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Abstract In humans, listening to speech evokes neural responses in the motor cortex. This has

been controversially interpreted as evidence that speech sounds are processed as articulatory

gestures. However, it is unclear what information is actually encoded by such neural activity. We

used high-density direct human cortical recordings while participants spoke and listened to speech

sounds. Motor cortex neural patterns during listening were substantially different than during

articulation of the same sounds. During listening, we observed neural activity in the superior and

inferior regions of ventral motor cortex. During speaking, responses were distributed throughout

somatotopic representations of speech articulators in motor cortex. The structure of responses in

motor cortex during listening was organized along acoustic features similar to auditory cortex,

rather than along articulatory features as during speaking. Motor cortex does not contain

articulatory representations of perceived actions in speech, but rather, represents auditory vocal

information.

DOI: 10.7554/eLife.12577.001

Introduction
Our motor and sensory cortices are traditionally thought to be functionally separate systems. How-

ever, an accumulating number of studies has revealed their roles in action and perception to be

highly integrated (Pulvermüller and Fadiga, 2010). For example, a number of studies have demon-

strated that both sensory and motor cortices are engaged during perception (Gallese et al., 1996;

Wilson et al., 2004; Tkach et al., 2007; Cogan et al., 2014). In humans, this phenomenon has been

observed in the context of speech, where listening to speech sounds evokes robust neural activity in

the motor cortex (Wilson et al., 2004; Pulvermüller et al., 2006; Edwards et al., 2010;

Cogan et al., 2014). This observation has re-ignited an intense scientific debate over the role of the

motor system in speech perception over the past decade (Lotto et al., 2009; Scott et al., 2009;

Pulvermüller and Fadiga, 2010).

One interpretation of the observed motor activity during speech perception is that “the objects

of speech perception are the intended phonetic gestures of the speaker”- as posited by Liberman’s

motor theory of speech perception (Liberman et al., 1967; Liberman and Mattingly, 1985). The

motor theory is a venerable and well-differentiated exemplar of a set of speech perception theories

that we could call ’production-referencing’ theories. Unlike motor theory, more modern production

referencing theories do not assume that sensorimotor circuits are necessarily referenced in order for

speech to be recognized, but they allow for motor involvement in perception in certain phonetic
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modes. For example, Lindblom, 1996 suggested that a direct link between spectrotemporal analysis

and word recognition is the normal mode of speech perception (the ’what’ mode of perception), but

in some cases listeners do use a route through sensorimotor circuits (the ’how’ mode of perception)

if, for example, the listener is attempting to imitate a new sound (Lindblom, 1996).

While demonstrations of evoked motor cortex activity by speech sounds strengthen production-

referencing theories, it remains unclear what information is actually represented by such activity.

Determining what phonetic properties are encoded in the motor cortex has significant implications

for elucidating the role it may play in speech perception. To address this, we recorded direct neural

activity from the peri-Sylvian speech cortex in nine human participants undergoing clinical monitor-

ing for epilepsy surgery. This includes but is not limited to two relevant areas comprising the supra-

Sylvian ventral half of the lateral sensorimotor cortex (vSMC) for the motor control of

articulation (Penfield and Boldrey, 1937) and the infra-Sylvian superior temporal gyrus (STG) for the

auditory processing of speech sounds (Ojemann et al., 1989; Boatman et al., 1995). Since cortical

processing of speech sounds is spatially discrete and temporally fast (Formisano et al., 2008;

Chang et al., 2011; Steinschneider et al., 2011), we used customized high-density electrode grids

(a four-fold increase over conventional recordings) (Bouchard et al., 2013; Mesgarani et al., 2014).

Importantly, these recordings have simultaneous high spatial and temporal resolution in order to

study the detailed speech representations in the vSMC (Crone et al., 1998; Edwards et al., 2009).

With this approach, we seek to address unanswered questions about the representation of speech

sounds in motor cortex, including how the spatiotemporal patterns compare when speaking and lis-

tening and whether auditory representations in motor cortex are organized along articulatory or

acoustic dimensions.

Results
Participants first listened passively to consonant-vowel (CV) syllables (8 consonants followed by the /

a/ vowel). In a separate trial block, they spoke aloud these same CV syllables. We measured the

average evoked cortical activity during these listening and speaking CV tasks. We focused our

eLife digest When we speak, we force air out of our lungs so that it passes over the vocal cords

and causes them to vibrate. Movements of the jaw, lips and tongue can then shape the resulting

sound wave into speech sounds. The brain’s outer layer, which is called the cortex, controls this

process. More precisely, neighboring areas in the so-called motor cortex trigger the movements in a

specific order to produce different sounds.

Brain imaging experiments have also shown that the motor cortex is active when we listen to

speech, as well as when we produce it. One theory is that when we hear a sound, such as the

consonant ‘b’, the sound activates the same areas of motor cortex as those involved in producing

that sound. This could help us to recognize and understand the sounds we hear.

To test this theory, Cheung, Hamilton et al. studied how speech sounds activate the motor cortex

by recording electrical signals directly from the brain’s surface in nine human volunteers who were

undergoing a clinical evaluation for epilepsy surgery. This revealed that speaking activates many

different areas of motor cortex. However, listening to the same sounds activates only a small subset

of these areas. Contrary to what was thought, brain activity patterns in motor cortex during listening

do not match those during speaking. Instead, they depend on the properties of the sounds. Thus,

sounds that have similar acoustic properties but which require different movements to produce

them, such as ‘b’ and ‘d’, activate the motor cortex in similar ways during listening, but not during

speaking.

Further research is now needed to work out why the motor cortex behaves differently when we

hear as opposed to when we speak. Previous work has suggested that the region increases its

activity during listening when the sounds heard are unclear, for example because of background

noise. One testable idea therefore is that the motor cortex helps to enhance the processing of

degraded sounds.

DOI: 10.7554/eLife.12577.002
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analysis on high gamma (70–150 Hz) cortical surface local field potentials, which strongly correlate

with extracellular multi-unit neuronal spiking (Steinschneider et al., 2008; Ray and Maunsell, 2011).

We aligned neural responses to the onset of speech acoustics (t = 0) in listening and speaking tasks

to provide a common reference point across speech sounds.

We first determined which peri-Sylvian cortical areas were activated during passive listening to

speech sounds. Figure 1a and b shows the locations of cortical areas that demonstrated cortical

evoked responses in a single representative subject during listening and speaking respectively. Dur-

ing listening, evoked responses spanned middle and posterior STG as expected, with weaker

responses in middle temporal gyrus (MTG) (Figure 1a). In the vSMC, (composed of the pre- and

post- central gyri) we found electrodes in the superior-most and inferior-most aspects (Figure 1a,

Figure 1—figure supplement 1, 2) that demonstrated reliable and robust single-trial responses to

speech sounds during passive listening (Figure 1b). Neural responses were also found at a few sites

scattered across supramarginal, inferior-, and middle- frontal gyri—though these were not consistent

across subjects (Figure 1—figure supplement 1). By performing spatial clustering analysis on the

electrode positions in each subject, we found that 3/5 subjects showed significant clustering of

regions responsive to auditory stimuli (Hartigan’s Dip statistic, p<0.05 (see Materials and methods);

Figure 1—figure supplement 1). Out of these 3 subjects, k-means clustering revealed two subjects

with k=2 electrode clusters (subjects 1 and 4, clusters in inferior and superior vSMC), and one sub-

ject with k=5 clusters. When participants spoke the same CV syllables, in contrast, articulatory move-

ment-related cortical activity was well distributed throughout vSMC (Figure 1c), with auditory

feedback cortical activity seen in the STG.

Across all participants, we identified 115 electrodes that demonstrated significant neural activity

in vSMC during listening (p<0.01, t-test, compared to pre-stimulus silent rest period; Figure 1d).

When speaking, in contrast, a total of 362 electrodes in vSMC were found to be significantly active

(Figure 1d, p<0.01, t-test, compared to pre-stimulus silent rest period). We compared the relative

proportions of electrodes that were found in different supra-Sylvian anatomical regions. Critically,

only a subset of sites in vSMC (98 out of 362, ~ 27%) was active during both listening and speaking

(Figure 1d). These sites were primarily localized to the pre-central gyrus, whereas speaking evoked

activity across both pre- and post-central gyri sites. Neural responses in the vSMC during listening

were found in the superior (S in Figure 1d) pre-central gyrus and inferior, anterior aspect of the sub-

central gyrus of the vSMC (I in Figure 1d).

We next compared the patterns of cortical activity to specific speech sounds during listening and

speaking. During speaking, specific articulator representations have been identified in the somato-

topically-organized vSMC (Bouchard et al., 2013). For example, the plosive consonants /b/, /d/, and

/g/ are produced by the closure of the vocal tract at the lips, front tongue, and back tongue, respec-

tively (Figure 2a, b, see Figure 2—figure supplement 1 for all syllable tokens) (Ladefoged and

Johnson, 2010). The cortical representations for these articulators are laid out along a superior-to-

inferior (medial-to-lateral) sequence in the vSMC (Penfield and Boldrey, 1937). We first examined

average cortical activity at single electrode sites distributed along the vSMC axis for articulating indi-

vidual speech sounds. Figure 2c shows single electrode activity from a single representative subject

(the same from Figure 1) for speaking (blue lines) and listening (red lines) for three CV syllables,

which have different place of articulation (/ba/, /da/, and /ga/). The exact location of these electro-

des on the vSMC is shown in Figure 2d. The production of labial consonants (/b/) is associated with

activity in lip cortical representations as evidenced by strong responses to the bilabial /ba/

(Figure 2c, electrodes 5–6, blue lines). These are located superior to the tongue representations

associated with the /d/ and /g/ consonants, as shown previously (Bouchard et al., 2013). Those

tongue sites were sub-specified by ‘coronal’ (i.e. anterior-based) tongue position for /d/ (electrodes

8–10, blue lines) superiorly, and ‘dorsal’ (i.e. posterior-based) tongue position for /g/ inferiorly (elec-

trode 13, blue line). Other sites (electrodes 1–4, 11–12, blue lines) showed the same neural activity

across all three syllables.

We next examined those same vSMC electrodes during listening, and found that the majority of

those cortical vSMC electrodes were not active (p>0.01, t-test compared to silence, Figure 2c trans-

parent red lines). The few that were active (electrodes 1, 2, 4, 11–12, solid red lines) were similar for

all three CV syllables, with activity increasing approximately 100ms after the acoustic onset. Across

the entire population of vSMC electrodes that were active during listening, onset latencies were

generally shorter than those in STG sites, with significant increases in both inferior vSMC (p<0.001)
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and superior vSMC (p<0.05) compared to STG (Figure 3a, Wilcoxon rank sum test, see Figure 3c

for average responses to all syllables). The latency to the response peak was also significantly higher

in superior vSMC compared to STG (Figure 3b, p<0.01, Wilcoxon rank sum test). A cross-correlation

analysis between these vSMC electrodes and STG electrodes revealed a diverse array of relation-

ships between these populations (Figure 3d–f), including STG electrode activity leading vSMC

Figure 1. Speech sounds evoke responses in the human motor cortex. (a) Magnetic resonance image surface reconstruction of one representative

subject’s cerebrum (subject 1: S1). Individual electrodes are plotted as dots, and the average cortical response magnitude (z-scored high gamma

activity) when listening to CV syllables is signified by the color opacity. CS denotes the central sulcus; SF denotes the Sylvian fissure. (b) Acoustic

waveform, spectrogram, single-trial cortical activity (raster), and mean cortical activity (high gamma z-score, with standard error) from two vSMC sites

and one STG site when a subject is listening to /da/. Time points significantly above a pre-stimulus silence period (p<0.01, bootstrap resampled, FDR

corrected, alpha < 0.005) are marked along the horizontal axis. The vertical dashed line indicates the onset of the syllable acoustics (t=0). (c) Same

subject as in (a); distributed vSMC cortical activity when speaking CV syllables (mean high gamma z-score). (d) Total number of significantly active sites

in all subjects during listening, speaking, and both conditions (p<0.01, t-test, responses compared to silence and speech). Electrode sites are broken

down by their anatomical locations. S denotes superior vSMC sites; I denotes inferior vSMC sites.

DOI: 10.7554/eLife.12577.003

The following figure supplements are available for figure 1:

Figure supplement 1. Average cortical responses to speaking and listening in all subjects (S2-S5).

DOI: 10.7554/eLife.12577.004

Figure supplement 2. Neural responses while listening to CV syllables in 4 additional subjects not included in MDS analyses (S6 - S9).

DOI: 10.7554/eLife.12577.005
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electrode activity and vice versa. In contrast to speaking, we did not observe somatotopic organiza-

tion of cortical responses when listening to speech. Therefore, the pattern of raw evoked responses

during listening shows critical differences from those during speaking.

We next evaluated quantitatively whether the structure of distributed vSMC neural activity during

listening was more similar to that of vSMC during speaking or the STG during listening. In previous

studies, we demonstrated that the structure of evoked responses are primarily organized by

Figure 2. Site-by-site differences in vSMC neural activity when speaking and listening to CV syllables. (a) Top,

vocal tract schematics for three syllables (/ba/, /da/, /ga/) produced by occlusion at the lips, tongue tip, and

tongue body, respectively (arrow). (b) Acoustic waveforms and spectrograms of spoken syllables. (c) Average

neural activity at electrodes along the vSMC for speaking (blue) and listening (red) to the three syllables (high

gamma z-score). Solid lines indicate activity was significantly different from pre-stimulus silence activity (p<0.01).

Transparent lines indicate activity was not different from pre-stimulus silence activity (p>0.01). Vertical dashed line

denotes the onset of the syllable acoustics (t=0). (d) Location of electrodes 1–13 in panel c, shown on whole brain

and with inset detail. CS = central sulcus, SF = Sylvian fissure.

DOI: 10.7554/eLife.12577.006

The following figure supplement is available for figure 2:

Figure supplement 1. Syllable token set.

DOI: 10.7554/eLife.12577.007
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Figure 3. Dynamics of responses during CV listening in STG, inferior vSMC, and superior vSMC. (a) STG onset

latencies were significantly lower than both inferior vSMC (p<0.001, Z = �4.03) and superior vSMC (p<0.05, Z =

�2.28). (b) STG peak latencies were significantly lower than superior vSMC (p<0.01, Z = �2.93), but not

significantly different from peak latencies in inferior vSMC (p>0.1). In (a) and (b), red bar indicates the median,

boxes indicate 25th and 75th percentile, and error bars indicate the range. Response latencies were pooled across

all subjects. All p-values in (a) and (b) are from the Wilcoxon rank sum test. (c) Average evoked responses to all

syllable tokens across sites in superior vSMC (n=32), inferior vSMC (n=37), and STG. Responses were aligned to

the syllable acoustic onset (t=0). A random subset of STG responses (n=52 out of the 273 that were used in the

latency analysis in (a) and (b)) are shown here for ease of viewing. (d) Example cross-correlations between three

vSMC electrodes and all STG electrodes in one patient, for a maximum lag of ± 0.75 s. More power in the

negative lags indicates a faster response in the STG compared to the vSMC electrode, and more power in the

positive lags indicates a faster response in vSMC compared to STG. We observe vSMC electrodes that tend to

Figure 3 continued on next page

Cheung et al. eLife 2016;5:e12577. DOI: 10.7554/eLife.12577 6 of 19

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.12577


different feature sensitivities: place of articulation in the vSMC (Bouchard et al., 2013), and manner

of articulation in the STG (Mesgarani et al., 2014). We visualized the similarity of population activity

evoked by different consonants using unsupervised multidimensional scaling (MDS), where the 2-

dimensional Euclidean distances between stimuli correspond to the similarity of their neural

responses. Visual inspection of MDS plots shows that, during speaking, evoked activity in vSMC clus-

tered into place of articulation features (Figure 4a): labials (/b/, /p/), alveolars (/s/, /sh/, /t/, /d/), and

velars (/g/, /k/) (Figure 4b). In contrast, neural responses during listening did not cluster into the

same features (Figure 4c). To quantify the degree to which the evoked activity clustered into place

of articulation features, we used unsupervised K-means clustering to assign the neural responses to

clusters (k=3), and the adjusted Rand Index (RIadj) (Rand, 1971; Hubert and Arabie, 1985) to mea-

sure the degree to which the neural clustering agreed with linguistically defined place of articulation

consonant clusters. The RIadj quantifies the degree of agreement between two clustering patterns,

where RIadj = 1 denotes identical clustering patterns and RIadj = 0 denotes independent clustering

patterns. We found that while evoked activity during speaking clustered by place of articulation fea-

tures, activity during listening did not (Figure 4d; see Figure 4—figure supplement 1 for moving

time window analysis). Even when the vSMC electrode subset was restricted to short-latency vSMC

electrodes leading STG activity (as evidenced by a positive asymmetry index in Figure 3f), activity

during listening did not cluster according to place of articulation features (Figure 4—figure supple-

ment 2). Thus, responses in motor areas during speech perception do not show a spatially distrib-

uted representation of speech motor articulator features.

Finding no evidence that major articulator features are either locally or spatially distributed in the

vSMC in response to speech sounds, we next compared vSMC responses to population responses in

the STG. STG has an acoustic sensory representation of speech that best discriminates speech

sounds by manner of articulation features with salient acoustic differences (Mesgarani et al., 2014).

Using multidimensional scaling, STG spatial patterns during listening showed clustering according to

three high-order acoustic features (Figure 4e): voiced plosives (/b/, /d/, /g/), unvoiced plosives (/p/,

/t/, /k/), and fricatives (/s/, /sh/) (Ladefoged and Johnson, 2010). This is consistent with the rela-

tional organization derived by analysis of structure in the stimulus acoustics (Figure 4—figure sup-

plement 3a), and the structure of STG during speaking (Figure 4—figure supplement 3b). With the

same analyses, we observed that activity in motor cortex clustered into the same three acoustic fea-

tures (Figure 4f, note this panel is identical to Figure 4c simply re-colored). Unsupervised K-means

clustering analysis confirmed that vSMC activity, during listening, organized into these linguistically

defined acoustic feature groups, but was significantly weaker than the organization of STG (p<0.001,

Wilcoxon rank-sum, Figure 4g). Importantly, however, clustering by acoustic manner features was

significantly stronger than clustering by place features in vSMC electrodes during listening (p<0.001,

Wilcoxon rank-sum, Figure 4h). This organization suggests that motor cortex activity during speech

perception reflects an acoustic sensory representation of speech in the vSMC that mirrors acoustic

representations of speech in auditory cortex.

To further define the acoustic selectivity and tuning of vSMC motor electrodes, participants lis-

tened to natural, continuous speech samples from a corpus with a range of American English

speakers (Garofolo et al., 1993). We fit spectrotemporal receptive field (STRF) models for each

vSMC electrode using normalized reverse correlation (see Materials and methods), which describes

the spectrotemporal properties of speech acoustics that predict the activity of a single site in motor

cortex. To compute the STRF, we calculate the correlation between the neural response at an elec-

trode and the stimulus spectrogram at multiple time lags. The result is then normalized by the auto-

Figure 3 continued

respond later than STG (e248, left panel), vSMC electrodes that tend to respond before STG (e136, middle panel),

and vSMC electrodes that respond at similar times to some STG electrodes (e169, right panel). (e) Average evoked

responses during CV listening for all STG electrodes from this patient and the three vSMC electrodes shown in

panel (d). Responses were aligned to the syllable acoustic onset (t=0), as in panel (c). (f) Percentage of sites with

STG leading, coactive, or vSMC leading as expressed by the asymmetry index (see Materials and methods). Both

inferior and superior vSMC show leading and lagging responses compared to STG, as well as populations of

coactive pairs.

DOI: 10.7554/eLife.12577.008
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Figure 4. Organization of motor cortex activity patterns. (a) Consonants of all syllable tokens organized by place

and manner of articulation. Where consonants appear in pairs, the right is a voiced consonant, and the left is a

voiceless consonant. (b) Relational organization of vSMC patterns (similarity) using multidimensional scaling (MDS)

during speaking. Neural pattern similarity is proportional to the Euclidean distance (that is, similar response

patterns are grouped closely together, whereas dissimilar patterns are positioned far apart). Tokens are colored by

the main place of articulation of the consonants (labial, velar, or alveolar). (c) Similarity of vSMC response patterns

during listening. Same coloring by place of articulation. (d) Organization by motor articulators. K-means clustering

was used to assign mean neural responses to 3 groups (labial, alveolar, velar) for both listening and speaking

neural organizations (b,c). The similarity of the grouping to known major articulators was measured by the

adjusted Rand Index. An index of 1 indicates neural responses group by place of articulation features. ***p<0.001,

Wilcoxon rank-sum (e) Organization of mean STG responses using MDS when listening. In contrast to c and d,

tokens are now colored by their main acoustic feature (fricative, voiced plosive, or voiceless plosive). (f)

Organization of mean vSMC responses using MDS when listening colored by their main acoustic feature. (Identical

to C, but recolored here by acoustic features). (g) Organization by manner of articulation acoustic features

(fricative, voiced plosive, voiceless plosive) for both STG and vSMC organizations when listening (e, f). The

similarity of the grouping to known acoustic feature groupings was measured by the adjusted Rand Index.

***p<0.001, Wilcoxon rank sum. (h) During listening, responses in vSMC show significantly greater organization by

Figure 4 continued on next page
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correlation in the stimulus. This results in a linear filter for each electrode (the STRF), which, when

convolved with the stimulus spectrogram, produces a predicted neural response to that stimulus.

The prediction performance of each STRF was determined by calculating the correlation between

the activity predicted by the STRF and the actual response on held out data. A fraction of vSMC sites

(16/98 sites total) were reasonably well-predicted with a linear STRF (r>=0.10 and p<0.01, permuta-

tion test) (Theunissen et al., 2001). STRFs with significant correlation coefficients were localized to

superior and inferior vSMC (primarily precentral gyrus) in addition to STG (Figure 5a). Still, the pre-

diction performance of STRFs in vSMC was generally lower than that of the STG (Figure 5b). Fur-

thermore, the majority of STRFs in both regions showed strong low frequency tuning (100–200 Hz)

properties related to voicing (Figure 5c), though some also showed high frequency tuning consistent

with selectivity for fricatives and stop consonants by visual inspection (Mesgarani et al., 2014). We

also estimated the mean cortical response at each motor site to every phoneme in English and found

a diverse set of responses (Figure 5—figure supplement 1a) that were notably weaker in magnitude

compared to STG responses (Figure 5—figure supplement 1b). Weak selectivity to phonetic fea-

tures measured by the Phoneme Selectivity Index (PSI) was also observed (Figure 5—figure supple-

ment 1c) (Mesgarani et al., 2014). These findings reveal that individual sites in motor cortex reflect

sensory responses to definable spectrotemporal features speech acoustics, including voicing attrib-

utes. Presumably, this tuning gives rise to the acoustic organization found in the previous analysis of

distributed spatial patterns of neural activity.

Discussion
Our principal objective was to determine the vSMC motor cortex representation of auditory speech

sounds. We used high-resolution cortical recordings and a wide array of speech sounds to determine

how the vSMC structure of speech sounds compared to the structure of motor commands in vSMC

and sensory processing in STG. We found evidence for both spatially local and distributed activity

correlated to speech acoustics, which suggests an auditory representation of speech in motor

cortex.

The proposal that the motor cortex critically integrates observations with motor commands

largely stems from the discovery of mirror neurons (in area F5 of macaques) that fire both when a

monkey produced an action and observed a similar action (di Pellegrino et al., 1992; Rizzolatti and

Craighero, 2004; Pulvermüller and Fadiga, 2010). This ’integrative’ view is reminiscent of linguistic

production-referencing theories, including the motor theory of speech perception, which propose

that motor circuits are involved in speech perception (Liberman et al., 1967; Liberman and Mat-

tingly, 1985). In line with these theories, human neuroimaging studies have showed mirror activity in

ventral premotor cortex during listening (Wilson et al., 2004; Pulvermüller et al., 2006;

Edwards et al., 2010), and modulated premotor activity in phoneme categorization

tasks (Alho et al., 2012; Chevillet et al., 2013). Our results extend these findings by detailing the

representational selectivity and encoding of vSMC in perception. Consistent with previous findings,

we demonstrated local ‘audiomotor’ responses to speech sounds in vSMC. When the responses

were further examined for phonetic structure, we found major motor articulatory place features,

such as labial, alveolar, and velar, were not represented with single site activity or distributed spatial

Figure 4 continued

acoustic manner features compared to place features as assessed by the adjusted Rand Index, indicating an

acoustic rather than articulatory representation (***p<0.001, Wilcoxon rank-sum). Bars in this panel are the same as

the red bars in (d) and (g). In (d), (g), and (h), bars indicate mean ± standard deviation,

DOI: 10.7554/eLife.12577.009

The following figure supplements are available for figure 4:

Figure supplement 1. Clustering trajectory analysis of neural responses to syllables.

DOI: 10.7554/eLife.12577.010

Figure supplement 2. Analysis of short latency responses in vSMC.

DOI: 10.7554/eLife.12577.011

Figure supplement 3. Organization of syllable tokens and auditory cortical activity patterns.

DOI: 10.7554/eLife.12577.012
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Figure 5. Acoustic spectrotemporal tuning in vSMC. (a) All STRF correlations and locations are plotted with

opacity signifying the strength of the correlation. CS denotes the central sulcus; SF denotes the Sylvian fissure. (b)

Distribution of STRF prediction correlations for significantly active vSMC and STG sites. Cut-off at r = 0.1 is shown

as a dashed line. (c) Individual STRFs from all subjects (S1-S5, STRF correlation>0.1) plotted as a function of

distance from the central sulcus and Sylvian fissure, with opacity signifying the strength of the STRF correlation.

DOI: 10.7554/eLife.12577.013

The following figure supplement is available for figure 5:

Figure supplement 1. Summary and comparison of vSMC and STG responses to syllables.

DOI: 10.7554/eLife.12577.014
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activity. This observation is in direct contrast with structural predictions made by the original motor

theory of speech perception (Liberman et al., 1967; Liberman and Mattingly, 1985), while confirm-

ing that motor cortex plays a role in perception (Lindblom, 1996; Hickok and Poeppel, 2007).

We localized activity during speech perception to regions of the vSMC that have been implicated

in phonation and laryngeal control (Penfield and Boldrey, 1937; Brown et al., 2008). When listen-

ing to speech, we observed these regions reflected acoustic sensory properties of speech, with indi-

vidual sites tuned for spectrotemporal acoustic properties. The tuning properties of responsive sites

in vSMC are similar to properties observed in STG during listening (Mesgarani et al., 2014) and

appear to give rise to an acoustic sensory organization of speech sounds (rather than purely motor

organization) in motor cortex during listening.

There is an emerging consensus that frontal and motor regions are recruited during effortful

listening (Du et al., 2014). For example, previous studies have demonstrated that frontal areas

come online to process degraded speech for the attentional enhancement of auditory

processing (Wild et al., 2012). Our results may complement this interpretation in that the audiomo-

tor cortex enhancement is specific to an auditory representation, without transforming information

to a motor articulatory representation. That being said, the auditory encoding that we observed in

the motor cortex did not appear to be as strong as that as that observed in the STG, and exhibited

comparatively weaker activity and weaker phoneme selectivity (Figure 5—figure supplement 1b

and c, and see (Mesgarani et al., 2014).

In addition to having implications for perceptual models, we speculate that these results have

strong implications for speech production, as auditory feedback is potentially processed directly in

the vSMC in addition to the canonical auditory cortex. Speech production models currently propose

a complex role for sensory feedback, where pathways exist for the activation of auditory cortex from

vSMC activation (the forward prediction of production consequences), and the activation of vSMC

from auditory and somatosensory input (the error correction signal) (Guenther et al., 2006;

Houde and Nagarajan, 2011). In the current study, it appears that the motor cortex contains both

sensory and motor representations, where the sensory representations are active during passive lis-

tening, whereas motor representations dominate during speech production.

Analysis of the time course of vSMC and STG responses revealed a heterogeneous population of

both short- and longer-latencies in the inferior and superior vSMC that are generally slower than the

STG (Figure 3a–c). Early responses in vSMC may reflect bidirectional connections from

STG (Zatorre et al., 2007), primary auditory cortex (Nelson et al., 2013; Schneider et al., 2014) or

auditory thalamus (Henschke et al., 2014), whereas later responses might reflect indirect connectiv-

ity in areas downstream from the STG (Rauschecker and Scott, 2009). Indeed, our cross-correlation

analysis revealed bidirectional dynamical relationships between vSMC and STG responses, in which

STG responses led vSMC responses and vice versa (Figure 3d–f). Still, this analysis was independent

of the diverse tuning properties in the vSMC and STG electrode sets, so longer latency responses

likely reflect the later responses to vowels relative to consonants. Even so, we found a wide variety

of tuning and dynamical profiles in the vSMC electrodes that responded during listening. Given

these proposed functional connections, activity in vSMC from speech sounds may be a consequence

of sounds activating the sensory feedback circuit (Hickok et al., 2011). Alternatively, evoked

responses in the motor cortex during passive listening may directly reflect auditory inputs arising

from aggregated activity picked up by the electrode. We believe the latter scenario to be less likely,

however, given that auditory responses were observed in dorsal vSMC on electrode contacts several

centimeters away from auditory inputs in the STG. In addition, the spatial spread of neural signals in

the high gamma range is substantially smaller than this difference – high gamma signal correlations

at <2 mm spacing are only around r=0.5, and at distances of 1 cm reach a noise floor (Chang, 2015);

Muller et al, unpublished findings). Given the observed acoustic rather than place selectivity

observed during listening in the vSMC, our results suggest that motor theories of speech perception

may need to be revised to incorporate a novel sensorimotor representation of sound in the vSMC.
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Materials and methods

Participants
Nine human participants were implanted with high-density multi-electrode cortical surface arrays as

part of their clinical evaluation for epilepsy surgery. The array contained 256 electrodes with 4 mm

pitch. Arrays were implanted on the lateral left hemispheres over the peri-Sylvian cortex, but exact

placement was determined entirely by clinical indications (Figure 1—figure supplement 1 and Fig-

ure 1—figure supplement 2). Using anatomic image fusion software from BrainLab (Munich, Ger-

many), electrode positions were extracted from the computed tomography (CT) scan, co-registered

with the patient’s MRI and then superimposed on the participant’s 3D MRI surface reconstruction

image. All participants were left hemisphere language dominant, as assessed by the Wada test. Par-

ticipants had self-reported normal hearing. The study protocol was approved by the UC San Fran-

cisco Committee on Human Research, and all participants provided written informed consent.

Task
Participants completed three separate tasks that were designed to sample a range of phonetic fea-

tures. First, participants listened to eight consonant-vowel (CV) syllables (/ba/, /da/, /ga/, /pa/, /ta/, /

ka/, /
Ð

a/, /sa/) produced by a male speaker unknown to the participant. Stimuli were presented ran-

domly, with 4–21 repetitions of each CV syllable for 5 out of the 9 subjects included in all subse-

quent analyses, and one repetition of each CV syllable for 4 subjects shown only in Figure 1—figure

supplement 2. To remain alert, participants were asked to identify the syllable they heard by select-

ing from a multiple-choice question on a computer with their ipsilateral (left) hand. In the second

task, participants spoke aloud the same CV syllables prompted by a visual cue on the laptop com-

puter display. In the third task, participants passively listened to natural speech samples from a pho-

nemically transcribed continuous speech corpus (TIMIT). We chose 499 unique sentences from

400 different male and female speakers. Each sentence was repeated two times. For the phoneme

selectivity analysis, we chose a subset of TIMIT phonemes that occurred more than 30 times. This

resulted in an analysis of 33 phonemes. For spectrotemporal receptive field analysis (see below),

data from all sentences were used.

Data acquisition and preprocessing
Electrocorticographic (ECoG) signals were recorded with a multichannel PZ2 amplifier connected to

an RZ2 digital signal acquisition system (Tucker-Davis Technologies, Alachua, FL, USA) sampling at

3,052 Hz. The produced speech was recorded with a microphone, digitized, and simultaneously

recorded. The speech sound signals were presented monaurally from loudspeakers at a comfortable

level, digitized, and also simultaneously recorded with the ECoG signals.

Line noise (60 Hz and harmonics at 120 and 180 Hz) was next removed from the signal with a

notch filter. Each time series was visually and quantitatively inspected for excessive noise, and was

subsequently removed from further analyses if its periodogram deviated more than two standard

deviations away from the average periodogram of all other time series. The remaining time series

were then common-average referenced (CAR) and used for analyses. The CAR was taken across

16 channel banks in order to remove non-neural electrical noise from shared inputs to the PZ2. We

find that this method of CAR significantly reduces movement-related and other non-neural artifacts

while not adversely affecting our signals of interest. The analytic amplitude of each time series was

extracted using eight bandpass filters (Gaussian filters, logarithmically increasing center frequencies

(70–150 Hz) with semi-logarithmically increasing bandwidths) with the Hilbert transform. The high-

gamma power was calculated by averaging the analytic amplitude across these eight bands, and

downsampling the signal to 100 Hz. The signal was finally z-scored relative to the mean and standard

deviation of baseline rest data for each channel.

Electrode selection
Supra-Sylvian cortical sites with robust evoked responses to both speech sounds and speech produc-

tion were selected for this analysis. To identify if a site was responsive to speech sounds, we imple-

mented a bootstrap t-test comparing a site’s responses randomly sampled over time during speech

sound presentations to responses randomly sampled over time during pre-stimulus silent intervals
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(p<0.01). This resulted in 10, 22, 29, 27, and 27 sites for the five participants (n=115). Next we imple-

mented a bootstrap t-test comparing neural responses during speech production and pre-stimulus

silence (p<0.01), resulting in 25, 74, 87, 92, and 84 sites (n=362). Finally, we took the intersection of

these two groups to arrive at our final supra-Sylvian sites set of 8, 16, 28, 22, and 24 sites active dur-

ing listening and speaking (n=98).

To analyze the responses of the auditory cortex, we restricted the infra-Sylvian cortical sites to

those that were reliably evoked by speech sounds (p<0.01, t-test between silence and speech

sounds neural responses). This resulted in 73, 61, 40, 77, and 89 infra-Sylvian temporal cortical sites

(n=340) responsive to speech sounds.

Spatial clustering analysis
To investigate the degree of spatial clustering in the vSMC electrodes responsive during listening,

we used the Dip-means method (Kalogeratos and Likas, 2012), which allows us to test whether

data shows any form of clustering. Importantly, unlike the silhouette index, this allows us to distin-

guish between k=1 and k>1 clusters. For each subject, the pairwise distances between the spatial

locations of all electrodes in a single subject were computed. Using each electrode in turn as a

’viewer’ (Kalogeratos and Likas, 2012), we tested to see whether the distribution of distances to

that electrode significantly deviated from unimodality (Hartigan and Hartigan, 1985). If one or

more electrodes showed a signficantly non-unimodal pairwise distance histogram, then the data

were considered to be clustered. Following this procedure, k-means clustering was performed with

k=2 through k=6 clusters, and the silhouette index was used to determine the best number of clus-

ters for a given subject. The silhouette index for a given data point is defined as

sðiÞ ¼
bðiÞ� a ið Þ

maxfaðiÞ;bðiÞg

where b(i) is the lowest average distance of i to any other cluster of which i is not a member, and a(i)

is the average distance between i and any other data point assigned to the same cluster. The silhou-

ette index ranges from �1 to 1, with higher positive values indicating good clustering.

Average neural response and peak high-gamma measurement
For the speaking and listening CV syllable tasks, the start of the syllable acoustics was used to align

the responses of each electrode site. For the phoneme responses, the TIMIT phonetic transcriptions

were used to align responses to the phoneme onset. Once responses were aligned to a stimulus, the

average activity for each site to each stimulus was measured by taking the mean response over dif-

ferent trials of the same stimuli. The maximum of the mean responses to different stimuli were then

used to measure the peak-high gamma distributions between different tasks and sites.

Response latency analysis
We measured the onset latencies for responses to listening in STG and vSMC by calculating the

average z-scored high gamma activity across all CV syllables, and then calculating the first time at

which activity was significantly higher than the 500-ms pre-stimulus silent rest period (one-tailed Wil-

coxon rank sum test, p<0.001). We also calculated the peak latency as the time at which the average

z-scored response reached its maximum value. Differences in onset and peak latencies were com-

pared across STG, inferior, and superior vSMC using the a two-tailed Wilcoxon rank sum test at a

significance level of p<0.05 (uncorrected).

Cross-correlation analysis
To measure the timing/dynamics between pairs of vSMC and STG sites during CV syllable listening,

we performed a cross-correlation analysis between pairs of electrodes in these two regions. The

cross-correlation measures the similarity of two time series at different time lags by taking pairs of

electrode responses and calculating the correlation between one response and a time-shifted ver-

sion of the second response. If the peak in the cross-correlation between an STG electrode and a

vSMC electrode occurs at a negative lag, this indicates that the STG response leads (occurs earlier

than) the vSMC response and that STG activity in the past is predictive of future activity in the

vSMC. In contrast, if the peak in the cross-correlation between an STG electrode and a vSMC
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electrode occurs at a positive lag, this indicates that the vSMC response leads (occurs earlier than)

the STG response. The cross-correlation at time lag t is calculated between the response at an STG

electrode (denoted x) and the response at a vSMC electrode (y) as follows:

x�y½t� ¼
def

X

t¼1 s

t¼�0:5 s

x�½t�y½tþ t�

Where the maximum lag t was chosen to be 0.75 s. Cross-correlations were normalized by 1
M�jtj

(where M is the total number of time points in the response) to obtain an unbiased estimate at each

time lag t. The cross-correlation between vSMC and STG electrodes was calculated separately for

each CV syllable trial, and then averaged across trials (see examples in Figure 3d).

To determine the incidence of relationships within our electrode population where STG leads

vSMC, vSMC leads STG, or both are coactive, we calculated an asymmetry index. This index ranges

from �1 to 1 and describes the relative power in the positive versus negative lags for each vSMC

electrode. It is calculated for each vSMC electrode by taking the sum of the positive cross-correla-

tions in the negative lags and the sum of the positive cross-correlations in the positive lags, and then

computing the ratio:

asymmetry index ¼
Ppos �Pneg

Ppos þPneg

For a given vSMC electrode, an asymmetry index of �1 indicates that the cross-correlations lie

fully in the negative lags (indicating that STG responses lead the vSMC response in that electrode).

In contrast, a value of 1 indicates that the cross-correlations are in the positive lags only, indicating

that the vSMC electrode leads all STG electrodes.

Multidimensional scaling (MDS) analysis
To examine the relational organization of the neural responses to syllables, we applied unsupervised

multidimensional scaling (MDS) to the distance matrix of the mean neural responses at the sites of

interest described in Materials and methods: Electrode selection. For analysis of speaking and listen-

ing responses, the vSMC sites used were those identified as significantly active during both speech

production and speech perception (n=98, Figure 4b,c,f). However, clustering results for speaking

were similar when all vSMC sites identified as significantly active during speech production were

included (n=362, Figure 4—figure supplement 3c). The STG sites used were those identified as sig-

nificantly active during speech perception (n=340, Figure 4e, Figure 4—figure supplement 3b). Syl-

lables placed closer together in MDS space elicited similar neural response patterns, and those

further apart from one another elicited more dissimilar patterns. To calculate the distance between a

pair of mean neural responses, a mean neural response to one syllable was linearly correlated to

another, and the resulting correlation coefficient was subtracted from 1.

Neural clustering analysis
We used unsupervised K-means clustering to examine the grouping of the mean neural activity to

syllables of the electrodes of interest described in Methods: Electrode selection. We clustered the

mean activity into 3 distinct clusters. This number of clusters was chosen because there are 3 major

place of articulations and manner of articulations in the syllable stimuli set (Figure 4a) that have

been shown to play a major role in the neural organization of motor cortex during speech produc-

tion and auditory cortex during speech perception.

After clustering the neural responses into three distinct groups, we measured the similarity of the

grouping to the linguistically defined grouping of consonants by place of articulation and acoustic

features (Figure 4a and Figure 2—figure supplement 1) using the adjusted Rand Index (RIadj). The

RIadj is frequently used in statistics for cluster validation. It measures the amount of agreement

between two clustering schemes: one by a given clustering process (e.g. K-means), and the other by

some external criteria, or gold-standard (e.g. place of articulation linguistic features). The RIadj takes

an intuitive approach to measuring cluster similarity by counting the number of pairs of objects clas-

sified in the same cluster under both clustering schemes, and controlling for chance (hence,

’adjusted’ RI). It has an expected value of 0 for independent clusterings, and a maximum value of

1 for identical clustering. It is defined as the following:
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Let S be a set of n objects, S = (o1, o2, . . ., on). Partitioning the objects in two different ways such

that U = (U1, . . ., Ur) is a partition of S into r subsets, and V = (V1, . . ., Vt) is a partition of S into t sub-

sets, let:

a = number of pair of objects that are in the same set in U and in the same set in V,

b = number of pair of objects that are in the same set in U and in different sets in V,

c = number of pair of objects that are in different sets in U and in the same set in V,

d = number of pair of objects that are in different sets in U and in different sets in V.

Without adjusting for chance, the RI is simply:

RI ¼
aþd

aþbþcþd
¼

aþd

n

2

� � :

Taking into account chance pairings, RIadj becomes:

RIadj ¼

n

2

� �

ðaþ dÞ � ðaþ bÞðaþ cÞ þ ðcþ dÞ ðbþ dÞ½ �

n

2

� �2

� ðaþ bÞðaþ cÞ þ ðcþ dÞ ðbþ dÞ½ �

:

To localize an unbiased time window for analysis, the DRIadj metric was derived for all time win-

dows by subtracting the RIadj measured with the place of articulation features gold-standard from

the RIadj measured with the acoustic feature gold-standard (Figure 4—figure supplement 1). An

DRIadj = 1 denotes organization by acoustic features, and an DRIadj = �1 denotes organization by

place features. The significance of the DRIadj was computed by calculating the RIadj for a randomized

labeling of neural responses compared to either acoustic feature or place feature clustering, taking

the difference (DRIadj), and repeating this procedure 1000 times with different randomized labelings

to create a null distribution of DRIadj values. The p-value was calculated as the number of times this

random DRIadj exceeded the observed DRIadj, and was thresholded at an FDR-corrected p<0.05

using the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995).

Electrode phoneme selectivity index (PSI)
To characterize the phoneme selectivity of each electrode site, we implemented the PSI calculation

described by Mesgarani et al., 2014. In short, for a single site, we summed the number of

responses that were statistically different (Wilcoxon rank-sum test, p<0.01, corrected for multiple

comparisons) from the response to a particular phoneme. This resulted in a PSI that ranges from

0 to 32, where a PSI = 32 is an extremely selective electrode and a PSI = 0 is not selective. A PSI

describes an electrode’s selectivity to one phoneme, and a vector of PSIs describes an electrode’s

selectivity profile to all phonemes.

Spectrotemporal receptive field (STRF) estimation
The spectrotemporal representation of speech sounds was first estimated using a cochlear frequency

model, consisting of a bank of logarithmically spaced constant Q asymmetric filters. The filter bank

output was subjected to nonlinear compression, followed by a first order derivative along the spec-

tral axis modeling a lateral inhibitory network, and an envelope estimation operation (Wang and

Shamma, 1994). This resulted in a two dimensional spectrotemporal representation (spectrogram)

of speech sounds simulating the pattern of activity on the auditory nerve.

We then estimated the spectrotemporal receptive fields (STRFs) of the sites from passive listening

to TIMIT using normalized reverse correlation (Aertsen and Johannesma, 1981; Klein et al., 2000;

Theunissen et al., 2001; Woolley et al., 2006) between spectrotemporal representation of the sen-

tences and the evoked neural activity (STRFLab software package: http://strflab.berkeley.edu,

DirectFit routine). The STRF is a linear filter that describes which combinations of spectrotemporal

features will elicit a neural response in a given electrode. The relationship between the STRF, H,

stimulus spectrogram, S (as estimated above), and the predicted response, r̂ðtÞ, of an electrode are

given by the following equation:
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r̂ðtÞ ¼
X

M�1

i¼0

X

N�1

t¼0

Hðt;f ÞSðt � t;f Þ

where N is the number of delays of length t after which the STRF will be estimated (reflecting mem-

ory for the stimulus), and M is the number of frequency bands in the spectrogram. To estimate the

STRF, we minimize the mean squared error between the predicted and observed responses. To pre-

vent overfitting, we used an L2 regularization procedure in which a ridge hyperparameter and

sparseness hyperparameter were calculated for each electrode’s STRF (details in [Woolley et al.,

2006]). The ridge hyperparameter acts as a smoothing factor on the STRF, whereas the sparseness

hyperparameter controls the number of non-zero weights in the STRF. These hyperparameters were

optimized with a systematic hyperparameter grid search maximizing for mutual information (bits/s).

With the optimized hyperparameters, we calculated the final STRF and correlation between the pre-

dicted and actual neural response using cross-validation. To do this, a STRF was derived using 9/

10 of the stimuli-response pairs, and the Pearson correlation coefficient (indicating the STRF good-

ness-of-fit) was measured by predicting the remaining one-tenth responses. This was repeated

10 times with 10 non-overlapping stimuli-response pair sets. The final STRF and correlation number

were derived by averaging the 10 STRFs and correlation coefficients.

Note on statistical tests
To assess statistical differences, we used independent sample t-tests when the data were found not

to deviate significantly from normality (KS test). When data were not normally distributed, we used

the nonparametric Wilcoxon rank sum test. In some cases, a bootstrap t-test was used.
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