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Abstract 

Structural and Functional Ultra-short Echo Time (UTE) Proton Lung 

MRI: Techniques and Clinical Applications 

Fei Tan 

 

UTE proton MRI is getting more attention in structural and functional lung imaging 1. It 

improves signal-to-noise ratio (SNR) from low T2* tissues such as the lung parenchyma 2, and is 

motion robust compared to traditional Cartesian acquisitions. For radial UTE scans, the repeated 

acquisition of the center of k-space can serve as a self-navigator respiratory motion during free-

breathing, enabling the motion-resolved 3D reconstruction at multiple respiratory states 3,4. The 

volume change can then be assessed by the lung tissue deformation and intensity variation across 

the different respiratory phases, which is a straightforward biomarker for ventilation 

quantification. Compared to existing ventilation quantification methods such as pulmonary 

function testing (PFT), computed tomography (CT), and hyperpolarized noble gas MRI, 1H MRI 

offers local functionality via ventilation analysis, is non-ionizing, and does not require special 

equipment.   

 

This dissertation aims to exploit the simultaneous structural and functional aspects of UTE 1H 

MRI. The first project explored ventilation quantification with free-breathing motion-resolved 

3D UTE 1H lung MRI through the tissue deformation-based Jacobian determinant method. In the 

second project, we advanced on the motion-compensated low-rank constrained reconstruction, 

which jointly improves the motion field estimation and the reconstruction to get high-quality 
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ventilation maps and structural images. Third, we compared the 3D UTE 1H ventilation 

calculated from motion-compensated low-rank constrained reconstruction (MoCoLoR) 5,6 with 

the HP 129Xe ventilation for validation. 

 

In addition, we investigated the feasibility of using a convolutional neural network for motion-

compensated proton lung MRI reconstruction. It substantially accelerates the reconstruction for 

3D radial UTE data, shortening the required reconstruction time from hours to minutes. It 

showed the potential to shorten the scan time, thus facilitating the clinical application of proton 

pulmonary UTE MRI. Moreover, we evaluated the imaging quality of UTE lung MRI in the 

pediatric population through a reader study. Lastly, we pushed the structural-functional proton 

3D UTE lung MRI to clinical applications and reported results for pediatric patients with pectus 

deformity. 
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Chapter 1 Introduction 

 

1.1 Overview 

Proton magnetic resonance imaging (MRI) has not yet been widely applied in clinical thoracic 

imaging because a) The lung has significantly lower proton density compared to other organs 7,8, 

b) the susceptibility induced by parenchyma-airway interface results in a short T2* 9, both of 

which contribute to a low signal, and c) the respiratory motion creates additional challenges to 

the acquisition.  

 

Ultra-short echo time (UTE) MRI sequence 10 was introduced in 1991 for lung imaging. The half 

pulse and acquisition from the center enable an echo time as short as 50 microseconds. The ultra-

short echo time compensates for the short T2* and enables higher signals in lung MRI. Motion-

resolved 3D free-breathing pulmonary MRI techniques can utilize the motion and reconstruct 

image volumes at different respiratory states 4, minimizing motion artifacts and enabling 

functional analysis. This work aims to improve structural and functional UTE proton MRI 

techniques for clinical applications, especially for the pediatric population. 

 

1.1.1 Clinical Lung Evaluation Approaches  

Pulmonary function testing remains the primary clinical routine for lung disease evaluation 11, 

but it only provides global ventilation. The dependence on patient effort also limits its use in 

young children and infants 12.  

 



 2 

Computed tomography is preferred when a chest X-ray is not sufficient 13. It provides fast 

acquisition and high-resolution structure information of the lung. However, the ionizing radiation 

from CT can be harmful to children. 

 

Hyperpolarized noble gas MRI such as 3He or 129Xe acquires static and dynamic images of 

airways within a single breath-hold with the noble gases 14. However, HP gas MRI requires 

specialized equipment, including a polarizer, and unique RF coils, so it can only be performed at 

a few sites worldwide. 

 

1.1.2 Existing Proton MRI Studies 

Previous studies on free-breathing proton MRI for lung function evaluation exist. Fourier 

decomposition 15 acquires consecutive 2D MRIs, applies Fourier decomposition along the time 

dimension at each pixel, and then separates cardiac and pulmonary motion by frequency 

spectrum. The total area-under-curve at typical frequencies for the respiratory and cardiac cycle 

provides the ventilation and perfusion maps, respectively. 

 

Phase-resolved functional lung imaging (PREFUL) 16 built on the concept of Fourier 

decomposition. It reorders the images according to the cardiac or respiratory motion phase and 

reconstructs one complete cardiac/respiratory cycle. This method sheds light on perfusion and 

ventilation map calculation by proton MRI. The caveat of this approach is that it only deals with 

2D images, and the registration can be unreliable.  
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The recent effort also includes flow-volume loop 17 quantification. The local fractional 

ventilation and its derivation against time at each time point form a flow-volume loop. The flow-

volume loop of an abnormal lung deviates from that of the healthy cohort. 

 

Structural lung MRI has also seen significant developments in the past decade. While respiratory 

motion remains problematic for conventional reconstruction methods, the recently developed 

motion-resolved 3D free-breathing pulmonary instead MRI utilizes the motion. It groups the 

acquired k-space signal by the motion state and then reconstructs image volumes at different 

respiratory states 4.  

 

For example, XD-GRASP 18 applies the total variation (TV) constraint along the motion states 

dimension and demonstrated application in pulmonary and cardiac MR. Other methods for 

motion compensation have been introduced and demonstrated for lung MRI, such as iMoCo 19 

and MostMoCo 20. The motion fields are included in the data consistency term for an improved 

motion-resolved reconstruction in these methods. 

 

1.1.3 Aim 

This dissertation aims to improve the ventilation quantification and image reconstruction of 

free-breathing motion-resolved 3D UTE 1H lung MRI, especially for pediatric applications. 

 

1.2 Outline  

Chapter 2 summarizes MR basics related to UTE 1H Lung MRI.  
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Chapters 3-5 discuss developed approaches. Chapter 3 introduces a functional analysis method, 

pulmonary ventilation analysis using 1H ultra-short echo time UTE lung MRI: a reproducibility 

study. Chapter 4 discusses a reconstruction approach for UTE lung MRI: motion-compensated 

low-rank constrained reconstruction (MoCoLoR) for simultaneous structural and functional 

ultrashort echo time (UTE) lung MRI. Chapter 5 presents validation of 1H ventilation using a 

multi-nuclear MRI approach, titled 3D Free-Breathing ultrashort echo time (UTE) 1H ventilation 

compared with hyperpolarized 129Xe ventilation.  

 

Chapters 6-8 present exploratory results and applications. Chapter 6 summarizes a machine 

learning-based project, iterative motion-compensated reconstruction with convolutional neural 

network (iMoCo-Net) for ultrashort echo time (UTE) proton lung MRI. Chapter 7 covers a 

reader study, quality assessment of ultrashort echo time proton lung MRI in pediatric patients. 

Chapter 8 presents a clinical application study, structural and functional proton UTE lung MRI in 

pediatric pectus deformity patients.  

 

Lastly, Chapter 9 summarizes the work and discusses future directions for UTE lung MRI 

research. 
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Chapter 2 MR Basics and Reconstruction 

 

2.1 MR Basics 

2.1.1 Overview (B0, B1, Gradients) 

Three key components enabled Magnetic Resonance Imaging (MRI). First, an external static 

magnetic field B0 will align the nuclear spins with the field direction. By convention, this 

direction is defined as the longitudinal direction. In addition, the nuclear spins will rotate at a 

well-defined frequency called Larmor frequency. Second, a radiofrequency (RF) pulse 

resonating at the Larmor frequency B1 will disturb the equilibrium and tip the spins to the 

transverse plane. The receiver coils can then detect the electromotive force (EMF) signal. Third, 

linear gradient fields Gx, Gy, Gz along the transverse plane and the longitudinal axis (x, y, z 

coordinates) enable spatial localization of the signal 21. Figure 2.1 illustrates an MRI scanner 

cutaway with the key components.  

 

 

Figure 2.1 MRI Scanner Cutaway. 22 
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2.1.2 Relaxation (T1, T2)  

MRI distinguishes different types of tissues based on their intrinsic properties, such as the 

longitudinal relaxation time (T1) and transverse relaxation time (T2). Specifically, the 

longitudinal relaxation time describes the time it takes for nuclear spins to return to equilibrium 

and align with the main magnetic field after disturbance. The transverse relaxation time describes 

how the spins disperse, resulting in signal decay in the transverse plane 21.  

 

2.1.3 Contrast (TR, TE)  

Imaging sequence parameters TE (echo time) and TR (repetition time) accentuate the image 

contrast. TE is defined as the time between the center of the RF pulse and the time that the k-

space center is measured, while TR refers to the time interval between two repetitively applied 

RF pulses 23. 

 

2.2 Pulse Sequence 

2.2.1 Ultrashort Echo Time (UTE) Sequence 

Pulse sequences with a short echo time (TE) in the 50-200 millisecond range are usually 

categorized as ultrashort echo time sequences 24. These sequences are suitable for imaging short 

T2* tissues such as the lung parenchyma (T2* 0.5-3 ms). The center of k-space is sampled first 

for each readout to achieve ultrashort echo time, resulting in a non-Cartesian trajectory. Figure 

2.2 demonstrates a pulse sequence diagram for a basic 2D UTE sequence.  
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Figure 2.2 Pulse sequence diagram for a basic UTE sequence 25. 

 

The conventional UTE is less efficient compared to the Cartesian approach. Signal-to-noise ratio 

(SNR) and image quality need to be improved to make UTE sequence clinically applicable. Our 

studies adopted an optimized 3D radial pulse sequence developed by Johnson et al. 26. As shown 

in the pulse sequence diagram in Figure 2.3, the sequence consists of a slab selective half pulse 

followed by a center-out k-space acquisition. Instead of a constant gradient, the gradient strength 

is optimized as 𝑔(𝑠) < min()!
"!
) , 𝐺#$% 	). Where 𝑔	represents the gradient strength, 𝑠 is the 

position along the spokes, and 𝐴 is an arbitrary scaling factor, 𝐺#$% 	is the maximum gradient 

achievable by the scanner.  
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Figure 2.3 Pulse sequence diagram for efficiency-optimized variable density 3D UTE 26. 

 

2.2.2 Golden Angle Ordering 

Golden angle ordering is a pseudo-random ordering scheme for acquisition trajectories 27. It has 

the advantage of motion robustness, incoherent image artifacts, and is available for image sorting 

and binning. The golden angle is derived from the golden ratio .1 + √5	3/2	 ≈ 1.618. For half 

radial spokes, the rotation angle is defined as 137.51°, where each following spoke slices the 

largest angle into two segments. The derivation of 2D radial golden angle is shown in Figure 2.4.  
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Figure 2.4 Golden ratio of line segment and golden angle of 2D radial spokes 27.  

 

The pseudo-random property of golden angle ordering is well-suited for respiratory motion 

binning, as shown in Figure 2.5. Compared to sequential trajectory ordering, it provides more 

uniform k-space coverage after respiratory motion binning. 

 



 10 

 

Figure 2.5 Golden angle ordering offers uniform k-space coverage after motion binning compared to 
sequential ordering 27. 

 

2.3 Reconstruction 

2.3.1 Iterative Reconstruction 

A generalized reconstruction can be formulated as follows, 

argmin
'(

=𝐸𝑋@ − 𝑑=
)
) 		+ 𝜆𝑅(𝑋@) 

Where 𝑋@ is the MR image to be restored, 𝑑 is the data collected in k-space, 𝐸 is a combination of 

linear operators that transforms the image to k-space, and 𝑅 is a regularization term.  

 

However, respiratory motion can cause significant blurring with conventional image 

reconstruction. Motion-compensated reconstruction, such as iterative motion-compensated 

reconstruction (iMoCo) 19, is developed to address this issue. The optimization problem is 

formulated as follows. 

argmin
'(

E=𝑊.𝐹𝑆𝑀𝑋@ − 𝑑*+3=)
)

,,.

*,+

		+ 𝜆"𝑇𝐺𝑉"(𝑋@) 
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Where 𝑀 represents the motion field, 𝑆 is the sensitivity map, 𝐹 is the nonuniform Fourier 

transform, 𝑊 is the sampling density compensation factor, and 𝑇𝐺𝑉 is the spatial total 

generalized variation sparsity constraint. 

 

The iMoCo technique provided an essential foundation for the presented work by addressing the 

challenging respiratory motion in lung MRI. This technique involves binning the data according 

to respiratory states and applying an extra dimension reconstruction to compute motion-resolved 

images. Afterward, registrations are performed between each respiratory state and the end-

expiratory state, and the resulting motion fields are incorporated into the iterative motion-

compensated reconstruction optimization problem. 

 

2.3.2 Respiratory Binning & Motion Field Estimation 

Respiratory binning is crucial for motion-compensated reconstruction and ventilation analysis. 

Respiratory motion can be recorded by an external device or sampling the center of k-space. 

Subsequently, the raw data can be regrouped based on the amplitude or timing of the respiratory 

motion. Details on respiratory binning tailored for each project are discussed in the methods 

section of the following chapters.  

 

Motion field estimation also plays a vital role in motion-compensated reconstruction. Chapter 3 

compares two registration approaches that estimate the motion field and expand on its 

relationship with ventilation map calculation.  



 12 

Chapter 3 Pulmonary Ventilation Analysis Using 1H Ultra-Short Echo 

Time (UTE) Lung MRI Evaluated with A Reproducibility Study 

 

3.1 Introduction 

1H MRI has recently been explored as a radiation-free alternative for lung ventilation evaluation 

7,28. The Fourier decomposition method 29 acquires consecutive 2D MRIs, applies Fourier 

decomposition along the time dimension at each pixel, and then separates the cardiac motion and 

pulmonary motion by the frequency spectrum. Phase-resolved functional lung imaging 

(PREFUL) 16 reorders the images according to the phase of the cardiac or respiratory motion and 

reconstructs one full cardiac/respiratory cycle. The flow-volume loop 30 regional ventilation is 

also introduced. 

 

UTE MRI is favorable for free-breathing lung imaging 10,24 because it is robust to motion 

artifacts and improves signal-to-noise ratio (SNR) from low T2* tissues such as the lung 

parenchyma 2. The center of k-space can serve as a self-navigator that tracks respiratory motion 

during data acquisition 4,18. By grouping the k-space data acquired at different respiratory states, 

we can reconstruct lung images at these states with minimal motion artifacts, which are the basis 

of ventilation analysis. Examples include XD-GRASP 18 and self-navigated motion-resolved 

reconstruction 4.  

 

In this work, we evaluated methods for lung ventilation quantification with a free-breathing 

respiratory phase-resolved 3D radial UTE lung MRI. We evaluated the effects of two registration 
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methods and two ventilation quantification methods by a reproducibility study in healthy 

volunteers.  

 

3.2 Methods 

Study Design 

All procedures were approved by the University of California, San Francisco’s Institutional 

Review Board (IRB). 6 healthy volunteers (age 23 - 30, 3 Female, 3 Male) were recruited to the 

study and written consent was acquired before their scan. Eligibility criteria were no history of 

asthma or smoking.  

 

An efficiency and SNR optimized variable-density 3D radial UTE sequence 31 with golden angle 

ordering was used on a 3T clinical scanner (Discovery MR750, GE Healthcare, Waukesha, WI) 

with an 8-channel cardiac phased-array coil (GE Healthcare, Waukesha, WI). Volunteers 

performed tidal breathing in a supine position. The key scan parameters were: flip angle=4°, 

FOV=40cm isotropic, TE/TR=0.1/2.4ms, BW=±125kHz, readout points=512, spokes=200,000, 

resolution=2.5mm isotropic (Figure 3.1 A). For studying reproducibility, we scanned each 

subject with the same sequences twice in the same day, 30 minutes apart, re-setting up the coils 

between the scans. The pipeline for the study is shown in Figure 3.1. 

 

Image Processing  

Reconstruction  

The reconstruction was completed by MATLAB (Mathworks 2019a) and the BART (Berkeley 

Advanced Reconstruction Toolbox) 32. The data were first binned into 12 phases according to 
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their respiratory cycle timing (Figure 3.1 B, C, D) derived from the center of k-space 4. The 

number of phases was chosen to balance between less streaking artifacts and more respiratory 

phases. The respiratory motion was extracted from the coil with the strongest signal fluctuation 

around the breathing frequency. A 4D phase-resolved image series with three spatial dimensions 

plus a respiratory phase dimension were reconstructed by parallel imaging and compressed 

sensing (PICS) reconstruction (Figure 3.1 E). 

 

Registration 

Then, we registered the image of each respiratory state to the end-expiration state (Figure 3.1 F) 

with two different methods: 1) B-spline 3D+t cyclic registration 33 to utilize the cyclic 

characteristic of breathing pattern, and 2) the 3D symmetric image normalization (SyN) method 

34 with mutual information metric to minimize the effect of intensity change during breathing. 

The registrations were implemented in Elastix 35 and ANTs 36 toolboxes, respectively.  Both 

methods utilized 4-level multiscale registration.  

 

Segmentation 

Segmentation of the left and right lung was achieved by a pre-trained U-Net deep learning 

algorithm from 37. 

 

Ventilation Analysis 

Regional Ventilation  

Regional ventilation was calculated based on the local lung tissue motion and deformation 

information. The Jacobian determinant (JD) of the registration motion field (D) represents the 
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ratio of volume at each respiratory state, 𝑉/0"1, to the end-expiration state, 𝑉0234051*. JD >1 

means expansion and JD<1 means contraction. The definition was as follows 38,39, 

𝐽𝐷 =
𝑉/0"1

𝑉0234051*
= Odet SId + 	

∂.𝐷5 , 𝐷6 , 𝐷73
∂(𝑥, 𝑦, 𝑧) YO 

where x,y,z were the spatial dimensions and Id was a 3-by-3 identity matrix. 

 

The regional ventilation definition from 40 was adopted to show the local percentage lung volume 

change by subtracting 1: 

𝑅𝑒𝑔𝑖𝑜𝑛𝑎𝑙	𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛 = 	 8"#$%48#&'(#)%*
8#&'(#)%*

= 𝐽𝐷 − 1. 

 

Specific Ventilation  

Specific ventilation 41,42 was calculated by the percentage intensity difference at each respiratory 

state to the end-expiration state, measured using the registered images. The definition was as 

follows, 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐	𝑉𝑒𝑛𝑡𝑖𝑙𝑎𝑡𝑖𝑜𝑛	 =
𝑉/0"1 − 𝑉0234051*

𝑉0234051*
=

𝑚
𝜌 /0"1

−𝑚𝜌 0234051*
𝑚
𝜌 0234051*

	=
𝑆0234051* − 𝑆/0"1

𝑆/0"1
 

where 𝑆0234051* , 𝑆/0"1 were the signal intensities of each voxel in the end-expiratory and other 

respiratory states, m was the total mass, and 𝜌0234051* , 𝜌/0"1 were the proton densities.  This 

metric assumes conservation of mass and 𝑆 ∝ 𝜌. 

 

A Gaussian filter of matrix size 5x5x5 voxels was applied on the spatial domain and a 1D 

wrapped Gaussian filter was applied in the phase dimension for noise reduction. 
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Statistical Analysis 

Details of statistical analysis and image-based pulmonary function measurement are included in 

the supplementary material. 

 

All scripts for this paper are available online at 

https://github.com/PulmonaryMRI/reproducibility. 

 

 

Figure 3.1 Pipeline for Ventilation Analysis of UTE Lung MRI with N Respiratory Phases.  

Note that the same procedure is performed twice on the same day for reproducibility studies. A) Data 
acquisition. B-E) Image reconstruction, the color coding represents respiratory phases. F) Image 
registration, three types of image registration methods were experimented. G) Ventilation analysis, the 
Jacobian determinant of the motion field vector at each voxel minus 1, represents the regional ventilation 
percentage. 
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3.3 Results 

Representative Ventilation Maps 

Figure 3.2 depicts the ventilation map overlayed on the registered phase-resolved lung MR 

images for the two registration methods and two ventilation calculation methods of one 

representative volunteer.  

 

The ventilation maps for phase 1 depict the cyclic consistency of the methods. Since phase 1 is 

the end-expiration state and is selected to be the reference frame, the ventilation of this frame 

should be close or equal to 0. The intensity-based methods guaranteed it. However, for Jacobian 

determinant-based methods, the concatenated motion fields may not be zero if cyclic consistency 

is not enforced.  For regional ventilation, the B-spline cyclic registration is closer to zero at phase 

1, indicating that it mimics the cyclic respiratory pattern.  

 

The regional ventilation maps show a smoother pattern compared to specific ventilation. The 

smoothness of regional ventilation could result from the smoothing filter applied on the motion 

field during registration.  
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Figure 3.2 Representative Regional Ventilation Map of Two Scans and Their Difference Using Three 
Registration Methods. 

Within each method, the first row and second row are from the first and second scan respectively while 
the third row is the difference of ventilation maps between the two after a simple registration. A regional 
ventilation of 0.1 correspond to 10% of volume expansion with respect to the end-expiration state. For 
conciseness, three respiratory phases out of twelve are shown. 

 

Reproducibility 

Intra-Subject Analysis 

Figure 3.3 shows the ventilation distributions for two representative volunteers with two 

registration methods and two ventilation calculation methods. This includes consistent 

(Volunteer 6) and inconsistent (Volunteer 5) breathing between the two scans. In the split violin 

plots of all four combinations (columns 1-4), the median regional or specific ventilation evolves 

with a generally increase-decrease pattern, following the respiratory phases and matching the 

segmentation-based tidal volume measurements (column 5). We also computed the correlation 
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(column 6) between lung volume measurements based on these ventilation metrics and 

segmented volumes across respiratory phases.  For all cases, the regional ventilation approach 

(blue and orange) has higher Pearson correlation coefficients, r, compared to the specific 

ventilation approach. 

 

 

 

Figure 3.3 Split Violin Plot of the Ventilation Distribution, Segmentation Tidal Volume, and Their 
Correlation of Two Representative Subjects. 

The discrete horizontal axis are the respiratory phases starting from end-expiration. In the split violin 
plots, the two colors represent the 1st and 2nd scan respectively, the shaded areas depict the distribution, 
and the solid line across phases is the median. As for correlation, the Pearson r values are color coded 
for each registration and ventilation combinations. 

 

Figure 3.4 compares the total ventilation as measured by each method between scans across all 

volunteers and respiratory phases. The Bland-Altman plots show that b-spline registration with 

specific ventilation has the smallest variation yet also smallest range. There are increased 

differences between scans as total ventilation increases, which occurs at the respiratory phases 

closer to end-inspiration, phases 4-8.  
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Figure 3.4 Bland-Altman Plot and Linear Regression of Total Ventilation across all subjects and 
respiratory phases. 

The total ventilation is calculated by averaging all regional ventilation within the lung volume. Each 
color represents a volunteer while each shape represents specific respiratory phase. 

 

The slopes of the linear regression lines of three methods, both regional ventilation methods and 

b-spline registration combined with specific ventilation method, are close to 1. They also showed 

higher correlations, with R2 values 0.94-0.96. Total ventilation of Volunteers 1 and 6 align most 

with the dashed slope 1 line, which matches our observation from the split violin plot.  

 

Sectional Ventilation  

Figure 3.5 and Figure 3.6 show analyses of ventilation with lungs that are separated into six 

different zones, lower left, lower right, middle left, middle right, upper left, and upper right 

sections, to learn how different sections contribute to interscan variations.  Results are shown 

only for the cyclic b-spline registration combined with the regional ventilation approach. 
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Figure 3.5 Split Violin Plots of the Ventilation Distribution for Six Lung Sections of Two Representative 
Subjects using the Cyclic b-Spline Registration and Regional Ventilation Method.  

The subjects and the violin plot characteristics are the as Figure 3.3. The lower left and lower right 
regions have the highest median ventilation among all sections.  
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Figure 3.6 Bland-Altman Plot of Total Ventilation using the Cyclic b-Spline and Regional Ventilation 
Method. 

The lower left and lower right regions have a larger span in average total ventilation of the two scans 
and a larger standard deviation in the difference between the two scans.  
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Table 3.1 Image-Based Pulmonary Function Measurements across all volunteers. 

The respiratory rate is calculated from the filtered respiratory motion curve (Figure 3.1B), the functional 
residual capacity is the segmentation volume at the end-expiration state, and the tidal volume is the 
segmentation volume difference of the end-inspiration and end-expiration state. 

 Volunteer 1 2 3 4 5 6 

Respiratory Rate 

[breaths per minute] 

Scan1 14.9±0.7 16.0±2.1 19.3±1.0 14.5±0.9 12.5±1.5 17.5±1.4 

Scan2 14.3±1.3 15.6±1.5 20.1±1.4 13.5±1.2 15.5±1.0 16.5±0.7 

Functional Residual 

Capacity [L] 

Scan1 3.85 1.59 1.91 2.14 3.37 2.77 

Scan2 3.60 1.58 2.00 2.14 2.75 2.88 

Tidal Volume [L] 
Scan1 0.46 0.18 0.40 0.52 0.32 0.26 

Scan2 0.43 0.27 0.34 0.38 0.12 0.29 

 

3.4 Discussion 

In this work, we implemented a phase-resolved reconstruction for radial UTE lung MRIs and 

calculated the ventilation maps. We tested four approach combinations, covering two registration 

methods, the 3D+t b-spline cyclic registration 33 and symmetric normalization 34, and two 

ventilation map quantification methods, the deformation field-based regional ventilation 39,40 and 

the intensity difference-based specific ventilation 41,42 method. Through violin plot, coefficient of 

variation, Bland-Altman plot, and linear regression, we observed different performances from 

these methods. The cyclic registration combined with regional ventilation has the highest 

correlation with segmented lung volume, while cyclic registration combined with specific 

ventilation was the most reproducible.  
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Regional Ventilation Versus Specific Ventilation  

Based on our investigation, regional ventilation correlates better with segmentation lung volume, 

while specific ventilation is more reproducible.  

 

We believe several factors might contribute to this performance. Since the intensity-based 

specific ventilation uses the image intensity, it is more sensitive to low SNR and image 

registration errors particularly from partial volume effects of vessel or chest wall signals that are 

much higher than the lung parenchyma. Because of this, spatial and temporal averaging is 

required for noise reduction. This improves the reproducibility yet leads to a smaller ventilation 

range as shown in the split violin plots in Figure 3.3.  

 

The specific ventilation calculation also relies on the assumption that the MR signal is directly 

proportional to proton density, but this may vary due to T2* changes 8 and the coil sensitivity 

map changes caused by breathing. On the contrary, the regional ventilation uses Jacobian 

determinant of the motion fields, which is a direct measurement of volume change ratio. This 

could help explain that the regional ventilation correlates better with the segmentation lung 

volume.  

 

The Effect of Registration Methods 

We observed b-spline registration outperforms the SyN registration in both reproducibility and 

the ability to account for the cyclic nature of respiration by different registration methods.  
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As for cyclicity, we expect the concatenation of all motion fields from phase 1 to 12 back to 

phase 1 should be close to zero and thus has regional ventilation close to zero in phase 1. If we 

look at the ventilation colormap in the representative volunteer in Figure 3.5, the regional 

ventilation values for phase 1 using cyclic registration are close to zero which suggests this 

registration is enforcing cyclic behavior. While for SyN registration, the ventilation of phase 1 

has a large range, showing that cyclicity is not accounted for.  

 

This could be explained by the algorithms of the registration methods. 3D+t b-spline registration 

applies b-spline grids in the wrapped temporal dimension, which assumes the first and last 

temporal frames are adjacent. However, in SyN registration, since the motion fields are 

concatenated from phase 1 to 12, slight errors in each registration step accumulate, and thus the 

SyN method does not account for cyclicity.  

 

Limitations 

This study has a few limitations. First, we fixed the reconstruction to 12 respiratory phases, 

balancing between less streaking artifact and more respiratory phases. We speculate that with a 

smaller number of bins, the data to reconstruct each image will increase, leading to an increased 

SNR, which will potentially improve the performance of the intensity-based specific ventilation. 

Second, we tested one set of registration parameters on both registration methods. Second, we 

modified the b-spline cyclic registration parameters from 33 and the SyN registration parameters 

from ANTs default. The parameters were tuned by manually inspecting the quality of the 

registrations. However, some key parameters such as the multiscale registration levels, the grid 
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spacing, or the smoothing factor may affect the registration performance or the smoothness of 

the motion field. Thus, their effects on ventilation quantification need further investigation.  

 

3.5 Conclusion 

In this reproducibility study, we tested four combinations of registration methods and ventilation 

calculation methods to quantify ventilation on 3D phase-resolved 1H UTE MRI of healthy 

volunteers.  

 

We conclude that cyclic registration is superior to SyN for ventilation purposes. The registration 

method significantly affects the registration-based ventilation analysis. Regional ventilation 

correlates better with segmentation lung volume, while specific ventilation is more reproducible. 

 

The sectional analysis implies that the lower left and lower right sections ventilate the most 

during MRI scanning and account for the most between-scan ventilation differences.  
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Chapter 4 Motion-Compensated Low-Rank Reconstruction 

(MoCoLoR) for Simultaneous Structural and Functional Ultrashort 

Echo Time (UTE) Lung MRI 

 

4.1 Introduction 

Proton ultrashort echo time (UTE) MRI has gained more attention recently in thoracic imaging 

because of its ability to capture fast relaxing signals with inherent motion management 

capabilities 43,44 and provide simultaneous structural and functional imaging 45. However, due to 

the limited encoding speed of MRI, and the substantial data required for volumetric images, 

respiratory motion remains challenging for imaging in these anatomies. Conventional MR 

respiratory motion management techniques include breath-holding, respiratory triggering, and 

gating using signals from external devices such as a bellow or MR navigators 46–49. While these 

approaches reduced motion artifacts, breath-holding limits the total scan time and increases 

patient discomfort. Respiratory gating methods suffer from prolonged scan time and low data 

efficiency.  

 

3D non-Cartesian acquisition schemes such as 3D radial 50, cones 51, stack-of-stars 18, etc., can 

support robust respiratory motion management. These trajectories repeatedly acquire the center 

k-space, which serves as a self-navigator for respiratory gating. (Pseudo-)random ordering 52–54 

can be easily incorporated into non-Cartesian acquisitions to increase temporal sampling 

incoherence. In addition, the ultrashort echo time minimizes the signal loss caused by the short 
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T2* from the air-tissue interface susceptibility, while radial acquisition samples k-space center 

first which preserves the low frequency signal, and thus increases the lung parenchyma signal. 

 

One motion management strategy is motion-resolved reconstructions 4,55–60 that allows for 

continuous free-breathing acquisitions as well as pulmonary function analysis. These methods 

group the k-space data based on a motion signal and reconstruct the data into multiple respiratory 

states or time points using compressed sensing and parallel imaging techniques. For example, 

XD-GRASP 18 applies the total variation (TV) constraint along the motion states dimension. An 

alternative to the TV constraint is to reformulate the image series into a spatiotemporal Casorati 

61 matrix, then enforce low-rank on the Casorati matrix. This approach is used in free-breathing 

cardiac MRI and dynamic contrast-enhanced (DCE) MRI 62–64. 

 

Several methods for motion compensation have been introduced and demonstrated for lung MRI, 

including iMoCo 19 and MostMoCo 20. In these methods, the motion fields are included in the 

data consistency term for an improved motion-resolved reconstruction. Other methods have 

integrated motion information into low-rank constrained reconstruction models, such as motion 

adaptive patch-based low-rank constrained reconstruction field 55,65 and block low-rank sparsity 

with motion-guidance reconstruction 66. These methods preserve the low-rank property of 

spatiotemporal matrices by searching similar patches locally from the image series. Recently 

work on free-breathing cardiac MRI has demonstrated the ability to incorporate rigid and non-

rigid deformations into the reconstruction along with a patch-based low-rank penalty 67, 

including for 3D radial trajectories 68. 

 



 29 

A major application of motion-resolved lung imaging is pulmonary function analysis. 

Developments in proton MRI-based function analysis include Fourier Decomposition 69, 

PREFUL 70,71, and flow-volume loop 72. These approaches utilize intensity-based specific 

ventilation 73 for localized lung volume function quantification. These methods are also 

fundamentally limited by the lung parenchyma SNR, which is low due to short T2* and low 

proton density, and thus will benefit from any improvements in efficient use of the acquired data. 

 

In this work, we aim to improve simultaneous structural and functional lung imaging by 

reconstructing respiratory-resolved images from 3D-radial UTE MRI with a method that directly 

incorporates motion compensation in the low-rank constrained reconstruction model, named 

Motion-Compensated Low-Rank (MoCoLoR) reconstruction. This motion compensation 

formulation aims specifically to improve the efficiency of respiratory-resolved images by 

allowing data from all motion states to more effectively contribute during image reconstruction.  

This method was evaluated in pediatric and young adult patients with suspected lung diseases 

under free-breathing and without sedation. This population had a range of body size, breathing 

patterns, and compliance in the MRI scanner, and thus provides a challenging, real-world 

scenario in which to demonstrate the performance of MoCoLoR and other respiratory-resolved 

reconstruction methods for structural and functional imaging. 

 

4.2 Theory 

Motion-Compensated Low-Rank Constrained (MoCoLoR) Reconstruction 

In motion-compensated low-rank constrained reconstruction (MoCoLoR), we aim to reconstruct 

motion-resolved images from free-breathing, continuously acquired k-space data. To achieve 
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this, we formulate the reconstruction as an optimization problem that includes data consistency 

across all respiratory phase states and a low-rank constraint that includes estimated motion fields 

to reduce the rank. This is addressed in the following optimization problem, 

𝑎𝑟𝑔𝑚𝑖𝑛
'

9
)
‖𝑊(𝐹𝑆𝑋 − 𝑑)‖)) + 𝜆:‖𝑀𝑋‖∗      (1) 

In the data consistency term, 𝑊 is the density compensation factor, 𝐹 is the non-uniform Fourier 

Transform, 𝑺 = [	𝑆*] are the sensitivity maps of coil 𝑖, 𝒅 = [𝑑*,<] ∈ ℂ=×?×@AB×CB 	are the binned 

data from coil 𝑖 and respiratory state 𝑗, and 𝑿 = [𝑋<] ∈ ℂ=×,
+ are the 3D images at respiratory 

state 𝑗. 𝐵 is the number of respiratory states, 𝐶 is the number of coils, b𝑃𝐸 is the number of 

phase encodings or spokes per respiratory state, 𝐹𝐸 is the number of frequency encodings or 

readouts per spoke, 𝑁D is the image size. In the regularization term, ‖. ‖∗ is the nuclear norm, 𝜆: 

is the low-rank penalty regularization parameter, 𝑴 = v𝑀<w are the motion field operators.  

 

During the iterative optimization, image 𝑿 is updated in the inner loop and 𝑴 is updated with 

image registration in the outer loop. The detailed iterative schemes, their derivation and a 

complexity analysis are included in the supplementary material.  

 

Figure 4.1 summarizes the reconstruction theory of the MoCoLoR method. As shown in Fig. 1e, 

the addition of the motion compensation (MoCo) to the low-rank term reduces the apparent rank.  

When MoCo was applied, there is very little signal or structure in the 3rd and higher spatial bases 

derived from SVD, whereas without MoCo there was more visible signal and structure in the 2nd 

and 3rd spatial bases. This is a major motivation for this method. 
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Figure 4.1 Motion Compensated Low-Rank Constrained (MoCoLoR) Reconstruction Workflow for 
Respiratory Phase-Resolved Lung MRI. 

(a) First, a respiratory signal is required, which can be derived from the center of the k-space. (b) Based 
on this signal, raw data is grouped by respiratory states. (c) Respiratory phase-resolved image volumes 
are iteratively reconstructed by MoCoLoR, including image registration between respiratory states. (d) 
Singular vector decomposition (SVD) is used to enforce low rank. (e) A sample visualization of the spatial 
bases from SVD shows that adding in motion-compensation (MoCo) from the estimated motion fields 
compresses the information into fewer components, decreasing the rank. This framework can also be 
adapted to reconstruct time-resolved images. 
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4.3 Methods 

Data Acquisition  

All procedures were approved by the University of California, San Francisco Institutional 

Review Board. Written consent or assent was acquired from guardians or patients. 

 

The study included eighteen datasets retrospectively from fourteen pediatric and young adult 

patients (4-25 y/o) clinical scans between 2018 and 2022. Three of them received repeated scans 

at different ages (5&5.5 y/o, 4&4.5&6 y/o, 14&16 y/o). The patient population covered a variety 

of lung conditions, including bronchiolitis obliterans (inflammation of the airways), nodules, and 

atelectasis (collapse of the lung). Inclusion criteria were patients that has high resolution (~1mm) 

radial UTE acquired during a clinical or research chest MRI, and were under the age of 18 or 

were being treated in the pediatrics department. A parent companion, video goggles, and audio 

headphones were adopted for the younger participants to increase patient comfort and 

cooperation. No sedation was administered. Throughout the UTE sequence, patients maintained 

a supine position and practiced free tidal breathing.  

 

All data were acquired on 3T scanners (MR750 & MR750W, GE Healthcare, Waukesha, WI, 

USA) with an optimized 3D radial UTE sequence 26 with golden-angle ordering. The key 

parameters were flip angle = 4°, resolution = 0.9 - 1.5 mm isotropic, # spokes = 80,000 - 

150,000, FOV = 24 - 40 cm isotropic, TE/TR = 0.07 - 0.10/2.8 - 3.8 ms, bandwidth = 125kHz, 

total scan time = 3’33” - 7’55”. Depending on patient size, we used an 8-channel or 32-channel 

cardiac coil (GE Healthcare) or a 12 or 24-channel ultra-flexible chest coil 74 (Inkspace Inc.). A 

fast respiratory-gated reconstruction was available for image quality assessment at the scanner. 
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The resolution and FOV were chosen based on patient size, while number of spokes were 

selected based on the time available during the clinical scan.  

 

All reconstructions for the proposed and comparing methods were performed offline on a Linux 

workstation, which had 200 GB memory and a 12 - 32 GB VRAM GPU. The SigPy package 75 

was used for sensitivity calibration, GPU handling, and optimization. All reconstruction scripts 

are available on GitHub (https://github.com/PulmonaryMRI/MoCoLoR). 

 

Respiratory Motion Estimation & Data Binning 

The position in the respiratory cycle was estimated from the center of k-space of each radial 

spoke. DC signal from all coils was bandpass filtered separately by cutoff frequency 0.1Hz and 

0.5Hz to reduce noise and separate the respiratory contributions from cardiac motion 

contributions. The filtered DC signal from the coil with the highest standard deviation 

represented respiratory motion. The peaks or local maximum of this respiratory motion curve 

were chosen to represent end-expiration. The detected peaks with a value smaller than the signal 

mean were excluded. The data points between two adjacent peaks were separated into R 

respiratory states in the time dimension, where each state contained the same number of data 

points (Figure 4.1 a).  

 

The k-space data were then binned according to their corresponding time in the respiratory 

motion curve. The whole respiratory cycle was split into R states. R = 2 - 50 were tested on one 

representative patient due to computation time considerations, and R = 10 was selected for all 
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patients in this study. Details for the number of states selection were explained in the result 

section. 

 

MoCoLoR Implementation Detail 

The end-expiration state (State 1 in Figure 4.1 c) was selected as the reference state for motion 

field estimation because the end-expiration is lengthened in a regular breathing pattern. Thus the 

image in this respiratory state contains minimal within-state motion. Image registration for all 

approaches was performed using ANTs 34 deformable registration with the same parameters.   

 

Due to computational time concerns, we tested the regularization parameter 𝜆: =

0.001, 0.005, 0.01, 0.05, 0.1, 0.5 for all three methods on a single patient. As explained in the 

results section, 𝜆: = 0.05 was selected for MoCoLoR. We didn’t adopt coil for the proposed or 

comparing methods. The algorithm convergences were reported in the supplementary material. 

Based on the convergence, the number of iterations for XD Recon, MostMoCo, and MoCoLoR 

was selected as 25, 15, and 45, respectively.  

 

 

Ventilation Quantification 

Regional ventilation is derived from the registration motion field 𝑀. It measures the percentage 

of volume change during tidal breathing at each voxel. The definition of regional ventilation is as 

follows, 

𝑅𝑉 = 8"#$%48#&'(#)%*
8#&'(#)%*

= 8"#$%
8#&'(#)%*

− 1 = |𝑑𝑒𝑡[𝐼𝑑 + 𝛻𝑀	]| − 1					(4) 
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where 𝑉/0"1, 𝑉0234051*, are the lung volume at each respiratory and end-expiration state. 𝐼𝑑 is a 

3-by-3 identity matrix, 𝑀 is the motion field, ∇ is the Jacobian matrix, and 𝑑𝑒𝑡 is the matrix 

determinant.  

 

A regional ventilation value greater than 0 means lung tissue expansion, and less than 0 indicates 

contraction. The end-expiration state is selected as the reference frame where the ventilation is 

by definition zero. Region ventilation reports percentage of volume change instead of volume 

ratio in order to be directly comparable to specific ventilation. 

 

The specific ventilation (SV) 76 is an intensity-based approach for ventilation quantification. It 

assumes that the signal intensity in lung parenchyma is proportional to the proton density, T1 is 

independent of air volume, and that mass is conserved. Specific ventilation is defined by the 

following equation, 

𝑆𝑉	 = 8"#$%48#&'(#)%*
8#&'(#)%*

	= E#&'(#)%*4E"#$%
E"#$%

       (5) 

where 𝑆0234051*, 𝑆/0"1 are the signal intensity at each voxel in the end-expiration state and a 

respiratory image registered to the end-expiration image. The specific ventilation is truncated at 

zero for the ventilation map calculation to eliminate extreme values introduced by noise. 

 

Lung segmentation 

We adopted a 3D U-Net-based pre-trained neural network for lung segmentation 77 in its original 

form and weighting. 3D volumes at each respiratory state were processed separately. The lung 

masks maintained good visual quality and were used for ventilation map overlay. 
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Comparing Methods 

For comparison, we reconstructed the data using the phase-resolved extra-dimension (XD) 

reconstruction proposed by Feng et al. 18. In addition to the original total variation regularization 

in the temporal dimension, we added total variation in the spatial dimension for SNR 

improvement. The temporal regularization parameter 𝜆F = 0.05 and the spatial regularization 

parameter 𝜆" = 0.01 were selected based on a parameter search.  

 

We also compared with the recent work on motion-state weighted motion-compensation 

(MostMoCo) reconstruction by Ding et al 20. The temporal regularization parameter 𝜆F = 0.05 

and the spatial regularization parameter 𝜆" = 0.01 were selected based on a parameter search.  

 

Quantitative Analysis 

Apparent SNR (aSNR) 

Region of interest (ROIs) that covers the parenchyma, aorta, and trachea is manually drawn on a 

selected coronal slice that includes all structures. aSNR is calculated by 𝑎𝑆𝑁𝑅F*""G0 	 =

.0H2(E,*$$-#)
"F3KE./012"3-&'L

, where 𝑆F*""G0 is the signal intensity within the parenchyma, aorta or trachea, and 

𝑆@HM+N/OG23 is the signal intensity within the background 19. The same ROIs are used across all 

three methods. 

 

Maximum Derivative 

The maximum derivative (MD) of the diaphragm is used to evaluate the sharpness of the image.  

A rectangular bounding box was manually drawn across the diaphragm of the selected coronal 

slice 𝑛 at the end-expiration state. MD was measured by the maximum diaphragm gradient over 
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the mean liver signal among the 30 slices centered around slice 𝑛. A higher MD value represents 

a sharper diaphragm structure and indicates better motion correction improvement.  

 

Paired t-test is used for significance analysis for apparent SNR and maximum derivative, where 

each data point represents one patient dataset. 

 

4.4 Results 

Figure 4.2 demonstrates representative reconstructed images and ventilation maps of the 

MoCoLoR approach in 14 y/o patient with severe combined immunodeficiency (SCID). We 

compared the structural image of XD Recon, MostMoCo reconstruction, and motion-

compensated with low-rank constraint (MoCoLoR) reconstruction. The visualization of 

structures such as the pulmonary vasculature was similar across methods, but the XD Recon had 

slightly higher noise levels. 

  

Regional ventilation and specific ventilation maps were also calculated. The end-expiration state 

is selected as the reference frame where the ventilation is by definition zero. The regional and 

specific ventilations vary with respiratory states, with the highest ventilation appearing at the 

expected end-inspiration state. The ventilation maps measured with the three reconstruction 

methods present similar patterns. The regional ventilation method in particular shows some 

potential ventilation defects near the base of both lungs. The specific ventilation maps have 

different ranges across the reconstruction methods, which likely is because XD Recon and 

MostMoCo regularize intensity differences, while the proposed MoCoLoR method regularizes 
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the absolute intensity values. Despite of the range difference, the ventilation maps show similar 

patterns. 

 

 

Figure 4.2 Representative Structural Image and Ventilation Maps. 

The dataset represents a 14 y/o patient with severe combined immunodeficiency (SCID) who presented 
with dyspnea on exertion in different respiratory states. The circled regions show improved structures at 
end-expiration and intermediate respiratory states, and the arrows point to the sharpened diaphragm. 

 

Figure 4.3 compares the apparent SNR and sharpness of all reconstruction methods for all 

eighteen datasets, and a paired t-test is used for significance analysis. The aSNR box plots show 

that the MoCoLoR methods yield higher aSNR in the parenchyma and aorta compared to XD 

reconstruction and MostMoCo approaches. Since the trachea is filled with air, there’s no signal 

source, and in fact the aSNR should theoretically be zero in the trachea. According to the t-test, 
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all aSNR improvements were significant. The sharpness plot suggests that the MoCoLoR 

approach has slightly decreased sharpness compared to the XD and MostMoCo reconstruction. 

 

 

Figure 4.3 Box Plots of aSNR and Sharpness Measurements of All Datasets. 

Apparent SNR (aSNR) of the lung parenchyma and aorta indicates an aSNR boost with the MoCoLoR 
approach. The Trachea aSNR measures the noise level within the trachea. Maximum Derivative (MD) of 
the diaphragm quantifies the sharpness. Mean and standard deviations are summarized in Table 4.1. 

 

Table 4.1 Summary of apparent SNR and maximum derivative values 

 Parenchyma aSNR Aorta aSNR Trachea aSNR Diaphragm MD 

XD Recon 5.31 ± 1.94 16.92 ± 5.41 2.53 ± 0.63 0.180 ± 0.040 

MostMoCo 4.12 ± 1.32 13.20 ± 3.72 2.22 ± 0.49 0.192 ± 0.043 

MoCoLoR 7.98 ± 3.52 26.18 ± 9.71 3.08 ± 0.96 0.159 ± 0.033 

 

Apparent SNR of Parenchyma

Maximum Derivative

Apparent SNR of TracheaApparent SNR of Aorta  

Background

Parenchyma

Trachea

Artery

aSNR Definition MD Definition
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The effect of the regularization parameter on the reconstruction and ventilation analysis is 

summarized for a sample dataset in Figure 4.4. Among all the weightings for the nuclear norm 

𝜆:, the highest aSNR appears at 0.05, 0.1 and 0.5. The regional ventilation appears over-

smoothed when 𝜆: is greater than 0.1. Considering these trade-offs, we selected 𝜆: = 0.05 for 

the MoCoLoR reconstruction. 

 

 

Figure 4.4 Investigation of the Regularization Parameter for MoCoLoR. 

The figure depicts the structural and functional images of a 25 y/o patient with Leukemia. 𝜆! = 0.05 
provides high parenchymal apparent SNR (SNRp) and does not appear to over- or under-estimate the 
ventilation. 

 

We further investigated the effect of the number of respiratory states on reconstruction and 

ventilation analysis in Figure 4.5 and  Figure 4.6. Figure 4.5 shows a representative dataset 

where we reconstructed the dataset of 100,000 spokes into up to 50 respiratory states for all three 

reconstruction approaches. With the increased number of states, the diaphragm is sharper, 
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indicating that the respiratory motion is better resolved. There was no apparent loss in resolution 

or apparent SNR for up to 20 states, but 32 or more states present aliasing artifact. When 

separated into 50 states, MoCoLoR presented higher visual quality compared to the other two 

approaches. 

 

 

Figure 4.5 Number of Respiratory States of MoCoLoR. 

One dataset from a 19 y/o patient with chronic cough and pulmonary nodules was reconstructed into 2-
50 respiratory states. Structural images for 2, 6, 10, 20, 32, and 50 states were shown. The end-
inspiration respiratory state was selected for illustration to demostrate the resolved motion blurring. With 
the increased number of states, the diaphragm is sharper while the aliasing artifact is more appearent. 

 

Figure 4.6 quantifies the effect of the number of states on structural and ventilation imaging. For 

XD and MostMoCo reconstruction methods, aSNR decreases with the increased number of 

states. While for MoCoLoR reconstruction, aSNR first increases and then decreases with the 

increased number of states. Consistent with Figure 4.3, MoCoLoR had the highest aSNR of all 

methods between 6-20 number of states. The maximum derivative of MoCoLoR was slightly 

lower compared to the other two approaches. Note that the vertical axis of the MD diagram starts 
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at 0.14 to show the details, and MostMoCo did not converge in the 48-hour workstation grid job 

time limit and likely led to an unusually high value.  

 

The number of motion states also affects ventilation measurements. We plotted the total lung 

averaged ventilation of one subject calculated from MoCoLoR. The regional ventilation 

converges with the increased number of states, remaining relatively stable at 6 states and above. 

A small number of states underestimate the ventilation at end-inspiration and other intermediate 

respiratory states. Specific ventilation also shows a trend of convergence but has greater 

fluctuations in some respiratory states between the reconstructions. Considering these aSNR and 

ventilation results, ten respiratory states were selected for all patient reconstructions.  
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Figure 4.6 Apparent SNR, Maximum Derivative, and Ventilation Measurements of a Different Number of 
States. 

Results from 2-50 respiratory states are included. (Top) Structural metrics compared results from all 
three reconstruction approaches. Note that 50-state MostMoCo did not converge in the 48-hour grid job 
time limit and the streaking artifacts led to an unusually high maximum derivative. (Bottom) Ventilation 
measurements visualize ventilation results from MoCoLoR reconsturction. The normalized phase is the 
respiratory state (e.g. 0…11) divided by the total number of states (e.g. 12) 0. Since respiration is cyclic, 
the normalized states 0 and 1 are the same and both represent the end-expiration state.  

 

Lastly, we investigated the structural images and ventilation maps from MoCoLoR in 

longitudinal lung MRI scans (Figure 4.7). A subject with interstitial lung disease received MRI at 

ages 4 and 4.5. The ventilation is normalized by the total percentage of volume change to 

account for the breathing depth difference. The histogram shows the normalized ventilation is 

more concentrated at age 4.5, suggesting a more uniform distribution of ventilation.  

 

 

Figure 4.7 MoCoLoR Ventilation Mapping Applied to Longitudinal Imaging. 

Repeated scans of a pediatric patient with childhood interstitial lung disease (ChILD) at ages 4 and 4.5 
years old are shown. High-density suture material is visible in the left lower lobe at both time points (red 

4 y/o, FVC 1.14L 4.5y/o, FVC 1.27L
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arrow) because of previous wedge resection. These ventilation maps are normalized by the average 
ventilation, which corresponds to the total percentage volume change of the lung. Histograms of the 
regional ventilation and specific ventilation at both times are also shown.  

Figure 4.8 presents MoCoLoR reconstructed images at end-expiration state for all eighteen 

patients included in the study. The datasets were acquired in a clinical setting and the parameters 

varies with patient size, age, time available. This demonstrates that our technique is appliable on 

a wide range of imaging parameters.  

 

 

Figure 4.8 MoCoLoR Reconstructed Images at End-expiration State for All Eighteen Datasets. Images 
were enlarged to show details.  
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4.5 Discussion 

This work demonstrates the feasibility of an image reconstruction method, MoCoLoR, that can 

simultaneously reconstruct high-resolution structural and functional images from a single 3D 

UTE sequence acquisition. This was evaluated in the extremely challenging scenario of pediatric 

patients, as young as 4 years old, who were all not sedated. All patients tolerated the scan well, 

and we were able to acquire the UTE sequence in a relatively quick approximately 5 minutes 

scan time. Structural images reconstructed with MoCoLoR showed improved apparent SNR 

compared to existing methods. The measured ventilation varies across respiratory states and 

converges to a consistent pattern with an increased number of states, which was chosen to be 10 

for the lung UTE study. 

 

In an exploratory longitudinal study with this approach, the ventilation maps reflected improved 

pulmonary function test results of the pediatric patient at different time points. The subject had 

improved forced vital capacity (FVC) from age 4 to 4.5, and the regional ventilation also showed 

improved uniformity.  

 

In addition to respiratory phase-resolved imaging, the proposed MoCoLoR method was 

additionally able to produce time-resolved images in dynamic contrast-enhanced abdominal 

MRI. The results for DCE MRI were included in the Supplementary Material, showing the 

ability to produce time-resolved imaging with both respiratory and bulk motion correction in the 

MoCoLoR framework. This illustrates the flexibility of this approach, which we expect can also 

be applied to cardiac-resolved imaging as well with sufficiently high temporal sampling, cardiac 

motion signals (e.g. ECG, PG, navigators), and relevant contrast in the heart. 
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Total Variance and Low-Rank Constraints 

The total variance regularization-based XD reconstruction is less computation-intensive than 

MostMoCo and the proposed MoCoLoR method, which has the additional requirement of 

motion state estimation. The reconstruction time comparison is in supplementary material. 

MoCoLoR results, however, provide higher aSNR when more states are reconstructed.  

 

Limitations  

We acknowledge that there are some limitations to our work. First, while relative peak height 

and width thresholding of the respiratory signal are applied to exclude irregular breathing, we did 

not address bulk motion during the lung MRI scans. Fortunately, bulk motion was not observed 

in most of our datasets, but this assumption can be challenging for the pediatric population. 

However, a bulk motion correction term can be added to the MoCoLoR reconstruction 

formulation, which we demonstrate in a pediatric 3D abdominal DCE MRI dataset in the 

Supplemental Material. In this result, rigid bulk motion is estimated across bins in the temporal 

(dynamic) dimension, and the resulting motion field is used for MoCo and the low-rank 

minimization. The results show that 3 distinct periods of bulk motion were corrected and 

improve depiction of the myocardium in DCE MRI. We could also minimize bulk motion by 

using other means such as a weighted blanket and providing video distractions to subjects, or 

through the use of image-based navigators for identification of bulk and/or irregular motion 4.  

 

Second, the current image registration limits the speed of reconstruction. Image registration is 

repeated in the reconstruction; however, the toolbox we adopted only supports CPU and not yet 

GPU. We could further accelerate the algorithm by developing GPU-compatible registration.  
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Thirdly, there is a tradeoff between higher aSNR and higher sharpness (MD) for MoCoLoR 

approach, which is balanced by the regularization parameter. As for proton ventilation, although 

ground truth is unavailable in human subject studies, further validation is approachable. We plan 

to compare the proton ventilation results with the gold standard 129Xe MRI ventilation. 

 

Finally, we did not include corrections for gradient non-linearity in this study. They will affect 

the regional ventilation in regions of gradient non-linearity. However, since the lungs are near 

the magnet isocenter and, especially for kids, do not likely extend into the highly non-linear 

gradient regions. For application of this method in clinical studies, gradient non-linearities can be 

incorporated as an image space correction using standard methods to correct this. 

 

4.6 Conclusion 

In conclusion, we demonstrated that a motion-compensated low-rank (MoCoLoR) regularized 

reconstruction approach can be used for simultaneous structural and functional lung MRI, even 

in challenging pediatric scans. The MoCoLoR reconstruction approach includes motion fields to 

reduce the rank and better share data across motion states during iterative reconstruction, which 

efficiently uses the data and results in high SNR in respiratory-resolved reconstructions. We 

evaluated this in pediatric and young adult subjects from ages 4-25 for radial UTE lung MRI 

acquired without sedation. With data from a 5-minute scan, the MoCoLoR reconstructions 

provided 1 mm isotropic high-resolution structural images as well as respiratory-resolved 

images. These were used in the lung at multiple respiratory states to compute ventilation maps at 
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the same high-resolution, where we observed anecdotal correlations between ventilation and lung 

function. 
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Chapter 5 3D Free-Breathing Ultrashort Echo Time (UTE) 1H 

Ventilation Compared with Hyperpolarized 129Xe Ventilation 

 

5.1 Introduction 

Imaging-based quantification of ventilation can provide critical information for the 

characterization of lung disease. While pulmonary function test only offers global information, 

MRI has the advantage of providing localized functionality. Respiratory disease patients, 

especially CF patients, can benefit from the ventilation maps MRI 78,79.  

 

Noble gas MRI, such as hyperpolarized (HP) 129Xe MRI, can directly image the airspaces in the 

lung 80. Since the inert gas only distributes in the ventilated regions of the lung, it has high 

contrast and serves as a gold standard for ventilation imaging. Several approaches have been 

proposed to quantify the 129Xe images. For example, Kirby et al. 81 introduced the k-means 

clustering approach for 3He and 129Xe gas MRI to compute the ventilation defect percentage 

(VDP). Alternatively, a linear binning approach 82 was proposed to quantify the 129Xe 

ventilation defect. Whereas 129Xe MRI requires specialized MRI equipment and is limited to a 

few specialized research centers worldwide, 1H UTE-based ventilation can be readily acquired 

on any MR scanner and therefore more readily available. 

 

Proton MRI is easier to access but has yet to be widely used in pulmonary imaging due to the 

low proton density and high susceptibility at the air-tissue interface. Fourier decomposition 69 

and PREFUL 70 enabled 2D ventilation quantification by acquiring consecutive 2D images 

during free-breathing and utilizing the intensity change at the respiratory frequency. 3D 
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ventilation and perfusion quantification methods such as SENCEFUL 83 were also proposed and 

have been validated in the CF population 79. However, the lung parenchyma signal is not 

optimized, compromising the structural images' quality. Ultrashort-echo time (UTE) 1H lung 

MRI applies to structural image and ventilation map calculation. Motion-resolved reconstruction 

techniques can provide image volumes at multiple respiratory states by binning and jointly 

reconstructing the non-Cartesian raw data 4,18,20,45. Ventilation can be calculated indirectly 

through the signal intensity change or regional volume difference between the states. 

 

While the proton MRI is feasible for ventilation quantification, the correctness needs to be 

validated with existing methods. The previous analysis compared Fourier Decomposition (FD) 

1H ventilation with HP 3He ventilation in COPD and Bronchiectasis population 84, PREFUL 

versus HP 129Xe in the CF population 85, UTE flow volume loop compared with HP 129Xe and 

PFT 86. However, 3D UTE 1H ventilation based on regional volume difference still needs to be 

investigated against 129Xe MRI or PFT.  

 

This manuscript compares the 3D UTE 1H ventilation calculated from motion-compensated low-

rank constrained reconstruction (MoCoLoR) 5,6 with the HP 129Xe ventilation in healthy 

volunteer and CF populations for validation. 

 

5.2 Methods 

Participants 

Twenty-four participants (ages 28.5 ± 14.7 y/o, 15 Males, 9 Females), including three healthy 

volunteers, six pediatric and fifteen adult subjects with cystic fibrosis (CF), were scanned 
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between February 2022 to August 2022 and were retrospective included in this study. The study 

was approved by the University of British Columbia Research Ethics Board (REB). Written 

consent/assent was acquired from all participants and guardians. The inclusion criteria were…   

 

All participants have MRI acquired and are thus included in imaging analysis. Six subjects were 

excluded from the correlation with pulmonary function testing because PFT data were not 

acquired. Two additional participants were excluded from the correlation with the lung clearance 

index because the LCI was not collected. Figure 5.1 shows a flow diagram of the initial number 

of participants and excluded participants. 

 

 

 

Figure 5.1 Flowchart of participant inclusion. 
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Imaging Protocol 

Each subject inhaled hyperpolarized 129Xe/nitrogen gas mixture and went through a 2D multi-

slice 129Xe spoiled gradient recalled sequence during breath-holding. Total inhaled gas and 

129Xe doses were based on height 87. Volume-matched 1H images were acquired using the body 

coil with room air inhaled. The two sequences were acquired with the same FOV = 40 cm × 30-

40 cm, slice thickness = 15 mm, and the number of slices = 12-17. 

 

A variable density 3D radial UTE sequence 88 was adopted for the UTE 1H acquisition during 

free-breathing. The key parameters were: FOV = 35 cm isotropic, resolution = 1.37 mm 

isotropic, number of spokes = 100,000, TE/TR = 0.07/2.88ms. All images were acquired on a 3T 

clinical scanner (Discovery MR750, GE Healthcare). 

 

129Xe Ventilation Analysis 

Xenon images for each subject were processed using the k-means method for ventilation defect 

quantification with an in-house developed MATLAB package 81,89. Xenon images for each 

subject were separated into 5 clusters from the least to most ventilated (C1-C5) using a k-means 

clustering algorithm. The thoracic cavity was segmented from the 2D multi-slice 1H images 

using a region-growing approach. Lastly, the 1H images were registered to 129Xe, and the 

lowest cluster (C1) within the thoracic cavity was defined as ventilation defects. Ventilation 

defect percent was calculated as the ventilation defect volume normalized to the volume-matched 

1H thoracic cavity volume. 
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UTE 1H Ventilation Analysis 

Phase-resolved UTE 1H image volumes were reconstructed using the Motion-Compensated 

Low-Rank (MoCoLoR) approach 6. Briefly, this method jointly reconstructs respiratory motion 

states with a low-rank penalty and uses iteratively refined deformable image registration between 

states to reduce the rank. Since it uses all data jointly in the reconstruction, it is very SNR 

efficient, similar to the iMoCo method 19. Ten respiratory states were selected to balance the 

SNR and sharpness of the reconstructed image. Lung masks were segmented using a pre-trained 

U-Net neural network in ANTsPy 77. The predicted lung masks were eroded by 3 pixels to 

reduce artifacts near the chest wall. After deformable image registration 90, the regional 

ventilation was calculated by the Jacobian determinant of the motion field at the end-inspiration 

state over the end-expiration state minus one. End-expiration state is the respiratory phase with 

the highest average regional ventilation signal, and the end-inspiration state is the respiratory 

phase with the lowest average regional ventilation. Regional ventilation at the end-inspiration 

state over the end-expiratory state forms phase-normalized regional ventilation. Lastly, the 

phase-normalized regional ventilation at the end-inspiratory state underwent a k-means approach 

for ventilation defect quantification, following the k-means for 129Xe 81. Phase-normalized 

regional ventilation values are normalized to 0-255 and separated into k0 clusters. The cluster 

mean is initialized as the middle point of the equidistance ranges. For hierarchical k-means, an 

additional clustering was applied in the lowest cluster. 

 

However, since the 129Xe and UTE 1H ventilations were acquired at different breathing 

maneuvers and presented different distributions, the k-means approach for UTE 1H ventilation 

needs to be modified. We tested four different clustering approaches, namely 1) simple k-means 
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into four clusters, 2) simple k-means into five clusters, 3) hierarchical clustering into four 

clusters (C2-C5), and then cluster C2 into four clusters (C21, C22, C23, C24). Combine C21 and 

C22 to form C1, C23 and C24 to form C2, 4) hierarchical clustering into four clusters (C2-C5) 

and then cluster C2 into four clusters (C21, C22, C23, C24). Combine C21 and C22, C23 into 

C1, and C24 into C2. 

 

Figure 5.2 summarizes the 129Xe and UTE 1H VDP calculation pipeline. 

 

 

Figure 5.2 Image analysis pipeline 

 

Pulmonary Function Test (PFT) and Multiple Breath Washout (MBW) 

Eighteen participants underwent a pulmonary function test on the same day as MRI. The 

absolute values of forced expiratory volume during the first second (FEV1) and forced vital 
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capacity (FVC) were collected. The absolute spirometry measurement and demographics data 

served as input for percent predicted spirometry values. The predicted percentages were 

computed using the rspiro package v0.2 in R 91, following the Global Lung Initiative standard 92. 

Sixteen participants underwent Nitrogen multiple breath washout for the measurement of lung 

clearance index (LCI). Correlations between each VDP (129Xe, UTE 1H) and each global 

function measurement (FEV1, FVC, LCI) were analyzed. 

 

Statistical Analysis 

The dice coefficient between the UTE 1H and 129Xe of the ventilated and ventilation defect area 

were combined to evaluate the accuracy of the segmentation. Specifically, we registered the 3D 

UTE 1H images to 2D multi-slice volume-matched 1H images using ANTs, which allows us to 

compare ventilated directly and ventilation defect segmentations. The dice accuracy was 

computed using the following equation, 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	𝐷𝑆𝐶802F*PHF03 + 𝐷𝑆𝐶802F*PHF*O2	Q0R0MF

= 2 ×
𝐴𝑟𝑒𝑎	𝑋𝑒8 ∩ 𝐴𝑟𝑒𝑎	𝑋𝑒8
𝐴𝑟𝑒𝑎	𝑋𝑒8 + 	𝐴𝑟𝑒𝑎	𝑋𝑒8

+ 2 ×
𝐴𝑟𝑒𝑎	𝑋𝑒8Q ∩ 𝐴𝑟𝑒𝑎	𝑋𝑒8Q
𝐴𝑟𝑒𝑎	𝑋𝑒8Q + 	𝐴𝑟𝑒𝑎	𝑋𝑒8Q

 

 

Linear regression was used to compare the VDP calculated from 129Xe and UTE 1H and 

between VDP and global lung function measurements. Spearsman’s correlation coefficient (r) 

and p-values were reported for linear regression. Bland-Altman plots were applied to compare 

the VDP derived from 129Xe and UTE 1H. 
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Box plots compared VDP values in healthy controls and CF patients. The median, 25th, and 75th 

quartiles were presented in the box plots. T-tests were used for linear regression to evaluate if the 

two data are correlated and if the healthy and respiratory diseased groups can be differentiated, 

where p<0.05 is considered significant. 

 

5.3 Results 

Figure 5.1 plots the flowchart of the participants included in each analysis stage. All twenty-four 

subjects had MRI available and were included in the VDP analysis illustrated in Figure 5.4 & 

Figure 5.6. The comparisons between VDP and PFT were based on eighteen participants, as 

shown in Figure 5.5 a and b, while Figure 5.5 c is based on the sixteen participants who had LCI 

available. 

 

Table 5.1 lists the demographics of participants enrolled in this study. Twenty-four subjects were 

included: three healthy volunteers and six pediatric and fifteen adult patients with cystic fibrosis 

(CF).  
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Table 5.1 Participant Demographics, Imaging, and Pulmonary Function Testing 

 All Healthy CF 

Demographic information 

Age (years) 29 ± 15   

Gender 15 M, 9 F   

Imaging n = 24 3 21 

129Xe VDP (%) 9.0 ± 9.5 0.3 ± 0.2 10.3 ± 9.5 

UTE 1H VDP (%) 12.7 ± 4.1 9.1 ± 1.2 13.2 ± 4.1 

Spirometry results n = 18 0 18 

FEV1 (%) 77.3 ± 18.4 NA 77.3 ± 18.4 

FVC (%) 88.9 ± 7.0 NA 88.9 ± 7.0 

FEF 25%-75% 57.0 ± 38.1 NA 57.0 ± 38.1 

MBW results n =16 1 15 

LCI 9.0 ± 3.8 6.2 9.2 ± 3.9 

 

Figure 5.3 illustrates HP 129Xe ventilation, UTE 1H structural image and ventilation, and VDP 

overlay of three representative cases. The cases were selected to demonstrate results from low, 

medium, and high Xe VDP, corresponding to healthy, mild, and severe ventilation defects. For 

the healthy subject (Figure 5.3 a), 129Xe circulated to all regions within the lung. UTE 1H also 

showed a uniformly distributed ventilation map with values greater than zero. As shown in 

Figure 5.3 b, the UTE 1H ventilation defect overlaps with the 129Xe ventilation defect at the 

superior and inferior lungs. For the subject with severe ventilation defect, the defect 

segmentations from 129Xe and UTE 1H have significant overlap areas, as indicated by the blue 
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area. UTE 1H correctly predicted the ventilation defects on the left and right middle and superior 

regions. Ventilation results from a patient with a mild ventilation defect. The structural images in 

all three coordinates have a high 1.37 mm isotropic resolution and can be used for radiology 

reading. The main distinction from previous methods is the ability to provide both high-quality 

structural images and functional maps. 

 

Figure 5.3 Representative Xe ventilation, UTE structural and ventilation map, and VDP overlay. 

 

Figure 5.4 a demonstrates the dice spatial accuracy of the ventilated and ventilation defect region 

segmentation. Accuracy is defined as (overlapped ventilation defect region + overlapped 

ventilated region)/total lung volume. This metric mitigates the dice coefficient's strong 

dependency on the actual VDP value. The accuracy of UTE 1H was a mean of 0.63±0.05. Note 

that this accuracy value is susceptible to minor differences in image registration, which is 

challenging given that there was typically some motion between Xe and UTE scans. Figure 5.4 b 

plots the relationships of the VDP between 129Xe and UTE 1H across all subjects. According to 

the correlation plot, 129Xe VDP and UTE 1H ranged from 0 to 0.35. The VDP from 129Xe and 

UTE 1H positively correlate, with R-squared equal to 0.64. P-value = 0.02 further confirmed that 

the linear relationship is significant. Figure 5.4 c The Bland-Altman plot suggests a bias of -0.02 
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and limits of agreement of 0.14. No systematic differences were observed between the two 

methods. 

 

 

Figure 5.4 Dice Accuracy, Linear Regression and Bland-Altman plot for k-means Xe and H VDP.   

 

Figure 5.5 plots the correlation between the results of image-based VDP (129Xe and UTE 1H) 

and global lung functional test (FEV1, FVC, LCI). 129Xe VDP and UTE 1H VDP both 

demonstrate significant negative linear relationship with FEV1, with p-value 0.003 and 0.016 

respectively. The slopes are both negative, consistent with the high percentage of FEV1 

corresponding to low VDP. UTE 1H presents a smaller absolute slope resulting from the smaller 

range of UTE 1H VDP compared with 129Xe VDP. The VDP UTE 1H is strongly correlated 

with the FVC, with p-value=0.005. This could be because both FVC and 1H UTE measure 

volume changes. FVC measures the global volume difference from fully inhaled to fully exhaled 

states, while 1H UTE regional ventilation measures the tidal volume change. 129Xe VDP 

strongly correlates with LCI, which confirms the previous findings (1). These findings suggest 

that UTE 1H ventilation is a good indicator of lung function and measure different function 

aspects compared to 129Xe ventilation.  
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 Figure 5.5 Correlation of Xe, UTE H ventilation and pulmonary function test results.  

 

Figure 5.6 shows box plots of 129Xe VDP and UTE 1H VDP for healthy control and respiratory 

disease patients. 129Xe can distinguish respiratory disease participants from healthy controls. 

The median value for respiratory disease patients is 12.3, 25th and 75th percentiles are 11.0 and 

14.9. The healthy control shows a median value, 25th and 75th percentile of 0.29, 0.19, and 0.40. 

UTE 1H VDP also had a difference in median value in patients and healthy controls. 

Comparisons for PFT and LCI were not investigated because there is no PFT and only 1 LCI for 

healthy volunteers. 
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Figure 5.6 Box plot of Xe, H VDP in respiratory disease and healthy control participants. 

 

5.4 Discussion 

This paper demonstrated that UTE 1H ventilation from MoCoLoR positively correlates with the 

129Xe ventilation with moderate-to-high accuracy for VDP quantification between the two 

methods. UTE 1H VDP also correlated with FEV1, FVC, and LCI, suggesting it is a valid 

biomarker for pulmonary function. The UTE 1H VDP had different ranges in healthy volunteers 

and respiratory disease subjects, indicating the potential for clinical application. Compared to 

PFT and 129Xe, UTE 1H provides localized ventilation information and can be performed at any 

site with an MR scanner without special equipment. 

 

129Xe VDP vs. UTE 1H VDP 

While 129Xe VDP and UTE 1H VDP are strongly correlated, range differences exist, and 

ventilation defect segmentation are not identical. We note that these two methods quantify 

ventilation in different respiratory maneuvers. UTE 1H is acquired dynamically during 5-min 
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tidal breathing. In contrast, Xe is acquired during a static ~10s breath-hold of a fixed volume 

from functional residual capacity. In addition, since the UTE 1H ventilation is an indirect 

measurement, a lower value could also reflect changes in increased stiffness/decreased 

compliance of that lung region. These factors may contribute to the difference in ventilation 

defect regions.  

 

The two approach also demonstrates difference in the correlation with global function 

measurements. 129Xe VDP is better correlated with LCI which is a measurement for lung 

heterogeneity. UTE 1H VDP is better correlated with FVC, which is a measurement of the 

volume change. In addition, 129Xe is more sensitive in distinguishing healthy subjects and 

respiratory disease patients. 

 

The requirements for acquisition are also different. 129Xe acquisition requires a volume-

matched 1H for structure reference and registration. Participants need to inhale hyperpolarized 

129Xe gas mixture and hold their breath during the scan. 1H UTE does not require special 

equipment and acquires during tidal breathing, thus rely minimally on patient effort. However, it 

can also be challenging for the pediatric subjects to stay still. 

 

Advantage of UTE 1H MRI 

The ability to provide simultaneous structural and functional information is a crucial advantage 

of 3D UTE 1H. The structural and functional images, and segmentations, are reconstructed or 

processed from the same sequence. No additional registration is needed across the 
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structural/functional images, and they can provide complementary information for clinical 

decisions. 

 

In addition, the resulting 3D volume also allows multi-plane reformation of the data. Although 

2D multi-slice pulmonary ventilation maps are commonly acquired and visualized in the coronal 

plane to address respiratory motion and minimize in-plane motion, radiologists are more 

accustomed to reviewing axial slices. For UTE 1H, the structural and functional maps can be 

reformatted into axial planes or other planes of interest, providing flexibility and accessibility 

during clinical application. 

 

Limitations 

We acknowledge that there are some limitations to our work. One limitation is the imperfection 

of the automated segmentation for 3D UTE 1H. The algorithm sometimes had difficulty near the 

chest wall or large vessels. Due to the vast amount of data in 3D volumes, manual correction of 

the segmentation can be challenging. To mitigate this problem, we implemented morphology 

erosion to include regions within the lung for ventilation analysis. However, the imperfection of 

the segmentation introduced a noise floor for ventilation defects and caused non-zero VDP in 

healthy volunteers. 

 

Another limitation is the small number of healthy controls included in the study. Since this study 

is retrospective, the number of healthy participants and respiratory disease patients were not age 

or gender matched. Considering the resources needed for clinical study, we had limited healthy 

control participants who underwent 129Xe MRI, PFT, and MBW procedures. 



 64 

5.5 Conclusion 

In conclusion, we validated 3D UTE 1H ventilation against 129Xe ventilation and pulmonary 

function testing. It demonstrates a positively correlated VDP with the gold standard 129Xe and a 

high spatial VDP accuracy. It also showed a linear correlation with FEV1, FVC, and LCI. UTE 

1H MRI ventilation may be implemented on any MR scanner and has the potential to be widely 

implemented to provide clinically relevant ventilation information for patients with lung disease. 

Future directions include application in other pulmonary diseases, improving image 

segmentation, and investigating other biomarkers developed from 1H MRI.  
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Chapter 6 Iterative Motion-Compensated Reconstruction with 

Convolutional Neural Network (iMoCo-Net) for Ultrashort Echo 

Time (UTE) Proton Lung MRI 

 

6.1 Introduction 

Proton pulmonary MRI is challenging due to the respiratory motion and low proton density. 

Breath-holding minimizes the motion but may not be tolerated by patients with severe diseases 

and the pediatric population, and also limits the spatial coverage and resolution due to the limited 

scan time. Free-breathing UTE sequence can produce high-quality proton lung MRI because it is 

more motion-robust compared to Cartesian sequences and exploits the fast-decaying signal. 

Motion-compensated reconstruction techniques 4,18,20,93 better manage respiratory motion for 

UTE acquisitions and are also more SNR efficient than respiratory-gated techniques. However, 

these methods are usually iteration-based optimization algorithms and can easily take hours to 

complete for a single dataset. 

 

Meanwhile, technologists prefer visualizing the reconstructed image during scanning to validate 

if a repeated scan is needed, and radiologists usually read the images within 1-2 hours from the 

scan. An accelerated motion-compensated reconstruction is needed. Luckily, machine-learning 

approaches can meet this demand. Among the established networks, U-Net 94 is well suited for 

image reconstruction and motion artifact removal tasks. While the training process is time-

consuming, the inference for one subject only takes a minute. This abstract explores the 
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feasibility of machine learning-based motion-compensated reconstruction for free-breathing UTE 

lung MRI. 

 

6.2 Methods 

Data Acquisition 

Twenty subjects were retrospectively included in this study, ranging from healthy volunteers to 

pediatric and adult patients with lung diseases. Each subject underwent a 5-min free-breathing 

optimized radial golden angle UTE sequences 31 on a 3T clinical scanner (GE Healthcare, 

Milwaukee, WI) with a phased array coil. Key parameters were: resolution=1-1.5 mm, 

#spokes=80,000-100,000 spokes, TE/TR=0.07-0.1/2.7-3.8 ms. 

 

Data Preparation  

In order to form the network input, the raw data were separated into eight bins and reconstructed 

with Non-uniform Fourier Transform (NuFFT) reconstruction. The center of k-space was 

frequency filtered to track the respiratory motion for binning. Each motion state image 

corresponds to one input channel. We tested two sets of input, motion-resolved images 

reconstructed with all k-space spokes and the other mimicking an accelerated scan with only 

50% of the spokes.  

 

Iterative motion-compensated (iMoCo) reconstruction 19 results using all spokes were used as the 

target output for both cases. Depending on the number of coils, iMoCo reconstruction takes 1.5 

to 6 hours to complete on our GPU server. 
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Center coronal slices that contain body structures were extracted as input and target images of 

the network. They were spatially normalized to matrix size 256x256, and the intensity was 

normalized to 0 to 1. The twenty data sets were separated into 16/2/2 patients for training, 

validation, and testing. 

 

Network Structure  

A 2D U-Net 94 was applied for the motion compensation task. Each encoding block includes a 

3x3 padded convolutional layer, a rectified linear unit (ReLU) activation layer, and a batch 

normalization layer. A 2x2 max-pooling layer was applied between resolution scales. Similarly, 

convolution and ReLU layers were applied in the same scales for the decoding blocks, and a 2x2 

up convolution was used between scales. The network was implemented in Tensorflow Keras 

with the mean absolute value error (L1) loss function and 50 epochs. 

 

All processes, including data preparation and network training, were done on a GPU cluster, 

allocating one GPU (16 GB) core per task. The network structure details are summarized in 

Figure 6.1. 
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Figure 6.1 iMoCo-Net structure. 

The inputs are motion-resolved images reconstructed with NuFFT, binned based on k-space center data, 
and the target output was the iMoCo reconstructed image. 

 

6.3 Results 

Figure 6.2 and Figure 6.3 demonstrate two example test set results from the neural network. The 

predicted image from all spokes preserves the fine vasculature structure of the lung. We also 

observe a sharper diaphragm and a higher apparent SNR compared to the averaged input. This 

indicates the network is successfully performing motion compensation and leveraging data from 

all motion states. As for the 50% spokes input, the prediction is significantly improved from the 

input but appears blurrier compared to the 100%-spoke results. The total reconstruction 

processing time for one subject is the time for NuFFT reconstruction (4 mins) and the time for 

inference (1 min for ~300 slices). 
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Figure 6.2 Example test set results with inputs generated using 100% and 50% of the raw data. 

In both cases, there is a clear apparent SNR improvement.  The sharpness of the diaphragm is a good 
marker of motion compensation, and is particularly sharp when using 100% of the raw data. 

 

 

Figure 6.3 Another example test set results with inputs generated using 100% and 50% of the raw data. 
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The box plots of the structural similarity (SSIM), peak signal-to-noise ratio (pSNR), and mean 

squared error (MSE) metrics are shown in Figure 6.4. The mean structural similarity is 0.88±0.10 

for 100% of spokes and 0.84±0.10 for 50% of spokes. The pSNR are 30.60±4.72 and 

27.50±4.26, respectively, and the MSEs are 1.81e-3±3.07e-3 and 2.99e-3±3.60e-3. 

 

 

Figure 6.4 Structural similarity, peak signal-to-noise ratio, and mean squared error for 100% and 50% 
spoke motion-resolved NuFFT as network inputs. 
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Figure 6.5 Network loss functions showing clear convergence. 

 

6.4 Discussion 

In this abstract, we used iMoCo reconstruction as target images, but it can be easily transferred to 

other motion-compensated reconstruction approaches and other organs that require motion 

compensation during image reconstruction, such as the heart and liver. 

 

While the primary purpose of this approach is to accelerate the reconstruction time for motion-

compensated reconstructions for 3D data, results from 50% spokes suggest that neural network-

based motion compensation can also facilitate shortened scan times. This improvement would 

benefit pediatric patients who fail to stay still for a 5 min scan or adult patients who experience 

involuntary motion.  
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6.5 Conclusion 

This abstract demonstrated the feasibility of using a convolutional neural network for motion-

compensated proton lung MRI reconstruction and motion artifact removal. It accelerates the 

reconstruction for 3D radial UTE data substantially, shortening the required time from hours to 

minutes. Furthermore, it also shows potential to shorten the scan time, thus facilitating the 

clinical application of proton pulmonary UTE MRI. 
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Chapter 7 Quality Assessment of Ultrashort Echo Time (UTE) Proton 

Lung MRI in Pediatric Patients 

 

7.1 Introduction 

MRI is not routinely used in clinical practice for lung imaging because of the low proton density 

and respiratory motion artifact 43. However, the ultrashort echo time (UTE) MRI technique can 

increase the signal in the lung. Recent developments in image reconstruction, such as iterative 

motion compensated (iMoCo) reconstruction 19, have improved respiratory motion management 

for free-breathing lung MRI scans. With the advantage of no ionizing radiation, MRI can benefit 

patients with immunodeficiency who often require repeat imaging, patients with heightened 

radiation sensitivity, and/or pediatric patients. In this abstract, we aim to evaluate the imaging 

quality of UTE lung MRI in the pediatric population. 

 

7.2 Methods 

All procedures are approved by the UCSF Institutional Review Board (IRB). In this pilot study, 

we included twelve pediatric patients (age 0-16, mean age 9.2, standard deviation 4.7 years old, 6 

females, 6 males). Each patient went through a 5-minute free-breathing radial UTE MRI 

sequence, and the images were reconstructed using the iMoCo reconstruction. Two types of MR 

sequences were included: a 3D golden angle radial and a sequential stack of stars sequence. Six 

of the patients had CT within one year and formed the CT dataset in our study. Two experienced 

pediatric radiologists (M.A.Z. and R.D.) scored the quality of 16 structures in the chest using a 

Likert scale imaging quality scoring system 95. The scoring criteria were 1 structure not seen, 2 
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structure blurred, 3 portion of structure blurred, 4 sharp borders of entire structure, and 5 sharp 

borders with high subjective SNR. 

 

 

Figure 7.1 Flowchart of patient inclusion. 

 

Table 7.1 Score table 

Score Structure Delineation Scoring Criteria 

1 Structure not seen 

2 Structure blurred/obscured 

3 Portion of structure blurred/obscured 

4 Sharp borders of entire structure 

5 Sharp borders with high subjective SNR 

 

7.3 Results 

Statistical analysis shows an inter-class correlation (ICC) of 0.70, 0.73, and 0.72 for MR, CT, 

and all scores, respectively, suggesting a moderate inter-reader correlation. Cohen’s Kappa is 

Statistical Analysis

6 with CT within 1 year of MRI and were scored

13 MRI studies were available on PACS at the time of 
scoring and were scored by 2 experienced pediatric 

radiologists

20 Pediatric Patients (age ≤ 18) with UTE lung MRI 
acquired between April 2018 to May 2021 
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0.35, 0.35, and 0.37, respectively, suggesting fair inter-reader agreement. While CT has an 

overall higher score than MRI (p-value ≤ 0.00005), MR and CT scores are comparable in the 

aorta (ascending, descending and arch, average score MR 2.5, CT 2.4), central lung (MR 3.0, CT 

3.2), and lobar bronchi (MR 3.3, CT 3.7), with a p-value > 0.05. In pulmonary arteries, pleura, 

peripheral lung, segmental, sub-segmental bronchi, bone, and chest wall soft tissue, CT 

outperforms MR with p-values ≤ 0.05. We also tested the influence of subgroups. Age under or 

greater than 12 is not a significant factor for the MRI score, nor is the 3D radial or stack of stars 

MRI sequence. 

 

 

Figure 7.2 Example Image of Scores. 
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Figure 7.3 Example Lung Pathologies Observed with UTE MRI. 

 

 

Figure 7.4 Bar plots of MR and CT scores. 

CT has an overall higher score than MRI (p-value ≤ 0.00005). MR and CT scores are comparable in the 
aorta, central lung, and lobar bronchi, with a p-value > 0.05. In pulmonary arteries, pleura, peripheral 
lung, segmental, sub-segmental bronchi, bone, and chest wall soft tissue, CT outperforms MR with p-
values ≤ 0.05.   

Pneumatoceles (8 yo)

CTUTE
Bronchiolitis Obliterans (11 yo)

CTUTE

CTUTE

Ground Glass in chILD (4 yo)

UTE CT

Pulmonary Nodules (5 yo)

ns: p > 0.05
*: 0.01 < p ≤ 0.05

**: 0.001 < p ≤ 0.01
***: 0.0001 < p ≤ 0.001

****: p ≤ 0.0001
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Figure 7.5 Bland-Altman plot shows a small bias and standard deviation. 

 

7.4 Conclusion 

While UTE MRI is inferior to CT when resolving smaller structures, it is comparable to its 

counterpart in some tissues such as the aorta, central lung, and lobar bronchi. UTE lung MRI can 

be useful for pediatric subjects who need long-term pulmonary monitoring or patients with 

immunodeficiency, or other patients with increased radiation sensitivity.  

 

 

 

 

 

 

 

 

  

Bland-Altman Bland-Altman
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Chapter 8 Structural and Functional Proton UTE Lung MRI in Pediatric 

Pectus Deformity Patients 

 

8.1 Introduction 

Pectus deformity affects patients of different ages and about 1% of the population 96,97. Pectus 

excavatum (or sunken chest) is the most common among them. The current clinical standard of 

care includes Haller Index 98 measurement on axial computed tomography (CT), pulmonary 

function test (PFT), and, if needed, Nuss surgical procedure 99. However, CT has ionizing 

radiation, and PFT only provides global ventilation information. Recent advancement in lung 

MRI enables simultaneous structural and functional imaging from a single scan session. In this 

case study, we report the proton 3D UTE lung MRI results for three pediatric patients with 

pectus deformity. The structure images were used for Haller index measurements, and functional 

maps were used for regional function visualization to assist surgery decisions. To our 

knowledge, this is the first time that 3D UTE lung MRI ventilation has been reported in a 

specific patient population.  

 

8.2 Methods 

All procedures were approved by the University of California, San Francisco Institutional 

Review Board (IRB). Three pediatric patients with pectus excavatum or pectus carinatum (ages 

13-17, 1 Female) were included in this case study. Written consent was obtained from both the 

patients and guardians. Each patient went through a 5-minute free-breathing proton ultrashort 

echo time (UTE) MRI of the lung 26 in a 3T scanner (GE Healthcare, Milwaukee, WI) using an 
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8-channel cardiac coil. The key scan parameters were FOV=32cm, resolution=1mm isotropic, # 

spokes=100,000. The iterative motion compensation (iMoCo) 19 technique was adopted for 

structural image reconstruction for the Haller Index measurement. The same raw data were 

binned into ten respiratory states, and each state was registered to the end-expiration state. The 

local volume change between the end-inspiration state and the end-expiration state indicates the 

regional air input during tidal breathing and thus forms the ventilation maps. 

 

8.3 Results 

The structural image of a patient with pectus excavatum (Figure 8.1 a) was used for Haller Index 

measurement in the PACS system. The Haller Index for this patient was calculated as 

270mm/82.5mm=3.27. Figure 8.1 b shows the function map of the same patient in all three 

orthogonal views. The value represents the expansion percentage; for example, 0.3 means 30% 

volume was filled with air during tidal inhalation. The ventilation maps show that pectus 

excavatum affects the patient's ventilation function, especially in the area close to the anterior 

chest wall. In contrast, the patient with pectus carinatum has a lung function that's comparable to 

healthy volunteers (Figure 8.1 c). 

 

8.4 Conclusion 

In conclusion, the proton UTE MR structural images could be used in place of CT for Haller 

Index measurement. The ventilation maps anecdotally reflect the regional lung function and may 

assist the doctor's surgery decision for patients with pectus deformities. As for future directions, 

comparing ventilation maps before and after surgery can help validate functional measurements.  
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Figure 8.1 Example structural images and functional ventilation maps of patients. 
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Chapter 9 Summary and Future Work 

 

9.1 Summary 

In summary, this dissertation covers technical advancements and clinical applications of the UTE 

proton lung MRI.  

 

In the reproducibility study, we tested four combinations of registration and calculation methods 

to quantify ventilation on 3D phase-resolved 1H UTE MRI of healthy volunteers. We conclude 

that cyclic registration is superior to SyN for ventilation purposes but more computationally 

expensive. Regional ventilation correlates better with segmentation lung volume, while specific 

ventilation is more reproducible. 

 

We improved the motion-compensated low-rank (MoCoLoR) regularized reconstruction 

approach for simultaneous structural and functional lung MRI. This approach includes motion 

fields to reduce the rank and better share data across motion states during iterative 

reconstruction, efficiently using the data and resulting in high SNR in respiratory-resolved 

reconstructions. With data from a 5-minute scan, the MoCoLoR reconstructions can provide 1 

mm isotropic high-resolution respiratory-resolved structural images, which were used to 

compute ventilation maps at the same high resolution. 

 

We further validated the UTE 1H ventilation against 129Xe ventilation and pulmonary function 

testing. The 3D UTE 1H ventilation calculated from motion-compensated low-rank constrained 

reconstruction (MoCoLoR) has a positively correlated ventilation defect percentage (VDP) 
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compared with the gold standard 129Xe and a high spatial VDP accuracy. UTE 1H VDP also 

strongly correlated with global lung function measurements, including FEV1, FVC, and LCI.  

 

The machine learning-based artifact removal project demonstrated the feasibility of using a 

convolutional neural network for motion-compensated proton lung MRI reconstruction. It 

accelerates the reconstruction of 3D radial UTE data substantially and potentially shortens the 

scan time. 

 

The UTE 1H reader study suggests that while UTE MRI is inferior to CT when resolving smaller 

structures, it is comparable to its counterpart in some tissues, such as the aorta, central lung, and 

lobar bronchi. UTE lung MRI can be useful for pediatric subjects needing long-term pulmonary 

monitoring, patients with immunodeficiency, or other patients with increased radiation 

sensitivity. 

 

Lastly, the clinical application of UTE 1H lung MRI to pediatric pectus deformity patients 

demonstrates that the proton UTE MR structural images could be used instead of CT for Haller 

Index measurement. The ventilation maps can reflect the regional lung function and may assist 

the doctor's surgery decision for patients with pectus deformities. 

 

9.2 Future Work 

9.2.1 Low-Field MRI 

Proton lung MRI can benefit pediatric patients because it has no ionizing radiation, requires no 

additional equipment, and provides lung function information. However, the high susceptibility 
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due to the porous structure in conventional 3T led to fast T2* decay and low signal T2* = 

0.74ms at 3T 100. In low fields, T2* of the lung significantly increases to T2* = 10ms at 0.55T 

101, resulting in a ten times larger acquisition window.  

 

Previous works, such as T2 weighted lung imaging in 0.55T using Turbo Spin Echo acquisition 

102 and spiral UTE pulmonary MRI at 0.55T system 93, demonstrated the feasibility of high-

quality pulmonary imaging at low field. Based on our previous motion management and 

functional analysis techniques, we propose three potential innovations on lung MRI at 0.55T. 

First, apply radial UTE sequences for pulmonary MRI on a low-field system and provide 

structural and functional images for pediatric patients. Second, explore the feasibility of the T2-

weighted Turbo Spin Echo. Due to the lengthened T2/T2* at 0.55T, high-quality T2w lung 

imaging is possible. Third, investigate the application of bSSFP sequence on low-field systems. 

bSSFP is highly desirable due to high SNR efficiency but typically suffers over the lung due to 

banding artifacts. These artifacts are no longer a major concern at 0.55T due to the reduced B0 

inhomogeneity, enabling this powerful pulse sequence for lung MRI.  
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