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Abstract

Modeling and Simulation of Electric Power Systems with Large Shares of Renewable
Energy

by

José Daniel Lara

Doctor of Philosophy in Energy and Resources

and the Designated Emphasis in

Computational and Data Science and Engineering

University of California, Berkeley

Professor Duncan S. Callaway, Chair

To date, electric power systems are the most important technological achievement in the
energy sector. Interconnected power systems require a careful operation to maintain supply
stability and maintain efficient energy usage. Amid this complexity, two critical global tran-
sitions are needed: (1) moving away from greenhouse gases which negatively contribute to
climate change; and (2) moving away from fossil fuels, which currently support transporta-
tion and heating systems.

Computer simulations are the only tools available to do the necessary research and devel-
opment required to accomplish these goals. However, the practices and tools used by the
electric power industry were developed for operational situations that are vastly different
from current challenges for energy transition. Variable Renewable Energy uncertainty, fast
varying resources, and fundamental changes to the energy transformation physics require an
update to the operational and simulation practices.

This work started focusing on the simulation of future systems, and by the time it was writ-
ten, it had become a dissertation on the practices needed for today’s system. We discuss
the requirements needed to improve scientific computing practices and conduct simulations
more systematically when developing new operation models. The work has designed and im-
plemented three software tools to develop simulations: the first includes PowerSystems.jl
–– a software package that handles the data ingestion and processing required for simula-
tions across multiple time scales. The second tool includes PowerSimulations.jl which
resolves issues of model-limited choice when implementing operations simulations of large
interconnected systems. The third tool includes PowerSimulations.jl, which is based on a
formalization of the simulation of power system operations and provides a scalable computa-
tional platform. Third, PowerSimulationDynamics.jl which concentrates on the modeling
of power systems dynamics with a strong focus on integrating Inverter Base Resources. Power-
Systems.jl and PowerSimulations.jl both enable the development of a novel Automatic
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Generation Control model that can assess reserve deployments. Both tools are used to de-
velop a Markovian Graph approach when integrating probabilistic forecasts into operators’
risk assessments.

Finally, this dissertation investigates the simulation techniques that are needed for system
dynamics, and challenges the applicability long-held simulation practices. It seeks to uncover
the theoretical elements of simulation needs for the future grid. Results from PowerSimula-
tionDynamics.jl confirm this dissertation’s hypotheses, and demonstrates the effectiveness
of the simulation approach in replicating existing models. Furthermore, the findings in this
thesis critically showcase the capabilities to simulate dynamics systems accurately using
model transformations that reduces computational complexity without loss of accuracy.
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Preface

2.1 We make ourselves pictures of facts.
2.12 The picture is a model of reality.

2.223 In order to discover whether the picture is true
or false we must compare it with reality.

2.225 There is no picture which is a priori true.
Ludwig Wittgenstein, Tractatus Logico-Philosophicus

The philosophical core in this work is to expand the old adage attributed to George
E. P. Box: “All models are wrong but some are useful” and ask “When is a model so wrong
it leads us in the wrong direction and is no longer useful?”. Scientific experimentation is
an interpretive method, and over time it refines the observations to build more accurate
descriptions of reality. We make models based on understanding reality to approximate
it and produce alternate realities. We make decisions and design objects that fit into our
reality based on the alternates.

At the moment of writing this work, the capabilities of humanity to make models and
simulations is beyond anything that any philosopher or scientist thought possible and
will probably continue to increase. This new power implies that we need to learn new
approaches to developing science collectively and at scales that are now beyond individual
contributions. As such, modeling in computers does not consist simply of writing code, but
it implies a broader “philosophical” view of reality that influences our thought process.

For over a century, power engineers have developed models of physical phenomena and
gained an understanding of the systems’ properties. However, the transition to renewable
resources introduces changes that require understanding the information process for the
control and operations of the physical system not just the physics. The expansion into
the information space requires a new understanding for power engineers about what is
a model? and what is a simulation?. This dissertation uses these abstract questions to
develop concrete applications to power systems modeling and simulation with large shares
of Variable Renewable Energy (VRE).

Wittgenstein’s work focused on how language works to describe the world accurately.
In answering the questions above, this dissertation had to carefully define concepts to im-
prove the formulation of models and simulations. In retrospect, the code and the equations
were the easy part, and language became a more considerable challenge. The disserta-
tion is organized thematically between operations and dynamic simulations, given the
distinct approaches and methods without diminishing the applicability of concepts around
simulation.
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Chapter 1

Introduction

Power systems are the largest and most complex machines ever built. They are critical to
the functioning of modern society. The effects of electricity generation on the environment –
particularly concerns about climate change – have since the early 2000s driven an increase
in the adoption of renewable energy. From an economic standpoint, technological advances
in Photovoltaic (PV) panels and Wind Turbines (WTs) have made renewable energy a viable
means of powering electricity systems. The technical challenge of enabling renewable
energy resources to compete with fossil fuels is, from the practical standpoint, solved. The
ongoing challenge is integrating these new resources into a system not built to adapt quickly
to changes.

Nevertheless, these new energy sources also come with new challenges. The contem-
porary electric power network was designed to operate with thermal generation, and only
minor variations in the short term [173]. To date, the electric power system has oper-
ated under the overarching presumption of total controllability concerning both resources
and the predictability of the load. Nevertheless, changes in the primary energy sources
used to generate electricity are not the only thing changing: the very principles of en-
ergy conversion facilitate the energy transition. Large electrical machines that generate
electrical power through a rotating electromagnetic field are slowly being replaced with
Inverter-based Resources (IBRs) resources that employ semiconductors to perform energy
conversions utilizing high-frequency switching. The techniques to model, operate, and
plan a power system fueled by fossil resources and subject to mild uncertainties did not
evolve much until the 2010s [122] and since the area has become one of the most exciting
research fields to innovate.

The inherent variability of renewable energy generation impacts various timescales
that range from seconds to decades. Integration must be analyzed across timescales and
domains accordingly [143]. Although statements about cross-timescales analysis are com-
mon, the increased technical and conceptual complexity of developing these simulations is
under-estimated. With the addition of models to account for system behavior after faster
timescales, the data storage, transfer and computation requirements also increase. Han-
dling the added complexity requires a new conceptual framework from the first principles
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Figure 1.1: Power Systems Operations and Planning at different timescales.

point-of-view but also from the design perspective.
Figure 1.1 shows the different timescales in power systems operations and decision-

making characteristics for each stage. In 2021, the U.S. National Academy of Sciences
recognized the importance of understanding how the grid of the future will behave, and
how operators and policy makers can ensure its continued reliability [125]. The capacity to
improve the understanding of the system rests on improving the simulation capabilities nec-
essary to build and test system integration of new devices and components demanded the
energy transition. This dissertation focuses on the development of novel simulation method-
ologies to assess the operations and control problems of the energy transition.

The process of conducting a simulation entails acquiring knowledge about a system
and employing an unambiguous, and possibly inexact representation of its characteristics.
The representation of the system is known as the model means to enlighten experts about
the behavior of the real system under certain conditions. Given a model, it is necessary
to define a simulation method that can answer the research question through finding the
solution to the model. This work identifies two major simulation categories needed to
develop novel models and methodologies and critically improvements to scientific practice.

1. Operations Simulations: These simulations support decision-making on the scale of
days to minutes and have limited representation of the system physics. The general
objective of an operation simulation is to determine how the operate the system at
a the minimum production cost while keeping certain reliability restrictions in place.
Commonly these simulations employ discrete optimization models to find the solution
of “optimal" operational decisions and have different formulation depending on the
timescale requirements.
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2. Dynamic Simulations: These simulations focus on representing the physical contin-
uous time behavior of the system in the micro-second to minute timescales. They are
generally used to study the “stability" of the system, broadly defined. These models
are formulated as Ordinary Differential Equations (ODEs) or Differential Algebraic
Equations (DAEs) and employ numerical integration techniques to find the trajectory
of the system dynamics.

The use of simulations in power systems has evolved with the changing needs of the
grid, the development of new tools, and increases in computational power. Formerly, the
discipline has relied heavily on mathematical analysis of lower dimensional, deterministic
systems, and presented limited computer simulation results. Due to increases in computa-
tional power, however, optimization-based models and computer simulations are standard
tools used for research in systems of all scales—–from bulk generation and transmission to
micro-grids. The overarching contributions of this dissertation focus on the implementation
of tools that facilitate using novel simulations techniques in accordance with the Principles
of Scientific Computing. Each simulation category has very distinct methods, practices, and
applications; hence, they need be treated differently, with a specific focus on the challenges
brought by the energy transition.

Operation Simulations

Optimizing the operation of the power system is long-standing technical and research
area dating to the early days of interconnected system and the works of Leon Kirchmayer
[78]. Integrating Variable Renewable Energy (VRE) is a challenging problem from an
operational perspective, given that the forecasting of VRE resources introduces higher levels
of uncertainty where decision-making is concerned. Further, given that modern lifestyles
rely heavily on electricity, failing to hedge the system against uncertainty can result in
disruptive losses of load, increased costs of power curtailment, and even system collapse. In
this work, the focus begins in the minutes-to-hour timescales where short-term imbalances
and variations pose operational challenges. Some of these operational challenges include
increases in ramping requirements that supply compensation flexibility for VRE changes;
decreases in reserve quantities; and the integration of novel power generation resources
like Energy Storage System (ESS).

Managing uncertainties in bulk electric power systems poses a well-recognized challenge
from an operational perspective. Uncertainty is often crudely defined, which impedes the
development of actionable and consistent practical approaches. This work, therefore, first
defines uncertainty in a functional sense then proceeds to apply that definition to activities
concerning the power system.

An effective treatment of uncertainty requires a clear distinction between inherent vari-
ability, often referred to as statistical uncertainty, and epistemic uncertainty due to limited
knowledge about the process [28]. Figure 1.2 showcases which characterization of uncer-
tainty this dissertation will adopt. On one end of the spectrum, there exist deterministic
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Figure 1.2: Characterization of uncertainty definitions.

processes that can be measured and have little or no statistical uncertainty; for example,
load forecast with short look-ahead horizons. On the other hand, VRE output is more
adequately characterized using probability models when available. Examples include wind
power and solar average power forecasts. Extreme cases of uncertainty include the avail-
ability of long-term resources and load, or when the number of factors that determine
long-term weather patterns, energy consumption, and possible technological transitions
make the knowledge about the processes inherently incomplete. As a result of epistemic
uncertainties, this dissertation will exclude planning problems from its discussion, since the
impact of long-term unknowns reduces the usefulness of detailed structured simulation.

Dimensionality serves as one critical challenge when it comes to simulating power
system operations. On the one hand, including uncertainty in operational problems helps
with solving optimization problems. On the other hand, the assessment of operational
models can no longer be done just for peak, mid and low load operating points. This
increased dimensionality in the problem size and the number of simulation scenarios under
consideration requires new simulation techniques.

This dissertation examines three distinct aspects of VRE in power systems operations and
the management of the uncertainty. First, on the computational challenges, it introduces
the data model that fullfills the needs for modern computational experiments to test and
develop novel operation approaches. Second, on the development of a model to assess the
deployment of reserves in a system with large shares of VRE. Third, a specific focus on
the operational challenge of short-term risk assessment employing multi-stage stochastic
optimization models to integrate probabilistic forecasts.



CHAPTER 1. INTRODUCTION 5

10−7 10−5 10−3 10−1 101 103 105

Time (seconds)

Lightning propagation

Switching surges

Inverter-based controls

Stator transients and
subsynchronous resonance

Rotor angle dynamics

Governor and load
frequency control

Voltage control

Boiler dynamics

How to model?

Wave
phenomena

Electromagnetic
phenomena

Electromechanical
phenomena

Thermodynamic
phenomena

Figure 1.3: Dynamic timescales of power systems dynamics [60].

Dynamic Simulations

The increasing integration of generation sources via power electronics continues to change
the underlying dynamic behavior of power systems. It is generally agreed that new dynam-
ics in the controls of IBRs change modeling requirements for system-wide stability studies
that rely on time-domain simulations [133, 60, 120]. In power systems dominated by
synchronous generators, physical phenomena, such as magnetic fluxes, electro-mechanics,
mechanical control reaction times, or thermo-dynamic processes, can drive dynamic be-
havior. The control logic associated with synchronous generators is commonly tuned to
the timescale of the relevant processes, creating a natural separation between the dynamic
behaviors attributable to physics and controls. On the other hand, IBR dynamics are domi-
nated by their controls, including modulation, Phase-locked Loops (PLLs), voltage, current,
and power controllers. Therefore, the practical requirements of control design –– which
often include cascading PID control – defines the relationships between timescales. In
fact, interactions at higher frequencies have recently been recognized with a new stability
category [60], highlighting the exigent need to revisiting our understanding of system
dynamics with large shares of IBRs.

Dynamic analysis of power systems mainly include two computational numerical meth-
ods: (1) Time-domain simulations; and (2) small-signal stability analysis. For decades,
there has been a focus on reducing time-domain simulations’ computational complexity
through model order reductions and averaging methods. Some of the modeling practices
and analytical assumptions currently in use derive from singular perturbation theory from
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the 1980s. Seminal papers reveal that a simplified model is still a valid representation of
certain system dynamics under the premise of timescale separation. With the addition of
IBRs to the system, however, the validity of these simplifications have been challenged.

Figure 1.3 highlights the frequency ranges of dynamic phenomena and modeling require-
ments used to capture the system’s behavior. IBR controls consider multiple models such as
power electronics representation, phase-locked loop, voltage and current controllers, and
outer-loop controllers that have wide timescale ranges and complicate the determination
of which level of model complexity has to be used.

New demand for larger scales and greater details in modeling requires changing how
we approach developing simulation experiments. One critical challenge in dynamic sim-
ulations is the addition of phenomena that heretofore have not been included, imposing
new requirements on the solvers and resulting in computational complexity. Increasing the
level of detail in dynamic simulations requires new approaches to obtaining reliable system
assessments and better computational tools. The power systems sector must accelerate the
adoption of improved algorithms and hardware in order to cope with the required depth
of analysis when studying the integration of VRE.

This dissertation focuses on two different challenges with regard to the integration of
IBR in power systems simulations. The first challenge includes the developing a cohesive
set of definitions and clarifications on the scope of simulation methodologies and models
commonly used in power systems. Second, on the development of simulation tools and
models that incorporate dynamic behavior across multiple dynamic timescales and provide
computational methods to solve these models at scale.

The rest of the dissertation is organized as follows. Chapter 2 develops a framework
for simulation experiments in the power systems sector with a focus on the development
of definitions for assembling the simulation model, and follows with a discussion about
the software implications. The package PowerSystems.jl is introduced in Chapter 2 with
a detailed description of the software architecture and use cases. Chapter 3 introduces
the simulation package PowerSimulations.jl, which focuses on operation simulations;
it includes a series of definitions to formalize the concept of operation simulations and
cases of the package. The notable use case is in the development of an AGC model to
study the deployment of reserves in systems at large scale. Chapter 4 describes the use
of a multi-stage stochastic risk assessment method with a Markovian representation of
renewable power and the development of an estimation method for the transition matrix of
the Markov representation of uncertainty. Chapter 5 discusses the theories and models that
have contributed to dynamic system simulations, and starts with a detailed review of the
fundamental methodologies that formulate dynamic simulations models and a taxonomy of
existing approaches. The package PowerSimulationsDynamics.jl is introduced in Chapter
5 which implements a solver agnostic and modular approach to simulating systems with
IBRs including the software architecture and the results of the model validations. Finally,
Chapter 6 provides the reader with concluding remarks and discusses next steps in the area
of system simulation with large shares of VRE.
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Chapter 2

Design of simulation experiments in
power systems

Scientific computing has emerged as a field that studies and promotes the application of
principles such as reproducibility, transparency, and accuracy to data analysis and experi-
ments that are carried out using computer simulations. Although scientific computing has
benefited from notable contributions regarding the theory and practice of reproducibility
[166, 91, 5, 38], with crucial advancements in the systematic development of compu-
tational experiments for model and algorithm testing via simulations [10, 79, 155], its
adoption is not widespread. The field of scientific computing includes a broad array of
definitions and practices. The relative importance and specific application of any one of
these varies according to discipline [138, 6]. Here, we review definitions and applications
of scientific computing principles in power systems versus other disciplines in the context
of the scientific process.

It stands to reason that enhancing scientific computing would carry significant implica-
tions for power systems, since computational experiments afford almost the only option for
engineers to conduct research about the operation of large-scale power grids. Computing
is a fundamental tool for conducting operations research [127], and, by extension, power
systems operation research. Improving the definitions and practice of scientific computing
principles thus also stands to benefit both of these fields.

However, there is a high setup cost associated with developing simulations for large-
scale experiments. For this reason, researchers resort to using industrial tools once their
systems of interest grow larger than hundreds of buses. However, these proprietary mod-
els and algorithms are not openly available; this means that using them and replicating
the results obtained by other researchers who use them require money for licenses. The
common practice of relying on commercial tools reduces the innovation power systems
researcher. When commercial tools aren’t available, researchers need to re-implement mod-
els, develop their own data sets, and handle the integration libraries. These practices mean
that scientific reproducibility is often either not achieved or limited to “code sharing.”

Thanks to the advent of code-sharing repositories, broad access to software development
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tools, and the popularity of open-source interpreted programming languages such as R,
Julia, and Python developing, reproducible computational tools have now become easier. In
this respect, open-source tools facilitate scientific computing for power systems research and
despite challenges, several open-source efforts are successful in the community, reducing
the barrier to entry for those seeking to perform reliable and high-quality research. For
example, MATPOWER [205] is a widely used MATLAB-based1 tool to perform steady-state
analyses such as power flow, continuation power flow, and optimal power flow. OpenDSS
is used for multiple distribution systems analysis and both the source code and the Delphi
compiler are open source. In the field of transient simulations, the MATLAB-based tool PSAT
[114] provides electro-mechanical simulations with multiple models. More recently, the
Python-based hybrid symbolic–numeric simulation tool ANDES [29] has become available for
QSP simulation. Many other tools in power systems exist with different levels of “openness”
and capability to reproduce the experiments. However, the trend is towards increasing
openness and easiness to reproduce the results from the publications.

However, having open-source tools is not sufficient for creating a consistent culture of
reproducible computational experiments. Without a deliberate effort to develop a platform
that can be re-used by researchers, we risk limiting the scope and scale of power system
research or unnecessarily duplicating research efforts.

This chapter presents a power systems framework that systematically applies scientific
computing principles to the development and validation of simulation models and develop-
ment of a data model to enable better practices. The relevant contributions in this chapter
are:

1. A template to facilitate the development of simulations and computational experi-
ments.

2. A consistent set of scientific computing definitions, practices, and implementation
details to facilitate the application of scientific computing to power systems operations
research.

3. Discusses the implementation of an application-agnostic data model focused on pro-
viding a workflow consistent with scientific computing practices.

The chapter is organized as follows: Section 2.1 presents a description of scientific
computing practices, definitions that indicate their relevance to power systems, and a dis-
cussion of the modeling language choice. The need to design a computational experiment
is discussed in Section 2.2, which focuses on defining variables, data, models, and metrics.
Section 2.3 showcases a development pipeline required to implement computational exper-
iment in accordance with scientific computing principles. Section 2.4 shows the design and
development of PowerSystems.jl, a library specifically developed to handle data modeling
in power systems simulations. Finally, we present our conclusions in Section 2.5.

1The source code of Matlab-based tools is open source but the Matlab engine is a commercial product
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Figure 2.1: Steps required for conducting a single trial in a simulation experiment

2.1 Scientific computing practices

Establishing new scientific knowledge relies on (1) the reproducibility of the experiments
and (2) the validity of conclusions derived. Although there are semantic distinctions across
fields [138, 6], we define “reproducibility” as the ability to produce identical results with
repeated experiments while running the same software and using the same input data and
simulation settings [55, 139, 153]. “Validity” also has a variety of definitions depending
on the scientific context. Here, we refer to two types: (1) internal validity, or consistency
between simulation results and the experimental system, and (2) external validity, which
might also be called “generalizability,” or the ability to derive inferences about how spe-
cific results or relationships may persist across variations in settings and systems [138].
These definitions apply even when the experiments are carried out through simulation in
computational environments.

Interest in scientific computing as a field began with a focus on the precision aspects
of computational numerical methods and the conditions required for algorithms to obtain
consistent results [63]. The relevance of computer simulations for science was recognized
early in the 1960’s when by Harlow and Fromm [59] who recognized that computer ex-
perimentation allows the investigation of phenomena “innacessible” to direct study and
describe computing as the third pillar of science complementing theory and experimen-
tation. Oberkampf et.al provides a detailed historical account of the evolving nature of
scientific computing [130] showcasing the pivotal contributions from the fluid dynamics
research community. These definitions of scientific computing are rooted in concerns about
computing process precision and model calibration. However, as the use of computers for
scientific research has expanded, so has the scope of scientific computing.

Later contributions focused on the access that researchers have to the underlying code to
reproduce computational experiments. Developing open-access software for mathematical
computations like WaveLab focused on providing open source alternatives to statistical anal-
ysis [23] is one of the notable early attempts. WaveLab, an open source tool for Wavelets,
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authors grappled with issues like code sharing2, versioning. These challenges nowadays
are resolved with widespread access to the internet and the invention of versioning con-
trol libraries like Git. Although the technological solutions for the broader application of
reproducible scientific research has improved, the integration of good practices into the
design of experiments remains limited. Donoho (one of the original authors of WaveLab)
and Stodden provide a review of the evolution of reproducible computational research [37]
up to 2015.

In the applications discussed in this chapter and through out the dissertation, the worries
around numerical precision are less critical and the focus is more about the availability to
replicate the experimental process. Researchers in power systems usually employ third-
party libraries to solve the optimization and dynamic models, and therefore place the
responsibility of numerical precision lies with the solver provider. The only exception to
this “outsourcing” of the numerical precision responsibility is in areas of power systems
research focused on the development of algorithms (e.g., [176]). Reproducibility concerns
in power systems start with the availability of the code and the extensive use of commercial
software to conduct research. Beyond code-sharing, this chapter focuses in the capability
to recreate the computational experiment.

Some of the most vocal advocates in the scientific community for the principles of
reproducibility and validity are from the fields of medicine [139] and computational bi-
ology [38], which strive to derive consistent, verifiable results from field or laboratory
experimental data. Power systems researchers would do well to take lessons applicable
to modeling and simulation, since the complexity of the power grid requires the use of
numerous assumptions and simplifications [123].

Resources, time, and a certain amount of luck are needed to attempt to reproduce
experiments that are not accompanied by code. However, computational reproducibility
requires more than access to the code used to run computational experiments. While
documentation alone helps, it is often insufficient to achieve full reproducibility. The recent
focus of scientific computing on institutionalizing “best practices” has included themes
directly relevant to effectively sharing code and documentation. This includes guidance
on code readability, the use of version control tools, and code sharing through platforms
like Github. These basic tenets have come to serve as the baseline standard for “good”
code [192]. In part, these items are not practiced in power systems research because most
researchers are not trained in the “why” and “how” of reproducible code [13]. In many
cases, power systems researchers have no intention of re-using code following publication.

In summary, according to the scale of reproducibility proposed by [139], most contribu-
tions in this field thus fall in the category of “publication only” and can at best be regarded
as “reviewable,” according to [138]. Implementation details are often deemed irrelevant,
even when (as in many cases) such details are crucial to understanding the final results
[165]. By contrast, consider the open-source genetics software BioConductor [51], whose
standard of reproducibility has generated more than 10,000 citations showing the value

2The authors describe issues with the use of CD-ROMS for results sharing
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to the field of having certain common scientific practices. It has no equivalent in power
systems, although researchers in this field do occasionally apply principles of scientific
computing to specific areas, such as the use of Optimal Power Flow (OPF) benchmark cases
for the development of new formulations [27].

The Julia programming language

Choosing a programming language for simulations in power systems might seem unimpor-
tant. However, the choice can have significant impacts on reproducibility and scalability.
Modeling package developers face the challenge of choosing a programming language for
large-scale applications that balances extensibility with performance. Implementations in
compiled languages like C or C++ are difficult to extend, develop, maintain and are not
suitable for interactive work. On the other hand, implementations in interpreted languages
can be slow to parse and run for medium to large power systems. Additionally, many of
the existing extensions of power systems data models use languages that are not strictly
typed, which can make code development error-prone and have poor performance.

Scripted programming languages usually do not implement high-performance code
natively. High-performance applications require low-level compiled languages to handle
large-scale computations. For instance, there are many identical programming interfaces
but distinct implementations of the NumPy library for linear algebra in Python. The same
applies to many other large-scale numerical libraries such as LSODA, Sundials, or PETSc.
These well-established high-performance numerical libraries are hard to extend. Usually,
they have dependencies on other compiled libraries such as BLAS, LAPACK, or SuiteSparse,
adding additional complexity.

Julia is a dynamically typed programming language developed by Bezanson et al. [16],
intended to bridge the gap between scripting languages such as Python or MATLAB and
high-performance languages such as C++ or Fortran. Julia uses a Just-in-Time (JIT)
compiler based on a Low-Level Virtual Machine (LLVM) and incorporates some essential
features from the beginning of its design, such as excellent support for parallelism and
GPU programming, and it features a practical, functional programming orientation. Julia
can generate the same assembly code as C/C++ with the convenience of the scripted
languages.

Besides the language’s computational capabilities, the Julia environment itself provides
several features that facilitate the development of large-scale dynamic models following
scientific computing practices. Importantly, it addresses the shortcomings of other scripted
languages, such as dependency handling. These capabilities make Julia an excellent match
for scientific computing challenges in the power systems community. Critical examples of
Julia’s good environment include:

• A comprehensive package manager that enables reproducibility among researchers
by setting up the exact package and binary versions. Integrating “Artifacts” into the
package manager, Julia can include information that is not related to Julia packages,
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including platform-specific binaries or data sets. This allows researchers to pack all
the experiment’s requirements in a reproducible environment that can be executed
in multiple platforms. This mechanism is also used to provide reproducible binary
dependencies for packages built with BinaryBuilder.jl.

• Julia is a flexible language that has the convenience of scripting languages without
the performance penalty. As a JIT-compiled language, Julia can be as fast as C or
C++ and easier to master [16]. Multiple dispatch is crucial to the effectiveness of
Julia as a programming language for scientific software. Associating methods with
generic functions rather than the type they operate on is a highly effective strategy for
code re-use and extension. This capability promotes the implementation of generic
interfaces for custom models without requiring changes to the source code. Multiple
dispatch is the core concept used to allow extensibility in the modeling packages
described in this dissertation.

• An expressive Algebraic Modeling Language (AML) JuMP.jl [45] that allows the
development of large scale optimization models. For the modeling of operation mod-
els, the Julia ecosystem also offers a large variety of solver interfaces powered by
MathOptInterface [90] which allows the developer to develop models that use both
open source and commercial optimization solvers. The interface provided by JuMP.jl
supports the formulation of Linear Programming (LP), Mixed-Integer Linear Program-
ming (MILP), Nonlinear Programming (NLP) and conic optimization models. This
flexibility enables benchmarking and testing different solvers depending on the devel-
oper needs. JuMP.jl was used extensively when developing the operations simulation
package described in Chapter 3.

• A suite of packages for the numerical solution of differential equations. Differen-
tialEquations.jl [148] offers over 30 different numerical solvers for ODE/DAE
systems including both explicit (via mass matrices) and implicit representation. Some
solvers, including classic algorithms and novel ones from recent research, can outper-
form the “standard” C/Fortran methods. In a nutshell, DifferentialEquations.jl
allows solving differential equations using different algorithms (even from other
packages or languages) by providing a common interface. This makes it possible to
exchange the algorithm layer with a single line of code. This feature enables bench-
marking and testing different solution methods according to the specific differential
equations problem requirements.

• Several computations from dynamics to optimization, rely on computing the Jaco-
bian of a non-linear systems of equations. Usually, derivatives are computed via finite
differences, but that is inefficient due to the high number of evaluations of the system
function, and furthermore it results in approximate results due the finite small value
of the step. Automatic Differentiation (AD) is a method to compute exact derivatives
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given only the function opposed to a symbolic approach that requires providing struc-
tural information. Julia provides a large host of methodologies to obtain Jacobians
and Hessians. For instance, ForwardDiff.jl [150] and ReverseDiff.jl are the most
common established packages to perform AD to compute derivatives in Julia [99].
Both of these methods generally outperform non-AD algorithms in both speed and
accuracy.

2.2 Designing the experiment

In this section, we contribute a logical process for designing power systems computational
experiments based on general practices from empirical research that include best practices
to allow reproducible results. In a simulation context, the experiment consists of varying
the inputs and executing trials of the simulation processes to generate a sample of outputs.
These samples are later used to compute relevant performance metrics or summary statistics.
Figure 2.1 shows a breakdown of the experimental process organized into three different
sub-processes: data, computational modeling, and results. These steps follow the best
practices in scientific computing to achieve reproducibility and validation. Each of the
sub-processes presents the researchers with many design choices. However, in this section,
we review exemplary practices in the literature to guide researchers in tackling common
issues and following best practices. We emphasize that using this framework supports a
robust evaluation of operation models and provides a clear way for reviewers and readers
to assess conclusions conditional on the researchers’ experimental setup.

In [155], the authors define a simulation experiment as sampling the space of input
variables over trials to characterize a system in the space of output variables. Exhaustive
sampling is a viable strategy when the input space is small. However, power systems
operational research typically features complex and large input spaces that include time
series, network configurations, demand levels, and parameters of economic and physical
subsystems. The descriptions of the different sampling spaces motivates a sub-classification
of the data inputs which follow the general practices from empirical methods to help inform
experimental design.

In our review, we find that a formal design approach is rarely used in power systems sim-
ulation. Researchers tend to implicitly focus on reporting a few key simulation results and
over-specify the case data and the experiment parameters, reducing the external validity
of conclusions.

Data

The experimental data specification requires the researcher to select system parameters, a
method for the selection and use of trial data, and to define the test sets for the experiment.
A test set is a collection of inputs used in the simulation that produces a corresponding out-
put. The data defining a test set are organized hierarchically with a single set of experiment
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Table 2.1: Data requirements and best-case selection process

Input Type Description Selection Considerations Examples

Experiment
Parameters

All data held constant throughout
the simulations, defining the scope

of the experiment

Enables generalization
of the experiment to other cases

Test network, cost functions,
boundaries of the confounding

variable space

Confounding
Variables

Data varied across trials, used to
test robustness of results

Unbiased sample
coverage of the relevant space

Forecast and realization
time series,

reserve requirements

Independent
Variables

Variables compared within each
trial, primary objects of study

Isolation of variable
of interest, including
a control or null case

Operation models,
forecast accuracy,

renewables penetration

parameters that define the scope of the experiment, a number of sample sets of confounding
variables that delineate a particular trial, and, for each trial, an instance of each of the inde-
pendent variables which are the primary objects of study, as well as a hypothesized impact
on the outputs. Table 2.1 shows the different types of data input along with descriptions
and selection considerations.

The validity of results depends on the researchers’ choices when classifying and selecting
these data. The more general and representative of other cases the experimental parameters
are, the higher the external validity, whereas the more robust the sampling of confounding
variables is, the higher the internal validity. The simulation settings such as output interval,
algorithm tolerances, and convergence criteria are also part of the experiment parameters.

Confounding variables can be sampled either randomly or deterministically: sensitivity
analysis, selecting sets of representative or extreme cases, and Monte Carlo simulation are
all conventional methods [155]. In power systems operational research, independent vari-
ables often include (or are directly) the operation models themselves; e.g., the alternative
UC models in [185, 197] or the demand response recourse strategies in [134]. In power
system operation simulations, the confounding variables are often sets of time series data,
initial system state, renewable penetration, or the test system.

When selecting data, there exists a tension between using real, benchmark, and syn-
thetic data. Real systems and real data sets are often attractive because they have better
internal validity. However, using any proprietary or privileged data can undermine re-
producibility. Standardized test systems are by definition more reproducible and should
yield more comparable results across studies, but the prevalence of “modified IEEE sys-
tems” show that these often do not capture all relevant features and there is a need for
comprehensive test data sets. Synthetic network generation algorithms address some of
these shortcomings [17], but they do not eliminate the need for modification with time
series and the addition of additional devices like storage or demand response. In these
cases, the modification process must be transparent and unbiased, which can be achieved
by providing all the details when defining the modifications necessary. The best practice is
to make the modifications programatically and sharing the code used to generate the data
sets. Capturing uncertainty in synthetic data sets, particularly in forecasts and realizations,
is a critical component in modern operations; [146] provides an overview of modeling
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uncertainty across parts of the power system. Regardless of the data source or generation
method, access to and interpretation of the data used is necessary to comply with stan-
dards of reproducibility and transparency. To our knowledge, only the recent update to the
RTS-96 data set [7] complies with these requirements. Further, scientific principles must be
followed by refraining from “cherry-picking” data to produce favorable results. Adherence
to the practices discussed in this section and providing details about the data selection
processes can make it harder to obscure unscientific practices.

Operation simulation models

In power systems research, computational models are both the subject of the research
and the experimental apparatus for evaluating research, often leading to the conflation
of different models within the experiment. In practice, most experiments are used to
demonstrate the performance of a proposed decision model for taking an operational action.
In our framework, this makes the decision model an independent variable. Following the
process in Fig. 2.1, it is necessary to define at least one alternative test set (i.e., a control)
in the form of a baseline decision model, often representing a heuristic or current practice.
To do this, and to ensure a valid representation, it is critical to delineate a decision model
from an emulator model used as a representation of the real system defined as follows:

• Decision Model: The model used to obtain the desired system operation behaviour;
the model generates set points or policies used to drive the devices in the system.

• Emulator Model: A model that mimics a specific real-world behavior of the electric
power system; the model produces outputs that resemble the system performance
when operating under the policies resulting from the decision models.

The emulator yields the performance metrics to compare performance between decision
models and should be consistent across all test sets and trials.

In some cases, where the contributions comprise a combination of operation models and
solution algorithms (e.g., [124, 203]), it is important to have a clear distinction between
the modeling aspects and the algorithmic ones. In such cases, details of the model and
implementation of the algorithm should be clear and reproducible. For instance, update
rates, constants, tolerances, and heuristics need to be clearly stated.

The results commonly reported in publications consist of the decision model output and
not showing whether the decision model has the hypothesized effect on the system. The
emulator model is intended to enable the evaluation of the decision model’s performance in
terms of the system’s behavior conditional on the decision output. Not having an emulator
in the simulation process is particularly problematic in operations models intended to
handle uncertainty, such as SUC and Robust Unit Commitment (RUC). It also complicates
matters when the decision model must make simplifying assumptions for the research to
be computationally tractable. In [177], the authors explicitly point out the limitations of
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interpreting the results of their decision model and propose a modification to make the
model more realistic. However, the standard should not be that a decision model represents
reality with perfect accuracy; rather, the aim is to select a reasonably accurate emulator to
capture the relevant system’s performance.

An implicit model separation between decision model and emulator has been done in
many highly cited works [134, 185, 177], though there are some exceptions [197]. Other
examples are most readily found in receding and shrinking horizon model predictive control,
often employed in microgrid Energy Management System (EMS). The stochastic EMS work
in [135] uses an actual physical test system, while [168] exemplifies the computational
approach using OpenDSS as the emulator, and [85] uses a Monte Carlo (MC) approach to
test the robustness of the control.

Based on the aforementioned literature, we generalize three main characteristics that
the emulator should possess to be used as the validation test-bed in simulations:

1. The emulator should be on the same or a faster time scale compared to the decision
model under study, and should capture the phenomena that are significant to these
time scales and the study. There needs to be a logical connection between the chosen
emulator and the decision operation model.

2. The system representation should include as much detail as is necessary to test the
effect of simplifying assumptions used to make operation models’ tasks tractable. This
often requires additional data and trials.

3. The emulator’s time series realization data must be distinct from forecasts used in the
decision model. The use of forecasts within decision models has become common-
place in power systems operations research. However, in many cases, the same time
series are used to generate the decision and then re-used to test the effectiveness of
the decision model. This leads to over-optimistic results since the decision models
will calculate their outputs with data that is too similar to reality and won’t be able
to capture the effects of forecast errors.

Performance metrics

Metrics are measurements computed on outputs of the computing process in Fig 2.1. The
relevant aspect to consider is that metrics should be reported and calculated in terms
of the trials and the results reported in terms of probabilities. Commonly, metrics are
reported only for a single test set or single trial. In a computational experiment conducted
with repeated trials, the metrics should accurately demonstrate the internal and external
validity of the conclusions. For instance, in [186, 108], the authors use total costs and
Automatic Generation Control performance metrics (e.g., CPS2) to assess the value of
improving forecasting accuracy in the system.
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There are a vast number of possible metrics relevant to power systems operations that
depend on the application of the decision model. However, it is possible to derive three
recommended principles in the design of experimental metrics:

1. Consider the distribution of metrics across trials and analyze them statistically.

2. Disaggregate metrics rather than reporting total costs alone. Presenting the costs
associated with here-and-now and recourse actions separately can yield more insight,
and researchers are also encouraged to include physical metrics which provide a
richer picture of phenomena left out of decision models but captured by the emulator
(e.g., battery wear, insecure loading limits, etc.).

3. Include the experiment computational times for the given environment. Metrics on
computational performance tend to go unreported in the publications, but they are
critical for assessing the feasibility of incorporating research into real systems or fur-
ther experiments, as well as indicating opportunities for computational performance
improvement.

2.3 Implementing a reproducible computational
experiment in power systems

In practical terms, achieving reproducibility and validation requires operationalizing the
principles of scientific computing discussed in Section 2.1. In this Section, we present a tem-
plate for a reproducible scientific workflow for simulation-based empirical investigations
of power systems operations problems. Each step of this template weighs the two major
components required for a computational experiment: the environment and the workflow.

• Environment: The collection of software, hardware components, and configurations
used to implement a computational experiment [13]. The environment may include
elements such as cloud services, third-party software, file management scripts, and
external tests.

• Workflow: The sequence of computing tasks, from data intake to summary of results
via plot and table generation, which, together, make up the scientific experiment and
the analysis [33]. The development of a workflow is a requirement for validation and
reproducibility.

The following template breaks down both the environment and the workflow of a power
systems computational experiment into the three main stages: data process, computing
process, and results and reporting process.
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Often, preoccupations about data in the context of scientific computing are limited to data
sharing, access concerns, and best practices for transparency by using raw data files in
formats humans can read [192], such as CSV for tabular data. However, the very act of
processing raw data into analytical data must itself be a reproducible procedure that can
be validated. The two aspects necessary for achieving this include (1) the data model and
(2) the data production process.

All computational experiments need to define, document, and automate the steps fol-
lowed in processing and generating data, such that these procedures can be reproduced and
validated by other researchers. Figure 2.2 showcases a simple workflow for data processing
and generation, distinguishing between the raw input data that can be obtained from many
different sources (which may exist in a variety of formats) and the analytical data that has
been parsed by the researcher to fit neatly into the organization of the data model.

Data Model

A data model is a way to organize data and standardize its internal relationships and
properties, providing a structure for use in the computational experiment [190]. In power
systems research, efforts to make standard data models have primarily focused on power
flow data like the Common Format [196] that later evolved into the Common Information
Model (CIM) developed by industry for SCADA and control center automation [178]. Power
systems’ operational research requires richer data models that can hold more information
than a representation of the system assets’ parameters. For instance, holding time series,
confounding variables, and parameters is necessary for the execution of computational
experiments. Forthcoming Section 2.4 discusses in detail the implementation of a data
model that handles these concerns.

In power systems computation, the data model is often not considered a critical aspect of
the simulation even though data transformations are a critical operation. Without a single,
widely agreed-upon data model in power systems modeling for computational experimen-
tation, researchers have to develop customized data models for individual applications.
This process is time-consuming, and as a result, data models are usually underdeveloped.
Researchers should first carefully evaluate whether a custom data model is necessary. If
so, modern programming languages provide researchers with environments containing an
extensive assortment of options to develop data models. Researchers can greatly increase
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the value of their contribution, and their convergence to new standards by publishing their
data model and implementing codes for re-use.

Data Consumption

In most cases, before the data can be arranged into the data model, some computations are
necessary. Examples of such computations might include consistency checks, ensuring the
anonymity of proprietary data, or adding more features to the original data. For instance,
the researchers might include ramp rates to model UC in data sets that were originally
developed for Power Flow (PF). Such computations are part of the data processing pipeline,
and they must be recorded as part of the workflow.

In the context of the workflow depicted in Figure 2.2, synthetic data should be consid-
ered, along with “real” or observational data, to be part of the raw input for the model. Like
real data, synthetic data may undergo parsing for use with a specific data model. When
creating confounding data, all random number generators should be seeded and those
seeds included in the data model.

Computing process

Operation Model Execution

The computing process is easily confused with the computational experiment itself. In
fact, the experiment — as described earlier in this chapter — is far more nuanced than the
execution of a model. A computing process is composed of a set of simulations used to
test the effects on the test set in the system using the emulator model as a proxy, as shown
in Fig. 2.3. Each trial of an experiment constitutes a simulation case, which is defined by
the decision and emulator models’ executions and interactions. For instance, simulating a
standard day-ahead UC over a year results in executing 365 daily decision models, each
followed by another 24 hourly ED emulator executions.

Simulations can take many different configurations depending on the research objective
and the experimental design. It is therefore not possible to pre-define a generic simulation
setup that fits all applications. However, it is possible to establish some general definitions
to help guide development and facilitate the reproducibility of the simulation setup.

When an optimization model is executed, sub-processes relevant pieces to scientific
workflow happen in the background that need to be accounted for in the computational
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workflow. Figure 2.4 shows the pipeline and the different components that make up the
environment and workflow of a model execution.

• Algebraic Modeling Language: The AML code describes the model’s Mathematical
Program (MP). The models are generally expressed in terms of sets, parameters,
variables, constraints, and an objective function. In this stage, the optimization model
is not being solved; rather, it is being processed such that it can be used in the solver.

• Optimization Model: This is the AML output, the optimization model in standard
form. Often, AMLs make internal transformations to the MP to make it compatible
with the solver. This include adding slack variables or constraint reformulations, and
it can occasionally hinder reproducibility when the AML changes.

• Solver: The solver performs the computations necessary to obtain the solution of the
MP. Modern optimization algorithms can be heavily customized, and all the details
of the solver parametrization must be accounted for.

Dynamic Model Execution

Figure 2.5 shows the software stack of a dynamic modeling application: A modeling layer
with the code representation of the equations, algorithms to solve the models and numerical
linear algebra libraries to perform the calculations.

• The modeling layer: All the code representation of the system behavior in differential
and/or algebraic equations (for instance, charging and discharging capacitors or PID
controllers).

• The integration algorithms: The libraries that implement an integration scheme and
are used to obtain the numerical solution of the models’ differential equations (for
instance, Euler, backwards differentiation formula, or Runge-Kutta, among others).

• Linear algebra libraries: Low-level algorithms to perform numerical linear algebra
calculations for system solutions, LU decomposition, or eigenvalue calculations.
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program for dynamic simulation
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Results and Reporting

The output of the computing process is the collected results of the simulations, but this is
not necessarily the final result of the experiment. Figure 2.6 shows the workflow to compile
the outputs of the model executions into a format suitable for analysis, finishing with the
calculation of the selected metrics. Often, other libraries are required in the environment
to process the outputs and calculate the results. The aggregation process has the potential
to confound the effects of the proposed model. Hence, the raw output of the simulations
should be archived, and the code to calculate the metrics should comply with the principles
of reproduciblity.
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Case studies of the framework implementation

We have included two example cases for the principles described in this chapter. The cases
are developed in MATLAB and Julia to showcase that the proposed framework is platform-
and language-independent. The results shown here aim to exemplify the application of the
principles discussed above in simplified case studies and not to derive specific conclusions
about the models 3.

Case 1: Microgrid EMS with demand response

This experiment compares different predictive controllers to regulate power consumption
through demand response in energy-constrained islanded microgrids.

• Experiment Design: The hypothesis is that each controller improves a particular per-
formance metric relative to a baseline of no control. Here, the independent variable is
the decision model used by the controller. We compared four controllers: a heuristic
method that does not use forecasts, a predictive control using only a single average
forecast, and two stochastic programming formulations.

We constructed a synthetic microgrid, synthetic forecasts of solar generation based
on historical data, and synthetic electricity demand forecasts based on random simu-
lation to be used as confounding variables. The system features multiple customers
and distributed solar and battery storage.

The performance metrics are Average Service Availability Index (ASAI), total cus-
tomer utility from electricity consumption, and the realization of the objective of the
decision model, which is a measure we construct that captures the benefit of elec-
tricity consumption: since performance metrics include power availability and the
impact of interruptions at the customer level, the emulator must capture the effect
on customers.

• Implementation: This environment is MATLAB 2018a, and Gurobi 9.01 is the solver.
We use the Gurobi MATLAB API. The controller makes a decision to send energy and
power limit signals to customers every 4 hours with a receding horizon of 2 days.
The emulator model includes a customer decision to ignore or respond to the signal
every 4 hours, as well as a model of the physical devices that runs on a 2-minute time
scale. The controller assumes that customers will reduce consumption if necessary
to comply with energy and power limits, but it assumes they will reduce exactly to
a limit. In the emulator, customers make a discrete choice of which appliances to
disconnect, having some imperfect knowledge of what their consumption will be.
Then, the 2-minute model simulates power sharing between generation and storage,

3The code for the case studies is archived in the public repository https://github.com/Energy-MAC/
PowerSystemsScientificComputing

https://github.com/Energy-MAC/PowerSystemsScientificComputing
https://github.com/Energy-MAC/PowerSystemsScientificComputing


CHAPTER 2. DESIGN OF SIMULATION EXPERIMENTS IN POWER SYSTEMS 23

No Control Prop. Feedback Deterministic 2-Stage ADP
0

0.5

1

1.5

2

2.5

3

Obj.
Cust. Util.
ASAI

Figure 2.7: Performance metrics for different controllers for Microgrid Experiment as me-
dian values with 5th and 95th percentile error bars

the evolution of thermostatically controlled loads and battery state of charge, and
interruptions when load power cannot be met or customers exceed limits.

• Results: Figure 2.7 shows the value of the metrics across trials for each controller
relative to the baseline of no control. This illustrates the principles of displaying
metrics statistically and showing the side effects on multiple concrete emulator met-
rics not explicitly optimized for in the decision model that has an abstract objective.
The design framework emphasizes that these results are limited to the context of the
experiment parameters, particularly the interruption cost function in the emulator
customer model and the forecast and realization data. In fact, following the principles
outlined in this chapter revealed initial poor performance with using power limits
that we were able to address by instead using an energy limit, but would have been
not revealed without a higher time-resolution emulator model.

Case 2: Stochastic UC and bulk power systems

The experiment is designed to compare an SUC model with a standard UC model. The
detailed mathematical specifications of the models used in these experiments are located
in the example repository.

• Experiment Design: The hypothesis is that using SUC achieves better hedging against
wind power uncertainty and reduces the occurrence of load shedding. In this example,
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the independent variable is the day-ahead model i.e., the choice between using UC
or SUC optimization models. Given that the SUC requires the use of scenarios, the
complete test set is made up of the decision-model–forecast pair. The SUC uses 100
scenarios generated by sampling a truncated normal distribution with a variance of
30%. To evaluate the hypothesis, an ED model is used as the emulator with 5-minute
resolution time series.

The experiment includes 10 trials for each range of 30 consecutive days in the annual
data in order to capture seasonal variations through the year. For each trial, the
metrics used to assess the performance of the system are total fuel cost and total
energy not supplied. The models are tested in a modified 5-bus test system [93]
which has been enhanced with piece-wise linear cost functions. The test system
features an additional 3,600 MW of wind power generation and an increased peak
load of 14,400 MW. The system has been also enhanced with yearly time series for
load and wind power from the data provided in [7].

• Implementation:The experiment was done in Julia v1.2.0 using the JuMP.jl v0.20.0
as the AML with the solver Gurobi 8.11. Auxiliary *.toml files define the full exper-
iment environment by fixing other libraries’ versions in the experiment. The code
structure in the example repository has been intentionally arranged, ensuring consis-
tency with the definitions given in the chapter. The data model is provided using the
package PowerSystems.jl described in the forthcoming Section 2.4, and the same
is used to integrate time series data into the load flow case. The commitment de-
cisions are synchronized with the ED model, which is executed 24 times for every
commitment model execution.

• Results: The results showed that for most trials, the SUC reduces the amount of load
shedding in the system but also has an increased fuel cost. The results are displayed as
box plots in Figure 2.8 that enable further exploration of the trial results and provide
more detailed insights about the model’s performance. In this way, it is possible to
notice that in two outlying samples, the SUC resulted in more load shedding than the
UC. The result motivates an exploration of which circumstances may lead to weaker
performance from the SUC than from the UC.

From the computational point of view, running multiple trials allows us to evaluate
whether the relative differences in computation speed are consistent between the
models in the experiment. Each commitment model ran a total of 300 times; the SUC
has an average solve time of 59.18 s and a maximum of 158.98 s, compared to the
2.87 s and a maximum of 8.2 s of the UC model — an order of magnitude faster than
the SUC.
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Figure 2.8: Box plots of results for Stochastic Unit Commitment (SUC) experiment

2.4 PowerSystems.jl data model for power systems
scientific computing

Adequate access to the data sets used in scientific models leads to more transparency and
reproducibility [142], improves scientific discovery, and allows third parties to verify model
results [32]. Specifically, there is a common concern that computational experiments in
energy systems need to define, document, and automate the processing and generation of
data separately from the modeling [142, 88].

The data workflows need to distinguish between the raw input data, which exists in a
variety of formats and is obtained from many different sources, and the analytical data for
the model. PowerSystems.jl enables a consistent data model that can be populated from
diverse sources of information. PowerSystems.jl is designed to address these challenges
based on the principles laid out in [192, 193, 157]. Namely: software should always return
the same outputs when given the same inputs; functionalities should be easy to use, extend,
prototype, and integrate into other packages; and code should be written for people to
understand, not just for efficient computer resource use.

The traditional practice in energy modeling has been to develop ad-hoc data structures,
containers, and interfaces related to the underlying mathematical model [117]. However,
by virtue of relying on custom data structures and utilities, modeling packages can dis-
courage data sharing and create barriers to the validation, comparison, and introduction
of models. As a consequence, model developers currently devote significant resources to
parsing and converting between data models. In most cases, these efforts serve the specific
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scope of the analytical model and do not result in reusable code. For this reason, it is critical
to make available an application agnostic library to support the development of models
with the explicit intent of supporting data work flow reproducibility.

Applying scientific computing principles to the data processes used for energy sector
models introduces several requirements:

• Intuitive data creation scripts: The syntax to create data sets should be easy to
interpret and maintain.

• Flexible interfaces for data intake: Data sources for electric energy systems can be
heterogeneous, requiring flexible interfaces to manipulate the data.

• Straightforward extension for new data layouts: With the addition of new tech-
nologies and operational modes, the software needs to be extensible in order to add
new data representations.

• Dedicated public interface for extension and integration: User extensions and
integration as a dependency should not require modifications to the source code (also
known as the delegation pattern [84]).4

• Optimized memory use for large data sets: The implementation should not over-
whelm system memory when handling large data sets.

Review of data models in electric energy systems

The need for a canonical data model to share data dates back to the 1950s when the
first applications of a digital computer to solve the “load flow” problem appeared in the
literature [64, 188]. Myriad solution methods and models had led to a problem of data
and model exchange, as illustrated by the following quote:

With the growth in complexity of the interconnected power systems in the [1960s]
came a corresponding growth in the number of load flow programs being used and
in the number of study groups using those programs. This growth resulted in a
need to exchange data at an increasing rate. [196]

Historically, in electric power systems the model under study has been the source of re-
quirements for the data model in use. Most importantly, there has been an explicit division
between power systems models based on their scope. Different models require different
simplifications to obtain system insights required by engineers. These engineering simpli-
fications and assumptions have also carried over to other fields such as energy policy and
economics. The most significant model that has informed data processing and sharing is
the “load flow” problem with extension to the “economic load flow” problem [194].

4In computer science, a design pattern is a reoccurring solution that is sufficiently general to warrant its
own title and description.
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Leon Kirchmayer, in his seminal work [78], provides details about the early use of com-
puters for the economic optimization of power systems. These rudimentary computational
systems were limited to punch cards as the data loading medium. As a result, the first data
models were merely column indexes of physical quantities used in the model.

Punch cards evolved to become fixed-position and fixed-order file data models. The
first generally accepted data model for power systems computational analysis, the IEEE
Common Format [196], was published in 1973. The common format data file had lines of
up to 128 characters, the lines are grouped into sections with section headers, and data
items are entered in specific columns. It provided a standard format to store and exchange
data based on the original punch card specification, emulating the physical storage medium
that had preceded it.

Although there has been a significant increase in computational power, algorithm de-
velopment, and novel applications of computers to the analysis of electrical power systems
since 1973, tabular data models still dominate. All major data formats and models for
commercial and academic power systems software have employed tables with custom spec-
ifications to store and exchange system data. In the context of open-source modeling,
MATPOWER data format [205] is the standard for encoding system data sets due to the
popularity of MATLAB among power system researchers.

The need to share information evolved in the early 1990s with the advent of automation,
and it was spurred by increasingly complex data needs for power systems operations. The
industry required standardized models to exchange more extensive information, resorting
to an object-oriented data model. The CIM was developed and was later made a standard
maintained by the International Electrotechnical Commission (IEC) Technical Committee
57 Working Group 13. The aim was to provide a standard definition for power system
components geared towards automated EMSs, SCADA systems, and asset-management
databases. Automation-oriented modeling makes CIM challenging to implement for mod-
eling purposes, and it is not widely used in any modeling software available today. It is
available in only a few commercial power system software programs, and the only open-
source parsing implementation is the iTesla library [181].

One of the key characteristics of electric power systems modeling is the rigid separation
between steady-state and dynamic modeling practices. Modeling tools have kept separate
data models between the two classes of models, and a few commercial providers dominate
the market for dynamic modeling. As a result, a dynamic data model is dependent on
the software available for the researcher. Such artificial separation hinders cross-domain
research and further limits the development of newer models. Some efforts to develop open
data models geared towards dynamic modeling, such as PSAT [114], have been limited to
teaching and are no longer maintained. The data model implemented in [113] is described
partially in [117] but has had little uptake.

With the advent of new algorithms, models, and programming languages, as well as
broad access to computers, new software tools and data formats have proliferated. Milano
provides a detailed taxonomy of 17 commercial and open-source tools up to 2010 [117].

Recently, new static modeling tools such as Pandapower [175], PyPSA [22], PSST [81],
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and PowerModels [27] have used data models largely based on the original MATPOWER
schema. In the dynamic modeling domain, a Python implementation of a data model
using symbolic libraries has been proposed [29], and an OpenModelica library with the
capabilities to parse PSS®E and CIM [181] is available. However, developing extensions
requires some source code modification, and the intermediate data structures cannot be
integrated with steady-state models.

The review so far highlights the progress coming from the power systems community,
given a more widespread adoption of certain “standard” practices. Several commercial
software applications dominate in other modeling communities, and each relies on its
proprietary data format. Such is the case for production cost modeling, which requires a
rich data model to handle large amounts of time series data. Significant efforts have been
made towards developing and to process XML proprietary data formats into open data
sets [9] but have not resulted in a more systematic approach since for each new study the
process needs to be refactored.

When augmentations are required, MATPOWER [205] provides a certain amount of flexibil-
ity to augment the data though its “extensions.” This is the most commonly used approach.
Extending MATPOWER’s data requires the creation of makeshift relationships between the
user-added arrays and the arrays already in the model. Fixed location and length repre-
sentations are not inherently designed to store data with mixed data representations and
hierarchical structures. Tables are difficult to extend beyond their original design. For
instance, adding a new feature implies adding a new column for the totality of the category.
To the authors’ knowledge, the production cost modeling community does not have an
effort similar to the power systems community, and in most cases, data models used in cost
production modeling are extensions of power systems data models. Moreover, the growing
importance of data provenance and reproducibility demands solutions that minimize the
need the develop ad-hoc data models.

In recent years, there has been increasing multi-sector modeling of energy systems.
Initiatives such as OpenGenome [161], Spine [104], and the Open Energy Platform [131]
have focused on integrating power systems data into broad energy infrastructure models.
These initiatives exploit modern computing concepts and architectures like REST API,
portable databases, and version control to provide users with a more straightforward
pathway to integrate decision models with data. Importantly, these initiatives seek to
contribute curated data sets as part of their repositories. Commonly, multi-sector projects
focus on long-term planning and strategic decision making, which require economic data
on top of technical device-level data. These techno-economic modeling communities make
outstanding contributions by exploiting modern concepts in data management for large
systems. For instance, the Open Energy Platform implements advanced table format data
sets to facilitate the inspection of data sets.

As a consequence of these data representations’ explosions, model developers devote
significant resources to parsing and data model conversion. In most cases, these efforts are
developed to serve within the analytical model’s scope. Creating a standard data model
and dedicated tools for data management across domains is critical to improving electric
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energy systems’ modeling practices.
To the authors’ knowledge, PowerSystems.jl is the only tool designed to provide model-

agnostic data structures and model development capabilities as an independent library.
Although other authors have advocated for a canonical data model in XML format [112],
PowerSystems.jl also provides generic tools and interfaces required for data processing,
verification, and extending the library of models. The principal use case for PowerSys-
tems.jl is to provide efficient intake and utilization of power systems model input data.

PowerSystems.jl Software description

The interfaces in PowerSystems.jl are designed with three types of users, and specific uses
of the data modeling package, in mind.

• Modeler: Develop standard data sets, share data, or generate reproducible computa-
tional experiments.

• Model Developer: Develop custom components, data sets, and models; use Power-
Systems.jl as a dependency on a modeling package.

• Code Developer: Contribute source code to PowerSystems.jl to implement new
features.

This chapter focuses on the first two categories: modelers and model developers. Read-
ers are encouraged to look through the tutorial sections in the documentation as a starting
point and to consult the developer section when looking into the requirements for integrat-
ing custom data structures.

PowerSystems.jl is developed in Julia [16] due to the inherent composability of the
language and the extensive interoperability capabilities with other programming languages.
PowerSystems.jl exploits the type system and multiple dispatch of the Julia programming
language to promote the open development of energy data sets across domains. This
capabilities are used extensively in the forthcoming Chapter 3 and 5 to develop modeling
libraries for operations and dynamic simulations.

The main features of PowerSystems.jl include:

• Comprehensive and extensible library of data structures for modeling electrical sys-
tems.

• Large-scale data set development tools that use PSS®E .raw and .dyr, and MATPOWER
.m common text-based data formats as base as well as a configurable tabular data
(e.g., CSV) parsing capabilities.

• An optimized container for component and a time series store for data that supports
serialization to portable file formats and configurable validation routines.
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In PowerSystems.jl, a device is defined using a Julia structure embedded in a type
hierarchy. Each device is discussed in detail in Section 3.1. This implementation enables
the researcher to categorize the devices by their abstract operational characteristics. In
principle, the generalization of each component is done at the categorical level, preventing
the shortcomings of prescriptive data models. Representing all potential devices in energy
modeling is not possible; neither is it desirable, as new technologies become available and
make parts of the library obsolete. Thus, it is necessary to provide an extensible data model
with simple rules such that different users can store custom data in an organized way and
still use other core functionalities of the package.

The implementation of the data structures is method forward, which implies that the
information stored in each object is accessible through the implementation of methods
(e.g., get_parameter_value(::DataStruct) ) and not by accessing specific fields (e.g.,
datastruct.parameter_value ). Similarly, the requirements for extensions are described
as interface implementations, not data fields, providing modelers with more flexibility.
Utilizing a method forwards design prevents introducing the known fragilities from the
classic implementations of class inheritance [84].

Implementing data structures through interfaces is especially valuable for long-term
code maintenance and for designing reproducible experiments. The use of accessor functions
enables the modeler to manipulate the parameters without concerns about the underlying
implementation. On the other hand, if the model accesses the data by field, subsequent
implementation changes can generate unsustainable maintenance costs. The accessor
interface also reduces the cost of integrating PowerSystems.jl into modeling applications.
The model developer can re-use the data management methods already implemented and
thereby minimize the development of custom code to handle data input.

In data sets for energy systems simulation, the largest demand on memory often comes
from time series data. Given the size of this data, it can overwhelm system memory and
must remain on persistent media (e.g., disks). However, it is also critical to maintain
low read/write latency. PowerSystems.jl implementation of the external data container
solves the aforementioned issues by leveraging HDF5 storage to execute fast data loads
into memory on demand.

The implementation of the underlying data for time series data utilizes different formats
and data types depending on the modeling needs and originating process. For instance,
data storage is optimized for forecast data dependent on the structure. PowerSystems.jl
supports forecast data formatted as overlapping time windows (e.g., 4-hr-ahead forecasts
created every 15 minutes) and contiguous time series of observations. The flexible repre-
sentation of time series data allows for multiple uses including day-ahead market models
or slice selections to model limited operation periods. Also, PowerSystems.jl provides a
mechanism to share time series data across components; this can greatly reduce primary
storage requirements.
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Software architecture

PowerSystems.jl is structured to meet the requirements discussed in Section 2.4 through
the implementation of the following features:

1. Abstract type hierarchy,

2. Optimized read/write data container (named System ), and

3. Utilities to facilitate modeling, extensions, and integration.

The optimized container and generic extension interfaces in PowerSystems.jl are imple-
mented through the utility library InfrastructureSystems.jl [174]. PowerSystems.jl
contains the code, methods, and utilities specific to the electricity sector’s physical rep-
resentation and relationships. InfrastructureSystems.jl provides generic methods to
handle components and manage data. This design follows from the recognition that sev-
eral of the general features and requirements in PowerSystems.jl apply to any networked
infrastructure data handling software; in the future, an extension to water, gas, and similar
infrastructure systems is possible.

Type Hierarchy

Type trees (or taxononomies) to organize data classes or types are commonly used in
libraries that implement an object-oriented approach. For instance, the CIM [179] uses a
taxonomy to represents all the major components in electric utility operations. However,
the CIM is meant to facilitate the integration controls developed independently by different
vendors and is not suitable for modeling. Also, initiatives such as the Open Energy Ontology
[53], which is currently under development, focus on organizing terms and relationships
within energy system modeling.

The abstract hierarchy implemented in PowerSystems.jl enables categorization of the
devices by their operational characteristics and modeling requirements. Figure 2.9 shows
the abstract hierarchy of components. For instance, generation is classified by the distinctive
data requirements for modeling in three categories: thermal, renewable, and hydropower.
As a result of this design, developers can define model logic entirely based on abstract types
and create generic code to support modeling technologies that are not yet implemented in
the package. PowerSystems.jl has a category of topological components (e.g., bus, arc)
separate from the physical components [117]. The hierarchy also includes components
absent in standard data models, such as services. The services category includes reserves,
transfers, and AGC. The power of PowerSystems.jl lies in its ability to provide abstraction
without an implicit mathematical representation of the component in question.

Other abstractions provide flexible specification of parameters with distinct represen-
tations. An example is the representation of costs. PowerSystems.jl implements several
DeviceParameters to support composition patterns.
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Figure 2.9: Abstract tree hierarchy

A comprehensive example of the applications of composition and methods to access
struct field is the implementation of the ThermalStandard . An implementation of a ther-
mal generator using common data fields such as power limits, fuel and ramping is shown in
Figure 2.10. ThermalStandard implements several methods to retrieve device parameters
such as the active power limits. It is composed of the bus, operational cost, services, and
the possibility of including a DynamicInjection to represent dynamic models for the same
device.

Classically, data models have been separated into dynamics and quasi-static analyses in
different data sets. However, composition enables a joint representation of the components
and eliminates the requirement to maintain two discrete databases.

Data Container

The System is the main container of components and the time series data references. Pow-
erSystems.jl uses a hybrid approach to data storage, as shown in Figure 2.11, where meta-
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Figure 2.10: Implementation of ThermalStandard

data (for describing package version compatibility, unique identifiers, and other system-
level meta-information), component data, and time series references are stored in volatile
memory, while the actual time series data are stored in an HDF5 file. This design loads
into memory the portions of the data that are relevant at time of the query, and so avoids
overwhelming the memory resources.

PowerSystems.jl implements a wide variety of methods to search for components
to aid in the development of models. Code listing 2.1 shows an example of retrieving
components through the type hierarchy with the get_components function and exploiting
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the type hierarchy for modeling purposes.5 The default implementation of the function
get_components takes the desired device type (concrete or abstract) and the system and
also accepts filter functions for a more refined search. The most common filtering style is by
component name, and for this case the method get_component returns a single component
taking the device type, system, and name as arguments. The container is optimized for
iteration over abstract or concrete component types as described by the type hierarchy.
Given the potential size of the return, PowerSystems.jl returns Julia iterators in order to
avoid unnecessary memory allocations.

An essential workflow in energy systems modeling is developing data sets that combine
existing data sources with new components and time series data. Code listing 2.2 shows
the code process to execute the following workflow:

1. Load component data from a power flow file.

2. Add a new component. The example creates and adds a single wind power plant. The
component constructors use keyword arguments making data entries very explicit.

3. Load time series data from a pointers file and add to the system components.

4. Load time series data specific to newly added component and attach to a single
component.

5See Julia’s punctuation to facilitate reading the code listing: https://docs.julialang.org/en/v1/
base/punctuation/.

https://docs.julialang.org/en/v1/base/punctuation/
https://docs.julialang.org/en/v1/base/punctuation/


CHAPTER 2. DESIGN OF SIMULATION EXPERIMENTS IN POWER SYSTEMS 35

1 using PowerSystems
2

3 # Load the system from a power flow case
4 system_data = System("case_ACTIVSg70k.m")
5

6 function installed_capacity(system::System; technology::Type{T} = Generator) where T
<: Generator↪→

7 installed_capacity = 0.0
8 for g in get_components(T, system)
9 installed_capacity += get_max_active_power(g)

10 end
11 return installed_capacity
12 end
13

14 installed_capacity(system_data)
15 installed_capacity(system_data; technology = RenewableGen)
16 installed_capacity(system_data; technology = ThermalStandard)

Code 2.1: PowerSystems.jl code example applied to modeling

5. Serialize system for future use.

Code listing 2.1 shows the implementation of a function where the modeler can choose
the technology by its type and use the different implementations of get_max_active_power .
Note that in line 15 the function takes an abstract type and in line 16 it takes a concrete
type. This code listing exemplifies the flexibility of the container interface to facilitate the
development of models consistent with the ontology defined in Fig. 2.9.

The data is serialized to a JSON file and the time series data to an HDF5 file. This
feature has been developed to enable reproducible data workflows. Modelers can develop
data sets as a separate exercise from the modeling and later use PowerSystems.jl to load
the final data in a fraction of the time it takes to re-create, transform and load into memory
the raw data. This feature has proven to be particularly useful when the raw data have
been generated from free-form tables stored as CSV files [198, 9].

Examples of data cases already available in the PowerSystems.jl format include the
data from the RTS-96 data set [9], and we have made available some simpler data sets as
examples in a separate repository6 that allows users to automatically build systems from a
standard specification.

Handling Time Series

The bulk of the data sets in many power system simulations models is the time series data.
Whether the data represents forecasts used in day-ahead operations of realization scenarios

6https://github.com/NREL-SIIP/PowerSystemCaseBuilder.jl

https://github.com/NREL-SIIP/PowerSystemCaseBuilder.jl
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1 using PowerSystems, CSV, TimeSeries, Dates
2

3 # (1) Load the system from a power flow case
4 system = System("src/case5.m")
5

6 # Define a new device
7 new_renewable = RenewableDispatch(
8 name = "WindBusA",
9 available = true,

10 bus = get_component(Bus, system, "3"),
11 active_power = 2.0,
12 reactive_power = 1.0,
13 rating = 1.2,
14 prime_mover = PrimeMovers.WT,
15 reactive_power_limits = (min = 0.0, max = 0.0),
16 base_power = 100.0,
17 operation_cost = TwoPartCost(22.0, 0.0),
18 power_factor = 1.0
19 )
20

21 # (2) Add that device as a new component
22 add_component!(system, new_renewable)
23

24 # Manually create a TimeSeriesData
25 time_series_data_raw = TimeArray(CSV.read("wind_data.csv"), timestamp=:timestamp)
26 ts_data = SingleTimeSeries(label = "active_power", data = time_series_data_raw)
27

28 # (3) Add the time series to the system and component
29 add_time_series!(system, new_renewable, ts_data)
30

31 # (3) Load time series from pointers file
32 add_time_series!(system, "timeseries_pointers_load.json")
33

34 to_json(system, "serialized_system.json")

Code 2.2: Example of data set composition workflow

of renewable energy they data that container the component level details is usually small
compared to time series. To organize the time series data given the potential inherent
complexity, PowerSystems.jl has a set of definitions to enable consistent modeling

• Resolution: The period of time between each discrete value in the data; all resolu-
tions are represented using Dates.Period types. For instance, a day-ahead market
data set usually has a resolution of 1 hour, and a real-time market data set usually
has a resolution of 5 minutes
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• Static data: A single column of time series values for a component field (such as
active power) where each time period is represented by a single value. These data are
commonly obtained from historical information or the realization of a time-varying
quantity. Static timeseries data in PowerSystems.jl comes in the following format:

Table 2.2: Static time series data format

DateTime Value
2020-09-01T00:00:00 100.0
2020-09-01T01:00:00 101.0
2020-09-01T02:00:00 99.0

where a column (or several columns) represents the time stamp associated with the
value, and a column stores the values of interest.

• Forecasts: Predicted values of a time-varying quantity that commonly features a
look-ahead and can have multiple data values representing each time period. This
type of data is used in simulations with receding horizons or data generated from
forecasting algorithms.

Forecast data in PowerSystems.jl comes in the following format:

Table 2.3: Forecast time series data format

DateTime 0 1 2 3 4 5 6
2020-09-01T00:00:00 100.0 101.0 101.3 90.0 98.0 87.2 88.0
2020-09-01T01:00:00 101.0 101.3 99.0 98.0 88.9 88.3 67.1
2020-09-01T02:00:00 99.0 67.0 89.0 99.0 100.0 101.0 112.0

where a column (or several columns) represents the time stamp associated with the
initial time of the forecast, and the columns represent the forecasted values.

• Interval: The period of time between forecasts’ initial times. In PowerSystems.jl,
all intervals are represented using Dates.Period types. For instance, in a day-ahead
market simulation, the interval of the time series is usually 24 hours; in the example
above, the interval is 1 hour.

• Horizon: The count of discrete forecasted values; all horizons in PowerSystems.jl
are represented with Int . For instance, many day-ahead markets will have a forecast
with a horizon of 24.

• Forecast window: Represents the forecasted value starting at a particular initial
time.
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A common workflow in developing models involves transforming data generated from
a realization and stored in a single column into deterministic forecasts to account for the
effects of the look-ahead. Usually, this workflow leads to large data duplications in the
overlapping windows between forecasts.

In order to reduce data duplication, PowerSystems.jl provides a method to transform
static time series stored as SingleTimeSeries data into Deterministic forecasts with-
out duplicating any data. The resulting object behaves exactly like a Deterministic .
Instead of storing windows at each initial time, it provides a view into the existing data
at incrementing offsets. Currently, PowerSystems.jl does not support Forecasts or
SingleTimeSeries with dissimilar intervals or resolution. This imposes a requirement
that all the time series data in a system be consistently spaced.

Code listing 2.3 shows a minimal example of PowerSystems.jl used to develop an ED
model. The code listing shows the stages explicitly:

1. Make the data set from power flow and time series data,

2. Serialize the data, and

3. Pass the data and algorithm to the model.

One of the main advantages of PowerSystems.jl is not having to re-run lines 4–5 for
every model execution. The model code shows an example of populating the constraints
and cost functions using accessor functions inside the model function (lines 9–37). The
example concludes by reading the data created earlier in line 40 and passing the algorithm
with the data in line 41.

PowerSystems.jl Impact

PowerSystems.jl is designed to account for the common workflows that analysts and
engineers use to manipulate data sets, and to develop new models and packages for the
changing landscape of energy systems. The two main contributions are as follows: (1)
Decouple data processing from the computations in the models; (2) provide the field with
an inherently extensible data modeling framework to develop new models and software
packages that can be shared across a variety of modeling objectives.

Existing power systems software packages have addressed a subset of the principles
established in Section 2.1 but with the specific focus of providing a data model for the
analytic objective of the underlying mathematical model. As a result, developers of new
models are faced with the choice of either adapting their data model needs to the existing
structures or developing custom ones. Often, the underlying data are formatted in MAT-
POWER [205] developed in MATLAB and industrial tools such as PSS®E. Both formats are
based on fixed-order, fixed-position text files that require code development for data input.
PowerSystems.jl goes beyond the implementation of the canonical data model and also
provides manipulation methods and utilities for its integration into other packages.
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1 using PowerSystems, JuMP, Ipopt
2

3 ########## Data Process ###########
4 system = System("src/5bus_ts/case5_re.m")
5 add_forecasts!(system, "timeseries_pointers.json")
6 to_json(system, "system_data.json")
7

8 ######## Model Process #########
9 function ed_model(system::System, optimizer)

10 m = Model(optimizer())
11 time_periods = get_time_series_horizon(system)
12 thermal_gens_names = get_name.(get_components(ThermalStandard, system))
13 @variable(m, pg[g in thermal_gens_names, t in time_periods] >= 0)
14

15 for g in get_components(ThermalStandard, system), t in time_periods
16 name = get_name(g)
17 @constraint(m, pg[name, t] >= get_active_power_limits(g).min)
18 @constraint(m, pg[name, t] <= get_active_power_limits(g).max)
19 end
20

21 net_load = zeros(time_periods)
22 for g in get_components(RenewableGen, system)
23 net_load -= get_time_series_values(SingleTimeSeries, g, "max_active_power")
24 end
25

26 for g in get_components(StaticLoad, system)
27 net_load += get_time_series_values(SingleTimeSeries, g, "max_active_power")
28 end
29

30 for t in time_periods
31 @constraint(m, sum(pg[g, t] for g in thermal_gens_names) == net_load[t])
32 end
33

34 @objective(m, Min, sum(pg[get_name(g), t]^2 *
get_cost(get_variable(get_operation_cost(g)))[1] + pg[get_name(g), t] *
get_cost(get_variable(get_operation_cost(g)))[2] for g in
get_components(ThermalGen, system), t in time_periods))

↪→
↪→
↪→

35

36 return optimize!(m)
37 end
38

39 #### Execution ####
40 system_data = System("system_data.json")
41 results = ed_model(system_data, Ipopt.Optimizer)

Code 2.3: Example usage of PowerSystems.jl to the development of a multi-time step
Economic Dispatch (ED) model
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PowerSystems.jl data handling improves the scientific integrity of power systems re-
search and analysis and enables the implementation of scientific computing principles for
several research communities that rely on electric power systems data. One recent example
of its application in the analysis of the Cambodian grid [8], where the authors separated
data manipulation from modeling, making both processes transparent individually.

High-impact research in energy systems requires the analysis of large amounts of data,
and PowerSystems.jl has several key features for modelers and analysts to handle and
extend large data sets. PowerSystems.jl enables easy data creation with parsers for stan-
dard file formats, and it also optimizes in-memory data access by creating methods for
efficient parameter and time series access and iteration. The fast data access and efficient
model instantiation features of PowerSystems.jl have been leveraged to enumerate large
contingency sets in numerous power system test cases [25, 24].

For model developers, PowerSystems.jl provides a generic, reusable, and customizable
data model applicable to multiple modeling objectives. Not only does it provide the com-
putational improvement to handle data at large scales, but it also provides the extension
capabilities by design that make it easier to integrate into modeling packages.

PowerSystems.jl implementation in the Julia programming language allows for fast
development and prototyping, as well as fast compilation and runtime performance [16].
In contrast to other object-oriented-programming, where inheritance is the only way to
develop extensions or custom methods, it provides user flexibility and extensibility by
providing type abstractions on which to implement methods using multiple dispatch.

The type-based and method-forward paradigm in PowerSystems.jl incentivizes the
adoption of best practices in scientific computing [192] by creating accessible interfaces to
enable code re-use in modeling and to create modular and reproducible scientific computing
applications. Code listing 2.3 summarizes the breakdown of the modeling process between
data, model, and algorithm following the definitions in Section 2.3.

Recent publications [87] have used PowerSystems.jl for the development of AGC sim-
ulation models following scientific computing practices to develop the experiment. Two
recent contributions in low-inertia power systems [151] [65] exploited the flexibility of
the dynamic model specification in PowerSystems.jl to implement the data manipulation
code in the simulation experiments. PowerSystems.jl serves as the data handling platform
for the rest of the software contributions in this dissertation for the study of power system
operations and dynamics.
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2.5 Conclusions

• The power systems community can enjoy many potential benefits from the adoption
of scientific computing practices. Current computational experimentation practices
are not as well developed when compared to other fields. Issues with data access,
experiment reproducibility and access to code have been discussed in this chapter.

• Developing novel operation models requires validation through computational experi-
ments. Appropriate experimental design is critical in demonstrating models’ capability
to handle the large-scale penetration of renewable energy.

• The software developed for power systems operational research must be able to
reproduce the experimental results, which implies access to the input data, code
access, and consistent results when the experiment is replicated. Beyond code sharing,
there needs to be intent on the side of the researcher to enable the experiment to be
reproducible.

• This chapter introduced PowerSystems.jl, the first tool dedicated exclusively to pro-
viding data management tools for electricity system modeling across research do-
mains. The focus of PowerSystems.jl is to provide a structured data scheme, effi-
cient in-memory data handling, and parsing capabilities from popular file formats.
The primary motivation is to provide model-agnostic data structures that incentivize
separation between the data processing code and the modeling code.

• The software implementation of PowerSystems.jl specifically addressed several prac-
tical challenges in the development of reproducible simulations. The use of consistent
interfaces, data checking and model agnostic implementation allows researchers to
develop their own applications without embedding assumptions.
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Chapter 3

Simulation of Power Systems Operations

With the integration of large amounts of VRE in electric grids, there is a need to advance the
flexibility and robustness of industry practices. Optimization-based models have become
an essential tool in power systems operations to achieve increased integration in a reliable
fashion [82]. Assessing the effects of VRE expansion and demonstrating the value of novel
approaches over conventional operational strategies relies on computer simulations as a
means of testing. The outcomes of such simulations are of great use to diverse stakehold-
ers – including planners, analysts, and regulators – who depend on operational model
simulations for analyses that range from the cost of supply estimation to expansion plan
feasibility. In many cases, the outcomes of these analyses are relevant to the public, the
scientific community, or both. Given this breadth of applications for power systems simula-
tions, transparency and reproducibility [142] are imperative as they allow the verification
of results [31], which can be accomplished with rigorous scientific computing practices.
Scientific computing practices promote the application of principles such as reproducibility,
transparency, and accuracy to experiments carried out using computer simulations [88].
There is large and growing relevance of scientific computing for energy simulations that
should provide adequate access to the models and the data used.

One of the key innovations arising from systems operations modeling has been the inclu-
sion of sub-hourly effects. Recent contributions show the relevance of intra-period coordi-
nation is operations assessment [128, 186]. The main driver to assess the intra-temporality
research questions is software that simulates system operations with sequentially coupled
optimization problems. Handling large scale and long range simulations, however, has
largely been limited to commercial software tools like PLEXOS, Hitachi-PROMOD, or GE-MAPS.
Given the complex, data-intensive nature of an operations simulation and the general lack
of access to source code and data, many of the underlying assumptions remain hidden to
external observers [31].

Models used to simulate power system operations usually feature significant simplifica-
tions of the system’s physics to formulate optimization problems that focus on power system
decision-making such as commitment of units, dispatch, or reserve allocation. Hence, a
transparent framework requires that the simulation experiment properly account for all the
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assumptions that go into the models’ simplifications, particularly when using the simula-
tions to produce scientific or policy statements. However, commercial simulation software
models are intellectual property not available to the public and their cost can be a sig-
nificant barrier to reproducibility. When commercial simulators are not available power
system operations researchers have to develop ad-hoc heuristics and solutions to combine
optimization and modeling software from multiple vendors. The resulting lack of coher-
ence across platforms and reliance on bespoke frameworks to execute experiments makes
simulation evaluation, adoption, modification, and expansion costly, and in many cases it
is impossible to reproduce [88].

In recent years, open-source operations simulation software has become available in
recent years for research purposes. Some examples of software that to date are actively
maintained include the Python library PyPSA [21] which focuses on expansion planning
models and enables users to assess the plans that result from simulating operations. Another
is FESTIV [46], a primarily Matlab-based software that relies on a mixture of GAMS and
Matlab for the study of the impact of VRE in system operations at high levels of granularity.
Although the code for FESTIV is publicly available, its implementation requires commercial
software, while model modification requires changing the source code. Finally, the Julia
package PowerModels.jl [27] focuses on the formulation and solution of OPF problems.
Although PowerModels.jl is capable of handling realistically-sized systems and is openly
sourced, it cannot inherently be used to perform long-range simulations, i.e., representing
months to years of operation, or solve sequences of operational problems.

Motivations

Power systems research has benefited from having open source analysis and simulations
tools. However, existing operations simulations tools have focused on single-period prob-
lems (e.g. load flow and contingency analysis) or multi-period problems like UC or OPF,
thus avoiding the complexities of inter-problem information flow. Despite the widespread
usage of Production Cost Model (PCM) in research, and industry decision-making, the
definitions and algorithmic structure that enables PCM simulations is poorly represented
in literature. The lack of availability of operations simulation software drives the lack of
reproducible research in this area.

Furthermore, given that the alternatives to developing a large scale operations simula-
tion results in complex software projects or depend on commercial tools, the underlying
optimization models used in the simulation tend to be rigidly defined. A model’s rigidity can
constrain the questions that researchers and analysts examine, resulting in modeling-limited
choice [39, 137]. The lack of flexibility characterizing the models and operational sequences
influences the type of simulations that can be conducted. Model-limited choices can stem
from two factors: (1) Structural exclusion of certain forms of simulation and analysis; and
(2) formulation limitations due to restrictions in underlying models or whether data is
available. The chapter introduces the software package PowerSimulations.jl (PSI.jl)
that enables scalibility and flexibility of operations simulations.
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This chapter begins by defining and operations simulation, along with other terminology
required to formulate a operations simulation model. Throughout the chapter we introduce
definitions to properties of an operations simulation commonly used but rarely discussed
in the simulation literature. The objective of PowerSimulations.jl is twofold: (1) Enable
a scientific approach to the simulation of large-scale power system operations; and (2)
reduce model-limited choice when framing operations simulation experiments. PSI.jl
also aims to provide the necessary utilities to develop simulations at a scale and scope on
par with commercial tools.

This chapter’s contributions include:

• Formal definitions to structure an operations simulation that employs sequential
solves of multiple optimization problems

• A systematic method to formulate operation optimization models for the purpose
of simulation incorporating devices, network and services that span multiple time
resolutions.

• The description of methods and software implementation requirements to support
long range simulations.

• A framework that enables developers and researchers to scientifically reproduce an
operations simulation.

• The implementation of an experimental set-up with decision model and emulator
model for the study of reserve deployment using a detailed quasi-steady-state AGC
simulation model that considers steady-state frequency deviations and device limits.

• A realistic mechanism to assess generator saturation effects and account for re-deployment
in reserve deployment.

• An optimization-based implementation of an AGC model that can be solved efficiently
using LP solvers.

The remainder of the chapter includes a section on 3.1, which provides readers with
definitions for operations simulation and provides a robust description of its atomic com-
ponents. Section 3.2 showcases the software implementation of an operations simulation
package, with consideration to two main components: namely, model building and execu-
tion. Section 3.3 examines the validation and example uses of PSI.jl to publicly available
datasets, while Section 3.4 presents in detail the use of the concepts to the simulation of a
system considering the AGC. Finally, 3.6 discusses conclusions and future work.
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Notation

Lower-case letters x denote one-dimensional real variables, parameters, and functions;
upper-case letters in the form F and F () are used for matrices and functions respectively;
arrows (as in ~x) represent vectors of variables or parameters and calligraphic symbols (as
in X ) is used to denote sets.

3.1 Defining an operations simulation

Simulation vs Optimization

Power systems operations is a rich field for the study and development of optimization
models to find the solution of operation problems. Given its importance, and the complexity
and scale of the electric grid, there exists an abundance of literature on approaches that
efficiently formulate and solve optimization models with applications to power systems
[132]. For instance, UC is an operation problem typically formulated as a MILP optimization
model and has been the focus of countless formulations and algorithmic improvements.
Also, the OPF problem has received significant contributions with the development of
relaxed formulations that exploit recent advances in convex optimization algorithms.

On the other hand, the objective of an operations simulation is to find solutions to a se-
quence of operation problems in a way that resembles the procedures followed by operators.
For instance, an operations simulation seeks to replicate the day-ahead UC, hour-ahead UC
and real-time ED market clearing processes. The results of an operations simulation could
be used to assess the generation fleet fuel costs during a year. The evolution from “load-
duration" curves to assess systems costs to the use of optimization has enabled increased
insight into the effects VRE in the system operation [128]. However, as the complexity of
the analysis grows to incorporate new technologies or bring a more detailed representation
of the system’s operation into the simulation, the scope of PCM has grown beyond its orig-
inal application. Hence, a simulation requires the specification of one or more operation
problems and optimization models used to represent and solve each problem. Each optimiza-
tion model is an atomic component of a simulation, while the formulation of an operation
problem can differ depending on the application, jurisdiction, or phenomena of interest.

Operation Problem Definitions

We begin by defining a decision problem and an emulation problem, two types of operation
problems used in the course of an operations simulation. These definitions follow from
the framework for experimental design from Chapter 2. Decision Problems and Emulation
Problems are discrete models with a specific resolution ∆t depending on the requirements
and available input data. The time keeping deifinitions of these problems follows from the
time-series structures defined in Section 2.4.
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Figure 3.1: Sequential properties of a decision model.

• Decision Problem: A decision problem calculates the desired system operation based
on forecasts of uncertain inputs and information about the state of the system. The
output of a decision problem represents the policies used to drive the set-points of
the system’s devices, like generators or switches, and depend on the purpose of the
problem. The decision problems employ the forecasts to make decisions for the
discrete time-steps over a horizon. The model of a decision problem updates the
decision values at an interval which is larger than its resolution, Fig. 3.1 depicts
these definitions. Each calculation step is taken at a particular interval and employs
information about the state of the system and a forecast to estimate future estates.
For instance in day-ahead operations the common practice is to use a UC problem
with a 24-hour interval, 1-hour resolution and over a 48-hour horizon. The decisions
calculated in the portion of the horizon after the end of the interval (dash line in Fig.
3.1) are not implemented and are used as a way to handle inter-temporal effects of
the uncertain quantities1. Decisions in power systems are calculated in a sequential
or staged manner since decisions are continually refined as information about the
operating period updates.

• Emulation Problem: An emulation problem is used to mimic the system’s behavior
subject to an incoming decision and the realization of a forecasted inputs. The
solution of the emulator produces outputs representative of the system performance
when operating subject the policies resulting from the decision models. The emulator

1Some operators call that segment of the look-ahead the “study period".
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Figure 3.2: Sequential properties of an emulation model.

model is “myopic" and executed along a single timeline, as shown in Fig. 3.2, since
its results are not affected by future system states. At each calculation step, the model
uses the incoming decisions and the realization of the uncertain quantities such that
the state values at a time t are independent of future system states. For instance,
an AGC model can be used as an emulator problem to evaluate the deployment of
reserves. Alternatively, an AC power flow can be used to assess the resulting node
voltages after a dispatch decision. The emulator also plays a critical role in simulations
with inter-temporal constraints since it can better represent the initial conditions in
models that require initial condition values like those featuring ramp constraints or
storage devices.

Conceptually, the relationship between the decision problem and the emulator problem
is akin to the control-plant model commonly used in the field of automatic control. The
representation of the system state through an emulation problem is not common practice
in PCM. This is due in part to the fact that most commercial PCM tools only support a one-
or two-problem simulation framework. Extending an operations simulation to use multiple
problems is significantly more challenging. An example of these relationships is shown in
Fig. 3.3, which shows a simulation set-up that uses two decision model stages and a AGC
emulation problem. In this examples, the first level problem finds optimal decisions with
hourly time scales that are later refined at a five-minute resolution and finally the AGC
models the system status.
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Figure 3.3: Characterization of the multiple timeframes considered in the simulations.

Model of an operations simulation

Based on the previous definitions of decision and emulation problems, it is possible to
formulate an operations simulation using a discrete time model as follows:

~ut=Ft(~xt−1, ~ut−1, ~ρt,Φ|t), ~ut0 =~u0 (3.1)

Gt(~xt, ~xt−1, ~ut, ~ψt)=0, ~xt0 =~x0 (3.2)

where ~ut represents the operation decisions conditional on a forecast issued for time t, Φ|t
over a horizon H and using parameters ~ρ. The decision state ~ut is calculated over a horizon
H such that ~ut =

{
uh|t| h ∈ H

}
where ut|h represents a decision taken at time t for time-step

h. The decision variables are updated by function Ft that represents the sequential solution
of decision problems. Function Gt is the emulator problem that updates the system state
~xt given the decision ~ut and the realized inputs ~ψt.

Given (3.1)-(3.2), a simulation can be set up as follows: given an initial condition for
a decision and system state, advance in time t from one point to the next considering a
discrete timeline {t0, t1, . . . , tn, . . . , T}. A simulation requires a stepping procedure that
finds the solution in time tn+1 provided the values of the variables at {t|t0 ≤ t < tn+1}.
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<latexit sha1_base64="cVnkX84A1MDpIQKdPa1Zjatw9BY=">AAACGXicbVDLSsNAFJ3UV62v+Ni5CRbBVUlKUZcFNy4r2Ae0IUwmk3boJBNmboQa8iVu3OpfuBO3rvwJv8FJm4W2HhjmcM69cO7xE84U2PaXUVlb39jcqm7Xdnb39g/Mw6OeEqkktEsEF3LgY0U5i2kXGHA6SCTFkc9p35/eFH7/gUrFRHwPs4S6ER7HLGQEg5Y882TkCx6oWaS/LM29DLxW7pl1u2HPYa0SpyR1VKLjmd+jQJA0ojEQjpUaOnYCboYlMMJpXhuliiaYTPGYDjWNcUSVm83T59a5VgIrFFK/GKy5+nsjw5EqAurJCMNELXuF+J83VBMhdQqRAAtouJQCwms3Y3GSAo3JIkSYcguEVdRkBUxSAnymCSaS6TssMsESE9Bl1nRBznIdq6TXbDiXjdZdq95ullVV0Sk6QxfIQVeojW5RB3URQY/oGb2gV+PJeDPejY/FaMUod47RHxifP25Uobw=</latexit>ut4

<latexit sha1_base64="Y2eA8RU/n5Ea18JzedGvQ0aQWI0=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4Kkmpj2XBjcsK9gFtCJPJpB06yYSZG6GGfIkbt/oX7sStK3/Cb3DSZqGtB4Y5nHMvnHv8hDMFtv1lrKyurW9sVraq2zu7e/vmwWFXiVQS2iGCC9n3saKcxbQDDDjtJ5LiyOe0509uCr/3QKViIr6HaULdCI9iFjKCQUueeTz0BQ/UNNJfluZeBt5F7pk1u27PYC0TpyQ1VKLtmd/DQJA0ojEQjpUaOHYCboYlMMJpXh2miiaYTPCIDjSNcUSVm83S59aZVgIrFFK/GKyZ+nsjw5EqAurJCMNYLXqF+J83UGMhdQqRAAtouJACwms3Y3GSAo3JPESYcguEVdRkBUxSAnyqCSaS6TssMsYSE9BlVnVBzmIdy6TbqDuX9eZds9ZqlFVV0Ak6RefIQVeohW5RG3UQQY/oGb2gV+PJeDPejY/56IpR7hyhPzA+fwBv9aG9</latexit>ut5
<latexit sha1_base64="6B0eVd7IiwWsT8QVAJuncxo5JYA=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4Kkkp1WXBjcsK9gFtCJPJpB06yYSZG6GGfIkbt/oX7sStK3/Cb3DSZqGtB4Y5nHMvnHv8hDMFtv1lrK1vbG5tV3aqu3v7B4fm0XFPiVQS2iWCCznwsaKcxbQLDDgdJJLiyOe0709vCr//QKViIr6HWULdCI9jFjKCQUueeTryBQ/ULNJfluZeBl4r98yaXbfnsFaJU5IaKtHxzO9RIEga0RgIx0oNHTsBN8MSGOE0r45SRRNMpnhMh5rGOKLKzebpc+tCK4EVCqlfDNZc/b2R4UgVAfVkhGGilr1C/M8bqomQOoVIgAU0XEoB4bWbsThJgcZkESJMuQXCKmqyAiYpAT7TBBPJ9B0WmWCJCegyq7ogZ7mOVdJr1J1WvXnXrLUbZVUVdIbO0SVy0BVqo1vUQV1E0CN6Ri/o1Xgy3ox342MxumaUOyfoD4zPH3GWob4=</latexit>ut6

<latexit sha1_base64="2uw74b8I+clGPJHLGc+FgJwLmTQ=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4Kkkp1mXBjcsK9gFtCJPJpB06yYSZG6GGfIkbt/oX7sStK3/Cb3DSZqGtB4Y5nHMvnHv8hDMFtv1lrK1vbG5tV3aqu3v7B4fm0XFPiVQS2iWCCznwsaKcxbQLDDgdJJLiyOe0709vCr//QKViIr6HWULdCI9jFjKCQUueeTryBQ/ULNJfluZeBl4r98yaXbfnsFaJU5IaKtHxzO9RIEga0RgIx0oNHTsBN8MSGOE0r45SRRNMpnhMh5rGOKLKzebpc+tCK4EVCqlfDNZc/b2R4UgVAfVkhGGilr1C/M8bqomQOoVIgAU0XEoB4bWbsThJgcZkESJMuQXCKmqyAiYpAT7TBBPJ9B0WmWCJCegyq7ogZ7mOVdJr1J2revOuWWs3yqoq6Aydo0vkoBZqo1vUQV1E0CN6Ri/o1Xgy3ox342MxumaUOyfoD4zPH3M3ob8=</latexit>ut7
<latexit sha1_base64="axYcZtRntI5m9fxEb1WxtixuBzc=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4Kkkp2mXBjcsK9gFtCJPJpB06yYSZG6GGfIkbt/oX7sStK3/Cb3DSZqGtB4Y5nHMvnHv8hDMFtv1lrK1vbG5tV3aqu3v7B4fm0XFPiVQS2iWCCznwsaKcxbQLDDgdJJLiyOe0709vCr//QKViIr6HWULdCI9jFjKCQUueeTryBQ/ULNJfluZeBl4r98yaXbfnsFaJU5IaKtHxzO9RIEga0RgIx0oNHTsBN8MSGOE0r45SRRNMpnhMh5rGOKLKzebpc+tCK4EVCqlfDNZc/b2R4UgVAfVkhGGilr1C/M8bqomQOoVIgAU0XEoBYcvNWJykQGOyCBGm3AJhFTVZAZOUAJ9pgolk+g6LTLDEBHSZVV2Qs1zHKuk16s5VvXnXrLUbZVUVdIbO0SVy0DVqo1vUQV1E0CN6Ri/o1Xgy3ox342MxumaUOyfoD4zPH3TYocA=</latexit>ut8

<latexit sha1_base64="9TrxkNqx87We1hSQGPu6kDMExdk=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4KkkpPnYFNy4r2Ae0IUwmk3boJBNmboQa8iVu3OpfuBO3rvwJv8FJm4W2HhjmcM69cO7xE84U2PaXsbK6tr6xWdmqbu/s7u2bB4ddJVJJaIcILmTfx4pyFtMOMOC0n0iKI5/Tnj+5KfzeA5WKifgepgl1IzyKWcgIBi155vHQFzxQ00h/WZp7GXjXuWfW7Lo9g7VMnJLUUIm2Z34PA0HSiMZAOFZq4NgJuBmWwAineXWYKppgMsEjOtA0xhFVbjZLn1tnWgmsUEj9YrBm6u+NDEeqCKgnIwxjtegV4n/eQI2F1ClEAiyg4UIKCK/cjMVJCjQm8xBhyi0QVlGTFTBJCfCpJphIpu+wyBhLTECXWdUFOYt1LJNuo+5c1Jt3zVqrUVZVQSfoFJ0jB12iFrpFbdRBBD2iZ/SCXo0n4814Nz7moytGuXOE/sD4/AF2eaHB</latexit>ut9

<latexit sha1_base64="chw62Fpgm0L1LyOHl1vQj/H4v78=">AAACGXicbVDLSsNAFJ3UV62v+Ni5CRbBVUlK8bEruHFZwT6gLWEymbRDJ5kwcyPWkC9x41b/wp24deVP+A1O2iy09cAwh3PuhXOPF3OmwLa/jNLK6tr6RnmzsrW9s7tn7h90lEgkoW0iuJA9DyvKWUTbwIDTXiwpDj1Ou97kOve791QqJqI7mMZ0GOJRxAJGMGjJNY8GnuC+mob6Sx8yNwX3KnPNql2zZ7CWiVOQKirQcs3vgS9IEtIICMdK9R07hmGKJTDCaVYZJIrGmEzwiPY1jXBI1TCdpc+sU634ViCkfhFYM/X3RopDlQfUkyGGsVr0cvE/r6/GQuoUIgbm02AhBQSXw5RFcQI0IvMQQcItEFZek+UzSQnwqSaYSKbvsMgYS0xAl1nRBTmLdSyTTr3mnNcat41qs15UVUbH6ASdIQddoCa6QS3URgQ9omf0gl6NJ+PNeDc+5qMlo9g5RH9gfP4Ae26hxA==</latexit>xt9
<latexit sha1_base64="iEcM/ymFYU0wDc8c1j9P++H7hIQ=">AAACGXicbVDLSsNAFJ3UV62v+Ni5CRbBVUlK0S4LblxWsA9oQ5hMJu3QSSbM3Ig19EvcuNW/cCduXfkTfoOTNgttPTDM4Zx74dzjJ5wpsO0vo7S2vrG5Vd6u7Ozu7R+Yh0ddJVJJaIcILmTfx4pyFtMOMOC0n0iKI5/Tnj+5zv3ePZWKifgOpgl1IzyKWcgIBi155snQFzxQ00h/2cPMy8BrzjyzatfsOaxV4hSkigq0PfN7GAiSRjQGwrFSA8dOwM2wBEY4nVWGqaIJJhM8ogNNYxxR5Wbz9DPrXCuBFQqpXwzWXP29keFI5QH1ZIRhrJa9XPzPG6ixkDqFSIAFNFxKAWHTzVicpEBjsggRptwCYeU1WQGTlACfaoKJZPoOi4yxxAR0mRVdkLNcxyrp1mvOZa1x26i26kVVZXSKztAFctAVaqEb1EYdRNAjekYv6NV4Mt6Md+NjMVoyip1j9AfG5w95zaHD</latexit>xt8

<latexit sha1_base64="djgaYFM0frz1CssPTx38J1naM5s=">AAACGXicbVDLSsNAFJ3UV62v+Ni5CRbBVUlKsS4LblxWsA9oQ5hMJu3QSSbM3Ig19EvcuNW/cCduXfkTfoOTNgttPTDM4Zx74dzjJ5wpsO0vo7S2vrG5Vd6u7Ozu7R+Yh0ddJVJJaIcILmTfx4pyFtMOMOC0n0iKI5/Tnj+5zv3ePZWKifgOpgl1IzyKWcgIBi155snQFzxQ00h/2cPMy8BrzjyzatfsOaxV4hSkigq0PfN7GAiSRjQGwrFSA8dOwM2wBEY4nVWGqaIJJhM8ogNNYxxR5Wbz9DPrXCuBFQqpXwzWXP29keFI5QH1ZIRhrJa9XPzPG6ixkDqFSIAFNFxKAeGVm7E4SYHGZBEiTLkFwsprsgImKQE+1QQTyfQdFhljiQnoMiu6IGe5jlXSrdecy1rjtlFt1YuqyugUnaEL5KAmaqEb1EYdRNAjekYv6NV4Mt6Md+NjMVoyip1j9AfG5w94LKHC</latexit>xt7
<latexit sha1_base64="FT8fMuOtHu/lZo3g28xJvFa4tDQ=">AAACGXicbVDLSsNAFJ3UV62v+Ni5CRbBVUlKqS4LblxWsA9oQ5hMJu3QSSbM3Ig19EvcuNW/cCduXfkTfoOTNgttPTDM4Zx74dzjJ5wpsO0vo7S2vrG5Vd6u7Ozu7R+Yh0ddJVJJaIcILmTfx4pyFtMOMOC0n0iKI5/Tnj+5zv3ePZWKifgOpgl1IzyKWcgIBi155snQFzxQ00h/2cPMy8BrzjyzatfsOaxV4hSkigq0PfN7GAiSRjQGwrFSA8dOwM2wBEY4nVWGqaIJJhM8ogNNYxxR5Wbz9DPrXCuBFQqpXwzWXP29keFI5QH1ZIRhrJa9XPzPG6ixkDqFSIAFNFxKAeGVm7E4SYHGZBEiTLkFwsprsgImKQE+1QQTyfQdFhljiQnoMiu6IGe5jlXSrdecZq1x26i26kVVZXSKztAFctAlaqEb1EYdRNAjekYv6NV4Mt6Md+NjMVoyip1j9AfG5w92i6HB</latexit>xt6

<latexit sha1_base64="27IZmOuKeCyfGp8Jf8DKUudEJNM=">AAACGXicbVDLSsNAFJ3UV62v+Ni5CRbBVUlKfSwLblxWsA9oS5hMJu3QSSbM3Ig15EvcuNW/cCduXfkTfoOTNgttPTDM4Zx74dzjxZwpsO0vo7Syura+Ud6sbG3v7O6Z+wcdJRJJaJsILmTPw4pyFtE2MOC0F0uKQ4/Trje5zv3uPZWKiegOpjEdhngUsYARDFpyzaOBJ7ivpqH+0ofMTcE9z1yzatfsGaxl4hSkigq0XPN74AuShDQCwrFSfceOYZhiCYxwmlUGiaIxJhM8on1NIxxSNUxn6TPrVCu+FQipXwTWTP29keJQ5QH1ZIhhrBa9XPzP66uxkDqFiIH5NFhIAcHVMGVRnACNyDxEkHALhJXXZPlMUgJ8qgkmkuk7LDLGEhPQZVZ0Qc5iHcukU685F7XGbaParBdVldExOkFnyEGXqIluUAu1EUGP6Bm9oFfjyXgz3o2P+WjJKHYO0R8Ynz906qHA</latexit>xt5
<latexit sha1_base64="0rHs+Qg45pZx2Cz7MTp8gQrhQ3U=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4Kkkp6rLgxmUF+4A2hMlk0g6dZMLMjVhDvsSNW/0Ld+LWlT/hNzhps9DWA8MczrkXzj1+wpkC2/4yVlbX1jc2K1vV7Z3dvX3z4LCrRCoJ7RDBhez7WFHOYtoBBpz2E0lx5HPa8yfXhd+7p1IxEd/BNKFuhEcxCxnBoCXPPB76ggdqGukve8i9DLxm7pk1u27PYC0TpyQ1VKLtmd/DQJA0ojEQjpUaOHYCboYlMMJpXh2miiaYTPCIDjSNcUSVm83S59aZVgIrFFK/GKyZ+nsjw5EqAurJCMNYLXqF+J83UGMhdQqRAAtouJACwis3Y3GSAo3JPESYcguEVdRkBUxSAnyqCSaS6TssMsYSE9BlVnVBzmIdy6TbqDsX9eZts9ZqlFVV0Ak6RefIQZeohW5QG3UQQY/oGb2gV+PJeDPejY/56IpR7hyhPzA+fwBzSaG/</latexit>xt4

<latexit sha1_base64="REWpzo+ueJL6+LvCvBZtgOBneTo=">AAACGXicbVDLSsNAFJ3UV62v+Ni5CRbBVUlqUZcFNy4r2Ae0JUwmk3boJBNmbsQa8iVu3OpfuBO3rvwJv8FJm4W2HhjmcM69cO7xYs4U2PaXUVpZXVvfKG9WtrZ3dvfM/YOOEokktE0EF7LnYUU5i2gbGHDaiyXFocdp15tc5373nkrFRHQH05gOQzyKWMAIBi255tHAE9xX01B/6UPmpuCeZ65ZtWv2DNYycQpSRQVarvk98AVJQhoB4VipvmPHMEyxBEY4zSqDRNEYkwke0b6mEQ6pGqaz9Jl1qhXfCoTULwJrpv7eSHGo8oB6MsQwVoteLv7n9dVYSJ1CxMB8GiykgOBqmLIoToBGZB4iSLgFwsprsnwmKQE+1QQTyfQdFhljiQnoMiu6IGexjmXSqdeci1rjtlFt1ouqyugYnaAz5KBL1EQ3qIXaiKBH9Ixe0KvxZLwZ78bHfLRkFDuH6A+Mzx9xqKG+</latexit>xt3
<latexit sha1_base64="tk0Ott7Gwst8GNp44SN76NeF1Go=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4Kkkp6rLgxmUF+4A2hMlk0g6dZMLMjVhDvsSNW/0Ld+LWlT/hNzhps9DWA8MczrkXzj1+wpkC2/4yVlbX1jc2K1vV7Z3dvX3z4LCrRCoJ7RDBhez7WFHOYtoBBpz2E0lx5HPa8yfXhd+7p1IxEd/BNKFuhEcxCxnBoCXPPB76ggdqGukve8i9DLxG7pk1u27PYC0TpyQ1VKLtmd/DQJA0ojEQjpUaOHYCboYlMMJpXh2miiaYTPCIDjSNcUSVm83S59aZVgIrFFK/GKyZ+nsjw5EqAurJCMNYLXqF+J83UGMhdQqRAAtouJACwis3Y3GSAo3JPESYcguEVdRkBUxSAnyqCSaS6TssMsYSE9BlVnVBzmIdy6TbqDsX9eZts9ZqlFVV0Ak6RefIQZeohW5QG3UQQY/oGb2gV+PJeDPejY/56IpR7hyhPzA+fwBwB6G9</latexit>xt2

<latexit sha1_base64="F3QVRf+6c9SvOOfvg+FKw+7cO6I=">AAACGXicbVDLSsNAFJ34rPUVHzs3wSK4Kkkp6rLgxmUF+4A2hMlk0g6dZMLMjVhDvsSNW/0Ld+LWlT/hNzhps9DWA8MczrkXzj1+wpkC2/4yVlbX1jc2K1vV7Z3dvX3z4LCrRCoJ7RDBhez7WFHOYtoBBpz2E0lx5HPa8yfXhd+7p1IxEd/BNKFuhEcxCxnBoCXPPB76ggdqGukve8i9DDwn98yaXbdnsJaJU5IaKtH2zO9hIEga0RgIx0oNHDsBN8MSGOE0rw5TRRNMJnhEB5rGOKLKzWbpc+tMK4EVCqlfDNZM/b2R4UgVAfVkhGGsFr1C/M8bqLGQOoVIgAU0XEgB4ZWbsThJgcZkHiJMuQXCKmqyAiYpAT7VBBPJ9B0WGWOJCegyq7ogZ7GOZdJt1J2LevO2WWs1yqoq6ASdonPkoEvUQjeojTqIoEf0jF7Qq/FkvBnvxsd8dMUod47QHxifP25mobw=</latexit>xt1

<latexit sha1_base64="p5QTHrclx9pD31bt349dXH30T10=">AAACCnicbVDLSsNAFJ34rPVVdelmsAiuSlKKuiy40GUF+4A2hMlk0g6dzISZG6GE/oEbt/oX7sStP+FP+A1O2yy09cCFwzn3wrknTAU34Lpfztr6xubWdmmnvLu3f3BYOTruGJVpytpUCaV7ITFMcMnawEGwXqoZSULBuuH4ZuZ3H5k2XMkHmKTMT8hQ8phTAlbq3gY5BN40qFTdmjsHXiVeQaqoQCuofA8iRbOESaCCGNP33BT8nGjgVLBpeZAZlhI6JkPWt1SShBk/n8ed4nOrRDhW2o4EPFd/X+QkMWaShHYzITAyy95M/M/rm5HSNoVKgUcsXkoB8bWfc5lmwCRdhIgzgUHhWS844ppREBNLCNXc/oHpiGhCwbZXtgV5y3Wskk695l3WGveNarNeVFVCp+gMXSAPXaEmukMt1EYUjdEzekGvzpPz5rw7H4vVNae4OUF/4Hz+AHZMm00=</latexit>

Gt1

<latexit sha1_base64="yKw7381qhVZfpJV4/EUJ8Evik2Y=">AAACCnicbVDLSsNAFJ34rPVVdelmsAiuSlKKuiy40GUF+4A2hMlk0g6dzISZG6GE/oEbt/oX7sStP+FP+A1O2yy09cCFwzn3wrknTAU34Lpfztr6xubWdmmnvLu3f3BYOTruGJVpytpUCaV7ITFMcMnawEGwXqoZSULBuuH4ZuZ3H5k2XMkHmKTMT8hQ8phTAlbq3gY5BPVpUKm6NXcOvEq8glRRgVZQ+R5EimYJk0AFMabvuSn4OdHAqWDT8iAzLCV0TIasb6kkCTN+Po87xedWiXCstB0JeK7+vshJYswkCe1mQmBklr2Z+J/XNyOlbQqVAo9YvJQC4ms/5zLNgEm6CBFnAoPCs15wxDWjICaWEKq5/QPTEdGEgm2vbAvylutYJZ16zbusNe4b1Wa9qKqETtEZukAeukJNdIdaqI0oGqNn9IJenSfnzXl3Phara05xc4L+wPn8AXftm04=</latexit>

Gt2

<latexit sha1_base64="t3A83lfnWYgsDwIx7TauUYr0mcE=">AAACCnicbVDLSgMxFM3UV62vqks3wSK4KjO1qMuCC11WsA9ohyGTZtrQTDIkd4Qy9A/cuNW/cCdu/Ql/wm8wbWehrQcuHM65F849YSK4Adf9cgpr6xubW8Xt0s7u3v5B+fCobVSqKWtRJZTuhsQwwSVrAQfBuolmJA4F64Tjm5nfeWTacCUfYJIwPyZDySNOCVipcxtkEFxMg3LFrbpz4FXi5aSCcjSD8nd/oGgaMwlUEGN6npuAnxENnAo2LfVTwxJCx2TIepZKEjPjZ/O4U3xmlQGOlLYjAc/V3xcZiY2ZxKHdjAmMzLI3E//zemaktE2hEuADFi2lgOjaz7hMUmCSLkJEqcCg8KwXPOCaURATSwjV3P6B6YhoQsG2V7IFect1rJJ2repdVuv39UqjlldVRCfoFJ0jD12hBrpDTdRCFI3RM3pBr86T8+a8Ox+L1YKT3xyjP3A+fwB5jptP</latexit>

Gt3

<latexit sha1_base64="kYPmHu6YvIRNRumEbYhz+laOeuA=">AAACCnicbVDLSsNAFJ34rPVVdelmsAiuSlKKuiy40GUF+4A2hMlk0g6dzISZG6GE/oEbt/oX7sStP+FP+A1O2yy09cCFwzn3wrknTAU34Lpfztr6xubWdmmnvLu3f3BYOTruGJVpytpUCaV7ITFMcMnawEGwXqoZSULBuuH4ZuZ3H5k2XMkHmKTMT8hQ8phTAlbq3gY5BI1pUKm6NXcOvEq8glRRgVZQ+R5EimYJk0AFMabvuSn4OdHAqWDT8iAzLCV0TIasb6kkCTN+Po87xedWiXCstB0JeK7+vshJYswkCe1mQmBklr2Z+J/XNyOlbQqVAo9YvJQC4ms/5zLNgEm6CBFnAoPCs15wxDWjICaWEKq5/QPTEdGEgm2vbAvylutYJZ16zbusNe4b1Wa9qKqETtEZukAeukJNdIdaqI0oGqNn9IJenSfnzXl3Phara05xc4L+wPn8AXsvm1A=</latexit>

Gt4

<latexit sha1_base64="G+Em79OyIdgNoPcjWalXnFsasjI=">AAACCnicbVDLSgMxFM3UV62vqks3wSK4KjOlPpYFF7qsYB/QDkMmzbShmWRI7ghl6B+4cat/4U7c+hP+hN9g2s5CWw9cOJxzL5x7wkRwA6775RTW1jc2t4rbpZ3dvf2D8uFR26hUU9aiSijdDYlhgkvWAg6CdRPNSBwK1gnHNzO/88i04Uo+wCRhfkyGkkecErBS5zbIILiYBuWKW3XnwKvEy0kF5WgG5e/+QNE0ZhKoIMb0PDcBPyMaOBVsWuqnhiWEjsmQ9SyVJGbGz+Zxp/jMKgMcKW1HAp6rvy8yEhsziUO7GRMYmWVvJv7n9cxIaZtCJcAHLFpKAdG1n3GZpMAkXYSIUoFB4VkveMA1oyAmlhCquf0D0xHRhIJtr2QL8pbrWCXtWtW7rNbv65VGLa+qiE7QKTpHHrpCDXSHmqiFKBqjZ/SCXp0n5815dz4WqwUnvzlGf+B8/gB80JtR</latexit>

Gt5

<latexit sha1_base64="aAitjrDm0A3t37cLynbSld/QLFw=">AAACCnicbVDLSgMxFM3UV62vqks3wSK4KjOlVJcFF7qsYB/QDkMmzbShmWRI7ghl6B+4cat/4U7c+hP+hN9g2s5CWw9cOJxzL5x7wkRwA6775RQ2Nre2d4q7pb39g8Oj8vFJx6hUU9amSijdC4lhgkvWBg6C9RLNSBwK1g0nN3O/+8i04Uo+wDRhfkxGkkecErBS9zbIIGjMgnLFrboL4HXi5aSCcrSC8vdgqGgaMwlUEGP6npuAnxENnAo2Kw1SwxJCJ2TE+pZKEjPjZ4u4M3xhlSGOlLYjAS/U3xcZiY2ZxqHdjAmMzao3F//z+mastE2hEuBDFq2kgOjaz7hMUmCSLkNEqcCg8LwXPOSaURBTSwjV3P6B6ZhoQsG2V7IFeat1rJNOreo1qvX7eqVZy6sqojN0ji6Rh65QE92hFmojiiboGb2gV+fJeXPenY/lasHJb07RHzifP35xm1I=</latexit>
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Figure 3.4: operations simulation chronological sequence of calculations.

At each time-step t the sequential solution of decision problems Ft is formulated as a
composition of functions over a set Kt:

Ft :=fk ◦fk−1◦ · · · ◦f 1(~xt−1, ~ut−1, ~ρt,Φ|t) (3.3)

each fk corresponds to solving an optimization model to update the decision states based
on the previous decisions ~ut−1, the system state ~xt−1 and the available forecast Φk|t. Figure
3.4 shows an example of the stepping process in a simulation, where the sequence Ft can
have between 1 and 3 function evaluations to arrive to the decision value ~ut. Before the
next set of decisions are updated the emulation problem is evaluated.

Each function fk is an optimization model of a sub-set of the decisions ~ukt using a sub-set
of the forecast data Φk|t as follows:

fk(·) = min
~ukt

Cfk(~ukt ) (3.4a)

s.t. HD
fk

(
~ut, ~ut−1, ~xt−1, ~ρt,Φk|t

)
≤ 0 (3.4b)

HB
fk

(
~ut, ~ut−1, ~xt−1, ~ρt,Φk|t

)
≤ 0 (3.4c)

HN
fk

(
~ut, ~ut−1, ~xt−1, ~ρt,Φk|t

)
= 0 (3.4d)

HS
fk

(
~ut, ~ut−1, ~xt−1, ~ρt,Φk|t

)
≤ 0 (3.4e)

HF
fk

(
~ut, ~ut−1, ~xt−1, ~ρt,Φk|t

)
≤ 0 (3.4f)
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Cfk is the objective function of the model. The constraint function HD
fk

corresponds to
the models for the injection devices like generation, loads, and storage. Constraints HB

fk

correspond to the models of the branches like Lines and HVDC, whileHN
fk

corresponds to the
model of the network like CopperPlate, DC powerflow, or AC powerflow. HS

fk
correspond

to the models of the services like reserves or transfers. Finally, HF
fk

are introduced as the
feedforward constraints.

Feedforwards constraints are used to represent the relationships that the decision vari-
ables ~ut have between the models. For instance, a feedforward is commonly used to pass the
values of the on/off decision variables from a UC problem into an ED problem. Other exam-
ples of feedforward constraints include upper-bounds, lower-bounds, and end-of-horizon
targets among others. These constraints are not commonly formalized in commercial or
open source simulation models despite the fact that their implementation can affect the
model’s results.

3.2 Software Structure and Description

Operaiton
Model

Simulation
Model

Operaiton
Model

Operaiton
Model

Injection Device 
Models

Branch Models

Network Model

Services Models

Simulation 
Sequence

Figure 3.5: Model relationship graph of a simulation.

An implementation of an operations simulation software needs to consider two large work-
flows: (1) building the optimization model;and (2) handling the sequencing and bookkeep-
ing of the optimization model solutions.

From a software perspective, the challenge in implementing a scalable and flexible
simulation framework lies in handling the required data structures. As described in [88],
building and solving optimization model within a simulation requires several data transla-
tions. Traditionally, PCM simulators employ disk writes to handle these data transactions;
at each model solve the software writes a text file to disk that is later solved by the optimizer.
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1 using PowerSystems
2 using PowerSimulations
3

4 # create default template
5 tmplt = ProblemTemplate(NetworkModel(DCPPowerModel))
6

7 # set generator models
8 set_device_model!(
9 tmplt, ThermalStandard, ThermalStandardUnitCommitment

10 )
11 set_device_model!(
12 tmplt, RenewableDispatch, RenewableFullDispatch
13 )
14

15 # set load models
16 set_device_model!(tmplt, PowerLoad, StaticPowerLoad)
17

18 # set branch models
19 set_device_model!(tmplt, Line, StaticBranchUnbounded)

Code 3.1: Definition of a problem template. High level specification of Hfk functions

In an optimization context, the limitations of this workflow are further discussed in
detail by [44], where the authors detail the implementation of the AML JuMP.jl and the
comparison with text-interpreted alternatives like GAMS or AMPL. From a simulation
perspective, this workflow is inefficient since it implies that the solver garbage collects the
incumbent solution that can be used as an initial guess and for models that employ LP or
MILP solvers it implies losing matrix factorizations and other intermediate values that can
accelerate the solution of the model.

PSI.jl addresses the limitations of existing simulation workflows by exploiting the
in-memory representation of the optimization model provided by JuMP.jl [44] and the
underlying abstract solver interface MathOptInterface.jl [90].

Optimization Models Build

To minimize issues of model-limited choice, the optimization model building implemen-
tation follows two principles:

• Flexibility: a change to a component model does not affect the model of an unrelated
component

• Modularity: separate the individual models of the system components
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One critical consideration when building (3.4) programmatically is providing sufficient
flexibility for the exploration of a hypothesis while maintaining a certain level of structure
such that a software solution can be implemented. In PSI.jl, we divide the optimization
model in the sub-models described by (3.4) as shown in Figure 3.5 where each simulation
is comprised of optimization formulated from component level models and feedforwards.

The specifications of a problem are contained in a template that determines formula-
tions for each component. An example of building an operation’s problem template is
shown in Listing 3.1. In this example the template is based on a DC Powerflow, with the
specific models for each component explicitly set. For example, ThermalStandard devices
are modeled using the formulation ThermalStandardUnitCommitment. PSI.jl provides a
comprehensive and fully documented library of formulations for diverse components in
the documentation. To tackle the requirements discussed in [31, 142] and provide users
with access to the model details and data, the optimization model objects are stored in the
optimization container. This container is serialized to disk in order to guarantee that the
simulation can be reproduced at a later time.

The optimization model build process is shown in Figure 3.6. First, if a feasible ini-
tial point is not provided, PSI.jl builds and solves a relaxed optimization model with a
shortened horizon to obtain valid values for ~u0 and ~x0 based on the template. This feature
reduces the possibility of having infeasible problems at the start of the simulation due to
mismatches in the incoming data. The mathematical description for a device is imple-
mented using Julia’s multiple dispatch. The construction methods can be defined based
on abstract data structures to enable code re-use and interfacing with other models [16]
which enables greater flexibility in modeling choice. PSI.jl builds the optimization model
using the structure hierarchy defined in PowerSystems.jl and the data handling features
[89]. For each component type and formulation, PSI.jl adds the specified arguments (i.e.,
variables, parameters and expressions).

PSI.jl implements parameters that enable the in-memory-modification of the model
instead of the common practice of using “dummy" variables. Parameters are implemented
by keeping in memory the constraint index of the parameter and request precise model
modifications without rebuilds. The limitation of this approach that the parameters can
only be used to update the right-hand side of linear constraints and linear objective function
coefficients. However, for most applications the inputs that change over the course of a
simulation such as forecasts, feedforwards, or costs can be readily implemented within this
limitation.

After the arguments are built, the network formulation adds the constraints required to
model the power flow through the network into the optimization model. The modularity
features in PSI.jl design allows an seamless integration with PowerModels.jl [27] which
implements the network model. As a result, users can explore distinct network formulations
that have been validated and tested. Next, the device’s models are constructed (i.e., adding
the constraints into the model) and the objective function is set. After the process concludes,
we perform a series of checks to the problem to determine if there are scaling issues or
invalid values in the constraints. If the process succeeds, the model is serialized to disk for
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1 using GLPK
2 day_ahead = DecisionModel(
3 UnitCommitmentProblem,
4 tmplt,
5 System(day_ahead_system_file.json);
6 optimizer=GLPK.Optimizer,
7 name="Day Ahead",
8 )
9

10 dispatch = EmulationModel(
11 template_emulator, #definition not shown
12 System(realization_system_file.json),
13 name="Dispatch",
14 optimizer=optimizer_with_attributes(GLPK.Optimizer),
15 ),

Code 3.2: Definition of a UC decision problem based on the template from Listing 3.1 and
an emulation problem

record keeping purposes.
Listing 3.2 shows the specification of a decision and emulation models using the tem-

plate. The design allows modelers to mix and match formulations for the devices according
to their needs.

Simulation Sequence

A simulation also requires setting the cadence of the problems’ sequential solves and
specification of how information regarding ~ut is exchanged between the decision and the
emulator models. In PSI.jl the SimulationSequence plays three roles in the specification
of a simulation: (1) It performs series data validations at all times to guarantee that the
intervals, resolution, and horizons in the models have the consistency required to execute a
simulation; (2) it is used to set the models’ feedforwards; and (3) defined the models’ initial
conditions data sharing (i.e., the initial conditions chronology).

Listing 3.3 shows the example of specifying the sequence for a simulation that uses the
models defined in Listing 3.2. The example sets a SemiContinousFeedforward between the
UC problem and the emulator. This feedforward introduces the constraint:

ONg,tP
lb
g ≤ pg,t ≤ ONg,tP

lb
g ∀g ∈ Gth t ∈ T (3.5)

where ong,t is a parameter in the model to input the values of ~ut. pg,t are the active power
output variables of the set of thermal generators Gth at time t.

Listing 3.3 also shows the explicit handling of the initial conditions. We implement two
chronologies commonly used in simulations. The InterProblemChronology which implies
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1 models = SimulationModels(
2 decision_models=[
3 day_ahead
4 ],
5 emulation_model=dispatch
6 ),
7 )
8

9 sequence = SimulationSequence(
10 models=models,
11 Feedforwards=Dict(
12 "Dispatch" => [
13 SemiContinuousFeedforward(
14 component_type=ThermalStandard,
15 source=OnVariable,
16 affected_values=[ActivePowerVariable],
17 ),
18 ],
19 ),
20 ini_cond_chronology=InterProblemChronology(),
21 )

Code 3.3: Definition of a SimulationSequence

that the initial conditions are updated based on the system state and assumes that at the
moment to update the decisions the model has knowledge of the state of the system.2

The other alternative is the IntraProblemChronology which uses the results of the decision
problems as initial conditions, this chronology’s assumption is that the initial conditions in
the decision models are estimates resulting from previous solutions of the decision variables
and taken without information regarding the system’s state.

Simulation

The simulation is then fully specified by the models and previously defined sequence. By
allowing the user to arrive to the simulation by instantiating intermediate objects, it is
possible to modularize the process and facilitate debugging. Once the model inputs and
sequence have been validated, the simulation can be built and executed as shown in Listing
3.4.

The build process of the simulation is shown in Fig. 3.7. Once the models and sequence
are validated, the optimization model corresponding to each problem is built following
the process in Fig. 3.6. Note that given the in-memory problem modification design, the
simulation build process is the only time that the models are built. Once the models are

2InterProblemChronology is similar to the “interleaved" simulations used in some commercial simulators
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ik  K

Figure 3.7: Simulation Build Flow Chart.

built and the optimizers instantiated, the simulation state is built by pre-allocating the data
structures to keep the values of ~u and ~x in-memory.

The execution flow of the simulation is shown in Fig. 3.8. The first operation in the
execution of a simulation is the instantiation of the results store. We developed two imple-
mentations of a store: in-memory and HDF5. The in-memory implementation is sufficient
for situations where the total data size is smaller than system memory and the analyst
doesn’t need to access the data beyond one working session. For most cases, however, users
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1 sim = Simulation(
2 name="simulation",
3 steps=2,
4 models=models,
5 sequence=sequence,
6 initial_time=DateTime("2020-01-01T00:00:00"),
7 simulation_folder=pwd(),
8 )
9

10 build_status = build!(sim)
11 solve_status = execute!(sim)

Code 3.4: Definition of a Simulation and build/solve call

will want to store outputs for the long term and so the data must be written to files. We
chose the HDF5 format over alternatives like CSV for these reasons:

• Supports multidimensional arrays: The limitation of 2-dimensional data formats
limits the implementation of models that require larger structure. For instance,
Stochastic Optimization (SO) models where there is a requirements to add a sce-
nario dimension.

• Supports inline compression: This features reduces efficient storage of the data at
the moment of writing avoiding post-simulation compression steps.

• Hierarchical storage: allows storing data in a self-describing way that follows the
model tree structure.

Further, to address the aforementioned shortcomings of write-to-disk approaches, PSI.jl
features a caching layer above the HDF5 file in order to 1) Ensure that all file system writes
are at least 1 MiB in size and avoid excessive disk write operations and Provide a read
cache for frequently-read outputs.

The instantiation of the SimulationSequence pre-calculates the problem solve execu-
tion order in each step. For a simulation of Nsteps at every simulation step, s a total of
Nproblems are solved sequentially as shown in Fig. 3.4.

Prior to executing a model, its parameters and initial conditions ought to be updated
to match the simulation timestamp. The models’ time-series updating uses the caching
mechanism from PowerSystems.jl described in Chapter 2 to reduce latency and memory
overhead. The feedforward parameters read the latest information from the system state.
Once the parameters are updated, the optimizer is executed. After each optimizer success-
fully reaches a termination condition, the results are first written into the store and the
system states updates based on the solution of the optimization model results and the cache
of solutions from other models.
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Figure 3.8: Simulation Execution Process Flow Chart.

Results storage and post-processing

All of the objects generated during the simulation build and solution are stored such that the
simulation can be reproduced as originally specified. The folder structure post-simulation
has been designed such that details about the operations, code logs and files can be analyzed
after the simulation is finished.
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3.3 Validation and Case Studies

This section presents comparisons of simulation using PSI.jl and the PCM simulation
PLEXOS. These simulation results do not employ an emulation model since this is a feature
not present in commercial tools, the implementation of multi-level simulation with emula-
tion is implemented in sub-section 3.4. In this section, we show the verification of results
using a modified version of the PJM five-Bus system [94] and a larger scale verification
using the updated RTS-96 Bus system [7] where we compare with PLEXOS the output of
the decision using a simulation with two operation problems 3.

Five-Bus Case

For validation purposes, the 5-bus system depicted in Figure 3.9 will be used to compare
the resulting outputs of PSI.jl and PLEXOS. The system features the five original coal
generation units, one solar and one wind power plants. The system transmission network
has been further restricted with respect to the original to force the commitment of units in
buses D and C.
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Figure 3.9: Modular Optimization Build Flow Chart.

Firstly, for this system we conducted a single level PCM simulation using a UC model
to verify the results between PSI.jl and PLEXOS. The model employed a PTDF network
model and allowed curtailing power from the VRE resources. Table 3.1 shows the total

3Source code and results are available at https://github.com/NREL-SIIP/PowerSimulationsTPWRS

https://github.com/NREL-SIIP/PowerSimulationsTPWRS
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operating cost per generator and total VRE for the simulation period. The results of the
single level models where PSI.jl matches the results from PLEXOS within the numerical
tolerances of the solvers. Figure 3.10 shows the fuel stack for the single level simulation.

Secondly, we conducted a simulation using a two-level model featuring DC and AC
networks to show the relevance of the network assumption in operations simulations and
the easiness to switch network models in PSI.jl. The simulations were conducted using
the open-source solver HiGHS [72] using the default solve parameters.

Figures 3.10 and 3.11 show the fuel stacks for the simulation using a two-model strategy.
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Figure 3.10: Fuel Stack for the simulation of 5-bus system DC Power Flow UC.
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Figure 3.11: Fuel Stack for the simulation of 5-bus system DC Power Flow ED.
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Figure 3.12: Fuel Stack for the simulation of 5-bus system AC Power Flow ED.

The cost results in Table 3.1 show that the forecast error between the first level and
the second level reduces the overall generation with Coal significantly and the system is
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Table 3.1: Results comparison between simulation cases for 5-bus case

Variable PLEXOS PSI UC PSI UC - ED DC PSI UC- ED AC
Sundance [$] 98980.1 98980.3 80345.3 90597
Solitude [$] 1.24171×106 1.24177×106 8.74726×105 9.30366×105

Park City [$] 0.0 0.0 0.0 0.0
Alta [$] 2276.25 2261.7 2268.31 7070.3
Brighton [$] 5.14102×105 5.14102×105 5.93361×105 6.61518×105

Renewables [MW] 17824.95 17826.08 26626.84 18280.63

able to integrate more VRE. However, this result is predicated on the assumption of DC
power transmission, once the assumptions about the network are switched to AC power,
there is a significant reduction in the amount of VRE integrated with respect to the DC
assumption. Note that a large amount of the curtailment when the network is modeled in
AC comes from the inability of the system to transmit power between areas of large amount
of generation and the loads which causes a lot of solar power to just be utilized to feed
loads localized in Buses D and C.

96 Bus RTS Case

The second validation case is the RTS-system originally published in [7] which is at the
moment of writing the only published PCM dataset actively maintained and with input
data for other modeling platforms. We compare the simulation with PLEXOS “interleaved”
mode which is meant to perform a simulation where the optimization problems inform each
other’s initial conditions. Given that this data set features Piece-wise Linear (PWL) cost func-
tions and several units share the same slopes, there is more propensity for numerical degen-
eracy. Hence, we will validate the results based on the solver’s objective function and broad
generator type dispatch quantities. The simulation is set with a CopperPlatePowerModel
and over a 14 day period between July 1st and July 14th. The simulation set-up uses a
15-minute interval in the ED as an approximation of the real-time stage in the simulation
which is a common practice. The simulations in PLEXOS use the solver Xpress version 8.0.1
while PSI.jl uses Gurobi 9.0.1, in both cases the MIP gap tolerance was set to 1 × 10−3.
In this simulation it was not possible to set-up the same solver due to licensing restrictions
of the commercial solvers.

The output results show the results of a simulation under the assumption that the ED
outputs correspond to the realization of the system. Figures 3.13 and 3.14 show the fuel
plot for the UC and ED decision stages of the simulation where the additional variability of
the VRE can be observed more clearly in the July 7 to July time frame.

Table 3.2 shows that both software has very close results in the UC stage in terms of the
total cost and the fuel choices. In the case of the ED, the comparisons about costs are more
difficult to assess due to reporting differences between the software; however, the resource
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Figure 3.13: Fuel Stack for the simulation of RTS system UC.
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Figure 3.14: Fuel Stack for the simulation of RTS system ED.

Table 3.2: Results comparison between simulation cases for RTS system case

Variable PLEXOS UC PLEXOS ED PSI UC PSI ED
Gas - CC [MW] 5.26228×105 5.06635×105 5.29018×105 5.05629×105

Combustion Turbine [MW] 1751.0 1807.75 1651.0 1550.35
Hydropower [MW] 2.21594×105 2.21534×105 2.21594×105 2.21534×105

Nuclear [MW] 1.44×105 1.44×105 1.44×105 1.44×105

Steam [MW] 6.15146×105 6.142×105 6.13056×105 6.14076×105

Renewables [MW] 3.90612×105 3.53815×105 3.90013×105 3.54877×105

Total Cost [$] 5.56758×7 2.708285×7† 5.56247×7 2.68851×7†
†The total cost comparison for the ED stage is done for the fuel cost only due to
the reporting from PLEXOS

utilization quantities are within the expected orders of magnitude. It is worth noting that
the addition of a second stage makes it more challenging to compare simulation tools since
PLEXOS conducted “model repairs” during the simulation, which implies the relaxation of
some constraints without too much information about the procedure specifics. On the other
hand, PSI.jl did not result in an infeasible solution, nor did it make any modification to
the base formulations. Given that the objective of PSI.jl is not to replicate the results from
PLEXOS, the results from Table 3.2 can be considered acceptable in terms of verification
that the outcomes of a PSI.jl simulations are reasonably similar to other simulators.
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3.4 Implementing PowerSimulations.jl Automatic
Generation Control (AGC) simulations

The results in Section 3.3 showcases the capabilities of PSI.jl to model power systems
operations under conditions commonly used in practical analysis. However, these results
do not exploit the decision-emulation model framework. One of the reasons analyses with
emulation models are not frequently used is due to the limited availability of emulation
models. In this section, we introduce a model developed explicitly as an emulation problem
for the evaluation of reserve deployment mechanisms. The model and simulation developed
in this section follows from the concepts developed in Section 3.1.

The increased integration of variable VRE resources in the electricity system introduces
several operational challenges for balancing electricity supply and demand which is nor-
mally handled through the deployment of reserves. A primary issue is the allocation and
deployment of Frequency Regulation Reserve (FRR). In reserve allocation studies, it is
essential to consider the FRR deployment mechanisms as well as an estimation of the po-
tential frequency deviations [68]. AGC is used during normal operations when frequency
deviations are relatively small (< 1%). These types of studies are a clear candidate for
the use of the decision- emulation-model framework in PSI.jl where the decision models
allocate reserves and the AGC model is used to emulate the deployment of the reserves.

Under a normal operations, if the system cannot be balanced, the ACE increases, and if
sustained, persistent imbalances carry penalties [126]. Ensuring adequate AGC simulations
is critical for providing a comprehensive evaluation of FRR models –– a topic which is rarely
evaluated in the literature. Assessing the reserve allocation requires an approach more
comprehensive than an instantaneous power balance. If the prevalent source of reserve
dynamics is slow, undesirable frequency excursions may occur. But if the prevalent source
of reserve dynamics is fast, excess allocation can lead to inefficient costs.

AGC simulations have been used to evaluate the impact of large shares of VRE in several
studies. In [102], the authors use an instantaneous power balance calculation of ACE to
simulate potential AGC operations and assess FRR needs in CAISO. A more detailed model
of AGC is presented in [47] where the authors present several "control modes" for the ACE,
including a Proportional Integral (PI)-based signal, similar to the one found in [100]. The
approach in [47] relies on a heuristic forward-stepping algorithm that resemble a first-order
Euler method, thus intertwining the simulation model with the solution algorithm. Wang
et al. [186] use the same model [47] to assess the value of improved forecasting under the
assumption that CPS2 violations result from reserve saturation. The AGC model described
in [4] uses a simplified energy balance model to study long-term stability approximated
using algebraic equation; however, there is no integration with upstream dispatch models.

Existing models include simplifications about the limitations of regulating units. Such
units respond to AGC commands, which in turn can induce generator saturation and require
additional reserve deployments [158, 101]. Existing models do not take into account
reserve deployment mechanisms, such as participation factor assignment and reserve re-
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Figure 3.15: AGC control block diagram.

deployment due to saturation within the balancing area. Such models also do not consider
the impact of FRR shortfall. Finally, these models do not distinguish between the AGC
model and the algorithm used to simulate the system, eliminating the possibility of using
LP solvers.

This section presents a model to address these limitations, proposing an AGC simulation
model that incorporates mechanisms to account for reserve deployment and generator
saturation. The proposed model in this chapter uses an LP formulation to enable flexible
algorithm choices to obtain fast solutions and be easily incorporated into a UC and ED
simulation. The proposed discrete AGC simulation model can approximate the effects of
frequency deviations, limited regulation capabilities, and the interactions with PID control.

In this section the notation is as follows: variables with (t) represent continuous time
variables, while variables with the subscript t represent discrete time variables. ∆t and ∆h
indicate the resolution of the AGC and ED discretization, respectively. Gt represents the
sets of available generators at time t, and T the set of time steps in the AGC simulation.
We denote ∀g ∈ Gt,∀t ∈ T as ∀g, t. The vector notation ~x has been dropped in this section
to aid with the visual presentation.

AGC modeling overview

The primary goal of AGC is to maintain (near) instantaneous balance between supply and
demand by responding to the ACE signal. The secondary goal of the AGC is to minimize
system operational costs [74]. ACE has two components: to account for the frequency error
within the balancing area, and another to account for the tie line bias [15]. In systems with
large shares of VRE, the power error results in deviations from scheduled interchanges and,
if sufficiently severe, significant deviations from nominal frequency.

The instantaneous ACE for a balancing area is composed of two terms [158, 100]:

ACE(t) =
[
P export

actual (t)− P export
scheduled(t)

]
− 10B(f(t)− fs) (3.6)
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Where
[
P export

actual (t)− P export
scheduled(t)

]
represents the deviations between scheduled power trans-

fers between balancing areas, and 10B(f(t) − fs) represents the system-wide power im-
balance due to deviations from the system frequency with respect to its nominal value fs.
In this chapter we focus on a single area implementation of AGC, thus P export

actual (t) = 0 and
P export

scheduled(t) = 0.

AGC control

It is important to note that the ACE cannot be used directly for control and real AGC systems
contain several filters and dead-bands to avoid control reactions to fast variations [102,
158]. As a result, AGC simulation models introduce the definition of the SACE, calculated
as a function of ACE such that the resulting signal will steer the ACE towards zero while
filtering fast changes [158, 15]. Classic models consider an integral function:

SACE(t) = −Ki

∫
ACE(t)dt. (3.7)

but realistic AGC systems can feature different PID structures and include extra signal
smoothing mechanisms. Detailed descriptions of alternate structures are shared in [74].

AGC operates at a time resolution of 2-6 seconds. At such short time scales there are
several modeling challenges, including: possible crossovers to dynamic behavior modeling
of the prime movers, consistent data inputs from UC and ED models, and limited guidance
about modeling requirements. At a 4-second resolution, AGC can be modeled in continuous
time or as a quasi-steady state depending on the level of detail required (e.g., stability
analysis vs. reserve deployment).

For the analysis of VRE integration and FRR deployment, AGC modeling is often re-
placed by a discrete model, and the ACE is simplified to the system’s net power balance
[47, 186]. In existing models, frequency effects and dynamics are ignored.

Frequency Regulation Reserve Deployment Mechanisms

The design and implementation of an AGC simulation model should also consider the
characteristics of the power system regulation fleet, as well as the types and nature of
the energy transactions used to allocate regulation reserves. The sequence of function
that set the system’s commitment and reserve allocation inform the devices deployment
responsibilities of the (see Fig. 3.3). In this case study, the characteristics we focus on
individual generator participation factors and saturation.

P ∗g (t) = P ED
g + pfgSACE(t) (3.8)

until the economic dispatch base-points P ED
g and the participation factors pfg are updated.

This P ∗g (t) is the input to the prime mover, which does not necessarily represent the same
instantaneous generator output.
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Participation factors are optimized in the generation scheduling model. These are
not discussed in previous contributions about AGC simulation models [47, 101], but in
practice they are used to allocate the SACE in the regulating units. Participation factors are
therefore a critical aspect to model because they determine if any given generator will reach
its operational limit (i.e., saturate), which would trigger the re-deployment of reserves from
non-saturated generators. The proposed model defines supplementary reserves to account
for the required re-deployments induced by saturation.

Given that the SACE can take positive or negative values depending on the regula-
tion direction, the term pfgSACE(t) can also be positive or negative, signaling upward or
downward reserve deployments, respectively. In many balancing areas (e.g., ERCOT), gen-
erators are assigned upward pfup

g and downward pfdn
g participation factors according to the

direction of the deployed regulation reserves.
Generator saturation is another important feature to consider. If a generator is bounded

by an operational limit when deploying reserves, which might occur if the power mismatch
variations cannot be met with the set participation factors, the remaining units need to
cover the shortfall up to their limits. Conversely, if all generators operate at saturation, there
will not be enough system-wide regulatory capacity to cover the power mismatch (whether
the imbalance reveals a deficit or an excess). When all regulating devices exhaust their
capabilities prior to the balance being restored, the missing power must be delivered from
neighboring networks or induce a more significant steady-state deviation in the frequency
(∆f).

AGC Simulation Model Description

The quasi-steady-state approach assumes that if a sufficiently large simulation step is used,
fast dynamics have attained an equilibrium. In the proposed model, we assume that the
local prime mover dynamics reach equilibrium by the end of AGC step based on the results
in [187]. Given that the model’s objective is to simulate the FRR deployment, simulation of
prime mover dynamics are not required leading to a reduction of variables and equations.
The model is presented here for a single area case in order to focus on the relationship of
control mechanisms and generator models. For simplicity, power losses induced by system
imbalances are not considered in this chapter.

AGC Control Model

Given the quasi-steady-state assumption, frequency is represented by its steady state model.
Let G denote the set of active generators with droop parameter Rg and let D denote the
load-frequency damping. The steady-state frequency deviation ∆ft stemming from the
system-wide power deviation ∆P sys

t , which only includes the frequency response of the
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governor’s droop and the area’s load damping, is computed as:

∆ft = −∆P sys
t∑

g∈G
1
Rg

+D
, ∀t ∈ T , (3.9)

∆P sys
t is calculated using time-series differences between generated power Pg,t, the load

Pl,t, and a FRR deployment Rt:

∆P sys
t =

∑
g∈G

Pg,t −
∑
l∈L

Pl,t +Rt, ∀t, (3.10)

equation (3.10) assumes that generators can deploy the reserves Rt in the same AGC cycle.
Based on eqs. (3.9) and (3.10), the discrete version of the ACE for a single area is

defined as follows:

ACEt = −10B∆ft, ∀t. (3.11)

In power systems literature, B is assumed to be equivalent to 1
10
∑
g∈G

1
Rg

+D, which makes
ACEt = ∆P sys

t . From a steady state perspective, the terms 10B in (3.11) and ( 1
Rg

+ D)−1

in (3.9) have no effect on reserves, since the control will always try to zero out the ACE.
However, a good estimate of frequency deviations requires a properly calibrated ratio
between the AGC bias and the area’s total droop response and damping.

Similar to the continuous time model, a PID is used to drive the ACE signal to zero.
The PID is discretized using the step length of the AGC (∆t). The model corresponds to
a incremental algorithm that is the most common implementation of discrete PID with
integral terms in micro controllers, not prone to error accumulation, thus avoiding the
issue of anti wind-up reset [3].

SACEt=SACEt−1+Kp

[(
1+ ∆t

Ti
+ Td

∆t

)
ACEt+

(
−1− 2Td

∆t

)
ACEt−1+ Td

∆tACEt−2

]
,∀t. (3.12)

Following the same relationship as in (3.8), the participation factors are used to deter-
mine the regulation device reserve deployment. An additional term ∆Peg,t is included to
account for supplementary reserve deployment due to saturation:

∆Pg,t = SACEt · pfg,t + ∆Peg,t, ∀g, t. (3.13)

If all the generators operate within their limits, ∆Peg,t = 0. However, if a generator
saturates, ∆Peg,t > 0 for the remaining generators as they are required to deploy reserves
beyond their initial target SACEt · pfg,t.

Traditionally, the participation factors are set using economic criteria that are depen-
dent upon the relationships between ancillary services bids and energy markets bids. To
approximate this allocation process, participation factors are determined proportional to
the reserve allocations from the UC [15, 158].
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The generator’s set-point at each time step P ∗g,t is calculated by adding the reserve
deployment to the interpolation between the ED base-points (P ED

g,h, P
ED
g,h+1):

P ∗g,t = P̂g,t + ∆Pg,t ∀g ∈ Gagc,∀t (3.14)

P̂g,t = P ED
g,h + (t− h)

P ED
g,h+1 − P ED

g,h

∆h , ∀g, t. (3.15)

Equations (3.13)-(3.14) only apply for generators participating in the AGC. Other genera-
tion units are modeled using only the interpolation values as in Eq. (3.15):

P ∗g,t = P̂g,t g ∈ Gno-agc,∀t. (3.16)

The total system reserve deployed by the AGC is defined as the sum of the scheduled
deployments and the re-deployments:

Rt =
∑
g∈Gagc

∆Pg,t +
∑
g∈Gagc

∆Peg,t, ∀t. (3.17)

If |Rt| < |SACEt|, then there is a reserve shortfall ut, computed as:

− SACEt = Rt + ut, ∀t, (3.18)

on which the variable ut serves as a system-wide slack variable, and represents the size of
the imbalance that would have been covered, were it not for saturation.
Remark: If there is enough reserve and no generator is saturated, then ut = ∆Peg,t = 0 for
all time steps. In such case, the model is equivalent to the classic AGC model that allocates
its regulation only via participation factors. Also note that, because reserves are deployed
according to SACE and not ACE, there is always some system imbalance even if u = 0.

Generator model

Each generator participating in the AGC has a limit on how much FRR they can provide.
The regulation capability model is defined by limits on the regulation allocated by the UC
and ED solutions and set-point limitations:

−Rdn
g,t ≤ ∆Pg,t ≤ R

up
g,t, ∀g, t (3.19)

(Pmin
g − P̂g,t) ≤ ∆Pg,t ≤ Pmax

g − P̂g,t, ∀g, t (3.20)

R
up
g,t and R

dn
g,t in (3.19) represents the reserve allocation from the UC/ED problems. The

upper and lower bounds on (3.20) are computed based on the operational limits and base-
points defined via the economic dispatch problem. For ramp-constrained generators such
as thermal units, which are denoted by the set Gr

t , additional constraints reflecting upwards
RUPg,t and downwards RDNg,t maximum response rates are also considered:

− RDNg,t ≤ ∆Pg,t ≤ RUPg,t, ∀g ∈ Gr
t ,∀t (3.21)
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Optimization-based implementation

Because regulation can take upwards and downwards directions, the total regulation is split
into four variables as Rt = (Rup

t −Rdn
t ) + (Reup

t −Redn
t ), on which Rup

t , R
dn
t , Re

up
t , Re

dn
t ≥ 0.

Similarly, the regulation for each generator participating in the AGC is also split for the
regular reserve and supplementary reserve ∆Pg,t = ∆P up

g,t −∆P dn
g,t , and ∆Peg,t = ∆Peup

g,t −
∆Pedn

g,t respectively.
The reserve provision balance represented by Eqs. (3.13), (3.17) (3.18) are codified as

follows:

Rup
t −Rdn

t +Reup
t −Redn

t = −SACEt − ut, ∀t (3.22)
∆P up

g,t = pfup
g,t ·R

up
t + ∆Peup

g,t, ∀g, t (3.23)

∆P dn
g,t = pfdn

g,t ·Rdn
t + ∆Pedn

g,t, ∀g, t (3.24)

Rup
t =

∑
g∈Gt

∆P up
g,t , Rdn

t =
∑
g∈Gt

∆P dn
g,t , ∀t (3.25)

Reup
t =

∑
g∈Gt

∆Peup
g,t, Redn

t =
∑
g∈Gt

∆Pedn
g,t, ∀t (3.26)

where Reup
t and Redn

t are the components of Rt that represent the total supplementary
reserve deployments.

The generator model (3.19)-(3.21) must also be updated for the non-negative upwards
and downward variables:

∆P up
g,t ≤ R

up
g,t, ∀g, t (3.27)

∆P up
g,t ≤ Pmax

g − P̂g,t, ∀g, t (3.28)

∆P dn
g,t ≤ R

dn
g,t, ∀g, t (3.29)

∆P dn
g,t ≤ P̂g,t − Pmin

g , ∀g, t (3.30)

∆P up
g,t ≤ RUPg,t, ∀g, t (3.31)

∆P dn
g,t ≤ RDNg,t, ∀g ∈ Gr

t ,∀t (3.32)

Supplementary reserves are added to the objective function with a cost proportional to the
inverse of the participation factor γg,t. This formulation forces the supplementary reserve
deployment to follow an allocation similar to the one originally established:

γg,t =
{

1/pfg,t, if pfg,t 6= 0
0, otherwise

(3.33)

Finally, the absolute value of the imbalance |ut| is added to the objective function with
a sufficiently high cost c to force the problem to push the reserves shortfall to zero. The
problem is cast as a LP by properly replacing the absolute value |ut|. In summary, the
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Figure 3.16: Economic Dispatch (ED) stack for the experiment two day period.

optimization problem of the AGC problem PAGC can be written as:

min
R,∆P ,∆P e,

∆f ,u

∑
t∈T

c|ut|+ ∑
g∈Gt

γup
g,t∆Peup

g,t + γdn
g,t∆Pedn

g,t


s.t. Frequency error: (3.9)− (3.10)

ACE and SACE computation: (3.11)− (3.12)
FRR allocation and device model: (3.22)− (3.32)

Remark 2: The problem is cast as a LP by properly replacing the absolute value |ut| adding
new variables zt that replace the absolute value |ut|, and adding the constraints zt ≥ ut and
zt ≥ −ut, T = 1, . . . , T .

3.5 Simulation of the proposed Automatic Generation
Control (AGC) model

The AGC modeling capabilities are demonstrated through an example simulation of coor-
dinated UC and ED problems. First, the simulation solves the UC problem with a 1-hour
resolution and forwards the results into an ED problem to obtain the generation base points.
The participation factors pfup,dn

g,t are calculated based on the UC reserve allocation R
up,dn
g,t

to emulate FRR reserve auctions set before the ED. In both UC and ED minimum FRR
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requirements are based on the pre-calculated profiles, representing current practices of
calculating reliability requirements off-line.

The simulation comprises two 24-hour periods using a modified version of the updated
RTS-96 bus system which include load, VRE, and reserve requirement profiles [9]. The
system’s dispatch stack is shown in Fig. 3.16. Each dispatch and AGC problem was solved
using CPLEX v12.10.

The original dataset required the implementation of several changes to achieve oper-
ational conditions that resemble AGC operations and reserve deployment. The primary
modifications include:

• Reallocation the thermal fleet into reserve products and removing VRE from FRR
provision.

• Adding the system load frequency response D = 1.16MW/Hz equivalent to 1% of
peak load (7000 MW) per-unit change of the frequency.

• A droop for generators set to 4%. Together with the load damping, this is equivalent
to an area frequency bias of B = 90.8 MW/0.1 Hz

The system reaches up to 50% instantaneous power output from VRE and requires
VRE curtailment of controllable VRE resources during low load hours. The main source of
variability comes from the renewable energy, shown in Fig. 3.17 and the dominant source
of power is combined-cycle gas generation. Fig. 3.17 shows large forecast errors between
the UC and the ED in the morning periods, which leads to aggressive curtailment in the
ED. Since time series for modeling at the AGC timescale are not generally available, the
load and VRE time series were up-sampled to 4-seconds. Up-sampling was conducted by
interpolating 5-minute data and adding white noise with variance of 2.5% for the load and
10% for VRE.

AGC Simulation Results

PID performance

Fig. 3.18 shows the performance of the discrete PID given two combinations of parameters:
Kp = 1.8 and Ti = 1800 for a fast response, and Kp = 0.1 and Ti = 500 for a slower
response (both PID use Td = 0). The slow response PID has a larger filtering effect and less
variation over the simulation window. The control implemented with larger values in the
proportional/integral gains leads to a closer imbalance tracking.

In both cases, the SACE responds according to the direction of the forecast errors
depicted in Fig. 3.17. The periods after 00:00 in the simulation feature large deviations
between the ED profile (blue) and the UC forecast (red), resulting in positive SACE values
because the system is deploying downward reserve to restore balance. However, downward
reserve participation factors from the UC are not well-calibrated because they are defined by
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Figure 3.17: Renewable energy profiles for different simulations.
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Figure 3.18: Comparison of SACE PID performance.

the UC forecast, leading to generator saturation. During periods of substantial curtailment,
the model reflects the deployment of downward reserves (i.e., ∆P > 0), and during periods
of near system balance, the control is only deployed to handle short-term variation.

The system’s performance in terms of frequency regulation can be seen in Fig. 3.19. In
the faster PID (green), the frequency error is reduced further than the slower PID (purple).
This result reflects the model’s ability to provide frequency deviation estimates in terms of
the PID control parameters.

Although the faster PID is capable of a larger reduction of ∆f , it does so at the expense
of introducing system reserve saturation, since the term ut 6= 0 (see equation (3.18)).
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Figure 3.19: ∆f for different PIDs.
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Figure 3.20: Upwards reserve deployment for Kp = 0.1, Ti = 500.

Reserve Deployment

The upward reserve allocations along with the requirements from the UC and ED are
shown in Figs. 3.20 and 3.21. Although the UC procurement was insufficient to meet
the ED requirement at the peak times, the results show that the shortage did not affect
frequency performance since the FRR deployment was below the limited allocation. In this
case, a combination of forecast error and inadequate reserve requirements in the UC lead
to a deficient level of reserves at the ED stage.

Figs. 3.22 and 3.23 demonstrates the deployment of downward reserve, which in
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Figure 3.21: Upwards reserve deployment for Kp = 1.8, Ti = 1800.

the example case is critical due to a large amount of forecast error. In both cases, the
deployment causes reserve saturation and large amounts of supplemental deployment that
cannot be accounted for in simplified AGC models. This behavior stems from the significant
forecast errors observed in Fig. 3.17 during the hours of high VRE generation. The model’s
ability to reflect issues in the mechanism to assign the participation factors can be observed
here, together with supplemental regulation actions.

This result showcases the importance of considering the deployment mechanism when
assessing FRR. The simulation shows that although the requirement was not met, there was
sufficient FRR capacity to handle power imbalances. The proposed AGC model successfully
assessed the impact of these limited reserve events.

The resulting reserve allocations also show the effect of the different PID tuning. The
smaller frequency variations from the faster PID are obtained by deploying a larger amount
of reserves, which can result in generator saturation, as shown in Fig. 3.21. Once one or
more generators saturate, the control is forced to deploy supplemental reserves from other
generators.

In both the upward and downward cases, the results show how the model is able
to capture the increased regulation effort exerted from the faster PID that leads to 4.5
times increase in upwards reserve and 16% larger deployment of downwards supplemental
reserve.
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Figure 3.22: Downwards reserve deployment for Kp = 0.1, Ti = 500.
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Figure 3.23: Downwards reserve deployment for Kp = 1.8, Ti = 1800.

3.6 Conclusions

• This chapter introduces the definitions required to formulate and solve operations
simulations of systems with multiple decision stages and requires modeling flexibility.

• We showcase the software design principles that enable the construction of modular
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simulations and the implementation of the required routines to conduct operations
simulations. Namely, build, initialization and solution.

• The validation and study cases show that PSI.jl is able to replicate the results of
commercial tools with reasonable levels of confidence.

• This chapter also presents a simulation model for the AGC geared towards reflecting
reserve deployments and handling large shares of VRE. Where existing tools that use
AGC simulation for FRR deployment analysis are limited to instantaneous power bal-
ance models, our approach enables a comprehensive evaluation of FRR deployment
schedules.

• The proposed AGC simulation model in this chapter captures interactions between
the control and the deployment of FRR in a consistent and tractable way. The
optimization-based implementation enables modeling capabilities that previous liter-
ature implements only through heuristics.

• The LP formulation takes into account generator limits that lead to generator satura-
tion as well as the effects of system reserve saturation. This leads to improved insights
concerning the different processes involved in the FRR allocations and deployment.

• The example simulation using the framework of decision-emulation model in a syn-
thetic system with significant VRE shares shows that this setting can capture key
challenges in the large scale integration of VRE. The results show that the model can
simulate deployment of supplemental reserves when the participation factors are not
well calibrated due to forecast errors. The model can also estimate frequency devia-
tions according to the AGC PID parameters. Current models that feature only power
balance cannot provide insight about generator saturation or frequency deviations
estimations.
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Chapter 4

A Multi-Stage Stochastic Risk
Assessment with Renewable Power
Markovian Representation

Forecasting techniques have been fundamental to the improvement of power systems op-
erations in the presence of substantial shares of VRE [171]. Projecting a system’s state
is critical for operators to plan the corrective actions required to maintain that system’s
secure operation. Yet operators generally employ point forecasts, which estimate the ex-
pected VRE power output without providing information on the uncertainty or volatility
of the VRE resource. In contrast, probabilistic forecasts provide a distribution of possible
VRE power outputs. This representation of the VRE uncertainty furnishes the possibility
of assessing the system’s response to VRE variability using a risk framework. However,
there are misunderstandings about such uses of probabilistic forecasts, and there has thus
far been very limited uptake of probabilistic forecasts in control rooms [191]. Current
applications utilize probabilistic forecasts by focusing on a particular quantile in isolation,
such as the 80th percentile of excedance, and using that quantile as a lower bound of the
VRE across the forecast window [14, 48]. Focusing on a single quantile, however, results
in an unrealistically smooth visualization of the power forecast that obscures VRE volatility.
In actuality, the VRE realization typically jumps among different forecast quantiles over
time.

Uncertainty forecasts are also used extensively in two-stage power system scheduling
models, reviewed in detail by [92]. Two-stage prescriptive models are commonly pro-
posed because most applications of probabilistic forecasts have focused on the stochastic
Day-ahead Unit Commitment (DAUC) problem, which introduces significant computational
challenges when solved in a multi-stage fashion. However, in two-stage formulations, the
assumption is that the uncertainty is observable in a single instant, instead of being grad-
ually revealed over time. When used for situational awareness, this assumption obscures
how the system will adapt to the true realization of uncertainty, and it underestimates the
true risk to the system because the recourse decisions are made with perfect knowledge of
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the realization [154].
Handling the time dependency of the decision-making process requires a multi-stage

modeling framework because the decisions at a specific time period should not depend on
knowledge of the future realization of the stochastic data process [132]. Although such
models are common in long-term operations and planning [141], there is a limited usage of
multi-stage models in operations, and most innovations focus on day-ahead problems. For
example, in [189] the authors highlight the importance of time coupling to set reserve poli-
cies considering spatial and temporal correlation of prediction errors. Recently, a model of
continuous unit commitment UC that relies on scenario trees was proposed in [70]. There,
the authors generate an equivalent large-scale MILP to solve the multi-stage problem.

There are a variety of methods to capture the temporal dependence of probabilistic
VRE forecasts into scenarios for multi-stage stochastic models: copulas [110], Gaussian
kernels [144], or quantile “cut points” that emphasize certain regions of the cumulative
distribution function over time [195]. These methods require several computational steps:
(1) scenario generation, (2) tree generation, and (3) scenario reduction. These methods
are commonly used to formulate day-ahead optimization problems, and there are limited
applications which directly use probabilistic forecasts (i.e., quantiles or percentiles). To
avoid creating decision trees, the authors of [97] present a multi-stage RUC model and a
specialized algorithm to solve the problem. Markov Decision Problems (MDPs) are another
alternative to avoid scenario generation in multi-stage decision making, and these were
used by [57] to solve a day-ahead storage-scheduling problem in distribution systems using
a Markov model for time-series modeling.

In short-term decision making, there are few applications of multi-stage modeling.
For instance, in [98], the authors use a multi-stage stochastic program to co-dispatch
generation and spinning reserves. The authors propose a joint uncertainty framework
for contingencies and renewable generation. However, the proposed model relies on a
pre-calculated scenario tree structure and does not mention potential integration with
forecast data. Most applications of the prescriptive models that focus on suggesting optimal
decisions for operators have found limited application by Independent System Operators
(ISOs) due to their computational, data, and model complexity.
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Figure 4.1: System operation flow including multi-stage risk assessment

Although probabilistic forecasts in prescriptive models have not been widely adopted,
this chapter proposes a model and use case of probabilistic forecasts to improve situational
risk awareness. Currently, operational risk awareness tools can provide only a limited
representation of the system’s response to uncertainty realizations, which results in limited
situational awareness. To properly model the ability of operators to change their planned
decisions as new information is revealed, the model must be multi-stage, yet it must also
be solvable by a tractable solution technique that does not rely on the enumeration of all
scenarios. To fill this gap, this chapter proposes a tractable multi-stage stochastic linear
program to predict reserve deployment at a 5-minute resolution. The model integrates
probabilistic forecasts using a Markov chain and is run based on the the outputs of the
Hour-ahead Unit Commitment (HAUC) as shown in Fig. 4.1. It can be executed parallel to
the ISOs market operation.

Currently, the use of probabilistic forecasts is limited to descriptive analytics for situ-
ational awareness. For example, the Solar and Wind Integrated Forecast Tool (SWIFT)
system in Hawaii and the situational awareness desk at the Electric Reliability Council of
Texas (ERCOT) use uncertainty forecasts to improve risk assessment [61, 92].

The proposed operational framework maps input short-term VRE probabilistic forecasts
to output probabilistic forecasts of corrective actions, such as reserve deployments, during
the operating hour. The availability of probabilistic information about future system states
enhances the operator’s situational awareness and could prompt preventive actions, such
as reserve substitution or curtailment. Given the various available risk management mech-
anisms, we do not prescribe specific adjustment actions to reduce the system’s exposure.
Instead, the focus is on using probabilistic forecasts to describe future risks one hour before
the operating hour. The model proposed in this chapter will help operators to become
more acquainted with multi-stage models and probabilistic forecasts, demonstrating the
implementation of prescriptive models with endogenous uncertainty consideration.

We propose a novel representation of the probabilistic forecasts using a Markov chain
as shown in Fig. 4.2. The temporal correlations between the different quantiles in the
probabilistic forecast can be represented by the probability of transitioning among quantiles
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between time steps. Using a Markovian graph [41], we exploit the uncertainty structure
to solve the multi-stage stochastic program within reasonable computing times. All the
cases from the literature discussed so far rely on scenario trees to capture the evolution of
the uncertain quantities, but a 99th-quantile probabilistic forecast over 48 5-minute periods
(as we use in this chapter) results in 9924 ≈ 1048 scenarios and a model with a similar
magnitude of variables and constraints. Such a problem is intractable to formulate as a
single model; therefore, the proposed approach does not employ probabilistic forecasts to
generate the scenario trees. We exploit the Stochastic Dual Dynamic Programming (SDDP)
solution method to tackle this computational challenge.

To demonstrate the use and applicability of the proposed approach in a realistic setting,
we have developed a simulation that resembles realistic operating conditions. We use a
simulation of the cascading sequence of decisions followed by ISOs. We apply the model
in a synthetic system with over 300 thermal generators using realistic area-wide solar-
power forecasts and realization data. Although the proposed approach can be used with
any probabilistic forecast, the experimental results focus only on solar power uncertainty
because the development of area-wide net-load probabilistic forecasts is a nascent research
area unto itself and is outside the scope of the proposed model. The results show the
information at different operating hours and an example case of its use for situational
awareness. To summarize, the main contributions of this chapter are:

1. A practical application of multi-stage stochastic programming and probabilistic fore-
casting for real-time risk assessment utilizing a Markovian forecast representation of
VRE.

2. A formulation of an ED problem considering generation reserve deployment con-
straints as a risk-averse multi-stage stochastic program.

3. A proposed workflow for integrating probabilistic forecasts and our multi-stage stochas-
tic programs into the risk management operations of an ISO.

4. A method for generating the transition matrix by ranking past observations among
the quantiles of corresponding probabilistic forecasts and the implementation for
updating this representation in real time.

5. Scoring metrics to calibrate and benchmark the application of Markovian approaches
to probabilistic forecasts.

The rest of the chapter is organized as follows: Section 4.1 presents operational practices
used by operators to handle system balancing risks and the proposed modeling approaches.
Section 4.2 describes the multi-stage model and the solution techniques. The experiment
design and results for the statically calculated matrix are detailed in Section 4.3. The
extension of the proposed method to incorporate online updating of the Markov matrix is
described in Section 4.4, including a comparison of the prediction results compared to the
static matrix approach. Finally, Section 4.5 discusses future extensions.
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Figure 4.2: Markov representation of the probabilistic forecast

4.1 Risk model and probabilistic forecasting

There is a mismatch between risk mitigation practices: for example, reserve requirement
settings are still mostly based on heuristics and historical information that often result
in the under- or over-procurement of reserves [19], and these settings do not provide
information about the system’s exposure in the short term. The approach we introduce in
this section describes the applications of probabilistic forecasting to an uncertainty-adapted
representation of the possible corrective actions according to the operator’s risk preferences.

Developing a risk assessment framework requires identifying two significant compo-
nents: (1) a representation of the uncertainty, and (2) a model of the system’s exposure
to uncertainty [67]. In this chapter, we present a short-term ED model with reserve de-
ployment to capture the system’s exposure, and we demonstrate the use of a Markovian
framework to represent the VRE uncertainty. The proposed framework uses an area-wide
uncertainty forecast of VRE derived from plant-level probabilistic forecasts.

The operational model assumes the following setting: an operator executes an HAUC
as soon as a VRE probabilistic forecast for the balancing area is issued and determines
two quantities: (1) The commitments for the units, and (2) the Ancillary Services (AS)
assignments for the regulation generators. Using these results as inputs, we employ an
ED model that accounts for the deployment of regulation reserves to minimize the future
expected ACE to estimate the effect of VRE variability in the reserve deployment. The ED
model does not include line flow constraints given that it represents a single balancing
area. The model assumes, as is typical in practice [43], that the eligibility of devices
to participate in AS has been determined beforehand and that if the network imposes
significant constraints on the deployment of the reserves, these constraints are captured by
upper bounds on the AS variables.
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Application of Markovian models to probabilistic forecasting

Probabilistic forecasts are a representation of the stochastic process which describes gen-
eration from VRE over a finite set of time steps t = 1, . . . , T . For a specific period t ∈ T ,
the probabilistic forecast is represented as a random variable p̃a,t approximated through
a discrete set of j quantiles, where each quantile pja,t ∈ √a might occur with probability

ωj = 1
|J | , ∀j ∈ J . These quantiles discretize a cumulative distribution function, Ft(pa,t),

that forecasts the area-wide VRE power, pa,t, at time t. The jth quantile forecasts the power
level that will be exceeded with probability j

100 (0 ≤ j ≤ 100) [14, 12]:

pja,t = inf {pa,t : Ft(pa,t) ≥ ωj} . (4.1)

To conduct a multi-stage stochastic evaluation, the forecasting process must account for
time dependencies in the forecasts. However, probabilistic forecasting providers usually
limit the information to specific quantiles that does not account for time dependencies
[180]. In the case of short-term forecasts, providers often rely on heuristics to “perturb”
the hourly ensemble members in order to generate intra-hour forecasts based on ground
measurements. These perturbation methods and the data used to generate the forecasts
are generally proprietary.

In this case, we use an alternative approach to integrate the temporal evolution of the
uncertainty into the multi-stage model. We employ a Markov transition matrix M (edges in
Fig. 4.2) with quantile-to-quantile transition probabilities between time steps. Each entry
mj,j′ in M describes the probability of transitioning from quantile j at time t to quantile j′

at time t+ 1 according to the quantile forecast representation in (4.1).
Based on prior knowledge of the behavior of VRE, we can anticipate that the matrix for

the area forecast will be highly diagonal due to the persistence of weather conditions over
short periods of time, while also reflecting some movement among quantiles due to random
variability. This approach affords operators the flexibility of obtaining a matrix M based
on the forecast, historical data, or current operating conditions. The Markovian model
can accommodate other variants of uncertainty forecasts by changing the formulation
of the transition matrix M . In one bounding case, an identity transition matrix (i.e.,
mj,j′ = 0,mj,j = 1) would model smooth trajectories that remain entirely within one
quantile, i.e., the trajectories persist through the forecast window. On the other extreme,
one can also represent extreme volatility by assigning the same probability 1

|J | to each entry
in M .

The first approach to the development of the transition matrix M estimation is assuming
a truncated normal distribution centered on the diagonal, with the standard deviation
chosen based on an exploratory analysis of the realization of VRE data. We estimate the
average likelihood that the actual area-wide power will transition from one forecast quantile
to another. Synthetic “actuals” are calculated from 5-minute National Solar Radiation
Database (NSRDB) data and then transformed from irradiance to power through PVWatts®

with the same plant specifications as were used for the forecasts [162, 172]. Over the
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course of the year 2018, these synthetic actuals are compared to the probabilistic forecast
quantiles to count the number of transitions that occur from one quantile to another. An
online approach to the estimation of M is further discussed in Section 4.4.

Based on this empirical transition data, shown in Fig. 4.3(a), we estimate the transition
matrix to have a standard deviation of 5 percentiles. This results in the smooth transition
matrix illustrated in Fig. 4.3(b). The interpretation of the transition matrix for synthetic
actuals is that a given forecast quantile has, on average, a 68% chance of staying within a
5% deviation of the 50th quantile.

(a) Empirical quantile transitions (b) Transition normal distribution with σ = 5

Figure 4.3: Transition matrix used in the experimental set-up

Economic dispatch formulation considering Area Control Error (ACE)

Power system operations, whether centralized or in the context of energy markets, can be
abstracted into multiple stages. These stages are decision-making processes with different
resolutions and time horizons [132]. First comes the day-ahead stage; in competitive
electricity markets, this stage is primarily for participants to hedge their exposure to real-
time prices. In centralized systems, the operator estimates production scheduling.

In the later stages shown in Fig. 3.3, the real-time or balancing stage is where differences
between day-ahead forecasts and short-term realizations are balanced. In these stages,
the operator plays a larger role to guarantee that the operation of the system is reliably
imposing constraints according to security criteria and making sure that there is enough
recourse to perform corrective actions. Most operators execute an HAUC (also named
RUC) at the top of the hour before execution of the real-time dispatch to make sure enough
reserve will be available at the operating hour. The ED stage then calculates the base points
for the generators. Finally, in the AGC (also called Load Frequency Control (LFC)) stage, the
operator communicates the generation base points and regulation reserve deployments to
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compensate for short-term power deviations. Although the base points are usually updated
every 5 minutes, large shares of renewable energy have demonstrated significant impacts
on time scales below 5 minutes [47, 52]. This has led to increased reserve requirements at
the ED stage.

The proposed multi-stage stochastic program sits between Level 1 and Level 2 to esti-
mate the risk of insufficient reserve deployments in Level 3. The system exposure corre-
sponds to large mismatches in the system balance reflected in the ACE in a fashion similar
to [47]. The proposed model takes the unit-commitment decisions from Level 1 as inputs,
along with the most recent probabilistic forecast, and outputs a distribution of possible
reserve deployments and ACE.

Managing Risk with Area Control Error

Usually the ACE is calculated at a much faster rate δτ (4 seconds) than the solution times
of the ED δt (5 minutes), δτ � δt. However, in this case we are interested in estimating the
reserve deployment due to forecasting error. In balancing studies, AGC modeling is often
replaced by a discrete model that ignores dynamic effects such as generators’ governor
response [47, 186]. For the purposes of this chapter, we consider the ACE at the resolution
of the time period t, and ignore the higher-frequency terms and faster system dynamics.
Thus, ACE is simplified to the system’s net power imbalance and the following reserve
terms:

˜ACEt=
∑
l∈L

p∗l,t−
∑
g∈G

pg,t−p̃a,t−
∑

g∈Gbal

(
∆p+

g,t−∆p−g,t
)
, (4.2)

where pg,t are the base point values from the ED result. The deployment of regulation
reserves ∆p+

g,t,∆p−g,t is used to counteract the renewable power deviations and keep the
ACE at zero. The operator’s objective is to ensure that the system operates reliably during
the dispatch stage of the operation. In the context of this chapter, this implies that there is
enough reserve to handle sub-5-minute VRE variations.

Dispatch Model

For clarity, we start by describing the deterministic formulation of a dispatch problem
considering reserve deployments to minimize the ACE without uncertainty. This model
will establish the risk exposure of the system at the ED time scale before the uncertainty is
unveiled. It is used to represent the atomic sub-problems in the multi-stage formulation.
Model (3) also corresponds to the formulation used in each of sub-problems in forthcoming
section III-B.

The joint dispatch and modeling approach that follows is similar to the two-stage robust
optimization formulation proposed in [204]. In that chapter, the authors calculate the gen-
erator’s base points in the first stage subject to the worst-case AGC realization to minimize
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ACE in the look-ahead. The cost function includes two components: the PWL generation
cost and the occurrence of ACE.

Our goal is to choose the generator power output pg,t along with up- and down-reserve
deployments ∆p+

g,t and ∆p−g,t, for each generator g ∈ G and time period t ∈ T , in a way that
minimizes the total cost of generation and provides an estimate of the ACE. We assume
that different renewable generators use distinct forecasting methods or forecast providers.
A deterministic version of the model using the expectation E yields the following linear
program:

min
p,∆p

∑
t∈T

∑
g∈G

∑
k∈K

pg,k,tCg,k+γ|ACEt|

 (4.3a)

s.t.
pg,t=

∑
k∈K

pg,k,t ∀g∈G ∀t∈T (4.3b)

Pmin
g ≤pg,t≤Pmax

g ∀g∈G\Gbal ∀t∈T (4.3c)

pg,t−pg,t−1≤RUP
g ∀g∈G\Gbal ∀t∈T (4.3d)

pg,t−1−pg,t≤RDN
g ∀g∈G\Gbal ∀t∈T (4.3e)

Pmin
g ≤∆p+

g,t+pg,t−∆p−g,t≤Pmax
g ∀g∈Gbal ∀t∈T (4.3f)

pg,t−pg,t−1≤RUP
g −∆p+

g,t ∀g∈Gbal ∀t∈T (4.3g)

pg,t−1−pg,t≤RDN
g −∆p−g,t ∀g∈Gbal ∀t∈T (4.3h)

0≤∆p+
g,t≤QUP

g ∀g∈Gbal ∀t∈T (4.3i)

0≤∆p−g,t≤QDN
g ∀g∈Gbal ∀t∈T (4.3j)∑

g∈G
pg,t+

∑
r∈R

p∗r,t−
∑
l∈L
p∗l,t=0 ∀t∈T (4.3k)

ACEt=
∑
l∈L
p∗l,t−

∑
g∈G
pg,t−E[p̃a,t]−

∑
g∈Gbal

(
∆p+

g,t−∆p−g,t
)
, (4.3l)

where (4.3b)–(4.3h) define the feasibility XG set for the thermal generators, and (4.3i)–
(4.3l) define the expected system balance. In the evaluation model, the point forecast of
VRE in the area at time t is represented by the sum over the deterministic forecasts of
individual plants,

∑
r∈Rp

∗
r,t. To aggregate the plant-level forecasts to the area level, we

took each Numerical Weather Prediction (NWP) ensemble member and summed the power
over the individual plants, a process described in [14]. Due to the ordering operation,
the area-aggregate forecast is not guaranteed to be the same as the order of members for
individual plants, such that, in general,

∑
r∈Rp

∗
r,t 6= E[p̃a,t].

Model (3) is representative of current practices that use a deterministic equivalent at the
plant level to resolve the values pg,t, but reserves are deployed based on the area aggregate
p̃a,t which we represent as an uncertain quantity. The purpose of this model is to assess the
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potential deployments of reserve required to minimize |ACEt|. In Section III, we introduce
the probabilistic uncertainty representation into the model for risk assessment.

Operators schedule regulation reserve provisions QUP
g and QDN

g before the operating
day [48]. To mimic this decision process in the simulation, we have obtained the generator
reserve assignments from a reserve co-optimization DAUC model. The resulting reserve
schedules are later used as inputs to the HAUC which estimates any supplemental AS, if
required. The final AS assignments resulting from the HAUC correspond to the upper-
bound reserve deployment values QUP

g and QDN
g in the model. The model does not include

line flow constraints given that it represents a single balancing area. If the network flow
limits reduce the capability of a generator to hold reserves, these constraints are by the
values of QUP

g and QDN
g that bound the maximum participation from the balancing units.

If the system cannot be balanced, the ACE increases, and persistent imbalances carry
penalties or require extreme corrective actions such as load-shedding. To represent the cost
of imbalances, the objective function penalizes the value of |ACE| with the parameter γ,
which must be set at a value higher than the cost of the most expensive unit in the system.
For instance, a value for γ slightly above the offer price ceiling is an appropriate amount,
so that the model will dispatch all the resources possible in order to minimize the ACE.

The addition of risk measures to the objective functions of multi-stage models such
as (4.3) is not sufficient to obtain results that reflect how the system will adapt to the
uncertainty [154, 69]. Section 4.2 shows the re-formulation of (4.3) into a multi-stage
model.

4.2 Multi-stage risk-averse model

Model (4.3) uses the expected VRE at each time step. In this section, we extend Model
(4.3) to a multi-stage stochastic program, using the Markovian model of VRE discussed in
Section 4.1. To aid readability, we first assume the VRE is independent in each time period,
and we then extend that model to add the Markov chain.

Adding uncertainty and risk

Model (4.3) can be decomposed using dynamic programming into a sequence of recursive
sub-problems as follows:

Vt(pt−1) = min
pg,t,

∆p+
g,t,∆p

−
g,t

C(pg,t,∆p+
g,t,∆p−g,t)+Vt+1(pt)

s.t. (pg,t,∆pg,t) ∈ X (pg,t−1)
(4.4)

where VT+1(·)=0, and C and X are defined as necessary to make V1(pg,0) equivalent to
(4.3). The generation levels pg,t are state variables that flow through time. The reserve de-
ployments are control variables that respond to the uncertainty-adapted corrective actions.
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To introduce uncertainty into the decision model, we assume the probabilistic forecast
stochastic process P̃a,t is represented by a set of discrete quantile-probability pairs (P j

a,t, ωj).
Incorporating risk requires the addition of a risk measure F to map the random variable

˜ACEt to a real value [1]. The choice of risk measure as well as its parameterization allows
us to calibrate the operator’s risk aversion. For example, if F[ ˜ACEt]=E[| ˜ACEt|], the resulting
solution is a risk-neutral policy that minimizes the expected operating cost plus the expected
absolute value of ACE. Another common choice for F[ ˜ACEt] is the worst-case risk measure
max[| ˜ACEt|], which results in a conservative policy that minimizes the expected operating
cost plus the worst-case ACE. As a middle ground between these two extremes, we use
the Conditional Value-at-Risk (CV@R) [152] of the absolute value of ACE. CV@R can be
represented as the linear program:

CV@R[ACEt]=min
αt,zj

αt+1
ε

∑
j∈Jωjzj

s.t. zj≥|ACEj
t |−αt ∀j∈J

zj≥0 ∀j∈J
(4.5)

CV@R is parameterized by ε ∈ (0,1], and (4.5) corresponds to the expected value of the
worst ε-fraction of quantiles. When ε=1, CV@R is equivalent to the use of the risk measure,
and in the limit lim

ε→0
CV@Rε[ACEt]=max[|ACEt|], which makes CV@R equivalent to the

maximum risk measure.
Based on the discrete representation of the uncertainty and assuming that the VRE in

each period is independent, problems (4.4) and (4.5) can be combined to produce:

Vt(pt−1)= min
z,αt,pg,t,

∆p+
g,t,∆p

−
g,t

∑
j∈J

ωj
[
C(pjg,t,∆pj,+g,t ,∆pj,−g,t )+Vt+1(pjg,t)

]

+γ
αt+1

ε

∑
j∈J

ωjzj


s.t.

(pjg,t,∆pj,+g,t ,∆pj,−g,t ) ∈ X (pg,t−1) ∀j∈J
|ACEj

t |=
∑
g∈G
pg,t−

∑
l∈L
p∗l,t+P

j
a,t

+
∑

g∈Gbal

(
∆pj,+g,t −∆pj,−g,t

)
∀j∈J

zj≥|ACEj
t |−αt ∀j∈J

zj≥0 ∀j∈J

(4.6)

where ∆pj,+g,t and ∆pj,−g,t are the recourse variables in each discrete realization j in the
uncertainty forecast.
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Markovian uncertainty

We now model the area-wide VRE Pa,t as governed by a Markov chain with quantile-to-
quantile transition probabilities. Instead of a single value function Vt for each time period
t, the Markovian model forms a lattice of value functions V j

t where t is the column and j is
the quantile of the Markov chain in Figure 4.2. The objective associated with each value
function is modified to account for probabilistic transitions between value functions.

Moreover, there is a direct extension of CV@R from the model (4.6) to the Markovian
case via the expected-conditional risk measures of [69]. This extension involves a reformu-
lation of the problem. The Vt sub-problem is split into |J | sub-problems denoted V j

t , the
variable αt is added as a state variable to the t−1 stage to ensure it takes the same value
in each of the V j

t sub-problems, and a conditional expectation is added to account for the
cost of V j′

t+1, conditional on being in V j
t . Thus, our recursive sub-problems can be modified

as follows:

V j
t (pt−1,αt)= min

z,αt+1,pg,t,

∆p+
g,t,∆p

−
g,t

C(pjg,t,∆pj,+g,t ,∆pj,−g,t )+γ(αt+
1
ε
z)

+Ej′|j[V j′

t+1(pt,αt+1)]
s.t.

(pjg,t,∆pj,+g,t ,∆pj,−g,t ) ∈ X (pg,t−1)
ACE+j

t−ACE−
j
t=
∑
g∈G
pg,t−

∑
l∈L
p∗l,t+P

j
a,t

+
∑

g∈Gbal

(
∆pj,+g,t −∆pj,−g,t

)
z≥ACE+j

t−ACE−
j
t−αt

ACE+j
t≥0

ACE−
j
t≥0

z≥0,

(4.7)

where Ej′|j is the expectation of transitioning to quantile j′, conditional on being in quantile
j in stage t (i.e., the M matrix). We also introduce a 0th stage,

V1(p0) = min
α1

Ej[V j
1 (p0,α1)], (4.8)

to solve for the first-stage value α1.
Multi-stage stochastic programs with a Markovian structure, such as problem (4.8),

are well-studied in the literature, and generic open-source solvers are available. For this
application we employ the SDDP algorithm implemented in the package SDDP.jl [42].

The SDDP algorithm is an iterative algorithm that works by approximating the cost-to-go
term Ej′|j[V j′

t+1(pt,αt+1)] by the point-wise maximum of a collection of linear basis functions.
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The approximated sub-problems are therefore finite-dimensional linear programs. The
approximation is improved in a two-phase approach. First, a simulation of the policy
(called the forward pass) is conducted to obtain a set of candidate solutions p̂t−1 and α̂t.
Then, a backward pass is conducted, adding new basis functions for each node V j

t using the
candidate solutions from the forward pass and a sub-gradient of the incoming pt and αt+1
state variables in V j′

t+1, which are obtained from the linear programming dual. Readers are
referred to [141, 163, 41] for further reference.

4.3 Results

We have developed a simulation that resembles realistic operational conditions to demon-
strate the applicability of the proposed approach in a practical setting. This section provides
full details of the input data and simulation specifications.1

Computational experiment specification

Considering that the probabilistic forecast inputs are critical to the proposed model’s risk
assessment ability, the data used have been carefully developed to represent forecasts of
realistic quality. Given the computational burden and time-intensiveness of generating
forecast data for individual locations in a large system, as well as isolating the impacts of a
single forecasting technology, the experiments only include uncertainty forecasts for solar
power VRE. Because the simulation’s objective is to demonstrate the application of the
proposed approach, forecasting errors and uncertainty from other VRE resources have not
been considered.

1The code and complete computational environment to reproduce the experiments is available at https:
//github.com/Energy-MAC/MultiStageCV@R.

https://github.com/Energy-MAC/MultiStageCV@R
https://github.com/Energy-MAC/MultiStageCV@R
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Figure 4.4: Simulation experiment Fuel stack (April 2018)

The system used to develop the proposed approach is based on the ACTIVSg2000 data
set geographically located in the footprint of Texas [18]. The system has been extensively
modified to accommodate large amounts of solar VRE in comparison with the original
version and is publicly available. Solar VRE was increased from 22 solar plants (total
installed capacity 938 MW) to 133 (total installed capacity 22,567 MW). Figure 4.4 shows
the dispatch stack of the modified system developed for this research during the sample
day used in the results, and Fig. 4.5 shows the static reserve requirements.
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Figure 4.5: Simulation experiment Reserve requirements (April 2018)

To generate the probabilistic solar forecasts, weather data are collected from a large
116-member NWP model ensemble documented in [76] and prepared by the prediction
system in [75]. Weather forecasts are translated to power forecasts through the System
Advisor Model’s PVWatts® power calculator [172], using realistic plant specifications based
on recent technological trends and the ERCOT interconnection queue. The 116-member
ensemble, now in units of power, is processed to a Probability Density Function (PDF) for
each time step according to the ‘NWP raw ensemble” method in [40]. The 50th percentile
of the probabilistic forecasts for individual power plants is used as a point forecast, p∗r,t, in
the HAUC.
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Figure 4.6: Probabilistic forecast representative windows for simulation experiment

To generate the area-wide probabilistic forecast, the 116-member power ensemble is
first summed over the solar plants to generate a 116-member ensemble of area-wide power.
The 99 quantiles in the set p̃ja,t are similarly extracted from the empirical PDF of this
summed ensemble. This approach is the simplest method to find the joint distribution over
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the solar plants because it retains the spatial correlations inherent in each NWP ensemble
member. Utilizing other techniques to obtain the joint distributions can result in more
refined joint forecasts; however, the development of joint forecasts is outside the scope of
this chapter.

Figure 4.6 showcases the system’s input probabilistic forecasts at three different periods
of the day. We have selected a day in the month of April because, in Texas, spring is the
season with the most variability in the VRE output. The reserve requirements for the system
were calculated using ERCOT’s methodology [19], which is based on a heuristic dependent
on the amount of installed VRE. The system data contain time-series requirements for
spinning, regulation-up, and regulation-down reserves. We use PowerSystems.jl [89] to
develop the data set to provide full scientific reproducibility of the results.2

Simulation sequence and parameters

Capturing the cascading decision processes represented in Figs. 4.1 and 3.3 requires solving
multiple optimization problems in a sequence that resembles the ISO’s practices. The
simulation was conducted as follows:

1. Solve the HAUC problem at the top of the hour using a 2-hour forecast look-ahead.
Obtain the commitment decisions and regulation reserve assignment values QUP

g and
QDN
g for the participating devices for use in upcoming stages. Figure 4.5 shows

the system’s reserve requirements obtained from ERCOT’s methodology [19]. The
requirement allocates up to 1.1 GW of down-regulation reserves in the morning hours
to deal with the early ramp and 1.25 GW of regulation up for the evening solar ramp
down. Although the HAUC model allocates spinning and regulation reserves, only
the regulation reserves are used in the risk assessment model. This model uses the
same intra-hour deterministic forecast data that will be used in the ED stage.

2. Based on the solution of Step 1, we solve the multi-stage problem (4.7) using SDDP.jl
v0.3.17 and generate the results for situational awareness. The multi-stage problem
uses a 2-hour horizon to match the horizon of the intra-day probabilistic forecast and
current ERCOT operating procedures [49]. However, the model is not constrained to
a specific look-ahead as long as the forecasting data are available.

3. If necessary, we conduct a risk reduction step by increasing the reserve requirement
and re-running step 2).

The model is parametrized using an α value of 0.2, i.e., hedging against the expected
value of the top and bottom 20th percentiles. The model is executed on April 1st because
spring time in Texas usually features VRE volatility and large shares of generation. The

2Additional information about the data and code necessary reproduce the construction of the system is
available at https://github.com/NREL-SIIP/ExtremeSolarTexas.

https://github.com/NREL-SIIP/ExtremeSolarTexas
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simulation sequence is implemented using PowerSimulations.jl in v1.6.2 of the Julia
programming language [16]. We use CPLEX 12.10 to solve all optimization problems.

Risk awareness results

(a) ACE Values (b) Reserve Deployment Values

Figure 4.7: Risk awareness results
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Figure 4.7(a) visualizes the estimated distribution of the ACE from the multi-stage model
for the periods shown in Fig. 4.6. For every 5-minute operating period, we show the
distribution of the ACE, where the positive values represent generation shortfalls and
negative values represent excess generation. For reference, we highlight the top and bottom
20th percentiles, which are commonly used by operators as the threshold values for risk.
The forecasts show both the forthcoming operating hour and the following operating hour,
as is standard practice [61]. Thus, the operator can evaluate the immediate risk (i.e., in the
forthcoming operating hour) and future risks. The ACEs observed in the extremes of Fig.
4.7(a) are a product of low-probability transitions (i.e., favoring very large ramps) in M . As
we can observe in Fig. 4.6, the probabilistic forecast spans over a 5-GW range of uncertainty
with a central value of 16 GW, and this is also reflected in the ACE forecast. These results
highlight the importance of further explorations to refine the calculation of M when the
temporal interdependence in the probabilistic forecast might not be well-calibrated.

For most of the quantiles, the forecast ACE values are 0.0 since the system is able to
deploy enough reserves to handle VRE variability. However, we can observe distinct risk
behavior in each forecasting period. During the morning ramp at 8:00, am the system
can maintain the ACE at 0.0 for the first operating hour, and during the second hour, the
model predicts that there is a significant probability that the ACE is larger than zero and
could reach 1 GW, which would be considered unacceptable. On the other hand, at the
noon period, we can observe that there is a probability of having a sustained ACE of 100
MW ACE. Lastly, we can see that during the evening ramp the ACE risk is reduced to 0
for the majority of the operating hour. Figure 4.7(b) shows the probabilistic forecast of
the reserve deployments. We can see that the morning and mid-day forecast predicts that
there is a high probability of saturating the reserves. This behavior is produced because
the system does not have perfect foresight of the uncertainty realization, and due to system
constraints it cannot adapt fast enough to the realization, despite the spare reserve capacity.
Based on the results, this system’s regulation reserve requirements seem to be insufficient
to completely hedge against the uncertainty at the operating hour, and this is reflected in
the results of the ACE as well.

The multi-stage model predicts that for the realizations between the top and bottom
20th percentile of solar power, output the reserves are very likely to reach their maximum
limits. In the case of the morning operating window, the system reaches its maximum
reserves at the following operating hour (9:00), giving the operator information to adjust
the operational parameter before the next execution of the HAUC. We can also observe that
the model predicts that there is a higher probability of having to deploy downwards reserve
starting at 9:00. In line with the ACE behavior from Fig. 4.7(a), the following operating
hour exhibits a high risk of saturation. This is not surprising given the the morning ramp-up
of the solar power and the ramp-up of the gas generation (see Fig. 4.5). The system is
therefore under a lot of stress, and a forecast error might cause a thermal unit to be turned
off too soon. On the other hand, the evening window shows that there is enough reserve
capacity to be deployed to keep the system’s ACE at 0.0 even for the lowest-probability
quantiles.
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The reserve saturation has a different profile at the noon hour, where it is possible to
observe that the reserves can saturate for most of the operating window and produce a
persistent ACE. This extreme behavior results from the fact that model (4.3) can only use
∆p+

g,t and ∆p−g,t as recourse to bring the system back to balance. The results highlight that
the regulation reserve requirements do not provide the system enough recourse options
to reduce the risk significantly if the uncertainty is too extreme. Operators usually have
at their disposal additional mechanisms to re-balance the system if the regulation reserves
reach saturation, such as reserve substitution or renewable generation curtailment. How-
ever, accounting for additional regulation mechanisms is outside the scope of the current
manuscript.

Figures 4.7(a) and 4.7(b) can be incorporated into the operator’s risk dashboards such
as those already common in many ISOs (e.g., SolarView [50] or the examples shown in
[61]). For instance, an operator observing that the bottom and top 20th percentiles will
saturate the reserve like in Fig. 4.7(b) can initiate corrective actions before the operating
hour, or plan for the following operating hour. In the case of down-reserve saturation, the
operator can choose to curtail, or offer energy to other interconnected balancing areas.

Reducing system risk

In this section, we show the execution of a preventive action to reduce the system’s exposure
to risk. Based on the results from Figs. 4.7(a) and 4.7(b) we mimic the decision process
available to operators working with increased awareness. During the morning period, the
ACE projection is large at the end of the forecast horizon. However, the increase in ACE
happens in the second hour of the forecast after another execution of the HAUC. As a
result, an operator can choose not to perform any risk reduction measure for the following
operating hour. On the other hand, during the mid-day period, there is a sustained ACE in
both directions during the operating hour that can be considered unacceptable. As a result,
the operator can perform a risk reduction measure. In this case, we chose to increase the
regulation reserves by 30% from 0.83 GW regulation up and 0.81 GW regulation down to
1.079 GW and 1.053 GW, respectively, as an example.
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Figure 4.8: Probabilistic result after increasing reserve requirements during the mid-day
period

The outcome of this adjustment in shown in Fig. 4.8, where the system now has
significantly more of a margin to balance the system variability. We can observe that the
negative ACE value is now 0.0 for most of the top 20th percentile (i.e., avoiding over-
generation). Figure 4.7(a) shows that even though the system has more reserves to handle
variability and reduce the risk at the top and bottom quantiles, it is still close to saturation.
Note that although the reserve still has some probability of saturation, the extreme ACE
values have also been reduced from a 2 GW value to 1 GW.
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Results Under Low Variability
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Figure 4.9: Low variability forecast, 12:00 pm, July 22nd, 2018

Figure 4.10: Reserve deployment forecast, 12:00 pm, July 22nd, 2018
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The results shown so far are representative of a highly variable spring day where the system
is at higher risk. Figure 4.9 shows a forecast for noon during a summer day. When compared
with the forecast in Fig. 4.6, we can see the spread of the power in the probabilistic forecast
is 1.5 GW during the 2-hour period, whereas in April the spread is 7 GW during the same
period. Given the relatively low variability and the higher reserve requirements for the
summer season, the forecast of reserve deployments is well within the ± 1.2 GW regulation
reserve allocation (see Fig. 4.10). Given that the system has enough regulation capacity,
the ACE is projected to be 0.0 for the entire horizon. Such a result allows the operator to
know that the system can handle even the most extreme potential variations of VRE within
the forecast window.

Computational performance

Although the proposed approach is not yet suitable for online decision making due to the
computational burden, it is critical that the operators get the risk assessment in time to
perform preventive actions if needed. We ran the model in commercial hardware. The
CPU was an Intel(R) Xeon 10-core Ivy Bridge 2.5 GHz with 64 GB of RAM on Scientific
Linux 7. As a stopping criterion, we used a relative tolerance of 1e-3 after five consecutive
training iterations (see SDDP.jl documentation for more detail). We used CPLEX 12.10 as
the linear programming solver for the algorithm parametrized with the the option “CPX-
PARAM_Emphasis_Numerical” = 1 in order to avoid numerical issues in the execution of
the SDDP algorithm. Additional details about the implementation are available in the code
repository.
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Figure 4.11: Solution times of the SDDP.jl algorithm execution including forward and
backwards pass

Figure 4.11 shows the full solution time of the model. The number of state variables
differs at every hour because the system will have a different number of units online,
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impacting the algorithm’s performance. At each solution call, the SDDP model solves over
100 state variables, and during the ramp times the value can be as high as 165 state
variables.

The worst-case solution time is 15000 seconds (4 hours) at the 8:00 timestamp when
the system experiences the most stress with the solar ramp and the largest number of state
variables. This solution time is reasonable for an initial proof of concept done under realistic
operation conditions using commercial hardware similar to that available to operators and
with a generic implementation of the SDDP algorithm. However, it will need improvements
before it can be used by system operators in real time. To reduce computation times, a time
limit (e.g., 60 minutes) could be used at the trade-off of sub-optimal policies. Alternatively,
improvements such as parallelism, tuning of solver parameters, and heuristics to construct
an initial approximation of the value function could be investigated. We leave these to
future work.

The computational cost of the SDDP solution technique scales with the number of state
variables, stages, and scenarios. Increasing the size of the individual linear programs by
adding additional constraints such as network or other generator constraints will increase
the solve time of the individual problems, but it should have only a minimal impact on
the overall complexity of the algorithm. The impact of the additional constraints is highly
dependent on the structure of the new constraints and the solver’s capability to simplify
the resulting problem. We leave an investigation of different formulations to future work.

4.4 Online transition matrix estimation

In this section, we extend the Markovian representation of the temporal dependence struc-
ture discussed in Section 4.1, where we employed a fixed transition matrix created as-
suming a truncated normal distribution centered on the diagonal. This method estimated
the average likelihood that the actual area-wide power would transition from one forecast
quantile to another and fit a normal distribution. In the extension, developed in this section,
we look at updating the transition matrix online using a subset of recent probabilistic fore-
casts and observations, hoping this will better capture uncertainty. In line with ERCOT’s
real-time electricity market, a new solar power observation and probabilistic forecast are
released every 5 minutes. We update the transition matrix using the following steps:

1. Specify the historical time window and number of lead times to use in creating the
online transition matrix.

2. For each day in the historical time window, use the forecasts issued within an hour
of the current time (e.g., if the current forecast starts at 7:00, use forecast from the
previous day(s) starting at 7:00, 7:05, ..., 7:55) to populate the transition matrix
using transitions from the specified number of lead times.

3. For rows containing no observations, set mj,j=1.
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However, there is no clear mechanism to specify the historical information used such as
time window and the number of lead times required to find the best fit. Hence, we develop
a set of metrics to evaluate the possible parameterizations of the fitting procedures.

Transition matrix scoring metrics

To determine which transition matrix performs the best, we sample trajectories from the
probabilistic forecast using the transition matrix and score them using the VS [160] as well
as two new metrics based on the principle of band depth [170]. Many other studies use
the energy score [54] to assess performance, but recent work shows that this score cannot
diagnose misspecifications of the dependence structure [109], so we choose to omit this
score.

Variogram Score

Scheuerer and Hamill introduced the VS [160], which is a negatively oriented proper scor-
ing rule [54] that captures each unique pairwise difference (i.e., time lags from 5 minutes
to 115 minutes in this application) considering all the components in the multivariate
forecast. The VS of order p can be written as

VSp(Ft,o)=
d∑

i,j=1
wij

(
|oi−oj|p−

1
S

S∑
k=1
|x(k)
i −x

(k)
j |p

)2

∀i,j=1,2,...,d
(4.9)

when the forecast distribution Ft is approximated by the ensemble consisting of the S

solar power trajectories sampled from the transition matrix x(1),...,x(S). Here, x(k)
i is the ith

component of the kth trajectory, o is the d-variate observation vector, and wij gives weights
to each pair. We set p=0.5 and use the inverse of the time lag between components in
minutes as weights. Note that vector quantities are in bold.

Band Depth Scores

The band depth is a statistic that provides a way to order a set of curves [96]. Curves
within a set that have larger band depths are more central, whereas curves with smaller
band depths are more outlying. We propose a scoring metric that consists of the normalized
band depths of the set of trajectories ~x(k) together with the observation vector ~o. We
calculate the Band Depth Score (BDS) by normalizing this set of band depths with respect
to the highest band depth in the set.

Following the notation from López-Pintado [96], we represent the graph of a function
with y(t),i=1,...,n,t∈I, which is a subset of plane G(y)={(t,y(t)):t∈I} where I is an interval
in R. For simplicity, we assume that a band in R2 is delimited by only two curves (yi1, yi2,)
which we represent by B(yi1 ,yi2)={(t,x(t)):t∈I, minr=1,2yir(t)≤x(t)≤maxr=1,2yir(t)}. The
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sample band depth is then given by the fraction of all possible bands that contain the full
curve y(t):

BD(y)=
(
n

2

)−1 ∑
1≤i1<i2≤n

I{G(y)⊆B(yi1 ,yi2)} (4.10)

where I{·} is the indicator function.
López-Pintado also offers a more flexible formulation called the modified band depth,

which measures the fraction of time for which a curve y(t) falls within each band

MBDn(y)=
(
n

2

)−1 ∑
1≤i1<i2≤n

λr{A(y;yi1 ,yi2)}, (4.11)

whereA(y)≡A(y;yi1 ,yi,2)≡{t∈I:minr=i1,i2yr(t)≤y(t)≤maxr=i1,i2yr(t)}, λr(t)=λ(A(y))/λ(I), and
λ is the Lebesgue measure on I. Similar to the BDS, we propose an additional scoring
metric, the Modified Band Depth Score (MBD), by normalizing the set of modified band
depth with respect to the highest modified band depth in the set.

Online transition matrix performance

To determine the most effective online transition matrix, we iterated through a subset of the
parameter space comprising the number of days and number of transitions used from each
historical forecast. We tested 1 to 45 days using 1, 6, 12, and 23 transitions per forecast.
Since each forecast has a 5-minute resolution and a 2-hour horizon, 23 transitions use data
from the full forecast, whereas 6 and 12 transitions use data from the first half-hour and
hour, respectively. Five hundred solar power trajectories were sampled using each transition
matrix, and the VS, the BDS, and the MBDS were calculated using the observations. This
process was repeated 10 times to obtain average scores for one day in each season.

Online transition matrices associated with the best VSs for four date and time combi-
nations are shown in Fig. 4.12(a)–(d) and illustrate how the sparsity and density of the
transition matrix change under different conditions. With the help of fan plots depicting
the probabilistic forecast and observations, shown in Fig. 4.12(e)–(h), we can understand
why these matrices performed well. Looking at Fig. 4.12(e), initially, the forecast under-
predicts the observations, which is common near sunrise, but the observations fall to the
lower quantiles by the end of the time horizon. In such a case, the transition matrix has
greater density above the diagonal — corresponding to a downward quantile traverse —
and some density around high and low quantiles where the forecast remains for several
lead times. Fan plots in Fig. 4.12(f)–(g) both have observations that remain near the same
quantile range for the duration of the forecasts. Here, the density in the transition matrix
corresponds to the quantiles among which the observations rank. In other words, the more
clustered a transition matrix is around a group of quantiles, the more likely a trajectory
starting out in this quantile range is to remain there. An extreme example of this occurs



CHAPTER 4. A MULTI-STAGE STOCHASTIC RISK ASSESSMENT WITH RENEWABLE
POWER MARKOVIAN REPRESENTATION 103

at 15:30 on November 16th, shown in Fig. 4.12(h). Near sunset, the forecast becomes
compressed and often under-predicts the observations (e.g., Fig. 4.12)).

Subplots (a) through (d) contain online transition matrices created for different times
to illustrate several major trends that appear in the online transition matrices. Each subplot
title provides the time for which the transition matrix was created, the number of transitions
used per forecast, and the number of days of historical forecasts used to create the transition
matrix. Subplots (e) through (h) contain fan plots depicting the forecast starting at the
same times for which the transition matrices were created. Probabilistic quantile forecasts
are shown in red with darker colors corresponding to more central quantiles, and the
benchmark observations are shown with a solid black line.

a) b) c) d)

e) f) g) h)

Figure 4.12: Online transition matrices created for different times

Heat maps showing the VS and MBDS for transition matrices created using all parameter
combinations at six times on each of the four days are provided in Fig. 4.13. We observe
both diurnal and seasonal variation in the VS (left panel) and the MBDS (right panel) along
with variation associated with the amount of data used to create the transition matrix at
a given date and time as shown by each individual heat map. Since the VS is negatively
oriented, lower values are better. However, the opposite is true for the MBDS. To simplify
the visual interpretation, we orient the color maps in Fig. 4.13 such that lighter values
indicate better scores and darker values indicate worse scores. The best VSs tend to occur
later in the day when the sun is going down and the magnitude of any misprediction is
lower. However, this same period has poor MBDSs, because forecasts often under-predict
the solar power output near sunset, meaning that the observations fall away from the most
central trajectory. The worst VSss occur in the beginning to middle of the day on February
16th (see the first, third, and fourth heat map slices on the top left row of Fig. 4.13) and at
13:30 on May 16th (see the fourth heat map slice on the second left row of Fig. 4.13). We can
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attribute the poor scores on February 16th to higher variability present in the observations,
which is visible in Fig. 4.12(e)–(f). Those at 13:30 on May 16th we attribute to a sharp
change in the forecast that is not realized in the observations (see Fig. 4.12(g)). The worst
MBDSs occur at 17:30 on February 16th, at 15:30 on May 16th, and at 17:30 on November
16th. In all of these cases, the forecasts under-predict the observations — similar to the case
shown in Fig. 4.12(h).

Figure 4.13: VS (left) and MBDS (right) for each online transition matrix that was created

While we presented some of the best-performing transition matrices as judged by the VS,
the BDS and the MBDS provide operators with additional useful information. For example,
if an operator schedules reserves based upon the 20th and 80th quantiles, the BDS could
be tuned to indicate whether a trajectory generated using the transition matrix would fall
outside these quantiles at any point, and the MBDS could indicate what fraction of the time
a trajectory would fall outside these quantiles.

We found that the optimal amount of data for creating the transition matrix varied
by both season and time of day. While we didn’t observe a clear trend in the length of
the historical data window, we can recommend that using fewer transitions from each
forecast in the spring and summer months produces better transition matrices. Finally, we
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demonstrated this approach using a multi-stage stochastic risk-assessment model under
uncertainty.

Naturally, an individual solar facility will display greater inter-hourly variability than
the balancing area aggregation due to localized variations in cloud cover and aerosols.
Future work could apply this methodology to forecasts for an individual solar plant, and
the resulting transition matrix would reflect the increased variability. This would extend
the applicability of this method to entities such as solar facility operators and vertically
integrated utilities. Further, such entities could likely leverage ground-based observations
in place of the NSRDB-based observations used here, which would more accurately capture
the variability at the site. Using local observations may also result in a transition matrix
showing more variability than that created using the NSRDB-based observations.

Using online transition matrices operationally
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Figure 4.14: Comparison of the predicted average reserve deployment for the operating
hours with solar power production

To showcase the online transition matrix in operation, we ran the model specified in [86]
on April 1st, 2018, a highly variable spring day in Texas. We present results for the top and
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bottom 20th percentiles, which operators commonly use as thresholds. The online method
predicts larger variability during the late afternoon hours (Fig. 4.14), which results in larger
reserve deployments — particularly between 16:00–17:00, where the model estimates up
to 120 MW of necessary additional reserves. The opposite occurs in the morning, where
the online method consistently predicts less variability than the fixed matrix approach.
Positive results represent the deployment of upward regulation reserves, and negative
results represent the deployment of downward regulation reserves.

The expected ACE varies proportionately to the reserve deployments, with higher ex-
pected ACE values occurring at the same time as higher reserve requirements (Fig. 4.15).
During the morning, the system reaches its maximum reserves at the same time as maxi-
mum ACE (9:00). However, the model predicts that the downwards reserve deployment
at 9:00 is significantly larger using the fixed matrix, which results in saturation, creating
a large discrepancy in the predicted ACE values between the online and the fixed matrix
methods. In contrast, ACE values around noon are large for both methods due to an under-
allocation of reserves. Positive results represent excess generation, and negative values
represent generation shortfall.
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Figure 4.15: Comparison of the predicted average ACE for the operating hours with solar
power production



CHAPTER 4. A MULTI-STAGE STOCHASTIC RISK ASSESSMENT WITH RENEWABLE
POWER MARKOVIAN REPRESENTATION 107

4.5 Conclusions

• System operators still face significant challenges in integrating probabilistic forecast-
ing into operational workflows. Emergency management system operators (operator
EMSs still have technical limitations that create information technology challenges in
receiving probabilistic forecasts and processing them into valuable insights for floor
operators. Additionally, the need for institutional approval from regulatory organiza-
tions can become a major roadblock to the integration of probabilistic information
in the operator’s control room; hence, uncertainty forecasts are currently an under-
utilized tool in operating rooms. We propose a modeling framework to incorporate
uncertainty forecasts for short-term risk assessment in ISO operations that can be in-
tegrated into risk assessment platforms such as SolarView [50] to provide additional
insights about the system’s risk and help close some of the gaps that still prevent
probabilistic forecasts from being more widely adopted in power system operations.
We showcase that the inherent time dependencies in the probabilistic forecasts can
be used to formulate a multi-stage problem as a Markovian graph.

• Using the Markovian graph, it is possible to incorporate joint time dependencies of
the control variables and the forecast and to find solutions in reasonable computing
times. The results show that time consistency in the sequential decision modeling can
represent limitations in the deployment of corrective actions over the operating hour.
We present an implementation of the risk assessment stage in the operator’s sequence
of decisions in a system with realistic forecasting data and a large generation fleet
size.

• In this chapter, we offered two distinct methods for capturing the temporal depen-
dence structure of probabilistic solar forecasts based on the Markov property and
presented a strategy for updating the Markov transition matrix using recent forecasts
and observational data. We developed two multivariate scoring metrics based on the
band depth and modified band depth of a vector of observations with respect to a set
of trajectories and compared them to the well-known variogram score.
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Chapter 5

Simulation of Power Systems Dynamics

For several decades, computational simulations have been the primary tool for studying
power systems dynamics and stability. The scale and complexity of interconnected power
systems limits the applicability of simpler analytical techniques. Despite a wealth of knowl-
edge about models, simulation techniques, and software implementations[117], numerous
advancements in computer hardware, programming languages, and numerical integration
techniques make for more changes and advancements. The changing nature of the grid
also catalyzes innovation in simulation models and techniques.

The increasing integration of generation sources via power electronics is changing
power systems. It is generally agreed that new dynamics in the controls of Inverter-based
Resources (IBRs) change modeling requirements for system-wide stability studies that rely
on time-domain simulations [133, 60, 120]. In power systems dominated by synchronous
generators, physical phenomena (magnetic fluxes, electromechanics, mechanical control
reaction times, or thermo-dynamic processes) drive dynamic behavior. The control logic
associated with synchronous generators is commonly tuned to the timescale of the relevant
processes, creating a natural separation between the dynamic behaviors attributable to
physics and controls. On the other hand, IBR dynamics are dominated by their controls, in-
cluding modulation, PLLs, voltage, current, and power controllers. Therefore, the practical
requirements of the control design – often, cascading PID – define the relationships be-
tween timescales. In fact, interactions at higher frequencies have recently been recognized
as a new stability category [60], highlighting the exigent need to revisit the understanding
of system dynamics with high shares of IBRs.

Determining the level of modeling detail required to accurately capture the phenomena
of interest is a key challenge in power systems simulation in the presence of IBR. The mod-
eling choices determine the algorithmic and computational requirements that must be met
to execute the time-domain simulation. In systems supplied predominantly by synchronous
generators, IEEE Std 1110-2019 [73] guides the generator model complexity requirements
based on the category of stability under study and the severity of the perturbation. No such
modeling guidance exists for IBR-dominated systems.

Several articles have explored the modeling requirements for systems with IBRs and
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shed light on the theoretical [106, 121, 66] and practical [71] requirements for time-
domain simulations in large systems, particularly where network circuit dynamics are
concerned. Decisions about simulation models are often framed in terms of “slow" and
“fast" dynamics, though formal definitions of these two categories depend on the context
in which they are used. This chapter presents two formalizations of “slow" and “fast" in
terms of a signal’s bandwidth and model order reduction through Singular Perturbation
Theory (SPT).

Challenges concerning time-domain simulations in the context of IBR dominated sys-
tems have recently been discussed by the authors in [133] where they study the applicability
of specific techniques to the simulation and modeling of systems with IBRs from the signal
processing perspective. A recent review [169] discusses existing and novel methods to
accelerate Electro-magnetic Transient (EMT) simulations in systems with IBRs. Composite
system models for network, generators and inverters of different types are described in [95,
184].

The new control and analysis challenges that come with the integration of IBRs also
bring modeling and solution difficulties for incumbent approaches and highlight the need
for fundamental changes in the domain of power system simulation. Practitioners in the
power system community have reported limitations of existing commercial tools for systems
that have sizable IBR share and/or weak interconnections. For instance, an ERCOT report
[149] notes existing non-convergence and numerical instabilities in weak grid situations.

Moreover, nearly all power system dynamic simulation packages integrate the modeling
layer (where the behavior of system elements is specified) and the simulation layer (where
the algorithmic solution approach is defined). In almost all cases, the details of these layers
are inaccessible to the developer and limit model development to the pre-defined structures
of the solution algorithms available. The close integration between the algorithm and
the models, combined with the development hurdles, licensing, and software limitations
described above, restricts the scientific study of power systems with high share of IBRs. As
a result, it is necessary to develop simulation tools with enough flexibility to explore the
modeling and solution aspects of systems with large shares of IBRs.

This chapter first clarifies the semantics used to describe time-domain simulation mod-
els and their applications to system-wide simulations in the presence of IBRs given the
importance of developing novel simulation techniques that can capture IBR dynamics more
accurately. The objective in this chapter is to interpret the assumptions and modeling ap-
proaches implicitly embedded in widely used definitions and use it to develop a simulation
tool that addresses the shortcoming of existing approaches. Particular emphasis is provided
to reviewing simplifications and transformations inherent in various time-domain simulation
methods as well as discussing the capabilities and limitations of these approaches.

This chapter further describes a new modeling platform, PowerSimulationsDynam-
ics.jl (PSID.jl) based on the Julia language. This particular package provides the com-
putational tools needed to develop models and algorithms to simulate systems with a focus
on IBRs based on a simulation model’s theoretical capabilities. The tool has the flexibility
to formulate models with different levels of detail. To date, PSID.jl is the only open-source
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Figure 5.1: Taxonomy of power systems time-domain simulation models.

power systems dynamics tool developed explicitly to enable extensibility at multiple points
of the modeling stack, from the component to the integration algorithm.

This chapter will:

• Review power systems time-domain simulation modeling approaches with applica-
tions to IBRs.

• Present a systematic discussion of the origins and underlying assumptions of different
power systems dynamic modeling techniques, including examples of their application.

• Survey modeling approaches and terminology used in the literature, and their level
maturity of their implementation in commercial and research applications.

• Provide an overview of the design and implementation details of PowerSimulations-
Dynamics.jl, a package which helps researchers easily assess the trade-off between
model complexity and computational requirements.

• Describe an implementation of IBR and machine models based on generic data models
that supports developing encapsulated sub-component models. The modular design
enables code and model reuse; this reduces development requirements and enables
fast and simple prototyping of controls and models.

The chapter will first provide readers with the relevant definitions that concern simu-
lation models and the methods involved. Specifically, section 5.1 discusses the definition
of power systems time-domain simulation methods and introduces the taxonomy of the
simulation models described in this chapter. Section 5.2 reviews common simplifications
and transformations used in time-domain simulations relevant to defining the scope of
simulation model definitions. In Section 5.3, we discuss systems simulation focusing on
definitions and categorizations. Section 5.4 introduces the implementation and model-
ing techniques in PSID.jl. Section 5.4 discusses the simulation models implemented in
PSID.jl including the residuals and mass-matrix formulations. Section 5.4 discusses the
details of the software design and structure as well as the modeling details for generators,
inverters, loads and network. The simulation case studies and verification results are shown
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in Section 5.5 where we compare the results from PSID.jl with commercial tools to verify
the validity of the results. Finally, conclusions are presented in Section 5.6.

Notation

Lower-case letters x denote one-dimensional real variables, parameters, and functions;
upper-case letters in the form F and F () are used for matrices and functions respectively;
arrows (as in ~x) represent vectors of variables or parameters; 〈·〉 denote phasors; and
lower-case letters in the form x denote complex-valued variables, functions, or parameters.
Finally, =

√
−1.

5.1 Time-domain Simulation

In this chapter time-domain simulation methods means models of the dynamics of power
systems as a function of time. This type of simulation model is typically used to determine
the transient effects of sudden changes to the system state.

A time-domain simulation requires specifying two “layers": (i) a system model, in-
cluding differential equations that describe the system’s physics and controls, and (ii) a
time-stepping (or integration) algorithm. The choices made around the system model in-
form integration algorithm requirements. This section precisely defines what we mean by
“simulation model" and provides a taxonomy of widely used methods.

Definition

A system simulation model is a set of dynamic equations in causal form for a collection of
interconnected components expressed with explicit differential equations:

d~x(t)
dt

=F (~x(t),~y(t),~η,t), ~x(t0)=~x0, (5.1a)

d~y(t)
dt

=G(~x(t),~y(t),~ψ,t), ~y(t0)=~y0, (5.1b)

where ~x(t) and F (·) represent the device (e.g., IBRs, machines, loads) states with parame-
ters ~η. The circuit dynamics of the network are represented as the subsystem ~y(t) and G(·)
with network parameters ~ψ.1 The simulation model (5.1a)-(5.1b) can be used to represent
real- and complex-valued signal analysis.

Given the system model (5.1a)–(5.1b), a simulation can be defined as follows: from
an initial condition for the device and network states ~x(t0),~y(t0), advance the solution
in time t from one point to the next considering a discrete timeline {t0,t1,...,tn,...,T}. A

1Simulation models could include a spatial component, as in the case of circuit models that consider
traveling waves. In cases where the behavior of traveling waves is relevant, time-delay equivalents such as
the Bergeron model are commonly used and can be implemented via (5.1a)–(5.1b).
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simulation requires a stepping algorithm that finds the solution at time tn+1 given values
of the involved variables over {t0,t1,...,tn}.

In steady state, voltage and current state variables in the model defined by (5.1a)–
(5.1b) vary sinusoidally in time, making the dynamic response dependent on the value of
t. Without some form of transformation, differential equations describing time-invariant
system dynamics do not have well-defined equilibria.

Solving time-varying nonlinear systems is costly because integration algorithms use
fixed time-steps, whereby equilibrium points cannot be defined. Additionally, modeling
three-wire three-phase power system components can result in intractable expressions with
cross-coupling terms. (For example, in the case of asymmetrical circuits or unbalanced
signals.)2 As we will see, simplifications and transformations influence the maximum re-
quired discretization step, ∆t, and the number of states required to model the dynamics of
interest.

Taxonomy

In power systems, time-domain simulation is roughly classified into two groups: (1) QSP
Domain Simulations in which the transmission system circuits dynamics are represented
algebraically as discrete changes between steady-state operating points; and (2) EMT
Simulations which include sufficient detail to capture fast dynamic phenomena. QSPs
are used for the study of low-frequency phenomena that ranges from inertial response to
frequency regulation. On the other hand, EMT simulations are used in settings where one
wishes to capture the impact of line dynamics, converter switching, machine fluxes, and/or
lightning surges.

Figure 5.1 depicts a taxonomy of time-domain simulation models found in the literature
and covered in this chapter. Though we have organized model types as subcategories
of QSP domain models and EMT models, there are various types of models within each
category. We have organized model types roughly by the fastest-timescale phenomena they
are intended to capture. As we will explain, although modeling faster-timescale phenomena
requires more modeling detail, there are also other important differences between these
models. Their mathematical formulations, the algorithms available to numerically integrate
them, and the assumptions required to interface machines and other energy conversion
interfaces across a network differ in important ways within the taxonomy. These differences
can introduce fundamental changes in a model’s properties and output, influence the
complexity of initializing model runs, and dictate the maximum allowable time step (and,
therefore, the computing time and data generated).

For practitioners, the definition of a simulation model is intertwined with the software
environment. Each simulation category (QSPs or EMT) has highly specialized models,
algorithms, and modeling practices developed over many decades. As a result, choosing a

2The terminology adopted follows [199], which uses balanced in the context of signals and symmetric in
the context of circuits.
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simulation model and its methods is inextricably tied to to the software environment and
its capabilities. Therefore, in order to clearly talk about the difference between models in
the taxonomy, we will introduce two broad classes of modeling choices: simplifications and
transformations. The following section systematically reviews the broad space of potential
simplifications and transformations. Subsequently, we discuss specific simulation tools
in the context of these simplifications and transformations. This enables us to begin to
understand the entire range of assumptions behind different simulation tools and to move
beyond the simple distinction of whether or not they are designed to study electromagnetic
transients and inform several design choices when developing simulation software.

5.2 Simplifications and Transformations

By “simplification" and “transformations," we mean mathematical manipulations of state
variables that preserve the validity of some portion of a model’s characterization of sys-
tem physics and control loops. Transformations can have multiple equivalent formula-
tions, and several works have developed a comprehensive analysis of transformations [119,
129] and arrived at equivalent conclusions to the ones presented here. Different from
transformations, simplifications are aimed to reducing model complexity at the cost of an
approximation to the real system dynamics.

Simplification: Averaging Dynamics

Averaging methods focus on determining how the behavior of a complicated time-varying
system can be approximated by a time-invariant system [77]. Averaging reduces model
bandwidth requirements, which, in turn, enables simulations to increase the maximum
allowable time-step ∆t. Averaging can be used to simplify switching dynamics and analysis
of power electronic converters: see, for example, [199].

Averaging techniques are critical to reducing the computational cost of conducting sim-
ulations. For instance, [202] notes that with the application of averaging techniques, the
integration step of a power system model can go from 50ms to as large as one second for
low-frequency dynamics. Phasor representations of signals are regularly used as simplifica-
tions in power system simulations, and we discuss several approaches in the remainder of
this subsection, along with their connection to averaging.

The remaining of this section reviews several simplifications and transformations com-
monly found in the power systems literature. The focus of the review is on their applications
for the modeling if IBRs.

Steady State Phasors

Steady state phasors are commonly defined in engineering. Given the signal s(t)=sppcos(%t+
θ)=
√

2 Re{Se%t}, the “phasor" S=spp√
2e

θ is expressed using the root-mean-square value of
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the wave instead of the instantaneous value. This definition requires stationary conditions
and homogeneous frequency.3

Dynamic Phasors

Dynamic phasor as a concept was introduced in the early 1990s and has received renewed
attention as a mechanism for simulating systems, including fast IBR dynamics. There are
at least three independent but similar definitions of “dynamic phasor" in the literature,
each developed using different approaches. The three approaches are motivated by the
observation from averaging theory that the study of signal envelope variations is sufficient
to derive the systems’ stability properties. Sanders et al. [156] introduced dynamic phasors
via generalized averaging involving a time-dependent sliding-window interval T (t)=[t−T,t]
for time-varying systems. In particular,4 consider the following expansion for a nearly
periodic signal s(t):

s(t)=
∞∑

k=−∞
〈s〉k(t) ek%t. (5.2)

where % is the carrier frequency of the signal. The time-varying Fourier coefficients 〈s〉k(t),
one for each harmonic component k, are recoverable as

〈s〉k(t)=
1
T

∫
τ∈T (t)

s(τ)e−k%τdτ, (5.3)

and these are regarded as dynamic phasors. The time dependency of 〈s〉k(t) enables the
formulation of a differential rule to capture continuous time behavior as follows:〈

ds(t)
dt

〉
k

=d〈s〉k(t)
dt

+k%〈s〉k(t). (5.4)

We will refer to this approach to dynamic phasors as the Fourier approach.
Another definition of dynamic phasors is derived from a communications-theoretic

perspective [34, 182, 183]. Venkatasubramanian introduced time-varying phasors in [182],
defining such a phasor via a linear operator P (), such that P (s(t))=〈s〉(t). In other words,
P () maps a signal s(t) to a phasor. The definition of time-varying phasors begins with the
idea that given a dynamic phasor of the form:

〈s〉(t)=spp(t)eθ(t), (5.5)

there exists a unique band-pass modulated signal

s(t)=Re
{
〈s〉(t)e%t

}
=spp(t)cos(%t+θ(t)), (5.6)

3Refer to Section 1.4.1 [119] and its references for further details on the origins of the term “phasor."
4In this section, % represents signal frequency, and ωs denotes system frequency.
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where spp is the signal’s amplitude. The operator P () is defined for signals where it is
possible to find a unique phasor 〈s〉(t) such that P−1(P (s(t)))=s(t). The key property of
P () is that if the spectral content of s(t) is slower than the carrier frequency %, the phasor
operator maps is unique, i.e., there is only one possible signal onto which the phasor maps
back. Hence, the method is akin to a modulation operation to go from a time representation
to a complex phasor representation.

From (5.6), it is possible to define the differential property of P () as follows:

ds(t)
dt

= Re
{(

d〈s〉(t)
dt

+%〈s〉(t)
)
e%t

}

P

(
ds(t)
dt

)
= d〈s〉(t)

dt
+%〈s〉(t). (5.7)

The differential property in (5.7) is the same as the Fourier dynamic phasor in (5.4) for
k=1. We will refer to this approach to defining a dynamic phasor as the linear operator
approach.

The third approach to deriving dynamic phasors is rooted in concept of Shifted Fre-
quency Analysis (SFA) developed by Martí et al. [107, 202], closely related to the definition
of the linear operator P () introduced in [182].5 SFA begins with the assumption that a
power system dynamic signal is a band-pass, real-valued and can be represented by a
Fourier decomposition as follows:

s(t)=spp,d(t)cos(%t)−spp,q(t)sin(%t), (5.8)

and the dynamic phasor is defined as 〈s〉(t)=spp,d(t)+spp,q(t). It is composed of low-pass
functions in quadrature spp,d(t)=spp(t)cos(θ(t)) and spp,q(t)=spp(t)sin(θ(t)). The procedure
described by SFA provides a method to obtain 〈s〉(t) through a shifted frequency representa-
tion of s(t):

〈s〉(t)=(s(t)+H{s(t)})e−%t, (5.9)

where H() is the Hilbert transform [62]. Equation (5.9) shifts signal s(t) with the form
(5.8) by −%. As a result, it centers all the signal’s dynamics around 0 Hz. The differential
property for (5.9) can be derived from differentiating (5.9), resulting in (5.7).

d〈s〉(t)
dt

= d

dt

[
(s(t)+H{s(t)})e−%t

]
=⇒

〈
ds(t)
dt

〉
=d〈s〉(t)

dt
+%〈s〉(t) (5.10)

In each case, the definition of “phasor" corresponds to the complex envelope of a signal
with a modulating frequency k% (with k=1 only in the linear operator and SFA approaches,

5In fact, Venkatasubramanian mentions that the time-varying phasor approach is inspired by the Hilbert
transform, which is central to SFA.
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and arbitrary integer k in the Fourier approach). The three approaches reach the same
operation for the differentiation of phasorial representation of a signal and its properties.

The definitions above provide several properties required to leverage dynamic phasors
for time-domain simulations in average models. Note that a dynamic phasor operation is
interpreted as a band-pass modulation [182, 202] where a given time-varying signal s(t)
is demodulated into a set of dynamic phasors 〈s〉k(t) with a given carrier frequency %. The
implication is that the signal s(t) needs to possess a well-defined Fourier transform, which
requires that: (1) The integral of s(t) needs to be well-defined over the period T=[t−T,t],
i.e., (5.3) to bounded; and (2) for a given frequency k%, the signal s(t) is narrow-band with
a bandwidth B=[(k−1)%,(k+1)%] [35]. This demodulation perspective provides a definition
of “slow" and “fast" dynamics of the system with respect to the modulating frequency
% and its harmonics as noted in [34]. In particular, the bandwidth (or speed) of the
dynamic phasor is limited by the modulating signal frequency k% in order for the reverse
transformation to be one-to-one. This discussion highlights that under certain conditions,
it is possible to use an average model of the dynamics without any information loss.

Using dynamic phasors for simulation model averaging comes with potential trade-offs,
since the increase in the number of states can dilute the gains derived from using larger
∆t [35]. This is particularly problematic in cases where the resulting average models are
still time varying. The practical implication of these limitations is that the dynamic phasor
representation of a high-frequency (i.e., fast) signal could require many kth harmonic
components. It also implies that the representation of high-frequency dynamic behavior
using a single carrier frequency may introduce error in the demodulation process [201].

Representation of three-phase signals and models

The definitions in Section 5.2 focus on “single-phase" complex signals. However, there is not
a unique application of dynamic phasors to poly-phase systems, contributing to the diversity
of definitions and formulations when the technique is used for time-domain simulation.
For instance, SFA and the linear operator are applied phase-by-phase to a three-phase abc
in [202, 182] to study unbalanced systems. In this case, each phase needs to comply
with the requirements described in Section 5.2 to enable an exact representation of the
underlying signals. Another implementation is used in [35], where the Fourier approach is
used to develop models for each kth harmonic required when modeling machines, FACTS,
and HVDC-links. Similarly, the Fourier dynamic phasors were implemented in conjunction
with sequence transformations in [164] to study unbalanced AC machines. The myriad
implementations of dynamic phasors to three-phase signals and systems makes it difficult
to point to a universally accepted set of properties and limitations.

Transmission-level power systems analysis is generally concerned with the modeling of
multi-phase system quantities with a common system frequency ωs and an offset θ for each
phase. For simplicity in the discussion that follows, we consider a three-wire three-phase
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signal sabc(t) (that satisfies sabc(t)>1=0) of the form:

~sabc(t)=

sa(t)cos(ωst+θa(t))
sb(t)cos(ωst+θb(t))
sc(t)cos(ωst+θc(t))

, (5.11)

where sa(t), sb(t), and sc(t) are real-valued wave amplitudes, θa(t), θb(t), and θc(t) represent
the phase difference between the waves, and the signal’s frequency is the system frequency
ωs, which is commonly assumed as a uniform “system frequency". sabc(t) can be used to
represent voltages, currents, electromagnetic flux or physical values like inductance.

In this chapter, we approach the study of dynamic phasors for three-phase signals using
a space vector representation that provides a complex signal. The equivalent representation
is derived as follows:

s(t)=c


sa(t)

(
e(ωst+θa(t))+e−(ωst+θa(t))

)
sb(t)

(
e(ωst+θb(t))+e−(ωst+θb(t))

)
sc(t)

(
e(ωst+θc(t))+e−(ωst+θc(t))

)

> e0

e
2π
3

e
−2π

3

, (5.12)

where the constant c is set to scale the vector’s magnitude. For an arbitrary three-phase
signal, (5.12) permits representation in a two-dimensional vector as follows: [199, 129]

s(t)=c
(
s+(t)eωst+s−(t)e−ωst

)
(5.13)

where the terms:

s+(t)=sa(t)eθa(t)+sb(t)e(θb(t)+
2π
3 )

+sc(t)e(θc(t)−
2π
3 ) (5.14)

and

s−(t)=sa(t)e−θa(t)+sb(t)e−(θb(t)−
2π
3 )

+sc(t)e−(θc(t)+
2π
3 ), (5.15)

are complex-valued multipliers for the positive and negative frequency components, respec-
tively. This shows that any three-phase signal without a zero-sequence component and with
frequency ωs can be modeled without loss of information using two complex-value dynamic
phasors as long as s+(t),s−(t) comply with the requirements described in Section 5.2. This
approach is used in [164] where the authors develop a model for signals of the form (5.13)
for an unbalanced machine using (5.2)–(5.4) with k=1 and k=−1 components.

The implication for time-domain simulation is that it is not possible to directly model an
arbitrary three-phase signal (5.11) with one complex phasor quantity – put more formally,
〈s(t)〉6=〈s(t)〉++〈s(t)〉−. Nevertheless, if the signal is balanced – sa(t)=sb(t)=sc(t)=s(t) and
θa(t)=θ(t) θb(t)=θa(t)−2π

3 θc(t)=θa(t)+2π
3 – then the components s+(t), s−(t) reduce to:

s+(t)=3s(t)eθ(t), s−(t)=0, (5.16)
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which implies that 〈s(t)〉=〈s(t)〉+. The result in (5.16) showcases the effectiveness of
averaging techniques in balanced systems: the envelope of a balanced three-phase signal
is completely determined by the positive-frequency phasor. Even if a dynamic simulation
requires modeling phasors for components at multiple frequencies, however, phasors can
still improve solution times with respect to modeling directly in abc if the increase in ∆t
compensates for the increase in the number of states [35].

Reference Frame Transformations

The application of reference frame transformations in simulation models is ubiquitous since
they are the basis of rotating electric machinery analysis and power electronic converter
control. In simulation models, the Park transform (or dq0 transform) [136] is used to
obtain a time-invariant dynamic model of the rotational mutual inductance between the
rotor and the stator of the machine. Park’s transform is defined as:

~sdq0(t)=CTp(θ(t))~sabc(t) (5.17)

where θ(t) is the angle between the “reference axes" and the axes of rotation. The transform
matrix Tp(θ(t)) can be defined arbitrarily for any θ(t) which leads to different formulations
depending on the leading-lagging relationships between the d and q axis. In this chapter,
we follow the convention in Standard IEEE-1110 [73]. whereby the q-axis lags the d-axis
and the a-phase is aligned with the d-axis, to define the transformation matrix:

Tp(θ(t))=

 cosθ(t) cos(θ(t)−2π
3 ) cos(θ(t)+2π

3 )
−sinθ(t) −sin(θ(t)−2π

3 ) −sin(θ(t)+2π
3 )

1 1 1

. (5.18)

While manipulations involving dynamic phasors hinge on assumptions concerning the
frequency content involved in signals, the transform (5.17) can be applied to any three-
phase signal (in both directions). Although the reference transform is valid and reversible
for any combination of sabc(t) and θ(t), transforming the system is useful for the purposes
of simulation only with careful selection of θ(t).

In simulation models, the calculation of the angle θ(t) is usually done by integrating the
frequency of the signal (5.11):

θ(t)=
∫ t

to
(ωs+∆ωs(τ))dτ+θ0, (5.19)

where, respectively, ωs and ∆ωs(t) are the frequency and its time-dependent variation. In a
balanced system, the effectiveness of the transformation relies on using a reference frame
with a constant frequency, i.e., ∆ωs(t)=0, such that we can obtain:

~sdq0(t)=cTp(θ(t))~sabc(t),s+(t). (5.20)
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Under balanced conditions, Park’s transform maps the three-phase signal’s dynamic phasor
s+(t). The transformation reduces the simulation models by transforming the variables of
the components to a rotating reference frame [11] which requires fewer variables without
loss of information.

In interconnected device simulations, we can define the reference frame to reference
transformation:

Tp(θ1(t))Tp(θ2(t))−1=

 cos∆θ(t) sin∆θ(t) 0
−sin∆θ(t) cos∆θ(t) 0

0 0 1

 (5.21)

where ∆θ(t)=θ1(t)−θ2(t)=
∫ t
t0

(∆ω1(τ)−∆ω2(τ))dτ+∆θ0. The above property implies that
only the local reference frames’ frequency deviations are required for the system simula-
tion. Moreover, the selection of common system frequency ωs is of no consequence to the
simulation results as long as there is a local ∆ω(t) variable at the device model.

In the case of machine models, it is possible to define the change of the local reference
frame frequency in terms of the rotor speed changes, i.e., ∆ω(t)=∆ωr(t). This property
was identified in [201], where the authors recognized that the machine rotor is a perfect
demodulator of the network signals. This implies that each synchronous machine imposes,
through its rotor angular speed, the frequency at the bus. Further, the “system frequency"
is not a modeled quantity, nor is it required for accurate representation of the system
dynamics.

However, in contrast to electrical machine models, an IBR does not necessarily have
a local reference frame. Hence, when simulating IBRs, the relationship of the device
model with ωs is dictated by the controls and their representation. For instance, many IBR
control structures rely on frequency measurements at the local bus for the internal controls,
introducing a requirement heretofore unproblematic in system simulations: namely, reliably
modeling frequency dynamics at the bus. When modeling control schemes that require
frequency measurements, the idealized frequency measurement is modeled as follows:

∆ωbus(t)=
d

dt
tan−1Vq,bus(t)

Vd,bus(t)
. (5.22)

The implication of having to estimate the local frequency in a simulation is that (5.22)
relies on the value of the voltage states to estimate the local bus frequency. As a result, the
frequency deviations’ impact on the simulation becomes dependent on the network model’s
assumptions. Further, the frequency measurement model (5.22) suggests that simplifica-
tions in the network dynamics can mischaracterize the effects of frequency deviations on
the controls and introduce further deviations from real-world behavior of the IBR.

Recent works have looked at the theoretical underpinnings of the system’s modeling and
the definition of system frequency in simulation models to develop novel theories about
the relationships between energy and system frequency [116, 119]. This is done in order
to develop a rigorous perspective that considers the inclusion of IBRs. It should be noted,
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however, that this is still an area under active development and there are currently no
widely adopted practices to manage the selection of frequency for large-scale simulations.

Singular perturbation theory (SPT)

In the power systems literature, it is common to make approximations that reduce the
number of states modeled [167]. The justifications for several reductions are based on
practical knowledge; however, these approximations have also been formalized in terms of
timescale separation arguments derived from SPT of system dynamics Singular Perturbation
Theory (SPT) of system dynamics [26, 80].6

In the context of the model (5.1a)–(5.1b), SPT identifies two state categories: “slow"
states (xs, ys) and “fast" states (xf , yf). Fast states are multiplied by a small positive real
scalar ε that represents all the small parameters to be neglected. The dynamics are then
presented as:

~̇xs = Fs(~x,~y,~η,ε), ~̇ys = Gs(~x,~y,~ψ,ε) (5.23)
ε ~̇xf = Ff (~x,~y,~η,ε), ε ~̇yf = Gf (~x,~y,~ψ,ε) (5.24)

SPT involves finding the trajectories of a dynamical system as ε→0. If the conditions
are met, it is possible to set ε=0 and reduce (5.24) to algebraic equations. The requirement
to perform this reduction is that the algebraic equations (5.24) in the domain of interest
have distinct roots:

~xf=Rx(~xs,~ys,~η), ~yf=Ry(~xs,~ys,
~ψ). (5.25)

If the roots of (5.25) are unique, it is possible to guarantee, via eigenvalue analysis, that
during a transient the fast dynamics will not diverge. As described in [80], most of this
analysis is done on the “boundary layer system" that imposes requirements on the eigenval-
ues of the Jacobian of Ff and Gf . The uniqueness of the roots enables the use of variable
substitution in a way that results in a reduced model:

~̇xs=Fs(~xs,~ys,Rx(~xs,~ys,~η),~η), (5.26a)

~̇ys=Gs(~xs,~ys,Ry(~xs,~ys,
~ψ),~ψ). (5.26b)

System (5.26a)–(5.26b) is the quasi-steady-state model. These definitions based on SPT
provide a different definition of “slow" and “fast" in a simulation, this time, in terms of
the “speed" of some states with respect to others. SPT provides conditions under which the
fast states may rapidly converge to a root that approaches the final value of the state, i.e.,
~xf→Rx(~xs,~ys,~η) and ~yf→Ry(~xs,~ys,

~ψ).
The theoretical underpinnings of SPT justify the practice of neglecting line capacitance

and the resulting voltage dynamics in short-length lines due to the small value of the
6The reader is referred to [80] for the foundations of SPT.
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current drawn from the shunt impedance. SPT is used in [159, 158] to show that modeling
current flows over the network via the admittance matrix Y is a reasonable approximation
of the integral manifold. Such approximations have also been shown to be valid for small
signal analysis and are typically used for studying intra- and inter-area electromechanical
oscillations, as well as stabilizer parameter tuning [158].

5.3 Simulation Categories

Table 5.1 summarizes common simulation categories and associated characteristics based
on the taxonomy in Fig. 5.1. The model properties are split between the larger categories of
(i) Quasi-Static Phasor (QSP) and (ii) Electro-magnetic Transient (EMT) given the common-
alities in modeling assumptions. The main difference between the two categories stems
from how network circuits are represented. We have identified the modeling of the network
circuits as the main determinant of a simulation model’s numerical properties, available
solution techniques, and resulting computational requirements.

Quasi-Static Phasor (QSP)

QSP models are narrow-band simulation models that focus on dynamics that do not devi-
ate significantly from the steady-state frequency. In most software implementations, the
integration method independently solves for the device and network equations using an
algebraic representation of (5.1b).

Positive Sequence

Also called Root Mean Square (RMS) balanced simulation, this is a QSP simulation where
the balanced network is modeled using a single phase, the positive sequence. These models
are formulated as DAEs and use solution strategies derived from the Partitioned-Explicit
solution methods, relying on the assumption that the differential portion of the DAE is not
stiff. In [167], B. Stott presents a detailed account of the solution techniques applicable to
this simulation. These type of simulators are primarily designed for the analysis of machine
angles in balanced transmission systems. This category of simulation is also commonly
called electromechanical or transient stability simulation.

RMS Unbalanced

This is a simulation used in the analysis of non-symmetrical network circuits. The network is
modeled using symmetrical components while keeping the representation algebraic. In this
simulation, the dynamic components feed into the positive sequence subset of equations,
and the three sequence networks are simplified using circuit algebra depending on the type
of fault [182]. These models are commonly used to evaluate the effects of unbalanced
faults in the transient behavior of the system.
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RMS Dynamic Phasors

This approach is based on constructing the model using Fourier Dynamic Phasor as defined
in Section 5.2. However, the derivative terms of the network portion of the models (left-
hand side) are neglected based on SPT, since for most models they are close to zero. This
model produces a subset of algebraic equations for each kth harmonic component that can
be integrated as a system of DAEs. The accuracy of the model depends on the number
of harmonics considered in the model and whether the dynamics around each harmonic
possess the required properties to neglect the left-hand side derivative [35].

dq0-model with algebraic network

This type of simulation model is obtained by performing a dq0 transformation and assuming
steady state. In the balanced case, this model is equivalent to positive sequence. When
modeling an asymmetric network and/or harmonics, the method can increase the minimum
∆t, but its usefulness is limited since it results in a time-varying model.

QSP simulation software tools are highly developed for system-level balanced analysis
within the positive sequence category. For instance, PTI PSS®E, GE PSLF, PowerTech Lab’s
TSAT, and PowerWorld, among others, are tools that share common solution methods and
models. The model libraries are generic and developed in coordination with ISOs standards
and practices. Most commercial tools use Partitioned-Explicit solution methods and fixed
time-stepping. The use of partitioned methods has many merits from the computational
performance perspective. However, it also has mathematical drawbacks that can lead to
numerical instabilities [117]. Partition methods used by conventional transient stability
simulators are inherently tied to the quasi-stationary assumption of the network variables,
which imposes limitations on the modeling detail that can be included in a simulation.

Electromagnetic Transients

EMT models are simulation models that can consider a diverse range of dynamic phe-
nomena and are commonly implemented in studies that can significantly deviate from
steady-state frequency. These are usually employed to study high frequency phenomena,
such as overvoltages, harmonic propagation, sub-synchronous resonance, and transient re-
covery voltages, among others. Within this category there is a large variety of modeling and
computational approaches that depend on the techniques used to limit the computational
cost of executing the simulations.

(1) Waveform simulation: A waveform simulation, also known as point-on-wave simu-
lation or abc simulation, is the most comprehensive implementation of EMT simulations.
These simulation models represent the full wave throughout the entire simulation, which
results in a time-variant model. As a result, these models require special consideration in
the initialiation of simulation and the integration technique choice. The solution methods
commonly employ the numerical integration substitution technique using the trapezoidal
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rule for integration [36]. To capture fast electromagnetic phenomena, these simulations
usually feature more detailed transmission line models than the π model. A waveform sim-
ulation allows the use of distributed models such as the Bergeron or frequency-dependent
models. A waveform simulation can include detailed converter switching dynamics; it uses
similar methods but employs piece-wise continuous models between switching instants and
requires additional equations and solution methods to capture the ON/OFF switching of
converter transistors.

(2) dq0-model: A dq0-model is used to model the network in a rotating reference frame
commonly modeled using the transformed π model. In the balanced case, also known as a
fast time-varying phasor simulation [183], the model results in a time-invariant formulation
that yields the same initialization routine of the positive-sequence model, but the simulation
is able to represent the network dynamics limited only by the π model assumptions. Since
the network is now modeled using only ODEs (i.e., there are no longer algebraic equations
in the network model), the system model becomes a series of stiff ODEs because of the
multi-rate nature of the system dynamics. As a result of the increased stiffness, finding
the solution to the model might require Simultaneous-Implicit solution methods [167].
Most of the benefits of this formulation are lost when used in unbalanced networks or with
harmonics, since the model results in time-varying signals that have similar requirements
to waveform simulations.

(3) Dynamic Phasors: This approach requires that the model be formulated using dy-
namic phasors (see Section 5.2). Dynamic phasors are useful when the frequency spectrum
of power system transients are multiple narrow banded signals centered around multiple
harmonics of a fundamental frequency %. The choice of % depends on the application; when
employed to model converters, it could be the switching frequency, whereas in the case
of system-level analysis, ωs is a common choice. This approach can be implemented in
several ways depending on the application, and if done correctly, the resulting model will
be time-invariant but at the expense of additional states. A time-variant model enables
other analytical techniques such as sensitivity studies via small-signal analysis at equilib-
rium points making the approach practical beyond the formulation of simulation models.
As shown in [35], dynamic phasors are helpful if the computational efficiency gained by re-
ducing the model’s bandwidth (and usage of adaptive time-stepping techniques) outweighs
the cost of increasing the number of states.

The most developed software solutions for EMT simulations focus on waveform dynam-
ics with and without converter switching and include models for very detailed component-
level analysis. Examples of software environments are PSCAD, EMTP®, Simulink, and
PLECS, among others.
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5.4 PowerSimulationsDynamics.jl - An Open Source
Modeling Package for Modern Power Systems with
Inverter-Based Resources

As discussed in previous sections, there are several approaches to simulating interconnected
systems with IBRs that have shown promise but require additional exploration. Currently
the common practice when developing new algorithms or models is to implement bespoke
dynamic simulation, which have a high setup cost, which often will not support large-scale,
reproducible experiments that are easily extensible to new models or methods. There are
important open-source efforts that have been used successfully by the research community.
Notably, the Matlab-based library PSAT has been a pioneer in extensible dynamic modeling
for power systems[115]. The Python-based tool ANDES [29] offers a modeling approach
where a symbolic layer describes the components and a numeric layer performs vector-
based numerical computations. Dynaωo is a hybrid C++/Modelica open-source suite of a
simulation tool for power systems [58].

In the Julia ecosystem, PowerDynamics.jl [145] also uses symbolic representations
of dynamic models to provide a two-stage process of symbolic and compiled representa-
tions of dynamic network similar to the approach used in ANDES. However, the level of
customizability and modularity of open source tools has some limitations. In most cases,
implementing new models requires directly modifying the underlying simulation logic
source code. Although there is support for component-level flexibility for generator models,
there is a limited focus on inverters. Existing libraries are deeply integrated with solution
methods and rather difficult to use when attempting to explore integration algorithms.

Julia is a scripting language like Python and Matlab, but offers the performance of
low-level compiled languages [66]. Our choice of Julia is central to enabling many of the
desired features of a power systems simulation software as described in [117]. The soft-
ware’s support for multiple dispatch and composition has allowed us to design a software
and model library that is computationally efficient, easy to use, and extendable through
method overloading [111]. Julia’s multiple dispatch is particularly useful for mathemati-
cal modeling since methods can be defined based on abstract data structures that enable
code re-use and easy interfacing with existing models [16]. PSID.jl evaluates different
models by selecting the appropriate method version based on the signature of arguments
passed into the function. This approach is different from traditional scripting languages,
where dispatch is based on a special argument syntax and is sometimes implied rather than
explicitly written.

PSID.jl exploits Julia’s multiple dispatch to support its modeling flexibility. The ap-
proach developed in this chapter uses a data model for inverters and generators for component-
level customization, and flexible ODE and algebraic representations of network circuit dy-
namics. The system model is also flexible and allows for different numerical integration
routines via the DifferentialEquations.jl [148] common API. PSID.jl uses novel auto-
matic differentiation techniques to calculate the Jacobians of existing and custom models
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without user input.

Simulation Models in PSID.jl

The simulation model in PSID.jl stems from the general simulation model (5.1a)-(5.1b)
and can now be implemented in software using only real variables. PSID.jl solves a
real-valued initial-value-problem formulated as follows:

d~x

dt
=F (~x,~y,~η), ~x(t0)=~x0, (5.27a)

d~y

dt
=G(~x,~y,~ψ), ~y(t0)=~y0, (5.27b)

where ~x and F (·) represent the devices (e.g., IBRs, machines, loads) states and equations
with parameters ~η. The circuit states and dynamics of the network are represented as the
subsystem ~y and G(·) with network parameters ~ψ. The general PSID.jl model is a standard
current injection model; therefore, ~y represent the network voltages and currents. The nu-
merical advantages of current injection models outweigh the complexities of implementing
constant power loads for longer-term transient stability analysis and support the modeling
of fast network dynamics [117]. The network is defined in a common Synchronous Ref-
erence Frame (SRF) rotating at frequency ωsys, which as discussed in Section 5.2 can be
defined as a constant value, a reference from another device or the center of inertia.

Fully power system dynamic models tend to be large-scale and stiff due to the multi-
rate nature of power systems dynamics. As a result, model (5.27a)-(5.27b) needs to be
reformulated to employ appropriate integration algorithms that can find a solution to the
system dynamics.

Because the challenges of integrating IBRs stem from both interactions across time scales
and interactions with line dynamics [106], PSID.jl implements a formulation suitable for
the exploration of simultaneous solution methods. This design choice is geared towards
the exploration of implicit solution methods that can handle unknown stiffness a priori,
since explicit methods are not A-stable [2]. Further, the potential challenge of stiffness
requires different approaches depending on the properties of the system being simulated
– for example, stiffness arising from eigenvalues that exhibit large negative parts versus
cases with large imaginary eigenvalues. As a result, a software package that relies on a
single approach to stiffness in its solution method can limit the models and situations that
can be simulated. The need to provide flexible formulations for power systems simulation
models is described in detail in [118], where the author notes the flexibility and algorithmic
improvements afforded by a semi-implicit formulation of the dynamic model. PSID.jl is
able to formulate DAE models of dynamical equations in two different ways which adapt
to the requirements of implicit numerical methods using error control and variable step
properties.
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• Residual Model:7. This model is implemented for methods that find the solution
to H(t,zt,z′t)=0 at each time-step t. This formulation distinguishes between a subset of
differential states zd and algebraic states za, where the differential states are described by
at least one derivative, resulting in the following system formulation:

~rxd=
d~xd
dt
−Fd(~xd,~xa,~yd,~ya,~η) (5.28a)

~rxa=Fa(~xd,~xa,~yd,~ya,~η) (5.28b)

~ryd=
d~yd
dt
−Gd(~xd,~xa,~yd,~ya,~ψ) (5.28c)

~rya=Ga(~xd,~xa,~yd,~ya,~ψ) (5.28d)

where ~xd and ~xa are respectively the differential and algebraic states of the device and
~yd and ~ya are network differential and network algebraic counterparts. Functions Fd, Fa,
Gd and Ga are the subsystems of equations that define the system of non-linear equations
solved at each time-step t. The terms ~rxd, ~rxa, ~ryd, ~rya correspond to the residuals of the
non-linear system of equations.

It is important to note that models like (5.28a)-(5.28d) arise in power systems from
the application of SPT to (5.27a)-(5.27b), in order to reduce overall model stiffness. By
selectively zeroing out some of the differential terms and transforming the model into a
system of index-1 DAE, the “slow" states maintain their differential representation while
the “fast" states are simplified into the algebraic terms. However, in PSID.jl there is no
requirement that the separation between differential and algebraic states matches slow and
fast simplifications.

• Mass Matrix Model: This model is implemented for methods derived from the
solution of mechanics problems where the differential terms z′ are multiplied by constants.
It represents system dynamics with the equation Mz′=h(z). Although mass matrix models
may have an arbitrary structure, in PSID.jl the focus is on models where M is a diagonal
matrix8. The resulting model is as follows:

Mx
d~x

dt
=F (~x,~y,~η) (5.29a)

My
d~y

dt
=G(~x,~y,~ψ) (5.29b)

where Mx corresponds to the mass matrix for the device states and My corresponds to
the matrix for the network states. The diagonal elements of Mx are determined by the
time constants of the device models and can be 0 if the dynamics of the state are not
included; this commonly occurs in large datasets where filtering dynamics are ignored.
On other hand, since PSID.jl employs a current injection model, My has 0 when a line is

7In the differential equations literature, this model is also named semi-explicit system
8These classes of mass matrix models are also named Lumped mass matrix models



CHAPTER 5. SIMULATION OF POWER SYSTEMS DYNAMICS 128

Solver

DiffeqBase.jl
Common Interface

PowerSystems.jl
Data Structures

PowerSimulationsDynamics.jl
Models 

ForwardDiff.jl NLsolve.jl
Initialization

System Model

Jacobian Initial Condition

F (x, y), G(x, y)

J(x, y) x0, y0

Figure 5.2: Software dependencies in PSID.jl.

modeled using an algebraic relationship or when the constant multiplying the node voltage
derivative terms. Similar to the residual model, SPT can be used by setting the entries M
diagonal to ε→0 in (5.29a)-(5.29b) and analyzing the conditions under which those entries
reduce model stiffness.

The flexibility in the model formulation enables the use of solvers that employ Backwards
Differentiation Formula (BDF) and Backward Euler approaches as well as collocation al-
gorithms derived from the Radau, Rosenbrock, and Rodas methods. This wide variety of
solvers is enabled by PSID.jl’s integration with the DifferentialEquations.jl API [147]
supports a wide variety of solution methods for both residual and mass-matrix formula-
tions in the simulation model. Integrating the model through a generic solver API allows
the PSID.jl framework to be used to formulate large-scale stiff power systems simula-
tion models. This in turn supports the development of novel integration algorithms and
improvements in existing methods.

Software design and structure

PSID.jl needs to support (1) package users who want to develop scripts to perform analysis
and (2) users that want to develop new devices or branch models. The usability objectives
require that PSID.jl handle the routines for initialization, Jacobian calculations, interfaces
with DifferentialEquations.jl execution and result post-processing.

Figure 5.2 shows the relationships among the different packages used in PSID.jl. The
system model is used to obtain the Jacobian using ForwardDiff.jl [150] and NLSolve.jl
to find the initial conditions. Finally, the Jacobian and initial conditions are interfaced
into the integrator through the common interface. The following sections describe how
the flow in Fig. 5.2 maintains flexibility and scalability in the development of simulation
experiments and models.
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Figure 5.3: Implementation of the state space indexing.

System model implementation

Equations (5.28a)-(5.28d) and (5.29a)-(5.29b) are implemented in the software as a Julia
structure with pre-allocated vectors to perform in-place updates of d~x

dt
, d~y
dt

, ~x, ~y. These
vectors are cached in a system container to support in memory updates of their values and
avoid unnecessary memory allocations. The additional vector ~a is used for intermediate
inner variables when it is necessary to share information between a DynamicInjector
model components. This design avoids the unnecessary addition of algebraic equations to
the state vector, which is a critical consideration since the computational complexity of an
implicit method is dominated by the linear solution method. The linear solution method
computational cost is a function of the required precision and the number of variables with
an upper bound O(n3) [20]. The system model also keeps track of global variables in which
all models have visibility; one example of this is the system frequency ωsys for reference
frame transformations.

The challenge when implementing the caching design in conjunction with a modular
approach for modeling is determining the distribution of the state vectors to each compo-
nent model and preventing the user from implementing the state vector slice. To facilitate
the interfacing with minimal computational costs, the caches get instantiated during the
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simulation build where we collect each device’s states, its inner variables, and bus location
to generate an index of the cached objects. The index is a tree structure to provide for a
rapid search, while the device is on the first level and the component on the second level.
Figure 5.3 demonstrates the organization of the internal cached vectors in the simulation
struct .

Automatic Differentiation (AD) of Jacobians

Implementing Jacobian computations in simulation models has become widespread over
the last two decades, with its application critical in machine-learning and optimization.
Performant Jacobian computations is an important procedure in obtaining implicit solution
methods for stiff DAE systems since it is used in the non-linear solve. Further, performing
Jacobian computations is required when implementing adaptive timestepping techniques.
Furthermore, there is a wealth of sparsity techniques that help reduce Jacobian computa-
tional costs. These techniques also present opportunities to solve challenges in simulating
systems with IBRs. [56]. Computing the Jacobian function requires deriving the matrix
function:

J(~x,~y,~η,~ψ)=
 ∂

∂~x
F (~x,~y,~η) ∂

∂~y
F (~x,~y,~η)

∂
∂~x
G(~x,~y,~ψ) ∂

∂~y
G(~x,~y,~ψ)

 (5.30)

The flexibility afforded by PSID.jl makes it challenging to know a priori the structure
of (5.30). Tools that use symbolic layers such as ANDES can exploit symbolic operation
libraries to calculate Jacobian expressions. However, symbolic differentiation isn’t always
effective since the length of the expressions grows exponentially.

PSID.jl, employs modern AD techniques using ForwardDiff.jl [150] as the backend.
ForwardDiff.jl employs a dual number approach for computing Jacobian vectors. Since
the Jacobians of dynamic simulation models are square, forward-differentiation is consid-
ered the most efficient method for AD since forward AD computes a column-wise Jacobian,
whereas reverse AD schemes use row-wise computations [103].

Providing users with a performant Jacobian matrix function evaluations using AD tech-
niques that rely on a dual number implementation means that the caching design specified
in Section 5.4 needs to be implemented for Float and Dual number types. Additionally,
since dynamic power systems problems result in sparse Jacobian matrices, it it possible
to generate and cache the Jacobian matrix and provide an in-place calculation for the
Jacobian system model during the integration process. Since the Jacobian is obtained from
the indexed system model described in Section 5.4 it is possible to map the entries of the
AD-derived Jacobian directly to the states to perform the reductions necessary for small
signal stability.
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Small-Signal stability analysis

Take the residual formulation (5.28a)-(5.28d) from dynamic components ~x:=(~x>d ,~y>d ) and
algebraic variables ~y:=(~x>a ,~y>a ). These are used to define S(·):=(Fa(·)>,Ga(·)>) as the vector
of differential equations and R(·):=(Fd(·)>,Gd(·)>) as the vector of algebraic equations in
the entire system. When residuals are set to zero, the resulting non-linear differential
algebraic system can be written as follows:[

d
dt
~x

0

]
=
[
S(~x,~y)
R(~x,~y)

]
. (5.31)

We are interested in the stability that surrounds an equilibrium point ~xeq,~yeq and one that
satisfies d~x/dt=0, or equivalently S(~xeq,~yeq)=0, while satisfying R(~xeq,~yeq)=0. To achieve
this equilibrium we use a first order approximation:[

d
dt

∆~x
0

]
=
[
S(~xeq,~yeq)
R(~xeq,~yeq)

]
︸ ︷︷ ︸

=0

+J [~xeq,~yeq]
[

∆~x
∆~y

]
. (5.32)

Depending on the specific variables and functions modeled, the Jacobian matrix J [~xeq,~yeq]
can be split into four blocks:

J [~xeq,~yeq]=
[
Sx Sy
Rx Ry

]
. (5.33)

If Ry is not singular, we can eliminate the algebraic variables to obtain the reduced Jaco-
bian:

Jred=Sx−SyR−1
y Rx→

d

dt
∆~x=Jred∆~x (5.34)

defines our reduced system for the differential variables and allows for the use eigenvalues
to analyze local stability. These results imply that under the condition that there is a
power flow solution (i.e., Ry singularity) it possible to use a QSP model to derive overall
small-signal stability of the system [140].

Injection device modeling

Depending on the model requirements, device models in PSID.jl can be implemented in
their own SRF or in the network’s SRF. The modeling methods employ the data structures
and type hierarchy from PowerSystems.jl [89] where generators and inverters are defined
as a composition of components (see Fig. 5.4). This design enables the interoperability
of components within a generic device container. As a result, it is possible to implement
custom component models and interface them with other existing components and models
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Figure 5.4: DynamicInjection data structures from PowerSystems.jl.

by simply overloading the device! 9 method. Whenever the function iterates over the vec-
tor containing the entire state space, only the relevant portions are passed to the device!
function. Listing 5.1 shows a prototype of method overload required to develop a model
for a MyCustomDevice . The method device!() is dispatched based on the type of the
device field which is defined the user at the top of Listing 5.1 (L1-L4). At the device
modeling layer, the sub-components from the meta-models share local information internal
to each device. For instance, in an IBR model, the current reference variable irefolc from the
outer loop needs to shared with the inner loop control. In a generator model, the mechani-
cal torque variable τm is required by the shaft model. This design further modularizes the
implementation of an injection device’s sub-components. Intra-device information passing
is standardized via port variables that enable efficient information passing between compo-
nent modeling functions. The arrows in Figs. 5.6 and 5.5 showcase the port variables and
their source-destination relationships for the inverter and generator respectively.

Generator Modeling

Generator models follow common practices that are well-established in the literature [83,
117]. The machine model in PSID.jl benefits from the existing standardization in gen-
erator models already implemented in most software solutions based on the underlying
physics of the generator. Figure 5.5 depicts component levels used in PSID.jl to describe

9In Julia’s diction, functions that mutate arguments have a !



CHAPTER 5. SIMULATION OF POWER SYSTEMS DYNAMICS 133

1 struct MyCustomDevice <: DynamicInjection
2 field1
3 field2
4 end
5

6 function device!(
7 states::AbstractArray{T}, # x_i
8 diff::AbstractArray{T}, # dx_i
9 v_d::T,

10 v_q::T,
11 i_d::AbstractArray{T},
12 i_q::AbstractArray{T},
13 global_vars::AbstractArray{T},
14 inner_vars::AbstractArray{T}, # a_i
15 device::MyCustomDevice,
16 t,
17 ) where {T <: ACCEPTED_REAL_TYPES}
18 # Update diff vector
19 diff[1] = f_1(states, v_d, v_q,...)
20 diff[2] = f_2(states, v_d, v_q,...)
21

22 # Update inner vars
23 inner_vars[1] = inner_var_1(states, v_d, v_q,...)
24 inner_vars[2] = inner_var_2(states, v_d, v_q,...)
25

26 # add to the bus currents
27 i_d += current_d(states, v_d, v_q,...)
28 i_q += current_q(states, v_d, v_q,...)
29 return
30 end

Code 5.1: Injection device method prototype

synchronous generators where each generator is defined by a machine model, an excita-
tion circuit and associated controls (Automatic Voltage Regulator (AVR) and Power System
Stabilizer (PSS)), a shaft model, and a prime mover. The metamodel in Fig. 5.5 also allows
the implementation of the initialization routine for generators described in [117].

Inverter Modeling

IBR simulation models are structured according to the cascaded control architectures used
in the field. IBR controls employ transformations to reduce the number of control loops
and produce and regulate three-phase signals (of the form (5.11)). In this setting, trans-
formations facilitate avoiding sinusoidal signals regulations, which requires high-order
controls [199]. IBRs controls commonly employ Park’s Transform since it has the property
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Figure 5.5: Generator metamodel.

of reducing the controls’ bandwidth requirements, which in turn achieves a zero steady-
state error. The model developer should not only care about model precision, but be aware
of simplification effects and whether control performance is reliable [184].

Figure 5.6 depicts the relationships for a DynamicInverter model. The sub-component
separation and variable sharing in the inverter is able to support both grid-following indus-
trial models commonly used in QSP10 and grid-following models. Both the sub-component
separation and variable sharing function in the inverter further allow for more advanced
control architectures such as Virtual Synchronous Machine (VSM) and droop controls. Each
inverter is defined by a filter, converter model, inner loop control, outer loop control, fre-
quency estimator (typically PLL), and a primary energy source model.

The proposed component decomposition deviates from the one implemented for QSP
modeling, which distinguishes between three main modeling blocks: generator, electrical,
and plant-level controls. However, the QSP structure cannot integrate frequency measure-
ment modeling and additional control functions. Furthermore, the representation of the
filter in this approach is limited to an algebraic representation which restricts the imple-
mentation of the model in EMT settings.

Since there is no well-established initialization method for generic inverter models,
PSID.jl employs the sequence described in Fig. 5.7 to initialize inverter states. The
initialization routine generalizes to any inverter implemented in a compatible fashion with
the metamodel.

10The adaptation of industrial models to the proposed meta model is discussed in detail in https://
github.com/NREL-SIIP/PowerSystems.jl/discussions/767

https://github.com/NREL-SIIP/PowerSystems.jl/discussions/767
https://github.com/NREL-SIIP/PowerSystems.jl/discussions/767
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Figure 5.7: Inverter initialization model.

Load Models

PSID.jl supports two major static load models: ZIP and Exponential. Load models are
implemented by aggregating the individual loads located at a bus b and using the network
SRF. Each aggregated load collects all the currents from static loads by using a rectangular
model. All load models follow the same methods as the injection devices by updating the
total current at each bus b. For example, the total load currents in a bus with ZIP loads is
implemented as follows:

ibd=
1

|vb||vb0|2
∑
l∈Lbi

|vb0|
(
plv

b
d+qlvbq

)
+
∑
l∈Lbp

|vb0|2
(
plv

b
d+qlvbq

)
+
∑
l∈Lbz

|vb|
(
plv

b
d+qlvbq

)
(5.35a)
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ibq=
1

|vb||vb0|2
∑
l∈Lbi

|vb0|
(
plv

b
q−qlvbd

)
+
∑
l∈Lbp

|vb0|2
(
plv

b
q−qlvbd

)
+
∑
l∈Lbz

|vb|
(
plv

b
q−qlvbd

)
(5.35b)

where Lbp, Lbi , Lbz are the sets of constant power, constant current and constant impedance
loads at each bus b respectively. vb0, pl, ql are the bus voltage and load’s power from the
power-flow used to estimate the total load currents ibd and ibq at the bus. In addition to the
static load models, two models of dynamic loads are available: 5- and 3-state induction
machine models.

Network Modeling

PSID.jl implements a lumped parameter π-circuit of a transmission line in a dq reference
frame. This general representation of the network can capture the circuit network dy-
namics depending on a study’s requirements. It further enables the modeler to selectively
choose which specific branches should be modeled including circuit dynamics. The model
is implemented by splitting the real and imaginary portions of the network quantities using
a rectangular representation as follows:

1
Ωb

[
L 0
0 L

]
d

dt

[
~i`d
~i`q

]
=E`

[
~vd
~vq

]
−
[
R −L
L R

][
~i`d
~i`q

]
(5.36)

1
Ωb

[
1
B

0
0 1

B

]
d

dt

[
~vbd
~vbq

]
=
[
~ibd
~ibq

]
−
[
<(Ya) =(Ya)
−=(Ya) <(Ya)

][
~vbd
~vbq

]
(5.37)

where (5.36) estimates the currents of the branches modeled dynamically, ~ibd and ~ibq are
the total real (d-axis) and imaginary current (q-axis) injections from devices and dynamic
branches at the bus b. E` is the rectangular incidence matrix that returns the difference
between the sending and receiving buses, and R and L are the series resistance and induc-
tance matrices in each dynamic branch.

Equation (5.37) is used to represent Kirchoff Voltage Laws across the network. The
admittance matrix Ya corresponds to a modified admittance matrix without the series
elements of the branches modeled dynamically. The blocks 1/B on the left-hand side
correspond to the total lump capacitance at the nodes. The classical network model in QSP
models employ SPT to eliminate differential terms, since these terms `/Ωb,c/Ωb≈10−3 have
small values in most systems, operating at 50 or 60 Hz. If the model does not account for
the lines’ dynamics, the left-hand-side of (5.37) becomes zero, yielding the equivalent QSP
network representation 0=V−Y I.

Since the square matrices on the left and right hand side are sparse and have identical
patterns in each block, PSID.jl implements a sparse matrix vector multiplication using
nzrange to reduce computational effort. Note that effectively, the matrices on the left
hand side of the equations are My in (5.29b).
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Perturbations

Solver-agnostic perturbations are a major challenge in the development of simulation soft-
ware given that the re-initialization procedure can differ depending on the solver and
whether the perturbations introduce a change in the algebraic versus the dynamic portions
of the model. PSID.jl simplifies the implementation of perturbations (e.g., line faults and
step changes) via enabling callbacks to the integrator.

Callbacks enable controlling the solution flow and intermediate initializations without
requiring simulation re-starts and other heuristics typically used in power systems dynamic
modeling. PSID.jl includes built-in features to manipulate perturbation objects that in-
ternally define solver callbacks. Modelers can extend the perturbation library by defining
custom callback structures. This can allow for further flexibility when modeling.

5.5 Simulation Validation and Case Studies

1

2 HV2 LV

31,3

1,2

2,3

G1

G2

T2

D3

Figure 5.8: Three-bus high-voltage (HV) network system for case studies.

This section presents comparisons of simulations using PSID.jl, the QSP simulator
PSS®E, and the waveform simulation EMT platform PSCAD. We also show verification
results for a large QSP case with high shares of IBRs generation and small-signal capabilities
using the results published in [29] 11. Listing 5.2 shows the PSID.jl code used to run the
simulations formulated as ResidualModel with the Sundials solver IDA().

Four-bus network case

For validation purposes, the 3-bus HV network system (4-bus) depicted in Figure 5.8 will
be used to analyze the dynamic response of PSID.jl against other simulation tools. The
definitions of G1 and G2 will change according to the study under consideration.

11All simulation code and results are available at https://github.com/NREL-SIIP/PSIDValidation

https://github.com/NREL-SIIP/PSIDValidation
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1 using PowerSystems
2 using PowerSimulationsDynamics
3 using Sundials
4

5 sys = System("system_data.json")
6

7 sim = Simulation(
8 ResidualModel, # model type
9 sys, # system

10 pwd(), # directory
11 (0.0, 20.0), # time span
12 BranchTrip(1.0, Line, "BUS 1-BUS 2 HV-i_1"), # fault
13 )
14

15 execute!(sim, IDA(), abstol = 1e-10)
16 results = read_results(sim)

Code 5.2: Example of setting up a simulation

Quasi-Static Phasor (QSP) simulation

Table 5.2: Models used for 4-bus QSP validation

Generator Machine Excitation Governor PSS
1 - G1 GENROU None None

2 - EG/SG/RG GENROU SEXS GAST
2 - ND GENROU SEXS TGOV1
2 - WG GENROU SEXS GAST IEEEST
2 - SH GENROU SEXS HYGOV

Inverter Outer Inner Converter
Filter

Freq. Est.
2 - S/SW REPCA1 REECB1 REGCA1 None

In this case, G1 represents a large grid connection using a GENROU machine model
without additional controllers and G2 represents a collection of eight generation sources,
including industrial grid-following IBRs. The models used are summarized in Table 5.2.
This simulation is performed using a residual formulation with the solver IDA and abstol=
1×10−10.

To perform the validation, we run two perturbations: (1) a generation trip of inverter
Bus2-S at t=1s to assess the active power balancing and generator speed modeling; and
(2) a trip of the line between buses 1 and 3 to assess voltage control and generator elec-
tromechanical modeling. Figure 5.9 presents the rotor speed for the generation units and
Figures 5.11 and 5.10 depicts the bus voltage and active power output of the generation
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Figure 5.9: Rotor speed comparison with PSS®E.
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Figure 5.10: Power Output comparison with PSS®E.

units, which are able to recover the lost power and output to prevent a frequency collapse.
Figures 5.13 and 5.12 showcases the voltage and field current of the generators after the
line trip which follow precisely the trace of the benchmark solution. Note that the field
current is not a state in the GENROU model but rather a variable derived from several
states, highlighting the accuracy of PSID.jl.
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Figure 5.11: Bus voltage comparison with PSS®E with generator trip.
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Figure 5.12: Rotor speed comparison with PSS®E.
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Figure 5.13: Bus voltage comparison with PSS®E with generator trip.

Balanced EMT simulation

To validate the dq -EMT simulation capabilities, we conducted a waveform simulation of
the system in Fig. 5.8 using a π-line and substituting G1 with an inverter featuring VSM
control [30] and G2 with a droop control [105]. The control blocks of the inverters are
implemented as custom PSCAD components to match models available in PSID.jl. In the
PSCAD model, the output of the inner loop control (V ref

dq ) and the outer loop control angle
(δolc) define an ideal three-phase voltage source at the converter side of the filter.
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Figure 5.14: Voltage Response PSCAD vs PSID - EMT .
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Figure 5.15: System States Response PSCAD vs PSID - EMT .

In this system we conducted a line trip between buses 1 and 2 using a mass-matrix
model with abstol=10−14 in PSID.jl, and setting a 5µs time-step in PSCAD. Additionally,
we conducted a simulation specifying the lines to be modeled algebraically, as usually
done in QSP simulations. Figure 5.14 showcases the close match between PSID.jl and
PSCAD for the bus voltages and the capability to capture high frequency dynamics which
the algebraic lines cannot capture. Figure 5.15 shows a comparison of the internal states
of the PLL in the VSM inverter. These results display the effects of the line models in the
internal PLL states which in this case show that the additional dynamics from the lines do
not affect the PLL angle estimation δθolc but the EMT does reflect an oscillatory dynamic in
vq,pll that the algebraic model cannot.
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240-bus WECC QSP case

To assess its modeling capabilities on a large scale, we tested PSID.jl on the 240-bus
WECC case for the study of large-scale integration grid following IBR [200]. The system
is comprised of devices described in Table 5.3 and 329 transmission lines. The resulting
dynamic model has a total of 2420 dynamic states and 506 algebraic states.

Table 5.3: Models used in WECC 240-Bus QSP phasor validation

Count Machine Excitation Governor PSS
6 GENROU SEXS GAST IEEEST

41 GENROU SEXS GAST
3 GENROU SEXS HYGOV IEEEST

22 GENROU SEXS HYGOV
1 GENROU SEXS TGOV IEEEST

36 GENROU SEXS TGOV
Inverters Outer Inner Converter Filter Freq. Est.

121 REPCA1 REECB1 REGCA1 None None

We executed 329 line trips and 195 generator trips in the system using both PSS®E
and PSID.jl. For each contingency, we calculated and compared the Root Mean Square
Difference (RMSD) defined as

RMSD = ||~spsid−~sref ||2
N

(5.38)

where ~spsid is the signal trace result from PSID.jl and ~sref is the signal trace from the
reference commercial software. For every bus voltage, angle, and generator speed, resulting
in a total of 595 trace comparisons. Overall, we calculated the RMSD of 311,780 individual
traces to verify the validity of PSID.jl simulation results with respect to a commercial tool
for QSP modeling. We employed the Rodas5P() solver with adaptive time-stepping and
1×10−9 absolute tolerance and PSS®E using ∆t=0.005. Table 5.4 shows the results of this
exercise; the average difference is calculated as the average of the max difference over the
set of perturbations.

Angle values are the largest difference between simulation software, which is not unex-
pected since the network model and solution techniques can be significantly different. After
some analysis, we observed that the partitioned method can result in angle values rotated
360 degrees after the perturbation, which can result in large differences in the trace but do
not change the fundamental conclusions on system stability.
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Table 5.4: Signal difference analysis of large simulation

Generator Trip Line Trip
Max Angle RMSD [deg] 0.41 0.45
Max Voltage RMSD [pu] 2.5929×10−5 2.6177×10−5

Max Speed RMSD [pu] 6.5672×10−6 1.2211×10−5

Average Angle RMSD [deg] 3.1719×10−2 1.569×10−4

Average Voltage RMSD [pu] 1.0818×10−5 7.8307×10−7

Average Speed RMSD [pu] 1.5992×10−6 5.2253×10−7

Small Signal analysis

The PSID.jl AD routine for Jacobian evaluation provides the capability to evaluate function
(5.30) at a desired operating point to analyze small signal stability in a system. We employ
a known small signal unstable system (i.e., the 11-bus Kundur system; see Table 5.5) to
verify eigenvalue calculations in PSID.jl. We compare the eigenvalues and the damping
ζ with outputs from the Python package ANDES [29], a package which functions similarly
to PSID.jl. ANDES eigenvalue routine analyses has already been validated against the
commercial tool DSATools SSAT. The RMSD of the eigenvalues between ANDES and PSID.jl
is 1

N
||λPSID−λANDES||2≈0.2872. The results confirm that these small signal analyses closely

match other QSP models with packages like ANDES. The small differences observed are ex-
plained by power-torque approximations performed in shafts and turbine governor models.

Table 5.5: Eigenvalue result comparison for 11-bus system

PSID.jl ANDES
Eigenvalue ζ[%] Eigenvalue ζ[%]

#1 −37.2633+0j 100 −37.2633+0j 100
#2 −37.1698+0j 100 −37.1699+0j 100
#3 −36.2028+0j 100 −36.2031+0j 100
...

...
...

...
...

#39 0.5381−2.7415j –19.26 0.5537−2.7459j –19.77
#40 0.5581+2.7415j –19.26 0.5537+2.7459j –19.77
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Figure 5.16: Eigenvalue comparison for balanced EMT simulation.

The network modeling flexibility between QSP and EMT also extends to small signal
analyses. This in turn allows users to compare the eigenvalues from one model to another.
Figure 5.16 presents a comparison of the eigenvalues for both formulations in PSID.jl for
the system (see Section 5.5). The EMT model has an additional 12 states for the network,
with a large imaginary component that explains the fast oscillations observed in Figure
5.14. Results are consistent with research that have shown that the quasi-static assumption
in QSP models tends to overestimate the system’s damping [66, 106]
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5.6 Conclusions

• This chapter made the case that distinctions between QSP and EMT models are insuffi-
cient in characterizing the fundamentals of specific simulation models and techniques.
Instead, there is a large diversity of transformations and simplifications that yield a
range of simulations models, each of which differently balances computational com-
plexities with model fidelity – provided certain operational conditions are met, such as
narrow-band phenomena in dynamic phasors. These transformations enable cheaper
EMT simulations without losing information. Figure 5.1 and Table 5.1 summarize the
proposed classification taxonomy for time-domain simulations.

• This chapter showcases that the applicability of certain simplification techniques, like
SPT, depends heavily on the control parameters of IBRs and the time constants in
remainder of the system that can’t be simplified. As a result, modeling requirements
need to be determined from detailed models before any simplifications are performed.
These requirements in turn affects the generalizability of specific device models and
assumptions in different systems under different disturbances.

• Based on the findings of the simulation classifications, this chapter introduced an
open-source simulation toolbox PSID.jl, which focuses on providing flexibility in the
modeling of system using both QSP and EMT simulations focused on the requirements
of systems with IBRs. PSID.jl is built on Julia scripting language and incorporates a
myriad of power system devices and component models while enabling the analysis
of transient responses of dynamical systems that vary in model complexity. The
development of device metamodels for generators and inverters standardize ports
and states interaction among devices and their internal components. The proposed
software design enables researchers to define a new component’s model within the
proposed metamodel and quickly explore novel architectures and controls.

• Validation results from PSID.jl reveal several insights: (1) the toolbox’s capacity
to model IBR derived from industrial grids; (2) reveal an equivalence between dq
modeling and EMT under balanced system conditions; (3) and enable solutions for
stiff systems when modeling line dynamics.

• The network circuit model using dq enables the formulation of QSP and balanced EMT
models for the study of system stability including fast dynamics and the exploration
of stiff model solution integration algorithms in large models.
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Chapter 6

Conclusions and future work

The technological changes required to transition the electricity supply from a fossil fu-
eled power system to one that is powered by VRE requires significant improvements in
the methods and models used to simulate the grid. The increasing reliance on computer
simulations for the study and development of novel technologies requires the adoption of
better practices of scientific computing in the power systems field. Chapter 2 highlights the
importance of scientific computing principles to tackle these issues by enabling reproducibil-
ity and validity of such simulation experiments in the context of power systems research
and proposes a set of practices to improve reproducibility in the power systems field. This
dissertation’s most relevant result consists of developing an ecosystem for simulating power
systems, with two main objectives in mind. The first, to provide users with the capabili-
ties to study a system with large shares of VRE resources, and second, to adhere to best
practices where scientific computing are concerned.

This dissertation has described how to implement software in three packages: Power-
Systems.jl, PowerSimulations.jl and PowerSimulationsDynamics.jl. These packages
are informed by the principles of scientific computing and tackle the computational chal-
lenges that come with energy transitions in modeling uncertainty in VREs and handling
fast dynamic interactions in systems with large proportions of IBR generation.

PowerSystems.jl resolves common data issues in the development of datasets faced
by researchers and model developers. Having a consistent data model along with the
utilities required to handle simulation data across multiple scales prevents unnecessary
data conversions and inconsistencies. Further, PowerSystems.jl is the first model-agnostic
data management tool developed for power systems computations. As described in Chapter
2, the most commonly used data models in power systems evolved from the power flow
problem and thus embedded the specifics of the power flow problem into existing models.

This thesis notes the effectiveness of PowerSystems.jl, and its importance as the base
data model for implementing simulations that include multi-time scale operations simula-
tions, probabilistic forecasts, and QSP and EMT dynamic simulations.

The variability and uncertainty of renewable energy resources brings operational chal-
lenges to the electric system. As these resources become more widely adopted, it is impor-
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tant to examine the conditions that arise when modeling and studying system operations.
Although studying the a system’s operation is common practice, the definitions and prac-
tices of this class of simulations are poorly defined. The lack of definition for operational
simulations is due in part to the computational tools used for these studies which fall
under two categories: (1) commercial tools (2) ad-hoc software projects. In response to
this definitional gap, this dissertation introduced PowerSimulations.jl a first of its kind
simulation tool for operations simulations that implements the conceptual framework of
decision-emulator model introduced in Chapter 1. PowerSimulations.jl software imple-
mentation tackles the challenge of model-limited-choice with the introduction of flexible
model formulations. It further solves graphs by providing analysts and researchers with
a framework to formulate computational experiments with minimal limitations. Further,
PowerSimulations.jl modeling capabilities were verified against a state of the art PCM
simulator. Two study cases depicted the modeling capabilities of PowerSimulations.jl in
terms of advanced modeling, one that focused on AC network mnodeling and a second one
with focus on advanced thermal generation modeling.

A PowerSimulations.jl framework was used to implement a novel simulation model
for an AGC, and proved that the model can capture key challenges when attempting to
integrate VREs on a large scale. Results show that the model can simulate a deployment
of supplemental reserves when participation factors are not well-calibrated due to fore-
cast errors. The model can also estimate frequency deviations according to the AGC PID
parameters.

System operators still face significant challenges in managing the inherent uncertainty
of VREs which lead to the development of advanced operational schemes. On the most
promising technologies is probabilistic forecasting, particularly as a tool for risk-based deci-
sion making. In Chapter 4 we introduced a modeling framework to incorporate uncertainty
forecasts for short-term risk assessments in ISO operations employing a Markovian graph.
The framework was shown to be effective in an online risk assessment scenario and de-
veloped based on the PowerSystems.jl and PowerSimulations.jl novel capabilities. The
results show that with the inclusion of VRE and inter-temporal dependencies help capture
the inherent time-dependencies in probabilistic forecasts. Chapter 4 further proposed an
an online transition matrix estimation method to capture short-term variability.

In a much smaller time-scale, a very different challenge arises with the fundamental
shift in the energy conversion mechanisms used to generate renewable energy with IBRs.
Abnormal or unexpected interactions between IBR controls have been identified in multiple
locations typically after the facility is operational and a grid event occurs, which demon-
strates that the simulation practices used for interconnection studies have flaws that are well
understood by the community. Chapter 5 takes a look at the common simulation practices
for the study of systems stability, particularly with respect to the embedded assumptions
in QSP and EMT simulations. The analysis demonstrates that there are under-explored
modeling techniques that can tackle existing simulation challenges.

Findings from the simulation techniques analyses explored in this thesis motivate the
development of PowerSimulationDynamics.jl, a modeling library that implements the
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concepts of scientific computing from Chapter 1 to the study of power systems dynamics.
PowerSimulationDynamics.jl is designed to support flexible simulation model formula-
tion and is similar in its approach with PowerSimulations.jl, though with a larger focus
exploring novel numerical methods. Results from verifying and validating PowerSimula-
tionDynamics.jl demonstrate its ability to reproduce results from commercial QSP and
EMT tools on a large scale. The added advantage of PowerSimulationDynamics.jl is the
additional extensibility it offers at the modeling and algorithmic layer. The simulation re-
sults from PowerSimulationDynamics.jl reveal that under balanced conditions dq models
are equivalent to wave-form simulations.

Although this dissertation makes advances in the practice of simulating power systems,
there are still various applications left unexplored. This work focuses on what could be
described as analytical simulations, which primarily study systems with specific operating
conditions in mind. Nevertheless, there are other applications that require new simulation
techniques, such as resilience and reliability analysis. These applications require extensions
to the approaches presented in this work and add another layer of complexity to the existing
challenges of simulating systems with large shares of VRE. Another area of focus for
future work is the development of black-start simulations for systems powered with large
shares of VRE, a critical capability for systems that face threats from changing climates and
cyberattacks.
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