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The problem of the transfer of energy from one end of a' res~nant cavity in 

the TM 1 mode to the other is of great interest in the theory of linear accelerators, o 0 . 

especially in regard to the coupling of osdllators ,and osqillator control problems 

for long accelerators o Since the general problem of the transient beha;rior of 

1 
waveguides is extremely complex s a sanewhat simpler approach was made. W'.a.at was 

primarily desired was a time scale for the transfer of large quantities of energy. 

The assumption made was that the cavity was being excited at one end with a field 

such that H~ had the radial dependence for the Th'Iol mode of the waveguide, with 

a time frequency WO 

The, TIJ.lOl mode propagates in the guide with a propagation constant lJvhich depends 

on the frequency~ Thus the waveguide represents a dispersive medium for the 

propagation of electromagnetic waves. The prob;Lem then reso 1 ves it self to finding 

how a signal travels in the waveguide. By a signal one means a wave train with 

at least a beginningo Such a wave train has a spectrum of frequencies in the 

Fourier sense and each of these frequencies travels with different velocities on 

the waveguide. The re-synthesis of these Fourier components ~t each distance and 

time will show how the signal propagateflo 

Th~ mathematical· analysis used in this report follows the treatment of 

anomalous dispersion by Sbmmerf~ld2and Brillouin3 • 

1M• Cerrillo, Transient Phenomena inWaveguids, Massachusetts lnst.of Technology 
Technical Report No. ~3, 1948. . 

2Ao Sommerfeld, Ann. de Physik 44, 177 (1914). 

3L• Brillouin, Anno de Physik 44, 203~ (1914). 
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Pro12a£;iation of<'rTJiIOrJ:JIQo,E"< in Cylindrical WaveGUid~ 'lArtj;;}1,L,qsseso: : 

In order to get a finite velQ city for . energy transfer at the resonant frequency 

it is necessary toipclude some energy loss te:rrus in MaxwelP s equations. If this 

is done by assuming a loss term independent of frequency and h~ving the correct 

value at the resonant frequency one can show that the propagation consts.Ilt for such 

a guide is given by: 

'D(w) ", !./ W 2 _ W 2 + 2i Wa. 
c . .' c 

vJl:rere 
a. ::::: Q UVR = resonant frequency 

Wc "" resonant frequency vd thout losse s. 

tAl .= W if a.= 0 .. R c 

.',' ,". 

If "ve consider only the TM:OI mode of the guide and an infinitely long guid.e 
':.' 

one can formally express H~(Zst) in terms of H~(06t) by a Fourier transform. 

[

00 / ? ' ZC
O

) . i (W t - V (AT ~ £U 2 + 2ia·w 
H( z ,.t) "'. A (W ) . e ." c. ·.aw· 

-00 . 

.. A(~). in r;o.t1 e iW t dt 

-OQ 

The simplest signal to feed in at z ::::: 0 iss 

"'."', ,.:. 

t· > 0 H(O,t) '"" e 
iwt 

This type of a si gnal cannot be represented by· a Fourier integral but c6J.'1be 

represented' by~ a Laplace- transforme Making the usual substitution s "" l0, one 

has: ~) 
ds 

',' .::.":. ... ~. 
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In order to evaluate the integral we will have to integratear6tind a contour in 

thecO!Uple;x:. s pl~p.\3. This integrand has Ii p~le. a.t.s ~iW.· and branqh:point·s (;l.t 

the roots of the . square root. 

i J w 2 _ a2 
c 

s= -, a ± itU
R 

These are sho~m in Fig. 1. 

I 
r. 

A 

o 

Fig. 1 

s 

.' 
In order to make the function single valued in the plane a Cl1t must be made 

between the two branch points. The contour must not cross the cut. 

'For large s the exponential becomes: 

," .. :.: 

z 
s(t - C ) 

~. z 
hence if t <. -c· 

one can form the contour'to the right of·all.singularitiesand hence get 0 for 
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the inte graL 
1",,_ 

:'; 
~ '. , "' 

:For "t· ~i£thEr'contour' n'rlls't. be~c:losed'in :'che -'left.'hi:i.lf piam:f;! thi;s 'hoWever'; 
c 

includes both the pole ai1d branch points. Yuhile, the.con-Gributicinfrom the pole 

is easy to evaluate~ the contributionfrorntheintegral around the two branch 

points is not easily evaluated. Hence it is necessary to resort to a saddle 

point approximation for the integral. 

The phase of the exponential is given by: 

¢ = st -I S 2 "" 1.1 2 + 2 "'I.Ic a.s 

the saddle points are therefore ats 

ct 
If we let z = U II 

9i..=O= ( ds 
+ (jj 2 + 2a's c 

uWli . 
s·· = ... a + i···;=:::== 

s '. "Vu2'~1 

z 
c 

z 
c 

If we expand ¢ about the saddle point vre have'¢ = ¢o + 5tH )2. 

"""' __ ._ ••• ~ __ ,:-. '"'0" 

The second term must be real and neEative along the path of integration. 

at s 

hence ~2 = i,~ 2. 

1 
-1 :t i 

= 
{2 1 

1 

I 8 2 + (,J. 2 + 2as 
c 

z . - - . (s + a.)2 z 
- 'r ---='----=-----.-. -c c 

hence we must int'eg~ate~iong a 450 
line through the saddle poini1~ L.U1:t:iL~he 

integrand becolY!es yerysmall_ and then.elose the contour in such '.a way that 

to 

r 
j ) 
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there is negligible contribution along the remainder of the I?ath. As long as we 

can keep our contour far away from the pole the integral can be approximated py 

taking the constant value of the phase at the saddle point and integrating 0"!"cr 

along, the f?orrect contour. 
. .~',,~.;: .: 

.~"U.;:'.:. ~is g!~ves a solution for'~ <<. {'Q" 
, ,J' 2· 2 ,', z 

····'·'.1 . Ji..S~ .~y .3s + .:c +2a.Ss ,'0". 
H(z,t) = ~ ---~~'--;---------Gni S - iw s . 0 

nfff-i/( 2 ) 2 4' - cw u +1 ~ 
R . d~ 

-00 

H(z,t) 
"(u2_1(u2+l) z 

The case of interest is Wo = W
R 

i~eo. the input signal is at the resonant 

frequency. As u increases (t increas;i.ng at a given z) the saddle point move s 

frOlRoc)d6Wh th~ line ':"0. + i Y ahd approaches the branch point. However. at a' 

timeu Which is such'that'th~450iine from the saddle point goes through the 

'p61e at i WR~ there mIl be' a sudden increase in the field at z: mathematically 

this means we will get a direct contribution to the integral from the pole in our 

. contour integration. 

Physically this implies that we are finally receiving. signals with a frequency 

which is within the band pass of the resonator. This-time can be interpreted as 

the .time it takes the bulk of the signal to arrive at z. The value of u for 

this to happen is given by: 

uCU" R 

/ <AJR' 
u = 2a 

~ 
a. =-2Q 

·if we . ignore a. compared to 

"a2 a. 
and ~ compared to -

w R . a)R 
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hence >::..', .: 

",,'.:', "''''. 'L.:. . . ', ' . ' ,,~'.' ,;, . \', . 

z c 
t = =-

. .' '-at',~ 
For, later times one has the first part of the solution decreasing as.R,;; 

and now the pole must be integrated around a separate loop. The main contributfon 

from this time on comes from the integral around the pO'le which gives the residual 

at the pole .. 

This can be evaluated very simply and gives a steady state solution of the 

form: 

... hich is a wa-ve mO"l:-ing with a phase velocity: 

v p 
:; 

c 

Since the transient solution ':-ve have found is good for only small values of 

t > 
_
z, . I Itt ' c ~ no ntunerlca eva ua ion of the ra:n.sient part of the solution he.s been 

made e The important numbers one has ootained from this analysis are the velocity 

61' the signal 
Vs I 
--..,;-
c YQ' 

and the steady state velocity, 

vp I 

c :; ;12Q' " 

.. 

f, 




