.39 0.20 0.32 0.396
Winter 0.55 0.39 0.34 0.32 0.18 0.24 0.338
Spring 0.45 0.28 0.24 0.33 0.09 0.19 0.263

Table 2.2: RMS error by zone and season for data-driven and physics-based models.
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Chapter 3

Experimental Demonstration of
Frequency Regulation from
Commercial Buildings

A balance of electricity generation and consumption at all times is one of the
necessary requirements for the normal operation of a power system. Reserves known
as ancillary services (AS) are used to correct any mismatch between generation and
consumption. Amongst these reserves, frequency regulation is the highest quality
AS over which the grid operator has almost real-time control and is active contin-
uously during normal operation of the grid, to maintain the grid frequency at its
nominal value (60 Hz in the U.S.). The recent rapid increase in the penetration of
renewable energy sources has aggravated the volatility and uncertainty of electricity
supply, which leads to a greater demand for frequency regulation reserves. These
reserves have been traditionally provided by conventional fast-ramping power gener-
ators. More recently, loads on the demand side have also been considered for this
application, in particular, commercial buildings. The feasibility of this proposal has
been investigated by numerous researchers through simulations and theoretical stud-
ies. On the experimental side, there has only been a limited number of field tests,
most of which were conducted in controlled laboratory environments with minimal
uncertainties.

In this chapter, we demonstrate experimentally that commercial buildings equip-
ped with HVAC systems can provide frequency regulation. First, we propose a control
scheme that adjusts the electricity consumption of the supply fans of the HVAC sys-
tem to track the frequency regulation signal. Then, we demonstrate the performance
of our proposed control scheme through numerous field experiments conducted in an
occupied commercial building, and in accordance with PJM’s regulation market rules.
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3.1 Introduction

Commercial buildings are a tremendous untapped resource for frequency regula-
tion provision for various reasons. First, they account for a large fraction of the total
electricity consumption (up to 40% in the U.S., up to 35% of which is due to HVAC
systems [92]). Second, the electricity consumption of HVAC systems can be flexibly
scheduled without compromising occupant comfort thanks to its large thermal iner-
tia. Third, many commercial buildings are equipped with a variable frequency drive
which can be controlled to vary the power consumption of supply fans of the HVAC
system quickly and continuously [39]. This greatly simplifies tracking of the reference
regulation signal, as opposed to resources with on-off control. Fourth, about one third
of commercial buildings in the U.S. are equipped with a BAS [8] which facilitates the
implementation of new controllers. On the other hand, commercial buildings are often
subject to large disturbances and uncertainties, such as occupancy, which are difficult
to capture and predict. In addition, about one third of commercial buildings in the
U.S. are equipped with VAV HVAC systems [39], which are typically complex with
many control variables and interdependent control loops.

Consequently, most of the existing literature on using commercial buildings for
frequency regulation is based on simulation and theory. Zhao et al. demonstrated,
through simulations, that commercial building’s HVAC system can provide frequency
regulation by adjusting the setpoint of the duct static pressure [100]. In [38], the
authors showed that up to 15% of the rated supply fans’ power can be used to provide
regulation reserves in the frequency range f ∈ [1/(3 min), 1/(8 sec)]. In addition, this
frequency range can be extended down to 1/(1 hr) if chillers are incorporated [55].
Researchers have also investigated the feasibility of using an aggregation of buildings
to provide reserves: [5] studied the problem of contract design and [95] proposed a
hierarchical control scheme for this scenario.

On the experimental side, there has been only a few field tests, and most of
them were conducted in controlled laboratory environments with minimal uncertain-
ties. Maasoumy et al. showed that variations in the setpoint of the duct static
pressure can indirectly control the supply fans’ power [63]. In [56], experiments were
conducted in an unoccupied auditorium where filtered versions of the frequency reg-
ulation signal were tracked over 40 minute time durations using two distinct control
inputs: the supply fans’ speed and the setpoint of the supply air flow rate. In their
work, the baseline consumption was determined a posteriori using a high pass filter.
Nevertheless, it is desirable to determine the reserve capacity and baseline at the
beginning of the regulation period in order to comply with the current AS market
rules. Vrettos et al. proposed such a method in [94] using a MPC-based reserve
scheduler. In addition, Vrettos et al. carried out extensive experiments in single-zone
unoccupied test cells [93].

In another interesting contribution, the power consumption of electric heaters
was controlled to provide frequency regulation [21]. To minimize uncertainties, ex-
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periments were conducted in unoccupied rooms at nighttime. The same group of
researchers then extended these results with a formulation to readjust the baseline
in the intraday market to account for prediction errors, and carried out experiments
during the day in occupied offices, where indoor climate is controlled using electric
heaters [31]. Electric heaters have the advantage of being simpler to model compared
to VAV HVAC systems and are found in many European buildings. However, since
many commercial buildings in the U.S. are equipped with the latter, experimental
demonstration using VAV HVAC systems is essential for their wide adoption in the
U.S..

In this chapter, we demonstrate that VAV HVAC systems can be controlled to
provide frequency regulation through field experiments conducted on an occupied
commercial building during both daytime and nighttime. Our contributions are two-
fold:

First, we aim to improve existing frequency regulation control algorithms. Un-
like the frequency tracking controller in [94], which relies on an accurate supply fan
model, we propose a controller that is suitable when the building is subject to larger
disturbances and/or modeling uncertainties.

Second, on the experimental side, as far as we know, this is the first report
where an occupied commercial building equipped with a VAV HVAC system suc-
cessfully provides frequency regulation. Experiments are conducted in accordance
with PJM’s certification test (40 minute duration) and tracking requirements (over
multiple hours), using historical PJM regulation signals. Good tracking performance
was achieved despite large disturbances such as occupancy and the use of a simple
building model, which demonstrates the robustness of our method to uncertainties.

This chapter is organized as follows. We first briefly describe our control scheme
in Section 3.2. Then, Section 3.3 presents the fan model, followed by Section 3.4,
which describes the controller design in detail. Section 3.5 then demonstrates the
performance of our controller through extensive field experiments. Finally, Section
3.6 concludes.

3.2 Problem Statement

3.2.1 PJM Regulation Market Operation [73]

In this section, we briefly describe the operation of the PJM regulation market
relevant to this work, which involves the day-ahead market and the hourly schedul-
ing process. First, resources that wish to participate in the regulation market can
submit their bids, which includes capacities and offering prices, one day ahead in
the day-ahead market for the entire 24 hours of the operating day. After the day-
ahead market closes, PJM calculates the initial regulation schedule for each hour of
the operating day, based on bids, offers, submitted schedules and predicted reserve
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needs. The hourly scheduling process operates at an overlapping time frame, and
allows participating resources to declare their regulation capacities and baseline con-
sumptions, which must remain fixed for each operating hour, up to 60 minute before
the beginning of the operating hour.

Assumption 1 In this chapter, we assume that our building participates in the
hourly reserve scheduling process.

During real time operation, a frequency regulation signal is sent from PJM to
each participating resource every 2 seconds. In turn, the resource is required to
regulate its instantaneous electricity consumption around its baseline such that the
deviation tracks the regulation signal.

3.2.2 Control Scheme

The field experiments are conducted on the fourth floor of SDH, the same build-
ing used for model identification in Chapter 2, which is a seven-floor-building equipped
with a VAV HVAC system. On the control system side, SDH is equipped with the
Siemens’ APOGEE system – a BAS that controls the building’s HVAC system and
lighting based on existing control loops. The communication between the building
automation devices is enabled by a building automation and control network (BAC-
net). We develop an external frequency regulation controller to read measurements
from and send control commands to the HVAC equipment via the BACnet.

Our goal is to adjust the instantaneous power consumption of the supply fans
to provide frequency regulation while maintaining the indoor temperature on the
fourth floor within the comfort zone. We propose to control the supply fans’ power
consumption by adjusting their speed and use the airflow rates to the fourth floor
for the comfort goal. The airflow rates to the rooms are chosen not to depend on
the frequency regulation signal because they have very different reaction times: the
regulation signal is updated every 2 seconds, however the dampers in the VAV boxes
have a time constant in the order of minutes. Consequently, our controller overrides
the BAS’ supply fans’ speed control loops and the airflow rate control loops at the
VAV boxes situated on the fourth floor. All other BAS’ control loops are left intact.
Our proposed control architecture consists of a High Level Controller and a Low Level
Controller as depicted in Figure 3.1:

• High Level Controller (HLC) - Reserve Scheduling and Room Temperature Con-
trol

A closed-loop MPC that operates every hour. Its objective is two-fold: first,
determine the reserve capacity that the building can reliably offer for the next
operating hour; second, calculate the baseline airflow rate to each room that
ensures occupant comfort while providing this amount of reserves. Both the
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Figure 3.1: Two level control scheme for frequency regulation. See Table 3.1 for
description of symbols.

capacity and the baseline are chosen to minimize electricity cost and maximize
rewards from reserve provision.

• Low Level Controller (LLC) - Frequency Tracking

An improved version of the switched controller proposed in [94], which modu-
lates the speed of the supply fan every 4 seconds so that its power consumption
deviations from its baseline tracks the frequency regulation signal. It consists of
a model-based feedforward controller and a Proportional Integral (PI) feedback
controller. As explained in Section 3.4.2, our switched controller has a different
switching condition from [94], which makes our controller suitable for scenarios
where the building is subject to larger disturbances.

Note that although PJM’s regulation signal is updated every 2 seconds, power
consumption measurements of the supply fans in SDH are only available every
10 to 20 seconds, therefore the LLC was chosen to run at an intermediate rate
of 4 seconds. This is a restriction of our particular building. Using another
building whose supply fans’ power measurements are updated more frequently
would only improve our controller’s tracking performance.
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3.3 Model Identification

3.3.1 Building Model

The data-driven model identified for the fourth floor of SDH in Chapter 2 is used
here in our field experiments. To recap, we model the room temperature evolution as
follows:

x(k + 1) = Ax(k) +Bu(k) + Cv(k) + q(k), (3.1)

where x ∈ R6 represents the average temperature in each of the six zones on the
fourth floor (see Figure 2.1), u ∈ R6 contains the total airflow to each zone, v :=
[vTa, vTs]

> ∈ R2 is a disturbance vector that describes ambient air temperature and
the HVAC system’s SAT and q ∈ R6 contains internal gains due to occupancy and
electric devices in each zone. Finally, A, B ∈ R6×6 and C ∈ R6×2 are coefficient
matrices.

3.3.2 Fan Model

SDH’s HVAC system contains two AHUs, each of them houses a set of supply fans
that operate at the same speed at all times. In this work, we model the fans in both
AHUs as a single unit, i.e., we control them to the same fan speed, we consider their
total power consumption and the total air flow rate through both AHUs. With this
setup, a fan model is identified from 6 weeks of one-minute resolution data collected
from sMAP. The fan laws state that the airflow rate through the fan is proportional
to the fan speed, and the fan power is a cubic function of its speed [68]. Figure 3.2
confirms the linear relationship between the airflow rate and the fan speed. It also
shows that for the range of fan speeds used in this work (i.e., 20% to 60% of maximum
fan speed), a quadratic function can describe the relationship between fan power and
fan speed without significant loss of accuracy compared to a cubic function, and since
a quadratic function would simplify the subsequent controller design problem, it is
adopted in this work.

Let N denote the fan speed, u the total airflow through the fans and P the total
fan power consumption, then the fan model is given as follows:

N = f(u) = a1u+ a2

P = g(N) = b1N
2 + b2N + b3

P = h(u) = c1u
2 + c2u+ c3.

(3.2)
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Figure 3.2: Fan measurements and identified models for fan power and air flow as
functions of fan speed.

3.4 Two-Level Control Scheme

3.4.1 High Level Controller

3.4.1.1 Regulation Capacities

Let Pbase and ubase represent the power consumption of the supply fans and the
airflow rate through the fans at the baseline operating point. Then,

Pbase(k) = h
(
ubase(k)

)
= h

(
1>u(k) + vṁ(k)

)
,

(3.3)

where u(k) ∈ R6 represents the controlled airflow rates to the six zones on the fourth
floor, and vṁ(k) ∈ R is a disturbance that represents the total airflow rate to the
remaining floors. Now, define Ru(k) and Rd(k) as the up- and down-regulation ca-
pacities at time step k, respectively1. In addition, let ru(k) and rd(k) denote the
maximum changes in fan speed at time step k as a result of reserve provision. Then,
the regulation capacities are as follows

Ru(k) = Pbase(k)− Pu(k)

= h
(
ubase(k)

)
− g
(
f(ubase(k))− ru(k)

)
Rd(k) = Pd(k)− Pbase(k)

= g
(
f(ubase(k)

)
+ rd(k))− h

(
ubase(k)

)
,

(3.4)

1For demand resources, up-regulation requires a reduction in its power consumption and down-
regulation requires an increase in consumption.
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where Pu and Pd denote the fans’ power consumption when providing maximum up-
and down-regulation capacities, respectively.

During real-time operation, the building receives a normalized real-time regula-
tion signal ω ∈ [−1, 1] from PJM, which represents the requested regulation amount
R as a fraction of the declared capacities Ru and Rd. In other words, the building
must control its power consumption P at time k to track the following reference
(desired) value:

Pref(k) = Pbase(k) +R(k)

= Pbase(k) +

{
ω(k)Ru(k) if ω(k) < 0 (up-regulation)

ω(k)Rd(k) if ω(k) ≥ 0 (down-regulation).

(3.5)

3.4.1.2 Input Constraints

The airflow rates to the fourth floor must remain fixed for each hour in order
to maintain a constant baseline, in addition to being restricted by the minimum and
maximum airflow settings of the HVAC system. Note that in our experiment setup,
u is unaffected by the uncertain regulation signal w.

u(k) = u(k + j) for all k = 4m + 1, j = {1, 2, 3},m ≤ n/4 − 1, m ∈ N, (3.6)

umin ≤ u(k) ≤ umax. (3.7)

Furthermore, there are minimum and maximum fan speed requirements: Nmin =
20% and Nmax = 60%, where the maximum limit ensures that the HVAC system’s
duct static pressure remains under the maximum safe value of 2 inches water column,
and the minimum limit ensures that the supply fans have sufficient power to drive
the supply air throughout the building:

Nmin ≤ N(k) ≤ Nmax for all ω(k) ∈ [−1, 1], (3.8)

where N(k) is the fan speed at time step k. Since ω is unknown at scheduling time,
the above constraint must hold for any ω. The fan model states that N is given by
the inverse of the speed-to-power function, N = g−1(P ), which is usually complex,
however, it has a simple form at the boundary values of ω:

N(k) =

{
Nbase(k)− ru(k) if ω(k) = −1

Nbase(k) + rd(k) if ω(k) = 1.
(3.9)

Thus, the above constraints can be satisfied by imposing the following robustified
version of (3.8)

Nmin + ru ≤ Nbase(k) ≤ Nmax − rd. (3.10)
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Although [94] showed that the energy content of ω over a 15 minute interval is typically
limited and ω ∈ [−ωlim, ωlim] most of the time, where 0 < ωlim < 1; we choose to deal
with the uncertainty introduced by ω in a robust fashion, by accounting for the worst
case, i.e., ω = ±1. This way, the building need not make any assumptions on the
statistical properties of ω, and it has the added advantage of building additional
robustness to modeling and forecast uncertainties for an occupied building.

3.4.1.3 Output Constraints

The indoor temperature x should be kept within the time varying comfort zone
[xmin(k), xmax(k)] for all k:

xmin(k) ≤ x(k) ≤ xmax(k). (3.11)

Note that x is unaffected by the unknown signal ω since u is independent of ω.
The regulation capacities are required to be fixed for each hour which translates

to the following constraint:

Ru(k) = Ru(k + j) and Rd(k) = Rd(k + j)

for all k = 4m+ 1, j = {1, 2, 3},m ≤ n/4− 1, m ∈ N. (3.12)

In addition, these capacities must be non-negative. Because fan power is a non-
decreasing function of its speed in the operating range [Nmin, Nmax], the following
condition ensures Ru(k) ≥ 0 and Rd(k) ≥ 0:

ru(k) ≥ 0, rd(k) ≥ 0. (3.13)

3.4.1.4 Cost Function

The objective of the HLC is to choose the HVAC’s operating point to minimize
the cost of electricity consumption and maximize rewards from reserve provision.

Assumption 2 Electricity cost is calculated based on the baseline consumption.

Assumption 3 The payment for both up- and down-regulations are the same.

Then, the building’s objective is to minimize the following cost function

c(k)Pbase(k)− λ(k)
(
Ru(k) +Rd(k)

)
, (3.14)

where c denotes the unit electricity cost and λ denotes the reward for providing
regulation service.
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3.4.1.5 Robust Optimization Problem

We introduce the following robust optimization problem:

minimize
u(k),ru(k),rd(k)

∑n
k=1 c(k)Pbase(k)− λ(k)

(
Ru(k) +Rd(k)

)
subject to umin ≤ u(k) ≤ umax

Nmin + ru ≤ Nbase(k) ≤ Nmax − rd
x(k) = Ax(k) +Bu(k) + Cv(k) + q(k)

xmin(k) ≤ x(k) ≤ xmax(k)

ru(k) ≥ 0, rd(k) ≥ 0

conditions (3.6) and (3.12) for constant

hourly baseline and regulation capacities.

(3.15)

(3.15) is a deterministic nonlinear optimization, with non-convex quadratic cost func-
tion and linear equality and inequality constraints. Despite its non-convexity, it can
be solved in Matlab using YALMIP [48] and the fmincon solver in less than one sec-
ond, due to its small size. The outcome is the baseline operating point for the HVAC
system, and the up- and down-regulation capacities Ru(k) and Rd(k) for each time
step in the scheduling horizon k = 1, . . . , n.

3.4.1.6 Disturbance Approximation and Forecast

The building’s dynamics are subject to the following disturbances: ambient tem-
perature vTa, SAT vTs and internal gains due to occupancy q. Ambient temperature
forecasts are obtained from the publicly available database of darksky.net [60]. Anal-
ysis of historical data indicates that SAT rarely varies, as a result, it is measured
at each time step k and assumed constant for the HLC horizon, i.e., 1 hour for the
certification experiment and 4 hours for the tracking experiment. The internal gains
q is first estimated at each time step k from the building model and real-time mea-
surements, and then assumed constant for the HLC horizon. In addition, the cost
function (3.14) is affected by vṁ, the total airflow rate to other floors of SDH, through
(3.3) and (3.4). This is also measured at each time step k and assumed constant for
the HLC horizon.

3.4.2 Low Level Controller

The Low Level Controller (LLC)’s responsibility is to vary the fan power P to
track the reference Pref. Our approach is different from [64] which used the frequency
of the variable frequency drive as the control input, and from [56] where control
inputs, acting as disturbances, are superimposed onto HVAC’s existing control loop
commands.
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We improve on the switched controller proposed in [94], so that it is suitable for
buildings subjected to large disturbances where an accurate fan model is not available.
It consists of two sub-controllers. Controller 1 is a model-based feedforward controller
which uses the fan model from (3.2) to determine the fan speed required for a given
Pref(k), i.e., N(k) = g−1(Pref(k)). This feedforward controller has a fast response and
thus, is best suited when there is a large change in the reference regulation signal,
i.e., |Pref(k)−Pref(k− 1)| > ε where ε is a user defined threshold value. On the other
hand, Controller 1 has non zero steady state error due to inaccuracies in the fan model.
Therefore, Controller 2 – a PI controller, is used to reduce any steady state error from
Controller 1. The implementation of the LLC is presented in Algorithm 1. Step 13 is
the discrete implementation of the PI controller, where ∆t is the discretization time
step (4 seconds in our case). In step 15, the fan speed is capped between Nmin and
Nmax to satisfy constraint (3.8).

Algorithm 1 Low Level Controller

1: Initialize previous tracking error e(k− 1) = 0, reference regulation signal Pref(k−
1) = 0 and fan speed N(k − 1)

2: while experiment is running do
3: Compute baseline fan power Pbase(k) = h(ubase(k))
4: Compute reference (desired) fan power Pref(k) = Pbase(k) + ω(k)Ru(k) if
ω(k) < 0 and Pref(k) = Pbase(k) + ω(k)Rd(k) if ω(k) ≥ 0

5: Measure actual fan power P (k)
6: Compute current tracking error e(k) = Pref(k)− P (k)
7: if |Pref(k)− Pref(k − 1)| > ε then
8: Use model-based controller:
9: N(k) = g−1(Pref(k))

10: else
11: Use PI controller:
12: N(k) = N(k − 1) +KP(e(k)− e(k − 1)) + KP

KI
e(k) ·∆t

13: end if
14: Cap fan speed: N(k) = max

(
min(N(k), Nmax), Nmin

)
15: Update variables: e(k−1)← e(k), Pref(k−1)← Pref(k) and N(k−1)← N(k)
16: end while

The improved performance of our switched controller compared to that in [94]
is a result of the new switching condition. In [94], the LLC switches between its sub-
controllers based on whether the absolute tracking error is greater than a threshold
ε̄, i.e., |e(k)| > ε̄. To see why this controller may fail when an accurate fan model
is not available, consider a step change in the reference signal Pref at time step k
such that |e(k)| > ε̄. According to the switching condition in [94], Controller 1 would
become active. If the fan model is accurate enough such that the fan speed given by
the inverse fan model is able to reduce the tracking error at the next time step k + 1
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to |e(k + 1)| ≤ ε̄, then Controller 2 would take over and continue to decrease the
tracking error from time k + 1 onwards. On the other hand, if the fan model is not
accurate enough such that |e(k+ 1)| > ε̄, then the switched controller in [94] is stuck
in Controller 1 with a constant fan speed N(k) = g−1(Pref(k)), and consequently, a
constant tracking error whose absolute value is greater than ε̄. In practice, accurate
fan models are often not available for commercial buildings like SDH which are subject
to large disturbances and uncertainties. Therefore, larger values of ε̄ are needed to
avoid the above problem. We found that for SDH, the required value of ε̄ would be so
large that the switched controller essentially acts as a simple PI controller, and a PI
controller alone is unable to achieve the fast response necessary for a good tracking
performance.

Our proposed switched controller overcomes the above problem and is therefore
suitable for buildings where an accurate fan model is not available. Consider the
above scenario again, |Pref(k + 1) − Pref(k)| = 0 ≤ ε independent of the fan model,
therefore Controller 2 is activated at time step k + 1 and continues to reduce the
tracking error.

3.4.2.1 PI Controller Tuning

The proportional KP and integral gains KI of the PI controller are calculated
using the Open Loop Ziegler Nichols method [72]. Open loop responses of the fan
power to step changes in its speed were recorded. The delay time and time constant
of the response were used to compute the gains KP and KI. These values served as
initial guesses, which we fine tuned later through trial and error. The final gain values
are: KP = 0.3, KI = 6.8.

Note that the Closed Loop Ziegler Nichols tuning method used in [94] may be
unsafe for a regular building, because it requires increasing the proportional gain
KP until the fan power exhibits sustained oscillations, i.e., the system is marginally
stable. Also note that a single PI controller for the entire operating range of the
supply fans was found to be sufficient to achieve good tracking performance.

3.5 Experimental Results

3.5.1 Communication Architecture

The communication architecture is shown in Figure 3.3. The HLC is imple-
mented in Matlab on a standard laptop and the LLC is implemented in Python on a
server located in SDH. The Matlab and Python scripts communicate asynchronously
via local port forwarding and TCP/IP. All requests are initiated from the Matlab
script and forwarded to the connected port on the laptop, while the Python script
continuously listens to the corresponding port on the server and responds to any
received requests.
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Figure 3.3: Communication architecture. See Table 3.1 for description of symbols.

The HLC queries the publicly available database of darksky.net to obtain weather
forecasts, and collects building measurements by sending read requests to the Python
script, which then directly queries the BACnet to obtain these measurements. At the
same time, the HLC computes the regulation capacities, baseline and optimal airflow
rate setpoints and sends them as write requests to the Python script. The script then
updates the values of its local copy of the regulation capacities and baseline, and
adjusts the appropriate actuator setpoints via BACnet. Finally, the LLC reads the
preloaded PJM regulation signal, and determines and adjusts the fan speed setpoint
using read and write requests via the BACnet.

3.5.2 Performance Metric

PJM’s composite performance score Scomp is used to evaluate our controller’s
performance in tracking the regulation signal. This score consists of three equally
weighted components: a correlation score Sc, a delay score Sd and a precision score
Sp, defined as in [79]:
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Sc = max
t∈[0,5min]

(σt)

Sd =
1

5min

(
5min− max(t? − 10sec, 0)

60sec

)
where t? = arg max

t∈[0,5min]
(σt)

Sp =1− 1

nh

nh∑
k=1

|Pref(k)− P (k)|
0.5 · (Rd,h +Ru,h)

Scomp =
1

3
· (Sc + Sd + Sp) .

(3.16)

In (3.16), σt represents the correlation between the reference signal Pref(k) and
the fans’ actual power consumption delayed by t seconds P (k+ t). In other words, Sc

measures the maximum correlation between the regulation signal and the building’s
response signal within each 5 minute window. Sd represents the response delay when
maximum correlation occurs, with a “free” 10 second allowance, and finally Sp mea-
sures the average tracking error scaled by the building’s regulation capacity offered
for that hour h. All scores take values between 0 and 1, with 1 being a perfect score.
Following PJM’s rule, we generate Sc and Sd every 10 seconds and calculate Sp once
per hour. The performance score Scomp is then computed every hour by averaging Sc

and Sd scores for the hour and using Sp for that hour.

3.5.3 Certification Experiment

Any resource that intends to participate in PJM’s regulation market must first
pass the certification test, which is run during a continuous 40-minute period, us-
ing the test signal published on PJM’s website [83]. The test is scored using Scomp

evaluated on the entire 40-minute test period, and a resource is certified only after
it achieves three consecutive scores of 0.75 or above. In addition, both the baseline
consumption and regulation capacity must be declared before the test begins and
remain constant throughout the test.

We carried out four certification tests at various hours of the day from Novem-
ber 27 (Sunday) to 28 (Monday) 2016 and achieved Scomp values around 0.9 in all
tests (Table 3.2). This demonstrates that our controller’s performance is robust to
disturbances such as weather and occupancy. Figure 3.4 shows the desired reference
signal Pref, the fan’s actual power consumption P and the percentage tracking error
defined as (Pref − P )/Pref · 100 for the test conducted on November 28 starting at
10 a.m.. An absolute tracking error of less than 28% is observed during 90% of the
test period.
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Figure 3.4: Certification experiment results: power and tracking error.

3.5.4 Tracking Experiment

In this section, we present the results from the tracking experiment conducted
from 13:00 to 17:00 on Nov 29, 2016, which uses the historic PJM RegD signal
recorded from 13:00 to 17:00 on July 1, 2016 [83] as the reference frequency regulation
signal.

After successful certification, each resource must maintain a historic performance
score Scomp of above 40% to continue to provide regulation services. In addition, a
resource must achieve an average hourly score of at least 50% to receive payments
for offering regulation capacity. Table 3.3 shows the Scomp scores calculated for each
hour, as well as the average scores, of our tracking experiment. Our controller scored
Scomp values well above both thresholds during the field experiment, demonstrating
good tracking performance.

Figure 3.5 shows that the actual fan power closely tracks the reference power
signal and indeed, an absolute tracking error of less than 16% is achieved 90% of
the time. The error is greatest at the start of the experiment as the fans switch
from normal operation to frequency regulation mode, and decays as the experiment
progresses. The fans offer a constant total regulation capacity of 23.3 kW every
hour, but the split between up- and down-regulation capacities varies hourly as the
building’s baseline consumption changes. Finally, we confirm that the duct static
pressure remains below the maximum limit of 2 inches water column throughout the
experiment.

We present the zone temperatures and airflow rates from the experiment in
Figure 3.6, and note the following observations. First, all zone temperatures are
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maintained within the comfort bounds and flow rates are kept within the permissi-
ble ranges. Second, to minimize electricity cost, flow rates are kept at their minima
unless continued supply of minimum airflow to a zone is predicted to cause the zone
temperature to exceed its maximum limit within the prediction horizon. For example,
flow rates are increased in the second and third hours in the West zone to maintain
occupant comfort. Third, observe that temperatures decrease during the third hour
in the West zone and the second hour in the South zone, which indicates that the
rooms are overcooled, i.e., supply air’s flow rates are more than the minimum re-
quired to maintain zone temperatures within the comfort range. This is likely due to
disturbance prediction errors.

3.6 Conclusion

In this chapter, we demonstrate experimentally that commercial buildings equip-
ped with VAV HVAC systems can provide frequency regulation, by varying the power
consumption of the supply fans. To do so, we improve on existing frequency regu-
lation control algorithms and propose a two-level control scheme that is suitable for
buildings subjected to larger disturbances and/or modeling uncertainties. Then, we
demonstrate our controller’s performance through numerous field experiments con-
ducted in an occupied commercial building, using archived PJM frequency regulation
signals.
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Symbol Description
Ru, Rd Up- and down-regulation capacities
Pbase, P Baseline and actual fan power consumption
Nbase, N Baseline and actual fan speed
x Zone temperature
u Control input
v Disturbance
q Internal gains
w Normalized frequency regulation signal
c Unit electricity cost
λ Reward for reserve provision

Table 3.1: Table of notation.

Test date Test start time Sc Sd Sp Scomp

Nov 27 22 hours 0.90 0.90 0.88 0.89
Nov 28 10 hours 0.93 0.93 0.88 0.91
Nov 28 13 hours 0.92 0.90 0.89 0.90
Nov 28 16 hours 0.93 0.92 0.89 0.91

Table 3.2: PJM performance scores for certification tests.

Sc Sd Sp Scomp

1st hour 0.94 0.91 0.99 0.95
2nd hour 0.72 0.52 0.99 0.74
3rd hour 0.63 0.63 0.99 0.75
4th hour 0.62 0.31 0.99 0.64

Mean 0.73 0.59 0.99 0.77

Table 3.3: PJM performance scores for tracking experiment.
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Figure 3.5: Tracking experiment results: power, tracking error, regulation capacities
and duct pressure.
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Figure 3.6: Tracking experiment results: room temperatures and airflow rates. Solid
lines are actual values, dashed lines are maximum and minimum limits.
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Part 2

Secure Estimation under Cyber
Attacks
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Chapter 4

Secure Estimation for Linear
Systems

In this chapter, we develop a secure estimator for a general linear system and
demonstrate its effectiveness through an example of an unmanned aerial vehicle
(UAV) under cyber attack. In the next chapter, we extend these results to two
classes of nonlinear systems and apply the secure estimator to the nonlinear power
system.

Cyber-physical systems (CPSs) are found in many applications such as power
networks, manufacturing processes, air and ground transportation systems. They
consist of physical components such as actuators, sensors and controllers that com-
municate with each other over a network [49]. For example, UAVs may obtain posi-
tion measurements from a GPS or communicate with a remote control center (RCC).
Although communication networks are often protected by security measures, cyber
attacks can still take place when a malicious attacker obtains unauthorized access,
launching jamming attacks [29], or spoofing sensor readings and sending erroneous
control signals to actuators [69]. For CPS, cyber attacks not only compromise in-
formation but can also cause damage in the physical process, ranging from power
systems [58, 90] to UAVs [44]. This presents new challenges and thus demands new
strategies and algorithms [11].

Maintaining security of these systems under cyber attacks is an important and
challenging task, since these attacks can be erratic and thus difficult to model. Secure
estimation problems study how to estimate the true system states when measurements
are corrupted and/or control inputs are compromised by attackers. In designing such
estimators, it is desirable to make as few assumptions about the attackers as possible.
This is because it is very difficult, if not impossible, to predict the behavior of attack-
ers, and when an attack signal violates the assumptions of a secure estimator, then
this estimator would fail to detect the attack. [25] proposed a novel secure estimation
method assuming that attack signals can be arbitrary and unbounded. However, one
limitation of their proposed estimator is that the set of attacked sensors (sensors, con-
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trollers) is assumed to be fixed. In this chapter, we extend these results to scenarios
in which the set of attacked sensors can change over time. We formulate this secure
estimation problem into the classical error correction problem [10] and we show that
accurate estimation can be guaranteed. Furthermore, we propose a combined secure
estimation method with our proposed secure estimator and the Kalman Filter (KF)
for improved practical performance. Finally, we demonstrate the performance of our
method through simulations of two scenarios where a UAV is under cyber attack.

This chapter is an adaptation of the paper in [44].

4.1 Introduction

Researchers have studied various approaches to securing CPS. Each of them
relies on specific assumptions about attackers’ strategies and it is rarely the case, if
not impossible, that one estimator/detector can protect against all possible attacks.
For example, [51, 54, 58, 90] studied optimal attack strategies for different control
systems and applications. From the controller’s point of view, [65, 77] assumed that
the attack signal would follow certain probabilistic distributions and then designed
filters to detect these attacks. In [26,34,35,66,81], the authors used the game theory
framework, where the controller and attacker are players with competing goals in a
game. Attackers are assumed to adopt specific strategies that maximize a certain
cost and the controller or estimator is designed to minimize such a cost. Finally,
the authors of [53] proposed a hybrid controller, where each constituent controller
protects the system against a specific type of attack.

More recently, Fawzi et al. studied secure estimation of a discrete time linear
time invariant (LTI) system and proposed in [25] a secure estimation method for ar-
bitrary attacks. Later, [74] and [84] extended this work by relaxing the assumption of
having an exact system model and proposed an Satisfiability Modulo Theory (SMT)-
based observer that handles large systems with thousands of sensors. One limiting
assumption of [25], [74] and [84] is that the set of attacked sensors is fixed and can
not change over time. Therefore, if a malicious attacker is aware of this assumption,
then she can exploit this weakness and attack different sensors at different time steps
so that such an estimator would fail to detect the presence of the attack.

In this chapter, we focus on sensor attacks on CPS and attempt to design a secure
estimator for LTI systems based on as few assumptions about the attacker as possible.
First, we do not assume that the attack signals follow any stochastic distributions,
and thus our proposed estimator works for arbitrary and unbounded attacks. Second,
we allow the set of attacked sensors to change over time. The only assumption we
make is that the number of attacked sensors is sparse. Such attacks are found in many
practical situations, and can be launched in both the cyber and the physical domain.
For example, security studies on the current traffic infrastructure [28] demonstrated
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that once a cyber attacker gains access to the traffic network at a single point, the
attacker can send commands to any traffic intersection in the network. In other words,
the attacker can freely attack a different set of traffic signals (sensors) at any time.
Indeed, an attacker who desires to travel through a set of roads as fast as possible
would attack different traffic lights to always give herself green lights as she moves
through the road network. [57] describes a physical attack on a power system where
a changing set of attacked sensors is desirable: in particular, the authors designed a
multi-switch attack, in which different switches in a power network are attacked at
different times, in order to lead to stealthy and wide-scale cascading failures in the
power system.

We formulate this secure estimation problem into the classical error correction
problem, from which we propose an l1-optimization based estimator that is computa-
tionally efficient. In addition, we prove the maximum number of sensor attacks that
can be corrected with our estimator and propose to use pole placement techniques to
design a feedback controller such that the resulting secure estimator can guarantee
accurate estimation. Finally, to improve the estimator’s practical performance, we
propose to combine our secure estimator with a KF, where the KF serves to filter out
both occasional estimation attacks by the secure estimator and noisy measurements,
and we demonstrate the effectiveness of the combined estimator using two examples
of UAVs under adversarial cyber attacks.

This chapter is organized as follows. A review of compressed sensing and error
correction in given in Section 4.2, followed by Section 4.3 which proposes a secure
state estimator for an LTI system under sensor attack where the attacked sensors can
change over time. Then, Section 4.4 describes how pole-placement can be used to
design a good secure estimator and how it can be combined with a KF to improve
its practical performance. Finally we demonstrate the performance of the combined
secure estimator through two numerical examples of UAVs subject to adversarial
attacks in Section 4.5.

4.2 Review of Classical Error Correction

4.2.1 Compressed Sensing

Sparse solutions x ∈ Rn, are sought to the following problem:

min
x
‖x‖0 subject to b = Ax (4.1)

where b ∈ Rm are the measurements, and A ∈ Rm×n (m � n) is a sensing matrix.
‖x‖0 denotes the number of nonzero elements of x. The following lemma provides a
sufficient condition for a unique solution to (4.1).

Lemma 1 ([41]) If the sparsest solution to (4.1) has ‖x‖0 = q and m ≥ 2q and all
subsets of 2q columns of A are full rank, then the solution is unique.
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Proof : Suppose the solution is not unique. Therefore, there exists x1 6= x2 such
that Ax1 = b and Ax2 = b where ‖x1‖0 = ‖x2‖0 = q. Then, A(x1 − x2) = 0 and
x1−x2 6= 0. Since ‖x1 − x2‖0 ≤ 2q and all 2q columns of A are full rank (i.e., linearly
independent), it is impossible to have x1− x2 6= 0 that satisfies A(x1− x2) = 0. This
contradicts the assumption. �

Remark 1 (Measurement Noise) In practice, the measurements are noisy so one
cannot assume that the Ax term in (4.1) is known with arbitrary precision. More
appropriately, we need to assume that one is given noisy measurements, i.e., b =
Ax+ ε, where ε represents measurement noise. In [9], the authors prove that one can
recover approximately sparse signals with an error at most proportional to the noise
level. An alternative is to combine secure estimation with a KF to improve the secure
estimator’s performance for noisy measurements as we propose later in this chapter:
the KF filters out both occasional estimation errors by the secure estimator and noisy
measurements.

4.2.2 The Error Correction Problem [10]

Consider the classical error correction problem: y = Cx + e where C ∈ Rl×n is
a coding matrix (l > n) and assumed to be full rank. We wish to recover the input
vector x ∈ Rn from corrupted measurements y. Here, e is an arbitrary and unknown
sparse error vector. To reconstruct x, note that it is obviously sufficient to reconstruct
the vector e since knowledge of Cx+ e together with e gives Cx, and consequently x
since C has full rank [10]. In [10], the authors construct a matrix F which annihilates
C on the left, i.e., FCx = 0 for all x. Then, they apply F to the output y and obtain

ỹ = F (Cx+ e) = Fe. (4.2)

Thus, the decoding problem can be reduced to that of reconstructing a sparse vector
e from the observations ỹ = Fe. Therefore, by Lemma 1, if all subsets of 2q columns
of F are full rank, then we can reconstruct any e such that ‖e‖0 ≤ q.

4.3 Secure Estimation

4.3.1 Problem Formulation

Consider the LTI system as follows:

x(k + 1) = Aox(k) +Bu(k)

y(k) = Cx(k) + e(k),
(4.3)

where x(k) ∈ Rn, y(k) ∈ Rp and u(k) ∈ Rm are the states, measurements and control
inputs at time step k. e(k) ∈ Rp represents the attack signal at time k. Our goal is to
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reconstruct the initial state x(0) of the plant from the corrupted observations y(k)’s
where k = 0, ..., T − 1.

The attack vector e(k) is such that if the i-th sensor is attacked at time k, then
ei(k), the i-th element of e(k) is nonzero, otherwise ei(k) = 0. We assume that the
attack signal can be arbitrary and unbounded. In addition, we assume that the set
of attacked sensors can change over time. As illustrated by the following example, if
two sensors are attacked at each time step, we can have sensors 1 and 3 attacked at
time step 0, sensors 2 and 3 attacked at time 1, and so on:

[
e(0) | e(1) | ...

]
=


∗ 0 ∗ · · ·
0 ∗ 0 · · ·
∗ ∗ 0 · · ·
0 0 ∗ · · ·

 ,
where ∗ denotes a nonzero component (i.e., an attack or corruption).

Furthermore, assume that a local control loop implements secure state feedback
and is not subject to attack: u(k) = Gx(k). This represents the following practical
scenario: a physical system possesses a local control loop that has direct access to
the state of the plant and can control the evolution of the physical system. This is
reasonable if the sensors are connected to the local controller through a wired link
that is not subject to external attacks. Also, as part of the overall plant, a higher-level
supervisory and monitoring system receives measurements from the sensors through
wireless and vulnerable communication links that are subject to attacks [25]. A
concrete example is a UAV that uses measurements from onboard, hardwired sensors
such as an Inertial Measurement Unit (IMU) for autopilot and trajectory following
(i.e., secure local control loop), and communicates wirelessly with a remote control
center (i.e., vulnerable link subject to attacks). The resulting closed loop system is:

x(k + 1) = Ax(k)

y(k) = Cx(k) + e(k),
(4.4)

where the closed loop system matrix A = Ao +BG.
Finally, we define the number of correctable attacks as follows:

Definition 4.3.1 When the set of attacked sensors/nodes can change over time, q
errors are correctable after T steps by the estimator/decoder D : (Rp)T → Rn if
for any x(0) ∈ Rn and any sequence of vectors e(0), ..., e(T − 1) in Rp such that
|supp(e(k))| ≤ q1, we have D(y(0), ..., y(T − 1)) = x(0) where y(k) = CAkx(0) + e(k)
for k = 0, ..., T − 1.

1|supp(x)| denotes the support of vector x, i.e., the number of nonzero components in x. If f is
any real-valued or vector-valued function on a topological space X, the support of f , denoted by
supp(f), is the closure of the set points where f is nonzero: supp(f) = {x ∈ X | f(x) 6= 0}.
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4.3.2 Methodology

Let Eq,T denote the set of error vectors
[
e(0); ... ; e(T − 1)

]
∈ Rp·T where each

e(k) satisfies ‖e(k)‖0 ≤ q ≤ p.

Y ,


y(0)
y(1)

...
y(T − 1)

 =


Cx(0) + e(0)
CAx(0) + e(1)

...
CAT−1x(0) + e(T − 1)



=


C
CA

...
CAT−1

x(0) + Eq,T , Φx(0) + Eq,T

(4.5)

where Y ∈ Rp·T is a collection of corrupted measurements over T time steps and
Φ ∈ Rp·T×n represents an observability-like matrix of the system. Here, we need
to assume that rank(Φ) = n; otherwise, the system is unobservable and we cannot
determine x(0) even if there is no attack (i.e., Eq,T = 0).

Inspired by the error correction techniques proposed in [10] and [41], we first
determine the error vector Eq,T , and then solve for x(0). Consider the QR decompo-
sition of Φ ∈ Rp·T×n,

Φ =
[
Q1 Q2

] [R1

0

]
= Q1R1 (4.6)

where
[
Q1 Q2

]
∈ Rp·T×p·T is orthogonal, Q1 ∈ Rp·T×n, Q2 ∈ Rp·T×(p·T−n), and R1 ∈

Rn×n is a rank-n upper triangular matrix. Pre-multiplying (4.5) by
[
Q1 Q2

]>
gives:[

Q>1
Q>2

]
Y =

[
R1

0

]
x(0) +

[
Q>1
Q>2

]
Eq,T . (4.7)

We can compute Eq,T by using the second block row:

Ỹ , Q>2 Y = Q>2 Eq,T (4.8)

where Q>2 ∈ R(p·T−n)×p·T . From Lemma 1, (4.8) has a unique, s-sparse solution (where
s ≤ q · T ) if all subsets of 2s columns (at most 2q · T columns) of Q>2 are full rank.
Clearly, this is a reasonable assumption if (p ·T −n) ≥ 2q ·T . Therefore, we consider
solving the following l1-minimization problem:

Êq,T = arg min
E
‖E‖l1 s.t. Ỹ = Q>2 E, (4.9)
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where ‖E‖l1 :=
∑p·T

i=1|Ei|. Now, given the vector Êq,T , we can compute x(0) from the
first block row of (4.7) as follows:

x(0) = R−1
1 Q>1 (Y − Êq,T ) (4.10)

The following lemma provides the conditions under which the solution to (4.10) exists
and is unique.

Lemma 2 x(0) is the unique solution if |supp(Φz)| > 2s = 2(q·T ) for all z ∈ Rn\{0}.

Proof : We first prove the claim C1: if |supp(Φz)| > 2s = 2(q · T ) for all z ∈
Rn\{0} then all subsets of 2s columns of Q>2 are full rank. Then by Lemma 1 and
noting that by definition the null space of Q>2 equals the column space of Φ, we have
x(0) is the unique solution.

Proof of C1 by contradiction: Suppose there exist 2s columns of Q>2 that are lin-
early dependent. Then, there exists E0 6= 0 such that Q>2 E0 = 0 where |supp(E0)| ≤
2s. Since the null space of Q>2 equals the column space of Φ, there exists z such that
E0 = Φz (i.e., E0 is in the column space of Φ). Then, |supp(Φz)| = |supp(E0)| ≤ 2s
(contradiction). �

The sufficient condition, provided in Lemma 2, for the existence of a unique
solution to (4.10) is hard to check as it requires satisfiability of the condition for all
z ∈ Rn\{0}. In the following Theorem, we prove an equivalent, yet simple-to-check,
sufficient condition that only needs to be verified for the eigenvectors of A.

Theorem 1 Let A ∈ Rn×n, C ∈ Rp×n. Assume that C is full rank, (A,C) is observ-
able and A has n distinct positive eigenvalues such that 0 < λ1 < λ2 < · · · < λn.
Define:

• si , |supp(Cvi)|, where vi is an eigenvector of A,

• S , {s1, s2, · · · , sn},

• For every m ∈ {2, . . . , n}, let Sm be any subset of S with m elements, define

TSm ,
(m−2)·p+minSm

maxSm−2q
. Then Tm is chosen such that Tm > TSm for all subsets

Sm, i.e., all subsets of m elements from the set S.

Choose T such that T ≥ max{T2, · · · , Tn}. Then, the following are equivalent:

(i) ∀vi ∈ Rn where Avi = λivi, |supp(Cvi)| > 2q

(ii) ∀vi ∈ Rn where Avi = λivi, |supp(Φvi)| > 2q · T
(iii) ∀z ∈ Rn\{0}, |supp(Φz)| > 2q · T
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Proof : Interested readers are referred to proof for Theorem 1 in our archived
paper [13]. �

Theorem 1 states that if the feedback system and the secure estimator are de-
signed such that all the conditions in the theorem are satisfied, then our proposed
secure estimator can guarantee accurate correction of q errors by checking the follow-
ing very simple condition:

∀vi ∈ Rn where Avi = λivi, |supp(Cvi)| > 2q. (4.11)

4.3.3 Number of Correctable Errors

Given that the set of attacked nodes can change over time and e(k) satisfies
|supp(e(k))| ≤ q for all k, we prove in Proposition 1 (see below) that the maximum
number of correctable errors (as defined in Definition 4.3.1) by our decoder is dp/2−1e,
where p is the number of measurements.

Proposition 1 Let A0 ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n and assume that the
pair (A0, B) is controllable, C is full rank and each row of C is not identically
zero. Then there exists a finite set F ⊂ R+ such that for any choice of n numbers
λ1, · · · , λn ∈ R+\F such that 0 < λ1 < · · · < λn, there exists G ∈ Rm×n such that:

• The eigenvalues of the closed-loop matrix A (= A0 +BG) are λ1, · · · , λn.

• If the pair (A,C) is observable, then the number of correctable errors for the pair
(A,C) is maximal after T = max{n, T ∗} time steps and is equal to dp/2 − 1e,
where T ∗ is the value of T from Theorem 1.

Proof : The proof for Proposition 4 in [25] shows that if the chosen poles
λ1, · · · , λn are distinct, positive and do not fall in some finite set F , then there is
a choice of G such that the eigenvalues of A (= A0 + B) are exactly λ1, · · · , λn, and
the corresponding eigenvectors vi are such that |supp(Cvi)| = p. Thus, by Theorem
1, the number of correctable errors for (A,C) is dp/2− 1e. �

In addition, recall that Eq,T consists of the error vectors e(0), · · · , e(T−1) stacked
vertically and our proofs for the existence of a unique solution to (4.10) are indepen-
dent of how the individual error (nonzero) terms are distributed in the vector Eq,T .
Thus, we can remove the assumption: |supp(e(k))| ≤ q for all k, and allow e(k) to
appear in an arbitrary fashion, e.g. |supp(e(0))| = 2q and |supp(e(1))| = 0, as long as∑T−1

k=0 |supp(e(k))| ≤ q · T , then our q-error-correcting estimator can still recover the
true states. In other words, our proposed secure estimator can protect the system
against more general attacks where the number of attacked sensors is not necessarily
less than or equal to q at every time step.
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4.4 Estimator Design

In the classical error correction problem, to ensure accurate estimation, the cod-
ing matrix must satisfy the Restricted Isometry Properties (RIP) conditions [10],
which are extremely difficult to check in general. In practice, Theorem 1.4 from [10]
is almost always used to design a coding matrix a priori. This theorem states that
a coding matrix whose entries are sampled from independent and identical distribu-
tions satisfies the RIP condition with overwhelming probability. In secure estimation,
however, it is impossible to choose such a coding matrix a priori because it is the
observability matrix Φ, which is structurally constrained: as shown in (4.5), Φ con-
sists of CAk’s where k = {0, · · · , T − 1}. In this Section, we use Condition 4.11
from Theorem 1, the results from Proposition 4 in [25] and state feedback to design
a matrix Φ for accurate estimation.

4.4.1 System and Estimator Design

Since conditions (i) and (iii) in Theorem 1 are equivalent, condition (i) can be
used to design a state feedback controller such that the closed system can achieve
accurate estimation. Therefore, given a controllable open-loop pair (A0, B), design C
and choose an adequate feedback control law u(k) = Gx(k) and construct a secure
estimator such that:

1. Each row of C is not identically zero, and C is full rank;

2. The closed-loop matrix A (= A0 + BG) has n distinct positive eigenvalues:
0 < λ1 < λ2 < · · · < λn;

3. (A,C) is observable;

4. The length of the sliding window of measurements T of the estimator satisfies
Theorem 12;

5. Maximize q subject to: ∀vi ∈ Rn where Avi = λvi, |supp(Cvi)| > 2q.

Without loss of generality, the first condition holds. For example, if there exists a
zero row in C, we can simply remove that row from C without changing the system’s
behavior. Conditions 2, 3 and 4 are required for equivalence in Theorem 1. The
last condition is needed for accurate estimation and for maximizing the number of
correctable attacks. From Proposition 1 the maximum number of correctable attacks
can be achieved when |supp(Cvi)| = p (i.e., the number of measurements) for all
eigenvectors of A.

2We found that much smaller T ’s are often sufficient for good secure estimation performance,
i.e., to perfectly recover the attack signals. In all simulations in this chapter, T = n is used, where
n is the number of states.
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Conditions 2, 3 and 5 depend on the feedback controller. So how do we choose
a controller that achieves good performance in both control and secure estimation?
Below, we describe an approach that we have taken in all simulations in this chapter,
and has proved to work well. This is by no means the only method. First, we design
a controller that achieves good control, for example, Linear Quadratic Regulators
(LQR), which are optimal with respect to a certain quadratic cost function. However,
these controllers may not have good secure estimation properties, meaning the value
of q that satisfies |supp(Cvi)| > q for all eigenvectors of A may be small, i.e., the
resulting estimator can only correct few attacks. It is often easy to increase the value
of q and make the estimator more resilient to attacks by slightly perturbing the closed-
loop poles from those resulting from the LQR controller, such as placing the poles
closer to the origin, and making the poles more spread out amongst themselves. We
chose to keep the perturbations small as to not lose too much control performance.
Although this is a heuristic method, it is relatively easy to carry out in order to satisfy
the above conditions; whereas in the classical error correction method [10], checking
whether a coding matrix satisfies RIP is extremely difficult.

To summarize, we start from some optimal controller which may not result in a
good estimator, then we perturb the closed-loop poles slightly to improve the resulting
estimator’s secure estimation capability. Therefore there is a trade-off between a
system’s control and secure estimation performances, and the feedback controller can
be designed to achieve a desired trade-off between them.

4.4.2 Combination of Secure Estimation and Kalman Filter

Consider the state estimation problem for the following LTI system under attack:

x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) + e(k) + v(k),
(4.12)

where x, y, u and e are as defined in (4.3); and v is a zero mean independent and
identically distributed (i.i.d.) Gaussian measurement noise.

A KF can be used to estimate the states by modeling the attack signal as noise.
More specifically, define a new measurement noise v̄(k) = e(k) + v(k) to give a new
measurement equation y(k) = Cx(k) + v̄(k). A KF can then estimate the states from
the inputs u(k) and the corrupted measurements y(k) [54]. One caveat with this
method is that KFs assume zero mean and i.i.d. white Gaussian measurement noise,
however, attack signals are usually erratic and may be poorly modeled by Gaussian
processes [54], i.e., e(k) and consequently, v̄(k) may not be Gaussian. Take GPS
spoofing attacks for example, attack signals are often structured to resemble normal
GPS signals or can be genuine GPS signals captured elsewhere. When the system is
subjected to attacks that are poorly modeled by Gaussian processes, it is reasonable
to expect KFs to fail to recover the true states. Figure 4.1 gives an illustrative
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Time

True state traj.
KF only
SE only
SE + KF

Figure 4.1: Illustrative comparison of three schemes: KF only (KF), secure estimator
only (SE), secure estimator with a KF (SE+KF). KF fails to estimate the true state
as attack signal is non-Gaussian. SE correctly estimates the system state most of
the time but has occasional large estimation attacks. SE+KF tracks the true state
trajectory perfectly.

example where an attack signal that increases linearly with time is injected into the
measurements of state xi. The red dashed line shows a plausible estimated state
trajectory from a KF.

On the other hand, our proposed secure estimator does not assume the attack
signal to follow any model, and therefore, it works for arbitrary and unbounded
attacks. The only assumption is that the number of attacked sensors is sparse, i.e.,
less than dp/2 − 1e. As the set of attacked sensors becomes less sparse, our secure
estimator occasionally fails to recover the true states. The green dashed line in
Figure 4.1 depicts a possible result from this estimator: the estimated state trajectory
follows the true trajectory most of the time with occasional attacks. Based on these
observations, we propose to combine our secure estimator with a KF to improve its
practical performance, as detailed in Algorithm 1.

The intuition is that the secure estimator acts as a pre-filter for the KF, so that
ṽ(k) is close to a zero mean i.i.d. Gaussian process even when the true attack signal
e(k) is not. More specifically, the secure estimator usually perfectly recovers e(k), thus
e(k) − ê(k) = 0 and ṽ(k) = v(k). What happens when the secure estimator fails?
Equation (4.5) shows that the estimated state at time k, x̂(k), does not directly
depend on the estimated state at another time point x̂(τ) (t 6= τ). As a result,
when the secure estimator fails, its estimation error, e(k)− ê(k), appears to be quite
random. Putting these together: ṽ(k) = e(k) − ê(k) + v(k) is closer to a zero mean
i.i.d. white Gaussian process than v̄(k) (i.e., the corresponding measurement noise if a
KF is applied directly to estimate the states), which improves the KF’s performance.
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Algorithm 2 Combined secure estimator with KF

1: Initialize the KF
2: for each k do
3: if k ≥ T then
4: Estimate the attack signal at time k, ê(k), using secure estimator
5: else
6: Set ê(k) = 0
7: end if
8: Form a new measurement equation: ỹ(k) = Cx(k) + ṽ(k), where ỹ(k) =
y(k)− ê(k) and ṽ(k) = e(k)− ê(k) + v(k)

9: Apply standard KF using u and ỹ
10: end for

Finally, the if statement in Algorithm 1 ensures that the secure estimator always has
access to T past measurements, as required by Theorem 1.

Next, we demonstrate the effectiveness of our proposed method through simula-
tions of a UAV under two types of adversarial attacks, which also provides a realistic
example illustrating the behaviors described in this section.

4.5 Numerical Examples

On February 15, 2015, the Federal Aviation Administration proposed to allow
routine use of certain small, non-recreational UAVs in today’s aviation system [20].
Thus in the near future, we may see thousands of UAVs such as Amazon Prime Air [1]
and Google Project Wing vehicles [30] sharing the airspace simultaneously. To en-
sure safety of this immense UAV traffic, UAVs may periodically update their position
and velocity measurements wirelessly to a RCC for traffic management (Channel 1
in Figure 4.2). At the same time, UAVs may broadcast this information to other
UAVs in its vicinity for collaborative collision avoidance (Channel 2 in Figure 4.2).
Finally, autonomous UAVs may use GPS for their position measurements (Channel 3
in Figure 4.2). All these communication channels are subject to cyber attacks. If cor-
rupted information are used in collision avoidance or path planning algorithms, they
can lead to possible collisions or loss of UAVs, causing physical and financial damage
and even injury to civilians. To help protect against these attacks and consequences,
participating entities such as the UAVs and the RCC can use secure estimation to
estimate a target UAV’s true position and velocity before using any received infor-
mation for collision avoidance, for instance. In this section, we focus on 2 types of
adversarial cyber attacks on UAVs and demonstrate the effectiveness of our secure
estimator through simulations.
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Figure 4.2: Different communication channels that are subject to adversarial attacks:
Channels 1 and 2 are vulnerable to attack in the MITM attack example (Section
5.3.1) and Channel 3 is vulnerable to attack in the GPS spoofing example (Section
5.3.2).

4.5.1 UAV Model

We consider a quadrotor with the following dynamics:

x(k + 1) = A0x(k) +Bu(k) + k + w(k)

y(k) = Cx(k) + e(k) + v(k)
(4.13)

where x = [px, vx, θx, θ̇x, py, vy, θy, θ̇y, pz, vz]
T is the state vector. px, py and pz repre-

sent the quadrotor’s position along the x, y and z axis, respectively. vx, vy and vz
represent its velocities. θx and θy are the pitch and roll angles respectively, θ̇x and
θ̇y are their corresponding angular velocities. u = [θr,x, θr,y, F ]T is the input vector:
θr,i is the reference pitch or roll angle, and F is the commanded thrust in the verti-
cal direction. y = [p̃x, p̃y, p̃z]

T represents compromised position measurements from
the GPS under attack signal e. w and v represent process and measurement noise
respectively. k is a constant vector which represents gravitational effects, and can
be dropped without loss of generality because we can always subtract it out in u.
Ai,jθ refers to the ij-th entry of the subsystem matrix of the discretized rotational
dynamics Aθ, and Bi

θ refers to the i-th entry of the input-to-state map Bθ for the
discretized rotational dynamics. Ts is the discrete time step, g is the gravitational
acceleration, m is the mass of the quadrotor and KT is a thrust coefficient. Further
details about this model and its derivation can be found in [7]. Finally, the matrix C
depends on the particular measurements taken in each example.
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Figure 4.3: |supp(Cvi)| for all eigenvectors vi of closed-loop matrix A for 2 feedback
controllers: a LQR and a controller designed by pole-placement. Black dashed line is
at p = 5, i.e., the number of measurements.

4.5.2 Estimator Design via Pole-Placement

Assume that the UAV uses the state feedback control law u(k) = Gx(k), where G
is the feedback matrix which can be designed3. If the pair (A0, B) is controllable, then
we can choose G to place the closed loop poles anywhere in the complex plane. We
first design a Linear Quadratic Regulator (LQR) and evaluate its secure estimation
performance by checking whether the sufficient condition for q-attack correction (i.e.,
|supp(Cvi)| > q for all i) holds. Figure 4.3 shows the results for a matrix C ∈ R5×10

(i.e., 5 measurements) and observe that |supp(Cvi)| < p = 5 for i = 1, 2, 9 and 10.
Furthermore, |supp(Cvi)| = 1 > 0 for i = 9 and 10, therefore the resulting secure
estimator can correct zero attacks! To improve the secure estimation performance,
we perturb the closed-loop poles slightly until |supp(Cvi)| = p for all i, as shown in
Figure 4.3. Therefore the resulting secure estimator can achieve the maximum number
of correctable attacks within the limits of p (i.e., the number of measurements). By
keeping the perturbations on the poles small, our final controller achieves both good
control and estimation performances (see Figure 4.4).

4.5.3 UAV under Adversarial Attack

4.5.3.1 Man-In-The-Middle (MITM) Attack in Communication with a
RCC or with other UAVs

In this section, we consider MITM attacks targeted at Channels 1 and 2 in Figure
4.2, where a malicious agent spoofs the information being sent and/or received over

3In the GPS spoofing example, direct uncorrupted state measurements are not available. There-
fore a KF is used to give estimated states which are then used for state feedback control.
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these channels. The goal of the RCC or other UAVs is to accurately estimate the
true flight path of a target UAV from corrupted measurements. Note that the true
path of the target UAV is unaffected by the attack. Assume that the attacker spoofs
the position measurements in order to deceive the receiver that the target UAV is
deviating in the x-direction, i.e., she injects a continuous and increasing signal in the
x-position measurement. To make the estimation task even harder for the receiver,
the attacker also injects a random Gaussian noise to an additional measurement, and
the choice of this measurement can change at each time step.

In this example, we first demonstrate the effectiveness of our proposed estimator
design via pole-placement method by comparing the estimation performance of the
estimator resulting from (1) a LQR controller and (2) a controller designed using pole-
placement as described in the previous section. Throughout this example, y ∈ R5,
measurements include the x, y and z positions and 2 additional randomly selected
states.

The left plots in Figure 4.4 show the true attack signal on all 5 sensors (solid lines)
and the estimated attack signals (dashed lines) by the secure estimator if the feedback
controller is a LQ regulator (top) or one designed via pole-placement (bottom). It is
obvious that the latter estimates the attack signal much more accurately. The right
plots of this figure highlights this observation by explicitly showing the estimation
error of the attack signal for each measurement.

The same information is shown in Figure 4.5, where each row corresponds to one
sensor, and the first 3 rows are the x, y and z position measurements, respectively.
This figure highlights three points: first, the attacked sensors change with time;
second, the number of attacked sensors at each time k is less or equal to 2; third, only
position measurements are corrupted.

Note that the poor performance is not an inherent feature of LQR. Since LQR
does not consider the conditions for secure estimation, there is no guarantee of good
secure estimation performance. On the other hand, if we satisfy the guaranteed
conditions for accurate secure estimation, then we can correctly estimate the true
attack signals, i.e., achieve good secure estimation performance (although we may
loose some control performance).

Next, we implement feedback controller (2), i.e., one designed with pole-placement,
and compare the performance of three different state estimation schemes: (a) KF
only (KF), (b) secure estimator only (SE), and (c) secure estimator combined with
KF (KF+SE). Figure 4.6 shows the estimated flight paths by all three methods. The
true path of the UAV (solid blue line) starts from the position marked by the blue
triangle and ends at the position marked by the blue square. KF fails to filter out the
attack signal in the x-position measurements as the attack is highly non-Gaussian,
and the estimated trajectory (dashed red line) significantly differs from the true one.
On the other hand, SE correctly estimates some portions of the trajectory and the
final position of the vehicle, nevertheless it produces spontaneous attacks in the x
direction. Finally the combined method KF+SE perfectly recovers the true path of
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Figure 4.4: True attack signal, estimated attack signal and estimation error in the
attack signal of the estimator (SE) with 2 different feedback controllers: LQR, con-
troller designed via pole-placement (PP); with 5 measurements. In the left plots,
solid lines are true attack signals, dashed lines are estimated signals. The right plots
show the estimation error in the attack signal.

the target UAV.

4.5.3.2 GPS Spoofing

In this section, we focus on adversarial attacks in the GPS navigation system
(Channel 3 in Figure 4.2). Consider the scenario where a UAV uses a Linear Quadratic
Gaussian (LQG) controller to follow a desired path, xr(k), designed by LQ control.
In other words, a KF takes compromised and noisy measurements y(k) and outputs
a state estimate x̂(k), which is then used for state feedback control: u(k) = G(x̂(k)−
xr(k)), where G is the feedback matrix. Note that in the previous example (Section
4.5.3.1), the feedback controller had access to uncorrupted state measurements x(k),
therefore the true path of the UAV is unaffected by attacks. On the other hand,
in this example, the UAV uses estimated states x̂(k) for feedback control and path
following. Hence, if measurements are corrupted and the state estimates are poor,
then the UAV may not be able to follow its desired path and may deviate away
from it. The goal is to correctly estimate the true states of the UAV and therefore,
follow the desired path. Assume an attacker spoofs the GPS position measurements
in order to deviate the UAV from its planned path. She injects a sinusoidal signal to
x-position measurement, as well as a Gaussian noise to a randomly chosen position
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measurement at each time step.
In this example, we explore the effect of the number of sensor measurements on

the secure estimation performance of two schemes: (a) KF only, (b) KF+SE. We first
assume that the UAV only uses GPS for navigation, i.e., 3 positional measurements.
Figure 4.7 shows that KF completely fails to estimate the attack signal (KF, ny = 3,
plots in Row 1), consequently the actual UAV trajectory (red dashed line) deviates
significantly from its desired path (solid blue line). On the other hand, Figure 4.7
(KF + SE, ny = 3) shows that KF+SE’s estimated attack signals are significantly
more accurate with only a small estimation error in the x-position (plots in Row
2). Therefore the UAV can follow its planned path much more closely. Recall from
Proposition 1 that the maximum number of correctable attacks for a system with p
measurements is dp/2− 1e, which equals 1 in this case. There are at most 2 attacked
sensors at any time k in this example, which exceeds the above limit. This explains the
estimation error in the x-position. Despite this small estimation error, the combined
scheme KF+SE still outperforms the KF on its own.

We now show the effect of increasing the number of measurements (ny, or equiv-
alently p) through sensor fusion, on the estimation performance and consequently,
the UAV’s path following performance. Autonomous UAVs often use IMUs in addi-
tion to GPS for navigation, the former provides additional measurements such as the
UAV’s velocities, pitch and roll angles. Figure 4.7 shows that increasing the number
of measurements has no effect on the KF’s estimation accuracy (compare plots in
Rows 1, 3 and 5). Even when 8 measurements are used the UAV equipped with a
KF still fails to follow the desired path. On the other hand, increasing the number
of measurements improves the estimation performance of the secure estimator (SE)
and consequently the performance of the combined scheme KF+SE. Figure 4.7 shows
that when 5 and 8 measurements are used, the UAV can follow its original planned
path perfectly (KF + SE ny = 5 and KF + SE ny = 8).

4.6 Conclusion

In this chapter, we consider the problem of secure estimation for CPS under
adversarial attacks. Unlike [25] where the attacked sensors are assumed to be fixed,
we allow the set of attacked sensors to change over time, and propose a compu-
tationally efficient secure estimator for the latter scenario that works for arbitrary
and unbounded attacks. In addition, we propose to combine the secure estimator
with a KF for improved practical performance. We demonstrate through numerical
examples, that our proposed secure estimator based KF outperforms standard KF.
Furthermore, we illustrate practical applications of secure estimation in UAVs under
adversarial cyber attacks. This is important not only for today’s aviation system but
also UAV delivery systems in the near future.
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Chapter 5

Secure Estimation for Nonlinear
Power Systems

Many approaches in the literature that address the secure state estimation prob-
lem are based on linear dynamical systems. Hence, the existing secure estimators can
be applied to nonlinear dynamical systems if we linearize these systems. It is well
known that the linearization of nonlinear dynamical systems can result in the follow-
ing drawbacks:

1. Linearization is reliable if the higher order terms in the Taylor series expansion
can be eliminated; otherwise, the linearized model may perform poorly.

2. Linearization can be applied when all the eigenvalues of the Jacobian matrix
have nonzero real part. However, this is not always the case.

For example, linearized power system models are only valid under small perturbations
in the system at hand. Under a severe disturbance, such as a single or multi-phase
short-circuit or a generator loss, the linearized model does not remain valid [52],
[96]. Therefore, the existing techniques lack performance guarantees when the system
undergoes large perturbations which are typical of highly loaded practical systems. To
overcome the above drawbacks, we develop a secure state estimation method without
linearization or calculation of Jacobian matrices. Note that feedback linearization
techniques transform the nonlinear system into an equivalent linear system through
a change of variables and a suitable control input. Even with such techniques, the
secure estimation problem for nonlinear dynamical systems is a nonlinear problem.

In this chapter, we investigate the secure estimation of the state of a nonlinear
dynamical system from a set of corrupted measurements for two classes of nonlinear
systems, and propose a technique which enables us to perform secure state estima-
tion for those systems. We then illustrate how the proposed nonlinear secure state
estimation technique can be used to perform estimation in the cyber layer of inter-
connected power systems under cyber-physical attacks and communication failures.
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In particular, we focus on an interconnected power system comprising several syn-
chronous generators, transmission lines, loads, and energy storage units, and propose
a secure estimator that allows us to securely estimate the dynamic states of the power
network. Finally, we numerically demonstrate the effectiveness of the proposed se-
cure estimation algorithm, and show that the algorithm enables the cyber layer to
accurately reconstruct the attack signals.

This chapter is an adaptation of the paper in [45].

5.1 Introduction

To overcome the limitations of applying linear system based secure state esti-
mation methods on nonlinear systems, we investigate the secure estimation of the
state of a nonlinear dynamical system from a set of corrupted measurements. As in
Chapter 4, we do not make any assumption on the sensor attacks or corruptions (i.e.,
corruptions can follow any particular model). Our only assumption concerning the
corrupted sensors is about the number of sensors that are corrupted due to attacks
or failures. We consider two classes of nonlinear systems, and design secure state
estimators for these assuming that the set of attacked sensors can change with time.
A practical example of such a cyber attack is described in [57], where a multi-switch
attack, in which different switches in a power network are attacked at different times,
is designed to lead to stealthy and wide-scale cascading failures in the power system.
We then propose a technique which enables us to transform the nonlinear dynamics
into a set of linear equations, and apply the classical error correction method to the
equivalent linear system. The proposed secure state estimators are computationally
efficient and can be solved exactly without iteration. In addition, our estimator relies
on the observability of the transformed linear system, which is much simpler to check
than verifying the observability of nonlinear systems.

The work closest to ours is [85] in which Shoukry et al. studied differentially flat
nonlinear systems under sensor attack and assumed that the set of attacked sensors do
not change with time. Using s-sparse observability for nonlinear systems, the authors
proposed a combinatorial estimator, and an iterative satisfiability modulo theory-
based algorithm to solve the resulting combinatorial estimation problem. However,
it may be hard to check the observability of nonlinear systems, and the assumption
of fixed attacked nodes may be restrictive.

To illustrate how our proposed secure state estimator approach can be applied
to practical systems, we focus on an interconnected power system comprising sev-
eral synchronous generators, transmission lines, buses, and energy storage units. We
assume that all the physical devices are controlled via a WACS as well as local con-
trollers, and that these control systems use the synchrophasor technology, PMUs, to
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maintain the system’s stability1. The WACS and local controllers employ advanced
data acquisition, communications, and control to enable increased efficiency and reli-
ability of power delivery [12], [59], [67], [97]. Several methods for power system state
estimation have been proposed [27], [6], [99], [80], [47], [46]. All these methods rely
on the linearization. To overcome the drawbacks of linearization, Wang et al. [96]
develop a dynamic state estimation method that requires neither linearization nor
calculation of Jacobian matrices. However, the authors only consider Gaussian noise.
Extensive work has been done on monitoring and autonomous feedback control for
WACS [97], and on secure state estimation of static states [42], [51]. However, these
works have not studied how to identify cyber-physical attacks or communication fail-
ures when dynamic states such as generator’ phase angles are estimated, and how to
perform secure state estimation (dynamic state estimation) for the WACS.

We focus on secure estimation for the wide area control system of the power
network assuming that the installed PMUs at different generator buses are connected
through a communication network which sends PMU measurements to the WACS as
well as the local controllers in the power network. We assume that the communication
channels from the WACS to the generators are secured while other channels and PMUs
are not secured and are subject to cyber attacks and failures. Therefore, the WACS
needs to perform secure state estimation to reconstruct the system’s states before
using the received data for computing wide area control signals, and to monitor the
operation of local controllers. By using the developed secure estimation technique, we
propose a secure state estimator for the wide area control of the power system, and
numerically show that the proposed algorithm significantly improves the performance
of the cyber layer in power systems.

The chapter is organized as follows: In Section 5.2, we formulate the nonlinear
state estimation problem and propose a solution technique for two classes of nonlinear
systems. We then illustrate how the proposed secure state estimation approach can be
applied to power systems in Section 5.3 and 5.4. Finally, in Section 5.5, we numerically
demonstrate the effectiveness of the proposed secure estimation algorithm.

5.2 Secure Estimation for Nonlinear Systems

Consider a nonlinear dynamical system given by

x(k + 1) = Ax(k) + f
(
x(k), e(k)

)
+ u(k)

y(k) = Cx(k) + e(k)
(5.1)

1The secondary generation control in power systems is an example of such cyber-physical struc-
tures. In this system, measurements and control signals are telemetered to and from the generating
units and that control center adjusts the set-point of each generator based upon the integral of the
frequency error.
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where x(k) ∈ Rn represents the state at time k ∈ N, A ∈ Rn×n, f(x(k), e(k)) :
Rn×Rp → Rn represent the system’s dynamics, and u(k) ∈ Rn is a control input. C ∈
Rp×n is the sensors’ measurement matrix, y(k) ∈ Rp are the corrupted measurements
at time k ∈ N, and e(k) ∈ Rp represents attack signals injected by malicious agents at
the sensors. In general, at each time instant, the system dynamics can be a function
of the received measurements y(k) as well as the state of the system x(k). Since y(k)
can be expressed as a function of x(k) and e(k) using the measurement equation, we
consider f(x(k), e(k)) to be a function of both x(k) and e(k).

Our goal is to reconstruct x(k) in (5.1) by using the received measurements.
Here, we do not assume the errors e(k) follow any particular model. More precisely,
the i-th element of e(k) can take any value in R. However, if sensor i ∈ {1, 2, · · · , p}
is not attacked, then necessarily the i-th element of e(k) is zero. The only assump-
tion concerning the corrupted sensors is the number of sensors that are attacked or
corrupted due to failures. Our analytical results characterize the number of errors
that can be corrected by a decoder.

Next, we focus on the problem of reconstructing state x(k) for two classes of
nonlinear systems.

5.2.1 Existence of Mapping Function with Error Correction

Let us assume that there exists a mapping function g
(
y(k)

)
: Rp → Rn such

that
g
(
y(k)

)
= f

(
x(k), e(k)

)
(5.2)

The mapping function g
(
y(k)

)
enables us to transform the nonlinear system in (5.1)

into a linear system for which the error correction technique introduced in Section
4.3 can be used to reconstruct the initial state x(0). To do so, we first use (5.1) and
(5.2) to obtain g

(
y(k)

)
= x(k + 1) − Ax(k) − u(k) for all k. We then construct a

vector Y as follows:

Y =


y(0)

y(1)− C
(
g(y(0)) + u(0)

)
y(2)− C

(
Ag(y(0)) + Au(0) + g(y(1)) + u(1)

)
...

y(T − 1)− C
(
AT−2g(y(0)) + AT−2u(0) + · · ·

)



=


C
CA
CA2

...
CAT−1

x(0) +


e(0)
e(1)
e(2)

...
e(T − 1)

 = Φx(0) + E

(5.3)

where E = [e(0); e(1); · · · ; e(T − 1)] ∈ Rp·T is the set of error vectors, and Φ =
[C;CA;CA2; · · · ;CAT−1].
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We can now apply the error correction technique from Section 4.3 to the linear
system in (5.3). While the proposed technique enables us to reconstruct the initial
state x(0) from a set of corrupted measurements, it might not always be possible to
find such a mapping function. Next, we focus on a larger class of nonlinear systems,
and use feedback linearization to transform the nonlinear system in (5.1) into a linear
system.

5.2.2 Feedback Linearization

Let us assume that there exist mapping functions g
(
y(k)

)
and h1

(
x(k)

)
(which

are not necessarily linear), and a linear map h2

(
e(k)

)
such that:

f
(
x(k), e(k)

)
= g
(
y(k)

)
+ h1

(
x(k)

)
+ h2

(
e(k)

)
(5.4)

where g
(
y(k)

)
: Rp → Rn, h1

(
x(k)

)
: Rn → Rn, and h2

(
e(k)

)
: Rp → Rn are non-

zero. Without loss of generality, we can choose the control input u(k) such that
u(k) = −h1

(
x(k)

)
+ v(k). Note that the specific form of our control input does not

mean that we cannot use the estimator in control applications. Here, v(k) allows us
to choose our control strategy in the desired way (e.g., LQG control). By using this
control input, we cancel out the nonlinear term h1

(
x(k)

)
, and obtain:

g
(
y(k)

)
= x(k + 1)− Ax(k)− v(k)− h2

(
e(k)

)
.

We can now construct a vector Y as follows:

Y =


y(0)

y(1)− C
(
g(y(0)) + v(0)

)
y(2)− C

(
Ag(y(0)) + Av(0) + g(y(1)) + v(1)

)
...

y(T − 1)− C
(
AT−2g(y(0)) + AT−2v(0) + · · ·

)



= Φx(0) +


0

Ch2

(
e(0)

)
CAh2

(
e(0)

)
+ Ch2

(
e(1)

)
...

CAT−2h2

(
e(0)

)
· · ·



(5.5)

Note that h2(·) is a linear map (i.e., h2

(
e(k)

)
= He(k) where H ∈ Rn×p). Hence, we

obtain:
Y = Φx(0) + ΨE (5.6)
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where matrices Φ ∈ Rp·T×n and Ψ ∈ Rp·T×p·T are as follows:

Φ =


C
CA
CA2

...
CAT−1

 ,Ψ =


I
CH I
CAH CH I

. . . . . . . . . . . .

CAT−2H · · · · · · · · · I

 .

We can now apply the error correction method introduced in Section 4.3 to the
linearized system in (5.6) and reconstruct x(0) if the condition in Lemma 2 is satisfied.

In this study, we focus on sensor attack within a noiseless framework. Next, we
consider an interconnected power system with several synchronous generators, and
illustrate how the proposed nonlinear state estimation approach can be applied for
secure state estimation of dynamic states (i.e., generator’ phase angles and rotors’
speeds).

5.3 Power System State Estimation

We first introduce the physical layer model of an interconnected power system
comprising several synchronous generators and buses, and then introduce a graph-
theoretic model to describe the communication network which interconnects the wide-
area and local controllers of the power system. Figure 5.1 illustrates the interactions
between the physical and cyber layers in the system. Note that the components of
the system and the notation used in this figure will be introduced throughout this
section. Finally, we introduce two categories of cyber attacks that can potentially
corrupt measurements and degrade the system’s performance.

5.3.1 Physical Layer Model

Consider a power system comprising G generators and B buses. We assume that
G of the buses are generator buses, and that the remaining buses (B −G buses) are
load buses. Let B and V denote the set of buses and transmission lines, respectively.
Here, we assume that the corresponding graph H(B,V) is connected, and that the
network topology is fixed and known.

Load buses: Let Vi and δi denote the magnitude and phase angle of the voltage
phasor, respectively, at load bus i ∈ L where L is the set of load buses (|L| = B−G).
Let P e

i be the total active power leaving bus i (i.e., the real power drawn by the load
at bus i equals −P e

i ). P e
i can be computed by

P e
i =

∑
j∈B

ViVj|yij| sin(δi − δj + φij) (5.7)
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Figure 5.1: A graphical depiction of the power system including both the physical
and cyber layers.

where yij = gij +
√
−1bij is the admittance of the line between buses i and j, and φij

equals arctan(gij/bij). Note that gij = gji ≥ 0 and bij = bji > 0 are the conductance
and susceptance of the line between buses i and j, respectively.

Generator buses: Let Êi = Ei θi denote the internal voltage phasor of the
generator connected to bus i ∈ G where G is the set of generator buses in the system.
According to the synchronous machine theory, Ei is constant and θi is the angular
position of the generator rotor as measured with respect to a synchronous reference
rotating at the nominal system electrical frequency ω0. We assume that the voltages
at the generator buses are controlled via droop control, and that all the generator ter-
minal buses are equipped with fast response energy storage units which are controlled
via local and wide area controllers. Under these assumptions, for a synchronous gen-
erator connected to bus i ∈ G, the dynamic variables are the generator phase angle θi
and the rotor electrical angular speed ωi, and the generator dynamics can be described
by [52]

θ̇i = ωi − ω0 (5.8)

2Hi

ω0

ω̇i = Pm
i − P e

i −
di
ω0

(ωi − ω0) + Ui (5.9)

where Hi is the machine inertia constant, di is the damping coefficient of the gener-
ator, Ui is the external stabilizing energy source at generator bus i, and Pm

i is the
mechanical power input to the generator.

Each generator terminal bus i ∈ G is equipped with a fast response energy
storage, such as flywheels, to improve the system stability. Although synchronous
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generators are typically equipped with local controllers, such as exciter and governor
controls, these local controllers only have access to local states and often have slow
reaction to rapid system wide perturbations. A local cyber-enabled controller at the
generator bus can potentially provide faster response time by using PMU measure-
ments of its neighbors [23], [24].

The energy storage receives a measurement-based control signal computed from
PMU measurements, and injects Ui per unit values of power into bus i if Ui ≥ 0;
otherwise, it absorbs Ui per unit values of power from bus i. Similar to the study
in [23], we develop a feedback linearization controller, and assume that the local
controller at bus i ∈ G implements the following feedback linearization control law

Ui =− Pm
i + P e

i,meas − Fi
(
ωi
ω0

− 1

)
(5.10)

where P e
i,meas is computed locally by the controller at bus i, and Fi ≥ 0 is a design

parameter. For more information on the impact of the parameter Fi on the transient
behavior of the system, we refer the reader to [23], [24].

5.3.2 Cyber Layer Model

To maintain the system’s stability, the system operator has equipped each gen-
erator with a local controller, PMU, and transceiver through which information can
be exchanged with the local controllers of other generators as well as the WACS.
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These transceivers are connected through a communication network which sends
PMU measurements, including rotors’ speeds and generators’ phase angles, to dif-
ferent transceivers. The communication network, PMUs, and transceivers are not
secured, and hence they are subject to cyber attacks and communication failures.

In this study, we assume that the communication paths from the WACS to the
local controllers are secured while other communication paths are not secured. Hence,
the communication network interconnecting the transceivers can be described by two
directed graphs, one for secured information flow and one for non-secured information
flow, as shown in Figure 5.2.

Typically, the WACS is strongly protected against cyber attacks, and the lo-
cal transceivers are more vulnerable to cyber attacks and communication failures
than the WACS. For more information, we refer the reader to the North American
Electric Reliability Corporation’s (NERC’s) Critical Infrastructure Protection (CIP)
standards [70]. In particular, we refer the reader to 1) CIP-002 BES Cyber System
Categorization that identifies control centers as a “High Impact Rating”, and 2) CIP-
005 Electronic security Perimeter(s) and CIP-006 Physical Security of BES Cyber
Systems to see what requirements are needed for high impact systems. The CIP
Standards explain why we assume that the communication paths from the WACS to
the local controllers is secured.

To maintain the system’s stability in the presence of attacks and failures, the
WACS needs to perform secure state estimation before using the received data (e.g.,
ωi’s and θi’s) for computing wide area control signals and for monitoring local con-
trollers. To do so, we distinguish two types of attacks:

• c-attack: an attack that corrupts communication channels between local con-
trollers.

• m-attack: an attack that affects communication channels between a local con-
troller and the WACS.

We assume that at any time instant, the cyber layer is subject to either a c-attack
or an m-attack, but not both. This is discussed in detail in Section 5.4.2. However,
both of these types of attacks and the set of attacked measurements can change at
each time instant. These types of attacks are illustrated in Figure 5.2 for a power
system comprising four generators.

Next, by using the proposed secure state estimation technique, we develop a
secure state estimator for estimating the dynamic states (i.e., generator’ phase angles
and rotors’ speeds) of the power network.
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5.4 Secure State Estimator for Wide Area Control

Systems

The system dynamics and power flows can be described by the algebraic differ-
ential equations in (5.7)-(5.9). However, in order to use the proposed secure state
estimation technique, we need to describe the system by a set of purely differential
equations. To do so, we reduce the power network into a network of electro-mechanical
oscillators, comprising the G generators, by using the Kron reduction technique2. Let
V ′ denote the set of transmission lines between the G generators after performing the
Kron reduction technique, and let K(G,V ′) denote the corresponding graph. This
graph is connected and has |V ′| edges where |V ′| ≤ G(G− 1)/2.

We can now describe the power system by

θ̇i = ωi − ω0

2Hi

ω0

ω̇i = Pm
i −

∑
j∈Ni

EiEj|ŷij| sin(θi − θj + φ̂ij)

− di
ω0

(ωi − ω0) + Ui

(5.11)

where ŷij = ĝij +
√
−1 b̂ij denotes the admittance of the Kron-reduced equivalent

line between generators i and j, and φ̂ij equals arctan(ĝij/b̂ij). Ni denotes the set of
neighbors of generator i in graph K(G,V ′) (i.e., the reduced network).

In this study, we assume that the WACS performs a monitoring role and does se-
cure estimation, and consider the mechanical input power Pm

i and the storage control
signal Ui as local control signals which are computed based on PMU measurements
and wide area control signals (e.g., area control error) [52]. When measurements are
attacked, the estimated values of power flows or phase angles will not be equal to
the actual values in the system (e.g., P e

i,meas 6= P e
i ), and hence local controllers might

send inaccurate signals to physical components. The WACS estimates attacks from
measurements and communicates estimated attack signals to each generator. Then,
each generator subtracts the estimated attack from the received measurements, as
to obtain the most accurate values of ωi’s and θi’s, and to make sure that the local
controller will send accurate signals to the physical components that are under its
control.

2Kron reduction is a graph-based technique used in power systems to eliminate algebraic load
equations and to reduce the order of the interconnections between the synchronous generators [18].
This technique transforms an interconnected power system into an equivalent grid between the
synchronous generators of the power system.
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5.4.1 Formulation of Secure Estimation

The local controller at generator i computes the control input Ui using (5.10),
in which P e

i,meas is calculated from PMU measurements:

P e
i,meas(t) =

∑
j∈Ni

EiEj|ŷij| sin
(
ycii(t)− ycij(t) + φ̂ij

)
, (5.12)

where ycij is the measured rotor angle of generator j (i.e., θj) received at generator i’s
local controller. We assume that these PMU measurements are subject to attack:

ycij(t) = θj(t) + ecij(t), i ∈ G, j ∈ Ni ∪ {i}, (5.13)

where ecij represents the attack signal. As mentioned earlier, we refer to this as a
c-attack (see Figure 5.2). In addition, we assume ecii(t) = 0 for all t. Note that θi is
measured locally, and therefore it is not subject to cyber attack, i.e., ycii(t) = θi(t) for
all t.

To performs secure estimation, the WACS receives measurements ymij from all the
local controllers. Since we assume the communication flows from the local controllers
to the WACS are not secured, measurements ymij can be subject to attack:

ymij (t) = ycij(t) + emij (t), i ∈ G, j ∈ Ni ∪ {i} (5.14)

where emij represents the corruption in ycij. We refer to these attacks as m-attacks (see
Figure 5.2).

We now apply the forward Euler discretization scheme to this continuous-time
system and obtain the following discrete-time approximation, assuming a constant
discretization step Ts for all k:

θi(k + 1) = θi(k) + Ts
(
wi(k)− ω0

)
ωi(k + 1) = α ωi(k) + β

+
∑
j∈Ni

fij
(
θi(k), θj(k), ycii(k), ycij(k)

) (5.15)

where α = 1 − Ts(di+Fi)
2Hi

, β = Tsω0(di+Fi)
2Hi

, fij(·) = G̃ij

[
sin
(
θi(k) − θj(k) + φ̂ij

)
−

sin
(
ycii(k)− ycij(k) + φ̂ij

)]
and G̃ij = −Tsω0EiEj |ŷij |

2Hi
.

Using (5.13) and (5.14), fij(·) can be re-written in terms of ymij ’s, which are the
measurements received at the WACS, as follows:

fij(·) = G̃ij

[
sin
(
φ̂ij + θi(k)− θj(k)

)
− sin

(
φ̂ij + ycii(k)− ycij(k)

)]
= G̃ij sin

(
φ̂ij + ymii (k)− ymij (k)− emii (k)

+ emij (k) + ecij(k)
)
− G̃ij sin

(
φ̂ij + ymii (k)

− ymij (k)− emii (k) + emij (k)
)

= Gs
ij(k)εcij(k)−Gc

ij(k)εsij(k),
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where Gs
ij(k) = G̃ij sin

(
φ̂ij + ymii (k)− ymij (k)

)
, Gc

ij(k) = G̃ij cos
(
φ̂ij + ymii (k)− ymij (k)

)
are known to the WACS. On the other hand, εcij and εsij are functions of unknown
attack signals and are defined as:

εcij(k) = cos
(
emii (k)− emij (k)− ecij(k)

)
− cos

(
emii (k)− emij (k)

)
εsij(k) = sin

(
emii (k)− emij (k)− ecij(k)

)
− sin

(
emii (k)− emij (k)

)
.

(5.16)

In other words, fij(·) is now a linear function of the unknowns: εcij(k) and εsij(k),
whose coefficients can be computed by the WACS from the received measurements.
In addition, if there is no attack on any of the communication channels in the system
at time slot k, then εcij(k) = εsij(k) = 0.

The state space model of the i-th generator is given by:

xi(k + 1) = Aixi(k) + qi +Hi(k)εi(k)

=

[
1 Ts
0 α

]
xi(k) +

[
−Tsω0

β

]
+

[
0

hi(k)>

]
εi(k)

(5.17)

where the state vector xi(k) =
[
θi(k), ωi(k)

]>
and

hi(k)> =
[
Gs
iNi(1)(k), · · · , Gs

iNi(li)
(k),

Gc
iNi(1)(k), · · · , Gc

iNi(li)
(k)
]
∈ R1×2li

εi(k) =
[
εciNi(1)(k), · · · , εciNi(li)

(k),

εsiNi(1)(k), · · · , εsiNi(li)
(k)
]> ∈ R2li×1.

Here, Ni(j) is the j-th generator in the neighborhood of generator i and li is the
cardinality of the set Ni.

Consider the enlarged system with G generators in the network:

X(k + 1) = AX(k) + q +H(k)ε(k)

Y (k) = CX(k) +DE(k)
(5.18)
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where
X(k) =

[
x1(k); · · · ;xG(k)

]
∈ R2G×1

A = blkdiag{A1, · · · , AG} ∈ R2G×2G

q =
[
q1; · · · ; qG

]
∈ R2G×1

H(k) = blkdiag{H1(k), · · · , HG(k)} ∈ R2G×4L

ε(k) ,
[
ε1(k); · · · ; εG(k)

]
∈ R4L×1

Y (k) =
[
Yi(k); · · · ;YG(k)

]
∈ R(G+2L)×1

Yi(k) =
[
yii(k); yiNi(1)(k); · · · ; yiNi(li)(k)

]
∈ R(1+li)×1

D =
[
D1, D2

]
∈ R(G+2L)×(G+4L)

D1 = blkdiag

{[
0

Il1,l1

]
, · · · ,

[
0

IlG,lG

]}
∈ R(G+2L)×2L

D2 = IG+2L,G+2L ∈ R(G+2L)×(G+2L)

E(k) =
[
Ec

1(k); · · · ;Ec
G(k);Em

1 (k); · · · ;Em
G (k)

]
∈ R(G+4L)×1

Ec
i (k) =

[
eciNi(1)(k); · · · ; eciNi(li)

(k)
]
∈ Rli×1

Em
i (k) =

[
emii ; e

m
iNi(1)(k); · · · ; emiNi(li)

(k)
]
∈ R(1+li)×1

and L =
∑

i li
2

represents the total number of edges / links in the network. Matrix
C ∈ R(G+2L)×2G is given as follows: let the a-th element of vector Y be ymij , then the
(a, b)-th entry of C is given by

C(a,b) =

{
1 if 2j − 1 = b

0 otherwise.

Consider T time steps of measurements (i.e., k = {0, · · · , T − 1}) and define:

Ȳ =


Y (0)

Y (1)− Cq
...

Y (T − 1)− C
∑T−2

m=0 A
T−2−mq

 ∈ R(G+2L)T×1 (5.19)

then
Ȳ = ΦX(0) + ΨĒ (5.20)

where Φ =
[
C;CA; · · · ;CAT−1

]
∈ R(G+2L)T×2G is the T -step observability matrix of

the system, Ē =
[
E(0); · · · ;E(T − 1); ε(0); · · · ; ε(T − 2)

]
∈ R((G+4L)T+4L(T−1))×1 and
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Ψ =
[
Ψ1 Ψ2

]
, with Ψ1 ∈ R(G+2L)T×(G+4L)T and Ψ2 ∈ R(G+2L)T×4L(T−1) as follows:

Ψ1 = blkdiag{D, · · · , D}

Ψ2 =


0 0 · · ·

CH(0) 0 · · ·
CAH(0) CH(1) · · ·

...
...

. . .

CAT−2H(0) · · · CH(T − 2)

 .

We can choose Ω ∈ R((G+2L)T−2G)×(G+2L)T such that ΩΦ = 0, then:

Ỹ = ΩȲ = ΩΨĒ, (5.21)

where ΩΨ ∈ R((G+2L)T−2G)×((G+4L)T+4L(T−1)).

5.4.2 Challenges in Secure Estimation due to the Power Sys-
tem’s Dynamics

The linear system in (5.21) is in the form of (4.8). Hence, from Lemma 1, Ē has
a unique s-sparse solution if all subsets of 2s columns of ΩΨ are linearly independent.
We now explain that this is not the case in the power systems example as some
columns of Ψ are linearly dependent. Let us begin with the following: consider a
matrix-vector multiplication M · v, where M = [m1, · · · ,mn] ∈ Rl×n and mi is the
i-th column of M , v = [v1, · · · , vn]> ∈ Rn×1, and vi is the i-th entry of v. In the
sequel, the phrase “the column of M that corresponds to vi” refers to the column of
M that multiplies the vi entry in the matrix-vector multiplication, i.e., mi.

We now explain why Ψ2 is rank deficient. Observe that for all i and k, the first
row of Hi(k) is equal to zero. Therefore given any matrix M =

[
m1 m2

]
∈ Rl×2,

where m1 and m2 are the columns of M , we have:

rank
(
M ·Hi(k)

)
= rank

([
m1 m2

]
·
[

0 0 · · ·
h21 h22 · · ·

])
= rank

([
h21m2 h22m2 · · ·

])
= 1. (5.22)

Since H(k) is block diagonal, we can show that Ψ2 is also rank deficient. Next, from
(5.13) and (5.14), we have ymij (k) = θj(k) + ecij(k) + emij (k), which means for a given
(i, j)-pair (i 6= j) and a given time slot k, the two columns of Ψ1 that correspond to
the two terms ecij(k) and emij (k) in Ē are identical, i.e., linearly dependent. Therefore,
by Lemma 1, the solution Ē obtained by solving (5.21) (i.e., the estimation algorithm
introduced in Section 4.3) is not unique. Does this mean we can not uniquely recover
the attack signal? A closer analysis reveals the specific entries in Ē that cannot
be uniquely identified, and shines light on how to overcome this challenge. Our
observations are as follows:
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1. Observe from (5.21) that Ψ2 multiplies the ε(k) terms in Ē, i.e.,
(
ε(0), · · · , ε(T−

2)
)
. Linear dependence of the columns of Ψ2 causes the ε(k) terms to be uniden-

tifiable. However, ε(k) can be computed from E(k) using (5.16). In other words,
although the ε(k) terms in the solution Ē are not unique, as long as the E(k)
terms in Ē are unique, then we can determine the ε(k) terms uniquely using
(5.16).

2. The identical columns of Ψ1 that correspond to the two terms ecij(k) and emij (k)
in Ē means that it is only possible to uniquely identify the sum ecij(k) + emij (k),
but not the individual terms: ecij(k) and emij (k). To overcome this challenge,
we make the assumption that at any time k, the system is subject to either a
c-attack or an m-attack, but not both. In other words, emij (k) and ecij(k) cannot
both be non-zero, thus making them identifiable.

Next, we explain our secure estimation algorithm.

5.4.3 Assumptions and Secure Estimation with 2-Step Delay

As mentioned earlier, we assume that at any time slot k, the cyber layer is subject
to either a c-attack or an m-attack, but not both at the same time. However, both
the types of attacks and the set of attacked measurements can change at each time
step. In addition, the WACS does not know a priori which type of attack the network
is subjected to. Hence, secure estimation techniques are required to determine the
type of attack, as well as the exact corruption signals.

Using the difference equation in (5.18), we find that

f2-step

(
ε(k − 2), E(k)

)
= Y (k)− CA2 ·X(k − 2)− CAq

− Cq − CA ·H(k − 2) · ε(k − 2)−DE(k) = 0 (5.23)

where the first equality uses CH(k) = 0 for all k. Observe that if it is an m-attack
at time k, then ecij(k) = 0 and ecij(k) + emij (k) = emij (k), furthermore, ε(k) = 0. On the
other hand, if it is a c-attack at time k, then emij (k) = 0 and ecij(k) + emij (k) = ecij(k),
in addition, ε(k) 6= 0. Combining these two observations with (5.23), we propose the
following algorithm which can be used by the WACS to determine the type of attack
and the exact corruption signals, with a 2-step delay.

We first introduce some notation used in the algorithm. Let Eb(k) denote the
estimated vector E(k) without imposing the assumption that only a c-attack or an
m-attack can occur. Ec-att(k) and Em-att(k) denote the estimated vector E(k) if it is
a c-attack or an m-attack at time k, respectively, and can be computed from Eb(k).
For example, to obtain Ec-att(k), we set all emij terms in Ec-att(k) to zero, and set
all ecij terms equal to the sum of corresponding ecij and emij terms in Eb(k). We can
obtain Em-att(k) in a similar fashion. Finally, εc-att(k) and εm-att(k) are the ε(k) vectors
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Algorithm 3 Secure Estimation

1: for each k do
2: Estimate Ē(k) by solving the following l1-minimization problem:

Ēb(k) = arg min ‖Ē‖l1 subject to Ỹ = ΩΨĒ.

3: Extract Eb(k − 2) and Eb(k) from Ēb(k).
4: Evaluate equation (5.23) for the case with an m-attack at time k − 2, using

the observation that εm-att(k − 2) = 0.
5: Evaluate equation (5.23) for the case with a c-attack at time k − 2, by first

computing Ec-att(k − 2) and then use (5.16) to obtain εc-att(k − 2).
6: if ‖f2-step

(
εc-att(k − 2), Eb(k)

)
‖ < ‖f2-step

(
εm-att(k − 2), Eb(k)

)
‖ then

7: It is a c-attack at k−2: E(k−2) = Ec-att(k−2) and ε(k−2) = εc-att(k−2)
8: else
9: It is an m-attack at k − 2: E(k − 2) = Em-att(k − 2) and ε(k − 2) =
εm-att(k − 2) = 0

10: end if
11: end for

computed from Ec-att(k) and Em-att(k), respectively. With these notations in hand,
we now present our estimation algorithm in Algorithm 3.

To summarize, as a result of the system dynamics and the proposed model, it is
not possible to recover the exact corruption if the system is subjected to both c- and
m-attacks at the same time. In light of this, we make the simplifying assumption that
at any time k, the system may only be subject to one type of attack. However, the type
of attack can change over time. Then, by comparing the actual measurements with
the system trajectories that would result from each type of attack, we can determine
both the attack type and the exact corruption signals, with a 2-step delay. Note
that at time k, this secure state estimation algorithm is able to detect the presence of
attacks at times k−1 and k, merely not the exact attack signals. Next, we numerically
demonstrate the effectiveness of the proposed state estimation algorithm.

5.5 Numerical Example

We focus on the New England power system comprising 10 generators and 39
buses, and simulate the system for t = 20 seconds with a discretization step of 1/60
seconds. The values of the system parameters are taken from [3], [75]. The power
system is running under normal condition from t = 0 to t = 2 seconds. At t = 2
seconds, a three-phase fault occurs at Bus 17. Then, Line 17-18 is tripped out to clear
the fault. However, the WACS is unaware of this fault at this time. Two seconds
later, at t = 4 seconds, the WACS detects the occurrence of this fault, i.e., there is a
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2 second-delay in the WACS being able to respond to the fault. We conduct load flow
analysis of the power system before and after the occurrence of the 3-phase fault, to
find the values of P e

i , θi, and |Ei| for each generator. We demonstrate the effectiveness
of our proposed secure estimation method through simulations of 3 different scenarios:

1. Scenario 1: There is no simultaneous cyber attack on the power system.

2. Scenario 2: The power system is also under cyber attack, and it is not protected
by secure estimation.

3. Scenario 3: The power system is also under cyber attack, and it is protected
by secure estimation.

The plots titled “No Attack” in Figure 5.3 show the simulation results of Scenario
1: an attack-free power system under a three-phase fault. For clarity, only phase
angles and rotor speeds of generators 1, 2 and 3 are shown in Figure 5.3. At t = 0
seconds, the system is under equilibrium, all ten generators’ rotor speeds are at the
nominal value, ω0, of 60 Hz, and their phase angles are 6.85◦, 5.09◦, 6.28◦, 8.81◦, 7.38◦,
11.30◦, 14.74◦, 8.35◦, 7.63◦ and −13.11◦, respectively. At t = 2 seconds, a three-phase
fault occurs at Bus 17 which causes a change in the line admittances (yij’s and φij’s)
and consequently, the total active power leaving bus i, P e

i . However, the WACS is
unaware of this fault until t = 4 seconds. During this 2 second-delay, the WACS
is unaware of the fault and continues to use the pre-fault line admittance values in
the secure estimation algorithm. The local controllers at the generators continue
to compute the control input Ui using the received measurements from the WACS,
which leads to a mismatch between P e

i,meas and P e
i , and causes the phase angles and

rotor speeds of the generators to deviate from their equilibrium. At t = 4 seconds,
the WACS becomes aware of the fault. It computes the new line admittance values
under this fault, and uses the new line admittance values in the secure estimation
algorithm. The local controllers then use the received estimates to compute the local
control input Ui, making P e

i,meas = P e
i again. As a result, the generators’ rotor speeds

slowly converge back to 60 Hz and their rotor angles settle at new equilibrium values.
In Scenarios 2 and 3, in addition to the 3-phase fault, the power system is

also subject to the following cyber attack. Malicious attacks targeted at genera-
tor 1 are injected from t = 0.33 seconds onwards. A set of 10 measurements that
varies with time are corrupted. More specifically, at each time step, the attacker ran-
domly chooses to perform either a c-attack or an m-attack. In the case of a c-attack,
the attacker corrupts phase angle measurements that generator 1 receives from all
its 9 neighbors (i.e., yc1,2, y

c
1,3, . . . , y

c
1,10) with independent Gaussian signals from the

distribution N (0, 180◦). In addition, a constant signal of 90◦ is injected into the
measurement yc1,2. In the case of an m-attack, the attacker randomly chooses 9 mea-
surements from the set of 10 measurements that generator 1 submits to the WACS
(i.e., ym1,1, y

m
1,2, . . . , y

m
1,10), and corrupts each chosen measurement with an independent
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Gaussian signal from N (0, 180◦). Similarly, an additional constant signal of 90◦ is
injected into the measurement ym1,2. The left plot in Figure 5.4 shows the true attack
signals. Rows 1 to 9 correspond to c-attacks: ec1,2, e

c
1,3, . . . , e

c
1,10, and rows 10 to 19

correspond to m-attacks: em1,1, e
m
1,2, . . . , e

m
1,10. Since constant signals of 90◦ are injected

on top of the Gaussian attacks to yc1,2 or ym1,2 for c-attacks or m-attacks, respectively,
the mean attack signals are higher for row 1 (i.e., ec1,2) and row 11 (i.e., em1,2). For
clarity, the measurements that are not attacked during the simulation are not shown.

In Scenario 2, no secure estimation-based protection is implemented. Therefore,
when the system is under cyber attack, the local controller at generator 1 computes
P e

1,meas using corrupted measurements, causing P e
1,meas 6= P e

1 . As a result, the feedback
control law in (5.10) fails to linearize the system dynamics (5.9). The constant signal
of 90◦ injected on top of the Gaussian attacks causes oscillations in the rotor speed
of generator 1 due to the sine term in its dynamics (refer to Equation (5.10) to
(5.13)). The oscillations in the rotor speed then leads to oscillations in generator 1’s
rotor angle. The plots titled “Under Attack, no SE” in Figure 5.3 show that these
oscillations are observed on top of the system’s response to the 3-phase fault, and
prevents generator 1’s phase angle to reach a new equilibrium even after the fault has
cleared. In addition, the cyber attack causes larger differences in other generators’
equilibrium rotor angles before and after the fault. For example, in Scenario 1, when
there is no cyber attack, generator 2 and 3’s rotor angles after the fault are −14◦ and
−8◦ respectively. On the other hand, in Scenario 2, their post-fault equilibrium rotor
angles are −25◦ and −17◦ respectively.

Finally, in Scenario 3, the power system is subject to the same cyber attack as in
Scenario 2. However, the WACS uses secure estimation to protect the system against
such attacks. The center and right plots in Figure 5.4 show the secure estimator’s
estimated attack signal and the estimation error respectively. The results show that
the secure estimator correctly estimates the attack signal before the fault happens at
t = 2 seconds. Between t = 2 and t = 4 seconds, there are small estimation errors
due to model mismatch as the WACS is unaware of the fault and continues to use
the pre-fault line admittance values in the secure estimation algorithm. However,
once the WACS is informed of the fault at t = 4 seconds, the model mismatch is
removed and estimation error is cleared. The estimated the attack signals are then
subtracted from the corrupted measurements to recover the true rotor angles and
speeds. The reconstructed measurements are communicated to all generators, and
used to compute P e

1,meas. By doing this, the local controllers obtain a value of P e
1,meas

that is a more accurate estimate of the true P e
1 than when no secure estimation was

used. The bottom plots, titled “Under Attack, with SE”, in Figure 5.3 show the rotor
angles and speeds of generators 1, 2, and 3 in this scenario. Observe that throughout
the simulation, generator 1’s rotor angle is much more stable in this scenario than in
Scenario 2. In addition, note that when the power system is under cyber attack, the
behavior of the system with secure estimation (Scenario 3) resembles more closely
the system’s behavior when there is no cyber attack (Scenario 1), than the system
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Figure 5.3: Evolution of phase angles and rotor speeds of generators 1, 2 and 3 under
a 3-phase fault, in three scenarios: (1) there is no attack, (2) system is under attack
and there is no secure estimation (SE), (3) system is under attack and WACS uses
SE. Fault happens at t = 2 seconds. Grey region marks the 2 seconds delay in WACS
being informed of the fault. In (2), cyber attack causes generator 1’s rotor angle and
speed to oscillate. In (3), incorporating SE damps the large oscillations and makes
the system’s response more closely resemble that of (1).
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Figure 5.4: True and estimated attack signals: The rows and columns correspond to
attacked measurements and time steps, respectively. In subfigures “True Attack” and
“Estimated Attack”, the color indicates the attack signal: red is a positive attack,
green a negative attack, and black is no attack. In subfigure “Estimation Error”, the
black color indicates there is zero estimation error for all measurements at all times.

without secure estimation (Scenario 2) does.
As mentioned earlier, there is a 2-step estimation delay in the proposed secure

state estimator. Our numerical results show that this estimation delay will not affect
the phase angle and rotor speeds significantly. This can be explained by the fact that
the attack signals effect on the system dynamics are scaled by the matrix H (see
Equations (26) and (27)) whose entries are very small due to the small discretization
time step (1/60 seconds) and the large generators’ inertia (i.e., attack signals cannot
immediately have a significant effect on the generators’ phase angles and speeds).
The simulation was repeated using a larger discretization time step of 1/30 seconds
and the same observations were made (the control feedback gain Fi was adjusted
accordingly). Due to space limitations, we do not show the results here.

5.6 Conclusion

We propose a secure state estimator for two classes of nonlinear dynamical sys-
tems. We then focus on the wide area control of power systems, and develop an
estimator for dynamic states in power systems under cyber-physical attacks and com-
munication failures. Finally, we numerically show that the performance of the cyber
layer in power systems can be significantly improved by using our estimator.
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Chapter 6

Conclusions and Future Work

There has been a tremendous amount of progress in the development of smart
and reliable power systems over the past decade. However, the increased penetration
of renewable energy sources and advanced instruments such as PMUs, as part of this
movement, also introduced new challenges. This thesis describes initial progress in
the path towards a more reliable power system, in particular, by exploiting demand
side flexibility by using commercial buildings to provide regulation for the grid fre-
quency, and by using secure state estimation to protect the power system against
cyber attacks.

There are many exciting areas of future research in this field. A few high level
directions are given below.

Exploring alternative flexibility in buildings: There are a number of alter-
native flexible loads such as chillers and heat pumps that present great potential for
frequency regulation. The flexibility from different loads can be combined to provide
a larger regulation capacity, as well as to offer regulation at a wider frequency range.

Frequency regulation from an aggregation of buildings: Power system op-
erators such as PJM and California ISO require a resource to provide a minimum
of 0.1 MW of regulation capacity in order to participate in the frequency regulation
market. It is unlikely that a single building can satisfy this requirement. One solution
is to aggregate several buildings and offer their combined capacity to the regulation
market. There has been some initial theoretical work in how to design the contract in
this scenario [5]. With the experimental setup presented in this thesis, the feasibility
of this idea can now be verified experimentally.

Applying secure estimation methods to other systems: In this thesis, the
development of the secure state estimation methods assumes general system dynam-
ics. Therefore the resulting estimation algorithms are applicable to a wide variety of
systems, ranging from autonomous ground and aerial vehicles to large systems such
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as traffic and water networks.

Reducing computational complexity of the secure estimator: The compu-
tational complexity increases with the time index of the estimator. Alternatives such
as computing an exact solution to the l1-minimization problem in a recursive way
may significantly reduce the time required to obtain a new estimate.

Secure estimation for general nonlinear systems: The secure estimation method
presented in Chapter 5 focuses on two classes of nonlinear dynamical system. It is an
initial attempt at tackling the nonlinear system’s secure estimation problem.

Hardware implementation: The secure state estimation methods that we develop
can be, and should be validated on hardware platforms.
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Analysis of Model Predictive Control for an Energy Efficient Building Heating
System. Applied Energy, 88:3079–3087, 2011.

[87] Joshua S. Stein. The Photovoltaic Performance Modeling Collaborative
(PVPMC). 38th IEEE Photovoltaic Specialists Conference (PVSC), 2012.

[88] D. Sturzenegger, D. Gyalistras, M. Morari, and R.S. Smith. Semi-Automated
Modular Modeling of Buildings for Model Predictive Control. BuildSys 2012 –
Workshop of SCM SenSys Conference, 2012.

[89] B. Sun, P.B. Luh, Q.S. Jia, Z. Jiang, F. Wang, and C. Song. Building En-
ergy Management: Integrated Control of Active and Passive Heating, Cooling,
Lighting, Shading, and Ventilation Systems. IEEE Transactions on Automation
Science and Engineering, 2012.

[90] Andre Teixeira, Saurabh Amin, Henrik Sandberg, Karl H. Johansson, and
Shankar Sastry. Cyber security analysis of state estimators in electric power
systems. 49th IEEE Conference on Decision and Control, pages 5991 – 5998,
December 2010.

[91] U.E. Energy Information Administration. Commercial Buildings Energy
Consumption Survey (CBECS). http://www.eia.doe.gov/emeu/cbecs/

cbecs2003/overview1.html, 2012.

[92] US Energy Information Administration. The Annual Energy Outlook 2017.
Technical report, US Energy Information Administration, January 2017.



94

[93] Evangelos Vrettos, Emre C. Kara, Jason MacDonald, Goran Andersson, and
Duncan Callaway. Experimental Demonstration of Frequency Regulation by
Commercial Buildings - Part II: Results and Performance Evaluation. IEEE
Transactions on Smart Grid, 2016.

[94] Evangelos Vrettos, Emre C. Kara, Jason MacDonald, Goran Andersson, and
Duncan S. Callaway. Experimental Demonstration of Frequency Regulation
by Commercial Buildings - Part I: Modeling and Hierarchical Control Design.
IEEE Transactions on Smart Grid, 2016.

[95] Evangelos Vrettos, Frauke Oldewurtel, Fengtian Zhu, and Goran Andersson.
Robust Provision of Frequency Reserves by Office Building Aggregations. Pro-
ceedings of the 19th IFAC World Congress, pages 12068 – 12073, 2014.

[96] Shaobu Wang, Wenzhong Gao, and A.P. Sakis Meliopoulos. An alternative
method for power system dynamic state estimation based on unscented trans-
form. IEEE Transactions on Power Systems, 27(2):942–950, 2012.

[97] Mohamed Ramadan Younis and Reza Iravani. Wide-area damping control for
inter-area oscillations: A comprehensive review. Electrical Power and Energy
Conference (EPEC), 2013.

[98] Jie Zhao, Khee Poh Lam, and B. Erik Ydstie. EnergyPlus model-based predic-
tive control (EPMPC) by using MATLAB/SIMULINK and MLE+. Proceedings
of 13th Conference of International Building Performance Simulation Associa-
tion, 2013.

[99] Liang Zhao and Ali Abur. Multi area state estimation using synchronized phasor
measurement. IEEE Transactions on Power Systems, 20(2):611–617, 2005.

[100] Peng Zhao, Gregor P. Henze, Sandro Plamp, and Vincent J. Cushing. Evalua-
tion of Commercial Building HVAC Systems as Frequency Regulation Providers.
Energy and Buildings, 67:225–235, 2013.

[101] Datong Zhou, Qie Hu, and Claire Tomlin. Quantitative Comparison of Data-
Driven and Physics-Based Models for Commercial Building HVAC Systems.
American Control Conference, 2017.




