
Lawrence Berkeley National Laboratory
LBL Publications

Title
EZ: An efficient, charge conserving current deposition algorithm for electromagnetic 
particle-in-cell simulations

Permalink
https://escholarship.org/uc/item/8rp6g8wv

Authors
Steiniger, Klaus
Widera, Rene
Bastrakov, Sergei
et al.

Publication Date
2023-10-01

DOI
10.1016/j.cpc.2023.108849

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8rp6g8wv
https://escholarship.org/uc/item/8rp6g8wv#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


EZ: An Efficient, Charge Conserving Current Deposition Algorithm for
Electromagnetic Particle-In-Cell Simulations

Klaus Steinigera,b,1,∗, Rene Wideraa,1, Sergei Bastrakova, Michael Bussmanna,b, Sunita Chandrasekaranc,
Benjamin Hernandezd, Kristina Holsapplec, Axel Hueble, Guido Juckelanda, Jeffrey Kellinga, Matt
Leinhauserc, Richard Pauscha, David Rogersd, Ulrich Schramma,f, Jeff Youngg, Alexander Debusa

aHelmholtz-Zentrum Dresden – Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
bCASUS – Center for Advanced Systems Understanding, Untermarkt 20, 02826 Görlitz, Germany

cDepartment of CIS, University of Delaware, Newark, DE 19716, USA
dNational Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

eLawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
fTechnische Universität Dresden, 01062 Dresden, Germany

gGeorgia Tech, School of Computer Science, Atlanta, GA 30332, USA

Abstract

We present EZ, a novel current deposition algorithm for particle-in-cell (PIC) simulations. EZ calculates the
current density on the electromagnetic grid due to macro-particle motion within a time step by solving the
continuity equation of electrodynamics. Being a charge conserving hybridization of Esirkepov’s method and
ZigZag, we refer to it as “EZ” as shorthand for “Esirkepov meets ZigZag”. Simulations of a warm, relativistic
plasma with PIConGPU show that EZ achieves the same level of charge conservation as the commonly used
method by Esirkepov, yet reaches higher performance for macro-particle assignment-functions up to third-
order. In addition to a detailed description of the functioning of EZ, reasons for the expected and observed
performance increase are given, and guidelines for its implementation aiming at highest performance on
GPUs are provided.

Keywords: EZ, particle-in-cell, charge conservation, current deposition, PIConGPU

1. Introduction

Electromagnetic particle-in-cell (PIC) [1, 2] simulation is the most widespread method of modeling
kinetic plasma phenomena and is a quasi-gold standard for computer experiments. PIC simulations have
a wide range of applications, such as laser-plasma acceleration [3–12], laser-driven light sources [13, 14],
inertial confinement fusion [15], and astrophysical plasma phenomena [16–19]. Many state-of-the-art PIC
codes have memory requirements that need high performance computing resources. Notably, simulations of
solid-density plasmas commonly require substantial amounts of computing and storage capacity of current
top supercomputers [20, 21].

Most of the computational time of a PIC iteration is spent on the current deposition (CD) stage, even in
highly optimized codes. Leinhauser et al. measured that close to 60% of an iteration was spent on the CD
stage for a representative plasma physics case simulated by PIConGPU [22]. The current deposition stage
computes the density values on the grid from charged macro-particle motion in the PIC simulation. This
density distribution can determine the new electric and magnetic field strengths in a manner that respects
Gauss’s law. Widely adopted charge conserving current depositions schemes were developed by Eastwood
[23], Villasenor et al. [24], Esirkepov [25], and Umeda et al. [26].

∗Corresponding author
Email address: k.steiniger@hzdr.de (Klaus Steiniger)

1These authors contributed equally

Preprint submitted to Computer Physics Communications September 19, 2023

ar
X

iv
:2

30
9.

09
87

3v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 1
8 

Se
p 

20
23



The allocations of compute resources for laser-plasma simulations can reach hundreds of million core
hours on top supercomputers [27]. Considering these high computational demands, an improvement in
current deposition run time without loss of precision would significantly reduce resources necessary to carry
out these simulations.

Here, we present a novel current deposition method offering compute savings on the scale of such high
resource demands. It is a hybridization of Esirkepov’s method [25] and ZigZag [26, 28], referred to as “EZ”
henceforth. EZ combines the best of both methods by being exact charge conserving and applicable to
arbitrary macro-particle assignment-functions2 like Esirkepov’s method, and maintaining a reduced compu-
tational effort like ZigZag. EZ can be implemented in existing PIC codes and replaces Esirkepov or ZigZag,
resulting in at least similar, and often better, performance.

We implemented and tested EZ to deployment in PIConGPU, a popular PIC code. Our experiments
verify the important charge conservation property of EZ and demonstrate performance improvements over
Esirkepov’s method across a variety of compute architectures.

PIConGPU is an open source, performance-portable implementation of the fully relativistic 3D3V
particle-in-cell method written in C++ [17, 29]. It is used by a steadily growing and world-spanning scientific
community, including fields such as particle physics, cancer research, and materials science. Since PIConGPU
builds on the performance portability library alpaka [30, 31], there is a single source C++ implementation of
EZ in PIConGPU, which additionally takes the macro-particle assignment-function as a compile-time tem-
plate argument. The template argument allows a generic implementation for all assignment-functions and
alpaka enables mapping of the single implementation to all supported compute platforms. This abstraction
prevents the need for redundant implementations of the method for different macro-particle assignment-
functions and compute platforms. As a result, EZ remains maintainable and portable, just as PIConGPU
itself.

2. EZ Single Macro-Particle Current Density Calculation Method

2.1. Introduction to the Method

First we introduce the principle idea of the method and why a performance increase is expected in
comparison to existing methods.

EZ calculates the total current density in a similar way to existing methods. At each particle-in-cell
iteration, EZ obtains the total current density on the grid by adding all single macro-particle contributions
on the grid.

EZ’s novelty lies in the computation of each individual macro-particle contribution. In general, the single
macro-particle contribution to the current density is defined by the motion of the macro-particle within an
iteration step. At the beginning of current deposition we know the old and new positions of a macro-particle.
Existing methods differ in the assumption they make about which path a macro-particle takes from its old
to new position. Whereas Esirkepov’s method assumes a straight line motion [25], ZigZag assumes a non-
straight line motion leading over a relay point [26]. EZ employs a macro-particle path splitting approach
similar to ZigZag, but calculates the current density contribution for each segment with Esirkepov’s method.
Considering ZigZag has not been generalized to arbitrary macro-particle assignment functions, EZ introduces
a novel macro-particle path splitting approach for arbitrary macro-particle assignment functions.

With EZ, the initial and final positions of a macro-particle are used to define a relay point. This relay
point is where the path of the macro-particle is split. Then, the macro-particle path is decomposed into two
smaller paths: the initial position to the relay point and the relay point to the final position. EZ then uses
Esirkepov’s method to calculate the current density of each smaller path.

EZ’s path splitting with Esirkepov’s method offers improved efficiency compared to Esirkepov’s original
method in two ways:

2We follow the naming of [1], but use symbol S where they use symbol W . The assignment function is also referred to as
shape factor by [2] and form-factor by [25], both using symbol S. Hierarchy of assignment functions: CIC – first-order, TSC
– second-order, PQS – third order.

2



Figure 1: Yee cell with charge density ρ and current deposition vector W at a cell’s origin, components of the magnetic field
at the center of faces, components of both electric field and current density halfway along edges.

1. Computational loops require fewer iterations to calculate single macro-particle current density com-
ponents.

2. Macro-particle assignment-functions can be implemented for evaluation only on their support, sparing
conditional statements required if care needed to be taken for out-of-support evaluations. Eliminating
conditional statements and branching on highly parallel computer hardware avoids significant perfor-
mance penalties [32].

2.2. Definition of the Relay Point and the Assignment Cell

The trajectory of a macro-particle is split in two parts only if the grid nodes to which its charge is
assigned are different before and after movement. The discrete charge density ρ|ni,j,k (at time step n) is
calculated on a staggered Yee grid. The layout of the Yee cell and the location of the charge density values
are visualized in fig. 1. Charge density values ρ|ni,j,k are located at the cell origin at integer times.

In general, computing the discrete charge density associated with a macro-particle involves evaluating
the macro-particle’s assignment-function3 S. The discrete charge density ρ of a single macro-particle on the
grid node (i, j, k) is given by

ρ|ni,j,k = QpeS(xp − i∆x)S(yp − j∆y)S(zp − k∆z)/(∆x∆y∆z)

where Qp is the macro-particle’s charge relative to e, (xp, yp, zp) is the macro-particle’s position at time step
n, and ∆x, ∆y, ∆z denote the grid steps.

In detail, a trajectory is split when a macro-particle leaves its assignment cell x̃assignment−cell (1), where
x̃ = x/∆x. The assignment cell encloses all possible locations of a macro-particle from which charge is
assigned to the same set of grid nodes in the macro-particle’s neighborhood. Accordingly, a macro-particle’s
assignment-cell location and boundaries depend on its position xold before the movement and its assignment
function S, respectively.

x̃assignment−cell ∈


[floor(x̃old),floor(x̃old) + 1)

if assignment-function is odd order,

[floor(x̃old + 0.5)− 0.5,floor(x̃old + 0.5) + 0.5)

if assignment-function is even order,

(1)

Expressions for the assignment-cell coordinates along the y and z axes are similarly obtained.
The trajectory is split at the relay point, which does not need to be on the straight line path between

the macro-particle’s old and new position. Several definitions for the relay point’s coordinates are possible
as long as the following conditions are fulfilled:

3Ref. [1] uses symbol W .

3



1. Along the axis where the macro-particle leaves the assignment cell, the relay point’s coordinate equals
the assignment cell’s boundary which is traversed by the macro-particle.

2. Along the axes where the macro-particle does not leave the assignment cell, the relay point’s coordinate
can be anywhere within or on the boundaries of the assignment cell along this direction.

For example, the coordinate of the relay point along the x-axis can be chosen as:

x̃r =


max[floor(x̃old),floor(x̃new)]

if assignment-function is odd order,

max[floor(x̃old + 0.5),floor(x̃new + 0.5)]− 0.5

if assignment-function is even order,

(2)

which is valid for both the macro-particle leaving the assignment cell along this axis and not leaving it.
Expressions for the relay point coordinates along the y and z axes are similarly obtained.

2.3. Current Density Calculation for a Macro-Particle Staying within its Assignment Cell

With Esirkepov’s method at its core, EZ solves the electromagnetic continuity equation (3) on the
staggered Yee grid to calculate the charge conserving single macro-particle current density J from the
temporal change of the respective charge density ρ [33].

∇ · J+ ∂ρ
∂t = 0 (3)

Within the Yee cell, the discrete current density values J|n+1/2 = (Jx|n+1/2
i+1/2,j,k, Jy|

n+1/2
i,j+1/2,k, Jz|

n+1/2
i,j,k+1/2) are

located halfway along the cell edges at times halfway between integer times, as visualized in fig. 1.
For the derivation of the current density calculation on the grid, eq. (3) is rescaled using elementary

charge e, speed of light c, grid steps ∆x, ∆y, ∆z, and the time step ∆t:

• The scaled charge is defined as ρ̃ = ρ∆x∆y∆z
e

• The current density field is defined as J̃ = J∆x∆y∆z
ec

Then, the electromagnetic continuity equation in finite differences reads

ρ̃|n+1
i,j,k − ρ̃|ni,j,k

c∆t
= −

J̃x|n+1/2
i+1/2,j,k − J̃x|n+1/2

i−1/2,j,k

∆x

−
J̃y|n+1/2

i,j+1/2,k − J̃y|n+1/2
i,j−1/2,k

∆y
−

J̃z|n+1/2
i,j,k+1/2 − J̃z|n+1/2

i,j,k−1/2

∆z
. (4)

Since the charge densities ρ̃|ni,j,k and ρ̃|n+1
i,j,k are known from the macro-particle’s position before and after

movement, respectively, J̃|n+1/2 can be calculated from (4). Only current densities associated with the
movement of a single macro-particle need to be considered, because the total current density on a grid node
is obtained by summing current densities on that grid node of all macro-particles.

A charge-conserving current density of a single macro-particle is obtained from the continuity equation
(4) by inserting this macro-particle’s charge density before and after a movement. Let the macro-particle’s
position at time tn = n∆t before a movement be (xold, yold, zold) and at time tn+1 = (n + 1)∆t after a
movement be (xnew, ynew, znew). Denoting the macro-particle’s charge as Q, and abbreviating S(x− i∆x) =:
Si(x) (y and z direction similarly), the scaled single macro-particle current density is related to the current

deposition vector W|n+1/2
i,j,k :

J̃x|n+1/2
i+1/2,j,k − J̃x|n+1/2

i−1/2,j,k = −Q
∆x

c∆t
Wx|n+1/2

i,j,k

J̃y|n+1/2
i,j+1/2,k − J̃y|n+1/2

i,j−1/2,k = −Q
∆y

c∆t
Wy|n+1/2

i,j,k

J̃z|n+1/2
i,j,k+1/2 − J̃z|n+1/2

i,j,k−1/2 = −Q
∆z

c∆t
Wz|n+1/2

i,j,k ,

(5)

4



with the current deposition vector W|n+1/2
i,j,k being defined from the continuity eq. (4) for the movement of

a single macro-particle:

Si(xnew)Sj(ynew)Sk(znew)− Si(xold)Sj(yold)Sk(zold)

= Wx|n+1/2
i,j,k +Wy|n+1/2

i,j,k +Wz|n+1/2
i,j,k .

Assuming the macro-particle travels along a straight line by a distance not more than one cell and
following the notation established by Esirkepov [25], the components of W are related to the assignment-
function of the macro-particle as follows. Defining the helper function

W (s1, s2, s3, s4, s5, s6) =

1

3
(s4s5s6 − s1s5s6 + s4s2s3 − s1s2s3)

+
1

6
(s4s2s6 − s1s2s6 + s4s5s3 − s1s5s3) ,

the components of W can be calculated by

Wx|n+1/2
i,j,k =

W (Si(xold), Sj(yold), Sk(zold), Si(xnew), Sj(ynew), Sk(znew))

Wy|n+1/2
i,j,k =

W (Sj(yold), Si(xold), Sk(zold), Sj(ynew), Si(xnew), Sk(znew))

Wz|n+1/2
i,j,k =

W (Sk(zold), Sj(yold), Si(xold), Sk(znew), Sj(ynew), Si(xnew)) .

(6)

Current deposition by Esirkepov’s method generally takes the macro-particle’s location before and after
movement as ‘old’ and ‘new’ coordinates. EZ makes the same choice as long as the macro-particle does not
leave its assignment cell during movement. This already yields a current density for Esirkepov’s method and
EZ which is different from ZigZag’s, as is shown in the supplemental material for macro-particle assignment-
function CIC.

2.4. Current Density Calculation for a Macro-Particle Leaving its Assignment Cell

If the macro-particle leaves its assignment cell during movement, EZ makes a different choice for the ‘old’
and ‘new’ coordinates compared to Esirkepov’s method. EZ takes inspiration from the ZigZag approach of
splitting the trajectory in two parts. The total current density associated with the macro-particle movement
is then obtained by summing the contributions of two virtual macro-particles, each virtual macro-particle
traveling along its respective part of the split trajectory during the whole time step. That is, the ‘old’
and ‘new’ position of the first virtual macro-particle refer to the original macro-particle’s initial position
and the coordinates of the relay point, while they refer to the relay point and the original macro-particle’s
final position for the second virtual macro-particle. Since each of the virtual macro-particle movements
is restricted to the respective virtual macro-particle’s assignment cell, the associated single virtual macro-
particle current density can be calculated by Esirkepov’s method as outlined above.

The procedure of splitting the trajectory at the relay point and adding up the current densities of
two virtual macro-particles preserves the finite-difference continuity equation. Charge density value ρ̃′|n+1

introduced at time tn+1 by the first virtual macro-particle located at the relay point and charge density
value ρ̃′|n introduced at time tn by the second virtual macro-particle located at the relay point are equal
and together represent a static charge density distribution which does not generate a current.

Namely, the current density values produced by the virtual macro-particles separately adhere to their
respective continuity equations with respective left-hand sides:

ρ̃′|n+1
i,j,k−ρ̃|ni,j,k

c∆t and
ρ̃|n+1

i,j,k−ρ̃′|ni,j,k
c∆t

5



Summing up these equations and taking into account ρ̃′|n+1 = ρ̃′|n yields eq. (4) for the combined current
density. Thus, EZ current deposition is charge-conserving.

However, due to discretization, the implementation-specific choice of the relay point can result in different
values for the components of the current deposition vector W and therefore different grid values of J for the
farthest non-vanishing grid nodes. We emphasize that the finite-difference continuity eq. (4) is preserved
with any of the relay point choices (satisfying the conditions). This fact has already been pointed out in the
original article [25] with its uniqueness lemma being tied to the straightforward trajectory assumption.

Since numerical dispersion, as well as other particle-in-cell simulation properties, depend on the current
deposition algorithm [34–36], it is possible that certain choices of the relay point’s coordinates yield favorable
numerical conditions.

In case of 2D3V simulations, where all fields and assignment-functions depend only on x and y, the current
density components Jx and Jy are calculated using the same trajectory splitting approach for movements
along x, y. The corresponding components Wx and Wy of the current deposition vector are calculated from
equation 6 with Sk(z) = 1 for all z. After simplification, it yields:

Wx|n+1/2
i,j,k = W (Si(xold), Sj(yold), 1, Si(xnew), Sj(ynew), 1)

=
1

2
(Si(xnew)Sj(ynew)− Si(xold)Sj(ynew)

+ Si(xnew)Sj(yold)− Si(xold)Sj(yold))

Wy|n+1/2
i,j,k = W (Sj(yold), Si(xold), 1, Sj(ynew), Si(xnew), 1)

=
1

2
(Si(xnew)Sj(ynew)− Si(xnew)Sj(yold)

+ Si(xold)Sj(ynew)− Si(xold)Sj(yold)) .

However, for movement along z there is no grid or coordinate change and therefore no trajectory splitting
is possible. In this case we use the same way of calculating Jz as eq. (37) in [25], which in our notation
becomes

J̃z|n+1/2
i,j,k+1/2 =

Q
vz
c

(
1

3
Si(xnew)Sj(ynew) +

1

6
Si(xold)Sj(ynew)

+
1

6
Si(xnew)Sj(yold) +

1

3
Si(xold)Sj(yold)

)
(7)

where vz is velocity along z at time tn+1/2.

3. Efficiency Increase of EZ Compared to Esirkepov’s Method

EZ can significantly shorten the calculation time of the current density field compared to Esirkepov’s
method. This originates from a reduction of the necessary computations of the current deposition vector
W as explained in the following.

For a macro-particle leaving its assignment cell during step from time tn to tn+1, fig. 2 visualizes the
non-vanishing entries of the current deposition vector components Wx, Wy, as well as current density Jx, Jy
on a 2D grid for Esirkepov’s method. The relay point (xr, yr) marks the position where charge assignment
extends over a different set of grid nodes when crossed by the macro-particle. The extent of the macro-
particle’s assignment-function at times tn and tn+1 are highlighted for the second-order assignment-function
TSC [1]. The number of nodes with non-vanishing values of W and J is within the bounded area. Albeit the
values of the dashed entries are zero in the special case of this drawing, they are non-zero for a movement in
another direction and therefore need to be calculated in a generally applicable implementation of Esirkepov’s
method. However, the last row (column) of Wx (Wy) at x = +2 (y = +2) does not need to be calculated,

6



Figure 2: Visualization of discrete current deposition on two-dimensional grid for Esirkepov’s method with second order
assignment function TSC.

Figure 3: EZ-specific visualization of two-dimensional grid and second order assignment function TSC. The left hand side
pictures the first part while the right hand side pictures the second part of the split trajectory.

since the next row (column) of this quantity along +x (+y) is zero and therefore the row (column) of current
density Jx (Jy) at x = +2+1/2 (y = +2+1/2) vanishes according to eq. (5). For the general 2D case, there
are in total 4× 3 = 12 evaluations of each Wx and Wy required to calculate the respective current density
component with Esirkepov’s original method. See eq. (7) for the additional calculation of Jz that needs to
be performed in 2D3V simulations.

In general, for an assignment-function of order l, where charge is assigned to (l + 1)d points in a d-
dimensional simulation, this requires a maximum of (l + 2)d−1 × (l + 1) evaluations of a component of the
current deposition vector W per macro-particle with Esirkepov’s original method. This assumes the most
general case where the nodes, to which a macro-particle’s charge is assigned, change along every axis due to
its movement.

For EZ, fig. 3 visualizes the non-vanishing entries of Wx, Wy, Jx, Jy similarly to fig. 2. Two independent
but equal virtual macro-particles each travel along one part of the split trajectory. By the same argument
as used for the classic method by Esirkepov, 3× 2 = 6 evaluations of each Wx and Wy are required per part
of the trajectory. Although this is the same number as for Esirkepov’s method (in this 2D example), EZ
offers improved performance compared to direct application of Esirkepov’s method.

Esirkepov’s traditional method must calculate the current density on all nodes to which charge of the

7



macro-particle may be assigned before and after movement. This includes evaluations of the assignment-
function out of its support making the assignment function implementation more costly compared to EZ.
Due to path splitting in EZ, assignment function evaluations are always restricted to its support. While this
reduces the complexity of assignment function implementations on the one hand, it also stimulates parallel
calculation of the current density from many macro-particles by equalizing between all macro-particles the
number of nodes at which the single contributions are calculated. That is, there is a fixed set of operations
performed equally for all macro-particles in the current density calculation without branching from the
instruction sequence.

Moreover, in a d-dimensional simulation EZ reduces evaluations of the current deposition vector compo-
nents to 2 × (l + 1)d−1 × l points, as it spares calculations where the current density evaluates to zero. In
3D, these are fewer than the required amount of points for Esirkepov’s method for assignment-functions of
order l = 3 (PQS) and lower.

In summary, employing the trajectory splitting in principle allows EZ to surpass the performance of
Esirkepov’s method for two reasons.

1. EZ evaluates the current deposition vector W at fewer positions for lower order assignment-functions.

2. Reduced assignment-function definitions can be utilized where evaluations at positions outside the
support do not need to be handled since all assignment-function evaluations are on-support with EZ.

As explained above, the latter equalizes the instruction sequence for all macro-particles which keeps thread
branch divergence low, thereby promoting parallel computation via SIMT (single instruction, multiple
threads) while avoiding serialization and idling threads. This is especially important when running on
GPUs. Moreover, with the support size being a fixed value known at compile time, compilers may be able
to optimize loops in the calculation of W. On CPUS, these loops can be auto-vectorized promoting parallel
computation via SIMD (single instruction, multiple data). Specifically for PQS, where the number of nodes
with non-zero entries of the current deposition vector components is four in two directions, iterations of the
W calculation loop and writes of the result to memory can be directly expressed with SSE4 (Streaming
SIMD Extensions 4) intrinsics for single precision or AVX2 (Advanced Vector Extensions 2) intrinsics for
double precision, explicitly enforcing usage of SIMD operations instead of relying on auto-vectorization.

4. EZ Implementation in PIConGPU

EZ’s implementation in PIConGPU had the design goals:

1. Keep register footprint low to increase (GPU) occupancy [37].

2. Keep memory accesses, especially writes, low to avoid latency.

To address goal (1), the calculation of every component of the current deposition vector W is performed
independently. This results in multiple calculations of the same assignment-function value instead of storing
it in register memory, accomplishing the first goal.

Goal (2) provides the reason for the choice of the relay point. The initial coordinates of the relay
point are the coordinates of the macro-particle’s location after movement. Only if a macro-particle leaves
its assignment cell along one axis, is the coordinate of the relay point on this axis changed. The relay
point coordinates along the other axes remain unchanged as long as the macro-particle does not leave the
assignment cell along these axes too. This allows cutting off calculations of whole components of the current
density unless necessary.

For example, if the macro-particle is still within its assignment cell after particle push, the first virtual
particle will move along the whole trajectory while the second virtual particle will not move at all. Therefore,
the second virtual particle’s current density calculation is completely spared in PIConGPU. While this
possibly leads to branching of threads once per macro-particle, the performance impact is not as significant
as branching during node level calculation of the single macro-particle current density.

Next, consider a macro-particle leaving its assignment cell only along one axis, say x. The relay point
coordinates are at the assignment cell boundary along x and at the macro-particle’s final position along y.
Then the first virtual particle changes its position along x and y while it moves from the macro-particle’s

8



Table 1: Comparison of the number of nodes with non-zero entries of the current deposition vector for single macro-particle
current deposition by Esirkepov’s method and EZ for a second-order (TSC) macro-particle assignment-function.

macro-particle number of nodes with non-zero entries of the current deposition vector component total writes to
leaves along Esirkepov EZ current density array
direction Wz Wy Wx Wz Wy Wx Esirkepov EZ

none 2 × 3 × 3 3 × 2 × 3 3 × 3 × 2 2 × 3 × 3 3 × 2 × 3 3 × 3 × 2 54 54
x 2 × 3 × 4 3 × 2 × 4 3 × 3 × 3 2 × 3 × 3 3 × 2 × 3 2 × (3 × 3 × 2) 75 72

y, x 2 × 4 × 4 3 × 3 × 4 3 × 4 × 3 2 × 3 × 3 2 × (3 × 2 × 3) 2 × (3 × 3 × 2) 104 90
z, y, x 3 × 4 × 4 4 × 3 × 4 4 × 4 × 3 2 × (2 × 3 × 3) 2 × (3 × 2 × 3) 2 × (3 × 3 × 2) 132 108

initial position to the relay point. The second virtual particle moving from the relay point to the macro-
particle’s final position then only travels parallel to the x-axis allowing to spare the computation of the
y-component of its associated current density as it is zero. Moreover, a computation of the z component of
the current density is not performed for either virtual particle.

Table 1 compares the number of nodes with non-zero entries of the components of the current deposition
vector and the resulting total number of writes to the current density array between Esirkepov’s method and
EZ. A second-order (TSC) macro-particle assignment-function [1] is considered as an example. The number
of nodes with non-zero entries, and of current density writes accordingly, depend on the number of directions
along which the macro-particle leaves its assignment cell. In the given order, the cases correspond to not
leaving the cell, or leaving along one, two, or three directions, respectively. The number of total writes
given in the table is for a macro-particle moving along all three spatial directions, such that all current
deposition vector components are non-zero. The total number of writes equals the number of nodes with
non-zero current deposition vector entries summed over all components. A lower number of calculations and
writes presumably results in better performance. The number of nodes with non-zero entries is given per
dimension, where the order corresponds to (z, y, x).

Note, in this comparison an optimization of Esirkepov’s method has been exploited as follows. If a
macro-particle does not leave its assignment cell along all directions, there are nodes at which computations
of the current-distribution vector can be spared, as values at these nodes are zero. Sparing these computa-
tions reduces computational time as well as memory writes. These nodes are oriented along the directions
where the macro-particle stays within its assignment cell. That is, if a macro-particle moves in a specific
direction, but stays within its assignment cell along this direction, the number of nodes at which the current
deposition vector components need to be evaluated are reduced by one along this direction. PIConGPU ap-
plies these optimizations in its implementation of Esirkepov’s method, which is relevant for the performance
comparisons in sec. 5.2.

As can be seen in tab. 1, EZ outperforms Esirkepov’s method in all cases but the first one where they
are equal. In this first case, they are equal due to the above described optimization applied to Esirkepov’s
method. Since optimized assignment-function implementations can be used for EZ, it can still be faster
than Esirkepov’s method for this case in practice. Overall, EZ shows potential for improving Esirkepov’s
performance.

Lower order assignment-functions, e. g. zeroth-order (NGP) or first-order (CIC), increase the difference
between the Esirkepov’s method and EZ with EZ requiring fewer calculations and writes.

In cases where assignment functions of fourth-order and higher are required to minimize aliasing effects,
EZ’s favorable properties of reduced assignment-function complexity and uniform instruction sequence can
offer a benefit compared to Esirkepov’s method.

5. Physics Acceptance Tests and Performance Results

5.1. Level of Charge Conservation

5.1.1. Single Macro-Particle Simulation

In order to evaluate EZ’s level of charge conservation and to compare this to the optimized Esirkepov’s
method and ZigZag, a simple single moving macro-particle test case is set up in PIConGPU.

The test consists of one macro-particle of first-order assignment-function CIC [1] with charge −e in a
24×24×24 cells simulation volume. At the beginning it is located at r = (8.9∆x, 8.8∆y, 8.7∆z) and moving

9



Table 2: Maximum absolute value λSMP of the normalized remainder R̃SMP of Gauss’s law for simulations of a single moving
macro-particle with different current deposition methods.

macro-particle level of charge conservation λSMP
leaves along optimized Esirkepov’s method ZigZag EZ

x 3.6e-08 3.6e-08 3.6e-08
y, x 5.9e-08 4.1e-08 4.1e-08

z, y, x 5.8e-08 1.3e-3 5.8e-08

with constant normalized speed v/c = β = 0.999. The test comprises three scenarios, each characterized by
the number of directions along which the macro-particle leaves its assignment cell. It does so either along
the x axis only, within the x and y plane only, or diagonally across the volume. The respective velocity
vectors are v = v · (1, 0, 0), v = v · (1, 1, 0)/

√
2, or v = v · (1, 1, 1)/

√
3.

Within the PIC iteration step, the electric field E and charge density field ρ are calculated by PIConGPU.
These are written to disk after one time step ∆t = 0.5∆x

c and then used to calculate the normalized remainder

R̃SMP of Gauss’s law. That is, the field R|n = ∇·E|n−ρ′|n normalized to elementary charge per cell volume
ρSMP = e/(∆x∆y∆z) such that R̃SMP = R/ρSMP. The charge density ρ′|n = ρ|n−ρ|0 used in the calculation
of R|n is a composition of the single macro-particle charge density ρ|n at time step n and the sign-inverted
single macro-particle charge density at simulation start −ρ|0, in order to account for the virtual mirror
charge on the grid created by the finite-difference time-domain electromagnetic field solver employed by
PIConGPU, as it assumes zero field at simulation startup. R̃SMP quantifies the level of charge conservation
in the simulations. Ideally, R̃SMP is zero in case of perfect charge conservation and absent floating point
round-off errors.

For this single macro-particle test case, the level of charge conservation λSMP is quantified by the largest
absolute value of R̃SMP on the grid. That is, λSMP = ∥R̃SMP∥∞ := max{|R̃SMP|ijk|}. Results are displayed
in Table 2. The source codes of simulations and analysis are available online [38].

Esirkepov’s method and EZ reach comparable charge conservation in all three scenarios, where the
absolute level of charge conservation is on the order of rounding error of floating-point arithmetic operations.
ZigZag is on the same level as Esirkepov’s method, as long as the macro-particle does not move diagonally
through the volume. In the case of the macro-particle moving diagonally through the volume, ZigZag’s
charge conservation is orders of magnitude worse compared to Esirkepov’s method and EZ. We suspect, the
3D eqs. (20) of ZigZag in [26] are actually only valid in 2D as they miss contributions to the current density
J as in eqs. (35)-(37) in [24], which are proportional to the product of a macro-particle’s displacements in
all three dimensions. Due to this shortcoming of ZigZag, we will not take it into account in the following
comparisons.

5.1.2. Warm Plasma Simulation

In order to evaluate EZ’s level of charge conservation in a real world simulation and to compare it to
the optimized Esirkepov’s method, we set up a warm plasma simulation. The simulation consists of an
initially field free space in which there are approximately 177 million electron-like macro-particles moving at
a relativistic velocity. Due to macro-particle speeds close to the speed of light, we anticipate about half of
the macro-particles to leave their assignment cell per step which is sufficient to compare charge conservation
of EZ and Esirkepov’s method.

The simulation domain extends over 192 cells in each direction and employs periodic boundary conditions
on each side. There are 25 macro-particles per cell which sample a homogeneous distribution of relativistic
electrons at a density of ρWP = −1020 e/m3. Their initial momenta are normally distributed along each
spatial dimension with a variance of 17.5m2c2, resulting in a distribution of initial total momentum according
to a Maxwell-Boltzmann distribution with a temperature of 8942 keV and a most probable kinetic energy
of 5mc2. The grid resolution of ∆x = 57.8918 µm is equal along all directions and chosen such that the
simulation volume encompasses 5 Debye lengths along one axis at the given density and initial temperature.
Time resolution is ∆t = 0.5∆x/c, providing variability with respect to the choice of Maxwell solver. The
simulation setup and analysis code are available online [38].

Whereas a local estimate for the relative error of charge conservation at one time step can be defined by
the normalized remainder R̃WP = R/ρWP of Gauss’ law at each grid node, a global estimate for the relative

10



Figure 4: Evolution of charge conservation over time in the warm plasma simulation for EZ and Esirkepov’s method and
different macro-particle assignment-functions of increasing order. Charge conservation λWP is quantified by the standard
deviation of the normalized Gauss’ law remainder R̃WP distribution on the grid, eq. (8).

error of charge conservation at one time step can be obtained by analyzing the scattering of all R̃WP values
on the grid around the expectation value zero. We quantify the global charge conservation level λWP by the
estimated standard deviation of the R̃WP sample

λWP =

√√√√ 1

Ngrid

Ngrid∑
l=1

R̃2
WP,l , (8)

where Ngrid is the total number of R̃WP values at one time step, i. e. (192− 1)3.
Evolution of global charge conservation λWP for EZ and Esirkepov’s method during the course of simu-

lation is depicted in Fig. 4 for the three macro-particle assignment-functions first-order CIC, second-order
TSC, and third-order PQS [1]. Global charge conservation is on the same order of magnitude for both EZ
and Esirkepov’s method for all three macro-particle assignment-functions. At this order of magnitude a
scattering of global charge conservation values is expected due to numerical floating point round off errors
in parallel atomic summation of single macro-particle currents in the current deposition algorithm.

The uncertainty of λWP is estimated to be λWP/
√
2n [39]. For all data points in Fig. 4, this is below or

equal to 1.2× 10−10 which happens to be smaller than the markers of the data points and therefore is not
visible.

From the results of the single macro-particle and the warm plasma simulation we conclude successful
validation of EZ.

5.2. Performance Comparison

In order to examine the expected scaling of run time with macro-particle assignment-function order for
the optimized Esirkepov’s method and EZ, we run the above warm plasma simulation setup for several macro-
particle assignment-functions and on two different GPUs, as well as on a CPU. Recall that optimizations
applied to Esirkepov’s method are laid out in Sec. 4.

5.2.1. Setup

Simulations ran for assignment-functions from first-order CIC to third-order PQS [1] on one NVIDIA
Tesla V100 16GiB GPU at Summit [40], one AMD Instinct MI100 GPU at Spock [41], and one 64-core
AMD EPYC 7662 CPU at Spock [41].

NVIDIA V100 simulations on Summit’s IBM Power9 nodes were compiled with nvcc for architecture
sm 70 to target NVIDIA V100 with CUDA 11.0.3, spectrum-mpi 10.4.0.3-20210112, and boost 1.74.0

in the software environment.

11



Table 3: Performance metrics of EZ, as well as optimized Esirkepov’s current deposition (CD) method for the warm plasma
simulation with respect to macro-particle assignment-functions. The ratio of time taken by optimized Esirkepov’s method over
EZ defines speedup.

Assignment CD kernel run time [ms] Avg. time per step [ms]
function Esirkepov EZ speedup Esirkepov EZ speedup

NVIDIA V100 16GiB
CIC 31.30 21.68 1.444 88.15 ± 0.07 80.04 ± 0.06 1.100
TSC 109.72 94.69 1.159 164.24 ± 0.06 151.65 ± 0.04 1.083
PQS 297.33 252.95 1.175 356.16 ± 0.03 319.91 ± 0.06 1.113

AMD MI100
CIC 20.81 16.55 1.257 144.66 ± 0.52 139.43 ± 0.79 1.034
TSC 79.56 70.49 1.129 226.93 ± 0.79 217.02 ± 0.73 1.046
PQS 179.87 182.95 0.983 363.83 ± 0.80 366.70 ± 0.57 0.992

AMD EPYC 7662 64-core
CIC n/a 892.1 ± 0.4 864.9 ± 0.4 1.031
TSC n/a 1904.3 ± 0.5 1674.2 ± 2.1 1.137
PQS n/a 4658.0 ± 0.9 5037.6 ± 1.1 0.925

AMD MI100 simulations on Spock’s AMD EPYC 7662 64-core nodes were compiled with hipcc for
architecture gfx908 to target AMD MI100 with ROCm 4.5.0, cray-mpich 8.1.10, and boost 1.73.0 in the
software environment.

AMD EPYC 7662 64-core simulations were compiled with CCE Clang 12.0.3 with -march=native on
the compute node with cray-mpich 8.1.10, as well as boost 1.73.0 in the software environment and
executed with 128 threads.

For each assignment-function and processing unit, ten simulations executing one hundred time steps
were performed. Only the run time of the simulation steps was measured; simulation initialization and
finalization are not included in the measured time.

Since current deposition is just one part of a particle-in-cell iteration step, whose fraction of time taken
in the total simulation step increases with higher macro-particle assignment-function order, we additionally
profiled the kernel on the different GPU architectures. Profiling allowed us to quantify the impact of EZ
on the current deposition kernel alone. Profiles were taken for the first five time steps of the warm plasma
simulation. After an initial warm-up phase of two steps, profiles did not change significantly in the following
3 steps. Profiling results presented in the following are taken from time step five.

All simulations for one compute architecture ran successively on the same node to avoid confounding
hardware performance differences between nodes. GPU simulations were performed on a single GPU in
single precision.

5.2.2. Results

Table 3 provides multiple metrics of interest:

• Run times of the current deposition kernel for GPU runs and for all macro-particle assignment-
functions.

• Average time per total simulation step and their uncertainty.

• Calculated speedup with respect to the total simulation step duration when using EZ relative to
Esirkepov’s method. Speedup is the fraction of the average time per step required by Esirkepov’s
method in contrast to EZ. A value greater than 1 indicates an improved performance with EZ.

Run time of the current deposition kernel is obtained by profiling with ncu and rocprof on NVIDIA
V100 and AMD MI100, respectively. Each data point of the average time per simulation step is an average
of ten simulation runs executing one hundred steps. The uncertainty of the mean value is determined from

12



Table 4: Relative comparison of performance relevant profiling metrics between optimized Esirkepov’s Method and EZ on AMD
MI100. EZ is chosen as the baseline.

Assignment Scalar ALU Instr. Shared Memory Ops. Vector ALU Instr.
function SALUInsts LDSInsts VALUInsts

CIC + 89% + 75% + 29%
TSC + 47% + 21% - 2%
PQS + 10% + 0.03% - 8%

estimated standard deviation of sample data multiplied with a coverage factor of two to reach a level of
confidence of approximately 95% for the time per simulation step to lie in the given interval (assuming
measurement results are normally distributed).

For all macro-particle assignment-functions, EZ decreases run time of the current deposition kernel as
measured on GPUs, except for the highest order assignment-function PQS on AMD MI100.

With current deposition being just one part of the total simulation step, average run times of total steps
provide a better measure for overall time savings in a particle-in-cell simulation than just kernel run times.
For this metric, EZ achieves a speedup on all three compute architectures.

For the first- and second-order macro-particle assignment-functions, CIC and TSC respectively, EZ
consistently achieved speedup between 3.4% and 13.7%. For the third-order macro-particle assignment
function PQS, EZ’s speedup varies across compute architectures. For PQS on NVIDIA V100, 11.3% speedup
with EZ is the largest among all measured speedups on this compute architecture. However, for PQS on
AMD MI100, there is almost no performance difference. Total simulation step run times differ by fewer than
1%. Only for PQS on AMD EPYC CPU, EZ did not achieve comparable or better performance compared
to Esirkepov’s method.

5.2.3. Discussion

On GPUs, the observed differences between EZ and optimized Esirkepov’s method in kernel run times
are predominantly in line with our expectations from the scaling of compute and memory complexity,
2× (l+1)2 × l for EZ and (l+2)2 × (l+1) for optimized Esirkepov’s method, where we expect and observe
the largest difference for CIC, a smaller difference for TSC and a small or no difference for PQS. Only the
much shorter run time with EZ for PQS on NVIDIA V100 is not in line with our expectation.

The profiles provide additional insight into the observed scaling of kernel run times. On AMD MI100,
Esirkepov’s method performs more scalar Arithmetic Logic Unit (ALU) instructions and shared memory
operations than EZ for all three assignment functions as reported in Table 4.

For the slightly better performance of optimized Esirkepov’s method with PQS on AMD MI100, the
number of ALU calculations seems to make the critical difference due to the high arithmetic intensity for
this assignment function at equal GPU occupancy of EZ and Esirkepov. High arithmetic and low memory
intensity is indicated by the MemUnitBusy metric telling that memory operations take only about 3% of the
total GPU time. Equal GPU occupancy is indicated by equal usage of registers, as well as equal number
of wavefronts of EZ and Esirkepov. Summing vector and scalar instructions, Esirkepov’s method performs
about 6000 instructions (3%) fewer than EZ, leading to fewer than 2% kernel run time difference for PQS
on AMD MI100.

On NVIDIA V100, a very similar scaling compared to AMDMI100 is observed in terms of shared memory
instructions, arithmetic intensity, and occupancy. Again the total number of executed instructions is the
striking difference between Esirkepov’s method and EZ. Optimized Esirkepov’s method performed more
instructions for all three assignment functions (Table 5). The profile also shows that the larger number of
instructions for Esirkepov’s method originates from more branch instructions compared to EZ.

As the implementation of the current deposition and the macro-particle assignment-functions are in-
dependent of compute architecture in PIConGPU, we argue that the observed performance difference for
PQS, for which we expect comparable calculation and memory complexity, highly depends on compiler
optimizations of the current deposition kernel and possibly of the different assignment-functions. While

13



Table 5: Relative comparison of performance relevant profiling metrics between optimized Esirkepov’s Method and EZ on
NVIDIA V100. EZ is chosen as the baseline.

Assignment executed branch

function instructions instructions

CIC +88% +90%
TSC +96% +50%
PQS +116% +18%

the assignment-functions are mainly a series of if-conditions, with one condition fewer for EZ reflecting
the on-support optimization, the current deposition consists of a nested triple for-loop and additional if-
conditions providing room for a number of optimizations by the compiler such as unrolling or making use
of predicates.

From the performance and profiling results of this exemplary real world simulation, we conclude that EZ
provides, as expected, a substantial speedup for assignment-functions of order two and lower independent
of compute architecture. For assignment-functions of order three, EZ’s performance depends on the details
of the specific implementation, compute architecture and respective compiler implementations.

6. Conclusions

This work has presented a novel current decomposition method, EZ. We demonstrated its generality
and utility for different macro-particle assignment functions within the performance-portable particle-in-cell
code PIConGPU. We validated its charge conservation using standard deviation of the normalized Gauss’
law remainder, showing that it has properties comparable to Esirkepov’s method.

In addition, we verified the efficiency of EZ on several compute architectures and different accelera-
tors by measuring performance, taking profiles, and comparing metrics to an optimized implementation of
Esirkepov’s method.

Performance measurements include current deposition kernel run time and average run time of a full
particle-in-cell simulation step in a representative warm plasma simulation.

As expected from the scaling provided in the text, we observe a substantial speedup in these quantities
with EZ on NVIDIA V100 and AMD MI100 GPUs, as well as AMD EPYC CPU for first (CIC) and
second-order (TSC) macro-particle assignment-functions. For the third-order macro-particle assignment-
function PQS, where we expected the performance of EZ and Esirkepov’s method to be equal, we found
that speedup strongly depends on the choice of compute architecture, compilers, and optimizations. For
PQS, the highest order assignment function, the speedup of EZ over Esirkepov’s method varied between lower
(CPU), comparable (AMD MI100), and 11% increased (NVIDIA V100) performance. Notably, we used just
one implementation for each current deposition method. Due to usage of the performance portability library
alpaka in PIConGPU, there is no need to implement hardware specific specializations of the method.

Beyond the direct performance improvements demonstrated within PIConGPU, every parallel imple-
mentation of the particle-in-cell method can benefit from EZ. It ensures a uniform instruction sequence
in the computation of the current density between all macro-particles, independent of the choice of macro-
particle assignment-function. This improves concurrency in the parallel computation of current density from
many macro-particles. More generally, it promotes the design of novel workload distribution algorithms for
cooperative execution units running in parallel, such as warps on GPUs and SIMD instructions on CPUs.

EZ allows scientists to use high-performance compute systems with comparable or higher efficiency than
Esirkepov’s method without loss of precision for all but one of the considered cases. This increase in efficiency
enables a higher degree of sophistication in large-scale simulation campaigns modeling digital twins of lab
experiments. Such developments have many applications for future work, such as predicting the femtosecond
and nanometer scale dynamics of laser-driven electron or proton accelerators with increased precision by
exploiting the efficiency increase to run higher resolution simulations. Likewise, the efficiency increase can be
exploited to run more simulations in order to explore more of the possible parameter space of an experiment
and identify interesting parameter regions to perform these experiments.

14



Acknowledgments

This work was partly funded by the Center for Advanced Systems Understanding (CASUS) which is
financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for
Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon
State Parliament.

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC05-00OR22725.

References

[1] R. W. Hockney, J. W. Eastwood, Computer Simulation Using Particles (1st ed.), CRC Press, 1988. doi:10.1201/

9780367806934.
[2] C. K. Birdsall, A. B. Langdon, Plasma Physics via Computer Simulation (1st ed.), CRC press, 1991. doi:10.1201/

9781315275048.
[3] R. A. Fonseca, S. F. Martins, L. O. Silva, J. W. Tonge, F. S. Tsung, W. B. Mori, One-to-one direct modeling of experiments

and astrophysical scenarios: pushing the envelope on kinetic plasma simulations, Plasma Physics and Controlled Fusion
50 (12) (2008) 124034. arXiv:0810.2460, doi:10.1088/0741-3335/50/12/124034.

[4] H. Burau, R. Widera, W. Hönig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T. E. Cowan, R. Sauerbrey, M. Buss-
mann, PIConGPU: A fully relativistic particle-in-cell code for a GPU cluster, IEEE Transactions on Plasma Science 38 (10
PART 2) (2010) 2831–2839. doi:10.1109/TPS.2010.2064310.

[5] R. Lehe, M. Kirchen, I. A. Andriyash, B. B. Godfrey, J. L. Vay, A spectral, quasi-cylindrical and dispersion-free Particle-
In-Cell algorithm, Computer Physics Communications 203 (2016) 66–82. arXiv:1507.04790, doi:10.1016/j.cpc.2016.
02.007.

[6] J. P. Couperus, R. Pausch, A. Köhler, O. Zarini, J. M. Krämer, M. Garten, A. Huebl, R. Gebhardt, U. Helbig, S. Bock,
K. Zeil, A. Debus, M. Bussmann, U. Schramm, A. Irman, Demonstration of a beam loaded nanocoulomb-class laser
wakefield accelerator, Nature Communications 8 (1) (2017) 487. doi:10.1038/s41467-017-00592-7.
URL http://www.nature.com/articles/s41467-017-00592-7

[7] L. Obst-Huebl, T. Ziegler, F.-E. Brack, J. Branco, M. Bussmann, T. E. Cowan, C. B. Curry, F. Fiuza, M. Garten,
M. Gauthier, S. Göde, S. H. Glenzer, A. Huebl, A. Irman, J. B. Kim, T. Kluge, S. D. Kraft, F. Kroll, J. Metzkes-Ng,
R. Pausch, I. Prencipe, M. Rehwald, C. Roedel, H.-P. Schlenvoigt, U. Schramm, K. Zeil, All-optical structuring of laser-
driven proton beam profiles, Nature Communications 9 (1) (2018) 5292. doi:10.1038/s41467-018-07756-z.
URL http://www.nature.com/articles/s41467-018-07756-z

[8] J. Derouillat, A. Beck, F. Pérez, T. Vinci, M. Chiaramello, A. Grassi, M. Flé, G. Bouchard, I. Plotnikov, N. Aunai,
J. Dargent, C. Riconda, M. Grech, Smilei : A collaborative, open-source, multi-purpose particle-in-cell code for plasma
simulation, Computer Physics Communications 222 (2018) 351–373. arXiv:1702.05128, doi:10.1016/j.cpc.2017.09.024.
URL https://linkinghub.elsevier.com/retrieve/pii/S0010465517303314

[9] A. Debus, R. Pausch, A. Huebl, K. Steiniger, R. Widera, T. E. T. Cowan, U. Schramm, M. Bussmann, Circumventing
the Dephasing and Depletion Limits of Laser-Wakefield Acceleration, Physical Review X 9 (3) (2019) 031044. doi:

10.1103/PhysRevX.9.031044.
URL https://link.aps.org/doi/10.1103/PhysRevX.9.031044

[10] G. Raj, O. Kononenko, M. F. Gilljohann, A. Doche, X. Davoine, C. Caizergues, Y.-Y. Chang, J. P. Couperus Cabadağ,
A. Debus, H. Ding, M. Förster, J.-P. Goddet, T. Heinemann, T. Kluge, T. Kurz, R. Pausch, P. Rousseau, P. San Miguel
Claveria, S. Schöbel, A. Siciak, K. Steiniger, A. Tafzi, S. Yu, B. Hidding, A. Martinez de la Ossa, A. Irman, S. Karsch,
A. Döpp, U. Schramm, L. Gremillet, S. Corde, Probing ultrafast magnetic-field generation by current filamentation
instability in femtosecond relativistic laser-matter interactions, Physical Review Research 2 (2) (2020) 023123. doi:

10.1103/PhysRevResearch.2.023123.
URL https://link.aps.org/doi/10.1103/PhysRevResearch.2.023123

[11] T. Kurz, T. Heinemann, M. F. Gilljohann, Y. Y. Chang, J. Couperus Cabadağ, A. Debus, O. Kononenko, R. Pausch,
S. Schöbel, R. W. Assmann, M. Bussmann, H. Ding, J. Götzfried, A. Köhler, G. Raj, S. Schindler, K. Steiniger, O. Zarini,
S. Corde, A. Döpp, B. Hidding, S. Karsch, U. Schramm, A. Martinez De La Ossa, A. Irman, Demonstration of a compact
plasma accelerator powered by laser-accelerated electron beams, Nature Communications 12 (1). arXiv:1909.06676,
doi:10.1038/s41467-021-23000-7.

[12] J. P. Couperus Cabadağ, R. Pausch, S. Schöbel, M. Bussmann, Y.-Y. Chang, S. Corde, A. Debus, H. Ding, A. Döpp, F. M.
Foerster, M. Gilljohann, F. Haberstroh, T. Heinemann, B. Hidding, S. Karsch, A. Koehler, O. Kononenko, A. Knetsch,
T. Kurz, A. Martinez de la Ossa, A. Nutter, G. Raj, K. Steiniger, U. Schramm, P. Ufer, A. Irman, Gas-dynamic density
downramp injection in a beam-driven plasma wakefield accelerator, Physical Review Research 3 (4) (2021) L042005.
doi:10.1103/PhysRevResearch.3.L042005.
URL www.hzdr.de/fwthttps://link.aps.org/doi/10.1103/PhysRevResearch.3.L042005

[13] T. Haugbølle, J. T. Frederiksen, Å. Nordlund, Photon-Plasma: A modern high-order particle-in-cell code, Physics of
Plasmas 20 (6) (2013) 062904. arXiv:arXiv:1211.4575v3, doi:10.1063/1.4811384.
URL http://aip.scitation.org/doi/10.1063/1.4811384

15

http://dx.doi.org/10.1201/9780367806934
http://dx.doi.org/10.1201/9780367806934
http://dx.doi.org/10.1201/9781315275048
http://dx.doi.org/10.1201/9781315275048
http://arxiv.org/abs/0810.2460
http://dx.doi.org/10.1088/0741-3335/50/12/124034
http://dx.doi.org/10.1109/TPS.2010.2064310
http://arxiv.org/abs/1507.04790
http://dx.doi.org/10.1016/j.cpc.2016.02.007
http://dx.doi.org/10.1016/j.cpc.2016.02.007
http://www.nature.com/articles/s41467-017-00592-7
http://www.nature.com/articles/s41467-017-00592-7
http://dx.doi.org/10.1038/s41467-017-00592-7
http://www.nature.com/articles/s41467-017-00592-7
http://www.nature.com/articles/s41467-018-07756-z
http://www.nature.com/articles/s41467-018-07756-z
http://dx.doi.org/10.1038/s41467-018-07756-z
http://www.nature.com/articles/s41467-018-07756-z
https://linkinghub.elsevier.com/retrieve/pii/S0010465517303314
https://linkinghub.elsevier.com/retrieve/pii/S0010465517303314
http://arxiv.org/abs/1702.05128
http://dx.doi.org/10.1016/j.cpc.2017.09.024
https://linkinghub.elsevier.com/retrieve/pii/S0010465517303314
https://link.aps.org/doi/10.1103/PhysRevX.9.031044
https://link.aps.org/doi/10.1103/PhysRevX.9.031044
http://dx.doi.org/10.1103/PhysRevX.9.031044
http://dx.doi.org/10.1103/PhysRevX.9.031044
https://link.aps.org/doi/10.1103/PhysRevX.9.031044
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023123
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023123
http://dx.doi.org/10.1103/PhysRevResearch.2.023123
http://dx.doi.org/10.1103/PhysRevResearch.2.023123
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023123
http://arxiv.org/abs/1909.06676
http://dx.doi.org/10.1038/s41467-021-23000-7
www.hzdr.de/fwt https://link.aps.org/doi/10.1103/PhysRevResearch.3.L042005
www.hzdr.de/fwt https://link.aps.org/doi/10.1103/PhysRevResearch.3.L042005
http://dx.doi.org/10.1103/PhysRevResearch.3.L042005
www.hzdr.de/fwt https://link.aps.org/doi/10.1103/PhysRevResearch.3.L042005
http://aip.scitation.org/doi/10.1063/1.4811384
http://arxiv.org/abs/arXiv:1211.4575v3
http://dx.doi.org/10.1063/1.4811384
http://aip.scitation.org/doi/10.1063/1.4811384


[14] R. Pausch, H. Burau, M. Bussmann, J. Couperus, T. E. Cowan, A. Debus, A. Huebl, A. Irman, A. Köhler, U. Schramm,
K. Steiniger, R. Widera, Computing angularly-resolved far field emission spectra in particle-in-cell codes using GPUs, in:
Proceeding of IPAC2014, Vol. MOPRI069, 2014, pp. 761–764. doi:10.18429/JACoW-IPAC2014-MOPRI069.
URL http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/mopri069.pdf

[15] A. Pukhov, Three-dimensional electromagnetic relativistic particle-in-cell code VLPL (Virtual Laser Plasma Lab), Journal
of Plasma Physics 61 (3) (1999) 425–433. doi:10.1017/S0022377899007515.
URL https://www.cambridge.org/core/product/identifier/S0022377899007515/type/journal_article

[16] K.-I. Nishikawa, M. Medvedev, B. Zhang, P. Hardee, J. Niemiec, Å. Nordlund, J. Frederiksen, Y. Mizuno, H. Sol, G. J.
Fishman, C. Meegan, C. Kouveliotou, N. Gehrels, Radiation from relativistic jets in turbulent magnetic fields, in: AIP
Conference Proceedings, Vol. 1133, AIP, 2009, pp. 235–237. doi:10.1063/1.3155889.
URL http://aip.scitation.org/doi/abs/10.1063/1.3155889

[17] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland, T. Kluge, W. E. Nagel, R. Pausch, F. Schmitt,
U. Schramm, J. Schuchart, R. Widera, Radiative signatures of the relativistic Kelvin-Helmholtz instability, in: SC ’13
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2013,
pp. 5–1 – 5–12. doi:10.1145/2503210.2504564.
URL http://dl.acm.org/citation.cfm?doid=2503210.2504564

[18] T. Grismayer, E. P. Alves, R. a. Fonseca, L. O. Silva, dc-Magnetic-Field Generation in Unmagnetized Shear Flows, Physical
Review Letters 111 (1) (2013) 015005. doi:10.1103/PhysRevLett.111.015005.
URL https://link.aps.org/doi/10.1103/PhysRevLett.111.015005

[19] R. Pausch, M. Bussmann, A. Huebl, U. Schramm, K. Steiniger, R. Widera, A. Debus, Identifying the linear phase of the
relativistic Kelvin-Helmholtz instability and measuring its growth rate via radiation, Physical Review E 96 (1) (2017)
013316. doi:10.1103/PhysRevE.96.013316.
URL http://link.aps.org/doi/10.1103/PhysRevE.96.013316

[20] P. Hilz, T. M. Ostermayr, A. Huebl, V. Bagnoud, B. Borm, M. Bussmann, M. Gallei, J. Gebhard, D. Haffa, J. Hartmann,
T. Kluge, F. H. Lindner, P. Neumayr, C. G. Schaefer, U. Schramm, P. G. Thirolf, T. F. Rösch, F. Wagner, B. Zielbauer,
J. Schreiber, Isolated proton bunch acceleration by a petawatt laser pulse, Nature Communications 9 (1) (2018) 423.
doi:10.1038/s41467-017-02663-1.

[21] A. Myers, A. Almgren, L. Amorim, J. Bell, L. Fedeli, L. Ge, K. Gott, D. Grote, M. Hogan, A. Huebl, R. Jambunathan,
R. Lehe, C. Ng, M. Rowan, O. Shapoval, M. Thévenet, J.-L. Vay, H. Vincenti, E. Yang, N. Zäım, W. Zhang, Y. Zhao,
E. Zoni, Porting WarpX to GPU-accelerated platforms, Parallel Computing 108 (2021) 102833. doi:10.1016/j.parco.

2021.102833.
URL https://www.sciencedirect.com/science/article/pii/S0167819121000818

[22] M. Leinhauser, R. Widera, S. Bastrakov, A. Debus, M. Bussmann, S. Chandrasekaran, Metrics and design of an instruction
roofline model for amd gpus, ACM Trans. Parallel Comput. 9 (1). doi:10.1145/3505285.
URL https://doi.org/10.1145/3505285

[23] J. W. Eastwood, The virtual particle electromagnetic particle-mesh method, Computer Physics Communications 64 (2)
(1991) 252–266. doi:10.1016/0010-4655(91)90036-K.
URL https://www.sciencedirect.com/science/article/pii/001046559190036K

[24] J. Villasenor, O. Buneman, Rigorous charge conservation for local electromagnetic field solvers, Computer Physics Com-
munications 69 (2) (1992) 306–316. doi:10.1016/0010-4655(92)90169-Y.
URL https://www.sciencedirect.com/science/article/pii/001046559290169Y

[25] T. Esirkepov, Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor, Computer
Physics Communications 135 (2) (2001) 144–153. doi:10.1016/S0010-4655(00)00228-9.
URL https://www.sciencedirect.com/science/article/pii/S0010465500002289

[26] T. Umeda, Y. Omura, T. Tominaga, H. Matsumoto, A new charge conservation method in electromagnetic particle-in-cell
simulations, Computer Physics Communications 156 (1) (2003) 73–85. doi:10.1016/S0010-4655(03)00437-5.
URL https://www.sciencedirect.com/science/article/pii/S0010465503004375

[27] Partnership For Advanced Computing in Europe (”PRACE”), PRACE 15th Call continues to award outstanding research
in HPC, https://prace-ri.eu/pr-prace-project-access-call15/, [Online; accessed 30-March-2022] (2017).

[28] J. Yu, X. Jin, W. Zhou, B. Li, Y. Gu, High-Order Interpolation Algorithms for Charge Conservation in Particle-in-Cell
Simulations, Communications in Computational Physics 13 (4) (2013) 1134–1150. doi:10.4208/cicp.290811.050412a.

[29] PIConGPU: Particle-in-Cell Simulations for the Exascale Era, https://github.com/ComputationalRadiationPhysics/

picongpu, [Online; latest release picongpu-0.6.0 at 21-December-2021] (2021).
[30] E. Zenker, B. Worpitz, R. Widera, A. Huebl, G. Juckeland, A. Knüpfer, W. E. Nagel, M. Bussmann, Alpaka - an

abstraction library for parallel kernel acceleration, IEEE Computer Society, 2016. arXiv:1602.08477.
URL http://arxiv.org/abs/1602.08477

[31] A. Matthes, R. Widera, E. Zenker, B. Worpitz, A. Huebl, M. Bussmann, Tuning and optimization for a variety of many-
core architectures without changing a single line of implementation code using the alpaka library, 2017. arXiv:1706.10086.
URL https://arxiv.org/abs/1706.10086

[32] NVIDIA Corporation & affiliates, CUDA C++ Best Practices Guide v12.1, https://docs.nvidia.com/cuda/archive/12.
0.1/cuda-c-best-practices-guide/index.html#branching-and-divergence, [Online; accessed 24-March-2023] (2022).

[33] K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media, IEEE
Transactions on Antennas and Propagation 14 (3) (1966) 302–307. doi:10.1109/TAP.1966.1138693.

[34] B. B. Godfrey, J.-L. Vay, Numerical stability of relativistic beam multidimensional PIC simulations employing the Esirke-
pov algorithm, Journal of Computational Physics 248 (2013) 33–46. doi:https://doi.org/10.1016/j.jcp.2013.04.006.

16

http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/mopri069.pdf
http://dx.doi.org/10.18429/JACoW-IPAC2014-MOPRI069
http://accelconf.web.cern.ch/AccelConf/IPAC2014/papers/mopri069.pdf
https://www.cambridge.org/core/product/identifier/S0022377899007515/type/journal_article
http://dx.doi.org/10.1017/S0022377899007515
https://www.cambridge.org/core/product/identifier/S0022377899007515/type/journal_article
http://aip.scitation.org/doi/abs/10.1063/1.3155889
http://dx.doi.org/10.1063/1.3155889
http://aip.scitation.org/doi/abs/10.1063/1.3155889
http://dl.acm.org/citation.cfm?doid=2503210.2504564
http://dx.doi.org/10.1145/2503210.2504564
http://dl.acm.org/citation.cfm?doid=2503210.2504564
https://link.aps.org/doi/10.1103/PhysRevLett.111.015005
http://dx.doi.org/10.1103/PhysRevLett.111.015005
https://link.aps.org/doi/10.1103/PhysRevLett.111.015005
http://link.aps.org/doi/10.1103/PhysRevE.96.013316
http://link.aps.org/doi/10.1103/PhysRevE.96.013316
http://dx.doi.org/10.1103/PhysRevE.96.013316
http://link.aps.org/doi/10.1103/PhysRevE.96.013316
http://dx.doi.org/10.1038/s41467-017-02663-1
https://www.sciencedirect.com/science/article/pii/S0167819121000818
http://dx.doi.org/10.1016/j.parco.2021.102833
http://dx.doi.org/10.1016/j.parco.2021.102833
https://www.sciencedirect.com/science/article/pii/S0167819121000818
https://doi.org/10.1145/3505285
https://doi.org/10.1145/3505285
http://dx.doi.org/10.1145/3505285
https://doi.org/10.1145/3505285
https://www.sciencedirect.com/science/article/pii/001046559190036K
http://dx.doi.org/10.1016/0010-4655(91)90036-K
https://www.sciencedirect.com/science/article/pii/001046559190036K
https://www.sciencedirect.com/science/article/pii/001046559290169Y
http://dx.doi.org/10.1016/0010-4655(92)90169-Y
https://www.sciencedirect.com/science/article/pii/001046559290169Y
https://www.sciencedirect.com/science/article/pii/S0010465500002289
http://dx.doi.org/10.1016/S0010-4655(00)00228-9
https://www.sciencedirect.com/science/article/pii/S0010465500002289
https://www.sciencedirect.com/science/article/pii/S0010465503004375
https://www.sciencedirect.com/science/article/pii/S0010465503004375
http://dx.doi.org/10.1016/S0010-4655(03)00437-5
https://www.sciencedirect.com/science/article/pii/S0010465503004375
https://prace-ri.eu/pr-prace-project-access-call15/
http://dx.doi.org/10.4208/cicp.290811.050412a
https://github.com/ComputationalRadiationPhysics/picongpu
https://github.com/ComputationalRadiationPhysics/picongpu
http://arxiv.org/abs/1602.08477
http://arxiv.org/abs/1602.08477
http://arxiv.org/abs/1602.08477
http://arxiv.org/abs/1602.08477
https://arxiv.org/abs/1706.10086
https://arxiv.org/abs/1706.10086
http://arxiv.org/abs/1706.10086
https://arxiv.org/abs/1706.10086
https://docs.nvidia.com/cuda/archive/12.0.1/cuda-c-best-practices-guide/index.html#branching-and-divergence
https://docs.nvidia.com/cuda/archive/12.0.1/cuda-c-best-practices-guide/index.html#branching-and-divergence
http://dx.doi.org/10.1109/TAP.1966.1138693
https://www.sciencedirect.com/science/article/pii/S0021999113002556
https://www.sciencedirect.com/science/article/pii/S0021999113002556
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2013.04.006


URL https://www.sciencedirect.com/science/article/pii/S0021999113002556

[35] M. Meyers, C.-K. Huang, Y. Zeng, S. Yi, B. Albright, On the numerical dispersion of electromagnetic particle-in-cell
code: Finite grid instability, Journal of Computational Physics 297 (2015) 565–583. doi:https://doi.org/10.1016/j.

jcp.2015.05.037.
URL https://www.sciencedirect.com/science/article/pii/S002199911500371X

[36] J. Xiao, H. Qin, Y. Shi, J. Liu, R. Zhang, A lattice Maxwell system with discrete space–time symmetry and local
energy–momentum conservation, Physics Letters A 383 (9) (2019) 808–812. doi:https://doi.org/10.1016/j.physleta.
2018.12.010.
URL https://www.sciencedirect.com/science/article/pii/S0375960118312106

[37] NVIDIA Corporation & affiliates, CUDA C++ Best Practices Guide v12.1, https://docs.nvidia.com/cuda/archive/12.
0.1/cuda-c-best-practices-guide/index.html#execution-configuration-optimizations, [Online; accessed 24-March-
2023] (2023).

[38] K. Steiniger, R. Widera, J. Young, EZ publication: source code, profiling, analysis and simulation data (2022). doi:

10.14278/rodare.1511.
[39] P. Zyla, et al., Review of Particle Physics, PTEP 2020 (8) (2020) 083C01, Statistics Review; sec. 40.2. doi:10.1093/ptep/

ptaa104.
[40] Oakridge Leadership Computing Facility, Summit User Guide, https://docs.olcf.ornl.gov/systems/summit_user_

guide.html#summit-nodes, [Online; accessed 17-December-2021] (2021).
[41] Oakridge Leadership Computing Facility, Spock Quick-Start Guide, https://docs.olcf.ornl.gov/systems/spock_quick_

start_guide.html#spock-compute-nodes, [Online; accessed 17-December-2021] (2021).

17

https://www.sciencedirect.com/science/article/pii/S0021999113002556
https://www.sciencedirect.com/science/article/pii/S002199911500371X
https://www.sciencedirect.com/science/article/pii/S002199911500371X
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2015.05.037
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2015.05.037
https://www.sciencedirect.com/science/article/pii/S002199911500371X
https://www.sciencedirect.com/science/article/pii/S0375960118312106
https://www.sciencedirect.com/science/article/pii/S0375960118312106
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2018.12.010
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2018.12.010
https://www.sciencedirect.com/science/article/pii/S0375960118312106
https://docs.nvidia.com/cuda/archive/12.0.1/cuda-c-best-practices-guide/index.html#execution-configuration-optimizations
https://docs.nvidia.com/cuda/archive/12.0.1/cuda-c-best-practices-guide/index.html#execution-configuration-optimizations
http://dx.doi.org/10.14278/rodare.1511
http://dx.doi.org/10.14278/rodare.1511
http://dx.doi.org/10.1093/ptep/ptaa104
http://dx.doi.org/10.1093/ptep/ptaa104
https://docs.olcf.ornl.gov/systems/summit_user_guide.html#summit-nodes
https://docs.olcf.ornl.gov/systems/summit_user_guide.html#summit-nodes
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html#spock-compute-nodes
https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html#spock-compute-nodes


Figure .5: Movement of a macro-particle with assignment function CIC on a 2D grid. The outline depicts the support of the
macro-particle’s assignment function. During movement, the macro-particle stays within its assignment cell [i, i+1)× [j, j+1)].
Grid nodes on which the x and y components of the current deposition vector W are non-zero are highlighted. The same holds
true for the x and y components of the current density vector J on the grid edges. The coordinates of the splitting point in
the zigzag-line scheme are denoted by (xr, yr).

Supplemental Material

Here we show that the expressions for the current density of a single macro-particle differ between the
zigzag-line scheme and Esirkepov’s method.

Starting with a macro-particle at position (x1, y1, z1) with assignment function CIC,

Si(x1) =

{
1− |ξ| , with ξ = x1

∆x − i for 0 ⩽ |ξ| < 1
0 Otherwise

,

we recapitulate the calculation of the current density on the grid due to macro-particle movement to
(x2, y2, z2).

It is assumed, that the macro-particle stays within the assignment cell after the movement. That is,
the grid index i has a lower limit imin = floor(x1/∆x) = floor(x2/∆x), which also marks the origin of the
assignment cell. The CIC assignment function thus becomes Si(x) = 1 + i − x for i = imin, imin + 1 and
zero otherwise, similarly for the other axes. See fig. .5 for a 2D sketch of the grid with the macro-particle
movement and non-vanishing values of current densities and the current distribution vector W.

While the zigzag-line scheme splits the trajectory at (x1 + x2)/2 (similarly for the other axes) and
calculates the total current density from two respective macro-particle movements, Esirkepov’s method
calculates the density from the total movement. As is shown in the following, the methods provide different
calculation rules.

1. Umeda, T., et al. “A new charge conservation method in electromagnetic particle-in-cell simulations.”

18



Comp. Phys. Comm. 156.1 (2003): 80, eq. (20)

Jx(i+
1
2 , j, k) =

q

∆x∆y∆z

(
xr − x1

∆t

)(
1 + j − y1 + yr

2∆y

)(
1 + k − z1 + zr

2∆z

)
+

q

∆x∆y∆z

(
x2 − xr

∆t

)(
1 + j − yr + y2

2∆y

)(
1 + k − zr + z2

2∆z

)
=

q

∆t∆y∆z

(
x2 − x1

2∆x

)(
1 + j − 3y1 + y2

4∆y

)(
1 + k − 3z1 + z2

4∆z

)
+

q

∆t∆y∆z

(
x2 − x1

2∆x

)(
1 + j − y1 + 3y2

4∆y

)(
1 + k − z1 + 3z2

4∆z

)
=

q

∆t∆y∆z

1

2

(
x2 − x1

∆x

)
×
[(

1 + j − 3y1 + y2
4∆y

)(
1 + k − 3z1 + z2

4∆z

)
+

(
1 + j − y1 + 3y2

4∆y

)(
1 + k − z1 + 3z2

4∆z

)]
=

q

∆t∆y∆z

1

2

(
x2 − x1

∆x

)
×
[
2(1 + j)(1 + k)− (1 + k)

y1 + y2
∆y

− (1 + j)
z1 + z2
∆z

+
1

16∆y∆z
(10y1z1 + 6y1z2 + 6y2z1 + 10y2z2)

]
2. Esirkepov, T. Zh. “Exact charge conservation scheme for particle-in-cell simulation with an arbitrary

form-factor.” Comp. Phys. Comm. 135.2 (2001): 148, eq. (23)

Jx(i+
1
2 , j, k) = − q

∆t∆y∆z

(Si(x2)− Si(x1))

6
· {Sk(z2)[Sj(y1) + 2Sj(y2)] + [2Sj(y1) + Sj(y2)]Sk(z1)}

=
q

∆t∆y∆z

1

6

(
x2 − x1

∆x

)
×
[(

1− z2
∆z

+ k
)(

1− y1 + 2y2
3∆y

+ j

)
3 + 3

(
1− 2y1 + y2

3∆y
+ j

)(
1− z1

∆z
+ k

)]
=

q

∆t∆y∆z

1

2

(
x2 − x1

∆x

)
×
[(

1− z2
∆z

+ k
)(

1− y1 + 2y2
3∆y

+ j

)
+

(
1− 2y1 + y2

3∆y
+ j

)(
1− z1

∆z
+ k

)]
=

q

∆t∆y∆z

1

2

(
x2 − x1

∆x

)
×
[
2(1 + j)(1 + k)− (1 + k)

y1 + y2
∆y

− (1 + j)
z1 + z2
∆z

+
1

3∆y∆z
(2y1z1 + y1z2 + y2z1 + 2y2z2)

]
These two calculation rules are only equal for 2D-like motions, where z1 = z2 or y1 = y2, but not for full 3D
motions.

19


	Introduction
	EZ Single Macro-Particle Current Density Calculation Method
	Introduction to the Method
	Definition of the Relay Point and the Assignment Cell
	Current Density Calculation for a Macro-Particle Staying within its Assignment Cell
	Current Density Calculation for a Macro-Particle Leaving its Assignment Cell

	Efficiency Increase of EZ Compared to Esirkepov's Method
	EZ Implementation in PIConGPU
	Physics Acceptance Tests and Performance Results
	Level of Charge Conservation
	Single Macro-Particle Simulation
	Warm Plasma Simulation

	Performance Comparison
	Setup
	Results
	Discussion


	Conclusions



