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ABSTRACT 

This research is concerned with the statistical analysis of accident 

counts at non-signalized intersections. The objective is to develop a method 

for determining general (non-linear) relationships between approach volumes 

and accident counts. The method must accommodate the testing of whether 

intersections of differing physical designs have higher or lower rates of 

accidents than predicted by traffic levels. It is assumed that only aggregate 

data are available: (1) counts of total accidents by type (e.g., injury 

versus property damage) without details concerning the locational position(s) 

of the vehicle(s) involved; and (2) aggregate traffic intensity on each 

intersection entry without details concerning turning volumes. The method 

involves the application of non-linear multivariate methods to variables 

treated as ordinal scales. A case study application involving four-leg and 

three-leg ("T") non-signalized major arterial intersections in the Netherlands 

is described. The effect of bicycle traffic on accident rates is included in 

the case study analysis. The results indicate that there are three groups of 

each of the two types of intersections based on traffic flow patterns. For 

each group, a different functional form was found to relate accident rates and 

specific variables measuring traffic volumes. There were no significant 

differences among the physical design categories of the intersections in each 

group that were not accounted for by differences in traffic intensities. 
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1. OBJECTIVE AND SCOPE 

The objective of the reported research is to develop and test a 

methodology for characterizing relationships between accident counts and 

traffic volume measures for major road intersections. The methodology allows 

tests to be conducted regarding whether the traffic-accident count 

relationships vary according to (categorical) variables such as the physical 

design of the intersection. The methodology is intended for use in situations 

where there are no data available on the specific traffic movements through an 

intersection, the only available data being traffic volume estimates for each 

leg of an intersection. Moreover, it is assumed that the only available data 

on accidents are the total count of accidents over a given period of time 

(possibly broken down by injury versus property damage) that occurred within 

each intersection. The method does not require strong assumptions about the 

scale properties of the data, and it is designed to accommodate general 

non-linear relationships. 

A case study application of the methodology was conducted using data for 

approximately five hundred non-signalized intersections in the Netherlands. 

Because bicycle traffic is heavy at many Dutch intersections, and because 

bicycle safety is a major issue in traffic engineering in that country, 

traffic intensity variables were included for both motorized and bicycle 

modes. In the case study, separate analyses were conducted for three-leg and 

four-leg intersections. Finally, there were three dependent accident count 

variables: total accidents, accidents involving injury 

accidents involving bicycles and injury or death. 
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2. BACKGROUND 

Safety comparisons among 

of accidents per vehicle mile of 

intersections, several authors 

road sections are typically conducted in terms 

travel per time period. With regard to 

have pointed out that accident risk is 

partially dependent on the numbers of vehicles whose paths cross one another, 

so that simple vehicle counts are inappropriate measures of exposure (Tanner, 

1953; Grossman, 1954; Mathewson and Brenner, 1957; Breunning and Bone, 1959). 

As reviewed in Chapman (1973) and Hakkert and Mahalel (1978), the search 

for appropriate exposure measures for intersections focused on variables 

representing the product of vehicle flows. The simplest of these variables is 

the product of the total traffic on the two intersecting roads, usually taken 

to the 0.5 power (Tanner, 1953). Variations of this variable can be formed by 

flow products with the traffic count on each road raised to a different power 

(McDonald, 1953), and comparisons of the simple form and its variations are 

provided by Leong (1973). 

If, instead of total road volumes, traffic volumes on all approaches to 

intersections are available, more complicated expressions of traffic flow 

conflicts can be used as exposure measures. Some researchers have used the 

sum of the products of crossing flows (e.g., Breunning and Bone, 1959; and 

Surti, 1965, 1969). Finally, if additional traffic volume information is 

available on turning maneuvers, flow product sums can be estimated for up to 

24 conflict points for four-leg intersections; and Hakkert and Mahalel (1978) 

computed an exposure measure based on the sum of all 24 products. 

Regarding the functional form between accident counts and any of these 

exposure measures, it has been shown in many studies that a power function is 

effective in explaining accident counts (Jorgensen, 1969; Chapman, 1973; 
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Hakkert and Mahalel, 1978; and Ceder and Livneh, 1978). The parameters of 

such power functions are typically estimated using log-log regressions. 

Weighted least squares (e.g., Hakkert and Mahalel, 1978) and maximum 

likelihood techniques (e.g., Zalinger, et al., 1977) can be used to determine 

unbiased and minimum variance parameter estimates for Poisson distributions of 

accident counts (Erlander, et al., 1969). 

The proposed method differs from previous approaches in three respects. 

First, the traffic intensity data (in terms of intersection approach volumes) 

are treated as approximations of true intensities. Second, no assumptions are 

made regarding the exact functional forms of the relationships between 

accident counts and traffic approach volumes. Third and finally, the method 

is aimed at determining the best measures of exposure from the set of all 

traffic approach volumes and the interactions among these volumes. 

3. OUTLINE OF THE METHOD 

The methodology is divided into four steps. In the first step, the 

interrelationships among the traffic volume variables are explored using 

non-linear principal components analysis. The goal of this step is to 

eliminate redundancies among the intensity variables by developing weighted 

averages which summarize the information contained in the redundant 

variables. Using a non-linear version of principal components analysis allows 

the variables measuring traffic volumes to be treated as ordinal scales. This 

is appropriate in view of the approximate nature of the data; results might 

show that slightly different values cannot be distinguished, and there is less 

possibility of undue influences of outlying observations. Most importantly, 

no assumption needs to be made regarding shapes of the curves best depicting 
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relationships between accidents and traffic intensities. These curves might 

be linear, or they might be convex or concave (representing diminishing or 

increasing marginal effects), sigmoid (representing relative insensitivity at 

the extremes, but higher sensitivity in the mid-range), binomial functions 

(two distinct levels), or any other monotonic form. The specific method used 

in this step is discussed in more detail in the next section. 

The goal of the second step is to find homogeneous groups of 

intersections on the basis of traffic intensity characteristics as summarized 

by the non-linear principal components developed in the first step. This is 

accomplished using 

are found that have 

the method of cluster analysis in which specific groupings 

minimum pooled within-groups variance. By using the 

scores of the intersections on the principal components, the clustering is 

performed on dimensions which are statistically independent so that redundant 

variables do not dominate the results. The mean values of the clusters on the 

original traffic volume variables can be computed and analysis-of-variance 

tests conducted to identify significant differences. This facilitates direct 

interpretations of the clusters in terms of a typology of intersections based 

on traffic intensity characteristics. 

The third step of the methodology involves explorations of the 

relationships between the traffic intensity variables and the accident rate 

variables separately for each cluster of intersections. This is accomplished 

using non-linear canonical correlation analysis, which can capture non-linear 

relationships between multiple accident count variables and multiple traffic 

volume variables. Results can show which traffic volume variables, when 

scaled according to the most effective ordinal relationship, are most highly 

correlated with the different accident count variables. Comparisons of 

results among the clusters can lead to better understanding of how the 
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accident and traffic intensity relationships vary according to the traffic 

characteristics typology represented by the clustering. 

The fourth and final step is to estimate the functional forms of the 

relationships between accidents and the selected intensity variables for each 

cluster of intersections and to identify differences among intersection design 

types. This is approached by regressing accident count variables on those 

traffic volume measures found to be most strongly related to accident counts 

in the previous step of the analysis. In general, non-linear functional forms 

can be expected. The non-linear canonical correlation results guide in the 

selection of functional forms for testing. The residuals, calculated as the 

difference between the actual number of accidents and the number predicted by 

the fitted regression equations, are then analyzed with respect to variables 

that further distinguish the intersections. In the case study, simple F-tests 

are conducted to determine whether or not the mean differences between actual 

and predicted numbers of accidents are a function of the physical design, as 

measured by a nine-category variable. 

4. THE CASE STUDY DATA 

The case study application of the method involved a total of 257 

three-leg and 174 four-leg intersections in the Netherlands. Accident counts 

for these non-signalized intersections were available for the years 1975 and 

1976, and the traffic volumes were counted or estimated variously during the 

time period 1971 through 1976. The traffic volumes represented the total 

daily traffic passing through a given leg of an intersection. 

The traffic volume data were standardized by specifying variable 

subscripts so that the same relationship among priority and non-priority legs 

5 



applied for all intersections. In the case of three-leg intersections, the 

variables applying to the non-priority leg (the vertical leg of the "T") were 

always assigned the subscript 3. The variables applying to the priority leg 

clockwise from the non-priority were subscripted 1, and the remaining priority 

leg was designated as leg 2. In the case of four-leg intersections, the 

non-priority leg with the lowest car traffic intensity was designated as leg 

4. The priority leg clockwise from leg 4 was designated as leg l; the next leg 

clockwise from leg l (the busier non-priority leg) was designated as leg 

and the remaining (priority) leg as leg 3. These schemes are depicted in 

Figure 1 (three-leg intersections) and Figure 2 (four-leg intersections), 

where C represents car traffic intensity and B represents bicycle traffic 

intensity. 

In order to estimate potential traffic conflicts, a number of 

interaction variables were computed. For example, a variable designated as 

C13 represents the product of variables C1 and C3, the car traffic volumes on 

legs l and 3 of a three-leg intersection. If both C1 and C3 are high, C13 

will take on a high value; if only one of the two variables is high while the 

other is low, C13 may, in general, take on a mid-range value; and if both C1 

and C3 are low, C13 will take on a low value. Several variables represent 

interactions between car and bicycle traffic. These are in response to the 

need to develop better exposure measures for cyclists (Howarth, 1982). The 

complete set of computed interaction variables are listed in Table 1 

(three-leg intersections) and Table 2 (four-leg intersections). 

The sets of explanatory variables listed in Tables 1 and 2 encompass 

most types of exposure measures used in previous studies of intersection 

accidents related to traffic volumes. In terms of the present variables, a 
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non-priority leg=3 

priority leg=2 priority leg (clockwise from leg=3)=1 

FIGURE 1 

ORIENTATION OF VARIABLE SUBSCRIPTS: THREE-LEG INTERSECTIONS 

non-priority leg 
with least car traffic=4 

ClBl 

priority leg=3 priority leg (clockwise from leg 3)=1 

non-priority leg=2 

FIGURE 2 

ORIENTATION OF VARIABLE SUBSCRIPTS: FOUR-LEG INTERSECTIONS 
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TABLE 1 

VARIABLE DEFINITIONS FOR THREE-LEG INTERSECTIONS 

VARIABLE COMPUTATION 

C1 

C2 

C3 
C13 
C23 
C12+3 
81 

B2 

83 
B13 
B23 
B12+3 
B23CT 
B13CT 
B1C13 
B2C23 
B12C2 

ACCT 
ACCI 
ACCs 

DESIGN 

C1*C3 
C2*C3 
C1*(C2+C3) 

B1*B3 
B2*83 
B1*(B2+B3) 
B2*B3*(C1+C2+C3) 
B1*B3*(C1+C2+C3) 
B1*C1*C3 
B2*C2*C3 
B1*B2*C2 

DESCRIPTION 

Car intensity: priority leg clockwise from non­
priority leg 

Car intensity: priority leg counter-clockwise 
from non-priority leg 

Car intensity: non-priority leg 
Car interaction: C1 by C3 
Car interaction: C2 by C3 
Car interaction: C1 by (C2+C3) 
Bike intensity: priority leg clockwise from non­

priority leg 
Bike intensity: priority leg counter-clockwise 

from non-priority leg 
Bike intensity: non-priority leg 
Bike interaction: B1 by B3 
Bike interaction: B2 by B3 
Bike interaction: B1 by (C2+C3) 
Bike-car interaction: B23 by (C1+C2+C3) 
Bike-car interaction: B13 by (C1+C2+C3) 
Bike-car interaction: B1 by C13 
Bike-car interaction: 82 by C23 
Bike-car interaction: 812 by C2 

Total accidents 
Injury accidents 
Bicycle-injury accidents 

Physical design-categories described in Table 3 
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TABLE 2 

VARIABLE DEFINITIONS FOR FOUR-LEG INTERSECTIONS 

VARIABLE COMPUTATION 

C1 

C2 

C3 

C4 
C12 
C23 
C34 
C41 
B1 

B2 

83 

84 
812 
823 
834 
841 
812CT 
823CT 
834CT 
841CT 
B24+Cl+3 

ACCT 
ACCI 
ACCB 

DESIGN 

C1*C2 
C2*C3 
C3*C4 
C4*C1 

B1*B2 
B2*B3 
B3*84 
B4*B1 
B1*B2*(C1+C2+C3+C4) 
B2*B3*(C1+C2+C3+C4) 
B3*B4*(C1+C2+C3+C4) 
B4*B1*(C1+C2+C3+C4) 
B2*B4*(CpC3) 

DESCRIPTION 

Car intensity: priority leg clockwise from non­
priority leg with lowest car intensity 

Car intensity: non-priority leg with highest car 
intensity 

Car intensity: priority leg clockwise from non-
priority leg with highest car intensity 

Car intensity: non-priority leg 
Car interaction: C1 by C2 
Car interaction: C2 by C3 
Car interaction: C3 by C4 
Car interaction: C4 by C1 
Bike intensity: priority leg clockwise from non­

priority leg with lowest car intensity 
Bike intensity: non-priority leg with highest 

car intensity 
Bike intensity: priority leg clockwise fron non-

priority leg with highest car intensity 
Bike intensity: non-priority leg 
Bike interaction: C1 by C2 
Bike interaction: C2 by C3 
Bike interaction: C3 by C4 
Bike interaction: C4 by C1 
Bike-car interaction: B12 by (C1+C2+C3+C4) 
Bike-car interaction: B23 by (C1+C2+C3+C4) 
Bike-car interaction: B34 by (C1+C2+C3+C4) 
Bike-car interaction: B41 by (C1+C2+C3+C4) 
Bike interaction: B24 by (C1+C3) 

Total accidents 
Injury accidents 
Bicycle-injury accidents 

Physical design-categories described in Table 3 
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power function explaining accident counts in terms of exposure would be 

expected to take one of two forms: 

a b 
A = c Xi Xj (1) 

or 
a 

A = c Xij (2) 

where A = accident count, Xi and Xj represent single-subscripted variables in 

Tables 1 or 2; Xij represents a double-subscripted or compound variable; and 

a, b, and c are parameters to be estimated. Form (1) is of the product flow 

form with exponents for each intersecting flow (e.g., McDonald, 1953; Leong; 

1973), and form (2) is the (root) product flow form with a single exponent 

(e.g., Tanner, 1953; Bennett, 1966; Leong, 1973). The choice between the 

forms in the present approach is generalized to select the most effective 

explanatory variable, and this is accomplished using the ordinal multivariate 

methods outlined in Section 3. 

In addition to the traffic volume and accident count variables, there is 

a categorical variable (called DESIGN) which records the major design 

characteristics of the intersection. The categories are similar for the 

three-leg and four-leg intersections and are specified in Table 3. The 

methodology is designed so as to determine how a variable such as physical 

design category is interrelated with traffic volumes and accident counts. 

5. INTERRELATIONSHIPS AMONG TRAFFIC VOLUME VARIABLES 

The first step in developing a typology of intersections based on 

traffic intensity characteristics is to analyze the interrelationships among 

the intensity variables. When all variables are measured numerically, such 
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TABLE 3 

CATEGORIES OF THE DESIGN VARIABLE FOR BOTH THREE- AND FOUR-LEG INTERSECTIONS 

Frequencies 
3-leg 4-leg 
inter- inter-

Category Description sections sections 

1.1 Lane separation (non-priority leg(s)): yes (any type) 26 38 
Lane separation (priority legs): barrier 
Left-turn lane: yes 
Number of through-lanes: 1 

1.2 Lane separation (non-priority leg(s)): yes (any type) 26 25 
Lane separation (priority legs): barrier 
Left-turn lane: yes 
Number of through-lanes: 2 

2 Lane separation (non-priority leg(s)): yes (any type) 53 30 
Lane separation (priority legs): painted 
Left-turn lane: yes 

3 Lane separation (non-priority leg(s)): yes (any type) 6 4 
Lane separation (priority legs): barrier 
Left-turn lane: no 

4 Lane separation (non-priority leg(s)): yes (any type) 82 40 
Lane separation (priority legs): none 
Left-turn lane: no 

5 Lane separation (non-priority leg(s)): none 5 7 
Lane separation (priority legs): barrier 
Left-turn lane: yes 

6 Lane separation (non-priority leg(s)): none 2 5 
Lane separation (priority legs): painted 
Left-turn lane: yes 

7 Lane separation (non-priority leg(s)): none 2 2 
Lane separation (priority legs): barrier 
Left-turn lane: no 

8 Lane separation (non-priority leg(s)): none 55 23 
Lane separation (priority legs): none 
Left-turn lane: no 
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interrelationships are typically studied using principal components analysis 

or other techniques (e.g., factor analysis, confirmatory factor analysis, or 

canonical factor analysis) that are based on eigenvalue extractions of the 

variable variance-covariance or correlation matrices. In the present 

situation, the traffic intensity variables are ordinally scaled so 

conventional principal components analysis is inappropriate. However, a 

non-linear version of principal components analysis has been developed and is 

one of a series of computer programs developed by the Department of Data 

Theory of the University of Leiden (Gifi, 1981). This program, called 

PRINCALS, was applied to both the three-leg intersections and four-leg 

intersections data sets in the present study. 

outlined in Gifi (1983). 

The use of the program is 

The objective of the PRINCALS algorithm is similar to that of 

conventional principal components analysis: namely, to reduce the rank of a 

correlation matrix by determining the linear combinations (weighted averages) 

of the original variables that account for the maximum variance under the 

constraint that these linear combinations are mutually orthogonal. In 

conventional principal components analysis, these linear combinations 

(components) are determined through a closed-form solution involving the 

latent roots and vectors (eigenvalues and eigenvectors) of the correlation 

matrix. In non-linear principal components analysis, an iterative solution is 

required: the correlation matrix itself must be determined by finding the 

scores for the categories of the ordinal or nominal variables in such a way 

that the latent roots of the matrix are maximized. In the PRINCALS program, , 

this is accomplished using the technique of alternating least squares (Young, 

et al., 1976). 
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For three-leg intersections, the overall fits of PRINCALS solutions with 

from one to four dimensions are shown in Table 4. The three-dimensional 

solution is preferred on the basis of the latent roots. This solution 

accounts for almost 92 percent of the variance among the seventeen 

optimally-scaled traffic intensity variables, and the addition of a fourth 

component adds only about 4 percent to the explained sum, which is less than 

the expected random contribution of one variable. 

Table 5 shows the correlations between each optimally scaled traffic 

intensity variable and each of the three principal components. The last 

column in Table 5 lists indices of overall fit for each variable, calculated 

as the square root of the sums of squared correlations between the variable 

and the three components. Such an index can range from zero to one and can be 

interpreted as the proportion of variance in the optimally scaled variable 

which is explained cumulatively by the principal components. The lowest 

levels of fit are for the three simple car traffic intensity variables, but 

Number of 

TMLE4 

NON-LINEAR PRINCIPAL COMPONENTS ANALYSIS (PRINCALS) SOLUTIONS 
FOR THREE-LEG INTERSECTIONS 

Eigenvalues 
Cumulative percentage 

dimensions 1 2 3 4 variance accounted for 

1 0.54 54.2 
2 0.44 0.36 80.0 
3 0.43 0.35 0.13 91.9 
4 0.42 0.36 0.13 0.03 95.2 
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TABLE 5 

CORRELATIONS AMONG THE PRINCALS COMPONENTS AND THE TRAFFIC INTENSITY 
VARIABLES FOR THREE-LEG INTERSECTIONS 

(ONLY CORRELATIONS SHOWN WITH ABSOLUTE VALUE GREATER THAN 0.30) 

Correlations with components 
Proportion of variance 

Variable 1 2 3 accounted for 

C1 0.78 0.35 0.79 
c2 0.79 0.77 
C3 0.77 -0.36 0.76 
C13 0.87 0.31 -0.34 0.97 
C23 0.88 -0.34 0.97 
C123 0.88 0.31 -0.34 0.99 
81 0.68 0.63 0.87 
82 0.62 0.68 0.89 
83 -0.61 0.73 0.98 
813 -0.61 0.75 0.98 
823 -0.60 0.75 0.97 
8123 -0.61 0.75 0.99 
823CT -0.60 0.75 0.97 
813CT -0.61 0.75 0.98 
81C13 0.67 0.63 0.88 
82C23 0.67 0.62 0.90 
B12C2 0.35 0.69 0.59 0.96 

even these three indices are above 0.75. Thus, the seventeen variables can be 

collapsed to three statistically-independent weighted averages without loss of 

much information. 

The correlation coefficients shown in Table 5 can be used to interpret 

the three principal components. (To aid in interpretation, only correlations 

with absolute value greater than 0.30 are shown). The first component 

reflects high levels of car traffic on all legs of an intersection, high 

levels of interactions B1C13 and B2C23 between bicycle and car traffic, but 

relatively low levels of bicycle traffic on the non-priority leg. The second 
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component primarily reflects high bicycle traffic on all legs, and high 

bicycle-car interaction terms. Finally, the third component reflects high 

bicycle traffic on the priority legs only, and relatively low car traffic on 

the non-priority leg (and hence also low levels of the interaction terms 

For four-leg intersections, the latent roots for PRINCALS solutions of 

four dimensionalities are shown in Table 6. The overall fits for these 

solutions are lower than for the corresponding solutions for the three-leg 

intersections. The four-dimension solution was chosen because the fourth 

latent root was greater than the expected contribution of a single random 

variable (1: 21 = 0.04) and because the three-dimension solution had low fits 

for some variables. As shown in Table 7, the total fits (proportions of 

variance accounted for) in the four-dimension solution are all 0.86 or 

greater, except for C2, car traffic intensity on the busier of the two 

non-priority legs (0.73) and B1, bicycle traffic intensity on one priority leg 

Number of 

TABLE 6 

NON-LINEAR PRINCIPAL COMPONENTS ANALYSIS (PRINCALS) SOLUTIONS 
FOR FOUR-LEG INTERSECTIONS 

Eigenvalues 
Cumulative percentage 

dimensions l 2 3 4 variance accounted for 

l 0.56 56.3 
2 0.54 0.20 74.3 
3 0.53 0.21 0.10 83.l 
4 0.51 0.22 0.10 0.05 88.3 
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TABLE 7 

CORRELATIONS AMONG THE PRINCALS COMPONENTS AND THE TRAFFIC INTENSITY 
VARIABLES FOR FOUR-LEG INTERSECTIONS 

(ONLY CORRELATIONS SHOWN WITH ABSOLUTE VALUE GREATER THAN 0.30) 

Correlations with components 
Proportion of variance 

Variable 1 2 3 4 accounted for 

C1 0.54 0.63 -0.42 0.93 
C2 0.48 0.60 0.35 0.73 
C3 0.58 0.63 -0.34 0.89 
C4 0.30 0.49 0.37 0.66 0.89 
C12 0.61 0.73 0.92 
C23 0.62 0.73 0.92 
C34 0.57 0.75 0.90 
C41 0.55 0.76 0.89 
81 0.63 -0.57 0.80 
82 0.68 0.57 0.91 
83 0.60 -0.60 0.87 
84 0.64 0.64 0.86 
812 0.84 -0.42 0.89 
823 0.84 -0.43 0.89 
834 0.83 -0.36 0.87 
841 0.86 -0.35 0.87 
812CT 0.88 0.89 
823CT 0.92 0.89 
834CT 0.89 0.88 
841CT 0.91 0.88 
824C1+3 0.75 0.57 0.96 

(0.80). Thus, while the traffic intensity variables for four-leg 

intersections are more heterogeneous than the variables for three-leg 

intersections, a significant reduction in dimensionality (from twenty-one to 

four) is still possible. 

Interpretations of the four principal components can be made using the 

correlation coefficients listed in Table 7: the first component reflects high 

overall levels of traffic intensity on all legs, but it is particularly 
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associated with high bicycle-car and bicycle-bicycle intensity interactions. 

The second component is associated with high car traffic intensity on all legs 

and relatively low bicycle intensity interaction terms. The third component 

captures a pattern of high bicycle traffic intensity on the non-priority legs 

but low bicycle traffic intensity on the priority legs. The fourth component 

similarly captures a pattern of high and low car traffic intensities on the 

non-priority and priority legs, respectively. 

6. TRAFFIC-VOLUME TYPOLOGIES CF INTERSECTIONS 

The second step in developing a typology of intersections based on 

traffic intensity characteristics is to determine hcrnogeneous groups of 

intersections based on the scores of the intersections on the principal 

components. The particular cluster analysis method used in the present study 

is non-hierarchical with an objective function minimized via a hill-climbing 

algorithm. This objective function involves the determinant of the pooled 

within-cluster cross-products matrix, a quantity known as the generalized 

variance. Minimization of this quantity is equivalent to minimization of the 

ratio of the determinants of the within-cluster and total variances, a 

likelihood ratio statistic known as Wilks' lambda (Everitt, 1980, p.66; 

Tatsuoka, 1971, p. 85). Restarts of the algorithm from different initial 

configurations are used to detect the possibility of a local optimum. 

The cluster analysis results for the three-leg intersections are listed 

in Table 8. The objective function, converted in terms of the usual 

log-likelihood ratio (multiplied by minus two) is seen to improve 

significantly when the number of clusters is increased from two to three 

(Figure 3). There is another significant improvement when the number of 
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Number of 
clusters 

1 
2 
3 

4 

5 

6 

7 

8 

9 

10 

TABLE 8 

CLUSTER ANALYSIS RESULTS--THREE-LEG INTERSECTIONS 

w w * ,\, = --- -2 ln ,\, 
T 

1.6975 X 107 1.0 0.00 
1.9076 X 106 1.2238 x 10-l 4.20 
5.1153 X 104 3.0134 X 10-3 11.61 

2.3471 X 104 1.3827 X 10-3 13.17 

1.2948 X 104 7.6277 X 10-4 14.36 
1.6255 X 103 9.5758 X 10-5 18.51 

9.0112 X 102 5.3085 X 10-5 19.69 
6.1889 X 102 3.6459 X 10-5 20.44 

5.3280 X 102 3.1387 X 10-5 20.74 
3.0641 X 102 1.8051 X 10-5 21.84 

* W = determinant of pooled within-cluster cross-products matrices; 
T = determinant of total cross-products matrix= Wat one cluster. 

clusters is increased from five to six, but the three-cluster solution is 

preferred in view of sample size considerations for further analyses. The 257 

three-leg intersections are divided among the three clusters in the 

proportions: (1) 72 or 28.0%, (2) 162 or 63.0%, and (3) 23 or 8.9%. 

The three clusters can be interpreted by inspecting the means for each 

cluster on the three principal components and by inspecting the means on the 

original seventeen variables. The latter statistics are listed in Table 9, 

together with the cluster means for the three accident rate variables. Only 

the three accident rates do not have cluster means which are significantly 
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different from one another as determined in a one-way analysis-of-variance. 

This result indicates that the patterns in the interrelationships among the 

intensity variables cannot be used to predict accident rates; further analysis 

steps are indeed necessary. 
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TABLE 9 

CLUSTER MEANS FOR THE TRAFFIC INTENSITY AND ACCIDENT RATE VARIABLES 

Variable 

C1 (x 10-3) 

C2 (x 10-3) 

C3 (x 10-3) 

C13 (x 10-7) 

C23 (x 10-7) 

C123 (x 10-7) 

81 (x 10-2) 

82 (x 10-2) 

83 (x 10-2) 

813 (x 10-5) 

823 (x 10-5) 

8123 (x 10-5) 

823Cr 

813Cr 

81C13 
82C23 

812C2 

ACCT 

ACCI 

ACCs 

(x 10-10) 

(x 10-10) 

(x 10-ll) 

(x 10-ll) 

(x 10-10) 

FOR THREE-LEG INTERSECTIONS 

Grand mean 

6.41 
6.15 

3.33 

2.76 

2.76 

5.52 

6.28 

5.93 

2.49 

1.90 

2.08 

3.98 

4.05 

3.34 

2.02 

2.07 

7.09 

2.89 

0.67 

0.25 

1 (N = 72) 

7.03 
7.26 

3.93 

3.27 

3.81 

7.07 

8.49 

8.46 

0.00 

0.00 

o.oo 
0.00 

0.00 

o.oo 
3.41 

3.92 

15.96 

3.15* 

0.58* 

0.24* 

Cluster mean 

2 (N = 162) 

5.79 
5.27 

2.83 

2.00 

1.82 

3.82 

6.16 

5.47 

3.93 

3.01 

3.31 

6.32 

6.43 

5.30 

1.61 

1.44 

4.15 

2.78* 

0.74* 

0.28* 

3 (N = 23) 

8.87 
8.87 

4.96 

6.56 

6.10 

12.66 

0.17 

1.30 

0.22 

o.oo 
o.oo 
o.oo 
0.00 

0.00 

0.52 

0.78 

0.00 

2.87* 

0.48* 

0.00* 

* Indicates means not significantly different from one another at the p = .05 
confidence level as determined by F-tests. 
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The first cluster is distinguished by zero levels of bicycle intensity 

on the non-priority leg of the intersections, and consequently by zero values 

for the interaction terms involving that intensity variable. In contrast, the 

intersections of the first cluster have high levels of bicycle traffic on the 

priority legs, and consequently high levels on the last three bicycle-car 

interaction variables. The second cluster is distinguished by relatively low 

car traffic intensity on the non-priority leg but relatively high bicycle 

intensity on that same leg; car and bicycle intensities on the priority legs 

are approximately average. Finally, cluster-3 intersections exhibit the 

highest average car intensities on all three legs but the lowest bicycle 

intensities on the priority legs. The clustering in general appears to 

capture the phenomenon of negatively correlated car and bicycle traffic 

intensities. 

The cluster analysis results for four-leg intersections are listed in 

Table 10, and the log-likelihood ratio statistic is plotted in Figure 4. In 

contrast to three-leg intersections, there are no apparent natural numbers of 

clusters of four-leg intersections. Figure 4 shows that the five-cluster 

solution is superior to either the four­

three- and seven-cluster solutions are 

or six-cluster solutions, but 

also candidates for selection. 

the 

The 

three-cluster solution is preferred on the basis of sample size criteria: it 

is desirable to have large clusters for further analysis. The sample sizes of 

the three clusters are: (1) 93 or 53.4%, (2) 56 or 32.2%, and (3) 25 or 14.4%. 

Table 11 gives the cluster means for the twenty-one traffic intensity 

and three accident rate variables. The hypothesis of equal means across the 

three clusters is accepted at the p = .05 confidence interval for only two of 

the intensity variables (both involving bicycle traffic) but for two of the 

three accident rate variables. The first cluster is characterized by the 
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lowest levels on almost every one of the variables, particularly on the 

bicycle-car interaction variables. The second cluster is distinguished by 

high car and bicycle traffic intensity on the two priority legs of the 
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TABLE 10 

CLUSTER ANALYSIS RESULTS--FOUR-LEG INTERSECTIONS 

w 
Number of w * A = 
clusters T 

1 9.1664 X 108 1.0 
2 2.4301 X 108 2.6511 x 10-l 

3 1.0907 X 108 1.1899 X 10-l 

4 6.9916 X 107 7 .627 4 X 10-2 

5 2.8311 X 107 3.0886 X 10-2 

6 2.7552 X 107 3.0058 X 10-2 

7 1.3433 X 107 1.4655 X 10-2 

8 1.1801 X 107 1.2874 X l□-2 

9 5.8164 X 106 6.3453 X 10-3 

10 4.7913 X 106 5.2270 X 10-3 

* W = determinant of pooled within-cluster cross-products of pooled 
within-cluster cross-products matrices; 

T = determinant of total cross-products matrix= Wat one cluster. 

- 2 ln ?I. 

o.oo 
2.66 

4.26 

5.15 

6.95 

7.01 

8.45 

8.71 

10.12 

10.51 

intersections (denoted by the subscripts 1 and 3), but relatively low car and 

bicycle traffic intensity on the non-priority legs (subscripts 2 and 4). 

Finally, cluster three is distinguished by relatively equal levels of car 

traffic on the priority and non-priority legs and very high bicycle traffic on 

the non-priority legs. Clusters two and three have the highest accident rates. 
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TABLE 11 

CLUSTER MEANS FOR THE TRAFFIC INTENSITY AND ACCIDENT RATE VARIABLES 
FOR FOUR-LEG INTERSECTIONS 

Cluster mean 

Variable Grand mean 1 (N - 93) 2 (N - 56) 3 (N - 25) 

C1 (x 10-3) 6.16 3.99 10.41 4.68 
C2 (x 10-3) 3.30 2.59 3.41 5.72 
C3 (x 10-3) 6.10 4.02 10.02 5.08 
C4 (x 10-3) 1.86 1.47 1.43 4.28 
C12 (x 10-7) 2.44 1.25 4.08 3.22 
C23 (x 10-7) 2.45 1.21 3.91 3.83 
C34 (x 10-7) 1.24 0.68 1.57 2.61 
C41 (x 10-7 ) 1.20 0.68 1.56 2.31 
B1 (x 10-2) 4.41 2.42 8.06 3.62 
B2 (x 10-2) 3.81 3.04 2.88 8.74 
83 (x 10-2) 4.52 2.66 7.67 4.36 
84 (x 10-2§ 3.19 2.64 1.96 8.00 
812 (x 10- ) 2.17 0.96 3.51 3.28 
B23 (x 10-5) 2.15 1.10 3.00 4.15 
834 (x 10-5) 1.91 0.83* 2.95* 3.65* 
841 (x 10-5) 1.81 0.73* 2.97* 3.24* 
812CT (x 10-10 ) 4.92 1.52 9.32 7.72 
823cr (x 10-10 ) 4.47 1.10 8.14 8.80 
834Cr (x 10-10 ) 4.81 1.73 7.94 9.24 
841 Cr (x 10-10 ) 4.38 1.23 7.67 8.71 
824C1+3 (x 10-ll) 3.70 1.47 2.97 13.62 

ACCT 6.32 4.77 7.91 8.48 
ACCI 1.86 1.54* 1.96* 2.80* 
ACC0 0.46 0.39* 0.63* 0.36* 

* Indicates means not significantly different from one another at the p = .05 
confidence level as determined by F-tests. 
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7. TRAFFIC VOLUMES AND ACCIDENT RATES 

Relationships between the traffic intensity variables and the accident 

rate variables were investigated separately for each cluster of inter-

sections. These investigations were performed using non-linear canonical 

correlation analysis, as implemented in the CANALS computer program developed 

by the Department of Data Theory of the University of Leiden (Gifi, 1981; Van 

der Burg, 1983). 

Canonical correlation analysis is a generalization of regression 

analysis to more than one dependent variable. The objective in canonical 

correlation analysis is to find a weighted average (linear combination) of the 

independent variables (in this case, the traffic intensity measures) which is 

maximally correlated with a weighted average of the dependent variables (in 

this case, the accident rates). The correlation between the independent and 

dependent variable sets, so maximized, is called a canonical correlation. If 

appropriate, a second set of linear combinations can be determined that is 

maximally correlated under the constraint that this second dimension is 

statistically independent of the first dimension. The possible number of 

dimensions so determined is equal to the number of variables in the smaller of 

the two variable sets (here, the three accident rate variables). In 

conventional canonical correlation analysis all variables must have 

interval-scale properties or they must be dichotomous. 

Non-linear versions of canonical correlation analysis are designed for 

use with mixed sets of categorical and ordinal variables, as well as numerical 

variables. In the present application, all traffic intensity variables are 

treated as ordinal and all accident rate variables are treated as numerical so 

that all non-linearities are applied to the intensity variables. For each 
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ordinal variable, scores are determined for each variable category that 

maximize the canonical correlation when the variables are linearly combined. 

This optimization problem involving both category scores and variable weights 

requires an iterative solution, and in the CANALS program this is accomplished 

by means of the principle of alternating least squares (Young, et al., 1976; 

Van der Burg and De Leeuw, 1983). The same solution method is used in the 

non-linear principal components analysis algorithm (PRINCALS) used in the 

first part of the methodology. 

A one- or two-dimensional CANALS solution was computed for each cluster 

of intersections for both three-leg and four-leg intersections. A 

two-dimensional solution was selected whenever the canonical correlation of 

the second dimension was close to that of the first dimension; otherwise, a 

one-dimensional solution was selected (no third-dimension correlations were 

significantly greater than zero). For each CANALS solution, correlations are 

computed between each variable and the canonical dimension or dimensions. 

These correlations indicate how important each variable is in explaining the 

overall relationship between the traffic intensity measures and the accident 

rates. (The variable coefficients, or weights in the linear combinations 

which form the canonical dimensions, are not as informative as the 

correlations because there are known high colinearities among the variables 

which affect the coefficients but not the correlations.) 

Table 12 shows the results for the three clusters of three-leg 

intersections. Two-dimensional solutions were found for the first and third 

clusters, while a one-dimensional solution was found for the second cluster. 

For the first cluster (of 72 intersections), the first dimension links total 

and injury accidents mainly to three different car traffic intensity 

variables: C13, C23 and C2. The second dimension of the solution for the 
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TABLE 12 

NON-LINEAR CANONICAL CORRELATION RESULTS 
FOR CLUSTERS OF THREE-LEG INTERSECTIONS 

Correlations with Canonical Variates 

Cluster 1 (n = 72) Cluster 2 Cluster 3 (n = 23) 
(n = 162) 

Variable dimensions dimensions 
1 2 1 2 

Explanatory set 

C1 0.44 -0.16 0.71 0.67 0.26 
C2 0.58 0.11 0.56 0.37 0.36 
C3 0.41 -0.10 0.48 0.38 0.31 
C13 0.60 0.02 0.67 0.33 0.44 
C23 0.60 0.06 0.67 0.28 0.27 
C12+3 0.51 -0.13 0.64 0.50 0.29 
81 0.25 0.32 0.22 
82 1.10 0.34 0.29 
83 0.07 
813 0.24 
823 0.25 
812+3 0.20 
823CT 0.43 
813CT 0.36 
81C13 0.52 0.13 0.64 
82C23 0.45 0.35 0.44 
812C2 0.40 0.39 0.40 

Canonical correlation 
between variable sets 0.84 0.72 0.88 0.88 0.82 

Dependent set 

ACCT 0.92 0.18 0.97 0.66 0.76 
ACCI 0.91 0.15 0.77 0.99 0.02 
ACCg 0.48 0.66 0.33 
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first cluster links the bicycle traffic intensity variables B1 and 82 and the 

bicycle-car interaction variables B12C2 and B2C23 with bicycle injury accident 

rates. 

The one-dimensional solution found for the second cluster of 162 

three-leg intersections explains total accident rates well, has moderate 

explanatory power for injury accidents, and very little explanatory power for 

bicycle-injury accidents. No additional dimensions were found which could 

explain bicycle-injury accidents for this cluster of intersections. As 

expected by the poor explanation of bicycle accidents, none of the bicycle 

traffic intensity variables are highly correlated with the dimension, but four 

car intensity variables and one car-bicycle interaction variable have 

correlations of 0.64 or greater. Of the four car intensity variables, three 

are interaction terms between intensities on the different legs of the 

intersections; these can capture the degrees to which various turning 

maneuvers occur. 

The third and final cluster of 23 three-leg intersections had no 

bicycle-injury accidents, and consequently the analysis was limited to the 

relationships between the car traffic intensity variables and total accident 

rates and injury accident rates. A two-dimensional solution was found in 

which the first dimension explained both injury accidents and total accidents 

and the second dimension explained only total accidents. The explanatory 

variables for the first dimension are C1, car traffic intensity on one 

priority leg of the intersection and C12+3, an interaction term which 

potentially captures the scale of left turns from the priority road onto the 

non-priority road. The strongest independent variable for the second 

dimension (explaining total accidents) is C13, an interaction term which 
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potentially captures the scale of left turns from the non-priority road onto 

the priority road. 

The CANALS solutions for the three clusters of four-leg intersections 

are documented in Table 13. All of these solutions are two-dimensional. For 

the first cluster of 93 intersections, the first dimension explains 

bicycle-injury accidents,. and the independent variables with the highest 

correlations are B23 and B12, interaction terms potentially capturing bicycle 

turning maneuvers, and B12CT, the interaction between B12 and total car 

traffic intensity. The second dimension explains total accidents and also 

injury accidents to a modest degree. The strongest independent variables are 

all car intensity variables and, particularly, car intensity interaction 

variables. 

The first dimension for the second cluster of only 23 intersections has 

a moderately strong positive correlation with total accidents, a lower 

positive correlation with injury accidents, but a negative correlation with 

bicycle-injury accidents. This indicates that intersections of this type that 

have relatively high rates of total accidents tend to have relatively low 

rates of bicycle-injury accidents. The strongest independent variables for 

this dimension are all car intensity variables and car intensity interaction 

variables. The second dimension explains primarily bicycle-injury accidents, 

but also total and injury-accidents as well, and many of the independent 

variables have similarly high correlations. This dimension captures a very 

general relationship between overall traffic intensity and rates of all types 

of accidents. 

For the final cluster of 25 four-leg intersections, the first dimension 

explains bicycle-injury accidents. However, the strongest independent 

variables are car traffic intensities. The second dimension explains both 
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Variable 

Explanatory set 

C1 
C2 
C3 
C4 
C12 
C23 
C34 
C41 
81 
82 
83 
84 
812 
823 
834 
841 
812CT 
823CT 
834CT 
841CT 
824C1+3 

Canonical 
correlation 
between 
variable sets 

Dependent set 

ACCT 
ACCI 
ACC0 

TABLE 13 

NON-LINEAR CANONICAL CORRELATION RESULTS 
FOR CLUSTERS OF FOUR-LEG INTERSECTIONS 

Correlations with Canonical Variates 

Cluster 1 (n = 93) Cluster 2 (n = 23) Cluster 3 (n = 25) 

dimensions dimensions dimensions 
1 2 1 2 1 2 

0.12 0.51 0.24 0.39 0.16 0.41 
-0.18 0.06 0.32 0.14 
0.23 0.54 0.25 0.39 0.09 0.21 
0.06 0.43 -0.13 0.12 0.46 -0.03 
0.16 0.40 0.25 0.33 
0.20 0.46 0.26 0.22 
0.14 0.60 0.15 0.22 0.44 0.27 
0.11 0.59 0.11 0.29 0.43 0.16 
0.41 ---0.21 -0.27 0.26 
0.24 0.35 0.11 0.29 0.12 -0.06 
0.32 -0.12 -0.08 0.15 -0.24 -0.23 
0.18 0.23 0.07 0.29 
0.44 0.14 -0.06 0.39 
0.46 0.23 -0.00 0.33 -0.25 -0.09 
0.34 0.15 0.05 0.28 
0.38 0.21 0.04 0.39 
0.43 0.26 -0.05 0.42 -----0.32 0.18 0.05 0.40 -0.2~ -0.07 
0.41 0.30 -0.06 0.43 -0.20 -0.06 
0.40 0.16 0.04 o.3I 
0.21 0.36 -0.00 0.38 0.25 -0.18 

0.93 0.87 0.98 0.93 0.99 0.99 

0.14 0.96 0.68 0.74 -0.13 0.85 
-0.10 0.56 0.31 0.67 -0.05 0.99 
0.82 -0.02 -0.35 0.93 0.74 0.58 
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injury and total accidents, and the strongest independent variable is car 

intensity on one of the priority legs, C1. 

8. FUNCTIONAL FORMS OF THE ACCIDENT-EXPOSURE RELATIONSHIPS 

In the final step of the analysis, accident rates are regressed against 

traffic intensities. The objective is to estimate the parameters of the 

functions which best describe the relationships between traffic intensities 

and accident rate. The results of the analyses in the previous step indicate 

that such functions are non-linear for many of the variables. 

Separate regresssions were estimated for each cluster of intersections. 

The CANALS results were used to select which measures of traffic intensity 

should be regressed against which accident rate variables. Also, the category 

quantifications provided in the CANALS outputs guide the choice of an 

appropriate functional form. 

The results of the regressions of accident rates on selected traffic 

intensity variables are listed in Table 14 for the three clusters of three-leg 

intersections. The dependent variable chosen for demonstration purposes is 

total accidents in each case, and the variable C13 was found to be the most 

effective explanatory variable for all three clusters. This indicates that, 

for "T" intersections with a through priority road (Figure 1), an interaction 

term (calculated as the product of the traffic on the non-priority leg and the 

priority leg clockwise from the non-priority leg) exhibits explanatory power 

at least as good or better than any single traffic intensity measure and any 

product of two traffic intensities each raised to a power. (That is, 

functional form (2) is as effective as functional form (l) for these 

intersections.) 
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Cluster 

1 

2 

3 

TABLE 14 

LOG-LOG REGRESSIONS OF TOTAL ACCIDENTS CACCT) 
ON TRAFFIC INTENSITY VARIABLES 

BY CLUSTER AND DIMENSION--THREE-LEG INTERSECTION 

Adjusted Constant 
Dimension 

Explanatory 
variable R2 CT-statistic) 

1 C13 0.23 -.365 
C-.98) 

1 C13 0.29 -.022 
(-.13) 

2 C13 0.64 -.835 
(-1.82) 

Coefficient 
CT-statistic) 

0.427 
(3.77) 

0.384 
(6.51) 

0.641 
(4.65) 

The goodness-of-fit measures listed in Table 14 vary substantially among 

the clusters. However, all R2 values are significant and are judged to be 

satisfactory in light of the aggregate nature of the data. The results shown 

are for ordinary least-squares estimations, rather than weighted least-squares 

estimates for Poisson-distributed dependent variables, because of the 

exploratory nature of the case study application. 

The regressions of Table 14 are plotted in Figures 5 through 7. The 

shapes of the relationships are similar, with varying degrees of curvature. 

They all display a diminishing marginal effect of traffic intensity on total 

accidents, particularly in the lower range of intensity. 
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Results of residual analyses for each of the three intersection clusters 

are given in Tables 15 through 17. In each case an F-test is performed to 

test differences in the mean number of actual accidents minus predicted 

accidents for each physical design category. Categories with less than five 

intersections in a cluster were dropped from the analyses. (The design 

categories are described in Table 3.) There are no significant differences 

among the categories for any cluster of intersections. 
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Design 
type 

3.1.l 

3.1.2 

3.2 

3.4 

3.8 

Design 
type 

3.1.l 

3.2 

3.4 

3.8 

TABLE 15 

TEST OF SIGNIFICANT DIFFERENCE AMONG DESIGN TYPES IN TERMS OF 
MEAN ACTUAL-PREDICTED TOTAL ACCIDENTS--

CLUSTER Ott OF THREE-LEG INTERSECTIONS 

Regression residual F-statistic Probability 
Sample (degrees- difference 
size mean standard of-freedom) due to 

deviation chance 

9 2.21 5.43 

12 -0.88 2.58 

27 2.24 8.34 1.59 0.19 

11 -1.44 1.18 (4.64) 

10 -1.53 0.89 

TABLE 16 

TEST OF SIGNIFICANT DIFFERENCE AMONG DESIGN TYPES IN TERMS OF 
MEAN ACTUAL-PREDICTED TOTAL ACCIDENTS--

CLUSTER TWO OF THREE-LEG INTERSECTIONS 

Regression residual F-statistic Probability 
Sample (degrees- difference 
size mean standard of-freedom) due to 

deviation chance 

10 1.69 6.16 

25 -0.11 2.59 0.39 0.76 

70 0.34 8.16 (3,146) 

45 -0.42 1.67 
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Design 
type 

3.1.l 

3.1.2 

TABLE 17 

TEST OF SIGNIFICANT DIFFERENCE AMONG DESIGN TYPES IN TERMS OF 
MEAN ACTUAL-PREDICTED TOTAL ACCIDENTS--

Sample 
size 

7 

10 

CLUSTER THREE OF THREE-LEG INTERSECTIONS 

Regression residual 

mean standard 

-0.33 

-4.57 

deviation 

2.00 

8.99 

F-statistic 
(degrees­
of-freedom) 

1.48 

(1.15) 

Probability 
difference 

due to 
chance 

0.24 

Regression results for the four-leg intersections are listed in Table 

18. The ordinary least-squares regressions fit less well than for the 

three-leg intersections, indicating more diversity among the intersections 

within each cluster. Moreover, a different explanatory variable was found to 

give the best results for each cluster, indicating considerable diversity 

among the clusters. For the first cluster, the two-parameter functional form 

of equation (2) is at least as good as any three-parameter equation (1) forms; 

this is consistent with the results for the three-leg intersection clusters. 

However, for the second and third clusters, the special case of functional 

form (1) with only one significant traffic intensity variable was found. This 

result is consistent with the conclusion of McGuigan (1981) that product flows 

are not always justified as exposure measures. Results for all intersection 

clusters show that this conclusion is valid for certain groups of inter­

sections, but not for others. 
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Cluster 

1 

2 

3 

TABLE 18 

LOG-LOG REGRESSIONS OF ACCTOT ON TRAFFIC INTENSITY VARIABLES 
BY CLUSTER AND DIMENSION--FOUR-LEG INTERSECTION 

Dimension 

2 

1 

2 

Explanatory 
variable 

C41 

C1 

C3 

Adjusted Constant 
R2 (T-statistic) 

0.19 0.774 
(4.28) 

0.15 -.045 
(-.07) 

0.35 0.518 
(1.07) 

Coefficient 
(T-statistic) 

0.419 
(4.21) 

0.794 
(2.98) 

1.07 
(3.18) 

The regression equations are graphed in Figures 8 through 10. The first 

cluster exhibits diminishing marginal effects similar to those found for the 

three-leg intersections, but the regressions for the second and third clusters 

are approximately linear. 

The results of the residual analyses for the four-leg intersections 

(Tables 19 through 21) showed that there were no differences among the design 

types. This indicates that traffic intensity variables, in terms of the 

clustering of intersections and the descriptions of accidents as functions of 

traffic volumes, account for differences among intersections; the design 

category adds no additional safety information in this particular case study. 
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9. CONCLUSIONS 

Two general conclusions can be drawn from the case study application 

of the proposed method. First, treatment of traffic intensity variables as 

ordinal scales is an effective way of dealing with data of questionable 

accuracy. Non-linear forms were important in developing a traffic-intensity 
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Design 
type 

4.1.1 
4.1.2 

4.2 

4.4 

4.8 

Design 
type 

4.1.1 

4.1.2 

4.2 

4.4 

4.8 

TABLE 19 

LOG-LOG REGRESSIONS OF ACCTOT ON TRAFFIC INTENSITY VARIABLES 
BY CLUSTER AND DIMENSION--CLUSTER ONE OF FOUR-LEG INTERSECTION 

Sample 
size 

23 
9 

15 

25 

14 

Regression residual 

mean standard 
deviation 

0.28 5.45 

-1.29 2.97 

1.72 5.67 

0.50 2.90 

1.56 1.70 

TABLE 20 

F-statistic 
(degrees­
of-freedom) 

0.95 

(4.81) 

Probability 
difference 

due to 
chance 

0.44 

LOG-LOG REGRESSIONS OF ACCTOT ON TRAFFIC INTENSITY VARIABLES 
BY CLUSTER AND DIMENSION--CLUSTER TWO OF FOUR-LEG INTERSECTION 

Sample 
size 

7 

13 

11 

7 

8 

Regression residual 

mean standard 
deviation 

1.36 3.75 

3.50 8.61 

0.00 2.09 

7.76 18.70 

0.81 4.99 
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F-statistic 
(degrees­
of-freedom) 

0.96 

(4.41) 

Probability 
difference 

due to 
chance 

0.44 



Design 
type 

4.1.1 

4.4 

TABLE 21 

LOG-LOG REGRESSIONS OF ACCTOT ON TRAFFIC INTENSITY VARIABLES 
BY CLUSTER AND DIMENSION--CLUSTER THREE OF FOUR-LEG INTERSECTION 

Regression residual F-statistic Probability 
Sample (degrees- difference 
size mean standard of-freedom) due to 

deviation chance 

8 -0.31 12.67 0.08 

8 1.04 3.64 (1.14) 0.78 

typology of intersections and in relating traffic intensity variables and 

accident rates. These functional forms were generally consistent with results 

found in previous studies (e.g., studies in which power functions were used). 

The second general conclusion is that interaction terms between the 

traffic volumes on various intersection approaches are important explanatory 

traffic intensity variables. This result is again consistent with the use of 

flow product terms in previous studies. 

Three conclusions specific to the case study can also be drawn. First, 

there are unique types of non-signalized arterial road intersections in the 

Netherlands, based on traffic intensity characteristics, and these types 

exhibit different forms of relationships between accident rates and traffic 

intensities. Second, for all types of three-leg arterial road intersections, 

the variable that is the most effective in explaining accident rates measures 

the interaction between the approach volume on the non-priority leg and the 

approach volume on the priority leg representing a left turn from the 
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non-priority leg; for four-leg intersections the most effective intensity 

variable is different for each type of intersection. Third, there were no 

differences in accident rates among intersection geometric designs that were 

not explained by traffic intensity differences among the intersections. This 

final result highlights the importance of accounting for traffic intensity 

patterns when evaluating design alternatives. 
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