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Abstract

Long-term monitoring of individual coral colonies is important for understanding variability

between and within species over time in the context of thermal stress. Here, we analyze an

11-year time series of permanent benthic photoquadrats taken on Palmyra Atoll, central

Pacific, from 2009 to 2019 to track the growth (i.e., increase in live planar area), pigmenta-

tion or lack thereof (“discoloration”), partial or whole-colony mortality, survival, and regrowth

of 314 individual coral colonies of nine focal species from two reef habitat types. During this

period, thermal anomalies occurred on Palmyra in conjunction with El Niño-Southern Oscil-

lation events in both 2009 and 2015, of which the latter heatwave was longer-lasting and

more thermally-severe. We found that coral responses varied by habitat, within and among

species, and/or according to the degree of accumulated thermal stress. Nearly all species,

particularly Stylophora pistillata and Pocillopora damicornis, responded more negatively to

the 2015 heatwave in terms of colony-specific discoloration and reduction in live planar

area. While discoloration was more prominent at the shallower reef terrace compared to the

fore reef for this subset of colonies, the reef terrace exhibited greater stability of community-

wide coral cover. Colony fate was associated with severity of discoloration at the time of

warming: one year following the 2009 heatwave, more severely discolored colonies were

more likely to grow, yet following the second heatwave in 2015, colonies were more likely to

experience shrinkage or mortality. However, colonies that were more severely discolored in

2009 were not necessarily more discolored in 2015, suggesting that colony-specific factors

may be more influential in governing responses to thermal stress.

Introduction

Climate change and marine heatwaves are increasing the frequency and severity of coral

bleaching and mortality events [1, 2], transforming coral assemblages at regional [3–5] and

local scales [6, 7]. Climate change, principally ocean warming and acidification, threatens not

only coral reef ecosystems’ biodiversity but also their capacity to provide valuable ecological
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services [8]. Despite evidence that some coral communities can adapt to rising seawater tem-

peratures [9–11], under projected climate scenarios the majority of reefs will likely face

repeated and/or annual bleaching events by 2050 [12–14], resulting in extensive reductions in

community-wide live coral area as well as shifts in community assemblages toward more

stress-tolerant species [15, 16] and acclimatized or heat-adapted individuals [17]. Alternatively,

coral reefs may experience local extirpation [18] and phase shifts to non-coral-dominated

states [19].

Several environmental triggers are known to result in coral bleaching, including reduced

salinity, decreased seawater temperature, elevated solar and ultraviolet radiation, or bacterial

infection [20]. However, bleaching is typically associated with exposure to anomalous or per-

sistent warm water temperatures, resulting in a breakdown of the relationship between coral

hosts and their endosymbiont algae, Symbiodiniaceae (Fig 1a). The susceptibility of corals to

thermal stress-induced bleaching differs among coral species and colony morphologies [21–

23], which can be linked to the thermal resistance or sensitivity of resident Symbiodiniaceae

[24], availability of heterotrophic resources [25], prior history of thermal exposure [26, 27], life

history strategies [28], and gene expression or other mechanisms of local adaptation [29, 30].

Corals also experience natural variation in color resulting in paling, patchy coloration, or

“discoloration” (i.e., lack of pigmentation not necessarily due to thermal stress). Discoloration

can be seen as a result of predation (e.g., by Drupella snails or crown-of-thorns sea stars

(Acanthaster); Fig 1b) or coral disease (such as White Syndrome or White Band Disease; Fig

1c), revealing the skeleton beneath the damaged coral tissue. Additionally, active growth tips

or margins of some fast-growing coral taxa (e.g., branching Acropora or foliose Montipora; Fig

1d) commonly appear white prior to acquiring endosymbionts [31]. Since coloration can be a

visual proxy for coral health [32], it would be beneficial to objectively measure a colony’s natu-

rally-occurring change in color over time (Fig 1e) in order to determine how much of the total

“bleaching” is actually temperature-induced. Although tools such as the Hawaiian Koʻa Card

[33] and the Australian Coral Watch Coral Health Chart [34] are used to assess bleaching in

regional score-calibrated cards, they have not been implemented for tracking bleaching within

the same colony through time. Since we are quantifying the lack of pigmentation (either natu-

rally-occurring from growth, predation, and disease or caused by thermal stress, without dif-

ferentiating between them) at every time point—not all of which were thermally anomalous,

in the present study we refer to this metric as “discoloration” rather than bleaching.

Many in situ observational studies tend to categorize corals as either “fully bleached,” “par-

tially bleached,” or “unbleached” [35–38], however, coral coloration or discoloration encom-

passes a continuous spectrum and is not a discrete trait. Similarly, distinct color morphs may

exist for the same coral species as a result of niche partitioning or symbiont community assem-

blages [39, 40]. In response to a thermal anomaly, there are various potential outcomes for cor-

als beyond binary survivorship states (i.e., whole-colony survival or mortality), as partial

mortality and tissue regeneration are possible [41, 42], particularly for non-acroporids [43].

Current analyses rarely consider the growth trajectories and bleaching proportions of individ-

ual coral colonies (but see: [44–46]), whether at the onset of thermal stress (which can range in

magnitude and duration) or after peak bleaching has occurred [47]. It has been shown that

bleaching and mortality are often more prevalent in areas experiencing higher sea surface tem-

peratures [2, 48]. Thus, when visually evaluating coral condition, it is important to also take

into account thermal variability and bleaching chronology [49].

Santavy et al. [50] introduced the term “causal bleaching” to distinguish localized bleaching

in individual coral colonies from widespread (i.e., mass) coral bleaching, and similarly, others

have suggested differentiating between non- or sublethal bleaching and lethal bleaching [51],

yet this approach has not been adopted by the scientific community. Quantifying a given coral
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Fig 1. Coral discoloration detection using image analysis. Examples of coral discoloration from Palmyra and their respective causes,

resulting from (a) elevated seawater temperatures leading to thermal stress (otherwise known as bleaching) or naturally through (b)

predation, (c) disease, or (d) growth. An image digitization process for detecting coral discoloration using grayscale (see supporting

information) is shown in (e).

https://doi.org/10.1371/journal.pone.0312409.g001
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colony’s bleaching, paling, or discoloration at multiple points in time and monitoring how this

changes in the context of thermal stress would be more informative than single-snapshot sur-

veys, but few such data sets are available. Further, coral responses are known to vary across

genera, morphologies, and regions (reviewed in [52]) and each taxon likely has a unique natu-

ral baseline of coloration which may fluctuate seasonally and/or with depth, temperature, or

other external factors [53, 54]. Colonies of the same taxon may also respond differently [44,

55], and this variability may be attributed to environmental differences such as reef habitat

type [56] or local disturbance [57], as well as individual differences such as colony size [58–

60], bleaching history [61], or the endosymbiont community structure [62, 63].

In this study, we quantified species-specific, colony-level variability in discoloration (i.e.,

paling or loss of pigmentation) and colony size (in terms of live planar area) of hard corals on

Palmyra Atoll from 2009 to 2019, at least once annually, using image analysis. The goals of this

study were to determine if and how coral responses to thermal stress varied by habitat, over

time, and/or across two thermal anomalies, and whether some species were more resistant

than others with respect to their growth and coloration. We also assessed whether discolor-

ation severity associated with a known thermal anomaly in 2009 and 2015 corresponded to

colony fate (i.e., growth, shrinkage, or whole-colony mortality) one year later, and whether col-

onies that were more discolored during the first heatwave were either more, or less, discolored

during the second heatwave. Finally, we explored whether accumulated thermal stress was an

accurate predictor of the amount of colony discoloration. We expected to see differential

responses within and among species across successive heatwaves, presumably tied to the

degree of thermal stress. In an era of accelerated large-scale warming, tracking individual colo-

nies can help to understand why certain corals experience mortality yet others recover, which

could better inform management efforts.

Materials and methods

Study site

Palmyra (5.89 ºN, 162.08 ºW) is a remote atoll in the Northern Line Islands, located approxi-

mately 1,300 km south of Hawai‘i in the central Pacific Ocean. Palmyra is federally-protected

as a National Wildlife Refuge as part of the Pacific Remote Island Areas National Marine Mon-

ument. Aside from a brief period of military occupation during World War II, Palmyra is

uninhabited and experiences minimal direct human impact. As such, its coral reefs are consid-

ered quasi-pristine [64], making Palmyra an ideal location to study global change in the

absence of confounding local stressors such as fishing and pollution [65]. Palmyra’s reefs are

characterized by high benthic cover of hard corals, as well as other reef builders including crus-

tose coralline algae [66, 67], and high herbivore biomass and density [68, 69]. These reefs have

been monitored yearly over the past decade, during which they experienced thermal anomalies

associated with El Niño-Southern Oscillation (ENSO) in both 2009 and 2015–16 [70, 71].

Data collection

In 2009, four permanent monitoring sites were established at each of Palmyra’s main reef

habitats: the deeper, wave-exposed Fore Reef (FR, 10 m depth), and the shallow, wave-shel-

tered Reef Terrace (RT, 5 m depth). Ten replicate plots (90 x 60 cm) were established along

a 50 m transect line at each site, marked with stainless steel eye bolts in opposing corners

and secured with marine epoxy. Photos of the individual plots (i.e., “photoquadrats”) were

collected by SCUBA divers using a Canon G Series (G9-G16) camera attached to a tripod

with a PVC frame, ensuring that images were taken at a consistent angle and fixed distance

from the substrate. Sites were visited at least once per year and up to three times per year
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from 2009 to 2019. We used image analysis tools in Adobe Photoshop (Creative Cloud) to

white-balance the images and determine planar areas of live hard coral colonies, as well as

colony-specific discoloration at every time point (see S1 File for detailed methods and justi-

fication). Coral colonies were manually assigned identification labels to match the same

colonies through time. We also calculated the total percent cover of hard corals in each

quadrat and site for each species over time. To compare thermal stress on Palmyra across

sampling time points, we used a revised percentile-based method of estimating Degree

Heating Weeks (DHW, a measure of accumulated thermal stress; [72]) for central equato-

rial Pacific reefs developed by Mollica et al. [73]. This metric incorporates inter-annual var-

iability in sea surface temperatures rather than maximum monthly means, since in this

region the maximum temperature to which corals are normally exposed does not occur

during the same month every year [73]. While elevated percentile-based DHW values were

also seen on Palmyra in 2018 and 2019, we considered 2009 and 2015 as thermal anomalies

for the purposes of this study because widespread bleaching was only observed in situ dur-

ing those years.

Statistical analyses

We used non-metric multidimensional scaling (NMDS) via metaMDS in the package vegan

[74] to visualize the initial and final coral community composition by habitat on Palmyra in

September 2009 and September 2019. We calculated Bray-Curtis dissimilarity measures for

coral species percent cover in each quadrat, applying a square-root transformation to balance

the effect of disproportionately-abundant species [75]. To determine if coral communities var-

ied across space and/or time, we conducted a three-way permutational multivariate analysis of

variance (PERMANOVA) with 9999 permutations using adonis in vegan, in which habitat and

time were considered fixed effects while site (nested within habitat) was considered random.

We then identified which species contributed most to these differences through SIMPER or

“similarity percentages” analysis using simper in vegan [76].

Next, for a subset of nine dominant reef-building coral species whose colonies were entirely

present within the photoquadrat frame (Astrea curta, Astreopora myriophthalma, Goniastrea
stelligera, Hydnophora microconos, Pavona chiriquiensis, Pavona duerdeni, Pocillopora dami-
cornis, Pocillopora meandrina, and Stylophora pistillata; S1 Table), we examined changes in

planar area and discoloration of individual coral colonies through time using image analysis

(S1 File). Linear mixed-effects models were used for each species separately to test whether live

planar areas or percent discoloration varied over time, by habitat, and/or in response to ther-

mal stress. The models were fitted by restricted maximum likelihood using lmer in the lme4

package [77] and assumptions of normality were visually assessed by plotting the residuals. We

chose a mixed-effects model instead of a standard repeated measures analysis of variance

(ANOVA) because of our unbalanced design, since we did not have observations of all colonies

at every time point. Further, the mixed-effects model allowed us to treat time as a continuous

variable, given that our time points were not always evenly spaced. Time (months since initial

observation in 2009) and habitat were treated as fixed effects (where possible; not all species

had representatives from both habitats) and thermal stress (in terms of percentile-based DHW

at the time of observation) was treated as a covariate. Colony was considered a random effect

to account for repeated measures through time. To identify significant fixed effects, we ran a

Type-I ANOVA (or Type-III for interactions between months and habitat) with Sat-

terthwaite’s approximation method on each model. We also investigated whether there was a

relationship between accumulated thermal stress and percent discoloration using Pearson’s

correlation. To quantify short-term responses, we calculated the percent change in live planar
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area for individual colonies, averaged by species, one year after each of the thermal anomalies

in 2009 and 2015 (i.e., 2010 and 2016, respectively).

Additionally, to explore whether a colony’s level of discoloration during warming corre-

sponded to their fate—colony growth (an increase in live planar area), shrinkage (partial mor-

tality or a reduction in live planar area), or whole-colony mortality, we constructed transition

matrices in a format adapted from Williams et al. [78] showing the likelihood of different fates

one year following each thermal anomaly. Colonies were grouped into categories based on dis-

coloration severity: 0%,<25%, 25–50%, 51–75%, and>75% (none, low, moderate, high, or

severe discoloration) and the number of colonies within a category experiencing each fate was

tallied to calculate frequencies and represented through histograms. Due to limited sample

sizes, it was not possible to consider colony fate by species, so for the purpose of these transi-

tion matrices we combined colonies of the nine focal species. Finally, to determine whether

colony fate was dependent on discoloration severity, we used Fisher’s exact test on count data

from both heatwaves to compare whether colonies of each discoloration category grew,

shrank, or died differently than would be expected by chance [79]. All analyses were conducted

in R software version 3.6.3 [80].

Results

Coral communities by habitat over time

Species richness of reef-building hard corals was greater on the fore reef (FR), with at least 29

species seen in photoquadrats taken at this habitat compared to 22 on the reef terrace (RT).

Coral community composition at the reef terrace was relatively consistent over time while the

fore reef was more dynamic (S3 Fig). Overall, coral cover was higher on the reef terrace at

49.0 ± 0.6% (mean ± SE) and remained stable through time. Coral cover on the fore reef expe-

rienced a gradual decline from 35.5 ± 3.0% in 2009 to 17.5 ± 2.3% in 2019. Coral communities

were more similar within habitats than among habitats based on Bray-Curtis dissimilarity

measures calculated from changes in percent cover at the initial and final time points (Fig 2).

From 2009 to 2019, coral community assemblages varied significantly by habitat and site

(PERMANOVA, p<0.001; S2 Table), but not over time, and there were no significant interac-

tions. Notably, the coral community at the fore reef was more variable in 2019 than in 2009

(Fig 2). A SIMPER analysis revealed that taxa contributing most to habitat dissimilarity

included Montipora and Acropora spp., predominantly found at the reef terrace, whereas Pocil-
lopora meandrina, Goniastrea stelligera, and Porites arnaudi were more abundant at the fore

reef (S3 Table).

Live area and discoloration in relation to thermal stress

Live planar area of coral colonies varied with thermal stress, by habitat, and/or over time

depending on taxon (Fig 3; S4 Table). Percentile-based DHW significantly affected planar area

in A. curta, H. microconos, P. chiriquiensis, and P. damicornis. Colonies of P. damicornis
(n = 38, exclusively from RT) and A. curta (n = 19, all but one from FR) were the smallest on

average at 15.9 ± 1.2 cm2 and 16.8 ± 1.3 cm2, respectively, while colonies of P. duerdeni (n = 8

from FR) and H. microconos (n = 9 from FR) were largest at 236.3 ± 27.4 cm2 and 218.8 ± 24.9

cm2, respectively. Of species represented at both habitats, colonies of G. stelligera (n = 34 at

FR, n = 15 at RT) and P. meandrina (n = 116 at FR, n = 24 at RT) were larger at the fore reef

(125.7 ± 9.5 cm2 and 59.8 ± 2.2 cm2, respectively) than the reef terrace (14.5 ± 1.9 cm2 and

29.2 ± 1.9 cm2, respectively). Live planar area changed significantly through time (p<0.05) for

all taxa other than P. duerdeni and S. pistillata (S4 Table).
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Colonies of H. microconos and P. duerdeni experienced the highest discoloration over time

at 22.0 ± 2.1% and 21.3 ± 1.6% on average, respectively, while colonies of P. chiriquiensis and

P. damicornis had the lowest discoloration over time at 9.5 ± 0.7% and 7.3 ± 0.8% on average

(S4 Fig). For species found at both habitats, colonies of G. stelligera and P. meandrina were

more discolored at the reef terrace (31.1 ± 2.3% and 16.2 ± 1.2%, respectively) compared to the

fore reef (14.0 ± 0.8% and 6.9 ± 0.4%). Discoloration changed significantly through time for A.

myriophthalma (p = 0.009) and P. chiriquiensis (p<0.001; S5 Table). Colonies of S. pistillata
(n = 7, only from FR) peaked in discoloration at 40.1 ± 8.7% during the second heatwave in

September 2015, the highest among all focal species (S4i Fig). There was a significant effect of

percentile-based DHW on percent discoloration in all taxa aside from A. myriophthalma and

P. duerdeni (S5 Table).

At both habitats, the most discoloration occurred when accumulated thermal stress was at

its highest (19.6 ± 1.9% and 23.3 ± 5.0% discoloration at FR and RT, respectively, correspond-

ing to 7.56 DHW in 2015; Fig 4). This correlation was significant for the fore reef (Pearson’s

r = 0.70, p = 0.016) but not the reef terrace (Pearson’s r = 0.59, p = 0.055), suggesting that for

this data set, percentile-based DHW can be used to reliably predict discoloration only at the

Fig 2. Coral community composition by habitat and year. Non-metric multidimensional scaling (NMDS) based on Bray-Curtis dissimilarity

measures of coral community composition by species (in terms of square-root-transformed percent cover data) within each quadrat. Points are color-

coded by habitat, with shapes representing different time points in either 2009 or 2019.

https://doi.org/10.1371/journal.pone.0312409.g002
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fore reef. Discoloration was consistently higher at the reef terrace than the fore reef for this

subset of 314 colonies (Fig 4) for species where colony-level analysis was performed.

Coral colony fate following thermal anomalies

Percent change in colony planar area also varied by species and thermal anomaly. Palmyra

experienced two large-scale thermal anomalies during this study: the first heatwave in 2009

was relatively mild with a percentile-based DHW value of 1.44, while the second heatwave in

2015 was longer-lasting and more thermally-severe at 7.56 DHW [70]. Species whose colonies

shrank one year following the first heatwave in 2009 (P. damicornis and S. pistillata) lost equal

to or more planar area following the second heatwave in 2015 (Table 1). Species whose colo-

nies gained planar area in 2010 (A. curta, A. myriophthalma, G. stelligera, and H. microconos)

Fig 3. Live planar areas of coral colonies by species over time. Discolored and normally-pigmented live planar areas (mean ± SE) for individual coral colonies

over time from both habitats, by species. Colony sample sizes are shown on the top left.

https://doi.org/10.1371/journal.pone.0312409.g003
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Fig 4. Coral discoloration by habitat and year. Percent discoloration (mean ± SE) by habitat (Fore Reef in orange, Reef Terrace in red) corresponding to the

percentile-based Degree Heating Weeks (DHW) at each observation time point, labeled by year. Pearson’s correlation coefficient is shown on the right of the

trendlines.

https://doi.org/10.1371/journal.pone.0312409.g004

Table 1. Changes in coral colony live planar areas following thermal anomalies.

1st thermal anomaly 2nd thermal anomaly

Species Colony sample

size

% change in colony live area one year later

(mean ± SE)

Colony sample

size

% change in colony live area one year later

(mean ± SE)

Astrea curta 18 13.5 ± 11.9 8 -8.6 ± 23.7

Astreopora
myriophthalma

7 18.1 ± 17.6 4 -9.5 ± 16.3

Goniastrea stelligera 46 37.3 ± 23.9 25 -28.6 ± 10.1

Hydnophora microconos 6 7.6 ± 7.1 6 -13.2 ± 32.2

Pavona chiriquiensis 36 11.4 ± 11.5 16 2.3 ± 16.7

Pavona duerdeni 8 2.8 ± 20.1 6 -1.6 ± 22.8

Pocillopora damicornis 38 -13.2 ± 16.2 5 -17.6 ± 22.8

Pocillopora meandrina 139 36.8 ± 7.5 30 11.9 ± 10.9

Stylophora pistillata 7 -6.6 ± 25.1 5 -34.8 ± 15.6

Average (all species) 305 23.4 ± 5.7 105 -7.4 ± 5.7

Percent change (mean ± SE) in live planar area for individual colonies by species, one year following thermal anomalies in 2009 and 2015. Positive change (i.e., growth)

is shaded in green, negligible change (defined as <5%) in gray, and negative change (i.e., partial mortality) in red. Sample sizes are inconsistent across heatwaves because

of some cases of whole-colony mortality by 2015.

https://doi.org/10.1371/journal.pone.0312409.t001
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shrank in 2016 (Table 1). Colonies of S. pistillata suffered the highest partial mortality in 2016,

while P. duerdeni colonies exhibited low partial mortality following both heatwaves. When

averaging across species, live planar area increased by about 23.4 ± 5.7% after 2009 and

decreased by 7.4 ± 5.7% after 2015 (Table 1). Although colonies of P. meandrina grew follow-

ing both heatwaves, there were many cases of whole-colony mortality, with only 21.6% of colo-

nies remaining by 2015. Overall, colonies that experienced greater discoloration in 2009 were

not necessarily those that experienced whole-colony mortality or greater discoloration in 2015.

In fact, most colonies experiencing whole-colony mortality by 2015 were only between 0 to

25% discolored in 2009. For A. curta, H. microconos, P. damicornis, P. meandrina, and S. pistil-
lata, discoloration was generally greater in 2015 compared to 2009 (Fig 5). Most colonies of P.

chiriquiensis that survived through 2015 were discolored to a similar extent in 2009 and 2015,

while colonies of G. stelligera had mixed responses.

As for colony fates, of the 37 colonies with no discoloration in 2009, the majority (73.0%)

grew by 2010 (Table 2a, S5a Fig). In contrast, around half (57.1%) of the 7 colonies lacking any

discoloration in 2015 grew by 2016 (Table 2b, S5b Fig). In 2009, none of the colonies that were

highly (i.e., 51–75%) or severely (>75%) discolored died by 2010, whereas in 2015, severely-

discolored colonies either shrank or died by 2016 (although the sample size was low; n = 2). In

2010, shrinkage was most common when colonies had low (<25%) to moderate (25–50%) dis-

coloration the previous year (Table 2a) whereas in 2016, shrinkage was common for colonies

of any amount of discoloration (Table 2b). Colonies more severely-discolored in 2009 were

less likely to die and more likely to grow by 2010, yet colonies more severely-discolored in

2015 were less likely to grow by 2016. Discoloration severity significantly predicted colony fate

after one year (p = 0.03; two-sided Fisher’s exact test). The 2015 heatwave led to more variable

responses within and between discoloration categories, although sample sizes were limited for

highly or severely-discolored colonies.

Discussion

Tracking individual coral colonies of different taxa through time may provide insight into spe-

cies or colony-level traits that promote resistance or recovery from anthropogenic warming.

Here we used a photographic approach (Fig 1e; Supp. materials) to quantify colony-level dis-

coloration and changes in live planar area over time for nine reef-building coral species across

two reef habitats on Palmyra. We found that the first heatwave in 2009 caused partial mortality

only in Stylophora pistillata and Pocillopora meandrina, while six out of nine species responded

negatively to the second heatwave in 2015 (Table 1). Overall, for the 314 individual coral colo-

nies, discoloration was higher at the reef terrace than the fore reef (Fig 4) throughout the time

series; however, from 2009 to 2019, community-wide coral cover declined on the fore reef

whereas it was maintained at the reef terrace (S3 Fig), showing a higher capacity for resilience

at this habitat.

Among the most discolored species in 2015 was the branching coral Stylophora pistillata
(S4i Fig), which was previously found to have the highest bleaching prevalence and severity on

Palmyra in 2009 [71]. Stylophora pistillata is relatively fast-growing and short-lived (i.e.,

“weedy”), as are many Pocillopora spp. [28], which had low bleaching prevalence in 2009 [71]

and minimal discoloration through time (Fig 3g and 3h). Although we saw many cases of

whole-colony mortality in branching Pocillopora (Fig 5g and 5h), this genus is known for its

high recruitment density and population turnover [81] and new individuals were established

across the 11-year time span. Goniastrea stelligera and Astrea curta, both massive/sub-massive

species which are generally thought to be more resistant to bleaching [21, 23], showed higher

bleaching severity on Palmyra in 2009 [71] with low to moderate discoloration through time,
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and colonies ultimately lost much of their live area (Fig 3a–3c). In contrast, colonies of Hydno-
phora microconos were naturally more discolored than other species (but see [82] regarding

their high within-colony Symbiodiniaceae diversity and flexibility), yet their live area was simi-

lar on average between final and initial time points (Fig 3d). Massive/encrusting Pavona spp.,

previously noted for their stress tolerance and fast recovery rates [83, 84], had low discolor-

ation and were more stable in terms of their planar area one year post-heatwave (Table 1).

Meanwhile, colonies of encrusting Astreopora myriophthalma, which also showed the lowest

bleaching prevalence in 2009 [71] grew by 2019 (Fig 3b), highlighting variability in responses

among taxa and morphologies.

Fig 5. Discoloration comparison for the same coral colonies across two thermal anomalies. Scatterplots comparing percent discoloration in 2009 and 2015 for

individual coral colonies by species. Each point represents a coral colony, color-coded by habitat with orange for Fore Reef and red for Reef Terrace. The diagonal

dashed line indicates the 1:1 slope in which colonies were discolored by the same amount in both years. If a colony was more discolored in 2015 than 2009, it would

fall on the left of the diagonal line and if a colony was less discolored in 2015 than 2009 it would fall to the right of the line. Gray points are colonies that succumbed

to whole-colony mortality by 2015.

https://doi.org/10.1371/journal.pone.0312409.g005
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Coral community structure and bleaching responses on Palmyra are also known to vary by

habitat [67] (yet this does not seem to drive symbiont distribution patterns; [85]), with more

subsequent mortality on the fore reef and limited mortality on the reef terrace [70]. As such,

cover of hard corals has been gradually declining on Palmyra’s fore reef since 2015 [66] yet has

remained consistent at the reef terrace as of 2019. Past studies have similarly found that abiotic

and biotic factors influence local bleaching prevalence [71, 86, 87]. Solar heating and irradi-

ance is higher at the shallower, wave-sheltered reef terrace [67], which could explain why sea-

sonal paling or discoloration was more prominent at this habitat in the present study. Deeper,

more turbid waters are thought to provide a refuge for corals due to the attenuation of heat or

light [53, 88], but depth does not always confer resistance to bleaching [89, 90] and there is evi-

dence that some taxa may benefit from a depth refuge more than others [54]. In the present

study, P. meandrina and G. stelligera colonies experienced less discoloration on the deeper,

wave-exposed fore reef. On Palmyra, the potential for a thermal refuge driven by upwelling is

seen below 15 m depth [91] but given that all of our sites were relatively shallow (5 m or 10 m

depth), effects of cooling were likely limited. Other environmental variables that differ by habi-

tat on Palmyra include temperature [70], sedimentation and turbidity [71], hydrodynamic

connectivity [92], pH and dissolved oxygen fluxes [93, 94], and heterotrophic resource avail-

ability [95]. Corals on the reef terrace experience more diurnal variability, which may have

prepared them to withstand the effects of thermal stress. Reef terrace corals also receive inputs

of zooplankton and particulate organic matter from the nearby lagoon, which may serve as a

Table 2. Coral colony fate based on discoloration severity.

a Colony fate in 2010

Growth Shrinkage Mortality

Discoloration in 2009 0%

(n = 37)

73.0% 16.2% 10.8%

<25%

(n = 209)

63.2% 32.1% 4.8%

25–50%

(n = 48)

56.3% 35.4% 8.3%

51–75%

(n = 10)

90% 10% 0%

>75%

(n = 1)

100% 0% 0%

b Colony fate in 2016

Growth Shrinkage Mortality

Discoloration in 2015 0%

(n = 7)

57.1% 14.3% 28.6%

<25%

(n = 60)

50% 43.3% 6.7%

25–50%

(n = 24)

41.7% 41.7% 16.7%

51–75%

(n = 6)

33.3% 50% 16.7%

>75%

(n = 2)

0% 50% 50%

Transition matrices showing the likelihood of different fates for individual coral colonies one year after the (a) 2009 and (b) 2015 thermal anomalies, based on their

discoloration at the time of warming. Colony sample sizes within each discoloration category are indicated in the first column and boxes are shaded according to greater

likelihood of outcome. For example, of the 37 colonies that were not at all discolored in 2009, 73.0% of colonies grew the following year while 16.2% of colonies shrank

and 10.8% were completely dead by 2010.

https://doi.org/10.1371/journal.pone.0312409.t002
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source of heterotrophic nutrition when autotrophy by endosymbionts is compromised. In par-

ticular, P. meandrina colonies on Palmyra have shown a high degree of trophic plasticity [25]

and this may further contribute to their resistance during bleaching [70].

The intensity of accumulated thermal stress at the time of each heatwave corresponded to

the amount of discoloration or bleaching, which aligns with findings from previous studies

[96, 97]. Contextualizing discoloration severity against percentile-based DHWs allowed us to

examine natural variations in discoloration and how this may deviate from baseline levels. In

our study, thermal-stress associated bleaching and natural paling were combined into one

metric, but perhaps there would have been a stronger relationship between thermal stress and

colony fate if we had distinguished between them. Nevertheless, a colony’s extent of discolor-

ation at the time of warming was associated with its fate one year later; more severe discolor-

ation corresponded to a higher likelihood of growth following the first heatwave and a lower

likelihood of growth following the second heatwave (Table 2). Previous studies have similarly

found a positive association between bleaching prevalence and subsequent colony mortality

[44, 78], but our results further indicate that these responses may differ across successive heat-

waves and/or according to the degree of accumulated thermal stress.

Following the first, less thermally-severe heatwave in 2009, a positive change in planar area

(i.e., growth) was the most common outcome in 2010 for all colonies regardless of their discol-

oration severity yet following the longer-lasting, more thermally-severe heatwave in 2015, col-

ony fates were more variable. Colonies with high to severe discoloration in 2015 were less

likely to grow in 2016, with many colonies experiencing shrinkage or whole-colony mortality.

However, colonies that were more discolored in 2015 were not necessarily those that were

more discolored in 2009 (Fig 5), which we might expect if we assume that a colony is less resis-

tant when faced with repeated bleaching [26, 49, 98]. Interestingly, most species that gained

planar area in response to the first anomaly shrank after the second anomaly, while species

that declined in planar area in 2010 lost a similar or greater amount of live tissue in 2016

(Table 1). On the contrary, if colonies were less discolored in 2015 compared to 2009, this

could indicate heightened thermal tolerance or acclimatization [99]. Perhaps under stressful

conditions, a colony’s fate depends more so on other taxon and colony-specific characteristics

(e.g., larger colony size, more thermally-tolerant symbionts, environmental “legacy” or physio-

logical history, biomass reserve quality and quantity). With large-scale disturbances occurring

more frequently due to climate change, these inter- and intraspecific differences may become

more critical in modulating bleaching susceptibility.

One limitation of our study is that we could not measure the responses of all common coral

species on Palmyra at the colony level, nor look more closely at habitat or site-specific patterns

due to the lack of representatives. When using imagery to measure the growth and discolor-

ation of the same individual colonies through time, ideally the entire colony is in view; how-

ever, in our small-scale images (0.54 m2 quadrats), colonies were often cut off by the

photoquadrat frame and excluded from colony-level analyses, which constrained our sample

sizes. Large-area imagery (e.g., 100 m2 photomosaics as in [100, 101]) might be better suited

for comprehensive analyses, although methods for quantifying bleaching proportions in indi-

vidual colonies using this technology have not yet been developed. Further, assessing coral

health visually through imagery does not take into account physiological traits such as symbi-

ont type, density, and pigment concentrations nor reliance on heterotrophy. For a better-

informed view of post-bleaching responses, physiological data must be incorporated in addi-

tion to (dis)coloration.

Overall, this study demonstrates variability in coral responses by habitat, through time, and

among and within taxa in the context of thermal anomalies, emphasizing a need for more pre-

cise longer-term monitoring at the species and individual colony level. Tracking parameters
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such as growth, bleaching or discoloration, recovery, and partial or whole-colony mortality in

the same colonies at multiple points in time will improve our knowledge of the effects of

cumulative thermal stress on coral communities and their constituent taxa. Documenting the

natural history of quasi-pristine, intact ecosystems such as Palmyra Atoll allows us to establish

baseline information on coral trajectories under global stressors, which is becoming increas-

ingly relevant for the conservation and restoration of more-degraded reefs at higher risk of

collapse.

Supporting information

S1 File. Detailed methods for detecting coral discoloration using image analysis.

(DOCX)

S1 Fig. Justification for choosing a grayscale range in detecting coral discoloration. Box-

plots comparing the discoloration detected semi-automatically using various grayscale ranges

to “by-eye” (i.e., human-designated) discoloration.

(TIF)

S2 Fig. Justification for choosing a photo-editing method in detecting coral discoloration.

Boxplots comparing the discoloration detected semi-automatically using various photo-editing

methods to “by-eye” (i.e., human-designated) discoloration.

(TIF)

S3 Fig. Benthic coral cover by species and habitat through time. Mean percent benthic

cover of hard corals (averaged across sites) at the (a) Fore Reef and (b) Reef Terrace habitats

on Palmyra, by species, over time.

(TIF)

S4 Fig. Percent discoloration of coral colonies by species over time. Percent discoloration

(mean ± SE) for individual coral colonies over time by species and habitat, with Fore Reef (FR)

in orange and Reef Terrace (RT) in red. Colony sample sizes are shown on the top left. Dashed

vertical lines indicate thermal anomalies in 2009 and 2015.

(TIF)

S5 Fig. Coral colony fate based on discoloration severity. Histograms showing the number

of colonies from each discoloration category experiencing growth (in green), shrinkage (yel-

low), or whole-colony mortality (red) one year following the (a) 2009 and (b) 2015 thermal

anomalies.

(TIF)

S1 Table. Sample sizes for colony-specific analyses by species at each habitat. Overall, 314

individual colonies from nine different species were tracked in total. Only colonies that were

fully within the photoquadrat frame were included in colony-level analyses.

(DOCX)

S2 Table. PERMANOVA results for coral communities by habitat and site over time. Sta-

tistical output from a three-way permutational analysis of variance (PERMANOVA, 9999 per-

mutations) on Bray-Curtis dissimilarities for square root-transformed coral species cover data

by habitat, time point, site (nested within habitat), and their interactions. Bold indicates statis-

tical significance (α = 0.05).

(DOCX)

S3 Table. SIMPER results for coral communities by habitat. SIMPER (similarity percentage)

analysis output identifying the species contributing most to community composition
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differences between habitats.

(DOCX)

S4 Table. ANOVA results for live planar area of coral colonies by species. Statistical output

from a Type-I (or Type-III for interactions) analysis of variance (ANOVA) for the effects of

Degree Heating Weeks (DHW), month, and/or habitat on live planar area of individual coral

colonies, by species. Bold indicates statistical significance (α = 0.05).

(DOCX)

S5 Table. ANOVA results for percent discoloration of coral colonies by species. Statistical

output from a Type-I (or Type-III for interactions) analysis of variance (ANOVA) for the

effects of Degree Heating Weeks (DHW), month, and/or habitat on percent discoloration of

individual coral colonies, by species. Bold indicates statistical significance (α = 0.05).

(DOCX)
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