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Machine Learning Outperforms ACC/AHA CVD Risk Calculator in
MESA
Ioannis A. Kakadiaris, PhD; Michalis Vrigkas, PhD; Albert A. Yen, MD; Tatiana Kuznetsova, MD; Matthew Budoff, MD; Morteza Naghavi, MD

Background-—Studies have demonstrated that the current US guidelines based on American College of Cardiology/American
Heart Association (ACC/AHA) Pooled Cohort Equations Risk Calculator may underestimate risk of atherosclerotic cardiovascular
disease (CVD) in certain high-risk individuals, therefore missing opportunities for intensive therapy and preventing CVD events.
Similarly, the guidelines may overestimate risk in low risk populations resulting in unnecessary statin therapy. We used Machine
Learning (ML) to tackle this problem.

Methods and Results-—We developed a ML Risk Calculator based on Support Vector Machines (SVMs) using a 13-year follow up
data set from MESA (the Multi-Ethnic Study of Atherosclerosis) of 6459 participants who were atherosclerotic CVD-free at
baseline. We provided identical input to both risk calculators and compared their performance. We then used the FLEMENGHO
study (the Flemish Study of Environment, Genes and Health Outcomes) to validate the model in an external cohort. ACC/AHA Risk
Calculator, based on 7.5% 10-year risk threshold, recommended statin to 46.0%. Despite this high proportion, 23.8% of the 480
“Hard CVD” events occurred in those not recommended statin, resulting in sensitivity 0.76, specificity 0.56, and AUC 0.71. In
contrast, ML Risk Calculator recommended only 11.4% to take statin, and only 14.4% of “Hard CVD” events occurred in those not
recommended statin, resulting in sensitivity 0.86, specificity 0.95, and AUC 0.92. Similar results were found for prediction of “All
CVD” events.

Conclusions-—The ML Risk Calculator outperformed the ACC/AHA Risk Calculator by recommending less drug therapy, yet
missing fewer events. Additional studies are underway to validate the ML model in other cohorts and to explore its ability in short-
term CVD risk prediction. ( J Am Heart Assoc. 2018;7:e009476. DOI: 10.1161/JAHA.118.009476.)

Key Words: Artificial intelligence • Machine learning • clinical decision support • cardiovascular risk • cardiovascular disease
risk factors • cardiovascular disease prevention • atherosclerosis • prediction statistics • statin

A pproximately every 20 seconds an American will have a
heart attack or stroke. Of 790 000 heart attacks each

year, 580 000 are new attacks in asymptomatic individuals.
Similarly, of 610 000 strokes each year, 425 000 events are

first-time. The economic cost of these unpredicted cardio-
vascular events is tens of billions of dollars annually.1 Despite
the grave nature of the problem, many of these events could
be prevented if a more accurate tool for early detection of
high-risk individuals became available.

The traditional method of cardiovascular disease (CVD) risk
assessment is based on measuring traditional risk factors and
predicting events over 10 years or a lifetime. Numerous
studies have shown that current 10-year risk calculators,
including the 2013 American College of Cardiology/American
Heart Association (ACC/AHA) Pooled Cohort Equations Risk
Calculator,2 often overestimate cardiovascular events and, in
women and certain ethnic groups, may underestimate risk.3–7

The existing approach to CVD risk assessment desperately
needs an overhaul. A consensus report from the Society for
Heart Attack Prevention and Eradication (SHAPE) Task Force
concluded that a comprehensive assessment of plaque, blood,
and myocardial vulnerability factors is needed for an accurate
prediction of CVD events. The task force further noted that
despite major advances in the treatment of coronary heart
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disease patients, a large number of victims of the disease who
are apparently healthy die suddenly without prior symptoms.8

Clearly the available screening and diagnostic methods are
insufficient to identify the victims before the event occurs;
therefore, short-term risk prediction is much needed. To reach
the goal, a stepwise multi-phase approach is warranted that
includes maximizing the long-term predictive value of tradi-
tional risk factors using Machine Learning (ML), gathering
unique data on asymptomatic subjects who, shortly after an
exam with blood testing, experience an ASCVD event, and
applying ML to all available clinical data, including genomic.
proteomic, and others to detect the vulnerable patient. In this
paper, we report on our initial effort at advancing the field by
using the same risk factors used by existing risk calculators
but using ML as a new tool instead of the traditional statistical
tools used for the existing risk calculator.2 Rapid growth in
information technology and computing power in recent years
has spurred the emergence of ML and its applications in our
day to day life from automated personal assistants to self-
driving cars. The medical community has begun taking
advantage of these new possibilities to improve medical care.

ML is generally categorized into 2 types, supervised and
unsupervised.9 Here, we report the use of a supervised ML
model developed for predicting CVD risk and guiding the
decision of whom should be recommended CVD preventive
statin therapy. Unlike traditional statistical prediction meth-
ods, which operate with certain assumptions of linearity and
force the predictive models to behave accordingly, the ML
algorithm we used (Support Vector Machine—SVM) does not
follow such assumptions and, instead, relies on learning the

intrinsic properties or patterns of a given data set. The use of
ML in medicine is clearly lagging other fields and remains
experimental. Although several ML-based predictive models
related to medical and cardiovascular fields have been
published,10–17 we are not aware of any approved by the
FDA (Food and Drug Administration) for CVD prevention.

Our study serves as a step towards addressing this unmet
need. Using ML and the same risk factors used by ACC/AHA
Risk Calculator, we aimed to improve CVD risk stratification.
We tested this approach in MESA (the Multi-Ethnic Study of
Atherosclerosis)18 and also used FLEMENGHO (the Flemish
Study on Environment, Genes and Health Outcomes)19 for
external validation of our findings.

Methods
The data, analytic methods, and study materials will not be
made available to other researchers for purposes of repro-
ducing the results or replicating the procedure.

Study Participants
Initiated in July 2000 to investigate the prevalence, correla-
tion, and progression of subclinical CVD in individuals who did
not exhibit known cardiovascular issues, MESA is a US
community-based prospective cohort study of 6814 white,
black, Hispanic, or Chinese American men and women aged
45 to 84 years free of clinically apparent CVD at baseline
(2000–2002). Study details have been previously published.18

All participants gave their written informed consent and the
institutional review boards at all participating centers
approved the study. The MESA study group followed the
cohort yearly for up to 13 years from baseline (median,
11.1 years) and monitored for incidence of cardiovascular
events. Thus, the MESA data set used in this study includes
baseline characteristics data and which participants have
experienced CVD events during the follow-up period.

For this study, we excluded 69 (1.0%) subjects with
missing risk factor data. Next, we excluded 286 (4.2%) who
were >79 years at baseline; this step was performed because
the ACC/AHA Risk Calculator was designed for those
between 40 and 79 years of age. Thus, our study population
was comprised of 6459 participants.

ACC/AHA Pooled Cohort Equations Risk
Calculator
The 2013 ACC/AHA Pooled Cohort Equations calculator was
designed to estimate 10-year risk of atherosclerotic cardio-
vascular disease, defined as heart attack, CHD death, or
stroke. ACC/AHA risk estimates were computed using the
subjects’ baseline characteristics and available published

Clinical Perspective

What Is New?

• The 2013 American College of Cardiology/American Heart
Association (ACC/AHA) Pooled Cohort Equations risk
calculator has been shown to be inaccurate in certain
populations.

• Using the same risk variables, we developed a Machine
Learning-based risk calculator in the MESA (Multi-Ethnic
Study of Atherosclerosis) cohort and validated in the
FLEMENGHO study (Flemish Study on Environment, Genes
and Health Outcomes).

What Are the Clinical Implications?

• The Machine Learning Risk Calculator outperformed the
ACC/AHA Risk Calculator by recommending less drug
therapy, yet missing fewer cardiovascular disease events.

• These findings demonstrate the potential of Machine
Learning to improve cardiovascular risk prediction and
assist medical decision-making.
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equations.2 We grouped the scores into 2 preselected 10-year
risk prediction categories: (1) low risk (<7.5%) and (2) high
risk (≥7.5%) categories, for determining which subjects
the risk calculator would have recommended statin treatment,
based on the 2013 ACC/AHA guideline on the treatment of

blood cholesterol to reduce atherosclerotic cardiovascular
risk.20 Because the follow-up for the MESA data is 13 years,
we linearly transformed the 10-year risk of the base models
into a 13-year risk. Thus, the risk threshold for statin eligibility
becomes 9.75% for 13 years.

Figure 1. Overview ofML approach. For eachMLmodel, we divided the study population 50/50 into training and prediction subset cohorts. Next,
we augmented the training subset using NEATER and trained the SVMpredictionmodel. During prediction, each sample in the prediction cohort was
analyzed and classified. Then, the cohorts switched places (ie, prediction becomes training, and vice versa) and the process was repeated. The
overall iterative process was repeated 10 times for each ML model, and the results were averaged. CVD indicates cardiovascular disease;
FLEMENGHO study, the Flemish Study of Environment, Genes and Health Outcomes; HDL, high-density lipoprotein; MESA, theMulti-Ethnic Study of
Atherosclerosis; NEATER, a method for the filtering of oversampled data using non-cooperative game theory; SVM, Support Vector Machine.
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Machine Learning Risk Calculator
An overview of the ML approach is shown in Figure 1. The
algorithm begins with the initial cohort, which is then split
into training and prediction sets. Because of the imbal-
anced nature of data (many more samples without an
event than samples with an event), during training, data
are augmented using NEATER (a method for the filtering
of oversampled data using non-cooperative game theory),21

and then an SVM22 classifier is trained. When a new unseen
sample appears during prediction, the ML model determines
in which category it belongs.

We built 8 ML-based models for “Hard CVD” events and 8
models for “All CVD” events. For each type of events we built
2 models per sex (ie, 1 for males and 1 for females) and for
each one of them we built 4 models per ethnicity (eg, white,
Chinese, black, and Hispanic). Thus, there were 16 models in
total.

The SVM method is one of the most powerful learning
algorithms for binary classification problems such as the
problem stated in this article.23–27 SVM is given a training set
of examples (or inputs), belonging to 2 classes (eg, positive
and negative, event and no event), with associated labels (or
output values) and it finds the optimal maximum-margin
dividing the 2 classes. This dividing interface is called a
hyperplane and achieves maximum discrimination.

During training, theMLmodel was providedwith the baseline
values of the same 9 risk factors (“predictor variables,” in ML
parlance) used by the ACC/AHA Risk Calculator, namely the
following: age, sex, ethnicity, total cholesterol, high-density
lipoprotein cholesterol, systolic blood pressure, treatment for
hypertension, history of diabetes mellitus, and smoking status.
“Hard CVD” events included myocardial infarction, fatal CHD,
stroke, and stroke death. “All CVD” events included the above
list, plus congestive heart failure, transient ischemic attack,
peripheral vascular disease, resuscitated cardiac arrest, per-
cutaneous transluminal coronary angioplasties, probable ang-
ina, other revascularization, other CVD death, other
atherosclerotic death, and cardiac bypass graft surgery.

The investigation of the performance was evaluated in real
data samples that the model had not seen before. Moreover,
2-fold cross validation was used to validate the method and
the results were averaged for all possible configurations. By
using 2-fold cross validation, we ensure that we obtain an
unbiased estimation of the model performance, while no
significant loss of modeling or prediction capability may be
apparent because of the imbalanced nature of the data. More
details on the 2-fold cross validation that was performed can
be found in the following sections.

For visualization purposes, we projected the high-dimen-
sional feature space into a 3D feature space using the

Principal Component Analysis. Because of the high dimen-
sionality of the input training data, the decision hyperplane
between the class samples with an event and the class
samples without an event is transformed into a hyper-surface.
An example of the 3D hyper-surface for the MESA male group
for classifying “Hard CVD” and “All CVD” events can be seen
in Figure S1.

Imbalanced Data
We cast the problem of event prediction as a binary
classification problem. We denote the positive class “+1”
(ie, subjects with an event) as the minority class (ie, category
of samples with events), and the negative class “�1” (ie,
subjects without an event) as the majority class (ie, category
of samples without events). The MESA data are severely
imbalanced in terms of outcomes, that is, the size of the
minority class is much smaller than the size of the majority
class, and, as a result, the decision boundary for ML methods
would be severely biased and could result in poor perfor-
mance. To cope with this skewed class distribution issue, we
selected the NEATER algorithm,21 a data augmentation
algorithm that is based on filtering oversampled data using
cooperative game theory. We elected to use this algorithm
based on its ability to effectively increase the performance of
the classifier as well as its unique tendency to avoid
overfitting, which can be inevitable when using other
oversampling techniques. NEATER is able to handle data sets
of an imbalanced nature and generate new data. A detailed
description of how NEATER works can be found in Data S1.

The main advantage of NEATER is that it makes no prior
assumptions about the data, while it reaches high accuracy
for both the minority and the majority classes. It is also
important to note that NEATER is used for data augmentation
only for training purposes and never during prediction.

Two-Fold Cross Validation
To ensure and increase the model’s robustness and ability to
generalize under unknown samples, we employed 2-fold cross
validation to randomly split the original data set into 2 equally
sized halves, a training set to train the model, and a test set to
evaluate it. This type of cross validation has been widely used
in the machine learning literature for predicting high-risk
individuals (more details about the 2-fold cross validation can
be found in Data S2).28–31

External Validation
To test the generalizability of the ML models, and also to
check for potential overfitting, we tested the ML risk
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calculator on an external data set drawn from the FLEMEN-
GHO study.

FLEMENGHO recruited 2940 white participants between
ages 20 and 90 years from August 1985 to December 2005
who were free of clinical CVD at baseline. FLEMENGHO
studies a random population sample stratified by sex and age
from a geographically defined area in Northern Belgium. All
participants provided their written informed consent and local
institutional review board approved the study protocol.
FLEMENGHO study details have been previously published.19

For the FLEMENGHO study, we excluded 104 (3.5%)
subjects with missing risk factor data. Then, 1488 (50.6%)
subjects who were <45 years and >79 years at baseline were
excluded; this step was performed because the ML Risk
Calculator was trained in MESA cohort for those between 45
and 79 years of age. The final study population for the
external validation was comprised of 1348 subjects. In
FLEMENGHO, 621 (21.2%) subjects were followed-up for
>13 years. Of them 180 (6.1%) subjects had a CVD event. We
treated these samples as “no events” and included them in
the study population as such; the reason for this step is that
the ML Risk Calculator was trained on a 13-year follow up
period while FLEMENGHO’s follow-up was >13 years. Thus, to
have a fair comparison, this step was necessary for our
analysis.

Software
The code was implemented in MATLAB R2017a and C++. For
the implementation of SVM, the LIBSVM library32 was used
(details can be found in Data S3).

Statistical Analysis
We performed an analysis to determine the sensitivity,
specificity, accuracy, and C-statistic of the ACC/AHA Risk
Calculator based on the prediction equations and the 7.5% 10-
year risk threshold described previously. Next, we analyzed
the performance of the ML Risk Calculator, compared its
performance metrics to those of the ACC/AHA Risk Calcu-
lator, and calculated categorical net reclassification improve-
ment (NRI) values for paired models. A paired t test was used
to compare the population means and compute the P values.
All statistical tests were 2- tailed, and P<0.05 was considered
significant.

Results

Descriptive Statistics
Overall, 480 (7.4%) “Hard CVD” and 976 (15.1%) “All CVD”
events occurred in the MESA study population (N=6459)

during the 13-year follow up period. Baseline character-
istics of the study population and subgroups of interest
are reported in Table 1. “Hard CVD” events included 221
myocardial infarction, 71 CHD deaths, 178 strokes, and
10 stroke deaths. “All CVD” events included 221
myocardial infarction, 71 CHD deaths, 178 strokes, 10
stroke deaths, 176 angina-driven revascularizations, 11
resuscitated cardiac arrests, 8 other atherosclerotic
deaths, 38 other CVD deaths, 111 congestive heart
failures (CHF), 53 peripheral vascular diseases (PVD), 22
percutaneous transluminal coronary angioplasties, 9 coro-
nary bypass grafts , 61 transient ischemic attacks, and 7
other revascularizations.

Risk Calculator Performance Comparison
Table 2 presents the sensitivity, specificity, and accuracy of the
risk calculators for the prediction of “Hard CVD” and “All CVD”
events, respectively. The ACC/AHA Risk Calculator achieved
0.76 sensitivity, 0.56 specificity, and 0.58 accuracy for
predicting “Hard CVD” events and 0.75 sensitivity, 0.59
specificity, and 0.62 accuracy for predicting “All CVD” events.
In comparison, the ML Risk Calculator for the prediction of
“Hard CVD” events had higher sensitivity (0.86), specificity
(0.95), and accuracy (0.94). For the prediction of “All CVD”
events, ML Risk Calculator sensitivity was increased to 0.96 but
with a slight decrease in specificity (0.87) and accuracy (0.89).

The number of false negatives (ie, subjects who are
classified by the Risk Calculator as “low risk” but do
experience a CVD event) and false positives (ie, subjects
who are classified as “high risk” but do not experience a CVD
event), and the categorical net reclassification improvement
(NRI) between each base ACC/AHA model and its corre-
sponding ML model using the same risk factors are also
shown in Table 2. For the ML Risk Calculator, an NRI
improvement of 0.49 for “Hard CVD” events and 0.50 for “All
CVD” events, when compared with the ACC/AHA Risk
Calculator, for all subjects, was achieved.

To investigate the potential impact of removing the statin
users, we performed a sensitivity analysis after excluding
statin users from the data set and found similar results for ML
Risk Calculator performance. For example, for “Hard CVD”
events, the ML Risk Calculator had AUC of 0.92 and NRI of
0.46 when statin users were excluded, as compared with AUC
of 0.92 and NRI of 0.49 when statin users were included. The
baseline characteristics of the study population and sub-
groups of interest, when statin users were excluded from the
analysis, and the performance metrics of the risk calculators
are reported in Tables S1 and S2, respectively.

Figure 2 depicts the receiver operating characteristic curves
of the different models. It can be observed that all ML models
attain high discrimination ability between events and no events
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with respect to the base models. In particular, the ML Risk
Calculator, for “Hard CVD” events, achieved an average AUC of
0.92 and for “All CVD” events, the AUCwas 0.94. The ACC/AHA
Risk Calculator for “HardCVD” events achieved an average AUC
of 0.71, and for “All CVD” events, the AUC was 0.72. The
corresponding receiver operating characteristic curves, when
statin users were excluded from the analysis, are depicted in
Figure S2.

Statin Eligibility and Missed Treatment
Opportunities
Figure 3 shows the performance characteristics of the risk
calculators for addressing 2 clinically relevant issues, ie,
determining statin eligibility and avoiding missed treatment

opportunities. Almost half of the study population (46.0%)
were determined by the ACC/AHA calculator to be statin
eligible. In contrast, the ML calculator deemed only 11.4% to
be at high risk and statin eligible. For “All CVD” events, the ML
calculator determined 25.1% to be statin eligible.

Regarding missed treatment opportunities (false nega-
tives), the ACC/AHA calculator also performed poorly, as
23.8% of “Hard CVD” events occurred in individuals that ACC/
AHA calculator would not have recommended statin. The ML
Risk Calculator fared better, with only 14.4% of “Hard CVD”
events and only 4.4% of “All CVD” events occurring in
individuals; the ML calculator would not have recommended
statin. The breakdown of the missed “Hard CVD” and “All
CVD” events comparing the ML Risk calculator with the ACC/
AHA Risk Calculator is shown in Figure S3.

Table 1. Baseline Characteristics of Study Population and Subgroups of Interest

All (N=6459)
Hard CVD
(n=480)

All CVD
(n=976)

ACC/AHA <9.75%
13-y risk (n=3487)

ACC/AHA ≥9.75%
13-y risk (n=2972)

ML: Low Risk
(13-y) (n=5724)

ML: High Risk
(13-y) (n=735)

Age, y 61.3�9.6 65.8�8.9 65.7�8.7 55.3�6.9 68.4�7.1 60.6�9.6 66.4�8.2

Male, n% 3060 (47.4%) 282 (58.7%) 590 (60.4%) 1254 (36.0%) 1806 (60.8%) 2601 (45.4%) 459 (62.4%)

Female, n% 3399 (52.6%) 198 (41.3%) 386 (39.6%) 2233 (64.0%) 1166 (39.2%) 3123 (54.6%) 276 (37.6%)

Ethnicity, n%

White 2484 (38.5%) 187 (39.0%) 413 (42.3%) 1439 (41.2%) 1045 (35.2%) 2197 (38.4%) 287 (39.0%)

Asian 767 (11.9%) 35 (7.3%) 67 (6.9%) 446 (12.8%) 321 (10.8%) 697 (12.2%) 70 (9.5%)

Black 1780 (27.5%) 138 (28.7%) 282 (28.9%) 794 (22.8%) 986 (33.2%) 1573 (27.5%) 207 (28.2%)

Hispanic 1428 (22.1%) 120 (25.0%) 214 (21.9%) 808 (23.2%) 620 (20.8%) 1257 (21.9%) 171 (23.3%)

Total cholesterol, mg/dL 194.4�35.8 194.6�34.2 193.2�37.3 194.9�34.9 193.8�36.8 194.7�36.6 192.3�30.9

High-density lipoprotein
cholesterol, mg/dL

50.9�14.8 47.8�13.9 48.1�13.6 52.6�15.0 48.8�14.3 51.5�15.0 46.5�12.3

Systolic blood pressure,
mm Hg

125.9�21.1 136.3�22.2 134.5�21.7 116.9�16.4 136.6�21.1 124.7�20.9 135.8�20.0

Hypertension, n% 2351 (36.4%) 243 (50.6%) 510 (52.2%) 735 (21.1%) 1616 (54.4%) 1974 (34.5%) 377 (51.3%)

Diabetes mellitus, n% 729 (11.3%) 107 (22.3%) 217 (22.2%) 127 (3.6%) 602 (20.3%) 653 (11.4%) 76 (10.3%)

Smoking, n%

Current smoking 869 (13.5%) 92 (19.2%) 169 (17.3%) 387 (11.1%) 482 (16.2%) 762 (13.3%) 107 (14.6%)

Prior smoking 2365 (36.6%) 180 (37.5%) 419 (42.9%) 1192 (34.2%) 1173 (39.5%) 2073 (36.2%) 292 (39.7%)

Never 3225 (49.9%) 208 (43.3%) 388 (39.8%) 1908 (54.7%) 1317 (44.3%) 2889 (50.5%) 336 (45.7%)

Family history heart
attack, n%*

2593 (40.1%) 239 (49.8%) 482 (49.4%) 1364 (39.1%) 1229 (41.3%) 2231 (39.0%) 362 (49.2%)

Coronary artery
calcification, Agatston*

138.8�408.6 316.1�577.2 389.9�759.0 41.0�160.8 253.4�555.2 121.0�380.1 274.0�563.7

hsCRP, mg/L*,† 3.8�5.8
1.92 (1.86–
1.99)

4.3�5.9
2.23 (1.98–
2.47)

4.5�6.8
2.33 (2.16–
2.50)

3.6�5.2
1.80 (1.71–1.90)

4.0�6.4
2.07 (1.98–2.16)

3.8�5.8
1.92 (1.85–
1.99)

3.7�5.6
1.97 (1.78–
2.16)

Continuous variables are expressed as mean�SD. Categorical variables are presented as absolute numbers and frequencies.
*The American College of Cardiology/American Heart Association (ACC/AHA) Risk Calculator does not use these variables; therefore, they were not included in the Machine Learning CVD
predictive models.
†High sensitivity C-reactive protein (hsCRP) is also expressed as a geometric mean with 90% confidence interval since this variable is not normally distributed.
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External Validation
The baseline characteristics of the FLEMENGHO external
validation study population are reported in Table S3.

Table 3 provides the sensitivity, specificity, and accu-
racy of the risk calculators using the MESA data set for
training purposes only and the FLEMENGHO as an
external validation set. The ML Risk calculator tested on

“White Race” FLEMENGHO data set achieved a sensitivity
of 0.74, specificity of 0.87, and accuracy of 0.84, much
higher than ACC/AHA Risk Calculator (sensitivity 0.63,
specificity 0.69, and accuracy 0.68). Also, for comparison
purposes, we used the “White Race” sub-cohort of MESA
for both training and testing. In this setup, the ML Risk
Calculator tested on the “White Race” MESA cohort had a
sensitivity of 0.84, specificity of 0.96, and accuracy of

Table 2. Risk Calculator Comparison: Sensitivity-Specificity-Other Performance Metrics

Event Model Sn (95% CI) P Value Sp (95% CI) P Value FN FP TP TN Acc (95% CI) P Value
NRI (95%
CI) P Value

Male

Hard CVD ACC/AHA
Risk
Calculator

0.86�0.1
(0.81–
0.90)

– 0.44�0.1
(0.42–
0.46)

– 40 1564 242 1214 0.48�0.1
(0.46–
0.49)

– – –

ML Risk
Calculator

0.90�0.1
(0.86–
0.94)

≤0.001 0.93�0.1
(0.92–
0.94)

≤0.001 27 204 255 2574 0.92�0.1
(0.91–
0.93)

≤0.001 0.53
(0.51–
0.55)

≤0.001

All CVD ACC/AHA
Risk
Calculator

0.84�0.1
(0.81–
0.87)

– 0.47�0.1
(0.45–
0.49)

– 96 1312 494 1158 0.54�0.1
(0.52–
0.56)

– – –

ML Risk
Calculator

0.97�0.1
(0.96–
0.99)

≤0.001 0.82�0.1
(0.80–
0.84)

≤0.001 15 443 575 2027 0.85�0.1
(0.84–
0.86)

≤0.001 0.48
(0.46–
0.50)

≤0.001

Female

Hard CVD ACC/AHA
Risk
Calculator

0.63�0.1
(0.56–
0.69)

– 0.67�0.1
(0.66–
0.69)

– 74 1042 124 2159 0.67�0.1
(0.66–
0.69)

– – –

ML Risk
Calculator

0.79�0.1
(0.72–
0.84)

≤0.001 0.96�0.1
(0.95–
0.97)

≤0.001 42 120 156 3081 0.95�0.1
(0.94–
0.96)

≤0.001 0.45
(0.43–
0.47)

≤0.001

All CVD ACC/AHA
Risk
Calculator

0.62�0.1
(0.57–
0.67)

– 0.69�0.1
(0.68–
0.71)

– 146 926 240 2087 0.68�0.1
(0.67–
0.70)

– – –

ML Risk
Calculator

0.93�0.1
(0.90–
0.95)

≤0.001 0.92�0.1
(0.91–
0.93)

≤0.001 28 247 358 2766 0.92�0.1
(0.91–
0.93)

≤0.001 0.54
(0.52–
0.55)

≤0.001

All

Hard CVD ACC/AHA
Risk
Calculator

0.76�0.1
(0.72–
0.80)

– 0.56�0.1
(0.55–
0.58)

– 114 2606 366 3373 0.58�0.1
(0.57–
0.59)

– – –

ML Risk
Calculator

0.86�0.1
(0.82–
0.89)

≤0.001 0.95�0.1
(0.94–
0.96)

≤0.001 69 324 411 5655 0.94�0.1
(0.93–
0.95)

≤0.001 0.49
(0.48–
0.50)

≤0.001

All CVD ACC/AHA
Risk
Calculator

0.75�0.1
(0.72–
0.78)

– 0.59�0.1
(0.56–
0.61)

– 242 2238 734 3245 0.62�0.1
(0.60–
0.63)

– – –

ML Risk
Calculator

0.96�0.1
(0.94–
0.97)

≤0.001 0.87�0.1
(0.86–
0.88)

≤0.001 43 690 933 4793 0.89�0.1
(0.88–
0.89)

≤0.001 0.50
(0.48–
0.51)

≤0.001

ACC/AHA indicates American College of Cardiology/American Heart Association; CI, confidence interval; CVD, cardiovascular disease; FN, false negatives; FP, false positives; ML, Machine
Learning; NRI, net reclassification improvement; Sn, sensitivity; Sp, specificity; TN, true negatives; TP, true positives.
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0.95, while the ACC/AHA Risk Calculator achieved 0.73
sensitivity, 0.59 specificity, and 0.60 accuracy. The NRI
improvement of ML Risk Calculator tested on FLEMEN-
GHO data set over the ACC/AHA Risk Calculator was
0.29 and for the ML Risk Calculator tested on the “White
Race” MESA cohort the NRI was 0.48, respectively. Also,
Tables S4 and S5 show the performance metrics of the
ML Risk Calculator trained and tested on FLEMENGHO
cohort and trained on “White Race” FLEMENGHO cohort
and tested on “White Race” MESA Cohort, respectively.

Figure S4 illustrates the discrimination properties of the
ML Risk Calculator compared with the ACC/AHA Risk
Calculator for the “White Race” MESA and the FLEMENGHO
cohorts. The ML Risk Calculator tested on FLEMENGHO data
set model achieved an AUC of 0.81 and the AUC of the ACC/
AHA Risk Calculator was 0.70. For the testing on the “White
Race” MESA cohort, the ML Risk Calculator trained on the
“White Race” MESA cohort achieved an average AUC of 0.91
and the ACC/AHA Risk Calculator achieved an AUC of 0.71,
indicating that the ML models can more accurately classify
those with and without event.

Discussion
In this report, we present a new ML-based risk calculator
which uses the same 9 traditional risk factors (ie, age, sex,
ethnicity, total cholesterol, high-density lipoprotein choles-
terol, systolic blood pressure, treatment for hypertension,
diabetes mellitus, and smoking) used by the ACC/AHA Risk
Calculator. Despite using identical input, our ML Risk
Calculator attained a significantly higher accuracy than the
ACC/AHA Risk Calculator. It detected 13% more high-risk
individuals and recommended 25% less unnecessary statin
therapy in low-risk individuals. Unlike the ACC/AHA Risk
Calculator, which is only designed for predicting “Hard CVD”
events, our ML Risk Calculator performed well for predicting
both Hard and All CVD events. Furthermore, the ML Risk
Calculator performed well both for males and females, with
NRI improvement values of 0.53 and 0.48 for males, and 0.45
and 0.54 for females, for “Hard CVD” and “All CVD” events,
respectively.

To prevent methodological biases and overfitting, we
applied a 2-fold internal cross validation and subsequently
tested the model an independent external data set,
FLEMENGHO. Moreover, to address the inherent problem of
class imbalance, which is a common problem in many cohort-
based studies, we used the NEATER algorithm. Detailed
technical analyses of our validation methodologies and the
treatment of class imbalance problem can be found in Data
S1. Additionally, characteristics of the synthetic data gener-
ated by NEATER for the “Male White Race” MESA subgroup
can be seen in Table S6.

We trained our ML model with and without statin users.
The results of the sensitivity analysis with and without statin
users were not significantly different. Refer to the Table S1 for
details.

We attribute the superior performance of our ML model to
its flexibility and non-linear function. ML maps the data into a
multidimensional space where various separating planes are
evaluated and ultimately a “hyperplane” is found. Additionally,

Figure 2. Receiver operating characteristic (ROC) curves for
prediction of (A) “Hard CVD” events and (B) “All CVD” events
comparing the ML Risk Calculator (blue) with the American
College of Cardiology/American Heart Association (ACC/AHA)
Risk Calculator (red). AUC indicates area under the curve; CVD,
cardiovascular disease; ML, Machine Learning.
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Figure 3. Risk calculator comparison: statin eligibility and missed treatment opportunities. Pie graphs illustrate the performance
comparison between ML Risk Calculator and ACC/AHA Risk Calculator for predicting “Hard CVD” events (left) and “All CVD” events
(right). ACC/AHA indicates American College of Cardiology/American Heart Association; CBG, coronary bypass grafts; CHD,
coronary heart disease; CHF, congestive heart failures; CVD, cardiovascular disease; MI, myocardial infarction; PTCA, percutaneous
transluminal coronary angioplasties; PVD, peripheral vascular diseases; TIA, transient ischemic attacks.
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the ability to train the ML model with artificially created
events using data augmentation techniques such as NEATER
can further empower ML over the traditional statistical
methods. Our 2-fold cross validation technique assured the
independence of testing samples from the training samples.
Overall, ML-based prediction models are more versatile and
capable than statistical models. As our ML model is exposed
to more longitudinal data, including those from which ACC/
AHA Risk Calculator was derived, we anticipate a more robust
risk calculator. We also plan to introduce new predictor
variables such as coronary calcium score and other biomark-
ers to our model that are expected to further improve its
predictive power. Although 10-year risk is the status quo for
risk prediction, the ability to predict events in a shorter term
(eg, 1-year) is highly desired. Such a short-term risk predictor
can open doors for new prophylactic therapies. This develop-
ment is the focus of the SHAPE initiative titled “Machine
Learning Vulnerable Patient: Developing an Artificial Intelli-
gence-based Forecast System for Prediction of Heart Attacks
within 12 Months”.

Study Strengths and Limitations
A major strength of our study is that we created our ML model
based on a robust 13-year follow up data set from MESA,
which ranks as the best multiethnic study of atherosclerosis
in the world. Unlike data in national registries, population
surveys, or other healthcare management databases, MESA
meets the highest standards of research quality data, which is
key for developing reliable machine learning models. Another
strength of our study is that we used human expertise with
advanced knowledge of the field to supervise and fine-tune
the machine learning models. Yet another strength of our
study is the use of oversampling techniques to maximize ML
training. Finally, we validated our ML model both internally (2-
fold cross validation) and externally (testing on FLEMENGHO
cohort).

As for limitations, although the MESA cohort is comprised
of a large population of different ethnicities, it suffers from a
low event rate in subgroups, which in turn limits the
predictive power and generalizability of our ML Risk Calcu-
lator. Because of such low number of events, our ML models
may not be reliable in other populations or other countries.
Although the external validation results were promising,
FLEMENGHO is not a multiethnic cohort, therefore our ML
model needs to be validated in other multiethnic data sets.
Without validating our model across a large number of US and
international cohorts we are unable to claim an equal
performance as we have seen in MESA and FLEMENGHO.
Another limitation is that MESA’s age range is 45 to 84 years,
which limits the applicability of our ML Risk Calculator for
prediction of events in individuals who fall outside this

age range. Moreover, the impact of other risk factors or
biomarkers in the prediction of the cardiovascular events was
not considered in this study. Furthermore, we did not refit the
ACC/AHA Risk Calculator to the MESA data set only, which
could likely have increased its accuracy in MESA. We decided
not to refit because we aimed to compare the ML model with
the exact same model as recommended by ACC/AHA Pooled
Cohort Equation.

Finally, we would like to reiterate the major limitation of
our ML method is that it was created and validated based
on 2 data sets only (MESA and FLEMENGHO), while the
ACC/AHA Risk Calculator was derived from several data
sets. To this end, further studies are underway to validate
these findings in other large multiethnic and multinational
cohorts.

Summary
In conclusion, we developed a new ML Risk Calculator based
on MESA, a multiethnic, community-based cohort of men and
women studied for incident atherosclerotic cardiovascular
disease. We used the same variables used by the ACC/AHA
Risk Calculator yet achieved a much higher predictive
accuracy. Further studies are underway to validate this new
ML Risk Calculator in other cohorts. As we introduce more
data to our ML Risk Calculator, particularly to cases in which
events occurred weeks or months following data collection
instead of years or decades, the “holy grail” of short-term CVD
risk prediction may be within reach.
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DATA S1: IMBALANCED DATA: NEATER 

The MESA data are severely imbalanced in terms of outcomes, that is, the size of the class with 

events (i.e., minority class) is much smaller than the size of the class without events (i.e., 

majority class), and thus the decision boundary for ML methods would be severely biased and 

could result in poor performance. To cope with this skewed class distribution issue, we selected 

the filtering of over-sampled data using non-cooperative game theory (NEATER) algorithm2, 

which is an oversampling data augmentation algorithm that employs cooperative game theory to 

generate artificial data of the minority class. Non-cooperative game theory3 addresses the 

interaction between individual rational decision makers, where all the data are players and the 

goal is to uniformly and consistently label all of the synthetic data created by any oversampling 

technique. Unlike other over-sampling approaches, NEATER does not automatically consider 

synthetic data as part of the minority class. Instead, it keeps synthetic samples unlabeled, at first. 

These samples then participate in a non-cooperative game to determine their most likely class 

membership, minority or majority. All the synthetic data that end up belonging to the minority 

class are kept, and the rest are eliminated. 

A detailed description of the main steps of the NEATER implementation in this work can be 

summarized as follows. First, an oversampled method is used, such as the Synthetic Minority 

Over-Sampling Technique (SMOTE)4 to generate synthetic data. The use of SMOTE is justified 

by the fact that it creates samples that are closely related to the minority class, which causes the 

classifier to create larger decision regions. Then, both the original and synthetically generated 

data are considered as players, and the possible class memberships are considered strategies 

available to all game players. Note that, only the synthetic data play to determine their class 

membership. There are two types of players: 𝐼𝑐, which denotes players that already belong to a 



class, and 𝐼𝑢, which denotes unlabeled players or synthetic samples. Each  𝐼𝑢 player interacts 

with a number of its neighbors 𝐼𝜙, one neighbor at a time. Also, each player can choose among 

two available strategies 𝑆𝑖 = {𝑚, 𝑀} with a probability of 0.5, where 𝑚 stands for minority and 

𝑀 for majority. A mixed strategy 𝑥𝑖 (i.e., combination of strategies from which one is randomly 

chosen with specified probability) for player 𝑖 is the probability distribution over his set of 

strategies 𝑆𝑖. Then, for each player 𝑖, its 𝑘, where 𝑘 = 5, nearest neighbors are computed and for 

each player interacting with each of its 𝑘 neighbors, the utility functions are computed as 

follows: 

𝑢𝑖(𝑥) = ∑ (𝑥𝑖
𝑇𝐴𝑖𝑗𝑥𝑗) + ∑ ∑ (𝑥𝑖

𝑇𝐴𝑖𝑗𝑒𝑗
𝑑)

𝑗∈𝐼𝜙∩𝐼𝑐|𝑑

2

𝑑=1𝑗∈𝐼𝜙∩𝐼𝑢

 , 

where 𝑑 = 1 is playing the minority class and 𝑑 = 2 is the majority class, 𝑒𝑗
𝑑 ∈ 𝑆𝑖 is an extreme 

mixed strategy with 𝑒𝑗
1 = (1,0) and 𝑒𝑗

2 = (0,1), and 𝐴𝑖𝑗 is the partial payoff matrix between two 

players 𝑖 and 𝑗. The set 𝐼𝑐|𝑑 is the set of players who always play their 𝑑th strategy. After that, the 

average payoff in the whole population is computed: 

𝑢(𝑥) = 𝑥𝑖
𝑇𝐴𝑖𝑗𝑥𝑗  . 

Then, iteratively, discrete-time replicator dynamic is applied to study the evolution of the 

minority strategy probability: 

𝑥𝑖
𝑚(𝑡 + 1) =

𝛼 + 𝑢𝑖(𝑒𝑖
𝑚)

𝛼 + 𝑢𝑖(𝑥(𝑡))
𝑥𝑖

𝑚, 



if a maximum number of iterations is reached, the process stops, otherwise, 𝑡 is increased by one 

and the average payoff for the next player is computed. Finally, for each player in 𝐼𝑢, the class 

membership with the highest probability is assigned.  

An example of the number of the synthetic data of the minority class generated by NEATER and 

their characteristics for the “Male White Race” MESA subgroup can be seen in TABLE S6. 



DATA S2: TWO-FOLD CROSS VALIDATION 

To ensure and increase the model's robustness and ability to generalize under unknown samples, 

we employed two-fold cross validation to randomly split the original dataset into two equally 

sized halves, a training set to train the model, and a test set to evaluate it. This type of cross 

validation has been widely used in the machine learning literature for predicting high-risk 

individuals.5-8 To ensure that the random split of the dataset will always result in having positive 

and negative examples in both training and testing sets, we employed the following procedure. 

First, we randomly shuffle the sub-cohort of samples with CVD events into two parts (50% of 

the positive samples for training and the remaining 50% for testing). Then, the remaining sub-

cohort of negative samples is also randomly split into two halves, and the corresponding training 

and testing subsets are fused so that each of them will contain positive and negative examples. 

The training and testing sets are independent and do not overlap with each other. At this point, 

we train our model on subset A and evaluate on subset B, and next we reverse the order (i.e., 

train on subset B and evaluate on subset A). This process is repeated 10 times, so that statistical 

reliability of the evaluation process may be ensured9-11, with each of the different subsets used 

exactly once as the validation data, and the results are averaged over all the examined 

configurations. Note that at each iteration the training and evaluation processes start from scratch 

so that there is no memory of any the previous learned model, and thus biased results are 

avoided. One of the main reasons for using two-fold cross validation is that the MESA data are 

extremely imbalanced and there is not enough data of the positive class; furthermore, by 

repeating the random split multiple times, we are able to train on more positive examples. A fair 

way to evaluate the model is to split the dataset into two halves and train on as many positive 

examples as possible, since it is a powerful general technique, when the data are sparse. 



DATA S3: SUPPORT VECTOR MACHINE 

Support Vector Machine (SVM)1 is a discriminative classifier, which is designed for supervised 

learning. The learning model is given a training set of examples (or inputs), belonging to two 

classes, with associated class labels (or output values). The examples are in form of attribute 

vectors and the SVM finds the optimal maximum-margin hyper-plane, which separates the input 

data. Although there exist multiple hyper-planes that offer a solution to the problem, a hyper-

plane may be a bad solution if it lies too close to the points, as it is noise-sensitive and may not 

generalize well. Thus, SVMs aim at finding the hyper-plane that gives the largest minimum 

distance to the training examples.  In other words, given a set of 𝑁 training examples that 

consists of pairs of feature vectors 𝑥𝑖  with 𝑖 = 1, … , 𝑁, that denote the pattern to be classified, 

along with their corresponding class labels 𝑦𝑖, where 𝑥 ∈ ℝ𝑑, with 𝑑 being the number of 

features for each sample (i.e., age, sex, ethnicity, total cholesterol, HDL cholesterol, systolic 

blood pressure, hypertension, diabetes, and smoking status) and 𝑦 ∈ {−1, +1}, where label “-1” 

corresponds to subjects without an event and label “+1” corresponds to subjects with an event. 

The problem is defined as constructing the decision function that correctly classifies an input 

pattern that is not the training set. The SVM determines the decision hyper-plane between the 

two classes, the positive class 𝑦1 (i.e., subjects with an event) and the negative class 𝑦2 (i.e., 

subjects without an event), which is obtained by the solution of the following optimization 

problem: 

minimize
𝑤,𝑏,𝜉

{
1

2
||𝑤||

2
+ 𝐶 ∑ 𝜉𝑖

𝑁

𝑖=1

}  ,  

subject to: 𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1, … , 𝑁 

where 𝑤 is a is a normal vector perpendicular to the hyper-plane, ||𝑤||
2

 indicates the size of the 



margin, 𝐶 is a positive constant that reflects the influence of margin errors, 𝑏 determines the 

offset of the hyper-plane from the origin along the normal vector 𝑤, and 𝜉𝑖 are the slack 

variables, which measure the degree of misclassification of the datum 𝑥𝑖. In our implementation, 

the kernel “trick” is used with a function 𝜙(𝑥𝑖) that maps the data into a higher dimensional 

space, where various separating planes would be evaluated and ultimately a hyper-plane can be 

found. 

The minimization process is a problem of Lagrangian optimization that can be solved by 

transforming to the dual form and using Lagrange multipliers to obtain the weight vector 𝑤 and 

the bias 𝑏 of the optimal hyper-plane as follows: 

minimize
𝑎

 𝑅(𝑎) =  
1

2
∑ 𝑎𝑖𝑎𝑗𝑦𝑖𝑦𝑗𝐾(𝑥𝑖 , 𝑥𝑗) − ∑ 𝑎𝑖

𝑁

𝑖=1

𝑁

𝑖,𝑗=1

, 

subject to: ∑ 𝑦𝑖𝑎𝑖 = 0, 0 ≤ 𝑎𝑖 ≤ 𝐶

𝑁

𝑖−1

 

For each testing sample, the kernel matrix 𝐾 between each of the training samples and the 

respective testing sample is computed. Thus, the decision function 𝑓(𝑥) is given by:  

𝑓(𝑥) =  sgn (∑ 𝑦𝑖𝑎𝑖𝐾(𝑥𝑖, 𝑥) + 𝑏

𝑁

𝑖=1

) , 

where the terms 𝑎𝑖, with 𝑖 = 1, … , 𝑁 constitute a dual representation for the weight vector 𝑤 in 

terms of the training set, such as: 

𝑤 = ∑ 𝑎𝑖𝑦𝑖𝑥𝑖 .

𝑁

𝑖=1

 



Moreover, in our experiments, we used as kernel function the radial basis function (RFB) kernel, 

which is defined as: 

𝐾(𝑥𝑖, 𝑥𝑗) = exp (−𝛾 ||𝑥𝑖−𝑥𝑗||
2

) , 𝛾 > 0 

To estimate the value of the training parameters, for each of the 16 ML-based models (i.e., eight 

ML-based models for “Hard CVD” events and eight models for “All CVD” events), we used 

two-fold cross-validation by setting the values of parameter 𝐶 to 2𝑘, with 𝑘 ∈ {−5, … , 15} and 

the values of the kernel coefficient 𝛾 were set to 2𝑘, with 𝑘 ∈ {−15, … , 3}.  

For visualization purposes, we projected the high-dimensional feature space into a 3D feature 

space using the Principal Component Analysis (PCA). Because of the high dimensionality of the 

input training data, the decision hyper-plane between the class samples with an event and the 

class samples without an event is transformed into a hyper-surface. An example of the 3D hyper-

surface for the MESA male group for classifying “Hard CVD” and “All CVD” events can be 

seen in the FIGURE S1. 



TABLE S1. MESA Cohort Baseline Characteristics of Study Population and Subgroups of Interest. Continuous variables are 

expressed as mean ± standard deviation. Categorical variables are presented as absolute numbers and frequencies. *The ACC/AHA 

Risk Calculator does not use these variables; therefore, they were not included in the Machine Learning CVD predictive models. 

†High sensitivity C-reactive protein (hsCRP) is also expressed as a geometric mean with 90% confidence interval since this variable is 

not normally distributed. 
 

Non-Statin Users Statin Users 

All  

(N = 5,415) 

Hard CVD 

(N = 381) 

All CVD 

(N = 775) 

ACC/AHA < 

9.75%  

13yr risk 

(N = 3,092) 

ACC/AHA ≥ 

9.75%  

13yr risk 

(N = 2,323) 

ML: Low 

Risk (13yr) 

(N = 4,844) 

ML: High 

Risk (13yr) 

(N = 571) 

Lipid 

Lowering 

Medication 

(N = 1,044) 

Age, y 60.6 ± 9.7 65.5 ± 9.2 65.5 ± 9.0 54.9 ± 6.9 68.2 ± 7.2 59.9 ± 9.6 66.0 ± 8.6 65.0 ± 8.3 

Male, n% 2,563 (47.3%) 222 (58.3%) 477 (61.6%) 1,119 (36.2%) 1,445 (62.2%) 2,204 (45.5%) 359 (62.9%) 497 (47.6%) 

Female, n% 2,852 (52.7%) 159 (41.7%) 298 (38.5%) 1,973 (63.8%) 878 (37.8%) 2,640 (54.5%) 212 (37.1%) 547 (52.4%) 

Ethnicity, n%  
       

     White 2,028 (37.5%) 145 (38.0%) 322 (41.5%) 1,224 (39.6%) 804 (34.6%) 1,806 (37.3%) 222 (38.9%) 456 (43.7%) 

     Asian 663 (12.2%) 27 (7.1%) 52 (6.7%) 405 (13.1%) 258 (11.1%) 602 (12.4%) 61 (10.7%) 104 (10.0%) 

African 

American 

1,484 (27.4%) 107 (28.1%) 223 (28.8%) 717 (23.2%) 767 (33.0%) 1,334 (27.5%) 150 (26.2%) 296 (28.3%) 

     Hispanic 1,240 (22.9%) 102 (26.8%) 178 (23.0%) 746 (24.1%) 494 (21.3%) 1,102 (22.8%) 138 (24.2%) 188 (18.0%) 

Total Cholesterol, 

mg/dL 

196.6 ± 35.5 197.6 ± 33.8 195.9 ± 36.1 196.2 ± 34.7 197.1 ± 36.5 196.7 ± 35.9 195.8 ± 31.3 182.9 ± 35.3 



HDL Cholesterol, 

mg/dL 

51.0 ± 14.9 47.7 ± 14.0 47.8 ± 13.7 52.7 ± 15.0 48.7 ± 14.5 51.5 ± 15.1 46.8 ± 12.9 50.3 ± 13.9 

Systolic Blood 

Pressure, mm Hg 

125.3 ± 21.0 135.7 ± 22.2 134.5 ± 21.9 116.7 ± 16.5 136.8 ± 21.0 124.2 ± 20.8 134.9 ± 20.3 129.2 ± 21.5 

Hypertension, n% 1,724 (31.8%) 173 (45.4%) 364 (47.0%) 578 (18.7%) 1,146 (49.3%) 1,468 (30.3%) 256 (44.8%) 627 (60.1%) 

Diabetes, n% 505 (9.3%) 69 (8.1%) 147 (19.0%) 99 (3.2%) 406 (17.5%) 451 (9.3%) 54 (9.5%) 224 (21.5%) 

Smoking, n%  
       

Current 

Smoking 

765 (14.1%) 79 (20.7%) 145 (18.7%) 352 (11.4%) 413 (17.8%) 663 (13.7%) 102 (17.9%) 104 (10.0%) 

     Prior Smoking 1,938 (35.8%) 134 (35.2%) 314 (40.5%) 1,036 (33.5%) 902 (38.8%) 1,724 (35.6%) 214 (37.4%) 427 (40.9%) 

     Never 2,712 (50.1%) 168 (44.1%) 316 (40.8%) 1,704 (55.1%) 1,008 (43.4%) 2,457 (50.7%) 255 (44.7%) 513 (49.1%) 

*Family History 

Heart Attack, n%  

2,082 (38.5%) 184 (48.3%) 370 (47.7%) 1,158 (37.5%) 923 (39.7%) 1,830 (37.8%) 252 (44.1%) 511 (48.9%) 

*Coronary Artery 

Calcification, 

Agatston 

118.1 ± 370.0 284.8 ± 

557.3 

355.4 ± 

713.2 

36.3 ± 155.7 227 ±515.9 103.6 ± 344.6 242.0 ± 

524.7 

246.0 

±556.3 

*†hsCRP, mg/L 3.9 ± 6.0 

1.96 (1.88 -  

2.03) 

4.4 ± 6.3 

2.29 (2.01 - 

2.56) 

4.6 ± 7.0 

2.37 (2.17 -

2 .56) 

3.7 ± 5.4 

1.82 (1.72 - 

1.92) 

4.2 ± 6.6 

2.16 (2.05 - 

2.26) 

3.9 ± 5.9 

1.98 (1.90 - 

2.05) 

3.6 ± 6.0 

1.79 (1.57 - 

2.02) 

3.3 ± 5.0 

1.76 (1.61 - 

1.92) 

  



TABLE S2. Risk Calculator Comparison, when Excluding Statin Users from the Analysis: Sensitivity-Specificity-Other Performance 

Metrics. 

Event Model 
Sn 

(95% CI) 
p-value 

Sp 

(95% CI) 
p-value FN FP TP TN 

Acc 

(95% CI) 
p-value 

NRI 

(95% CI) 
p-value 

Male 

Hard CVD 

ACC/AHA Risk 

Calculator  

0.84 ± 0.1 

(0.78 - 0.88) 
-- 

0.46 ± 0.1 

(0.44 - 0.48) 
-- 36 1,259 186 1,082 

0.50 ± 0.1 

(0.48 - 0.51) 
-- -- -- 

ML Risk 

Calculator  

0.89 ± 0.1 

(0.84  0.93) 
≤0.001 

0.93 ± 0.1 

(0.92 - 0.94) 
≤0.001 24 161 198 2,180 

0.93 ± 0.1 

(0.92 - 0.94) 
≤0.001 

0.52 

(0.50 - 0.54) 
≤0.001 

All CVD 

ACC/AHA Risk 

Calculator  

0.77 ± 0.1 

(0.72 - 0.80) 
-- 

0.53 ± 0.1 

(0.50 - 0.55) 
-- 112 988 365 1,098 

0.57 ± 0.1 

(0.55 - 0.59) 
-- -- -- 

ML Risk 

Calculator 

0.97 ± 0.1 

(0.95 - 0.99) 
≤0.001 

0.83 ± 0.1 

(0.81 - 0.84) 
≤0.001 13 358 464 1,728 

0.86 ± 0.1 

(0.84 - 0.87) 
≤0.001 

0.50 

(0.48 - 0.52) 
≤0.001 

Female 

Hard CVD 

ACC/AHA Risk 

Calculator  

0.61 ± 0.1 

(0.53 - 0.67) 
-- 

0.71 ± 0.1 

(0.69 - 0.73) 
-- 62 781 97 1,912 

0.70 ± 0.1 

(0.69 - 0.72) 
-- -- -- 

ML Risk 

Calculator  

0.79 ± 0.1 

(0.72 - 0.85) 
≤0.001 

0.97 ± 0.1 

(0.96 - 0.98) 
≤0.001 33 86 126 2,607 

0.96 ± 0.1 

(0.95 - 0.97) 
≤0.001 

0.44 

(0.42 - 0.46) 
≤0.001 

All CVD 

ACC/AHA Risk 

Calculator  

0.54 ± 0.1 

(0.48 - 0.60) 
-- 

0.76 ± 0.1 

(0.74 - 0.78) 
-- 137 608 161 1,946 

0.74 ± 0.1 

(0.72 - 0.75) 
-- -- -- 

ML Risk 

Calculator 

0.92 ± 0.1 

(0.88 - 0.94) 
≤0.001 

0.92 ± 0.1 

(0.90 - 0.93) 
≤0.001 25 217 273 2,337 

0.92 ± 0.1 

(0.90 - 0.93) 
≤0.001 

0.54 

(0.52 - 0.56) 
≤0.001 

All 

Hard CVD 

ACC/AHA Risk 

Calculator  

0.74 ± 0.1 

(0.70 - 0.79) 
-- 

0.60 ± 0.1 

(0.58 - 0.61) 
-- 98 2,040 283 2,994 

0.60 ± 0.1 

(0.59 - 0.62) 
-- -- -- 

ML Risk 

Calculator  

0.85 ± 0.1 

(0.81 - 0.88) 
≤0.001 

0.95 ± 0.1 

(0.94 - 0.96) 
≤0.001 57 247 324 4,787 

0.94 ± 0.1 

(0.93-  0.95) 
≤0.001 

0.46 

(0.45 - 0.47) 
≤0.001 

All CVD 
ACC/AHA Risk 

Calculator  

0.73 ± 0.1 

(0.70 - 0.76) 
-- 

0.62 ± 0.1 

(0.61 - 0.64) 
-- 204 1,752 571 2,888 

0.64 ± 0.1 

(0.63 - 0.65) 
-- -- -- 



ML Risk 

Calculator 

0.95 ± 0.1 

(0.93 - 0.97) 
≤0.001 

0.88 ± 0.1 

(0.86 - 0.89) 
≤0.001 38 575 737 4,065 

0.89 ± 0.1 

(0.88 - 0.90) 
≤0.001 

0.48 

(0.47 - 0.49) 
≤0.001 



TABLE S3. FLEMENGHO Cohort Baseline Characteristics of Study Population and Subgroups of Interest Including the Statin Users 

in the Study Population. Continuous variables are expressed as mean ± standard deviation. Categorical variables are presented as 

absolute numbers and frequencies. 

 

All  

(N = 1,348) 

Hard CVD 

(N = 265) 

ACC/AHA < 

9.75% 

13yr risk 

(N = 844) 

ACC/AHA ≥ 

9.75% 

13yr risk 

(N = 504) 

ML: Low Risk 

(13yr) 

(N = 1,008) 

ML: High Risk 

(13yr) 

(N = 340) 

Male, n% 672 (49.9%) 155 (58.5%) 324 (38.4%) 348 (69.1%) 446 (44.2%) 226 (66.5%) 

Female, n% 676 (50.1%) 110 (41.5%)  520 (61.6%) 156 (30.9%) 562 (55.8%) 114 (33.5%) 

Age, y 56.9 ± 9.5 61.3 ± 9.4  52.1 ± 6.5  65.0 ± 8.1 55.3 ± 9.1 61.6 ±8.8 

Total Cholesterol, mg/dL 232.4 ± 46.8 238.5 ± 48.4  227.2 ± 41.3  237.6 ± 45.3 230.4 ± 45.9 238.4 ± 49.1 

HDL Cholesterol, mg/dL 54.5 ± 16.9 51.9 ± 17.2 58.0 ± 15.6  48.2 ± 15.0 56.4 ± 17.1 48.9 ± 15.1 

Systolic Blood Pressure, 

mm Hg 
132.2 ± 18.0 137.5 ± 20.2 126.4 ± 14.7 141.8 ± 18.8 129.8 ± 16.4 139.2 ± 20.6 

Hypertension, n% 305 (22.6%) 78 (29.4%) 116 (13.7%) 189 (37.5%) 201 (19.9%) 104 (30.6%) 

Diabetes, n% 56 (4.2%) 16 (6.0%) 16 (1.9%) 40 (7.9%) 38 (3.8%) 18 (5.3%) 

Smoking, n%       

     Current Smoking 357 (26.5%) 90 (34.0%) 168 (19.9%) 189 (37.5%) 268 (26.6%) 89 (26.2%) 

     Prior Smoking 440 (32.6%) 80 (31.2%) 285 (33.8%) 155 (30.8%) 319 (31.6%) 121 (35.6%) 

     Never 551 (40.9%) 95 (35.8%) 391 (46.3%) 160 (31.7%) 421 (41.8%) 130 (38.2%) 



TABLE S4. Risk Calculator Comparison between Models Trained and Tested on FLEMENGHO Cohort: Sensitivity-Specificity-

Other Performance Metrics. 

Model 
Sn 

(95% CI) 
p-value 

Sp 

(95% CI) 
p-value FN FP TP TN 

Acc 

(95% CI) 
p-value 

NRI 

(95% CI) 
p-value 

Male 

ACC/AHA Risk 

Calculator 
0.74 ± 0.1 

(0.66 - 0.80) 
-- 

0.55 ± 0.1 

(0.50 - 0.59) 
-- 41 234 114 283 

0.59 ± 0.1 

(0.55 - 0.63) 
-- -- -- 

ML Risk 

Calculator  
0.85 ± 0.1 

(0.79 - 0.90) 
≤0.001 

0.99 ± 0.1 

(0.98 - 1.00) 
≤0.001 23 5 132 512 

0.96 ± 0.1 

(0.94 - 0.97) 
≤0.001 

0.55 

(0.51 - 0.59) 
≤0.001 

Female 

ACC/AHA Risk 

Calculator 
0.48 ± 0.1 

(0.39 - 0.58) 
-- 

0.82 ± 0.1 

(0.78 - 0.85) 
-- 57 103 53 463 

0.76 ± 0.1 

(0.73 - 0.79) 
-- -- -- 

ML Risk 

Calculator  
0.71 ± 0.1 

(0.61 - 0.79) 
≤0.001 

0.97 ± 0.1 

(0.95 - 0.98) 
≤0.001 32 16 78 550 

0.93 ± 0.1 

(0.91 - 0.95) 
≤0.001 

0.38 

(0.34 - 0.41) 
≤0.001 

All 

ACC/AHA Risk 

Calculator 
0.63 ± 0.1 

(0.57 - 0.69) 
-- 

0.69 ± 0.1 

(0.66 - 0.72) 
-- 98 337 167 746 

0.68 ± 0.1 

(0.65 - 0.70) 
-- -- -- 

ML Risk 

Calculator  
0.79 ± 0.1 

(0.74 - 0.84) 
≤0.001 

0.98 ± 0.1 

(0.97 - 0.99) 
≤0.001 55 21 210 1,062 

0.94 ± 0.1 

(0.93 - 0.95) 
≤0.001 

0.45 

(0.42 - 0.48) 
≤0.001 

 

  



TABLE S5. Risk Calculator Comparison between Models Trained on “White Race” FLEMENGHO Cohort and Tested on “White 

Race” MESA Cohort. 

Model 
Sn 

(95% CI) 
p-value 

Sp 

(95% CI) 
p-value FN FP TP TN 

Acc 

(95% CI) 
p-value 

NRI 

(95% CI) 
p-value 

Male 

ACC/AHA Risk 

Calculator 
0.85 ± 0.1 

(0.77 - 0.91) 
-- 

0.45 ± 0.1 

(0.42 - 0.48) 
-- 16 602 91 488 

0.48 ± 0.1 

(0.46 - 0.51) 
-- -- -- 

ML Risk 

Calculator  
0.86 ± 0.1 

(0.78 - 0.92) 
≤0.001 

0.78 ± 0.1 

(0.76 - 0.81) 
≤0.001 15 236 92 854 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 

0.34 

(0.31 - 0.37) 
≤0.001 

Female 

ACC/AHA Risk 

Calculator 
0.58 ± 0.1 

(0.49 - 0.68) 
-- 

0.72 ± 0.1 

(0.70 - 0.75) 
-- 34 336 46 871 

0.71 ± 0.1 

(0.69 - 0.74) 
-- -- -- 

ML Risk 

Calculator  
0.78 ± 0.1 

(0.67 - 0.86) 
≤0.001 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 18 253 62 954 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 

0.27 

(0.25 - 0.30) 
≤0.001 

All 

ACC/AHA Risk 

Calculator 
0.73 ± 0.1 

(0.66 - 0.79) 
-- 

0.59 ± 0.1 

(0.57 - 0.61) 
-- 50 938 137 1,359 

0.60 ± 0.1 

(0.58 - 0.62) 
-- -- -- 

ML Risk 

Calculator  
0.82 ± 0.1 

(0.76 - 0.87) 
≤0.001 

0.79 ± 0.1 

(0.77 - 0.80) 
≤0.001 33 489 154 1,808 

0.79 ± 0.1 

(0.77 - 0.81) 
≤0.001 

0.29 

(0.27 - 0.31) 
≤0.001 

  



TABLE S6. Characteristics of Synthetic Data Generated by NEATER for “Male White Race” MESA Cohort and Subgroups of 

Interest. Continuous variables are expressed as mean ± standard deviation. Categorical variables are presented as absolute numbers 

and frequencies. 

  Synthetic Data 

Generated by NEATER 

(N = 824) 

Synthetic Data 

Kept by NEATER 

(N = 467) 

p-value*  Synthetic Data 

Discarded  by NEATER 

(N = 357) 

p-value† 

 

Majority 

Data 

(N = 1,090) 

Age, y 65.5 ± 8.1 66.2 ± 7.7 0.015 64.7 ± 8.5 0.019 61.6 ± 9.6 

Total Cholesterol, n% 191.6 ± 30.9 192.6 ± 29.5 0.378 190.5 ± 32.8 0.369 189.4 ± 34.9 

HDL, mg/dL 42.1 ± 10.7 41.3 ± 10.9 0.012 43.1 ± 10.2 0.010 45.4 ± 12.0 

SBP, mg/dL 132.8 ± 19.2 135.7 ± 19.9 0.002 129.9 ± 17.7 0.001 122.8 ± 17.9 

Hypertension, n% 333 (40.4%) 190 (40.7%) 0.486 143 (40.1%) 0.464 347 (31.8%) 

Diabetes, n% 159 (19.3%) 86 (18.4%) 0.923 73 (20.4%) 0.855 62 (5.7%) 

Smoking, n%   0.834  0.738  

Current Smoking 120 (14.6%) 68 (14.6%) 52 (14.6%) 117 (10.7%) 

Prior Smoking 416 (50.5%) 239 (51.1%) 177 (49.6%) 536 (49.2%) 

Never Smoking 288 (34.9%) 160 (34.3%) 128 (35.8%) 437 (40.1%) 



* Interaction between all synthetic data and synthetic data kept by NEATER using multivariate ANOVA 

† Interaction between all synthetic data and synthetic data discarded by NEATER using multivariate ANOVA 



FIGURE S1. SVM separating hyper-surface for male-group in MESA cohort for classifying (a) 

Hard CVD events and (b) All CVD events. 

 

(a) 

 

(b) 



FIGURE S2. ROC curves for prediction of (a) Hard CVD events and (b) All CVD events, 

excluding the statin users, comparing the ML Risk Calculator (blue) with the ACC/AHA Risk 

Calculator (red). AUC: Area under the curve. 

 

 

(a) 



 

(b) 

  



FIGURE S3. Breakdown of the missed (a) Hard CVD events and (b) All CVD events comparing 

the ML Risk Calculator (blue) with the ACC/AHA Risk Calculator (red). MI: myocardial 

infarction; CHD: coronary heart disease; CVD: cardiovascular disease; CHF: congestive heart 

failures; PVD: peripheral vascular diseases; PTCA: percutaneous transluminal coronary 

angioplasties; CBG: coronary bypass grafts; TIA: transient ischemic attacks. 

 

 

(a) 



 

(b)  



FIGURE S4. ROC curves for prediction of Hard CVD events (a) when training and testing on 

“White Race” MESA cohort, and (b) when training on “White Race” MESA cohort and testing 

on FLEMENGHO cohort comparing the ML Risk Calculator (blue) with the ACC/AHA Risk 

Calculator (red). AUC: Area under the curve. 

 

 

(a) 

 

(b)  
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