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Objects in the environment differ in their low-level
perceptual properties (e.g., how easily a fruit can be
recognized) as well as in their subjective value (how
tasty it is). We studied the influence of visual salience on
value-based decisions using a two alternative forced
choice task, in which human subjects rapidly chose items
from a visual display. All targets were equally easy to
detect. Nevertheless, both value and salience strongly
affected choices made and reaction times. We analyzed
the neuronal mechanisms underlying these behavioral
effects using stochastic accumulator models, allowing us
to characterize not only the averages of reaction times
but their full distributions. Independent models without
interaction between the possible choices failed to
reproduce the observed choice behavior, while models
with mutual inhibition between alternative choices
produced much better results. Mutual inhibition thus is
an important feature of the decision mechanism. Value
influenced the amount of accumulation in all models. In
contrast, increased salience could either lead to an
earlier start (onset model) or to a higher rate (speed
model) of accumulation. Both models explained the data
from the choice trials equally well. However, salience
also affected reaction times in no-choice trials in which

only one item was present, as well as error trials. Only
the onset model could explain the observed reaction
time distributions of error trials and no-choice trials. In
contrast, the speed model could not, irrespective of
whether the rate increase resulted from more frequent
accumulated quanta or from larger quanta. Visual
salience thus likely provides an advantage in the onset,
not in the processing speed, of value-based decision
making.

Introduction

Value-based decision making is the selection of an
action among several alternatives based on the
subjective value of their outcomes. While ideally this
choice should be independent of irrelevant target
properties, it is well known that low-level physical
properties can profoundly influence decision making.
During free viewing of natural scenes and video
sequences, saccades are drawn to more salient parts of
an image (Berg, Boehnke, Marino, Munoz, & Itti,
2009; Parkhurst, Law, & Niebur, 2002; Parkhurst &
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Niebur, 2003), observers find these parts more inter-
esting (Masciocchi, Mihalas, Parkhurst, & Niebur,
2009), and high-salience targets are detected faster and
more accurately (Egeth & Yantis, 1997; Wolfe, 1998).
The question thus arises whether visual salience
influences not only simple perceptual but also value-
based decisions.

A number of recent studies demonstrated that both
visual salience and subjective value can affect decision
making (Markowitz, Shewcraft, Wong, & Pesaran,
2011; Navalpakkam, Koch, Rangel, & Perona, 2010;
Schutz, Trommershauser, & Gegenfurtner, 2012).
Nevertheless, the mechanisms underlying this behav-
ioral phenomenon might differ depending on the
specific influence of salience in the task. Sensory stimuli
can vary in many different feature dimensions and any
of these feature domains can influence the overall
salience of the target. However, value information is
typically carried only by some of the features of a visual
target. It is therefore of importance whether salience is
manipulated on the same or a different feature
dimension as value.

In a situation in which salience is manipulated on a
different feature dimension than the one indicating
value, the main effect of salience manipulations will be
to influence the overall contrast of the target relative to
the background and other targets. In other words, low
salience will lead to a lower probability that the target
will be detected to be present. However, once detected a
low-salience target will provide as much information
about its value as a high-salience target. Such salience
manipulations were often employed in previous re-
search, either by modulating detectability of targets
(Markowitz et al., 2011) or of distractors (Naval-
pakkam et al., 2010). This generates a ‘‘neglect’’
situation, in which high-value targets can be over-
looked if they are of lower salience than the back-
ground or alternatives.

The situation is different when the salience of the
feature dimension is manipulated that carries value
information, but other feature dimensions of the target
are still highly salient. In this situation, the perception
of the value information is selectively influenced by the
salience manipulation, while all the other perceptual
dimensions are the same. The influence of the salience
manipulation on choice behavior is therefore not
simply to make the agent unaware of a low-salience
target, but rather to create targets whose value is harder
to perceive. There are fewer studies of this type (Schutz
et al., 2012) and as a result we know much less about
the influence of salience on value-related information.

In this study, we designed therefore a two alternative
forced choice task, in which items in a visual display
were endowed with different values (rewards). Human
participants rapidly chose between items, attempting to
maximize the reward amount. We manipulated visual

salience and value of the targets simultaneously and
independently across trials, while keeping the detect-
ability of all targets constant. That is, we designed
visual stimuli for which one visual feature (luminance
contrast with the background) was large enough to
ensure that their location could be detected rapidly.
Another visual feature (color saturation) was manipu-
lated so that the visual feature carrying value infor-
mation (color hue) was more or less perceptually
salient. Therefore, the manipulation of salience influ-
ences the perception of value. The salience is with
respect to behaviorally relevant information (i.e., target
value), but not with respect to the ability of the subject
to localize the targets on the screen. In this way we
could manipulate the visual salience of value informa-
tion without directly affecting motor processes used to
report the choice. We also mixed no-choice trials in
with the choice trials, in which subjects could only
select the single target on the screen. The no-choice
trials were controls to test the effect of visual salience
and value on behavior without any interference by the
choice process.

We found that both value and salience have strong
effects on the decision process by themselves, as has
congruency between value and salience. Specifically,
reaction times were significantly correlated with both
value and salience of the chosen target and with value
difference and salience difference between the chosen
target and the non-chosen target. In addition, the error
rate, defined as the rate of choosing the lower valued
target, was significantly higher in incongruent trials
than in any other type of trials.

After characterizing behavior in a descriptive re-
gression model, we analyzed the neuronal mechanisms
underlying our behavioral data using a series of four
stochastic accumulator models based on different
functional assumptions (Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Cisek, Puskas, & El-Murr,
2009; Hanks, Mazurek, Kiani, Hopp, & Shadlen, 2011;
Krajbich & Rangel, 2011; Purcell et al., 2010). All
models consist of two accumulators, each adding up
value information in support of one of the two possible
choices. For the independent model, we assumed that
the two accumulators did not interact, while the other
accumulator models implemented mutual inhibition
between them. The speed model assumed that salience
influenced the rate with which value information was
accumulated by modulating the strength of the
incoming value information. The onset model was
motivated by the observation that salience can reduce
visual processing time (Ratcliff & Smith, 2011; White &
Munoz, 2011) and assumed an earlier accumulation
onset time rather than an increased accumulation rate.
The full model combined both ways for salience to
affect the accumulation process. Comparison between
model predictions and behavior suggested that mutual
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inhibition and salience-induced differences in accumu-
lation onset time, but not accumulation rate, are
necessary to explain the behavior of the human
participants.

Methods

Subjects

Fifteen participants (age: 18–30, eight female),
undergraduate and graduate students naı̈ve to the
purpose of the study, were recruited from the Johns
Hopkins University community and participated in the
experiment after providing informed consent. All
participants reported normal or corrected-to-normal
vision and no history of color blindness. Among these
15 participants, nine (age: 26–30, five females) partic-
ipated in the two pilot experiments, nine (age: 18–30,
five females) participated in the main experiment, and
three participated in all three experiments. All proce-
dures were approved by the Johns Hopkins University
Homewood Institutional Review Board.

Pilot experiments

In the first pilot experiment, we determined satura-
tion levels to be used in the main experiment based on
simple color detection. Four targets with equal
brightness appeared on the screen, of which one was
colored and the others were gray. The participants were
required to localize the colored target and to indicate its
position by pressing the corresponding key on a
keyboard. In order to encourage accuracy, we did not
set a response deadline. We tested all five colors (cyan,
brown, green, blue, yellow) used in the main experi-
ment (Figure 1) in a range (1%–16%) of saturation
levels. In the pilot experiment, the color of the targets in
the detection experiment did not carry any value
information and we did not observe systematic
behavioral differences across colors (Figure 2). In
contrast, mean reaction time varied systematically with
the saturation level, which for our purposes served as a
measure for the salience of a target. Low saturation
levels were defined as in the 3%–5% range because the
reaction times in response to these targets were around
50 ms longer than those in response to high-saturation
targets, defined as 16% where performance plateaued.
Accuracy was nearly perfect for all values above 6%
(with one outlier). Thus, low saturation level was

Figure 1. Behavioral paradigm. (A) Sequence of events during no-choice trials (top) and choice trials (bottom). The type of stimulus is

listed to the right. The black arrow is not part of the stimuli; it symbolizes the participants’ choices that then leads to the next stimulus

shown. In all cases shown, the arrow corresponds to the optimal choice. (B) Visual cues used. High- and low-salience targets are left

and right, respectively. Rows correspond to values, as shown to the right.
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chosen for each color (5% for yellow, 4% for cyan,
brown, and green, and 3% for blue), so that the salience
of the color information was substantially reduced
from high saturation level (16% for all colors), but still
strong enough to be detectable.

In order to test whether the manipulation of the
color saturation by itself had an effect on the speed
with which the targets could be detected, we performed
a second pilot experiment (the singleton task) with nine
participants. In this task, 10 targets with different color
or saturation as selected in the pilot experiment were
used. There was no difference in value associated with
the targets. In each trial, only one target appeared on
the screen and the participants were asked to indicate
its location by pressing the corresponding key. They
were encouraged to do so as fast as possible while
maintaining accuracy. The task made sure the detect-
ability of all the targets was the same.

Stimuli

In the main experiment, the value associated with a
particular target was indicated by its color. The color
properties of the targets were derived from the hue (H
� [08,3608)), saturation (S � [0,1]), and brightness (V �
[0,1]) color space. In this space, hue is the attribute of a
visual sensation according to which an area appear to
be one of the perceived colors; saturation is the
colorfulness of a stimulus relative to its own brightness;
and brightness is the attribute of a visual sensation
according to which an area appears to emit more or less
light. Five different colors indicated five different
values that could be earned (‘‘cyan,’’ hue 1808: zero
points; ‘‘brown,’’ 308: 10 points; ‘‘green,’’ 908: 20 points;
‘‘blue,’’ 2408: 40 points; ‘‘yellow,’’ 608: 80 points)

(Figure 1B). The targets were approximately 1.58 · 1.58
in size and were always presented approximately 208
away from the central fixation point at angles 458, 1358,
2258, or 3158 relative to the horizontal. The background
was approximately 16 · 22 cm in size and was
uniformly gray and the brightness of each target
exceeded that of the background by 4%. Since the
targets had all the same brightness, the participants had
to rely on color information alone to determine the
relative value of each target. We manipulated the
salience of this reward-related information by modu-
lating color saturation independently of target value, as
determined in the first pilot experiment. As discussed,
the selection of high and low saturation levels for each
hue was guided by the psychophysical data in the
second pilot study.

Main experiment

At the start of the main experiment, participants
received instructions on the nature of the task. They
were informed that they would have the opportunity to
earn ‘‘points’’ that accumulated over trials, and they
were encouraged to maximize the number of points
earned.

Participants then were presented with targets on a
computer monitor (Figure 1A) in front of them that
varied in value and salience. The task consisted of two
types of trials: choice and no-choice trials. At the
beginning of each trial, the participants were required
to fixate the fixation point for 1500 ms. In choice trials,
after the fixation point disappeared, two targets
appeared in diagonally opposite locations on the
screen. Participants chose a target by pressing a key on
the keypad (Insert: left up; Delete: left down; Home:

Figure 2. Effect of saturation level on reaction time and error rate for different color targets. The mean reaction times and error rates

for nine subjects are plotted. The colors of the lines in the plots correspond to the colors of the targets used in the task. (A) Mean

reaction times plotted as a function of the saturation level. Error bars represent standard error of the mean reaction time. (B) Error

rates plotted as a function of the saturation level. Error bars represent standard error of error rate.
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right up; End: right down; the relative locations of
these keys on the keypad agree with the locations of the
corresponding stimuli on the screen) that corresponded
to the location of the desired option. Pressing any key
other than these four was considered an invalid choice.
No-choice trials were used as controls to test the
influence of both salience and value without interfer-
ence by choice. In no-choice trials, only one target
appeared on the screen and participants had to press
the key that corresponded to the target location.
Pressing one of the other three keys was considered an
error. The response deadline (2000 ms) was chosen
generously to encourage participants to take as much
time as necessary to choose the appropriate target.
Following a valid key press, the amount of points
associated with the chosen target and the non-chosen
target were revealed on the monitor. Otherwise, no
points were revealed, the next trial started after an
inter-trial interval whose length was selected randomly
(uniform distribution) from the range 1000–1500 ms.

Six comparisons were selected from the set of
possible value differences between the two stimuli: zero

versus 10 points, zero versus 20 points, 10 versus 20
points, 20 versus 40 points, 20 versus 80 points, and 40
versus 80 points. Each of these pairs was presented with
equal frequency. These comparisons were selected so
that across different trial types targets with medium
values (10, 20, 40 points) had equal probability to be
either larger or smaller in value than the alternative
target. In addition, this set included comparisons with
smaller and larger value differences. For each value
comparison, there were four different salience-value
combinations (Figure 1A): In low-salience trials, both
targets were of low salience. In high-salience trials, both
targets were of high salience. In congruent trials, the
high-value target was of high salience, while the low-
value target was of low salience. Finally, in incongruent
trials, the high-value target was of low salience and the
low value was of high salience. This resulted in 24
different combinations of choice trials (6 Value
Comparisons · 4 Value-Salience Combinations). To-
gether with 10 different types of no-choice trials (5
Values · 2 Salience Levels), there were 34 different trial
types that formed one block of trials. The trials were

Figure 3. Effect of chosen value on reaction time. The mean reaction times for all participants are plotted against the value of the

chosen targets in (A) no-choice high-salience trials, (B) no-choice low-salience trials, (C) high-salience trials, (D) low-salience trials, (E)

congruent trials, and (F) incongruent trials. Each circle shows the mean reaction time of one participant in the respective condition.

The red line shows the result of linear regression.
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presented in blocks, so that a trial of a particular type
was not presented again until the next block. Within a
block, the order of trials was randomized.

Participants were initially trained with high salience
(32% saturation level) no-choice and choice trials. After
they achieved an accuracy of 90%, the main experiment
began. Each participant performed the same number of
trials, 11 blocks with 34 trials each, 374 trials total.

Results

Influence of value on reaction time

Our behavioral results showed a significant effect of
the chosen target value on reaction times in correct
trials. The mean reaction time during both no-choice
and choice trials reflected the value of the chosen target.
For all types of choice trials, reaction time was
significantly correlated with the chosen target value; high
salience (t test, df¼ 34, p , 10�9), low salience (t test, df
¼ 34, p , 10�10), congruent (t test, df¼ 34, p , 10�8),

and incongruent (t test, df¼ 34, p , 10�6) (Figure 3).
The correlation coefficients were significantly smaller
than zero as tested by the t test in all cases; the larger the
chosen value, the shorter the reaction time. This result
reflected most likely the motivational drive of the chosen
target value on the speed of decision making and
response execution processes. Interestingly, the relative
importance of this motivational drive was weaker on no-
choice trials than on choice trials (slope of no-choice
trials: high salience:�0.78 ms/point, low salience:�1.6
ms/point; slope of choice trials: high salience:�4.82 ms/
point, low salience:�5.19 ms/point, congruent:�4.33
ms/point, incongruent:�4.25 ms/point), and in no-
choice trials, the correlation between value and reaction
time was significant only for low salience (t test, df¼ 43,
p¼ 0.03), but not high-salience trials (t test, df¼ 43, p¼
0.1) (Figure 3).

Not only did the absolute value of the chosen target
have a significant effect on reaction time, but also the
difference between chosen and non-chosen target. In
our experimental design, we used only six out of the full
set of all possible value combinations. Within this
subset of choices, the value of the chosen target (i.e.,
the target with the higher value) was positively
correlated with the value difference between chosen and
non-chosen target. Therefore, we could not use a simple
regression analysis to test whether the reaction time
were correlated with value differences independent of
chosen value. Nevertheless, a partial correlation
analysis showed that, when we controlled for the
contribution of the chosen value, the reaction time was
still significantly correlated with the value difference
between the chosen and the non-chosen target in all
choice trials (Spearman partial correlations; high-
salience trials: df¼42, p , 10�4, low-salience trials: df¼
42, p¼ 0.015, congruent trials: df ¼ 42, p¼ 0.016,
incongruent trials: df¼ 42, p¼ 0.002). This relationship
was also negative (slope high-salience trials:�0.57 ms/
point, low-salience trials:�0.33 ms/point, congruent:
�0.33 ms/point, incongruent: �0.42 ms/point): the
larger the value difference, the shorter the reaction
time. This finding supports the view that participants
compared the values of both targets before making a
choice. Larger value differences made it easier to
discriminate the more valuable target and resulted in
faster responses, while smaller differences decreased the
discriminability and required more time to select the
correct response.

Influence of salience on reaction time

The salience of the reward information, i.e., the color
saturation level of the targets, had a significant
influence on reaction times when compared to the
singleton task, the second pilot experiment (Figure 4).

Figure 4. Mean reaction time across all participants on high-

salience singleton trials (the singleton task), low-salience

singleton trials (the singleton task), no-choice high-salience

trials, no-choice low-salience trials, high-salience trials, low-

salience trials, congruent trials, and incongruent trials. Asterisks

indicate statistical significance of difference between condi-

tions, * means p � 0.05, **means p � 0.01, *** means p �
0.001, ****means p � 0.001; in all cases from t tests. Sample

size is nine. Error bars represent standard error of the mean.
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In the singleton task, the reaction time for high-salience
targets (high salience singleton, mean: 467 ms) was
identical to that for low-salience targets (low salience
singleton, mean: 467 ms) and much faster than the
reaction time in no-choice trials. On the other hand, in
no-choice trials when there was no interference between
salience and value, the reaction time for high-salience
trials (mean: 638 ms) was significantly faster (Kolmo-
gorov–Smirnov [K-S] test, p , 10�10) than for low-
salience trials (mean: 726 ms).

At first sight, the large latency difference between
singleton and no-choice trials is surprising, since the
only difference between the two trial types is that color
is behaviorally meaningful in one (no choice), but not
the other (singleton). However, this difference likely
reflects a simple speed-accuracy trade-off caused by
contextual differences in task demands. In the singleton
task, the subjects could be sure that on any given trial
there was only one target on the screen. The task was in
essence to detect the changing location of the target as
fast as possible. For this purpose, luminance contrast
provided sufficient information, while target color
could be safely ignored. In this situation, the subject’s
threshold for selecting a target could be lower than in
the choice condition without affecting accuracy, due to
the absence of distractors. In contrast, during our main
experiment the no-choice trials were embedded in a
larger number of choice trials. In this situation the

subject’s threshold for selecting a target had to be
higher than in the choice condition, because in the
majority of trials there were two competing targets
whose value needed to be compared. In principle, there
was an absence of distractors in the no-choice trials
that was similar to the singleton trials. However, since
the two trial types were randomized, the subjects could
not be sure when a no-choice would occur and
therefore could not adjust their response criteria
selectively.

In choice trials, the reaction time in high-salience
trials (mean: 851 ms) was significantly faster (K-S test,
p¼ 0.032) than in low-salience trials (mean: 913 ms).
Moreover, the congruency between differences in value
and reward salience had a strong effect on the target
selection process. In congruent as well as in incongru-
ent trials, the two targets varied both in value and in
salience. In congruent trials, the more valuable target
had also more salient reward information. Thus, both
the difference in value and in salience supported the
same target. In contrast, in incongruent trials the more
valuable target had less salient reward information.
Here, the difference in value and in salience supported
different targets. Accordingly, across all value levels,
the reaction time on congruent trials (mean: 822 ms)
was significantly faster (K-S test, p , 10�13) than on
incongruent trials (mean: 953 ms; Figure 4). This
difference could not be explained merely by the fact

Figure 5. Error rates and mean reaction times on different trial types. (A) Mean error rate for all participants for different trial types.

(B) Mean error rate in incongruent trial for all participants as a function of chosen value. (C) Mean reaction time for both correct (light

orange) and wrong (dark orange) choice on different trial types. See Figure 4 for the meaning of the asterisks. Sample size is nine.

Error bars represent standard error of the mean reaction time.
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that the chosen targets differed in salience. The reaction
time on congruent trials was still significantly faster (K-
S test, p¼ 0.01) than that on high-salience trials (Figure
4), even though the salience of the chosen targets were
the same. Likewise, the reaction time on incongruent
trials was also significantly slower (K-S test, p , 0.01)
than that on low-salience trials (Figure 4).

Error trials

In the experiment, we did not set a very stringent
time limit on the decision process. Therefore, the error
rates, defined as the rate of choosing the lower valued
target, were low in general. Nevertheless, we also saw
an effect of congruency on error rate (Figure 5A). The
error rates for high-salience, low-salience, and congru-
ent trials were low (high: 4.3%; low: 5.8%; congruent:
4.4%). Specifically, the error rate for low-salience trials
was not significantly higher (K-S test, p¼0.25) than the
one for high-salience-trials. This indicated that the
participants were still able to identify the color of the

low-salience targets, although those targets were harder
to identify. In contrast, the error rate for incongruent
trials was much higher (13.1%). This is higher than the
error rates for high salience (K-S test, p ¼ 0.01) and
congruent trials (K-S test, p¼ 0.01), as well as for low-
salience trials although the latter difference was not
significant (K-S test, p¼ 0.07).

Furthermore, we compared the reaction time distri-
bution of the error and correct trials during choice
trials. To quantify the differences, we plotted the
cumulative distribution for both error trials and correct
trials in all four trial conditions. As shown in Figures
5C and 6, in low- and high-salience trials, the reaction
time (RT) on error trials (mean RT: low-salience trial:
959 ms, high-salience trial: 924 ms) tended to be longer
than on correct trials (mean RT: low-salience trial: 913
ms, high-salience trial: 851 ms). Though the differences
did not reach significance (K-S test, p ¼ 0.28 and p¼
0.25, respectively), the difference is significant (K-S test,
p¼ 0.048) for the combined population. In congruent
trials, this difference became larger. The reaction time
for error trials (mean RT: 955 ms) was significantly

Figure 6. Cumulative reaction time distributions. Cumulative distributions of reaction time are plotted for correct (black) and error

(red) trials on high-salience trials (K-S test, p¼ 0.28), low-salience trials (K-S test, p¼ 0.25), congruent trials (K-S test, p¼ 0.001), and

incongruent trials (K-S test, p ¼ 0.01).
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longer (K-S test, p¼0.001) than for correct trials (mean
RT: 823 ms). In contrast to all other trial types, in
incongruent trials the reaction time for error trials (RT:
876 ms) was significantly shorter (K-S test, p ¼ 0.01)
than for correct trials (mean RT: 953 ms). Note that
this shorter reaction time on error trials was not
confounded by the chosen value on those trials. First,
on error trials (by definition) a smaller value was
chosen than on correct trials. Second, the error rate did
not increase as the chosen value increased (Figure 5B).
The chosen value on error trials was therefore on
average not larger than the chosen value on correct
trials. This specific difference in the reaction time
distributions between congruent and incongruent trials
turned out to be important, because, as we shall see
below, it allowed us to distinguish between different
types of accumulator models of the decision process.

Descriptive model of behavior

To summarize, in the main experiment, the reaction
time across the six different trial types was correlated
with the value of the chosen target, the salience of the
reward information, and the contingency between value
and salience (Figure 7). Across all chosen values in the
main experiment, the reaction time was shortest for no-
choice high-salience trials, increased successively for
no-choice low-salience, congruent, high-salience, and
low-salience trials, and was longest for incongruent

trials. This was very different from the results in the
second pilot experiment (singleton task), in which the
results showed no difference between reactions to high-
and low-salience targets (Figures 4 and 7).

We further used a descriptive model to quantify the
trends we had observed in the behavior data. There
were a number of factors that could contribute to the
decision-making process, including (a) the value of the
chosen target, (b) the salience of the chosen target, (c)
the value of the non-chosen target, (d) the salience of
the non-chosen target, (e) the value difference between
chosen and non-chosen target, (f) the salience differ-
ence between chosen and non-chosen target, as well as
the multiplicative interaction between salience and
value for both (g) chosen and (h) non-chosen targets. In
order to quantify the effect of each of these possible
factors, we fitted a family of nested regression models
to the reaction times in correct choice trials that
included all possible iterations of the seven factors plus
a baseline term. In order to combine the reaction time
data across all participants, we normalized reaction
times within each participant between zero and one
(thus, the normalized RTs computed in Equation A11
cannot be directly compared with the actual RTs in
Figure 4). By comparing the Bayesian information
criterion value (BIC) and Akaike value (Burnham &
Anderson, 2002; Busemeyer & Diederich, 2010) of each
model (Table 1), we identified the best fitting model. Of
all linear models tested, the lowest BIC value and
lowest Akaike value occurred for the same model:

Figure 7. Mean reaction times for both second pilot and main experiment. Mean reaction time in the second pilot experiment are

plotted against different targets with corresponding colors without value information on high-salience singleton trials (green solid

line), low-salience singleton trials (green dotted line) in the singleton task (second pilot experiment). The reaction time in the main

experiment are plotted against value of the chosen targets on no-choice high-salience trials (black solid line), no-choice low-salience

trials (black dotted line), high-salience trials (blue solid line), low-salience trials (blue dotted line), congruent trials (red solid line), and

incongruent trials (red dotted line). Sample size is nine. Error bars represent standard error of the mean reaction time.

Journal of Vision (2013) 13(12):18, 1–23 Chen, Mihalas, Niebur, & Stuphorn 9



RTnormalized ¼ 0:5209� 0:0015*vchosen
� 0:0373*schosen
� 0:0018*ðvchosen � vnonchosenÞ
� 0:0188*ðschosen � snonchosenÞ; ð1Þ

where vchosen and vnonchosen are the point values of the
chosen and non-chosen targets (vi � (0, 0.1, 0.2, 0.4,
0.8)), and Schosen and Snonchosen are the salience values of
the chosen and non-chosen targets (Si � (0, 1)),
respectively. All four parameters (but none of the other
four possibilities listed above) contributed significantly
to the regression, including: (a) value of the chosen
target (t test: p , 10�7), (b) salience of the chosen target
(t test: p , 10�5), (c) value difference between chosen
and non-chosen target (t test: p , 10�4), and (d)
salience difference between chosen and non-chosen
target (t test: p¼ 0.001). Table 1 shows the BIC values,
Akaike value, and evidence ratio (relative to the best-
fitting model) for different models ranked by their fit to
the behavioral data. From the evidence ratios it is clear
that there were actually approximately 12 different
regression models all containing four variables that all
fitted the data almost as well as the best-fitting model.
This phenomenon is likely related to the fact that the
variables we chose were most likely not completely
independent of each other such as the equation
containing Schosen and Snonchosen can be equally ex-
pressed as an equation containing Schosen and dS.
However, there was a clear drop in evidence for
alternative three- or five-variable models.

Accumulator models

The behavioral results, confirmed by a linear
regression model, showed that both value and salience
of the targets as well as the congruency between them
influence the decision-making process. To make pro-
gress towards understanding the underlying mecha-
nisms, we modeled the decision process using
accumulator models with four functionally related

architectures (Figure 8). In addition to suggesting a
functional mechanistic explanation of the underlying
mechanisms, accumulator models have the additional
advantage over descriptive regression models (like the
one developed in the previous section) that they
describe the entire distribution of behavioral data,
rather than only their mean values. This modeling
approach allowed us to address several questions
beyond the identification of the behaviorally relevant
factors. Most importantly, it allowed us to ask
questions regarding the functional architecture of the
decision-making mechanism that implements the value-
based decisions. In the following simulation-based
analysis, we focused specifically on two of these
mechanistic questions. First, is there a role for
inhibitory interactions between the processes repre-
senting the two targets? Second, how does the salience
of the reward information influence the decision-
making process? In addition, accumulator models
incorporated in a natural fashion nonlinearity in the
decision-making process, such as the threshold, which
is not easy to be captured in a linear regression model.

Models 1–3 have the same complexity (six parame-
ters). As described below, they are special cases of the
general functional Model 4 that is slightly more
complex with seven parameters. In order to determine
the importance of particular factors, for Model 1–3, we
systematically constrained one factor of the general
model (Model 4), while allowing the other factors to
change freely to achieve the best possible fit with the
behavioral data. All other aspects of the functional
architecture were held constant across the four different
variants (see Appendix).

All models have two accumulator units, each of
which integrates the input from the target whose choice
they would trigger until it reaches the response
threshold. The quanta size of the input for accumula-
tion is determined by the target value. The rationale for
this design choice follows immediately from the idea
that what is accumulated during the decision process is
support for a particular choice (here the value that is
associated with selecting a particular target). In Model

Rank Variables resulting in model BIC AIC Evidence ratio

1 vchosen, schosen, dv, ds �8711 �8734 1

2 vchosen, snon-chosen, ds, vnon-chosen �8711 �8734 1

10 vchosen, schosen, dv, vnon-chosen �8710 �8733 1.23

13 vchosen, schosen, dv �8708 �8726 3.90

17 vchosen, schosen, dv, ds, vnon-chosen · snon-chosen �8705 �8732 23.90

Table 1. BIC table for descriptive behavior regression model. Notes: All possible combinations of eight independent variables: vchosen,
schosen, vnonchosen, snonchosen, vchosen � vchosen(dv), schosen � snonchosen(ds), interaction between chosen value and salience (vchosen ·
schosen), interaction between non-chosen value and non-chosen salience (vnonchosen · snonchosen) were tested against the behavioral
data. The first column shows the BIC rank of the model among all other 255 models. The second column shows the selected variables
with the corresponding rank. The third column shows the BIC value, the forth column shows the AIC value, and the fifth column
shows the BIC evidence ratio for each model compared with the best fitting model.
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1 (independent model), salience influences both the
onset and the rate of accumulation but the two
accumulators are independent, with no inhibitory
interaction between them (Figure 9A). In contrast,
Models 2 (speed model) and 3 (onset model) are feed-
forward inhibition models. Here, the two accumulator
units also integrate the input from the target whose
choice they would trigger, but in addition they receive
inhibitory input from the alternative target, with the
inhibitory strength determined by the behavioral fit.
The strength can therefore approach zero, which
includes the condition enforced in Model 1. The key
difference between Models 2 and 3 is the mechanism by
which salience influences the integration process.
Model 2 assumes that salience influences the quality of
the perceptual process output, and thus the probability
of accumulation, which is independent of the input
strength that is determined by value (Figure 9B). This
results in a modulation of the mean drift rate, which is
orthogonal to the effect of value, as supported by our
behavioral analysis. In Model 3, on the other hand,
salience is assumed to influence the onset time of the
accumulation process (Figure 9C), but not the proba-
bility of accumulation (i.e., mean drift rate). Finally,

salience is free to modify both onset and drift rate in
Model 4 (Figure 9D).

We optimized the parameters in all four models
using the observed reaction times in correct choice
trials, which were used as the training set for parameter
tuning. We then compared the simulated reaction time
distribution with the training set reaction time distri-
bution using Pearson chi-square statistics (Purcell et al.,
2010; Van Zandt, Colonius, & Proctor, 2000). This
method maximized the proportion of correct responses
in addition to matching the distribution of observed
RTs. In order to avoid over fitting of the training data
and to test the models’ capability of prediction, in
addition, we compared the predicted behavioral per-
formance with two test sets, neither of which was used
during training. One was the observed behavior in no-
choice trials; the other was the behavior in erroneous
choice trials (the trials in which the participant chose
the lower valued target). In addition, we also used the
BIC to test both fitness and prediction of the models.
The results of this analysis are consistent with the
results using the chi-square criterion (Table 2).

Figure 8. Architecture of the four accumulator models. (A) Model 1: independent model, without mutual inhibition between the

targets. (B) Model 2: speed model. Salience influences the rate of accumulation but not its onset. (C) Model 3: onset model. Salience

influences the onset of accumulation but not its rate. (D) Model 4: full model with feed-forward inhibition model salience influencing

both the onset of accumulation and its rate. vi are the units that transfer sensory input into value. mi are the accumulators that

integrate the input and trigger a motor response. Consistent with Equation A2, Dt ¼ t1 � t2 is the onset difference generated by

salience differences, Ni is the number of accumulations that occur in each accumulator mi, I(vi) is the rate of accumulation for each

accumulator mi, and u is the mutual inhibition parameter between two accumulators.
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Mutual inhibition is necessary to explain

behavior

The independent model (Model 1) did not explain

the reaction times well. Its mean v2 fit (7.08) was

significantly larger than that for the other two

constrained models (Model 2: mean v2 fit, 2.44; t test,
df¼ 29, p , 10�8, Model 3: mean v2 fit, 2.24; t test, df
¼ 29, p , 10�10). More importantly, the predicted

reaction times in no-choice trials did not fit the

observed reaction times (Figures 10A and B). Specif-

ically, a very general characteristic of the observed

Figure 9. Examples of the time evolution of variables in independent models in incongruent trials. Within each plot, the upper panels

are examples for correct trials, the lower panels for error trials. The paths for high-value low-salience targets are shown in red, and for

low-value high-salience targets are in black. All competitions start at zero and threshold is always 100. (A) Model 1: independent

model, no mutual inhibition between targets. (B) Model 2: speed model, salience influences the rate of accumulation. (C) Model 3:

onset model, salience influences the onset of accumulation. (D) Model 4: the free model.

Choice trial No-choice trial

BICfit v2
fit BICtest v2

test

Independent model �111.86 7.08 �15.76 12.87

Speed model �114.68 2.44 �39.30 8.38

Onset model �115.51 2.44 �44.27 3.61

Full model �114.37 3.50 �37.89 8.20

Table 2. Fitness of four different models in fitting reaction time on choice trials and predicting reaction time on no-choice trials.
Notes: The first column shows the type of the model under testing. The second and third columns show the BIC value and v2 for the
choice trials when optimizing model parameters during the training section. The fourth and fifth rows show the BIC value and v2 for
the no-choice trials when testing the models’ capability of prediction.
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reaction time data was the increased reaction time
latency on choice trials as opposed to no-choice trials
(Figure 7). In contrast, the independent model
predicted that the reaction times for choice trials were
as fast as those in no-choice trials, due to the lack of
inhibition from the non-chosen target. In addition,
Model 1 overestimated the error rate on incongruent
trials (Figure 10C) and it failed to predict the
observation that on incongruent trials the reaction
times on error trials were shorter than those on correct
trials (Figure 10D). For no-choice trials, the mean v2

value (12.84) of Model 1 was significantly larger than
that of the other two models (Model 2: v2: 8.38, t test,
df¼ 29, p , 10�15, Model 3: v2: 3.61, t test, df¼ 29, p
, 10�34). In sum, the analysis of Model 1 showed very
clearly that mutual inhibition between two choices is
important for target selection.

Salience affects the onset of accumulation

The speed model (Model 2) and onset model (Model
3) were both in good agreement with the training set,
the observed reaction times of correct choice trials
(Figures 11 and 12). Although the fitness of Model 2
(mean v2fit ¼ 2.44) was slightly poorer than that of
Model 3 (mean v2fit ¼ 2.24), the difference was not
significant (t test, df ¼ 29, p ¼ 0.86). The simulated
reaction times of both Models 2 and 3 were correlated
with the difference between chosen and non-chosen
values, chosen values, non-chosen values, and the
congruence between value and salience, which was
consistent with the behavioral data.

However, the two models showed differences in their
capability to predict the reaction time in the test set, the
no-choice and erroneous choice trials. First, the two

Figure 10. Predictions of Model 1 (independent model). (A) Predicted mean reaction times are plotted against the value of the chosen

targets on different trial types. Each sample size is 100 simulations. Error bars represent standard error of the mean reaction time.

Symbols are as in Figure 7. (B) Predicted mean reaction times are plotted against observed mean reaction time for 24 different choice

trial types (black circle) and 10 different no-choice trial types (red circle). (C) Comparison between observed (light orange) and

predicted error rate (gray) on different trial types. (D) Comparison between observed (correct trial: light orange; error trial: dark

orange) and predicted (correct trial: light gray; error trial: dark gray) mean reaction times on different trials types. Symbols are as in

Figure 5.
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models made different predictions for no-choice trials.
In Model 2, in which salience modulates the accumu-
lation rate, reaction time differences caused by salience
differences were positively correlated with the time it
took the accumulated activity to reach the threshold.
Therefore, this model predicted that the reaction time
difference caused by salience will be larger for choice
trials than for no-choice trials (Figure 11A). On the
other hand, in Model 3, in which salience modulates the
accumulation onset, reaction time differences caused by
salience were independent of how long it takes the
activity to reach threshold. Therefore, this model
predicted that the reaction time difference caused by
salience will be similar for choice and no-choice trials
(Figure 12A). Consequently, when the parameters of
both models were adjusted so that they fit the reaction
time differences in choice trials, the salience-induced
reaction time differences in no-choice trials predicted
by Model 2 should be smaller than the ones predicted
by Model 3. This is exactly what the simulations
showed (Figures 11A and 12A). Specifically, Model 2
predicted that reaction times in no-choice trials should
not be significantly influenced by salience, as can be

seen by comparing the solid and dotted black lines in
Figure 11B. This prediction is not unreasonable. The
luminance contrast of high-salience targets was similar
to that of low-salience targets. This allowed the single
targets to be equally localized. Furthermore, value
information was not behaviorally relevant, since no
choice was required. Therefore, one might expect that
differences in salience do not necessarily influence
reaction time similar as in the singleton task (Figure 7).
In contrast, Model 3 predicted that reaction times to
targets with high salience of the reward information
should be faster than the ones to targets with low
salience, as indicated in the corresponding plot in
Figure 12A.

This difference in the predictions of the two models
allowed us to compare how well they fit the observed
behavioral data. A comparison of the actual (Figure 7)
with the predicted reaction times (Figure 11A, 12A)
showed that, overall, Model 3 agreed much better with
observations than Model 2. The behavioral fit of Model
3 (mean v2test ¼ 3.61) in no-choice trials was signifi-
cantly (t test, df ¼ 29, p , 10�15) better than that of
Model 2 (mean v2test¼ 8.38). In particular, the human

Figure 11. Predictions of Model 2 (speed model). Symbols are as in Figure 10.
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participants showed consistently longer reaction times
in no-choice trials with low-salience targets compared
to trials with high-salience targets. Consequently, the
comparison of predicted to observed reaction times in
Figures 11B and 12B showed that for most no-choice
trials (indicated by the red circles) the predicted RTs of
Model 2 are too short, while the predictions of Model 3
for no-choice trials were as accurate as for choice trials.

Second, the two models also made different predic-
tions with regards to the reaction times in error trials,
providing another opportunity to determine which
model provided a better description of behavior. The
behavioral data showed that the reaction time in all
trial types was significantly longer for erroneous than
for correct responses, except for incongruent trials for
which the pattern was the opposite (Figure 5C). Thus,
there was an inversion of reaction time for congruent
and incongruent trials with respect to correct and
erroneous responses. Both models predicted correctly
that in congruent trials the reaction time was signifi-
cantly longer on error trials than on correct trials
(Model 2: K-S test, p ¼ 0.004; Model 3: K-S test, p ¼
0.003). On incongruent trials, however, Model 2
predicted that the reaction time on erroneous trials was

also significantly longer (K-S test, p ¼ 0.002) than on
correct trials (Figure 11D). This is because an error can
only occur when the accumulator associated with the
low-value target happens to reach the threshold earlier
than the one associated with the high-value target.
Since in Model 2 the low-value accumulator tended to
rise slowly, this could only happen if the competing
high-value accumulator also rose slowly. Thus, in this
model the reaction time on error trials had to be longer
than on correct trials (Figure 9B).

In contrast, Model 3 accurately predicted shorter
reaction times on erroneous than on correct incongru-
ent trials (Figure 12D). Sensitivity analysis showed that
the difference in onset time of the accumulation
between high- and low-salience targets was significantly
linearly correlated (t test, df ¼ 47, p , 10�8, Sobol
Index: 0.43) with the reaction time differences between
error and correct trials on incongruent trials (Figure
13). In Model 3, errors were due to the earlier onset of
accumulation for the low-value targets. This onset time
difference, especially when it was large, created a
window of opportunity for the low-value accumulation
process during which it experienced no competition
from the high-value accumulation process. Therefore,

Figure 12. Predictions of Model 3 (onset model). Symbols are as in Figure 10.
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in this model the reaction times on error trials tended to
be shorter than on correct trials (Figure 9C). The fact
that this prediction, which was specific for Model 3,
was confirmed by the behavioral data gives further
support for the hypothesis that differences in the onset
latency of accumulation (as in Model 3) rather than in
the rate of accumulation (as in Model 2) explains the
salience effect in our behavioral choice task.

Finally, we also optimized the full model, where
salience could influence both onset and rate of the
accumulation (Figure 14). This model has one param-
eter more than Models 2 and 3. We would therefore
expect at least as good a fit to the training data as the
best of the less complex models. However, Model 4
does not necessarily have better predictive power for
the test data since it might still contain terms based on
incorrect assumptions. Indeed, the full model did not
significantly improve the accuracy of the reaction time
fits in the training set (correct choice trial, mean v2fit¼
3.50), and it resulted in decreased accuracy when
predicting the reaction time in the testing set (no-choice
trials, mean v2test ¼ 8.20) over Model 3. This provided
additional support for Model 3.

Figure 14. Predictions of Model 4 (full model). Symbols are as in Figure 10.
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Discussion

We studied the influence of visual salience on value-
based decision processes of human observers perform-
ing a two-alternatives forced-choice task. Most previ-
ous studies examined the effect of visual saliency (Berg
et al., 2009) and value (Bendiksby & Platt, 2006;
Milosavljevic, Malmaud, Huth, Koch, & Rangel, 2010;
Milstein & Dorris, 2007; Platt & Glimcher, 1999) on
saccades and decisions in isolation. In contrast, we
manipulated saliency and value of targets simulta-
neously in order to investigate how these two factors
interact and how they influence the decision process.

Our behavioral results showed that not only value,
but also visual salience as well as congruency between
value and visual salience influence the decision process.
Specifically, we found that reaction time across all trial
types is correlated with all three of these variables.
Furthermore, congruency had an effect on error rates
as well as on reaction times in error trials. These
findings are in broad agreement with recent behavioral
studies of eye movements in macaque monkeys and
humans that also manipulated salience and value
information simultaneously (Markowitz et al., 2011;
Navalpakkam et al., 2010; Schutz et al., 2012). This
convergence of findings across species and effector
systems indicates that these behavioral trends are
robust and reflect basic selection mechanisms in the
primate brain. However, despite the similarity of the
behavioral findings, the mechanism underlying these
phenomena can differ depending on whether salience
and value information share the same feature dimen-
sion as will be discussed later.

Onset time differences

The speed and the onset model are based on different
hypotheses about how salience modulates the decision
process. In the speed model, salience influences
accumulation speed by modulating the probability of
an increase in activity, which influences how likely it is
that the accumulator responds to the input independent
of its strength. A possible neurophysiological interpre-
tation could be that salience modulates the likelihood
that an individual neuron responds to synaptic input,
or how many neurons out of the entire pool of decision
neurons respond to the input in a given time interval
and for a given stimulation. This interpretation does
not seem to be unreasonable, given our current
understanding of primate decision-making mecha-
nisms. It is therefore quite noteworthy that our analysis
ruled out this model so convincingly. Instead another
model, namely the onset model, explained the observed

reaction time distribution of error trials and no-choice
trials much better.

In the onset model, salience influences the onset time
of accumulators to accumulate value information
instead of influencing accumulation speed. Specifically,
this stochastic model suggests an earlier accumulation
onset time when processing high- compared to low-
salience targets. What might be the sources of this
earlier onset? One possibility is that the difference is
due to an attentional shift. Specifically, high-salience
targets might attract attention first, as predicted by
bottom-up attentional guidance models (Itti, Koch, &
Niebur, 1998). Focus on one of the targets might in
turn result in an advantage for the accumulation
process associated with this target, similar to the logic
underlying a recent model of how value-based decisions
are guided by visual attention (Krajbich & Rangel,
2011; Lim, O’Doherty, & Rangel, 2011). However, in
our paradigm, attentional guidance can only explain
the behavioral results on choice trials but not on no-
choice trials. In the latter, attention should always be
focused on the only target present, but we found that
reaction times still differed between high- and low-
salience trials (Figure 7). Even though saliency-based
models (Itti et al., 1998) predict slightly faster
deployment of attention to more salient than to less
salient targets, the effect is likely too small to explain
the size of the observed reaction time difference in no-
choice trials. Allocation of attention cannot, then, be
the main reason for the onset differences in the
accumulation process.

An alternative hypothesis is that the onset difference
is caused by differences in the visual processing time
required for computing the value of high- and low-
salience targets (Ratcliff, Hasegawa, Hasegawa, Smith,
& Segraves, 2007; Ratcliff & Smith, 2011). Low-
salience targets might need more time to be identified
than high-salience targets. This hypothesis is consistent
with our behavioral data, since the salience effect on
reaction time is similar for choice and no-choice trials.
It is also supported by neurophysiological findings of
clear effects of contrast, but not of attention, on visual
response latencies in primates (Lee, Williford, &
Maunsell, 2007). Our results suggest therefore that the
onset time of accumulation is time locked to the end of
the visual processing. This implies a sequential form of
information processing, similar to a recent model of
target selection in frontal eye fields (Purcell et al., 2010).
What might keep the accumulators from integrating
evidence earlier? One possibility is that a specific gating
mechanism blocks accumulation until a certain degree
of difference has developed in the input sources.
Alternatively, in our model, information about the
location of potential targets drives the accumulators
equally well and the two accumulators inhibit each
other sufficiently to suppress any activity increase. Only
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when value information is added is the symmetry
broken and the differentiated accumulation process can
start.

Functional architecture of value-based decision
making in primates

Our analysis using stochastic accumulator models
aimed at investigating the neuronal mechanisms
underlying behavior. Obviously, simple modeling
studies can only provide indirect evidence about
mechanisms implemented in the brain. Nevertheless,
the fact that our models show qualitative differences in
their ability to explain behavioral data allows us to rule
out entire families of functional architectures. The
failure of Model 1, the independent model, shows that
mutual inhibition between choices is required for the
decision mechanism. The comparison between the two
feed-forward inhibition models, speed and onset model,
shows that increased visual salience leads to an earlier
start of accumulation rather than an increased rate of
accumulation. That the rate of accumulation plays a
minor role, if any, is underscored by the fact that
including it in addition to the change in onset time
(Model 4) does not improve performance significantly.
These findings allow us to formulate a strong hypoth-
esis about the type of decision architecture that
underlies the effects of visual salience and value
information on choice behavior.

One hypothesis is that value and salience indepen-
dently drive action selection and compete for access to
the motor system. Indeed, we observed that early
choices reflected more strongly visual salience, while
later choices were more driven by value, consistent with
previous findings by Markowitz et al. (2011). These
authors suggested that the reaction time difference is
due to the time-varying balance between stimulus- and
reward-driven selections. This was reasonable, since in
their study salience influenced both location and value-
related information simultaneously. Information about
target location influences the preparation of motor acts
directed towards these locations (Schiller & Tehovnik,
2005). Information about target identity, on the other
hand, is crucial for the generation of value information,
which in turn affects competition between different
value options (Padoa-Schioppa, 2011). However, in our
study, we designed stimuli whose salience influenced
only the discrimination of target identity, but did not
affect the ability to locate a target. Therefore,
automatic selection processes driven by stimulus
location were equally strong for all targets as confirmed
by our second pilot study (singleton task; see Figures 4
and 7). If value and salience were competing during the
decision process, the choice behavior should show a
joint dependence on sensory and goal-directed pro-

cesses. In contrast, our behavioral results do not show
an interaction between visual salience and value.

This suggests a second hypothesis that there is a
combined value and salience map within the visuomo-
tor system (Navalpakkam et al., 2010; Schutz et al.,
2012). Under this hypothesis, the salience map formed
is first influenced by bottom-up factors (in our case
luminance contrast with the background) and is only
later modified by value information. This implies that
bottom-up salience alone can influence behavior
independent of value information, in particular during
early responses. However, in our study we were
interested in dissociating the effect of salience on value-
based decision making from the one on motor
generation in general. Indeed, the salience manipula-
tion that we used does not seem to have influenced
motor behavior very much, since the reaction time for
both high- and low-salience targets is the same in the
singleton task (Figures 4 and 7). Moreover, if the
salience map is modulated by the attention captured by
the objects associated with reward (Anderson, Laurent,
& Yantis, 2011), we would expect to see a joint
dependence between reward and salience, which is not
shown in the result. Therefore, the salience effect in our
experiment is less likely to be the result of early
activation in the salience map driven by bottom-up
factors.

Instead, these findings support a third alternative
hypothesis about the interaction of salience and value
in decision making; namely that value-based action
selection is a serial iterative decision process. First,
lower sensory areas process the stimuli and derive value
and location information from them. The salience of
the relevant visual feature influences how long this
process takes but has no influence on the output of this
stage. The processed information is then sent to
accumulators in a higher comparative area that selects
the final (and motor) response. At this point the value
input has been stripped of other content, such as
saliency. This serial processing hypothesis contains the
predictions of the combined saliency map hypothesis as
a special case. When the sensory features carrying both
target location and identity information are of varying
salience, the targets with more salient features will
influence the decision-making stage earlier and there
will be a higher likelihood that the subject will choose
the more salient target (in particular, if the accumula-
tion process was fast and there was less time for the less
salient target to reach the accumulation stage).
Behavior will appear as if bottom-up salience of the
targets alone can influence choice independent of value
information. Thus, for this set of experimental condi-
tions, both hypotheses explain the behavior equally
well. In contrast, our present experimental findings can
only be explained by the serial processing hypothesis
but not the combined saliency map hypothesis. This
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attribute of the serial processing hypothesis is attrac-
tive. Nevertheless, at this point we do not know if this
conjecture is indeed correct, since we have not tested
subjects in both conditions and determined if our
model can really explain data across both situations.

The higher order areas involved in the final decision
likely include structures representing subjective value,
such as orbitofrontal (Padoa-Schioppa & Assad, 2006)
and ventromedial prefrontal cortex (Kim, Hwang, &
Lee, 2008; Lim et al., 2011), and/or visual-motor
association structures, such as the lateral intraparietal
area (Platt & Glimcher, 1999; Sugrue, Corrado, &
Newsome, 2004), supplementary eye field (So & Stup-
horn, 2010), or the supplementary motor area (Scangos
& Stuphorn, 2010). Given our results, it is worth
investigating whether and how these areas integrate
both visual salience and value information during
value-based decision making when salience influences
selectively the value perception of an object, but not
awareness of its presence.

Keywords: decision making, accumulator, reaction
time
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Appendix

Regression analysis

We quantified the degree to which reaction times
reflected different qualities of the presented targets by
fitting a family of linear regression models to the
reaction times and determining the best-fitting model.
We first normalized data by dividing all reaction times
of a given participant by the largest value in correct
choice trials. The normalized reaction times were then
used for regression analysis. The eight tested factors
were: (a) value of the chosen target, (b) value of the
non-chosen target, (c) salience of the chosen target, (d)
salience of the non-chosen target, (e) value difference
between chosen and non-chosen target, (f) salience
difference between chosen and non-chosen target, (g)
multiplicative interaction between value and salience of
the chosen target, and (h) multiplicative interaction
between value and salience of the non-chosen target.
We identified the best fitting model by minimizing the
Bayesian information criterion (BIC),

BIC ¼ n·log
RSS

n

� �
þ K·logðnÞ; ðA1Þ

where n is the number of trials (a constant in our case),
k is the number of fitting parameters, and RSS the
residual sum of squares after fitting (Burnham &
Anderson, 2002; Busemeyer & Diederich, 2010). A
lower numerical BIC value indicates better fit of a
model, with a lower residual sum of squares indicating
better predictive power, and a larger K penalizes less
parsimonious models. This procedure is related to a
likelihood-ratio test, and equivalent to choosing a
model based on the F statistic (Sawa, 1978). It provides
a Bayesian test for nested hypotheses (Kass &
Wasserman, 1995).

We also used AIC test, which is similar to BIC test
that deals with the trade-off between the complexity of
the model and the goodness of fit of the model.
Different from BIC, AIC penalizes the number of
parameters less strongly. AIC value is defined as:

AIC ¼ n·log
RSS

n

� �
þ 2K: ðA2Þ

BIC evidence ratio test represent the relative likelihood
of the best model versus Model I (Burnham &
Anderson, 2002). Evidence ratio is the ratio of BIC
weight and is defined as:

w1

wi
”

1

e�1=2Di
”e1=2Di : ðA3Þ

w1 is the BIC weight for the best model that equals to
one. Di is the BIC difference for each model:

Di ¼ BICi � BICmin; ðA4Þ
in which BICmin is the model with the smallest BIC
value.

An alternative procedure would have been a series of
sequential F tests, but this approach, while exact,
requires the assumption of data with a normal
distribution that is not true for the reaction time
distribution. We decided therefore to use model
selection criteria based on information theories, be-
cause they were computationally straightforward and
potentially more robust. An additional advantage was
that we could compare all 255 models simultaneously,
using a consistent criterion (Burnham & Anderson,
2002).

Accumulator models

Behavioral data were fitted using accumulation
models, also called race or drift-diffusion models (Pike,
1966; Ratcliff, 1978; Vickers, 1970),which have been
shown to explain decision making in value-judgment
tasks (Milosavljevic et al., 2010). We studied four
related models that are schematically shown in Figure
8. Models 1–3 (independent model, speed model, and
onset model, respectively) are variants of a more
general model, Model 4 (full model), and are derived
from it by constraining one or more of its parameters.

We started with the description of the most general
model, Model 4 (Figure 8D). In choice trials, it consists
of two integrators m1 and m2 that accumulate evidence
in favor of the two possible choices as described by a
stochastic differential equation:

dm1 ¼ I1ð1þ dw1ÞHðt� t1ÞN1ðs1; dtÞf
�uI2ð1þ dw2ÞHðt� t2ÞN2ðs2; dtÞ;

dm2 ¼ I2ð1þ dw2ÞHðt� t2ÞN2ðs2; dtÞf
�uI1ð1þ dw1ÞHðt� t1ÞN1ðs1; dtÞ;

m1ð0Þ ¼ m2ð0Þ ¼ 0: ðA5Þ
In the simulations, we always chose dt¼ 1ms. The first
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term in Equation A5 describes how each integrator
accumulates evidence from its corresponding target. It
has four factors. The first, I1, and I2, is the mean quanta
of accumulation. We assumed that this quanta is
determined by the normalized value of the target, vi �
(0, 0.1, 0.2, 0.4, 0.8). The second, (1 þ dwi) introduces
variability for each accumulated quantum. As dwi is
drawn from a normal distribution, at each time the
instantaneous accumulation, I(1 þ dwi) comes from a
Gaussian distribution whose mean is equal to its
standard deviation and both are determined by

I1 ¼ a0 þ a1v1

I2 ¼ a0 þ a1v2
;

�
ðA6Þ

and a0 and a1 are fitted coefficients. We equated
standard deviation and mean of the distribution to
minimize the number of free parameters.

The third factor is the onset time of accumulation.
This is determined by H(t�ti) in Equation A5. H(t) is
the Heaviside step function:

HðtÞ ¼ 1; t � 0
0; t , 0

:

�
ðA7Þ

ti is negatively correlated with the salience of the target.
ti¼ t0þ tisi, where si is the salience of target Ii, and t0,
and t1 are fitted coefficients.

The fourth factor is the probability of accumulation,
which is also determined by the salience of the target:

PðN1ðtþ dtÞ �N1ðtÞ ¼ 1Þf
¼ PðN1ðdtÞ ¼ 1Þ ¼ ðk0 þ ks1Þdt;
PðN2ðtþ dtÞ �N2ðtÞ ¼ 1Þf
¼ PðN2ðdtÞ ¼ 1Þ ¼ ðk0 þ ks2Þdt; ðA8Þ

where k0 and k are fitted coefficients. No accumulation
occurs in accumulator mi. if Ni¼ 0 and the probability
of this happening is determined by si through Equation
8. The mean rate of accumulation is determined by Ii(k0
þ ksi). By having the probability of accumulation term,
the salience of value information could influence
accumulation rate in a way that is orthogonal to the
effect of value itself. That is the influence of salience is
independent of the strength of value information.

Finally, u in Equation A5 is the inhibition coeffi-
cient. It determines the strength of inhibition between
two integrators.

In addition to the general model defined in
Equations A5–A8, we now introduce the more
restricted Models 1–3. Each is obtained from the
general model by removing some degrees of freedom.
Model 1 (Figure 8A) is an independent model in which
accumulators for each of the two alternatives integrate
evidence independently. The inhibition coefficient u
(Equation A5) was set to zero in this model.
Information for each integrator is therefore accumu-

lated according to the simplified version:

dm1 ¼ I1ð1þ dw1ÞHðt� t1ÞN1ðs1; dtÞ;
dm2 ¼ I2ð1þ dw2ÞHðt� t2ÞN2ðs2; dtÞ;

�

m1ð0Þ ¼ m2ð0Þ ¼ 0: ðA9Þ
Models 2, 3, and 4 are feed-forward inhibition models
(Purcell et al., 2010; Shadlen & Newsome, 2001). We
assume that the amount of momentary evidence for
accumulation is positively correlated with the value of
the corresponding targets and we take into account the
influence of the salience of the target based on two
different hypotheses. In Model 2 (speed model) (Figure
8B), we assume that salience influences the rate, but not
the onset time of accumulation. Therefore, onset
difference, ti, was set to zero for Model 2. The
stochastic differential equations for integrators accu-
mulating evidence can then be simplified as:

dm1 ¼ I1ð1þ dw1ÞN1ðs1; dtÞ � uI2ð1þ dw2ÞN2ðs2; dtÞ;
dm2 ¼ I2ð1þ dw2ÞN2ðs2; dtÞ � uI1ð1þ dw1ÞN1ðs1; dtÞ;

�

m1ð0Þ ¼ m2ð0Þ ¼ 0: ðA10Þ
In contrast, in Model 3 (onset model) (Figure 8C) we
assume that salience influences the onset time rather the
rate of accumulation. The accumulation rate was
determined by the probability to receive momentary
evidence, P(Ni(dt)). Accordingly, in this model the
probability of accumulation for each integrator in a
given time interval, and therefore the rate of accumu-
lation of this accumulator, is independent of the
salience level of the corresponding target.

PðN1ðdtÞ ¼ 1Þ ¼ PðN2ðdtÞ ¼ 1Þ ¼ k0: ðA11Þ
The stochastic differential equations for integrators
accumulating evidence can be simplified as

dm1 ¼ I1ð1þ dw1ÞHðt� t1ÞN1ðdtÞf
�uI2ð1þ dw2ÞHðt� t2ÞN2ðdtÞ;

dm2 ¼ I2ð1þ dw2ÞHðt� t2ÞN2ðdtÞf
�uI1ð1þ dw1ÞHðt� t1ÞN1ðdtÞ;

m1ð0Þ ¼ m2ð0Þ ¼ 0: ðA12Þ
Traditionally the accumulators in decision making have
been modeled as a Wiener process and a continuous
accumulation of information. Since we want to test the
hypothesis that value influences accumulated quanta
magnitude and salience accumulated quanta rate, we
have to use the more general description presented
above. However, it should be noted that in Model 3,
the accumulation quanta frequency is independent of
stimulus properties and thus could be mapped more
easily to a Wiener process.
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Having defined the models for choice trials, we now
define the general model for no-choice trials. It is
identical to the choice-trial model (Equation A5) but
only one dependent variable (m1) is defined. Thus, there
is only one integrator m1 and only one input unit, with
all values corresponding to the second target set to
zero.

Simulation methods

We adopted standard model fitting techniques to
optimize the values of parameters that provided the
best fit to the behavioral data. For each set of
parameter values, we generated 100 simulated trials to
produce predicted RT distributions for all 24 choice
trial conditions (4 Trial Types · 6 Values). We used
Pearson chi-square statistics to quantify the discrep-
ancies between the observed and predicted cumulative
correct RT distribution (Van Zandt et al., 2000)

v2 ¼ n
X
i

ðoi � piÞ2

pi
: ðA13Þ

RTs were binned corresponding to the cumulative
probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. oi is the
observed proportion of RTs in these bins, pi is the
corresponding proportions from the respective model,
and n is the number of correct trials in a given
experiment that is the total number of data points in
the observed (and simulated) RT distribution. The
advantage of this fitting method is that it maximizes the
proportion of correctly fitted responses in addition to
matching the distribution of observed RTs (Purcell et
al., 2010; Van Zandt et al., 2000).

We used a hybrid scheme implemented in MATLAB
(The MathWorks, Natick, MA) to find values of the

free parameters that minimize the chi-square value. We
first ran a genetic algorithm (GA) to find parameter
values near a global optimum. Then the solution
derived by the GA was used as an initial starting point
for the simplex algorithm (Nelder & Mead, 1965) that
is more efficient for a local search. For data sets with 24
conditions, all conditions were fitted simultaneously by
summing the individual chi-square statistics for all of
them. For each model and data set, we ran this hybrid
routine 30 times with different, randomly selected
initial conditions to mitigate the problem of finding
local minima.

To evaluate the fitness of the four models, we also
compared their predictions to behavior. To do this, we
first used the best fitting parameters for a given model
to simulate 100 RT distributions for all conditions,
which included 24 conditions in choice trials and 10
conditions in no-choice trials. We repeated this
procedure 30 times for all four models, generating 30v2

values separately for correct choice trials [v2
fit] and no-

choice trials [v2
test]. Thus, the v2

fit values tested the fitness
using those observed data that had previously been
used in the parameter optimization of the models. In
contrast, the v2

test values tested the fitness using those
observed data that had not been used in the parameter
optimization and provided an independent assessment
of the predictability of the different models. In
addition, we also compared the percentage of error
trials and the RTs in error trials in different types of
choice trials to predictions from the optimized models.
Next, we performed a global sensitivity analysis
(Mihalas, Dong, von der Heydt, & Niebur, 2011; Ziehn
& Tomlin, 2009) in MATLAB on seven parameters (u,
a0, a1, t0, t1, a, k0, and k in Equations 5–8) to specify
which parameters contributed to the differences be-
tween models and to what extent.
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