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The standard number system includes several distinct types of notations, which differ conceptually and
afford different procedures. Among notations for rational numbers, the bipartite format of fractions (a/b)
enables them to represent 2-dimensional relations between sets of discrete (i.e., countable) elements (e.g.,
red marbles/all marbles). In contrast, the format of decimals is inherently 1-dimensional, expressing a
continuous-valued magnitude (i.e., proportion) but not a 2-dimensional relation between sets of countable
elements. Experiment 1 showed that college students indeed view these 2-number notations as concep-
tually distinct. In a task that did not involve mathematical calculations, participants showed a strong
preference to represent partitioned displays of discrete objects with fractions and partitioned displays of
continuous masses with decimals. Experiment 2 provided evidence that people are better able to identify
and evaluate ratio relationships using fractions than decimals, especially for discrete (or discretized)
quantities. Experiments 3 and 4 found a similar pattern of performance for a more complex analogical
reasoning task. When solving relational reasoning problems based on discrete or discretized quantities,
fractions yielded greater accuracy than decimals; in contrast, when quantities were continuous, accuracy
was lower for both symbolic notations. Whereas previous research has established that decimals are more effective
than fractions in supporting magnitude comparisons, the present study reveals that fractions are relatively
advantageous in supporting relational reasoning with discrete (or discretized) concepts. These findings
provide an explanation for the effectiveness of natural frequency formats in supporting some types of
reasoning, and have implications for teaching of rational numbers.
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Mathematical Thinking as Modeling

Mathematical understanding fundamentally involves grasping
that mathematics is a system of quantitative relations among
concepts. It has been argued that a core problem with math

education, particularly in the United States, is that greater focus is
placed on execution of mathematical procedures than on under-
standing of quantitative relations (Gonzales et al., 2008; Richland,
Stigler, & Holyoak, 2012; Stigler & Hiebert, 1999; Rittle-Johnson
& Star, 2007). Nonetheless, educators do make an effort to convey
the conceptual structure of mathematics, typically by presenting
students with examples of analogous real-world situations. For
example, the addition operation is often illustrated with examples
of combining subsets of a superset category (e.g., 3 red � 5 blue
marbles � 8 marbles). Adults prefer the operation of addition to be
applied to sets of objects drawn from a common immediate su-
perordinate (e.g., marbles) or from closely related cohyponyms
(e.g., roses and daisies); in contrast, they expect division to be
applied to sets that have a functional relationship (e.g., 9 cookies
divided among 3 children). Such expectancies suggest that people
use a process of semantic alignment (akin to analogical reasoning)
to systematically connect arithmetic operations with conceptual
categories (Bassok, Chase, & Martin, 1998; Bassok, Pedigo, &
Oskarsson, 2008).

Other work also suggests that mathematical thinking involves
various forms of mapping between numbers and concepts. By far,
the most attention has been directed at the unidimensional concept
of magnitude, which, in humans and other primates, enables a
mapping from numerical quantities onto a mental (and neural)
number line (e.g., Cantlon, Brannon, Carter, & Pelphrey, 2006;
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Dehaene & Changeux, 1993; Moyer & Landauer, 1967; Pinel,
Piazza, Bihan, & Dehaene, 2004; for recent theoretical work on the
acquisition of magnitudes, see Chen, Lu, & Holyoak, 2014). An-
other type of mapping links variations in symbolic notation at a
perceptual level (e.g., spacing of operator symbols) with relations
among procedures (e.g., order of operations; Braithwaite & Gold-
stone, 2013; Landy, Brookes, & Smout, 2014; Landy & Goldstone,
2007; Zahner & Corter, 2010). More generally, procedures appear
to derive meaning from their place in a conceptual structure, rather
than standing in isolation as rote routines (e.g., English & Halford,
1995; Hinsley, Hayes, & Simon, 1977; Kintsch & Greeno, 1985;
Mochon & Sloman, 2004).

Previous psychological work on mathematics as a form of
modeling has focused either on the unidimensional concept of
number magnitude, or on relations involving more complex math-
ematical expressions, such as equations. In the present study we
focus on the relational structure of numbers themselves. Whereas
all numbers express a unidimensional magnitude, some notations
for numbers also inherently represent multidimensional relation-
ships. Such multidimensionality is apparent in numbers introduced
in advanced mathematics (e.g., complex numbers); however, we
argue it is also a property of relatively simple notations for rational
numbers taught in elementary school—most notably, common
fractions1 (e.g., 2/3, 13/4).

Acquisition of Fractions and Decimals

Our focus in this study is on how well-educated reasoners
understand fractions and decimals; however, developmental work
sheds important light on the difficulties associated with each
notation type. After the familiar natural numbers, fractions and
then decimals are typically introduced in school (in that order, at
least in the curricula generally adopted in the United States) as new
types of numbers that can express magnitudes less than one. Both
symbolic notations often prove problematic for students. Children,
and even some adults, exhibit misconceptions about the complex
conceptual structure of fractions (Siegler, Thompson, & Schneider,
2011, 2013; Ni & Zhou, 2005; Stigler, Givvin, & Thompson,
2010). Students often find it difficult to reconcile this perceptually
and conceptually unfamiliar type of number with their well-
established concept of natural numbers (Ni & Zhou, 2005; Vam-
vakoussi & Vosniadou, 2004), particularly in understanding how
the whole numbers within the fraction contribute to its overall
magnitude. Instead of processing fractions as one integrated quan-
tity, both children and adults often process the natural number
parts of the fraction separately (Kallai & Tzelgov, 2009; Bonato,
Fabbri, Umiltà, & Zorzi, 2007). Despite (or perhaps because of)
their associated difficulties, an understanding of fractions appears
to be very important for subsequent learning. For example, stu-
dents’ ability to place fractions on a number line is uniquely
related to their general arithmetic ability and later performance
(Siegler, Thompson, & Schneider, 2011, 2012). Students also
encounter problems in learning to understand decimals (Rittle-
Johnson, Siegler, & Alibali, 2001), but generally master the mag-
nitudes of decimals before fractions (Iuculano & Butterworth,
2011). The relative ease of learning magnitudes of decimals pre-
sumably reflects the fact that their implicit denominator is a
constant (base 10), rather than a variable, so that a decimal inher-

ently expresses the unidimensional concept of magnitude (Halford,
Wilson, & Phillips, 1998, 2010).

Bonato et al. (2007) argue that adults interpret fractions in terms
of their component integer parts, suggesting that the natural align-
ment of fractions may resemble that of integers (i.e., a preference
for discrete quantities). But fractions may also be interpreted as
holistic numbers, providing a possible basis for them to align with
continuous quantities. Schneider and Siegler (2010) showed that
when comparing fraction magnitudes, adults show a distance effect
(response times decrease as the difference between magnitudes
increases), analogous to that found with natural numbers. How-
ever, DeWolf, Grounds, Bassok, and Holyoak (2014) found that
while the pattern of response times for comparing decimals is
almost identical to that for comparing multidigit natural numbers,
the pattern for fraction comparisons is dramatically slower, and
shows a greatly exaggerated distance effect, indicative of less
precise magnitude representations for fractions. Thus, decimals
appear to be much more effective than fractions in conveying
information about magnitudes. This line of research suggests that
fractions are not always interpreted as magnitudes, or at least that
magnitudes are less easily derived from fractions than from deci-
mals (perhaps because the two-dimensional format of fractions
does not match the base-10 system associated with whole num-
bers).

Acquisition of Discrete and Continuous Quantities

A key conceptual distinction, which we will argue is intimately
related to alternative notations for rational numbers, is the distinc-
tion between countable and continuous quantities, which align
with integers and real numbers, respectively. This distinction has
been highlighted in developmental research (e.g., Cordes &
Gelman, 2005). Counting is appropriate when the relevant entities
are discrete objects (e.g., the number of girls in a group of
children), whereas measurement is appropriate for continuous
mass quantities (e.g., height of water in a beaker). Continuous
quantities can be subdivided into equal-sized units (i.e., dis-
cretized) to render them measurable by counting (e.g., slices of
pizza), but the divisions are arbitrary in the sense that they do not
isolate conceptual parts. Even for adults, the distinction between
continuous and discrete quantities has a strong impact on transfer
of mathematical procedures (Bassok & Holyoak, 1989; Bassok &
Olseth, 1995). Procedures learned using discrete concepts transfer
fairly readily to continuous concepts (which can be discretized);
however, procedures learned using continuous quantities are al-
most impossible to transfer to discrete concepts (because there is
no sensible way to “fill gaps” between discrete elements to create
a meaningful continuous entity).

Research suggests that appreciation of continuous magnitudes is
an early developmental achievement. Prior to learning how to
count, infants and young children are already able to distinguish
the magnitudes of different continuous quantities (Clearfield &
Mix, 2001; Feigenson, Carey, & Spelke, 2002). This ability to
make distinctions between continuous quantities reflects an ap-
proximate number sense, which is evolutionarily more primitive
than exact calculations (Feigenson, Dehaene, & Spelke, 2004;

1 Throughout this article we will refer to common fractions (i.e., num-
bers formed by a ratio of integers) simply as “fractions.”
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Dehaene, 1997). However, school-age children have an advantage
when performing operations (e.g., counting) with discrete quanti-
ties (Gelman, 1993) over performing measurement operations us-
ing matched continuous quantities (Nunes, Light, & Mason, 1993).
By this age, when students have learned to count, they can use
numbers to achieve greater precision by counting than by estima-
tion of continuous quantities.

The accuracy advantage afforded by exact computation strate-
gies depends on acquiring competence in the necessary computa-
tion. Because exact computation is acquired later than the more
elementary approximation strategies, children still acquiring com-
petence in calculation may actually make less accurate judgments
when quantities are discretized rather than continuous. For exam-
ple, Boyer, Levine, and Huttenlocher (2008) found that when
children were given a continuous quantity demarcated with lines to
show equal parts, they were more likely to select an incorrect
proportional match than when they made proportional judgments
between two continuous quantities. Despite the fact that continu-
ous judgments could have been made in either condition (by
simply ignoring the lines in the “discrete” displays), discretization
apparently triggered (imperfect) use of an exact calculation strat-
egy, instead of the more primitive (but for novices, more accurate)
approximation strategy. This finding provides evidence that from
a young age, the ontological concept of discreteness serves as a
strong cue for use of an exact calculation strategy.

Relational Structure of Rational Numbers

In this study, we focus on adult understanding of rational num-
bers in relation to discrete and continuous quantities. The core
definition of a rational number—one that can be expressed as the
quotient of two integers, a/b, where b � 0—specifies a relation
between the cardinality of two sets. As Kieren (1976) has argued,
a key conceptual function of rational numbers is to represent a
variety of mathematical relations, such as part-whole, quotient,
ratio number, operator, and measure. As alternative notations for
rational numbers, fractions and decimals have typically been
viewed as simply equivalent in magnitude, other than rounding
error (e.g., 3/8 vs. 0.375). For example, the Common Core State
Standards Initiative (2014) for Grade 4 refers to decimals as a
“notation for fractions.”2 Research has shown that decimals are
more effective than fractions for representing one-dimensional
values of magnitude (DeWolf et al., 2014). However, because of
their bipartite structure, factions seem to be better suited (relative
to decimals) for representing relations between two distinct sets. A
fraction represents the ratio formed between the cardinalities of
two sets, each expressed as an integer. Because both the numerator
and the denominator are free to vary, a fraction is inherently a
two-dimensional structure (English & Halford, 1995; Halford et
al., 1998, 2010). Although fractions do express magnitudes, they
first and foremost express relations between countable entities.
The inherent relationality of fractions may make them an impor-
tant precursor to algebra, consistent with the importance of per-
formance with fractions as a predictor of subsequent success in
mathematics (Siegler et al., 2011, 2012). Figure 1 illustrates a
relational structure, in the form a/b � c, that connects rational
numbers to their magnitudes. Note that fractions and decimals play
distinct roles within this structure. Specifically, the a/b component,
which expresses a ratio between integers, has the form of a

fraction; in contrast, the output of the implied division, c, expresses
the magnitude of that relation, and can be expressed using the
one-dimensional decimal notation (with magnitude less than 1
when a � b).

Importantly, though a fraction and its corresponding decimal
convey (to some arbitrarily close approximation) the same mag-
nitude, their distinct roles in the relational model give rise to
meaningful conceptual distinctions. The displays shown in Figure
1 involve two subsets that are either broken down into countable
units (left) or shown together as one continuous mass (right). Both
fractions and decimals can serve as models of such visual displays,
but have different natural alignments. The bipartite structure of a
fraction provides a direct mapping to countable subsets in a visual
display (e.g., a subset of 3 white objects within a set of 8 white and
black objects; see Figure 1, left).

In contrast, a decimal is inherently unidimensional because the
implied denominator is fixed (base 10) rather than variable (Hal-
ford et al., 1998, 2010). Accordingly, the decimal, relative to the
fraction, yields a poorer conceptual match to the two-dimensional
set structure of the discrete display. However, the decimal may
provide a one-dimensional measure of a portion of a continuous
unit, and hence is a better conceptual match to a visual display
involving continuous masses (see Figure 1, right). Such continuous
masses do not correspond to sets (without the additional step of
dividing each mass into equal-sized discrete elements, thereby
creating measurement units). Without first imposing such a mea-
surement system on the continuous display, there is no basis for
counting elements, and therefore there is no unique integer that
characterizes the cardinality of each of the masses. Thus, the

2 At a deeper level of analysis, the two number types are not represen-
tationally equivalent. Fractions represent rational numbers, whereas un-
bounded decimals represent the real numbers, of which the rational num-
bers are a subset. If decimals are bounded, they cannot exactly capture the
magnitude of all real (or rational) numbers (e.g., 1/3); if unbounded, they
also capture the irrational numbers (e.g., �), which have no exact fraction
equivalent. Experimental work has for obvious reasons only used bounded
decimals, the magnitudes of which at least closely approximate the mag-
nitudes of matched fractions. However, the fundamental definition of
common fractions (but not decimals) in terms of the cardinality of sets
demonstrates that the two formats represent conceptually distinct number
types, rather than simply alternative notations or typographical conven-
tions.

Figure 1. Modeling relations based on discrete or continuous quantities
with fractions or decimals.
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continuous display provides a poor conceptual match to the frac-
tion notation. In contrast, because the decimal notation inherently
represents a one-dimensional quantity conveyed by the relative
magnitudes of the two masses, it yields a better conceptual match
than does the fraction.

These conceptual differences between fractions and decimals
are intimately linked to differences in the mathematical procedures
they afford. Table 1 summarizes the natural correspondences be-
tween fractions and decimals, respectively, with concepts and
procedures. The experiments we report are all based on the 2 � 2
design outlined in Table 1, formed by the factorial combination of
symbolic notation (fraction vs. decimal) and display type (discrete
vs. continuous). Our central hypothesis is that fractions are con-
ceptually linked to discrete sets and decimals to continuous
masses. Because small sets of discrete elements can be counted,
the preferred procedure for evaluating fractions relies on counting
elements in sets. Thus, when fractions are applied to discrete
displays, counting is likely to be evoked. Moreover, in many
reasoning tasks, the solution can be achieved without converting
the two-dimensional fraction into a one-dimensional magnitude.
For example, to determine that the discrete display in Figure 1
(left) conveys the relation 3/8, it suffices to count the elements of
each set and form the resulting fraction, which matches that given;
there is no need to execute the further step of evaluating the
magnitude of 3/8 (e.g., by applying division). In contrast, evalu-
ating the fraction with respect to the continuous display (right)
would require imposing (perhaps by mental “slicing”) a measure-
ment system on the masses to create equal-sized discrete units,
which can then be counted (the “backup procedure”; see Table 1).

In contrast to a fraction, a one-dimensional decimal does not
naturally align with the two components that form a ratio, but
rather with the continuous quantity corresponding to its integrated
magnitude (the value of a proportion). Hence the preferred proce-
dure for evaluating a decimal as a match to a partitioned perceptual
display would be estimation of a relative magnitude. People (and
perhaps other animals) appear to be able to estimate proportions
based on their system for approximate magnitude (Jacob, Vallen-
tin, & Nieder, 2012; Nieder & Dehaene, 2009; Halberda & Fie-
genson, 2008). However, by their very nature, approximate mag-
nitudes will be more error-prone than exact calculations (assuming
the reasoner is competent in counting). Thus, decimals will tend to
evoke estimation procedures for both discrete and continuous
displays, leading to reduced accuracy relative to fractions with
discrete displays that afford use of a counting procedure.

The “backup” procedure for decimals would be to use a variant
of a counting strategy (see Table 1). Counting is possible for a
discrete display; however, it would directly create a fraction,
which would then have to be converted to a decimal by division.

The extra division step would create difficulty in evaluating the
decimal. For a continuous display, it would be necessary to first
impose a measurement scale on the continuous masses, a process
likely to be cognitively demanding. Thus, the superior alignment
of the conceptual structure of a decimal to the continuous display
may not translate into greater accuracy or speed in evaluating a
match between the value of the decimal and of the depicted
relative magnitude.

We will test the hypothesized differences between reasoning
with fractions versus decimals in experiments using simple visual
stimuli; however, there is reason to believe that the two-
dimensional structure of fractions may also be the basis for other
reasoning advantages associated with “natural frequency” formats
(Gigerenzer & Hoffrage, 1995; Hoffrage, Gigerenzer, Krauss, &
Martignon, 2002; Tversky & Kahneman, 1983). In the terminology
of the present study, a natural frequency is a specific type of
fraction format. We will consider the implications of our findings
for understanding natural frequencies in the General Discussion.

Overview of Experiments on Reasoning
With Rational Numbers

Our analysis of fractions as relational models leads to the
prediction that, even though decimals are more effective in con-
veying one-dimensional magnitudes than are fractions (DeWolf et
al., 2014), fractions should allow more accurate reasoning about
bipartite relational structures, such as ratios defined on compo-
nents of discrete perceptual displays. To test this basic hypothesis,
we created pictorial displays of a set comprised of two subsets,
paired with either a fraction or decimal value representing a certain
ratio relation within the display (see Figure 2). The quantities in
each display were either discrete, continuous, or continuous but
divided into equal units (i.e., discretized). Experiment 1 tested the
hypothesis that college-educated adults will, in fact, exhibit a
preferential alignment between fractions and sets of discrete quan-
tities, and between decimals and portions of continuous quantities.
Importantly, we employed a task involving no computation, thus
ensuring that the decision would be purely based on a conceptual
preference for particular symbolic notations of rational numbers,
rather than on the relative ease of performing computational pro-
cedures using these notations.

The subsequent experiments involved tasks that do require
computational procedures to reason about relations. We focused on
two types of ratio relations, both of which can be mapped to the
structure of a fraction. A part-to-part ratio (PPR) is the relation
between the size of the two subsets of a whole, whereas a part-
to-whole ratio (PWR) is the relation between the size of one subset

Table 1
Correspondences Between Notations for Rational Numbers and Concepts/Procedures

Preferred conceptual
quantity type Symbolic notation Preferred procedure Back-up procedure

Discrete sets Fraction Count Continuous masses: impose measurement scale, then count units
Continuous masses Decimal Estimate relative magnitude

(proportion)
Discrete sets: count and divide
continuous masses: impose measurement scale, then count units,

then divide
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and the whole.3 These two types of ratios were chosen in part
because they offered a methodological advantage for administer-
ing a forced-choice task (Experiments 2–4). However, there are
also important conceptual differences between these two types of
relationships. The PWR is a conventional relationship for repre-
senting continuous magnitude. Creating an equivalent decimal for
a PWR fraction is conceptually straightforward, and simply indi-
cates a one-dimensional magnitude. By contrast, the PPR more
directly reflects the abstract relational nature of a fraction. The
decimal equivalent of a PPR is more difficult to understand in
isolation, whereas a fraction highlights the comparison of interest
(e.g., 2/3 might indicate 2 boys for every 3 girls, whereas .67
would indicate a .67 boy for every 1 girl). We included both types
of relationships in order to evaluate the generality of fractions as
notations for expressing relations.

The framework we propose (see Table 1) predicts that the two
types of rational numbers are likely to evoke different procedures
for evaluating such relations given different types of displays.
When discrete units are provided, counting is a likely strategy,
which (at least for well-educated students solving problems in-
volving relatively small values) should generate accurate measures
of subsets that align directly with the numerator and denominator
of a fraction. For decimals, in contrast, counting of subsets/sets
would require additional processing (e.g., mental division) to
translate the result into decimal form. Alternatively, decimal mag-
nitudes may be estimated directly (Jacob et al., 2012). However,
estimation is likely to be less accurate than counting, resulting in
more errors when decimals, rather than fractions, are paired with
displays of countable items. For continuous displays, the bipartite

format of fractions may still encourage counting (e.g., by mentally
slicing the display into units). However, accuracy is likely to be
sacrificed, reducing or eliminating the advantage of fractions over
decimals.

Experiment 2 tested the hypothesis that adults will be more
accurate in identifying ratio-type relations (presented in displays
similar to those illustrated in Figure 1) when using fractions rather
than decimals, as long as the quantities are discrete or discretized
(i.e., countable). In Experiments 3 and 4, we extended this para-
digm to examine the impact of the two types of rational numbers
in a task that requires higher-order analogical reasoning. Based on
the hypothesized role of conceptual alignment in mathematical
modeling, we predicted that for displays of countable entities,
fractions would yield greater accuracy than decimals in both
relation identification and analogical reasoning.

Experiment 1

In Experiment 1 we examined whether adults, in fact, show
consistent preferences for particular types of symbolic notations
depending on the type of entities being represented. In particular,
we tested the hypothesis that adults prefer to use fractions to
represent countable ratio relationships and decimals to represent
magnitudes of continuous quantities, even when no computation is
required.

Method

Participants

Participants were 48 undergraduates at the University of Cali-
fornia, Los Angeles (UCLA; mean age: 20.4 years; 37 females),
randomly assigned in equal numbers to two between-subjects
conditions (part-to-part vs. part-to-whole ratio; see below). All
participants received course credit.

Materials and Design

The study was a 2 (relation type: part-to-part vs. part-to-whole
ratios) � 3 (display type: continuous, discretized, discrete) design.
As noted earlier, a part-to-part ratio (PPR) is the relation between
the size of the two subsets of a whole, whereas a part-to-whole
ratio (PWR) is the relation between the size of one subset and the
whole. In our subsequent experiments, using two different relation
types allowed us to create tasks involving a two-alternative forced
choice. In Experiment 1 relation type was a between-subjects
factor, and display type was a within-subjects factor.

Figure 2 depicts examples of the three display types. The dis-
crete items were displays of circles, squares, stars, crosses, trape-
zoids, and cloud-like shapes. The continuous items were displays
of rectangles that could differ in width, height, and orientation

3 The term “fraction” is most commonly applied to part-whole or subset-
set relations, which we term part-to-whole ratios. The term “ratio” is more
commonly used for subset-subset relations. In the present study we refer to
the latter as part-to-part ratios, and use the term “fraction” to embrace
both. Similarly, we use the standard fraction notation (a/b) to represent
ratios (more commonly notated a:b). In short, we use the familiar term
“fraction” and its notation to cover a variety of bipartite structures based on
a division relation.

Figure 2. Examples of continuous, discretized, and discrete displays used
in experiments. See the online article for the color version of this figure.

T
hi

s
do

cu
m

en
t

is
co

py
ri

gh
te

d
by

th
e

A
m

er
ic

an
Ps

yc
ho

lo
gi

ca
l

A
ss

oc
ia

tio
n

or
on

e
of

its
al

lie
d

pu
bl

is
he

rs
.

T
hi

s
ar

tic
le

is
in

te
nd

ed
so

le
ly

fo
r

th
e

pe
rs

on
al

us
e

of
th

e
in

di
vi

du
al

us
er

an
d

is
no

t
to

be
di

ss
em

in
at

ed
br

oa
dl

y.

131REASONING WITH RATIONAL NUMBERS



(vertical or horizontal). The discretized items were identical to the
continuous displays except that the rectangles were divided into
equal-sized units by dark lines. For the stimuli used in test trials,
red and green were used to demarcate the two different subsets (in
practice trials, yellow and blue colors were used).

The displays varied which color represented the larger subset
versus the smaller subset. Displays in all experiments were sized at
approximately 700 pixels (width) � 800 pixels (height), viewed
from a distance of about 50 cm.

Participants were given instructions for either the part-to-part
ratio (PPR) or part-to-whole ratios (PWR) condition. They were
given the following instructions for the PPR condition: “In this
experiment, you will see displays that show various part-to-part
relations. In the display below [display with 1 orange circle and 2
blue crosses] this would be the number of orange circles relative to
the number of blue crosses. Such relations can be represented with
fractions (e.g., 3/4) or with decimals (e.g., .75). For a complete list
of the ratios used to create the displays, see Appendix Table A1.
For each display your task is to choose which notation is a better
representation of the depicted relation—a fraction or a decimal.
Note that the specific values (i.e., 3/4 and .75) are just examples
and do not match the values in the displays.” For the PWR
condition, the instructions were identical except for the description
of the relations. In this condition the part-to-whole relation was
defined using the example of the number of orange circles relative
to the total number of blue crosses and orange circles. The relation
type (PPR vs. PWR) was manipulated between subjects; thus
participants in the PPR condition were only told about PPRs and
participants in the PWR condition were only told about PWRs.
Participants were shown examples of the continuous and dis-
cretized displays, in addition to the discrete display, and were told
that displays could appear in any of those formats.

The task was simply to decide whether the relationship should
be represented with a fraction or a decimal. Figure 3 shows an
example of a discretized trial. In order to assess this preference on
a conceptual level, the specific fraction and decimal shown to
participants (3/4 and .75) were held constant across all trials, and
never matched the number of items in the pictures. Thus (unlike
the subsequent experiments we report), no mathematical task
needed to be performed. There was therefore no requirement for
accuracy, nor was any speed pressure imposed. Since the quantity
shown in a display never matched the particular fraction and
decimal values provided as response options, there was no real
need to even determine the specific value represented in a display.
The paradigm of Experiment 1 was thus intended to investigate
participants’ conceptual representations for fractions and decimals,
in a situation in which mathematical procedures were not required.

Procedure

Stimuli were displayed with Macintosh computers using Super-
lab 4.5 (Cedrus Corp., 2004), and participant responses were recorded.
Participants were given the instructions described above for either the
PPR condition or the PWR condition. Because the choice values
provided did not match the values depicted in the picture (they
were always .75 for decimal and 3/4 for fraction), there was no
accuracy measure. Also, there was no speed pressure to respond.
Participants were told to select the “z” key for decimals and the
“m” key for fractions. Participants completed 60 test trials (20 for

each display type). A fixation cross was displayed for 600 ms
between each trial. Display types were shown in a different ran-
dom order for every participant.

Results and Discussion

Because participants were forced to choose either a fraction or
a decimal for each trial, the preference for each is complementary.
For simplicity, we report the preference for fractions. The propor-
tion of trials in which participants selected the fraction notation
was computed for each display type for each participant. Figure 4
shows the proportion of trials that participants picked either frac-
tions or decimals for each display. A 2 (relation type: PPR vs.
PWR) � 3 (display type: discrete, discretized, continuous) analy-
sis of variance (ANOVA) was used to assess differences in nota-
tion preference. There was no interaction between relation type
and display type, F(2, 45) � .53, p � .59; �p

2 � .02, and there was
no significant difference between PPR and PWR conditions, .57
versus, .62, F(1, 46) � 1.74, p � .19, �p

2 � .04. However, there
was a significant main effect of display type, F(2, 45) � 23.33,
p � .001, �p

2 � .31.
Planned comparisons showed that there was no overall differ-

ence between discrete and discretized displays, .68 versus .77; F(1,
46) � 2.11, p � .15, �p

2 � .04. However, the preference for
fractions was significantly lower for continuous displays than for
either the discrete, .33 versus .68; F(1, 46) � 15.24, p � .001,
�p

2 � .25, or discretized displays, .33 versus .77; F(1, 46) � 45.59,
p � .001, �p

2 � .50. Thus, participants showed a strong preference
for fractions with discrete and discretized displays, and a symmet-
rical preference for decimals with continuous displays.

The results of Experiment 1 revealed that adults prefer to
represent both PPR and PWR ratio relationships with fractions

Figure 3. An example of a discretized trial from Experiment 1. Partici-
pants were shown the same decimal (.75) and fraction (3/4) as alternatives
on every trial. See the online article for the color version of this figure.
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when a display shows a partition of countable entities, but with
decimals when the display shows a partition of continuous mass
quantities. Participants picked the number format that provided the
best conceptual match to either continuous or discrete displays, even
though no procedural computation was required to complete the task. No
mathematical task needed to be performed, and the specific quanti-
ties depicted in the displays did not match the numerical values of
the fractions and decimals provided as choice options; hence, our
findings demonstrate that the preferential association of display
types (discrete or continuous) and rational number formats (frac-
tions or decimals) has a conceptual basis. The results of Experi-
ment 1 closely align with evidence that college-educated adults
show a preference for using continuous displays to represent
decimals and countable displays to represent fractions (Rapp,
Bassok, DeWolf, & Holyoak, in press).

Experiment 1 thus provides strong support for the hypothesis
that the natural alignment of different symbolic notations with
different quantity types has a conceptual basis. Experiments 2–4
tested whether these conceptual alignments also hold for more
complex tasks that require computations and procedures.

Experiment 2

Experiment 1 established a conceptual correspondence between
quantity types and symbolic notations for rational numbers. Ex-
periments 2–4 examined whether this conceptual correspondence
also makes one or the other symbolic notation more effective in a
relational reasoning task. Experiment 2 tested the hypothesis that
adults would be better able to identify and evaluate ratio relation-
ships using fractions than decimals, especially for discrete (or
discretized) quantities.

Method

Participants

Participants were 58 UCLA undergraduates (mean age: 20.4
years; 49 females), randomly assigned in equal numbers to the two
between-subjects conditions. Course credit was provided to par-
ticipants.

Materials and Design

The study was a 2 (symbolic notation: fractions vs. decimals) �
2 (relation type: part-to-part vs. part-to-whole ratios) � 3 (display
type: continuous, discretized, discrete) design. Although the dis-
tinction between the two types of relations is of potential theoret-
ical interest in its own right, our main reason for using the two
types was methodological, since it enabled us to create a two-
alternative forced-choice task. Symbolic notation was a between-
subjects factor, and relation type and display type were within-
subjects factors.

The displays were similar to those used in Experiment 1 (see
Figure 2). The magnitudes of fractions and decimals were
matched. The values of the fractions and decimals were always
less than one, and decimals were shown rounded to two decimal
places. The values of the rational number presented on each trial
represented one of two ratio relationships within the display:
part-to-whole ratio (PWR) or part-to-part ratio (PPR). These were
the same relationships used in Experiment 1, but the task in
Experiment 2 explicitly required participants to identify on each
trial which of the two relationships matched a presented number.
Thus, a number was paired with the display that specifically
matched one of the relationships.

For example, Figure 5 shows an example of a PWR trial with a
display with 9 red units out of a total of 10. The number specified
is 9/10 (or .90 in a matched problem using decimals), thus corre-
sponding to a PWR. For the corresponding PPR problem, the
number would be 1/9 (or .11 in decimal notation). The smaller
subset would be the numerator in this case, so that the overall
magnitude was always less than one. For a complete list of the
stimuli used, see Appendix Table A2.

Procedure

Stimuli were displayed with Macintosh computers using Super-
lab 4.5 (Cedrus Corp., 2004), and response times and accuracy
were recorded. Participants received the following instructions: “In
this experiment, you will see a display paired with a value. You
need to identify which of the two following relationships is
shown.” Below this, there were two different displays showing the
PWR and PPR relations, which were simply referred to as “Rela-
tion 1” and “Relation 2.” The assignment of the labels was coun-
terbalanced for all subjects such that half were told Relation 1 was
PPR and the other half were told Relation 1 was PWR. The PPR
display contained 1 circle and 2 crosses. For the fractions condition

Figure 4. Proportion of trials for each display type in which either a
fraction or decimal were chosen (Experiment 1).

Figure 5. Example of a ratio identification problem (Experiment 2). See
the online article for the color version of this figure.
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this was labeled as “1/2 amount of circles per amount of crosses”;
for the decimals condition it was labeled as “.50 amount of circles
per amount of crosses.” The PWR was represented by a display of
2 circles and 3 crosses. For the fractions condition this was labeled
as “2/5 of the total is the amount of circles”; for the decimal
condition it was labeled as “.40 of the total is the amount of
circles.” The first of these explanations of the PPR and PWR
relations was shown with discrete items.

The subsequent screen showed the same values paired with
discretized displays. A third screen showed the same values paired
with continuous displays. Half of the participants were told to
select the “z” key for Relation 1 and to select the “m” key for
Relation 2; the other half received the reverse key assignments.

After this introduction, participants were given an example
problem and asked to identify the relation. After they made their
judgment, an explanation was shown to participants about why the
example showed the correct relation. The explanation also stated
what the numerical value would be for the problem if it had shown
the alternative relation. Participants were then given another ex-
ample using the other relation, with the same explanation process.
A series of practice trials was then administered. Participants had
to complete at least 24 practice trials (four for each of the six
within-subjects conditions). If they scored at least 17 correct (i.e.,
about 70%) they were able to move on to the test trials. If they did
not score above this threshold, they continued with additional
practice trials until they reached the threshold percent correct.
About 75% of participants passed the threshold after the first round
of practice trials. The remaining participants were able to advance
after a second set of practice trials. All of the practice trials were
different from those used in the test trials. Feedback was given for
incorrect trials, in the form of a red “X” on the screen. After the
practice trials had been completed, a screen was displayed inform-
ing participants that the actual test trials were beginning. Partici-
pants were told to try to go as quickly as possible without sacri-
ficing accuracy. They completed 72 test trials (12 for each of the
6 within subjects conditions). A fixation cross was shown for 500
ms between each trial. Feedback was continued for incorrect trials.
Relation types and display types were shown in a different random
order for every participant.

Results and Discussion

Accuracy and mean response time (reaction time (RT)) on
correct trials were computed for each condition for each partici-
pant. A 3 (display: continuous, discretized, discrete) � 2 (relation
type: PPR vs. PWR) � 2 (symbolic notation: fraction vs. decimal)
mixed factors ANOVA was used to assess differences in RT and
accuracy. Since the three-way interaction was not reliable, F(2,
112) � .97, p � .38, �p

2 � .02,, all analyses are reported after
collapsing across the factor of relation type.

Figure 6 displays the pattern of accuracy, the primary dependent
measure in Experiments 2–4. Accuracy exceeded chance level
(50%) for all conditions. For some conditions, accuracy was lower
than the practice threshold level, likely because the practice trials
comprised a different set of problems that were less challenging
than the actual trials. There was a significant interaction between
display type and symbolic notation, F(2, 55) � 24.57, MSE � 1.7,
p � .001. �p

2 � .47. Planned comparisons revealed that participants
were more accurate when using fractions than decimals for dis-

crete displays, 81% versus 63%; F(1, 56) � 23.64, MSE � 8.2,
p � .001 �p

2 � .30, and discretized displays, 78% versus 63%; F(1,
56) � 13.92, MSE � 9.7, p � .001, �p

2 � .20. In contrast, accuracy
did not differ as a function of symbolic notation for continuous
displays, 62% versus 67%; F(1, 56) � 1.52, MSE � 10.4, p � .22,
�p

2 � .03. There was a significant main effect of relation type
favoring PPR over PWR, 72% versus 66%, F(1, 56) � 11.00,
MSE � .024, p � .002, �p

2 � .16; however, there was no interac-
tion between relation type and number type, F(1, 56) � .03,
MSE � .024, p � .87, �p

2 � .001, nor an interaction between
relation type and display type, F(2, 112) � 1.79, MSE � .02, p �
.17, �p

2 � .03. Thus, participants across all conditions performed
better on the PPR problems than the PWR problems (perhaps
because PWR problems require an extra computational step to add
the two subsets to find the whole).

We also analyzed RTs primarily to assess any possible speed–
accuracy trade-offs. Figure 7 displays the pattern of mean correct
RTs across conditions. As found for the accuracy analysis, a
significant interaction was obtained between display type and
symbolic notation, F(2, 55) � 3.52, MSE � 1369, p � .037, �p

2 �
.11. Although RTs tended to be faster for fractions than decimals
for discrete displays, the difference was not reliable, 4.20 s versus
5.97 s; F(1, 56) � 2.40, MSE � 7607, p � .13, �p

2 � .04. A
nonsignificant trend was also obtained for discretized displays,
3.93 s versus 4.59 s; F(1, 56) � 0.585, MSE � 4357 p � .45, �p

2 �
.01. These RT analyses confirm that the accuracy advantage of
fractions over decimals for countable displays is not attributable to
speed–accuracy trade-offs. For continuous displays, however, re-
sponse times were significantly slower with fractions than with
decimals, 3.77 s versus 2.88 s; F(1, 56) � 4.77, MSE � 9202, p �
.03, �p

2 � .08.
As in the accuracy analyses, there was also a significant main

effect of relation type such that PPR problems were solved more
quickly than PWR problems, 4.07 s versus 4.37 s; F(1, 56) � 8.45,
MSE � 9455, p � .005, �p

2 � .13. However, there was no
significant interaction between relation type and number type, F(1,
56) � .20, MSE � 9455, p � .67, �p

2 � .004, nor between relation
type and display type, F(2, 112) � .65, MSE � 13693, p � .52,
�p

2 � .01.
In order to evaluate whether participants preferentially engaged

in counting strategies when evaluating fractions rather than deci-

Figure 6. Accuracy of relation identification using fractions and decimals
across different types of displays (Experiment 2). Error bars indicate
standard error of the mean.
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mals, we conducted regression analyses on the averaged data for
each individual trial. The main variable of interest was the size of
the denominator for the correct ratio. If a counting strategy were
used, then time to identify the correct ratio would be expected to
increase with the size of the larger subset (i.e., the subset corre-
sponding to the denominator of the ratio). For each symbolic
notation, analyses were performed separately for accuracy and for
response times on correct trials, for each display type. To increase
the sensitivity of the analyses, we included ratio type as a covari-
ate, and also the logarithm of the numerical difference between the
correct ratio and the alternative ratio. Difference between alterna-
tives was defined as the difference between the given value and the
value that would be the result of the alternative ratio. This factor
was likely to predict problem difficulty, since previous research
has shown that it is more difficult for adults to compare the relative
sizes of two magnitudes (expressed as fractions or ratios) as the
difference between the magnitudes decreases (DeWolf et al., 2014;
Schneider & Siegler, 2010). Thus, we investigated whether evi-
dence of a counting strategy would emerge after controlling for
other likely sources of differences in problem difficulty. As no
reliable effects of denominator size emerged for either symbolic
notation in regression analyses based on accuracy, we only report
analyses based on response times.

In accord with the hypothesis that fractions will be associated
with use of counting, denominator size emerged as a significant
predictor of RTs (after controlling for the two covariates) for each
of the three display types: discrete, b � .284, t(20) � 6.76, p �
.001, discretized, b � .247, t(20) � 7.83, p � .001, and continu-
ous, b � .16, t(20) � 4.56, p � .001. The fact that denominator
size was reliable even for the continuous displays suggests that
participants who evaluated fractions used a counting-like strategy
even when the display did not provide measurement units (perhaps
by imagining such units using the backup procedure specified in
Table 1). A very different pattern emerged when evaluations were
based on decimals. Denominator size was not a reliable predictor
of response times for either discrete, b � .164, t(20) � .958, p �
.35, or continuous displays, b � �.01, t(20) � .267, p � .79,
though it was marginally significant for discretized displays. b �
.285, t(20) � 2.09, p � .05. The regression analyses on RTs thus
supported the hypothesis that counting strategies tend to be used

when evaluating fractions. Decimals, by contrast, may have been
evaluated using an estimation procedure, which we hypothesize is
preferred (see Table 1), and which would be more direct (and no
less accurate) than a “count-and divide” strategy.

Overall, the results of Experiment 2 revealed an advantage for
identifying ratio relationships in displays when these ratios were
represented by fractions rather than decimals. However, this pat-
tern was moderated by the nature of the visual displays. When
displays conveyed countable entities (sets of discrete objects, or
continuous displays parsed into units of measurement), ratios were
evaluated more accurately when the symbolic notation was a
fraction rather than a decimal. In contrast, when the display
showed continuous quantities without measurement units, accu-
racy in evaluating ratio relations did not differ, and decisions were
made more quickly for decimals than fractions.

Although the relation-identification task used in Experiment 2
yielded an interaction between number type and display type, its
quantitative form (at least for the accuracy measure) differed from
the similar interaction obtained in the purely conceptual task used
in Experiment 1. Experiment 1 revealed a significant preference
for decimals over fractions with continuous entities, but Experi-
ment 2 did not find a clear accuracy advantage for decimals in any
condition, even when paired with continuous displays (though the
accuracy trend in the latter condition did favor decimals, and
decimals yielded faster response times). The lack of a clear accu-
racy advantage for decimals paired with continuous displays in
Experiment 2 likely reflects the important role that mathematical
procedures play in relation identification (see Table 1). In partic-
ular, comparing the value of a decimal to a display requires either
estimation or (for discrete or discretized displays) counting and
division. As estimation is inherently more error-prone than count-
ing strategies (at least for college students); this procedural re-
quirement prevented decimals from showing a clear accuracy
advantage over fractions even in the continuous condition. How-
ever, the estimation procedure apparently used for decimals in the
continuous condition does seem to be faster to execute than the
procedure used in this condition for fractions.

Overall, the findings of Experiment 2 highlight the importance
of the relational structure internal to fractions. When the values
within the fraction can be mapped to particular entities (i.e., when
they are countable), identifying ratio relationships in visual dis-
plays is greatly facilitated. Decimals, in contrast, do not exhibit the
same type of internal structure; hence, it is more difficult to map
the integrated decimal value to two separate subsets within a
display. However, when displays are continuous, the two subsets
are difficult to measure exactly. Presumably, people are then
forced to use more approximate estimate strategies, for which
decimals yield about the same accuracy as fractions, with greater
processing speed.

Experiment 3

Experiment 2 demonstrated an advantage of fractions over dec-
imals in the identification of ratio relationships in displays with
countable subsets and values. In Experiment 3, we investigated
whether the fraction advantage (modulated by the nature of the
visual displays) would extend to a more complex analogical rea-
soning task. To address this question, we extended the ratio-
identification paradigm used in Experiment 2. In the analogy task

Figure 7. Mean response time for relation identification using fractions
and decimals across different types of displays (Experiment 2). Error bars
indicate standard error of the mean.
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introduced in Experiment 3, participants had to use the ratio
relationship they identified in an initial source display to select an
analogous value for the same type of ratio in a target display.
Whereas the task used in Experiment 2 required identification of a
first-order relation in a display (ratio between two quantities), the
task used in Experiment 3 required computing a higher-order
relation between the ratio relation extracted in the source display
and the analogous relation in a target display. This reasoning task
is more complex than that used in Experiment 2 because partici-
pants must not only identify the relationship between display and
number, but also apply this relationship to a novel display and
identify the correct value. If the internal relational structure of a
fraction is an important aspect of its meaning, then the general
pattern of performance differences observed in Experiment 2
should also be obtained in a task involving high-level analogical
reasoning.

Method

Participants

Participants were 52 undergraduates at UCLA (mean age � 21;
30 females) who received course credit. They were randomly
assigned in equal numbers to the two between-subjects conditions.

Materials and Design

Similar to Experiment 2, a 2 (symbolic notation: fractions vs.
decimals) � 2 (relation type: part-to-part vs. part-to-whole ra-
tios) � 3 (display type: continuous, discretized, discrete) design
was employed. Symbolic notation was manipulated between sub-
jects, whereas relation type and display type were manipulated
within subjects. As in Experiment 2, discrete, discretized, and
continuous displays were paired with either a fraction or decimal
that represented a PPR or PWR. The analogy problems used in
Experiment 3 (Figure 8) can be viewed as a generalization of the
proportional analogy format A:B :: C:D versus D=, where A and C
are ratios in the source and target displays, respectively, and C, D,
and D= are corresponding rational numbers. (Since ratios are
themselves relations, these analogy problems actually involved a
third-order relation.) The source analogs (A:B) were identical to
the problems used in Experiment 2. Participants needed to identify
which of two numbers in the target (D vs. D=) correctly matched
the display with the same relationship specified in the source. The

analogy task required making a choice of the correct number to
complete the target analog using the same relation as in the source.
The symbolic notation (fraction or decimal) was always the same
across the source and target. Solving an analogy problem required
first identifying the ratio relation in the A display characterized by
the number given as B (as in Experiment 1). Once the higher-order
relation between A and B was extracted, the solution required
identifying the same relation type in target display C, and choosing
the corresponding number as the D term. The D= foil was always
chosen to match the alternative ratio relation in the C display.

Since the analogy problems were constructed using the prob-
lems from Experiment 2 as the A:B source, the specifications of
the stimuli are the same. The same two colors, green and red, were
used in the A and C displays, and the color relationship was
maintained, such that the same color mapped to the same part of
the relation in both A and C. This constraint served to identify
which part (lesser or greater) mapped to the numerator in a ratio
relation. As in Experiment 2, color assignments varied across
trials, so the same color might indicate the lesser subset on one trial
and the greater subset on another. For each trial, the source and
target were randomly assigned for each participant. Thus, the only
aspect that was consistent between the two analogs was the higher-
order relationship (PPR or PWR) and the color mapping. For a
complete list of the source and target stimuli used, see Appendix
Table A3.

Procedure

The procedure was identical to Experiment 2, except expanded
to constitute an analogy task. Participants were given the following
instructions: “In this experiment, there will be two different types
of relations between the picture and the numerical value shown
below.” Below this instruction appeared the same two displays for
the two types of ratios, as in Experiment 2 with the same labeling.
Participants were then told: “The first step is to identify the
relation between the top picture and numerical value (shown with
an example of a source display as in the top of Figure 8). The
second step is to select one of the two numerical values on the right
that shares the same relationship with the bottom picture as the top
picture” (shown with an example of a target display as in the
bottom of Figure 8). For the first step, instead of hitting a key that
corresponded to a specific relationship (as in Experiment 2), par-
ticipants simply hit the space bar when they had identified the
relationship. After the space bar was pressed, the target (C:D vs.

Figure 8. Example of an analogy trial used in Experiments 3 and 4. See the online article for the color version
of this figure.
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D=) was shown on the screen below the source, so that both the
source and target were on the screen simultaneously. Participants
were asked to select which of two numbers (D or D=) shared the
same relationship with this display as the relationship from the
source. Half of the time, D appeared on the right side of the screen.
They made their selection by pressing the “z” key for the number
shown on the left and the “m” key for the number shown on the
right. The “z” and “m” keys were labeled with “L” and “R,”
respectively, so that participants could remember which key cor-
responded to each number. As in Experiment 2, participants were
told to try to go as quickly as possible without sacrificing accuracy.
After reading the instructions and completing 12 practice trials
with feedback, participants proceeded to the 72 test trials.

Results and Discussion

As in Experiment 2, accuracy (the primary dependent measure)
and mean RT on correct trials were computed for each condition
for each participant. RTs were measured from the onset of the
source problem to the selection of the correct value for the target
display. A mixed factors ANOVA was used to compare differ-
ences in RT and accuracy. No reliable overall differences were
obtained between the two relation types (PPR and PWR) on either
measure, accuracy: F(1, 50) � 2.58, p � .11, �p

2 � .05; RT: F(1,
50) � 0.73, p � .40, �p

2 � .01, so all results reported here are
collapsed across this factor, as in Experiment 2.

As shown in Figure 9, the pattern of results for analogical
accuracy largely followed the pattern observed in Experiment 2 for
the simpler relation identification task. A significant interaction
was obtained between display type and symbolic notation, F(2,
49) � 20.59, MSE � 1.8 p � .001, �p

2 � .46. Planned comparisons
indicated that accuracy was higher for fractions than decimals in
the discrete condition, 87% versus 66%; F(1, 50) � 28.96, MSE �
7.3 p � .001, �p

2 � .37, and discretized condition, 80% versus
67%; F(1, 50) � 10.06, MSE � 8.3, p � .003, �p

2 � .17, but did
not differ across the two symbolic notations for the continuous
condition, 61% versus 65%; F(1, 50) � 0.86, MSE � 7.7, p � .36,
�p

2 � .02.
The accuracy analysis yielded a reliable 3-way interaction be-

tween relation type, display type, and number type, F(2, 100) �
6.89, MSE � .02, p � .002, �p

2 � .12. This interaction was driven

by a significant advantage in accuracy for PWR problems over
PPR problems only for decimals paired with continuous displays,
74% versus 55%, F(1, 50) � 23.76, MSE � .04, p � .001, �p

2 �
.32. No such interaction was apparent in Experiment 2, and we
have no explanation for this finding.

In analyzing RTs, the response times for incorrect answers were
excluded, as were RT outliers that were greater than three standard
deviations from the mean (roughly 2% of response times). As
shown in Figure 10, the RT pattern is consistent with the pattern of
accuracy results, and largely replicates the pattern observed in
Experiment 2 (though RTs in Experiment 3 were of course, much
longer, since they reflect the duration of the entire analogy prob-
lem, not just processing of the source). In particular, there was a
reliable interaction between symbolic notation and display type,
F(2, 49) � 16.19, MSE � 2721, p � .001, �p

2 � .40. Planned
comparisons indicated that RTs were faster with fractions than
decimals for the discrete condition, 8.5 s versus 12.8 s; F(1, 50) �
7.10, p � .01, �p

2 � .12, with a trend for the discretized condition,
8.3 s versus 11.2 s; F(1, 50) � 3.51, p � .07, �p

2 � .07. For the
continuous conditions, RTs for fractions versus decimals did not
differ reliably, 9.3 s versus 7.7 s; F(1, 50) � 2.12, p � .15, �p

2 �
.04. The general pattern of RT differences was thus similar to that
observed in the simpler relational verification task (Experiment 2),
except that there was a general shift toward an RT advantage for
fractions over decimals.

No reliable interaction was observed between relation type and
number type, F(1, 50) � .27, MSE � 3718, p � .61, �p

2 � .01, nor
between relation type and display type, F(2, 49) � 1.85 MSE �
2721, p � .16, �p

2 � .03. The 3-way interaction between the three
factors was also not reliable, F(2, 100) � 3.24, MSE � 2728, p �
.05, �p

2 � .06.
As was the case for the ratio identification task used in Exper-

iment 2, the analogy task used in Experiment 3 showed an overall
advantage for solving problems using fractions as compared to
decimals. In Experiment 3, participants not only had to correctly
identify a particular relationship between a numerical value and a
ratio relation in a display, but also had to use this relationship to
identify which of two values correctly mapped to the same type of
ratio relation in a new display (where the ratio quantity differed
between source and target). Unlike Experiment 2, RTs in Exper-
iment 3 showed a significant RT advantage for fractions over
decimals in solving problems using discrete and discretized dis-
plays, whereas RTs for the two symbolic notations did not differ
for continuous displays (rather than showing a reversal as in
Experiment 2). Thus, if anything, the overall fraction advantage
was yet more pronounced in the complex analogical reasoning task
employed in Experiment 3. These findings imply that people are
able to more quickly identify a number that correctly maps to a
ratio relation when the symbolic notation of that number affords a
one-to-one mapping to the conceptually relevant units within the
displays, as is the case for a fraction. The fraction advantage
extends beyond the identification of ratio relationships, since frac-
tions also facilitate mapping of higher-order relations between
types of ratios.

Experiment 4A

In the fraction conditions used in Experiments 2 and 3, the
number of items in the display directly corresponded to the paired

Figure 9. Accuracy of analogical inferences using fractions and decimals
across different types of displays (Experiment 3). Error bars indicate
standard error of the mean.
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fraction value. For example, if the number was 2/3 and the ratio
relation was a PPR, then the display would display 2 items of one
type and 3 items of another type. In the corresponding decimal
condition, the number would appear as .67. However, there are
many item arrangements that could fit this ratio (2/3, 4/6, 8/12,
etc.). Experiment 4A was designed to determine whether the
fraction advantage found in the analogy task used in Experiment 3
would still be obtained if the numbers in the numerator and
denominator did not directly match the specific quantities shown
in the display. Experiment 4A included fractions that were equiv-
alent in overall value, but did not map one-to-one with the quan-
tities in the displays. For example, a display with two items of one
type and three items of another might be paired with 4/6, rather
than 2/3.

Method

Participants

Participants were 75 UCLA undergraduates (mean age � 20.4;
53 females) who received course credit, randomly assigned in
equal numbers to the three between-subjects conditions.

Materials and Design

Experiment 4A had one within-subjects factor (relation type)
with 2 levels: PPR versus PWR, and one between-subjects factor
(symbolic notation) with 3 levels: one-to-one (OTO) fractions,
non-one-to-one (NOTO) fractions, and decimals. Because the find-
ings of the previous experiments demonstrated that the largest
advantage in accuracy for fractions over decimals is found for the
discrete display type, only problems based on discrete displays
were tested. All conditions included exactly the same set of dis-
plays. However, the OTO fractions condition used values that
mapped one-to-one with the displays (e.g., if the relation was PWR
with 3 items out of 7 items, the fraction would be 3/7). In contrast,
NOTO fractions had numerators and denominators that were either
two or three times greater or smaller than the actual number of
items shown (e.g., 3 out of 7 items paired with 6/14). In the
decimal condition, the same display was paired with the decimal
equivalent (e.g., 3 out of 7 items paired with .43). There were 24

problems for each of the two relation conditions (PPR, PWR) for
a total of 48 problems.

Procedure

The procedure was basically the same as in Experiment 3,
except that only discrete displays were shown. Participants saw the
same directions as in Experiment 3 (with only discrete examples
and discrete practice questions). For a complete list of the stimuli
used, see Appendix Table A4. They were told to try to go as
quickly as possible without sacrificing accuracy. After completing
12 practice trials with feedback, participants continued on to the
test trials and were given feedback throughout the task.

Results and Discussion

As in the previous experiments, accuracy and mean RTs on
correct trials were computed for each condition for each partici-
pant. RTs were again measured from the onset of the source
displays to the selection of the correct value for the target display.
A mixed factors ANOVA was used to compare differences in RT
and accuracy. Figure 11 shows the pattern of accuracy across
conditions. There was a significant main effect of symbolic nota-
tion, F(2, 72) � 27.79, MSE � 4.2, p � .001, �p

2 � .44, and
relation type, F(1, 72) � 8.33, MSE � 1.1, p � .005, �p

2 � .11.
Planned comparisons showed that accuracy for OTO fractions was
significantly higher than accuracy for decimals, 95% versus 65%,
F(1, 72) � 55.24, MSE � 8.4, p � .001, �p

2 � .44, or for NOTO
fractions, 95% versus 78%, F(1, 72) � 17.56, MSE � 8.4, p �
.001, �p

2 � .20. Accuracy for NOTO fractions was significantly
higher than accuracy for decimals, 78% versus 65%, F(1, 72) �
10.02, MSE � 8.4, p � .002, �p

2 � .12.. Thus, fractions maintained
an accuracy advantage over decimals for analogical reasoning with
discrete displays, even when the numerator and denominator of the
fraction do not equal the corresponding quantities in the visual
display (NOTO fraction condition).

Unlike Experiment 3, a significant main effect of relation type
was found in Experiment 4A, F(1, 72) � 8.33, MSE � 1.1, p �
.005, �p

2 � .11. Mean accuracy was 82% for PPR problems and
77% for PWR problems. In addition, a small but significant
interaction was obtained between relation type and symbolic no-
tation, F(2, 72) � 3.18, MSE � 1.1, p � .047, �p

2 � .08. Since this

Figure 10. Mean response time for analogical inference using fractions
and decimals across different types of displays (Experiment 3). Error bars
indicate standard error of the mean.

Figure 11. Accuracy of analogical inferences using fractions and deci-
mals across different types of displays (Experiment 4A). Error bars indicate
standard error of the mean.
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interaction did not replicate in Experiment 4B, we do not consider
it further.

Figure 12 shows the corresponding pattern of response times.
For RTs, the interaction between relation type and symbolic no-
tation was not reliable, F(2, 72) � 1.63, MSE � 4304, p � .20,
�p

2 � .04, nor was the main effect of relation type, F(1, 72) � 3.00,
MSE � 4304, p � .09, �p

2 � .04, nor the main effect of symbolic
notation, F(1, 72) � 1.78, MSE � 2648757, p � .18, �p

2 � .05.
There was no effect of relation type, PPR versus PWR: 15.2 s
versus 17.0 s, F(1, 71) � 3.00, MSE � 43004, p � .09, �p

2 � .04,
and no interaction between relation type and number type, F(2,
71) � 1.63, MSE � 43004, p � .20, �p

2 � .04. Clearly the
considerable variance in RTs contributed to the lack of statistically
reliable RT differences. Nonetheless, it is notable that the NOTO
fractions condition yielded mean RTs considerably longer than
those for either of the other two symbolic notations.

Experiment 4B

In Experiment 4A, response times for the NOTO fraction con-
dition were considerably longer than those for the OTO fraction
and decimal conditions. One explanation for this pattern is that the
components of NOTO fractions are proportional to the relevant
quantities in the displays. Even though extra time is required for a
NOTO fraction because the depicted quantities do not equal the
numerator and denominator, a counting strategy can yield higher
accuracy than the approximate strategy associated with decimals.
Nonetheless, an alternative possibility is that the accuracy advan-
tage of the NOTO fraction condition over decimals in Experiment
4A was simply the consequence of a speed–accuracy trade-off. To
evaluate the latter possibility, Experiment 4B used an identical
design and procedure as Experiment 4A, except that the instruc-
tions were altered to encourage participants to take their time and
try to achieve high accuracy (whereas in Experiment 4A, partici-
pants were told to go as fast as possible without sacrificing
accuracy). If decimals are able to support analogical reasoning
with ratios just as well as NOTO fractions, then the two conditions
should not differ in accuracy in the absence of speed pressure.

Method

Participants were 66 UCLA undergraduates (mean age: 20.6; 53
females) who received course credit, randomly assigned in equal
numbers to the three between-subjects conditions.

The design and procedure was identical to Experiment 4A with
the exception that participants were directed to spend as much time
as necessary on each problem to achieve high accuracy.

Results and Discussion

Figure 13 shows the pattern of accuracy across conditions.
Consistent with the removal of time pressure, accuracy was gen-
erally higher in Experiment 4B than 4A. The analysis revealed a
significant effect of symbolic notation, F(2, 63) � 10.23, MSE �
5, p � .001, �p

2 � .25. Planned comparisons revealed that OTO
fractions yielded higher accuracy than decimals, 94% versus 73%,
F(1, 63) � 20.30, MSE � 9.9, p � .001, �p

2 � .24. Moreover,
NOTO fractions also yielded significantly higher accuracy than
decimals, 85% versus 73%, F(1, 63) � 6.802, MSE � 9.9, p � .01,
�p

2 � .10. There was a trend toward greater accuracy for OTO
fractions compared to NOTO fractions, 94% versus 85%, F(1,
63) � 3.60, MSE � 9.9, p � .06, �p

2 � .05.
In contrast to Experiment 4A, the interaction between rela-

tion type and symbolic notation was not reliable in Experiment
4B, F(2, 63) � .68, MSE � 1.2, p � .51, �p

2 � .02. However,
there was again a significant effect of relation type, F(1, 63) �
4.11, MSE � 1.2, p � .047, �p

2 � .06. Mean accuracy was 86%
for PPR problems and 82% for PWR problems.

Figure 14 shows the pattern of RTs across conditions. As in
Experiment 4A, there was no reliable interaction, F(2, 63) � 2.30,
MSE � 7983, p � .11, �p

2 � .07, or main effect for relation type,
F(1, 63) � 0.95, MSE � 7983, p � .33, �p

2 � .02; however, there
was a significant effect of symbolic notation, F(2, 63) � 7.59,
MSE � 132138, p � .001, �p

2.19. Planned comparisons showed
that there was no significant RT difference between NOTO frac-
tions and decimals, 20.17 s versus 19.47 s, F(1, 63) � 0.01,
MSE � 264737, p � .91, �p

2 � 0. However, OTO fractions yielded
faster RTs than NOTO fractions, 11.06 s versus 20.17 s (F(1,

Figure 12. Mean response time for analogical inference using fractions and decimals across different types of
displays (Experiment 4A). Error bars indicate standard error of the mean.
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63) � 11.02, MSE � 264737, p � .002, �p
2 � .15, and also

decimals, 11.06 s vs. 19.46 s, F(1, 63) � 11.75, MSE � 264737,
p � .001, �p

2 � .16. There was no reliable difference in RTs
between PPR and PWR problems, 16.82 s versus 16.33 s, F(1,
63) � .95, MSE � 79832, �p

2 � .02, and no interaction between
relation type and number type, F(2, 62) � 2.30, p � .11, �p

2 � .07.
The results of Experiment 4B demonstrated that even when

participants solve analogy problems without any speed pres-
sure, and RTs for the two critical conditions are quite closely
matched, accuracy is higher for NOTO fractions than for dec-
imals. Accuracy did not significantly differ between NOTO and
OTO fractions, indicating that the fraction advantage is not
dependent on whether they were reduced or not. It appears that
decimals simply do not align well with ratios defined over
discrete visual quantities; thus allowing extra time does not
eliminate their disadvantage in accuracy. Fractions with a nu-
merator and denominator that are proportional but not equal to
the depicted quantities (NOTO fractions) add extra processing
time relative to fractions that have a one-to-one (OTO) map-
ping. But in the absence of speed pressure, even NOTO frac-

tions yield greater accuracy in analogical reasoning with dis-
crete displays than do decimals.

General Discussion

Summary

The present study, to the best of our knowledge, provides the
first evidence that the internal structure of an individual number
can provide a model of relations in the external environment,
thereby altering performance in tasks that require reasoning about
these relations. Specifically, we tested the hypotheses that frac-
tions are conceptually linked to countable discrete entities, and
naturally express a two-dimensional relationship between the car-
dinal values of sets; whereas decimals are conceptually linked to
continuous masses, and more naturally express the relative mag-
nitude of a proportional relation. Previous work has shown that
although decimals and fractions can express equivalent magni-
tudes (subject to rounding error on decimals), the one-dimensional
nature of decimals is, in fact, advantageous in representing mag-

Figure 13. Accuracy of analogical inferences using fractions and decimals across different types of displays
(Experiment 4B). Error bars indicate standard error of the mean.

Figure 14. Mean response time for analogical inference using fractions and decimals across different types of
displays (Experiment 4B). Error bars indicate standard error of the mean.
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nitudes (DeWolf et al., 2014). Here, we found that the bipartite
notation of fractions is advantageous in reasoning about ratio
relations (either part-to-whole or part-to-part).

Our experiments used visual displays showing either two count-
able subsets or two parts of a continuous area. Experiment 1
demonstrated that college-educated adults prefer to use fractions to
represent ratio relations between countable sets, and prefer to use
decimals to represent ratio relations of continuous masses, in a task
that does not require any mathematical procedures. Hence, these
findings indicate that the selective affinity of fractions with dis-
crete entities and decimals with continuous entities has a concep-
tual basis.

Experiments 2–4 examined relational reasoning with fractions
and decimals when procedural computations were required. The
bipartite structure of fractions (a/b) invites counting the size of two
separate sets, whereas the decimal notation invites an estimate of
the one-dimensional magnitude of a ratio—a procedure that does
not depend on discrete elements, but that is less accurate than
counting discrete elements. The results of Experiments 2–4 dem-
onstrated an overall advantage for fractions over decimals in
relational tasks based on ratios—both relation identification (Ex-
periment 2) and higher-order analogical reasoning (Experiments 3
and 4). However, this advantage was moderated by the nature of
the depicted quantities. Fractions allowed more accurate relational
reasoning when the depicted quantities were discrete elements, or
continuous quantities that had been discretized by introducing
units suitable for measurement. This fraction advantage reflects the
fact that fractions align well with discrete quantities, which, in
turn, support exact calculation procedures, such as counting. Frac-
tions may still encourage counting (by mental “slicing” into units)
even for continuous displays (as suggested by the regression
analyses performed in Experiment 2), though accuracy is reduced.
Performance with decimals was relatively equal, and less accurate,
for all quantity types, suggesting that decimals are preferentially
evaluated using estimation rather than counting. Although deci-
mals naturally align with continuous quantities and fractions do
not (as shown in Experiment 1), decimals support less accurate
computational procedures in these relational tasks, and hence are
no more effective than fractions when such tasks require perform-
ing computations on continuous quantities.

Alternative Interpretations

Several “deflationary” accounts of the present findings deserve
consideration. It might be argued that the observed differences in
reasoning with fractions versus decimals are simply another ex-
ample of the general phenomenon that alternative notation systems
for number provide dramatically different algorithmic affordances
(e.g., computing 73 � 27 using Arabic numerals is considerably
easier than LXXIII � XXVII using Roman numerals; see Zhang &
Norman, 1995, for a general analysis of number systems used in
different cultures). However, the differences in the affordances
offered by fractions and decimals do not involve comparisons
between notations drawn from different cultures and historical
periods. Rather, fractions and decimals are both familiar number
types defined within the Arabic system, in common use throughout
the world today. The present findings show that even within the
basic number system in near-universal use in the modern world,

different number formats vary in their affordances for both calcu-
lation and reasoning.

It also might be argued that our findings simply show that
discrete quantities elicit counting, a procedure associated with
fractions, whereas continuous quantities elicit magnitude estima-
tion, which is associated with decimals. This is indeed a reasonable
summary of much of our findings, but we believe the empirical
phenomena are more meaningful when placed in a theoretical
framework based on the properties of symbolic notations as mod-
els. First of all, it is by no means obvious a priori that fractions are
necessarily associated with discrete representations. Fractions
might be interpreted as holistic numbers (Schneider & Siegler,
2010), providing a possible basis for them to align with continuous
quantities. More generally, the primary focus of psychological
research on numerical cognition in recent years has been on
magnitude representation, the common property associated with all
number concepts. However, the present findings do not show
evidence that adults process fractions holistically. Rather, compo-
nential processing of the magnitudes associated with the numerator
and denominator appeared to be sufficient to identify the relations,
and thus seemed to provide the preferred strategy. Furthermore,
adults did not seem to adopt a holistic strategy even for continuous
displays, as demonstrated by the poorer performance for fractions
with such displays.

The framework we have presented here serves to call attention
to another basic property of numerical systems—the representation
of quantitative relations and procedures for reasoning with
them. An analysis of the internal structure of rational numbers
makes it clear why fractions are especially suited for reasoning
about relations between the cardinality of sets, whereas deci-
mals are better-suited for magnitude comparisons. We suspect
that the relational structure of fractions is closely linked to the
acquisition of more complex relational concepts involved in
algebra, and hence has important implications for instruction
(as elaborated below).

The high-level summary of our findings also misses important
nuances in our data. In particular, Experiment 1 showed that adults
preferentially associate discrete displays with fractions, and con-
tinuous displays with decimals, even when the task does not
require any kind of computation. Thus, the conceptual linkage
between fractions and decimals with discrete and continuous quan-
tities, respectively, holds even when neither counting nor magni-
tude estimation is required. (Below we discuss implications of our
framework for reasoning tasks involving natural frequencies,
which also do not require counting.) Indeed, the pattern of results
changed in an important way in the later experiments, for which
computation was critical to perform the task. In these reasoning
tasks, people showed an advantage for fractions with discrete
displays, but relatively equal (and poorer) performance for both
symbol types with continuous displays. The lack of a decimal
advantage for continuous displays when computation is required can
best be understood by taking account not only of the preferred
associations between symbol types and procedures, but also of the
relative precision of those procedures. Finally, Experiments 4A and
4B showed that the advantage of fractions over decimals for discrete
displays is obtained even when the numerator and denominator of the
fraction do not match the cardinality of the relevant sets, as long as the
proportional relation is maintained. Thus, the strategy underlying
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the fraction advantage is more complex than a simple “count and
match.”

Natural Frequencies as Fraction-Like Representations

The theoretical framework we have presented has the advantage
of connecting work on numerical cognition with other research
areas related to quantitative reasoning. In particular, the present
evidence that fractions can function as relational models provides
insight into other findings indicating that people’s accuracy in
relational reasoning depends on the format of rational numbers.
For example, studies of tasks that require Bayesian inference (in
particular, integration of base rates with likelihoods) have consis-
tently found an advantage for natural frequency formats over
probabilities, percentages, and other formats that have been “sim-
plified” by removing or standardizing the size of the specified
population (Gigerenzer & Hoffrage, 1995; Hoffrage et al., 2002;
Tversky & Kahneman, 1983). For example, observing that 40 of
1,000 people have a certain disease can be summarized as a natural
frequency, 40/1000. As a type of fraction, the numerator and
denominator in this bipartite frequency format align with the sizes
of the subset and the population, respectively. In the terminology
of the present study, a natural frequency is a fraction with a
one-to-one relationship to a part-to-whole ratio (a symbolic nota-
tion tested in all our reported experiments). In contrast, reduced
expressions equivalent in magnitude, such as a decimal represent-
ing the proportion (0.04), or a percentage (4%), are one-
dimensional, expressing the magnitude of the natural frequency
but not its internal structure (Halford et al., 1998, 2010). Moreover,
as Hoffrage et al. (2002) correctly emphasized, relative frequen-
cies that use a standardized denominator, such as 100, also lose
information about the size of the population. For example, al-
though the natural frequency 40/1000 is equivalent in magnitude to
the standardized relative frequency 4/100, the denominator in the
latter is a constant rather than a variable, which means that the
dimensionality of the structure has been reduced from two to one.
Though the magnitude has been preserved, the relational structure
has been obscured.

Based on a literature review, Hoffrage et al. (2002) report that
Bayesian inference tends to be more accurate with natural frequen-
cies than with any of the various one-dimensional notations (in-
cluding standardized relative frequencies) that express equivalent
magnitudes. Importantly, the frequencies in these tasks were di-
rectly stated to participants as summary statistics; no counting or
estimation was required. Gigerenzer and Hoffrage (1995) interpret
the natural frequency advantage in terms of the evolutionary
origins of frequency information in animal activities such as for-
aging. However, since all explicit number notations are human
cultural artifacts, the connection to biological evolution would
appear to be tenuous (see Barbey & Sloman, 2007, for discussion
of alternative hypotheses). From our perspective, the proximal
basis for the advantage of natural frequencies in supporting certain
types of inferences is simply that their format affords closer
alignment between the mathematical model and the structure of
relevant relations in the world (as was also the case for the
relational reasoning tasks investigated in the present study).
This interpretation is consistent with the hypothesis that natural
frequencies are particularly good cues to the structure of prob-
lems involving nested sets (e.g., “10 out of 1,000 smokers in the

sample developed lung cancer”; see Tversky & Kahneman,
1983; Barbey & Sloman, 2007). For different reasoning tasks
(notably, magnitude comparison) where the set structure is not
critical (and, indeed, may be a distraction), we would expect
other formats (e.g., proportions) to be more effective than
natural frequencies (for an example, see Over, 2007). Thus,
although the present study involved reasoning with simplified
visual displays devoid of meaning, our findings have implica-
tions for real-world reasoning tasks involving relations between
the cardinalities of sets.

Approximate Estimation Versus Exact Calculation

The present findings are consistent with the hypothesis that
decimals invite an approximate strategy for estimating magnitudes
of ratios (Jacob et al., 2012). For continuous quantities, this esti-
mation strategy is about as effective as the best strategy available
for fractions. However, for discrete displays that enable exact
calculations, fractions support a more accurate strategy. When the
numbers forming the fraction match the quantities in the display,
decisions based on fractions were more accurate than those based
on decimals, with no cost in response time. Decisions for fractions
were slower when their constituent numbers were not in one-to-
one correspondence with the displayed quantities (NOTO frac-
tions; Experiment 4A). However, NOTO fractions (which preserve
proportionality though not equality with the displayed quantities)
still yielded greater accuracy than decimals, even when time pres-
sure was eliminated and response times equated (Experiment 4B).
The fraction advantage thus extends beyond the benefit of a direct
match between the numbers in the fraction and the numbers of
entities in the displays. Rather, fractions have a more basic advan-
tage attributable to the ease of aligning their bipartite structure
with the natural situation model. As long as the depicted quantities
are countable, fractions enable use of a more precise computation
strategy, yielding greater accuracy than the estimation strategy
encouraged by decimals.

It should be emphasized that the accuracy advantage afforded by
exact computation strategies depends on acquiring competence in
the necessary computation. For our college-student participants,
exact computation of relatively small discrete quantities was pre-
sumably a well-learned skill. But because exact computation is
acquired later than the more elementary approximation strategies,
young children may make less accurate judgments when quantities
are discretized rather than continuous (Boyer et al., 2008). The
paradigms introduced in the present study may provide useful
diagnostic tools for tracking developmental changes in reasoning
with rational numbers.

The present findings lend support to the hypothesis that frac-
tions are not automatically processed as a holistic magnitude. In
the reasoning tasks we assessed, for which holistic processing is
not beneficial, participants were able to perform well using com-
ponential processing of fractions. Previous research on magnitude
representations of fractions has shown that fractions can indeed be
processed holistically (Schneider & Siegler, 2010), but this process
in not automatic (DeWolf et al., 2014) and is not necessarily
preferred over componential processing (Bonato et al., 2007). Our
results support the hypothesis that the processing of fractions is
task-dependent. Adults often seem to be able to adopt whatever
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strategy for processing fractions is most suitable for the task at
hand.

In many instances of mathematical problem solving, it is not
important for students to actually calculate or find a magnitude in
order to solve a problem. Rather, simply understanding the relation
is sufficient, and sometimes can be more useful and adaptive. For
example, when deciding which is larger, x ⁄ 5 versus x ⁄ 6, knowing
the actual magnitude of x is impossible. To find the correct answer,
it is sufficient to note that the same number, x, is divided either by
a larger number, 6, or a smaller number, 5. If one knows that
division by larger numbers results in smaller numbers (assuming x
is positive), it follows that x ⁄ 5 is larger than x ⁄ 6. Thus, the answer
can be inferred by using relational knowledge about relative sizes,
division, and equivalence, without any direct assessment of mag-
nitudes. Similarly, if one knows that m � �3 ⁄5� � n, one can infer
that n � �5 ⁄3� � m without any information about the magnitudes
of m and n, simply by understanding multiplication and reciprocal
relations. For higher levels of mathematics, such as algebra and
calculus, problems are often solved not by identifying specific
magnitudes, but by understanding mathematical relationships.

Implications for Teaching Rational Numbers

The present findings, in conjunction with previous research on
processing of fractions and decimals, may have implications for
how these types of symbolic notations could be most effectively
taught. The present analysis and findings shed light on why frac-
tions are especially difficult for students to learn (Siegler, Fazio,
Bailey, & Zhou, 2013; Ni & Zhou, 2005; Stigler, Givvin, &
Thompson, 2010; Vamvakoussi & Vosniadou, 2004), and also are
especially important predictors of success in acquiring more ad-
vanced mathematical knowledge in high school (Siegler et al.,
2011, 2012). In the United States, fractions are generally the first
number type introduced in school after the familiar natural num-
bers. Whereas natural numbers fundamentally express a unidimen-
sional magnitude, fractions are two-dimensional. Not only is their
bipartite format unfamiliar, but their conceptual structure is inher-
ently more complex than that of natural numbers, placing greater
demands on working memory (English & Halford, 1995; Halford
et al., 1998, 2010). Although fractions indeed represent magni-
tudes, magnitudes do not fully capture their meaning. Elementary-
school students (who are likely to be unevenly developed with
respect to working memory capacity) may have difficulty grasping
the two-dimensional structure of fractions, particularly if instruc-
tion focuses on their magnitudes rather than on their relational
meaning. But in many reasoning tasks, including those investi-
gated in the present study, the two-dimensional structure of frac-
tions can, in fact, be exploited to advantage. Although fractions are
relatively inefficient as representations of magnitudes, they can be
very effective as representations of relations.

Fractions thus have a dual status that poses particular challenges
for students: a fraction is at once a relationship between two
quantities, expressed as a/b, and also the magnitude corresponding
to the division of a by b. Gray and Tall (1994) have argued that
children’s understanding of arithmetic is dependent on their “pro-
ceptual” understanding: grasping that a mathematical expression
containing an arithmetic operation embodies the process of obtain-
ing a certain result (similar to the “process-product dilemma” in
algebra discussed by Sfard & Linchevski, 1994). Gray and Tall

(1994) found that students who become proficient in arithmetic at
an earlier age show greater ability to move back and forth flexibly
between an arithmetic expression and the result of that expression.
The difficulty in understanding a fraction as a relational expression
may explain why young children appear to understand quantitative
relations such as part-whole or proportions with visual displays
(Goswami, 1989; Mix, Levine & Huttenlocher, 1999; Boyer,
Levine, & Huttenlocher, 2008; Sophian, 2000), but not when they
have to answer comparable questions with fraction notation (Ball
& Wilson, 1996; Mack, 1995). For example, Ni and Zhou (2005)
found that most children could answer the question, “How much is
one third plus one third?” verbally as “two thirds.” But when asked
the question using symbolic fraction notation, “1/3 � 1/3 � ?”,
most children answered “2/6” (often claiming that both 2/6 and 2/3
are correct answers). Children thus seem to have some intuitive
understanding of how rational quantities relate to one another, but
have difficulty understanding the novel symbolic expressions.

It is therefore important to convey the dual nature of fractions to
students, with a focus on their relational structure. The multidi-
mensional structure of numbers eventually proves to be critical in
understanding even the simplest algebraic expressions, such as
�2 ⁄3�x. Thus, those students who eventually succeed in grasping
the very concept of a multidimensional number, first instantiated
by common fractions, will have mastered a fundamental prereq-
uisite for advanced mathematics.

The conceptualization of fractions as relations such as part/
whole, subset/set, ratio and proportions may have implications for
how children are able to solve problems using fractions in these
contexts. Typically, school instruction in the United States only
emphasizes the part-to-whole relationship (Sophian, 2007; Mack,
1993), which most clearly relates to the understanding of fractions
as magnitudes. Children are first introduced to fractions using
pictorial representations intended to help students understand the
meaning of a value smaller than one. As we observed earlier,
magnitudes are far easier to process using one-dimensional deci-
mals than bipartite fractions, even for adults (DeWolf et al., 2014).
Thus, it might well be easier for children to learn about magnitudes
less than one by being introduced to decimals prior to fractions.
Fractions might be taught later than decimals, with an emphasis on
their status as a relationship between two natural numbers and that
multiple possible relationships can be of interest. For example,
teaching students about the part-to-part relation in addition to the
part-to-whole relation might help to expand children’s understand-
ing of fractions. This more general understanding might, in turn,
aid students in eventually learning more abstract mathematics,
such as algebra.

In fact, Moss and Case (1999) implemented a curriculum with
4th graders in Canada that reorganized the usual order of instruc-
tion in rational numbers. Children were first taught percentages (in
the context of volumes, and on number lines), then decimals, and
lastly fractions. Fractions were explained simply as another way to
represent a decimal. By contrast, typical curricula describe teach-
ing decimals as another way to represent a fraction. Moss and Case
found that children taught the symbolic notations in this novel
sequence suffered less interference from whole-number strategies
when using other rational numbers, and achieved a deeper under-
standing of them. This approach to teaching rational numbers is
supported by our framework, as this instructional method encour-
ages students to first master the concept of rational-number mag-
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nitude with the symbolic notation that more effectively represents
such magnitude: decimals. Though Moss and Case did not empha-
size the role of fractions in the types of relational contexts we have
discussed here, this type of curriculum could be used to allow
students to master decimal magnitudes and then later learn about
fractions in the context of modeling types of relations. Thus, a
major issue that arises for students using current curricula in the
U.S.—understanding fraction magnitudes—might be de-emphasized
in this context.

More generally, understanding how types of rational numbers
align to specific types of quantities, and how the internal structure
of mathematical expressions can affect ease of alignment to the
perceptual or semantic relations being modeled, has important
implications for how to best conceptualize and teach fractions and
decimals. It is important to foster understanding of mathematics in
a way that goes beyond teaching algorithmic procedures. A math-
ematical expression can represent not just a procedure, and not just
a magnitude, but also a relational structure that maps onto the
structure of the world.
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Appendix

Experimental Stimuli

Table A1
Ratios Used in Experiment 1

Continuous Discretized Discrete

1/10 2/11 2/9
1/6 2/10 2/7
1/4 2/9 2/10
4/13 2/7 3/10
3/6 2/6 3/9
3/9 4/13 3/11
4/11 5/15 3/8
5/12 4/10 4/10
3/7 5/12 4/14
4/9 3/7 3/7
5/11 5/9 3/4
5/9 4/7 4/9
5/14 7/12 5/10
4/7 5/8 6/11
6/10 5/13 4/7
9/13 4/6 6/10
8/10 7/9 2/3
5/6 8/10 7/10
7/8 7/8 8/10
8/15 4/5 4/6

Note. In Experiment 1, participants were not told the actual ratio given, nor were they asked to identify this ratio. The
numbers in this table indicate the number of pieces in the red and green subsets for the various displays.
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Table A2
Ratios Used in Experiment 2

PPR PWR

Fraction Decimal Fraction Decimal

Discrete 5/7 .71 7/10 .70
4/6 .67 10/15 .67
6/10 .60 5/6 .83
6/8 .75 7/8 .88
4/8 .50 4/7 .57
4/5 .80 6/11 .55
2/7 .29 2/9 .22
3/9 .33 2/5 .40
4/9 .44 5/15 .33
3/8 .38 3/10 .30
4/10 .40 4/14 .29
3/7 .43 3/7 .43

Discretized 6/8 .75 9/10 .90
7/8 .88 5/8 .63
5/8 .63 7/12 .58
5/9 .56 4/6 .67
4/5 .80 7/9 .78
4/7 .57 4/5 .80
3/7 .43 4/13 .31
2/9 .22 2/9 .22
2/10 .20 4/10 .40
2/7 .29 2/7 .29
1/4 .25 5/12 .42
3/9 .33 1/9 .11

Continuous 4/5 .80 9/16 .56
4/7 .57 7/8 .88
7/8 .88 3/5 .60
6/8 .75 9/13 .69
5/6 .83 11/14 .79
5/9 .56 9/15 .60
4/13 .31 1/10 .10
5/15 .33 6/13 .46
4/9 .44 3/9 .33
2/8 .25 6/14 .43
4/11 .36 4/11 .36
5/12 .42 2/12 .17

(Appendix continues)
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Table A3
Ratios Used for Target Displays in Experiment 3

PPR PWR

Fraction Decimal Fraction Decimal

Target Foil Target Foil Target Foil Target Foil

Discrete 3/5 3/8 .60 .38 3/7 3/4 .43 .75
6/7 6/13 .86 .46 2/5 2/3 .40 .67
5/9 5/14 .56 .36 3/8 3/5 .38 .60
3/10 3/13 .30 .23 1/6 1/5 .17 .20
3/7 3/10 .43 .30 4/13 4/9 .31 .44
2/9 2/11 .22 .18 2/12 2/10 .17 .20
4/7 4/11 .57 .36 4/9 4/5 .44 .80
2/8 2/10 .25 .20 5/13 5/8 .38 .63
6/8 6/14 .75 .43 6/14 6/8 .43 .75
4/10 4/14 .40 .29 3/11 3/8 .27 .38
2/6 2/8 .33 .25 2/8 2/6 .25 .33
4/9 4/13 .44 .31 2/11 2/9 .18 .22

Discretized 5/7 5/12 .71 .42 5/12 5/7 .58 .71
3/4 3/7 .75 .43 6/13 6/7 .46 .86
3/5 3/8 .60 .38 5/11 5/6 .45 .83
2/5 2/7 .40 .29 2/11 2/9 .18 .22
3/10 3/13 .30 .23 3/10 3/7 .30 .43
5/11 5/16 .45 .31 2/12 2/10 .17 .20
7/8 7/15 .88 .47 3/7 3/4 .43 .75
4/6 4/10 .67 .40 5/13 5/8 .38 .63
7/8 7/15 .88 .47 4/9 4/5 .44 .80
3/11 3/14 .27 .21 4/13 4/9 .31 .44
2/12 2/14 .17 .14 2/9 2/7 .22 .29
1/5 1/6 .20 .17 2/14 2/12 .14 .17

Continuous 4/6 4/10 .67 .60 7/15 7/8 .47 .88
6/7 6/13 .86 .46 3/11 3/8 .27 .38
6/11 6/17 .55 .35 7/16 7/9 .44 .78
2/9 2/11 .22 .18 2/14 2/12 .14 .17
3/8 3/11 .38 .27 4/17 4/13 .24 .31
3/16 3/19 .19 .16 2/7 2/5 .29 .40
7/12 7/19 .58 .37 6/13 6/7 .46 .86
5/6 5/11 .83 .45 7/17 7/10 .41 .70
7/9 7/16 .78 .44 8/18 8/10 .44 .80
4/13 4/17 .31 .24 4/14 4/10 .29 .40
2/6 2/8 .33 .25 3/14 3/11 .21 .27
4/10 4/14 .40 .29 2/11 2/9 .18 .22

Note. Each of these target and foil combinations were randomly matched with a source picture of the same entity type and
ratio type from Experiment 2 (as shown in Table A2).

(Appendix continues)
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Table A4
Ratios Used for Source Displays in Experiments 4A and 4B

PPR PWR

OTO fraction NOTO fraction Decimal OTO fraction NOTO fraction Decimal

5/7 10/14 .71 7/10 14/20 .70
4/6 2/3 .67 10/15 2/3 .67
6/10 3/5 .60 5/6 10/12 .83
6/8 3/4 .75 7/8 14/16 .88
4/8 2/4 .50 4/7 12/21 .57
4/5 8/10 .60 6/11 12/22 .55
2/7 4/14 .29 2/9 4/18 .22
3/9 1/3 .33 2/5 6/15 .40
4/9 8/18 .44 5/15 1/3 .33
3/8 6/16 .38 3/10 6/20 .30
4/10 2/5 .40 4/14 2/7 .29
3/7 6/14 .43 3/7 6/14 .43
6/11 12/22 .55 9/10 18/20 .90
7/8 14/16 .88 5/8 10/16 .63
5/8 10/16 .63 7/12 14/24 .58
5/9 10/18 .56 4/6 8/12 .67

12/14 6/7 .86 7/9 14/18 .78
4/7 8/14 .57 4/5 12/15 .80
4/11 8/22 .36 4/13 8/26 .31
2/9 4/18 .22 2/9 6/27 .22
2/10 1/5 .20 4/10 2/5 .40
3/10 6/20 .30 2/7 6/21 .29
1/4 3/12 .25 5/12 10/24 .42
1/8 3/24 .13 1/9 3/27 .11

Note. In Experiments 4A and 4B all displays were discretized.

(Appendix continues)
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Table A5
Ratios Used for Target Displays in Experiments 4A and 4B

PPR PWR

OTO fraction NOTO fraction Decimal OTO fraction NOTO fraction Decimal

Target Foil Target Foil Target Foil Target Foil Target Foil Target Foil

3/5 3/8 6/10 6/16 .60 .38 3/7 3/4 6/14 6/8 .43 .75
6/7 6/13 12/14 12/26 .86 .46 2/5 2/3 4/10 4/6 .40 .67
5/9 5/14 10/18 10/28 .56 .36 3/8 3/5 6/16 6/10 .38 .60
3/10 3/13 6/20 6/26 .30 .23 1/6 1/5 3/18 3/15 .17 .20
3/7 3/10 6/14 6/20 .43 .30 4/13 4/9 8/26 8/18 .31 .44
2/9 2/11 4/18 4/22 .22 .18 2/12 2/10 1/6 1/5 .17 .20
4/7 4/11 8/14 8/22 .57 .36 4/9 4/5 8/18 8/10 .44 .80
2/8 2/10 1/4 1/5 .25 .20 5/14 5/8 10/26 10/16 .38 .63
6/8 6/14 3/4 3/7 .75 .43 6/14 6/8 3/7 3/4 .43 .75
4/10 4/14 2/5 2/7 .40 .29 3/11 3/8 6/22 6/16 .27 .38
2/6 2/8 1/3 1/4 .33 .25 2/8 2/6 1/4 1/3 .25 .33
4/9 4/13 8/18 8/26 .44 .31 2/11 2/9 4/22 4/18 .18 .22
5/7 5/12 10/14 10/16 .71 .42 5/12 5/7 10/24 10/14 .42 .71
3/4 3/7 6/8 6/14 .75 .43 6/13 6/7 12/26 12/14 .46 .86
4/5 4/9 8/10 8/18 .80 .44 5/11 5/6 10/22 10/12 .45 .83
2/5 2/7 4/10 4/14 .40 .29 4/14 4/10 2/7 2/5 .29 .40
2/7 2/9 4/14 4/18 .29 .22 3/10 3/7 6/20 6/14 .30 .43
5/11 5/16 10/22 10/32 .45 .31 2/12 2/10 1/6 1/5 .17 .20
7/8 7/15 14/16 14/30 .88 .47 5/15 5/9 10/28 10/18 .36 .56
4/6 4/10 2/3 2/5 .67 .40 4/12 4/8 2/6 2/4 .33 .50
8/9 8/17 16/18 16/34 .89 .47 4/9 4/5 8/18 8/10 .44 .80
3/11 3/14 6/22 6/28 .27 .21 7/15 7/8 14/30 14/16 .47 .88
2/12 2/14 1/6 1/7 .17 .14 2/9 2/7 4/18 4/14 .22 .29
1/5 1/6 3/15 3/18 .20 .17 2/14 2/12 1/7 1/6 .14 .17

Note. In Experiments 4A and 4B all displays were discretized.
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