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Advanced Review

Estimating the spatial distribution
of snow water equivalent in the
world’s mountains
Jeff Dozier,1* Edward H. Bair2 and Robert E. Davis3

Estimating the spatial distribution of snow water equivalent (SWE) in mountain-
ous terrain is currently the most important unsolved problem in snow hydrology.
Several methods can estimate the amount of snow throughout a mountain range:
(1) Spatial interpolation from surface sensors constrained by remotely sensed
snow extent provides a consistent answer, with uncertainty related to extrapola-
tion to unrepresented locations. (2) The remotely sensed date of disappearance
of snow is combined with a melt calculation to reconstruct the SWE back to the
last significant snowfall. (3) Passive microwave sensors offer real-time global
SWE estimates but suffer from several problems like subpixel variability in the
mountains. (4) A numerical model combined with assimilated surface observa-
tions produces SWE at 1-km resolution at continental scales, but depends heavily
on a surface network. (5) New methods continue to be explored, for example, air-
borne LiDAR altimetry provides direct measurements of snow depth, which are
combined with modelled snow density to estimate SWE. While the problem is
aggressively addressed, the right answer remains elusive. Good characterization
of the snow is necessary to make informed choices about water resources and
adaptation to climate change and variability. © 2016 Wiley Periodicals, Inc.

How to cite this article:
WIREs Water 2016, 3:461–474. doi: 10.1002/wat2.1140

INTRODUCTION

Estimating the spatial distribution of snow water
equivalent (SWE) in mountainous terrain, char-

acterized by high elevation and spatially varying
topography, is currently the most important unsolved
problem in snow hydrology. Worldwide, mountain
snowmelt supports a billion people, and in the moun-
tains themselves, snowmelt provides soil moisture
late into the melt season. In instrumented watersheds,

measurement networks provide information, but sites
are on nearly flat terrain and seldom cover the high-
est elevations. In regions such as High Mountain
Asia, the sparse surface measurement network sup-
ports neither seasonal runoff forecasts nor validation
of precipitation models.

The question is, how can we estimate spatiotem-
porally distributed SWE in snow-dominated mountain
environments, including those that lack on-the-ground
measurements? Several independent methods to measure
spatially distributed SWE exist, but all are problematic.

1. Two- or three-dimensional interpolation com-
bines ground observations of SWE with maps
of snow extent. Covering location and eleva-
tion and constrained by snow cover, interpola-
tion produces a physically realistic (but not
necessarily correct) value for SWE, with accu-
racy related to the number and distribution of
ground observations.
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2. The remotely sensed date of disappearance of
snow from each pixel can be combined with a
calculation of melt to reconstruct the accumu-
lated SWE for each day back to the last signifi-
cant snowfall. Comparison with streamflow
measurements in mountain ranges where such
data are available shows this method to pro-
duce enough water to supply enough runoff.
Yet, SWE can only be calculated retroactively
after snow disappears.

3. Passive microwave sensors offer nearly real-
time global SWE estimates but suffer from sev-
eral issues, notably subpixel variability in snow
properties, vegetation, and terrain in the moun-
tains owing to the large (~25 km) pixel size,
signal saturation in deep snow, and SWE over-
estimation in the presence of large grains such
as depth and surface hoar.

4. Results from the snow data assimilation
system (SNODAS) are distributed from the
National Snow and Ice Data Center. Similar to
interpolation, SNODAS incorporates ground
observations, but with a physical model that
assimilates the ground and satellite observa-
tions with a numerical weather model.

5. The search for measurements of spatially dis-
tributed SWE leads to research in remote sen-
sing, initially with airborne data. One such
effort is the NASA/JPL Airborne Snow Observ-
atory (ASO) that carries an imaging spectrome-
ter to measure snow cover and albedo and a
LiDAR altimeter to measure snow depth. Other
efforts utilize active microwave sensors.

MEASUREMENT OF SNOW-
COVERED AREA AND ALBEDO

Several of the methods for estimating SWE include
measurements of snow extent as part of the analysis.
Some studies have used snow cover duration, esti-
mated as a byproduct of snow extent mapping, as a
proxy for SWE in mountainous regions.1

In the solar spectrum, snow has a distinctive
spectral signature—among the brightest natural sub-
stances in the visible wavelengths, reduced slightly in
the near-infrared beyond 1 μm, and dark beyond
about 1.6 μm in the shortwave-infrared—
corresponding to the variability in the absorption
properties of ice.2,3 In the visible wavelengths, both
ice and water are transparent to radiation, whereas
in the shortwave-infrared both are strongly absorp-
tive. Because snow is so distinctive, mapping of
snow-covered area was one of the first applications

of remote sensing in the hydrologic sciences,4 and the
combination of visible and shortwave-infrared bands
enables discrimination between snow and clouds.5 As
with any remote-sensing application, a tradeoff exists
between spatial and temporal resolution. Maps of
snow from Landsat are available at 30 m spatial
resolution,6 but at best only every 16 days depending
on cloud cover. From instruments such as MODIS
(on NASA’s Terra and Aqua satellites) or VIIRS
(on the Suomi NPP satellite), daily snow cover at
continental scales is routinely available7–9 at
375–500 m resolution.

With a half dozen or more spectral bands cov-
ering the visible through shortwave-infrared wave-
lengths, it is possible to ‘unmix’ (separate into
degenerate endmembers) pixels of 0.5 km size to esti-
mate the fractional coverage of snow, vegetation,
and soil,10 and thereby improve the retrieval and pre-
cision of snow mapping.11 With daily imagery availa-
ble, accuracy and timeliness are improved by
interpolating and smoothing across multiple days to
account for cloud cover, sensor noise, and steeply
off-nadir views.12–14

INTERPOLATION FROM GROUND-
BASED SENSORS

Over much of the western United States, snow pil-
lows measure the weight of the overlying snowpack
and thereby measure the SWE. The conventional
design comprises a stainless steel sandwich or a flexi-
ble impermeable membrane filled with antifreeze,
and the displacement of the fluid by the snow pro-
vides the estimate of the weight. The first pillows
were installed in the 1950s, but positive experience
with the early installations led to their widespread
adoption in the 1970s. Daily measurements from pil-
lows are available for the western United States from
the U.S. Department of Agriculture,15 and for the
Sierra Nevada from the California Department of
Water Resources.16 Problems with the pillows
include bridging by frozen layers in the snowpack
and accumulation and refreezing of meltwater
because they impede drainage to the soil.17,18 While
other mechanisms have been tried—such as measure-
ment of the snow’s attenuation of gamma radiation
from the underlying soil or the cosmos19—the snow
pillow remains the standard method for automatic
ground-based measurement of SWE. Many pillow
sites also include ultrasonic depth sensors,20 thereby
allowing a calculation of mean snowpack density,
along with other meteorological instruments.
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As used in forecasts of the seasonal snowmelt
runoff, the ground measurements provide indices of
the amount of snow. The collection of pillows was
not designed to estimate the actual amount of water
stored in the snowpack,21 but this situation is com-
mon in hydrologic science: we use data that were col-
lected for operational purposes, not for science.22

Even in regions like California’s Sierra Nevada with
more than 100 snow pillows, they may poorly repre-
sent the total volume of water stored in the basin’s
snowpack.23 The interquartile error in the forecast of
the April–July runoff is +35 to −13%, but the error
distribution has long tails, both positive and negative,
meaning that large over- and underestimates occur,
even in years that are neither extremely dry nor wet.

Across parts of Europe24 and north-central
Asia,25 networks of weather stations measure both
precipitation and snow depth. While automated
measurement of snowfall remains the subject of
research, test, and evaluation,26 many sites observe
snow depth with sensors and thus have to model or
manually measure snow density to arrive at point
estimates of SWE.27

Interpolation Constrained by Remotely
Sensed Snow-Covered Area
With a dense enough network of snow pillows, or
other means of estimating SWE at a point location,
one can spatially interpolate the SWE values in either
two (Northing and Easting) or three dimensions
(including elevation). Straightforward spatial interpo-
lation, however, may spread snow well beyond the
actual snow-covered area. If all the pillows are cov-
ered with snow, the interpolation method has no
way to know where the SWE goes to zero. To
address this artifact and to provide a realistic distri-
bution of snow over large areas, analyses constrain
the interpolation with remotely sensed maps of snow
extent.28 With enough pillows to represent location
and elevation and constrained by snow cover and
tapered near the snow line, interpolation produces
physically realistic (but not necessarily correct) values
for SWE. Figure 1(a) shows spatially distributed
SWE over the Sierra Nevada on April 1, 2014, based
on a three-dimensional interpolation from the snow
pillows, constrained by snow-covered area.

Extrapolation into Areas not Represented
by the Ground Measurements
For logistical reasons, snow pillows and other remote
meteorological sites in the mountains all lie on nearly
flat terrain, so they may poorly represent snow

accumulation and melt rates on nearby slopes.29 For
instance, in mid-winter when all slopes nearby are
covered with snow, a pillow on a valley floor may
show, say, 800 mm of SWE. Yet in late spring, that
pillow may show the same SWE (after more snowfall
and then melt) while slopes facing more toward the
sun are bare.

In addition to their not covering the slopes and
aspects of the topography,30 the highest snow pillows
in many basins are 1000 m or more below the high-
est elevations, with the result that significant snow
remains after it has melted from all the pillows
(Figure 2). While forecasts based on this late-season
snow apply only to a few contexts—such as a deci-
sion to generate hydropower or maintain reservoir
storage—the snow at the higher elevations shows
that the snow pillows underestimate some part of the
spatial distribution. Historical data show that the
magnitude of the orographic effect (i.e., the enhance-
ment of precipitation with elevation) varies from year
to year, depending on temperature and direction of
prevailing storms and other atmospheric circulation
patterns.31

This lack of a reliable relationship between
sensors at different elevations has an important
operational implication. Many snow pillows on fed-
eral land lie in designated wilderness areas, with
their removal potentially mandated in the future. If
they were removed, runoff forecasts would have to
be based on the remaining stations, which mostly
cover lower elevations. An analysis to consider
the feasibility of using the measurements at lower ele-
vations to estimate runoff showed discouraging
results because of the lack of consistency with statis-
tical relationships between the lower and higher
sites.32

RECONSTRUCTION OF SWE FROM
SNOW COVER AND MELT

Any method to measure or model the spatial distribu-
tion of snow faces the problem of independent vali-
dation. In small basins, capable skiers can carry out
intensive ground surveys, the method applied in sev-
eral investigations about mechanisms for snow abla-
tion and redistribution.33–35 With due regard for
steep slopes and avalanche hazard, these studies
sampled rugged terrain thoroughly during field cam-
paigns. To extend these field methods over larger
areas or longer time series is impractical, hence the
need for spatially extensive analyses possible with
measurements from satellites.
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Reconstruction by Backward Calculation
after the Snow is Gone
Originally developed by Martinec and Rango,36 the
idea is simple and clever. From satellite

measurements of snow-covered area, the date of dis-
appearance of snow from each pixel is identified.
Then a backward calculation of melt reconstructs the
accumulated SWE for each day back to the last

Snow Water Equivalent (SWE), mm

10 100 200 300 400 500 600 700 800 900 1000

Interpolation, 5.40 km3 total SWE Reconstruction, 3.44 km3 total SWE

AMSR2, 1.41 km3 total SWE SNODAS, 5.13 km3 total SWE

40°N

38°N

36°N

40°N

38°N

36°N

122°W 120°W 118°W 122°W 120°W 118°W

(b) (a) 

(d) (c) 

FIGURE 1 | Snow water equivalent (SWE) over the Sierra Nevada on April 1, 2014, estimated by different methods: (a) interpolation from
snow pillows and satellite measurements of snow covered area; (b) reconstruction using snow-covered area from MODIS and snowmelt calculated
with data from NLDAS; (c) calculated with brightness temperatures from the passive microwave sensor AMSR2; (d) modelled by the snow data
assimilation system (SNODAS). The SWE images are overlaid on a MODIS image. Although clouds obscure parts of each daily MODIS image, the
snow extent is interpolated and smoothed over the daily observations.13 Images are projected at 500 m resolution.
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significant snowfall. During periods of no new
snowfall, SWE on day N is the initial value
minus the accumulated daily melt M, i.e.,

SWEN = SWE0−
XN

d =1
Md. If the date when SWEN =

0 is identified by remote sensing, then back calcula-
tion estimates SWE every day back to day 0. Figure 1
(b) shows reconstructed SWE for the Sierra Nevada
for April 1, 2014, and can be compared to Figure 1
(a). Comparison with streamflow measurements in
mountain ranges where such data are available
shows this method to produce enough water to sup-
ply enough runoff. At least in three seasons
(2013–2015, all drier than normal), the reconstructed
snow distribution compares favorably with the mea-
surements from the ASO,37 which uses LiDAR altim-
etry and a model of snow density to estimate SWE at
50 m spatial resolution. The big disadvantage of
reconstruction is that SWE can only be calculated ret-
roactively after snow disappears, and even then only
back to the last significant snowfall. At best, recon-
struction calculates SWE back to the seasonal peak,

in areas with little accumulation during the melt
season.

Variants in reconstructing the SWE include dif-
ferent spatial and temporal resolutions of the snow
cover data, methods for estimating when the snow
disappears and when peak snow occurs, and methods
and data for the melt calculations. All introduce
uncertainties. Landsat imagery at 30 m spatial reso-
lution, used for validation of reconstruction in the
Sierra Nevada,38 shows clearly whether the snow has
disappeared, but the 16-day orbit introduces uncer-
tainty about when the snow disappeared. Whether
the spatial or temporal resolution is most important
has been a subject of contentious debate,39,40 but this
controversy may have been resolved with the use of
spectral mixing models with daily MODIS data at
500-m resolution to estimate fractional snow in the
pixel. In the Merced and Tuolumne River basins of
the Sierra Nevada, snow depletion from reconstruc-
tion based on MODIS imagery better matches
observed streamflow than interpolation utilizing
snow pillow measurements.41

Sources of Uncertainty in Reconstruction
Because reconstruction operates only after the snow
has disappeared, the SWE values cannot be used to
forecast streamflow, but they do provide information
about the spatial distribution of snow for studies of,
for example, relationships between vegetation and
snow. They also serve as a completely independent
estimate of the spatial distribution of SWE for com-
parison with other methods or models.

The least uncertain measure is probably the
pixel-specific date of snow disappearance. Cloud
cover during the melt season can obscure the disap-
pearance. In a 500 m MODIS pixel, the snow frac-
tion will decline gradually, so the actual date at
which it goes to zero is not easy to identify, but at
low snow fractions the amount of snow contributes
less to the reconstruction. However, reducing the
incidence of falsely identified snow (false positives) is
important, as incorrect identifications of persistent
snow cover will add a lot of SWE to the calculation.

To estimate peak SWE, a date must be identi-
fied, and this identification is difficult from imagery
alone. Maximum snow cover might not coincide
with peak SWE, as maximum snow depth itself gen-
erally precedes maximum SWE because the snow-
pack compresses as the season progresses. In areas
with snow pillows, peak SWE can be identified inde-
pendently, and in such areas a blended SWE product
combining the snow pillow data with reconstruction
produces the most accurate match with streamflow

July 2 2011
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FIGURE 2 | Snow pillow locations (the red stars) superimposed
on two ‘July 2011’ images of fractional snow cover—estimated by a
spectral unmixing model10 applied to Landsat 7 data at 30 m
resolution—in the Tuolumne and Merced River basins in the Sierra
Nevada, California. Significant snow remains in the basin after all
pillows are bare. Table 1 lists the coordinates of the pillows and their
2011 melt-out date.
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among all methods.42 Where there are no ground
measurements, identification of the date of the peak
is difficult because fluctuations in the snow cover esti-
mate caused by daily changing viewing geometry are
about as large as the true pixel-specific changes in the
snow cover. However, simply back-calculating the
daily melt furnishes an upper bound to the SWE
accumulation.

The methods and data used to calculate melt
comprise the biggest sources of uncertainty. In areas
where surface micrometeorological data are availa-
ble, they can be spread across topography to account
for solar illumination geometry and longwave radia-
tion.43,44 In more extended or remote areas, products
from NASA’s Land Data Assimilation Systems
(NLDAS in USA, GLDAS globally) provide values on
solar radiation, longwave radiation, air temperature,
humidity, and winds. Comparisons with surface mea-
surements from mountain stations in the western
United States show the solar radiation estimates to
be reasonably accurate and without bias, longwave
radiation to correspond less well with the few surface
measurements available, air temperature and humid-
ity also without bias, and surface wind poorly esti-
mated.45 Uncertainty also arises from the conceptual
model used, which has historically included
temperature-index, hybrid radiation balance with
temperature index, and full energy balance.

For surfaces with high albedos, an error in the
measurement of albedo leads to a greater propor-
tional error in absorption of the solar radiation
(absorption = 1 − α, so for greater values of α, a
small error in α causes a greater proportional error in
1 − α). The same sensors (Landsat, MODIS, etc.)
used to measure snow covered area also allow snow
albedo to be estimated. Accuracies are generally good
over pixels that are nearly completely covered,46,47

but are not sufficiently validated over mixed pixels.
Therefore while some efforts to reconstruct snow

cover use these remotely sensed albedo estimates of
the fractional snow cover, others model snow albedo
based on its ‘age’, i.e., time since last snowfall.42 In
the mountains, snow albedo changes at different
rates throughout the topography, so a model based
on aging will not include the processes that cause
snow to metamorphose at faster or slower rates on
different exposures.48 The accuracy and reliability of
reconstruction would improve with better estimates
of snow albedo from satellite.

SWE ESTIMATES FROM PASSIVE
MICROWAVE SENSORS

Passive Microwave SWE Mapping
Microwave measurements of snow cover offer insen-
sitivity to solar illumination and atmospheric condi-
tions, which can plague optical sensors, resulting in a
day-night all-weather capability. Microwave radia-
tion emitted from the soil, expressed as brightness
temperature, undergoes extinction by the overlying
snow mainly through scattering, because ice is trans-
parent over much of the microwave spectrum. Lower
frequencies, typically 18–19 GHz, exhibit less extinc-
tion than a higher frequency, such as 37 GHz. Algo-
rithms to estimate SWE primarily use multi-
frequency observations of the microwave emission
from snow that rely on the difference in extinction
properties between frequencies.49 For example, for a
sensor with bands at 18 and 37 GHz, SWE = c
[TB(18) − TB(37)], SWE in mm and brightness tem-
perature TB in �K. Polarization information from
these channels can also be used to differentiate shal-
low or deep snowpacks, adjust c for differences in
layering,50 and to detect wet snowpacks,51 which
drop the 18–37 GHz difference to nearly zero,
thereby eliminating any sensitivity to SWE. Figure 1
(c) shows microwave-measured SWE over the Sierra

TABLE 1 | Locations and 2011 Melt-Out Date for the Snow Pillows in Figure 2

CDEC ID Name Latitude, �N Longitude, �W Elevation, m 2011 Melt-Out Date

DAN Dana Meadows 37.897 119.257 2897 July 01

GIN Gin Flat 37.767 119.773 2149 June 22

GRM Green Mountain 37.555 119.238 2408 June 17

GRV Graveyard Meadow 37.465 119.290 2103 June 12

KIB Lower Kibbie Ridge 38.032 119.877 2042 June 10

REL Lower Relief Valley 38.243 119.758 2469 July 09

SLI Slide Canyon 38.092 119.430 2804 July 12

STR Ostrander Lake 37.637 119.550 2499 June 30

VRG Virginia Lakes Ridge 38.077 119.234 2835 June 20
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Nevada on April 1, 2014. The values are much smal-
ler than those in the corresponding images in
Figure 1 showing the same SWE estimated by other
means.

The transfer coefficient c varies among different
instruments, and is estimated from both theory and
empiricism. These measurements from space date
back to 1978 using a succession of sensors that were
inter-calibrated52: the scanning multi-channel micro-
wave radiometer (SMMR) on the Nimbus satellites,
the special sensor microwave/imager (SSM/I) on the
orbital platforms of the Defense Meteorological Sat-
ellite Program (DMSP), the advanced microwave
scanning radiometer (AMSR-E) on NASA’s EOS
Aqua spacecraft from 2002 to 2011, AMSR2 on
JAXA’s GCOM-W1 spacecraft since 2012, and the
Chinese FengYung series starting in 2008.

The low-energy levels of microwave emission at
Earth surface temperatures require coarse resolu-
tions, larger pixels of tens of kilometers, to collect
enough energy to achieve the precision and accuracy
needed for the observations. This has the effect of
mixing snow with different properties over different
land covers with a variety of terrain configurations
into one set of brightness temperatures per pixel with
which to feed retrieval algorithms.50 Accordingly,
nearly all retrieval algorithms rely on empirical or
model-derived coefficients, optimized to account for
the variable frequency and polarization effects of
SWE under different conditions.51 These algorithms
have performed best over regions with consistent
snow properties and land cover types, thin forests,
and little topographic variability. Examples include
the boreal forest as it transitions to tundra,53 the
northern Great Plains,54 and much of the continental
United States except for the mountains.55 Some evi-
dence suggests that regionally calibrated algorithms
improve retrieval performance, but this approach suf-
fers from the lack of suitable calibration data in
many mountain ranges.

Sources of Uncertainty in Passive
Microwave Remote Sensing of Snow
Differences in snow properties affect microwave
extinction. Coarser texture with larger grain sizes
increases the scattering component of extinction. For
coarse snow, global microwave retrievals tend to
overestimate total SWE.56,57 Internal reflections and
larger effective grain size manifested by stratigraphy
and ice lenses have similar effects.58,59 Total snow
depth and SWE also affect the degree to which the
observations can differentiate SWE based on fre-
quency gradients; at SWE greater than 150–200 mm

the frequency difference vanishes,60–63 and as SWE
increases above that value the brightness tempera-
tures rise again because of emission from the deep
snowpack itself. Because water is about 80× as
absorptive as ice across the microwave spectrum, liq-
uid water in the snowpack increases the microwave
emission, making the signal from snow similar to
that from wet soil.64 As snow generally becomes wet
from the top down, the emission from the ground
becomes obscured and the brightness temperatures
represent emission from near the wet snow surface.65

Land cover type, notably forest, adversely
affects microwave retrieval of snow properties.53,66

Viewed from above, a forest consists of a canopy
fraction and a gap fraction, both between crowns
and through crowns. From the viewing angle of a
passive sensor, microwave retrievals depend on the
viewable gap fraction, from which snow contributes
to the observation, and emission and scattering prop-
erties of the crowns. With increasing viewing angle
off-nadir, viewable gaps decrease,67 and tree crowns
generally have a warmer brightness temperature than
the underlying snow.68 By increasing radiometric
brightness across frequencies, forest cover produces
an underestimate of SWE with the standard algo-
rithms, as it diminishes the brightness temperature
difference of snow between frequencies. On the other
hand, the issue does not appear quite so neatly
resolved in observations. Some studies have shown
improved correlation between modelled SWE and
microwave retrievals with increasing forest cover to
about 30% or 40%,63 while others show better cor-
relation at lower fractions.55

SNOW DATA ASSIMILATION
SYSTEM

SNODAS, the Snow Data Assimilation System run
operationally by the U.S. National Snow and Ice
Data Center (NSIDC), was developed at the NOAA
National Weather Service office in Chanhassen,
MN. SNODAS ingests a variety of datasets daily,
including meteorological data, ground-based SWE,
and snow depth from stations operated by a range of
U.S. federal and state agencies and Canadian provin-
cial agencies. In all, SNODAS uses meteorological
data from 100,000 stations and snow information
from 40,000 locations. Remotely sensed data
ingested include snow-covered area from MODIS
and 1500–2500 airborne gamma radiation estimates
of SWE (a method that is used mostly in the Great
Plains, and thus not covered in this review). Com-
bined with the observations, SNODAS ingests

WIREs Water Spatial distribution of snow in the mountains

Volume 3, May/June 2016 © 2016 Wiley Per iodica ls , Inc. 467

 20491948, 2016, 3, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
at2.1140 by U

niversity O
f C

alifornia, Santa B
arbara, W

iley O
nline L

ibrary on [20/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



downscaled weather modelling results and combines
them with an energy and mass balance snow model.
The SNODAS scheme includes methods to assimilate
remotely sensed snow extent and ground station
data, to produce estimated SWE daily at 1-km reso-
lution at hourly time steps. Analysts determine
whether to assimilate ground measurements, through
nudging or adoption, based on local knowledge of
the grid cells coinciding with the observations. They
consider whether deviations show spatial coherence.
SNODAS thus performs functions akin to remote-
sensing aided interpolation, but uses a physical basis
and weather models rather than just geostatistical
interpolation.

Especially in mountainous regions, SNODAS
depends on observations to assimilate. In the US
Rocky Mountains, it explained 30% of the variance
in observed SWE, without empirical adjustments
accounting for wind redistribution, vegetation, and
terrain.69

COMPARISON BETWEEN
INTERPOLATION,
RECONSTRUCTION, PASSIVE
MICROWAVE, AND SNODAS

Interpolation, reconstruction, and SNODAS rely
heavily on the same or similar satellite-based snow-
covered area estimates based on visible through near-
infrared bands. Thus, these methods tend to show
snow in the same areas, but with differing SWE.
Interpolation and SNODAS produce similar SWE
estimates near pillows over most of the Sierra
Nevada (Figure 1(a) and (d)), but they differ greatly
when extrapolating to areas without pillows or in
areas above the highest elevations, such as the White
Mountains (37.649�N 118.251�W) or the upper ele-
vations on Mt. Shasta (41.409�N, 122.197�W). For
comparison, reconstruction (Figure 3(a)–(c)) esti-
mates more than two times the SWE on the upper
elevations of Mt. Shasta compared to interpolation
and more than three times compared to SNODAS.
Moreover, both interpolation and especially SNO-
DAS miss the huge accumulation of snow at
Mt. Shasta’s higher elevations (Figure 3(d) and (e))
because the only snow pillow in the area lies at
2060 m elevation, more than 2000 below the
4322 m summit. Given that Mt. Shasta contains
numerous permanent snowfields and the largest gla-
ciers in California, we suggest that the reconstructed
estimates are more realistic for this area, yet there are
no accurate spatial SWE measurements that can be
treated as ground truth for verification. Interpolation

and SNODAS produce more total SWE volume (5.40
and 5.13 km3) than reconstruction (3.44 km3) while
AMSR2 estimates much less (1.41 km3). Preliminary
comparisons with ASO suggest that SNODAS may
overestimate SWE in spring,70 possibly because of a
reliance on snow pillow measurements, which late in
the season can hold more SWE than the average of
the nearby surrounding terrain because they impede
drainage to the underlying soil.18

In contrast to these three methods, which all
show over 1000 mm of SWE in some areas even
though the Sierra-wide SWE on April 1, 2014 totaled
only 35% of that date’s average SWE, AMSR2
shows a SWE maximum of only 139 mm. Likewise,
AMSR2 shows much less SWE volume overall
(1.49 km3). These differences can be explained by
the decrease in the frequency difference as the SWE
rises toward 150 mm and the large 10 km pixels of
AMR2. In relative terms, AMSR2 correctly identifies
areas in the central Sierra Nevada as having the most
SWE and picks up the general NW to SE orientation
of the mountain range and its snowpack. Perhaps the
most important feature of AMSR2 is that its data are
independent of the other methods; AMSR2 does not
rely on snow-covered area estimates of the other
three methods, which can suffer from snow/cloud
discrimination problems, especially for thin clouds.

RESEARCH EFFORTS TO IMPROVE
THE MEASUREMENT OF SWE IN
THE MOUNTAINS

Airborne Snow Observatory
The search for measurements of spatially distributed
SWE leads to research in remote sensing, initially
with airborne data. One such effort is the NASA/JPL
ASO that carries an imaging spectrometer to measure
snow cover and albedo and a LiDAR altimeter to
measure snow depth by subtracting the elevation of
bare ground, measured during summer, from the ele-
vation of the top of the snowpack.37 Combining
depth with modelled density yields SWE, but at this
time the airborne mission covers only a few drainage
basins in California’s Sierra Nevada and the Colo-
rado Rockies.

Unmanned Aerial Vehicles
Unmanned Aerial Vehicles (UAVs) have been used to
map snow depth in complex terrain using stereo
pairs and photogrammetry71,72 with RMSE values of
10–30 cm. As with the ASO data, modeled snow
densities can be combined with these depth
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measurements to estimate SWE. Current regulations
in the United States and other countries make UAV
operation for research difficult and limit operation to
line-of-sight, but these regulations are evolving. Small
UAVs also suffer from limited flight time, typically
around 30 min. Restrictions imposed by the line-of-
sight and flight time severely limit aerial coverage.
Recently, UAVs have been developed that carry com-
pact LiDARs and hyperspectral cameras, potentially
offering similar snow mapping capabilities as the
ASO. Because of their ability to fly close to their tar-
gets, such UAV LiDARs have advertised RMSE
values down to 0.1 cm.

Active Microwave Remote Sensing
Active microwave remote sensing (radar) of SWE can
acquire observations at much finer resolution than
can passive microwave retrievals because an active
system provides its own illumination. Spaceborne

systems—such as the European Remote-sensing
Satellites-1 and -2 (ERS-1 and ERS-2), RADARSAT-
1 and RADARSAT-2, and Envisat SAR
instruments—have resolutions as fine as 30 m. Like
passive microwave observation of snow, approaches
differentiate the signal from the underlying ground
and the signal that manifests the properties of the
snow. The retrievals employ a frequency and polari-
zations that penetrate snow, and those that the snow
scatters or absorbs.

These techniques rely on quantifying micro-
wave backscatter from the snow surface, the snow
volume, and the ground. Making these measurements
most useful also requires corrections for terrain and
vegetation, because the topographic geometry exerts
a strong control on the backscatter energy, and vege-
tation introduces additional scattering processes. The
spaceborne systems mentioned in the paragraph
above all provide just one frequency, and thus have
not proved successful in estimating SWE. Results
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FIGURE 3 | Comparison of three methods to estimate snow water equivalent (SWE) on Mt. Shasta, California, on April 1, 2014, in a small
area within a small region (28 × 30 km) that Figure 1 covers. The top row identifies the SWE values: (a) interpolation; (b) snow data assimilation
system (SNODAS); and (c) reconstruction. The bottom row identifies the differences: (d) interpolation minus reconstruction; and (e) SNODAS minus
reconstruction.
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from the SIR-C/X-SAR mission proved
encouraging,73–75 but that mission comprised just
two ten-day flights. Accordingly, recent concepts for
satellite missions include a dual-frequency approach,
possibly combined with a passive sensor, as recom-
mended by the U.S. National Academy of Sciences’
‘decadal survey’ for Earth scence.76 Such missions
have been proposed and designed—CoReH2O to the
European Space Agency77 and SCLP (snow and cold
land processes) to NASA—but neither was selected
for flight. NASA supports an international working
group examining future options and intermediate
steps for a spaceborne sensor that can measure SWE
and other snow properties (Box 1).78

CONCLUSION

In regions like the mountainous western United
States where snowfall constitutes a significant frac-
tion of total precipitation, the snowpack delays the
resulting runoff into the time of year where water
demand is greater, so measurement of snow on the
ground has been an important component of hydro-
logic forecasting for a century.82 Measurements at a
set of local sites suffer from the lack of representation
of the topographic setting, so while statistically they
can estimate the volume of water stored as snow,
those estimates occasionally have large errors. In
regions like High Mountain Asia with an austere sur-
face infrastructure, an adequately dense surface net-
work is not available. In both types of regions,
therefore, actual estimates of the spatial distribution
of SWE would provide insight about sources of error
in forecasts and address effects of snow distribution
in mountain ecosystems.

Several independent methods produce estimates
of the spatial distribution of snow, but all are prob-
lematic in some ways. Interpolation requires a sur-
face network, which often does not cover the highest
elevations. Reconstruction does not cover the accu-
mulation part of the snow season, and estimates are
available only after the snow is gone. Passive micro-
wave sensors provide good information on thin, cold

snow in areas of simple topography but suffer
from several artifacts in mountains terrain and gener-
ally underestimate the SWE. Numerical weather
models, like those used in SNODAS, are too coarse
to simulate many snowfall and redistribution pro-
cesses and often do not correctly calculate the oro-
graphic enhancement of precipitation or subsequent
melt. Among all the uses of remote sensing in hydrol-
ogy, SWE is the one where new innovations would
deliver the greatest benefit.

FURTHER READING
Armstrong P. The Log of a Snow Survey: Skiing and Working in a Mountain Winter World. Bloomington, IN: Abbott
Press; 2014.

Dozier J. Mountain hydrology, snow color, and the fourth paradigm. Eos Trans Am Geophys Union 2011, 92:373–375.
doi:10.1029/2011EO430001.

BOX 1

INTERANNUAL PERSISTENCE OF SPATIAL
PATTERNS

Snow loading in mountainous areas tends to
repeat, pattern-wise, as SWE builds up, inte-
grating snowfall and redistribution over many
storms followed by spring melt.79–81 Here we
have described approaches observing snow
cover duration and the contemporaneous
energy budget, which provide estimates of
SWE, and other indices of SWE from interpola-
tion and modelling from remote sensing and
observations at point-like locations in the
mountains. We have not addressed possibilities
and potential of long-term time series of this
information. As years progress, the documented
themes and variations of SWE accumulation
and depletion expand to encompass more and
more interannual and inter-basin variability.
The large resulting datasets may yield new
understanding of the climatic response of ter-
rain units. By establishing geospatial priors,
antecedent indicators may allow us to under-
stand SWE in mountains independently through
continuous efforts of interpolating and model-
ling the remotely sensed updates.
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