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Abstract

We demonstrate an application for learning multiplication
problems with an adaptive algorithm that is based on a compu-
tational cognitive model of the learner’s memory. The appli-
cation helps learners automatise and memorise multiplications
through repeated practice over three levels of difficulty. In a
naturalistic setting involving more than 500 primary school
students (ages 6-10) who together recorded over 300,000 re-
sponses, we observed that performance improved as learn-
ers using the application progressed through the levels. A
model-based analysis of performance revealed that learners’
estimated speed of forgetting decreased from the second to the
third level. This is consistent with a shift towards stronger
declarative knowledge and/or more efficient computation pro-
cedures. The model also identified consistent differences in
the difficulty of individual multiplication facts that persisted
across levels. This study demonstrates the feasibility of us-
ing an adaptive fact learning application to help young learners
master multiplication, an essential mathematical skill.

Keywords: Multiplication; Adaptive Learning system; Re-
trieval; Primary education

Introduction

Multiplication facts (such as 6 x 7 = ?) are a key compo-
nent of the mathematics curriculum in primary education, as
they form a basis for many more complex skills. In this pa-
per, we describe an adaptive learning system for learning the
tables of multiplication, using a cognitive model-based ap-
proach. The adaptive scheduling of multiplication problems
is driven by a computational cognitive model of the learner’s
memory that is continually adjusted based on the responses
made by the learner. We evaluate the usage, performance,
and model-based assessments of this system in a pilot study
in 11 primary schools.

Learning multiplication

The ability to fluently perform simple multiplications is an
important goal in primary mathematics curricula. Like many
cognitive skills, solving multiplication problems is complex
and multifaceted. Typically, learners begin by using slower
computational strategies, progressively transition to faster
retrieval-based strategies, and develop the ability to selec-
tively choose among strategies (Campbell & Graham, 1985;
Siegler, 1988; Lemaire & Siegler, 1995; Van Der Ven, Boom,
Kroesbergen, & Leseman, 2012; Zhang, Ding, Barrett, Xin,
& Liu, 2014; Hofman, Visser, Jansen, Marsman, & Van
Der Maas, 2018).

Some commonly used methods to teach multiplication
have unclear efficacy, or are known not to be particularly ef-
fective. For example, many learners report using methods
that involve passive study, such as listening to recordings or
looking at the multiplication tables written down (e.g., Steel
& Funnell, 2001). Such methods are most likely less effi-
cient than active study methods, like reciting multiplication
tables out loud or answering prompts (Ophuis-Cox, Catrysse,
& Camp, 2023). Methods that impose a fixed structure on
practice are also likely to be less effective than adaptive meth-
ods: when multiplication tables are studied in a fixed or-
der, each individual problem is practised an equal number of
times, despite some problems typically requiring more prac-
tice to master than others (e.g., Van Der Ven, Straatemeier,
Jansen, Klinkenberg, & Van Der Maas, 2015).

Computer-based adaptive learning systems can address
these shortcomings, for instance by promoting effective study
methods like spaced practice with feedback, and by adapt-
ing to individual differences so that the learning experience
is appropriately challenging (e.g., De Witte, Haelermans,
& Rogge, 2015). Previous work in this domain centres
on adaptive systems that use Item Response Theory (IRT;
e.g., Klinkenberg, Straatemeier, & van der Maas, 2011; Van
Der Ven et al., 2015; Faber, Luyten, & Visscher, 2017) to
adaptively schedule exercises, by simultaneously estimating
the learner’s ability and the difficulty of individual problems.

Current study

Here, we present a different approach to adaptive learning
of multiplications, which has several distinct advantages over
IRT-based systems. The adaptive learning system in this
study is based on a computational cognitive model of the
learner’s memory. The model is used to interpret learners’
performance in terms of cognitive processes, capturing indi-
vidual differences through a learner- and item-specific speed
of forgetting (o) parameter, and adjusting problem scheduling
accordingly. In contrast to the difficulty and ability estimates
of IRT, the o parameter is cognitively meaningful and inter-
pretable (Liefooghe & Van Maanen, 2023). This approach
is also more flexible than IRT in capturing individual differ-
ences, by allowing relative rankings in problem difficulty to
differ across learners. Furthermore, the cognitive model en-
ables a model-based assessment of learners’ mastery of each
multiplication problem.
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The application centres on learning multiplications through
adaptive spaced retrieval practice. Retrieval practice is recog-
nised for its efficacy within different domains, including in
classroom environments (Schwartz, Son, Kornell, & Finn,
2011; Agarwal, Nunes, & Blunt, 2021), and there is some
early evidence for its efficacy in learning multiplication facts,
too (Ophuis-Cox et al., 2023). The adaptive core of the ap-
plication has previously been demonstrated to be an efficient
tool for learning various types of declarative material, such as
vocabulary items and place names (e.g., van Rijn, van Maa-
nen, & van Woudenberg, 2009; Wilschut et al., 2021). The
current work involves a new type of material. While multi-
plication facts are also a form of declarative knowledge, they
differ from simpler factual materials in that answers can also
be derived through other methods.

The application is designed to reflect the multifaceted na-
ture of multiplication skill development. Learning to perform
multiplication typically involves starting with procedure-
based computational strategies, and progressively perfecting
these methods to enhance efficiency. Procedural strategies
can include obtaining the answer from a previously estab-
lished fact, or repeated addition (suchas 3 + 3 + 3 = 9).
Over time, learners transition to faster strategies based on di-
rect retrieval from memory, and develop the ability to selec-
tively choose among strategies (Lemaire & Siegler, 1995).
The design of the application should accomodate and en-
courage this shift from procedural to retrieval strategies (see
also Chang, Sung, Chen, & Huang, 2008). Here, we aim
to achieve this through a three-level structure (Table 1), in
which learners progress from being able to solve each prob-
lem, through steadily improving their performance with re-
peated practice, up to being able to solve each multiplication
via fast and accurate retrieval.

Methods
Application design

The application enables learners to practice multiplication ta-
bles in three progressively more challenging levels (see Ta-
ble 1). This design is intended to reflect a stepwise progres-
sion from the use of procedural knowledge to the recall of
declarative knowledge. In all three levels, learners respond to
a sequence of multiplication cues until they reach a mastery
criterion. The levels differ in how items are scheduled and in
how item mastery is assessed.

Adaptive scheduling Level 1 presents multiplications in a
fixed order and is completed once the learner has correctly
solved each item once. In Levels 2 and 3, the application
uses an adaptive algorithm for spaced retrieval practice.
This algorithm is based on an ACT-R model of declarative
memory (Anderson & Schooler, 1991), and is described in
detail in van Rijn et al. (2009) and Sense, Behrens, Meijer,
and van Rijn (2016). It models the activation of each mul-
tiplication fact over time, and repeats items whenever their
activation decays to a threshold value (see also Pimsleur,
1967; Pavlik & Anderson, 2008). The algorithm captures

2x2= 6

2x2= g

iy =N

Figure 1: Screenshots of the application. a: Homepage. b:
Level selection screen, indicating progress within the chosen
times table. ¢: Practice screen showing error feedback.

Oeps, probeer het
nog een keertje. *piep*

individual differences in difficulty and ability through an
item- and learner-specific speed of forgetting parameter (o),
which it estimates from the accuracy and speed of learner’s
responses (this can be seen as a kind of model tracing; e.g.,
Anderson, Corbett, Koedinger, & Pelletier, 1995). More
difficult items will have a higher o value, which causes
activation to decay faster, leading to more frequent repetition.
In Level 2, a is adapted on the basis of response accuracy
alone. There, o increases by 0.01 following an error, and
decreases by 0.01 following a correct answer. In Level 3,
which tests speed as well as accuracy, adaptation of o is
based on both response accuracy and response time, with
faster and more accurate responses leading to lower o (see
Sense et al., 2016, for a detailed explanation of how a is
adapted).

Model-Based Mastery Levels 2 and 3 use a model-based
assessment of longer-term retention somewhat analogous to
Knowledge Tracing (Corbett & Anderson, 1995) that we call
Model-Based Mastery. To determine mastery, the application
predicts longer-term activation of each multiplication fact
during practice. A level is completed once the predicted fu-
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Table 1: Levels in the application.

Level Goal

Scheduling algorithm

Mastery assessment Time limit

1 Solve each multiplication once Fixed order
2 Repeated spaced practice

3 Fast and accurate retrieval

Adaptive (based on accuracy)
Adaptive (based on accuracy and RT)

1x correct -
Model-based mastery —
Model-based mastery 8s

ture activation of all facts exceeds a threshold value. Specif-
ically, the model predicts activation of a fact f at time ¢ + 24
hours in the future, and evaluates whether that activation ex-
ceeds an activation threshold Ty, !:

M(f,1) = A(f.t +24h) >ty (1

=Y ((t+24h) — 1))~ > 1y 2
J

Gamification Since the application was intended for young
children, we developed an age-appropriate design. The inter-
face (see Figure 1) incorporates gamification elements that
are intended to motivate learners without impairing their
learning process or mental well-being. The application uses
a reward system that promotes intrinsic, rather than extrinsic,
motivation (Deci, Koestner, & Ryan, 1999), by linking re-
wards with accomplishments that help learners approach their
final goal (Reiners & Wood, 2015). Completing a level un-
locks the next level (Figure 1b), and completing all three lev-
els for a multiplication table leads to the corresponding num-
ber being coloured in on the learner’s homepage (Figure 1a).

Learners receive immediate feedback on their perfor-
mance. When combined with a goal (e.g., completing
a level), such feedback can positively influence perfor-
mance (Strang, Lawrence, & Fowler, 1978). The feedback
is designed to encourage learners when they make mistakes,
by providing positive reinforcement (e.g., Oops, try again;
Figure 1c), thus embracing the concept of graceful fail-
ure (Kapur, 2008).

Procedure

We conducted an open-ended study in 11 primary schools in
the Netherlands with students aged 6-10 years old. Teach-
ers were encouraged to include the application in their lesson
plan during school hours, but determined themselves when
and how much they used it. At several points, teachers and
students also participated in an online survey. Additionally,
we conducted in-person moderated usability testing with 27
students in two schools, focusing on the design, usability, and
users’ subjective experience of the application.

ISince ACT-R’s activation is based on the timing of encounters,
and not the accuracy of the learner’s responses at those times, we
only include successful responses here, in order to prevent a se-
quence of errors leading to mastery. Ideally, the decay d would
change depending on the item-specific ¢. In this initial version, how-
ever, the calculation uses a fixed decay of d = 0.45. The threshold
Ty is estimated from learning data using the method described in
Van Der Velde, Sense, Borst, and Van Rijn (2022).

Results
Usage

Figure 2 summarises learners’ usage of the application. Stu-
dents and/or their teachers decided themselves when and what
to study; we had no control over when students used the ap-
plication and which multiplication tables and levels they se-
lected. Over a 197-day period, there were 540 active learners
who together completed 315,690 trials across 17,575 sessions
(Figure 2a). On average, each learner spent a total of 66 min-
utes practising multiplications over 26 sessions (Figure 2b).

The duration of a session depended on the learner’s per-
formance, although a learner could also quit the session at
any point before level completion. Level 1 sessions were typ-
ically shorter (a median session consisting of 10 trials) than
sessions in Levels 2 and 3 (each with a median of 16 trials), as
shown in Figure 2c. This is consistent with having to achieve
a higher standard of mastery in the latter two levels (see Ta-
ble 1).

Level completion rate Level completion was based on
achieving a level-specific performance criterion (see Table 1).
Figure 3 shows the level completion rate: of the learners who
logged at least 10 trials in a level, what proportion went on to
complete the level? Completion rates were very high in Level
1 (averaging 87%) and remained quite high in Levels 2 (83%)
and 3 (73%).

User experience ratings We evaluated students’ and teach-
ers’ subjective experiences through questionnaires. After ap-
proximately four weeks of using the application, 79 students
from four different schools completed a version of the User
eXperience Kids Questionnaire (UXKQ; Wobbekind, Mandl,
& Womser-Hacker, 2021). Through eight paired differen-
tials set on a five-point scale, we measured hedonistic aspects
(e.g., boring — fun), as well as perceived learning quality
(e.g., bad for learning — good for learning). Across all pairs,
students gave an average rating of 4.35, indicating a posi-
tive evaluation of their experience. Eight teachers were also
asked to assess the usability of the application while observ-
ing its use in their classroom. Their percentile scores on the
System Usability Scale (SUS; Brooke, 1996), a widely used
measure in the field of human-computer interaction, averaged
80.9 (range: 57.5-97.5), reflecting a positive rating of the ap-
plication’s user-friendliness for young children.

Performance

Figure 4 shows the accuracy and speed of learners’ responses
in each of the levels. To be included in the analysis, learners
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Figure 2: Usage of the application. a: The total number of sessions initiated each day. b: The number of sessions initiated by
each learner, per level. ¢: The number of trials in each session, per level.

Level completion rate

1 2 3 4 5 6 7 8 9 10
Multiplication table

Figure 3: Level completion rate for each of the three levels,
per table of multiplication.

needed to have recorded at least ten responses in a level.

As Figure 4a shows, learners’ mean accuracy was generally
high in all three levels, averaging 85.9% (SD = 12.6) in Level
1, 90.1% (SD = 10.9) in Level 2, and 86.1% (SD = 10.7) in
Level 3. A generalised mixed-effects model fitted to the data
indicated that there were small, but significant, changes in ac-
curacy from Level 1 to Level 2 (estimated difference: 2.6pp,
p < .05) and from Level 2 to Level 3 (estimated difference:
—4.6pp, p < .001).

Response times were not recorded in Level 1, but learners’
median response times on correct trials in Levels 2 and 3 (Fig-
ure 4b) were reasonably fast, averaging 3.079 s (SD = 1.205)
in Level 2 and 2.238 s (SD = 0.555) in Level 3. A linear
mixed-effects model fitted to log-RT confirmed that success-
ful responses were significantly faster in Level 3 than in Level
2 (estimated difference: —1.389 s; p < .001). As such, while
participants became substantially faster at giving the correct
answers to multiplication problems, their responses became

only became marginally less accurate overall.

Model-based performance assessments

The memory model used in the application enables a model-
based assessment of learners’ performance.

Speed of forgetting

During practice, the memory model estimates a separate
speed of forgetting (o) value for each fact that a learner en-
counters, based on the accuracy and speed of the learner’s re-
sponses. Every time a new response is made, this new obser-
vation is incorporated in the estimate, leading to an increas-
ingly data-informed estimate with each additional practice at-
tempt. Crucially, the model interprets each response in con-
text, taking into account the timing and performance of pre-
vious practice attempts. We use the final o estimate, which
incorporates the entire learning history of a fact, to quantify
a fact’s difficulty for a learner. As a model-based measure, o
enables comparison of fact difficulty, as well as learner abil-
ity, on a single scale.

Fact difficulty By aggregating final o0 estimates across
learners, we get a general measure of the difficulty of each
multiplication fact: the higher the average speed of forget-
ting, the more difficult the fact is. Figure 5 shows mean final
o estimates for each of the one hundred multiplication facts,
derived from responses made in Level 3. Each difficulty esti-
mate is based on learning data from between 88 and 425 dif-
ferent individuals. As the figure illustrates, the model finds
substantial variability in estimated difficulty between facts.
By comparing difficulty estimates across levels, we can

2This capacity to express difficulty and ability on a single scale
is shared with Item Response Theory (IRT; e.g., Klinkenberg et al.,
2011), although unlike IRT’s estimates, o has a concrete interpreta-
tion in the memory model.
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Figure 4: Performance on the individual study trials, per level. a: Mean response accuracy per learner. b: Median response
time on correct answers per learner. Response times were only recorded in Levels 2 and 3.

also quantify changes in fact difficulty as learners progress
through the levels. Figure 6a shows difficulty estimates by
fact, based on mean o values from Levels 2 and 3. The o
parameter was estimated independently in each of the lev-
els (i.e., the Level 3 estimate did not take the learning his-
tory in Level 2 into account). Nevertheless, there was a very
strong correlation in the estimated difficulty of individual
facts (r = 0.89, p < 0.001), showing that relative differences
in difficulty among facts persisted from Level 2 to Level 3.
We also found that facts generally had a lower speed of for-
getting in Level 3 compared to Level 2: all points lie below
the diagonal. A linear mixed-effects model confirmed that
this effect was significant (f = —0.039, p < .001). This find-
ing is consistent with multiplication facts becoming easier as
learners gained more experience.

Learner ability By aggregating final o estimates within
learners, we can similarly calculate a measure of learner abil-
ity. Figure 6b shows learners’ speeds of forgetting in Lev-
els 2 and 3, once again based on independently estimated o
values. Learners’ average o0 was generally lower in Level 3
than in Level 2, as confirmed by a linear mixed-effects model
(B = —0.035, p < .001). There was a weak correlation be-
tween levels (r =0.25, p < .001), suggesting that while learn-
ers generally improved, the amount of improvement varied.

Discussion

This paper describes an adaptive learning system for stepwise
automatisation and memorisation of multiplication facts. We
demonstrated in a naturalistic setting that this system can sup-
port young students in learning multiplications, that it can
identify individual differences in learning ability and item dif-
ficulty, and that it encourages a shift from slower computa-
tional response strategies to faster retrieval methods.

Itis well-established that learners use different strategies to

Speed of forgetting by fact

6x10|7x10|8x10|9x10

6x9 | 7x9 | 8x9 ] 9x9

.7x8 8x8 | 9x8 |10x8
6x7 | 7x7 | 8x7 9x7.
6x6 7x6.9x6 10x6

6x5 ] 7x5 ] 8x5 | 9x5 J10x5

6x4 | 7x4 | 8x4 | 9x4 |10x4

6x3 | 7x3 | 8x3 9X3.

6x2 | 7x2|8x2|9x2 |10x2

6x1 ] 7x1]|8x1 9x1.

2 0.24 0.26 0.28 0.30

Speed of forgetting _
0.20 0.2

Figure 5: Estimated difficulty of each multiplication fact.
Each estimate is the final speed of forgetting () of a fact
in Level 3, averaged across learners. Higher values indicate
more difficult facts.

solve multiplication problems, relying on procedural as well
as declarative memory, and that the use of strategies changes
with experience (e.g., Van Der Ven et al., 2012; Zhang et al.,
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Figure 6: Speed of forgetting () in Levels 2 and 3. a: Mean
o by fact. b: Mean o by learner.

2014). Knowing which strategy a learner uses to solve a mul-
tiplication problem is challenging. To a limited extent, we
can tell retrieval and computation apart based on response
time (Hofman et al., 2018), as well as by errors that are
traceable to specific computational mistakes (Savi, Deonovic,
Bolsinova, Van der Maas, & Maris, 2021). The application
was designed to accommodate the use of a mix of strate-
gies, and to encourage a shift towards retrieval. In the first

two levels, response times do not factor in the adaptation of
repetition scheduling, which means that learners get repeated
exposure to problems without being penalised for the use of
inefficient strategies. This repeated practice should lead to
a stronger declarative representation (Anderson, Fincham, &
Douglass, 1999), and/or to more efficient computational pro-
cedures (Taatgen, 2013), both of which would enable faster
responses as learners gain more experience. The third level
was intended to elicit predominantly direct retrieval, by cap-
italising both on a history of repeated exposure to the mate-
rial in earlier levels, and by encouraging fast responses with
a time limit. The finding that speed of forgetting estimates
decreased in Level 3 is consistent with improvement along
these lines, as is the observation of fairly stable differences in
fact difficulty (Figure 6a). Although we cannot fully rule out
the use of computational procedures, the Level 3 completion
rate nonetheless suggests that learners were generally able to
achieve the intended mastery of the material (i.e., the ability
to consistently respond quickly and accurately).

The fact-level difficulty estimates obtained through the sys-
tem (Figure 5) reveal individual differences between facts,
and partially match previously described canonical effects.
We see some evidence for a problem size effect (difficulty
increases with larger operands; e.g., Campbell & Gra-
ham, 1985; Imbo, Duverne, & Lemaire, 2007), particularly
when the first operand is large. Notably, no clear tie ef-
fect (problems with equal operands are easier; e.g., Van
Der Ven et al., 2015) is visible in the o estimates. The five
effect (problems with 5 as an operand are easier; e.g., Verguts
& Fias, 2005) is also not consistently visible, seeming mainly
to appear when 5 is the first operand. Within most of the mul-
tiplication tables, individual facts were seen to vary widely in
difficulty. This highlights the potential for an adaptive sys-
tem to identify and act on these differences. In the same vein,
we saw large individual differences in learners’ abilities (Fig-
ure 6b) that make a personalised approach fruitful.

Improving core mathematical skills like multiplication in
young learners is particularly important, as PISA scores in-
dicate a sustained decline in the mathematics performance of
children in the Netherlands and other countries over recent
years (PISA, 2023). An adaptive learning system can help
in achieving this goal, by supporting effective study methods
and by letting learners work at their own pace. In this light,
it is encouraging that teachers and students rated their experi-
ences with the application very favourably.

This study demonstrated an adaptive learning application
for stepwise automatisation and memorisation of multiplica-
tion facts, built on a computational cognitive model of mem-
ory. The performance of learners using the system improved
as they worked through the levels. Model-based analytics de-
rived from the system offered actionable insights in the dif-
ficulty of individual problems and the ability of individual
learners, supporting personalised learning of a crucial skill.
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