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Jennifer L Clarke2, Javier E Villanueva-Meyer1
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Abstract

Objectives—Treatment-induced lesions represent a great challenge in neuro-oncology. The aims 

of this study were (i) to characterize treatment induced lesions in glioblastoma patients treated 

with chemoradiotherapy and heat-shock protein (HSP) vaccine and (ii) to evaluate the diagnostic 

accuracy of diffusion weighted imaging (DWI) for differentiation between treatment-induced 

lesions and tumor progression.

Methods—Twenty-seven patients with newly diagnosed glioblastoma treated with heat-shock 

protein vaccine and chemoradiotherapy were included. Serial magnetic resonance imaging (MRI) 

evaluation was performed to detect treatment-induced lesions and assess their growth. Quantitative 

analysis of the apparent diffusion coefficient (ADC) was performed to discriminate treatment-

induced lesions from tumor progression. Mann Whitney U-test and receiver operating 

characteristic (ROC) curves were used for analysis.

Results—Thirty-three percent of patients developed treatment-induced lesions. Five treatment-

related lesions appeared between end of radiotherapy and the first vaccine administration; 4 
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lesions within the first 4 months from vaccine initiation and 1 at 3.5 years. Three patients with 

pathology proven treatment-induced lesions showed a biphasic growth pattern progressed shortly 

after. Apparent diffusion coefficient (ADC) ratio between the peripheral enhancing rim and central 

necrosis showed an accuracy of 0.84 (95%CI: 0.63–1) for differentiation between progression and 

treatment-induced lesions.

Conclusion—Our findings do not support the iRANO recommendation of a 6-month time 

window in which progressive disease should not be declared after immunotherapy initiation. A 

biphasic growth pattern of pathologically proven treatment-induced lesions was associated with a 

dismal prognosis. The presence of lower ADC values in the central necrotic portion of the lesions 

compared to the enhancing rim shows high specificity for detection of treatment-induced lesions.

Introduction

An autologous polyvalent vaccine was evaluated in glioblastoma patients using heat-shock 

protein (HSP)-peptide complexes derived from autologous glioblastoma tissue.[1, 2] HSP 

vaccines stimulate antigen uptake by antigen-presenting cells leading to T-lymphocyte 

activation.[3] This induces both adaptive and innate immune responses against the tumor.[4] 

Adjuvant treatment of glioblastoma with HSP-peptide vaccine has shown promising results 

in phase I and II Clinical trials.[1, 5, 6]

Inflammatory lesions mimicking tumor progression are common after chemoradiotherapy in 

patients with glioblastoma (often termed “pseudoprogression”). The administration of 

vaccines and other immunotherapies may exacerbate this problem, as their goal is the 

induction of an inflammatory response against the tumor. The accurate differentiation of 

treatment-induced lesions from tumor progression is essential in order to avoid unnecessary 

surgeries and discontinuation of potentially effective therapies. The immunotherapy 

Response assessment in Neuro-oncology (iRANO) guidelines were recently published.[7] 

Recognizing that their recommendations are somewhat empirical, the iRANO guidelines 

stipulate that, within the first 6 months of immunotherapy, a 3-month window for 

confirmation of progression is warranted. To date, there are only a few studies that have 

evaluated and reported the appearance of treatment-induced lesions in pediatric[8, 9] and 

adult[10, 11] glioma patients treated with vaccine.

Radiological differentiation between treatment-induced lesions and tumor progression 

remains a clinical dilemma that has not been completely solved despite many advances in 

imaging techniques and predictive modelling strategies. A recently published study in 

patients with suspected recurrent glioma[12] describes the presence of restricted diffusion 

within the central necrotic region of treatment-related necrosis in patients treated with 

standard of care therapies. However, it is unknown whether immune infiltration after 

therapeutic vaccine administration can influence the ADC pattern.[13]

The aims of this study were, first, to define the incidence, chronology and kinetics of 

treatment-induced lesions in glioblastoma patients treated with chemoradiotherapy and HSP-

vaccine in order to assess the iRANO criteria in this cohort of patients and, second, to 

evaluate the diagnostic accuracy of diffusion weighted imaging (DWI) for differentiation 

between treatment-induced lesions and tumor progression.
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Material and Methods

This retrospective study was approved by the institutional review board.

Study design

This study includes an institutional cohort of 27 newly diagnosed glioblastoma patients 

treated with autologous, tumor-derived, HSP-peptide complex and adjuvant temozolomide. 

The patients were part of a phase II, multi-center, single-arm trial including 46 patients[6] 

(ClinicalTrials.gov No. ). All patients underwent maximal safe resection with intra-operative 

collection of tissue to generate autologous vaccine. Relevant inclusion criteria for the HSP-

vaccine trial were newly diagnosed glioblastoma patients with gross total resection of the 

contrast-enhancing lesion, sufficient tumor tissue collected to generate a minimum of 4 

doses of vaccine, post-operative Karnofsky Performance Scale ≥ 70 and lack of progression 

after completion of radiotherapy. The complete list of inclusion criteria can be found in a 

prior publication.[6] Vaccine administration started 2 to 5 weeks after completion of 

radiotherapy and continued until the vaccine was depleted or progression occurred. 

Magnetic resonance imaging (MRI) and clinical evaluations were performed approximately 

every eight weeks to monitor response and were continued for the full study period (up to 24 

months from surgery) or until disease progression. After this, patients were followed with 

MRI studies timed at the discretion of the patient’s neuro-oncologist.

MRI acquisition

All scans were obtained using a 3.0 tesla MR scanner (GE Healthcare, Milwaukee, WI), 

using the body coil for transmission and an 8-channel phased array coil for reception. 

Images that were evaluated included: DWI with 6-directional axial diffusion EPI sequences 

(TR/TE = 7000–12425/76–89 ms, matrix = 256 × 256 × 120, slice thickness = 1.5 mm, FOV 

= 24 cm × 24 cm × 18 cm, b = 1000 s/mm2, NEX = 4) or DWI with 3-directional axial EPI 

sequences (TR/TE = 13800/80.2 ms, matrix = 110 × 116, slice thickness = 2.5 mm, FOV = 

25 cm × 22.5, b = 1000 s/mm2, NEX = 4). Volumetric T1-weighted inversion recovery 

spoiled gradient echo images (TR/TE = 8.86/2.50 ms, matrix = 256 × 256, slice thickness = 

1.5 mm, FOV = 24 × 24 cm, TI = 400 ms, Flip angle = 15°) before and after a 5 ml/s bolus 

injection of 0.1 mmol/kg body weight Gd-DTPA (Magnevist, gadopentetate dimeglumine). 

T2*-weighted EPI (TE/flip angle = 25–45 ms/35°, matrix, slice thickness = 5 mm).

Imaging interpretation

The presence of treatment-induced lesions was confirmed either by histopathological 

examination or serial follow-up imaging evaluation by consensus of 2 neuroradiologists with 

4 and 9 years of experience in neuroradiology (JEV-M and PA-L). Treatment-induced 

lesions were defined as new or worsening enhancing lesions according to iRANO criteria 

showing complete resolution in subsequent scans or histopathologic examination confirming 

treatment effect with amount of viable tumor ≤25% of the tissue[14]. New or worsening 

enhancing lesions showing progressive imaging findings on subsequent scans or >25% of 

viable tumor on histopathology were classified as tumor progression.
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Assessment of tumor kinetics

A neuroradiologist (PA-L) manually segmented the enhancing lesion component of 

treatment-induced lesions appearing within the first 6 months after radiotherapy. The 

enhancing lesions were contoured on every slice of the T1 post-contrast excluding necrosis 

and non-enhancing lesion components. We retrospectively applied the iRANO criteria using 

a ≥40% volumetric change as threshold for progressive disease as suggested by the modified 

RANO criteria for glioblastoma clinical trials.[15] We interpreted each scan together with 

the clinical notes and we took into account the presence of significant clinical worsening 

when applying the iRANO radiological criteria. We determined the number of patients 

meeting the criteria for preliminary progressive disease and quantified the growth of the 

lesions in the subsequent 3 months. If an MRI was not performed at the 3-month timepoint, 

the corresponding volume of contrast enhancing lesion was estimated using the scans 

immediately before and after the 3-month timepoint.

Diffusion imaging analysis

Quantitative ADC evaluation was performed on the subset of lesions showing central 

necrosis. The first scan showing an area of central necrosis was selected for analysis. 

Lesions with excessive susceptibility artifact on the T2*-weighted gradient-echo sequence or 

lack of quantifiable ADC map were excluded. ADC maps were aligned to the post contrast 

T1 images through rigid body transformations[16]. ROIs encompassing the peripheral 

enhancing ring, the central necrotic region and the normal appearing white matter were 

drawn on post contrast T1 images. ROIs were then transferred to the aligned ADC maps for 

extraction of summary metrics. The open source software package 3D Slicer 4.8[17] was 

used for image analysis. Normalized ADC of the central necrotic region and peripheral 

enhancing lesion were calculated by dividing the mean ADC value of each region by that of 

the normal appearing white matter. We also calculated the ADC ratio between the enhancing 

periphery and central necrotic region. The distributions between the different ADC metrics 

were compared between treatment-induced lesions and tumor progression by using the 

Mann-Whitney U test. The accuracy of the peripheral/central ADC ratio for detecting 

treatment-related lesions was estimated by using a receiver operating characteristic (ROC) 

curve.

Results

Twenty-seven patients were included in the study (12 females and 15 males) with a mean 

age at diagnosis of 55 (range=30–66). Twenty-six patients developed a new or worsening 

enhancing lesion, 9 of which corresponded to treatment-induced lesions and 15 to tumor 

progression. The outcome of 2 lesions was inconclusive due to bevacizumab administration 

or lack of follow-up scans. One patient remained stable without evidence of progression as 

of 7.2 years from surgery. In 5 patients, treatment-induced lesions originated before vaccine 

was administered; in 3 patients, within the first 4 months after first vaccine administration 

(4.8 months from end of radiotherapy); and in 1 patient, at 3.5 years. Six treatment-induced 

lesions and 5 lesions corresponding to tumor progression were confirmed by 

histopathological examination, the rest were confirmed by imaging follow-up. Only 1 patient 
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presented significant clinical worsening within the first 6 months after immunotherapy 

initiation (as well as marked radiological worsening).

Assessment of tumor kinetics

Growth rates of lesions corresponding to early treatment-induced lesions and early tumor 

progression were variable (Fig 1). According to iRANO, 7 patients met the criteria for 

preliminary progressive disease. Three patients met the criteria at 2 months; 1 at 3 months; 

and 3 slightly before 4 months after first vaccine administration. Results of lesion growth 

evaluation after 3 months from declaration of preliminary progressive disease were as 

follows: 3 patients had surgery before the 3-month timepoint and the 4 patients whose 

lesions were not resected showed either improvement (negative volumetric change of −28% 

and −95%) or growth below the 40% threshold (6% and 22%). In 3 cases we observed a 

biphasic evolution of treatment-induced lesions with further worsening after a period of 

stabilization or improvement. These 3 patients underwent reoperation and, despite being 

classified as treatment-induced lesions by histopathology, all 3 developed confirmed 

radiologic progression within 2.1 months after the second surgery. These 3 patients also 

showed shorter survival times than the median overall survival of the cohort (26 months).

Diffusion imaging analysis

All 9 treatment-induced lesions were included for quantitative analysis. Of the 15 lesions 

corresponding to tumor progression, 7 lesions were included for quantitative ADC analysis 

after excluding 5 lesions due to lack of central necrosis, 2 due to susceptibility artifact and 1 

due to lack of ADC map (Fig 2). Values of the different ADC ratios are shown in Table 1. 

There was a significant difference (p=0.023) in the peripheral/central ADC ratio between 

treatment-induced lesions and tumor progression (Fig 3A). No significant difference was 

detected in normalized ADC of the peripheral enhancing or central regions between 

treatment-induced lesions and tumor progression. Area under the ROC curve (Fig 3B) of the 

peripheral/central ADC ratio was 0.84 (95% CI: 0.63–1). The cutoff value of 1.06 showed 

maximal accuracy with a sensitivity for detection of treatment-induced lesions of 78% and a 

specificity of 100%. Examples of ADC patterns in treatment-induced lesions and in 

progressive disease are shown in Fig 4.

Discussion

Thirty-three percent of the study participants developed treatment-induced lesions. Five 

patients developed treatment-induced lesions before vaccine administration and 3 patients 

within the first 4 months from vaccine initiation. Only one patient developed a delayed 

treatment-induced lesion at 3.5 years. When the iRANO criteria were retrospectively applied 

to patients with early treatment-induced lesions, 7 patients met the criteria for preliminary 

progressive disease. Three of these 7 patients underwent reoperation before the 3-month 

window established to confirm progressive disease. The 4 remaining patients showed 

improvement or low growth rates at 3 months and they would have been adequately 

classified as treatment-induced lesions by iRANO criteria. Reduced diffusion within the 

central necrotic region of a new or worsening enhancing lesion compared to the enhancing 

component showed high specificity for the diagnosis of treatment-induced lesions.
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Most treatment-induced lesions in our cohort occurred within the first 5 five months after 

radiotherapy completion. According to the literature, most cases of treatment-induced 

lesions in glioblastoma patients treated with chemoradiotherapy are noted within the first 3–

4 months after the end of radiotherapy, although delayed cases have also been described.[18] 

Five cases of treatment-induced lesions occurred before the first vaccine administration, 

which is expected, as it has been reported that 20–30% of glioblastoma patients show 

increased contrast enhancement in their first post-radiation MRI with subsequent 

improvement.[19] Evidence suggests that radiotherapy effects extend beyond the mere 

elimination of the most radiosensitive fraction of tumor cells. Local radiation enhances the 

susceptibility of solid tumors to immune-mediated destruction, perhaps by facilitating the 

penetration and function of dendritic cells and effector T cells.[20] In the present study, the 

vaccine was administered between 2 to 5 weeks after the end of radiotherapy and may have 

affected the subsequent evolution of treatment-induced lesions compared with patients 

treated with chemoradiotherapy alone. Given the possible synergistic effect of 

chemoradiotherapy and immunotherapy and the proximity in time in which they were 

administered, it is difficult to disentangle the contribution of these treatments in the 

occurrence and evolution of treatment-induced lesions. A few studies in glioma patients 

treated with vaccine investigated the development of treatment-induced lesions. A dendritic 

cell vaccine trial on recurrent gliomas in adults reported an incidence of 4.5%.[11] Similarly, 

a study in children with recurrent low-grade gliomas treated with glioma-associated antigen 

peptide vaccination found an incidence of 7.1%,[21] whereas a higher incidence (19%) was 

reported in a glioma-associated antigen peptide vaccine trial in newly diagnosed pediatric 

gliomas[9]. We believe the higher incidence of treatment-induced lesions found in 

vaccination studies for newly diagnosed gliomas compared to studies in recurrent gliomas is 

likely related to the associated chemoradiotherapy administration.

In order to address the issue of treatment-induced lesions, the iRANO guidelines suggest a 

6-month period after the start of immunotherapy in which progressive disease needs to be 

confirmed by a follow up scan. In our cohort, there were no cases of early treatment-induced 

lesions occurring after 4 months from vaccine initiation, so our results support a reduction of 

the 6-month time window. We found 3 cases of pathologically proven treatment-induced 

lesions with biphasic volumetric evolution showing true tumor progression within 2.1 

months of the second surgery. We believe this discordance is attributable to sampling error 

with failure to capture areas of recurrent tumor on a background of treatment effect. 

Although all patients underwent open surgery with either subtotal or gross total resection, 

not all areas of excised tissue are routinely evaluated by the pathologist. In patients with 

biphasic lesion growth, histopathology showing treatment effect with none or small amount 

of viable tumor, did not seem to be a reliable outcome predictor. To our knowledge, 

dynamics of treatment-induced lesions have not been previously investigated. Our findings, 

although in a small sample of patients, suggest that true treatment-induced lesions have a 

monophasic course and that a biphasic growth pattern, carries a dismal prognosis despite 

histopathological diagnosis of treatment effect.

Prior studies evaluating ADC for differentiation between progression and treatment-induced 

lesions show inconsistent results. In general, the average ADC value of the contrast 

enhancing region has shown moderate diagnostic accuracy for the differentiation between 
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these two entities.[22, 23] In order to account for the heterogeneity of lesions, some authors 

resort to histogram analysis of ADC. Some studies found that the smallest ADC values 

within the enhancing lesion are the most useful,[24] other studies used intermediate 

ADC[25] and another study assigned the best discriminative power to the maximum ADC 

values.[26] A recent meta-analysis found moderate diagnostic performance of diffusion MRI 

in differentiating glioma recurrence from radiation necrosis and recommends a multimodal 

approach. The presence of centrally restricted diffusion in treatment-induced lesions can 

explain the inconsistent results found in the literature. Most studies focus on the ADC of the 

enhancing component, not realizing that the central coagulative necrosis in treatment-

induced lesions can restrict water motion to the same degree or even higher than tumor 

cellularity.[27] A recent article by Zakhari et al[12] describes the presence of centrally 

restricted diffusion in treatment induced necrosis and the diagnostic accuracy of the central/

peripheral ADC ratio for differentiation between radiation necrosis and recurrent tumor. Our 

findings, with a similar number of patients, support their results and consolidate the finding 

of centrally reduced diffusion as a highly specific sign of treatment-related lesions.

The current study has three main limitations. First, it included a small number of subjects 

and needs to be validated in a larger cohort. Second, only one neuroradiologist performed 

the tumor segmentation. Although this is usually the case in imaging research studies where 

manual segmentations are required, the lack of interobserver agreement assessment should 

be acknowledged. Third, the steroid dose was not directly available in the clinical notes. 

However, neuro-oncologists at our institution take this into account when assessing the 

results of the MRI and would make it clear in the clinical notes if there is suspicion that the 

radiological worsening is related to change in steroid dose. Nevertheless, we acknowledge 

that any information that is not systematically collected is susceptible of being overlooked.

Conclusion

One in three patients with newly diagnosed glioblastoma treated with chemoradiotherapy 

and HSP vaccine developed treatment-induced lesions. This proportion is not very different 

to that reported in studies involving standard of care chemoradiotherapy. Our findings do not 

support the iRANO 6-month window in which progressive disease should not be declared 

after immunotherapy initiation and further evidence-based refinements to this time period 

are warranted. We found that a biphasic pattern of growth in pathologically confirmed 

treatment-related lesions was associated with a dismal prognosis. The presence of lower 

ADC values in the central necrotic portion of the lesion compared to the enhancing rim is a 

specific sign of treatment-induced lesions. Further studies assessing tumor kinetics and 

incorporating advanced imaging in glioma immunotherapy will be essential in order to 

further refine response assessment guidelines.
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FIG 1. 
Evolution of the contrast enhancing lesion volume over time in cases of early treatment-

induced lesions and retrospective application of iRANO criteria. All cases of early 

treatment-induced lesions start before 4 months post vaccine initiation. In 3 cases of 

treatment-induced lesions, a biphasic pattern is observed with a second period of worsening 

after stabilization or improvement (dashed lines). This biphasic patter was associated to bad 

prognosis despite histopathological diagnosis of treatment-induced lesions.
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FIG 2. 
Inclusion and exclusion flow chart for quantitative ADC assessment.
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FIG 3. 
(A) Box and whiskers plot depicting the distributions of the peripheral/central ADC ratio in 

the tumor progression and treatment-induced lesions groups (p=0.023). (B) Receiver 

operating characteristic curve for the detection of treatment-induced lesions by using the 

peripheral/central ADC ratio (positive state corresponds to treatment-induced lesion).
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FIG 4. 
Examples depicting the inverted ADC pattern in treatment-induced lesions compared to 

progressive tumor. Lower ADC values are centrally located in the treatment-induced lesion 

depicted in the upper row versus peripherally in the case of tumor progression in the lower 

row. Histopathological evaluation in the case featured in the upper row showed necrotic 

tissue without recurrent neoplasm. The patient was alive 3 years after this scan. In the case 

featured in the lower row, histopathological evaluation showed mostly viable tumor and the 

patient died 1 year after this scan.
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Table 1:

ADC values for different lesion regions in treatment-induced lesions and tumor progression

Treatment-induced lesions Tumor progression p value

Mean 95% CI Mean 95% CI

Normalized ADC peripheral enhancing region 178 1.54–2.01 1.84 1.60–2.07 0.606

Normalized ADC central necrosis 1.62 1.40–1.83 1.90 1.58–2.22 0.114

ADC peripheral/ADC central 1.10 1.02–1.19 0.97 0.94–1.01 0.023
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