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Abstract

The architecture of an intelligent agent must
include components that carry out a wide variety
of cognitive tasks, including perception, goal
activation, plan generation, plan selection, and
execution. In order to make use of opportunities to
learn, such a system must be capable of determining
which system components should be modified as
a result of a new experience, and how lessons
that are appropriate for each component’s task can
be derived from the experience. We describe an
approach that uses a self-model as a source of
information about each system component. The
model is used to determine whether a component
should be augmented in response to a new example,
and a portion of the model, component performance
specifications, are used to determine what aspects
of an example are relevant to each component and
to express the details of the lessons learned in
vocabulary that is appropriate to the component.
We show how this approach is implemented in the
CASTLE system, which learns strategic concepts in
the domain of chess.

Cognitive tasks and components

In the course of pursuing its goals, an intelligent agent
must notice opportunities, devise plans of action, and
select among such plans. In domains that involve
interactions with other agents, including such games as
chess (in which our system operates), an agent must
additionally notice threats posed by the other agents
and develop plans to respond to them. It is useful for a
variety of reasons to model such an agent as a collection
of components, each of which is responsible for one of
these planning tasks. In particular, such an approach
to modeling the agent is useful in learning [Collins et
al., 1991¢; Krulwich, 1991]. In this view of a problem-
solving agent, learning involves three steps. The first
1s recognizing situations in which there 1s a lesson to
be learned, such as when the system experiences an
expectation failure. The second is determining which
component is implicated in the lesson. The third is
determining how that component should be modified.
Of course, the tasks in which an agent engages
are not completely disjoint: Generating goals requires
the agent to reason about its own plans and abilities

as well as other agents; plan generation requires the
agent to reason about its perceptual and mechanical
abilities, as well as reasoning about its future decision-
making processes; selecting among plans requires the
agent to reason about its ability to execute them.
The interrelations between these tasks require that the
system’s components be correspondingly intertwined.
This interconnection of the system’s components in turn
requires the agent’s learning module to be able to reason
about interactions between components in formulating
new concepts.

Reasoning about such interactions requires that the
agent have a degree of self-knowledge in order to properly
assimilate new knowledge. This paper investigates a
model-based approach to handling these issues |Collins
et al, 1991al. Our system, named CASTLE,! uses
an explicit model of its decision-making mechanism
to diagnose planning errors [Birnbaum et al., 1990]
and to repair its faulty components [Krulwich, 1991;
Krulwich, 1992).

An every-day example

Consider the case of a person cooking rice pilaf for the
first time. The last step in the directions says to “cover
the pot and cook for 25-30 minutes.” Suppose the person
starts the rice cooking and then goes off to do something
else—say, clean up the house. In the interim, the pot
boils over. When the person returns to the kitchen a
half-hour later, the rice pilaf is ruined.

What should be learned from this sequence of
events? This depends on which of the generic decision-
making tasks involved in planning the agent chooses
to modify. For each task there will be a concept that
operationalizes the idea of pots boiling over, in terms
that are meaningful in the context of carrying out that
task. Figure 1 summarizes the following three ways of
operationalizing the problem posed by pots boiling over:

1. Whenever a covered pot containing liquid is on the
stove, keep an ear peeled for the sound of the lid
bouncing or the sound of the water bubbling.

2. Do not put a covered pot with liquid in it over a high
flame, because it will boil over. The flame should be
turned down or the pot lid should be left ajar.

1CASTLE stands for Concocting Abstract Strategies
Through Learning from Expectation-failures.
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[ System task | What to learn [
Perception | Listen for the bubbling sound that
warns of the pot boiling over
Planning | Leave the lid ajar or
turn down the flame
Plan execution | Don't execute any other plans
and scheduling | that involve leaving the kitchen

Figure 1: Learned concepts in the rice pilaf example

3. When cooking liquid in a covered pot, stay in the
kitchen, because it’s hard to hear a pot boiling over
from the other rooms.

Which of these concepts the agent should learn
depends on its perceptual and plan execution abilities,
the plans that it typically generates, and the constraints
under which it operates. If the agent would in general be
able to hear the pot boiling over from the other room,
but simply had not attended to the soft sounds that
it heard in this instance, then tuning its perceptual
attention apparatus when a pot is on the stove is a
good way to adapt to the new concept of pots boiling
over. This is the first lesson listed above. If the
agent would not be able to hear the pot boiling over
however hard it listened, another lesson must be learned,
either to prevent pots from boiling over by changing the
parameters of the cooking process (e.g., by turning down
the flame), or to avoid leaving the kitchen when a pot
is on the stove. If the recipe will work properly with
the flame turned very low, as is the case with rice, or
with the pot lid off (which is not usually the case with
rice but is with other foods such as spaghetti), then the
second lesson in figure 1 will suffice for the agent to plan
properly in the future. If the recipe cannot be cooked
uncovered or over a low flame, the third lesson is the
one that should be learned, that it should not leave the
kitchen while a pot is on the stove.

We see, then, that the agent could learn several things
in response to the rice pilaf boiling over. The first lesson,
that the problem can be averted if the lid can be left ajar
or if the flame is lowered, should be learned regardless
of the agent’s abilities, but should only be applied as
appropriate. Which of the other lessons the agent should
learn, the idea of staying in the kitchen, or of tuning its
perceptual apparatus, depend on the agent’s knowledge
of its hearing abilities. Other possible lessons, such as
the need to compute the ideal height for the flame under
the pot, are ruled out due to the inability of the system
to perform this computation accurately.

Constraints on concept formulation

Our discussion of learning about pots boiling over while
cooking rice pilaf demonstrates several elements of the
agent's self-knowledge that affect the formulation of
learned concepts:
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o Knowledge of the agent's components: Different
aspects of the example will be relevant to different
components in the agent’s decision-making architec-
ture (e.g., the agent could learn concepts relating to
planning, plan execution/scheduling, and perception).

e Knowledge of the agent’s physical abilities: Some
formulations of the concept will not be effective due
to limitations in the agent’s physical abilities (e.g.,
whether to learn to listen harder depends on the
physical capability of the agent to hear the bubbling
from the other room).

e Knowledge of the agent’s cognitive abilities: Limita-
tions could also be cognitive (e.g., the agent could
attempt to learn to compute the precisely optimal
flame height, but limitations in the agent’s ability to
perform this reasoning make this untenable).

o Knowledge of {lypical planning situations: The
possible alternative plans (e.g., lowering the flame and
leaving the lid ajar) must be selected based on the
situations in which the agent expects to find itself.

Each of these is a type of self-knowledge that an
intelligent agent must possess in order to assimilate
learned knowledge effectively. This self-knowledge will
enable the agent to relate new concepts to relevant
components of its decision-making architecture.

The CASTLE system

Our research is an investigation of a failure-driven
approach to acquiring new planning knowledge [Birn-
baum et al., 1990; Collins et al., 1991c]. Our system,
CASTLE, detects situations that are contrary to its
expectations, and responds to these expectation failures
by repairing the faulty planner components which were
responsible for the failure. We approach this learning
task in a knowledge-intensive fashion, in which the
system uses knowledge of its own planning components
to assimilate events which led to expectation failures.
This knowledge is expressed in the form of a planner self-
model, which is used to diagnose and repair expectation
failures [Davis, 1984; deKleer and Williams, 1987].
More specifically, the system first examines an explicit
justification structure that encodes the the reasoning
that led to its belief in the incorrect expectation [deKleer
et al., 1977; Doyle, 1979). This justification is used
to isolate the components of its architecture that are
responsible for the failure [Collins et al., 1991b]. It then
uses a specification of the faulty components to guide the
learning of new rules to embody the concept which must
be learned in response to the failure [Krulwich, 1991).
The CASTLE system carries out the tasks we have
been discussing in the domain of chess. CASTLE is
broken up into a number of components, which reflect a
functional decomposition of the decision-making process
[Collins et al., 1991]. Each component is dedicated to
a particular cognitive task, and is implemented as a set
of rules which provide different methods for performing
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Figure 2: Incremental threat detection

the task. These rules in turn invoke other components
as necessary.

We will now examine more specifically some of the
knowledge that CASTLE has regarding its components.
One cognitive task in which CASTLE engages is that
of noticing threats and opportunities as they arise.
Rather than recomputing these at each turn, CASTLE
maintains a set of active threats and opportunities that
1s updated over time. To accomplish this incremental
threat detection, the system uses a detection focusing
component, which consists of focus rules that specify
the areas in which new threats may have been enabled.
Then, a separate threat detection component, consisting
of rules for noticing specific types of threats, detects the
threats that have in fact been enabled. The relationship
between the two components is shown pictorially in
figure 2. A sample focus rule is shown in figure 3, which
embodies the system’s knowledge that the most recently
moved piece, in its new location, may be a source of new
threats. Another focus rule, not shown, specifies that
the most recently moved piece can also be a target of
newly enabled attacks. Using focus rules such as these,
the actual threat detector rules will only be invoked on
areas of the board that can possibly contain new threats.

Another task in which CASTLE engages is plan
generaiton. One of the system’s components for doing
plan generation 1s a schema applier. This component
retrieves schemata, which are generalized sequences
of actions, that will achieve a particular goal in the
current situation. In CASTLE these schemata are called
offensive sirategies, and the system’s offensive strategy
component consists of rules that encode the actions in
a schema, its conditions of applicability, and the goal
which it satisfies. A strategy rule for the classic chess

(def-brule focus-new-source
(focus focus-moved-piece 7player
(move 7player 7move-type ?piece 7locl 7loc2)
(vorld-at-time 7time))
L=
(move-to-make (move 7player 7prev-move-type
7piece 7old-loc 7locl)
7player 7goal (1- 7time)) )

Figure 3: Focusing on new moves by a moved piece

(def-brule strategy-fork-sample
(strategy fork 7player (world-at-time 7time)
(goal (capture 7target2))
(plan (move ?player non-capture 7piece
7locl 7loc2 7time)
(next (move 7player (capture 7target2)
7piece 7loc2 7loc4 (1+ 7time))))
{=
(and (at-loc 7player 7piece 7locl 7time)
(at-loc 7opponent 7targetl 7loc3 7time)
(at-loc 7opponent 7target2 7loc4 7time)
(not (at-loc 7anyone 7any-piece 7loc2 7time))
(move-legal 7player ?piece 7locl 7loc2)
(move-legal 7player 7piece ?loc2 7loc3)
(move-legal 7player 7piece 7loc2 7loc4)
(> (value 7targetl) (value 7target2))
(no (and (counterplan 7cp-methl 7opponent
(goal-capture 7target 7loc3
(move 7player (capture 7targeti)
7piece ?loc2 ?loc3))
7time 7counterplan)
(counterplan 7cp-meth2 7opponent
(goal-capture 7target 7loc4
(move 7player (capture 7target2)
7piece 7loc2 7loc4))
?time 7counterplan))) ))

Figure 4: A strategy rule: The fork

strategy the fork is shown in figure 4.2 This rule says
roughly that one way lo capture an opponent piece is
to find a piece thal can move to a location from which
1l can caplure two opponent pieces, if the opponent will
have no one counterplan against both the attacks. Other
such strategies are pin and the sactifice. Issues in
acquiring such strategies have been discussed previously

[Birnbaum et al., 1990; Freed, 1991).

Learning focusing and a new strategy

Consider the partial chess situations shown in figure 5.
Initially cASTLE (playing black) uses its offensive
strategy component for plan recognition [Schank and
Abelson, 1975; Cullingford, 1978], that is, to see if the
opponent can be expected to have any good strategies
to apply. Since none of its strategy rules apply from
the perspective of the opponent, CASTLE assumes that
the opponent will not be able to make a move that will
enable a guaranteed capture on the following turn. In
other words, the opponent would presumably like to
make a situation in which no matter what CASTLE does,
the opponent will capture a piece on the next turn.
CASTLE believes that since none of its strategy rules
apply for the opponent, the opponent will not be able
to create such a situation.

’In practice this rule is specialized to use geometric

reasoning. Alternatively, it could evaluate the results of a
projection engine without duplicating its computation.
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Figure 5: Example: Opponent (white) to move

The opponent (playing white) then moves its rook,
resulting in the situation in figure 5(b). By making
this move, the opponent has enabled two attacks
simultaneously, the bishop attack on the computer’s
rook, and the rook attack on the computer’s bishop, and
one of the attacks is sure to succeed. CASTLE’s lack of
an offensive strategy rule for this type of simultaneous
attacks resulted in its being unable to counterplan early
enough. CASTLE should learn a new strategy rule as a
result of the loss.

The planning failure in our example is also relevant to
another of CASTLE’s components, namely the detection
focusing component. Initially CASTLE is only equipped
with the two focus rules discussed earlier, for the new
threats by and against the most-recently moved piece,
and does not have a rule for focusing on the discovered
attack that was enabled in our example by moving the
rook out of the line of attack between the bishop and the
computer’s rook [Collins et al., 1991c]. Because of this,
CASTLE is at first unable to detect the threat against its
rook, and believes that the threat against its bishop is
the only threat on the board. Because of this error, in
figure 5(b) it moves its bishop, and thinks that all of its
pieces are safe as a consequence. When the opponent
executes the capture of CASTLE’s rook, the computer
realizes the extent of its error.

These two concepts, simultaneous atiacks and discov-
ered attacks, should both be learned from the sequence
of events that we have seen. Each concept involves
a different aspect of the situation, and each must be
characterized in a way that can be effectively used by
the relevant components of the agent’s architecture.

(| Component | Learned concept |

Planning | Make a successful attack by moving
a piece off a line of attack to a

new location which can also make a
second attack

Threats can be enabled by moving a
piece off of a line of attack that

is otherwise open

Perception

Figure 6: Concepts in the chess example

Déveloping these characterizations requires the system
1o use knowledge of the functions and interactions of its
components. A characterization of simultaneous attacks
that can be used by the offensive strategy component
must mention the simultaneous enablement of the two
attacks, one through the vacated square and one from
the new location of the moved piece, and must encode
the fact that the opponent must be unable to react to
both attacks in a single move. Additionally, it must
be predictive, because it will be invoked before any
move has been made, and so it must refer not to moves
that have already been made, but rather to moves
that can potentially be made. A characterization of
discovered attacks that can be used effectively to focus
the detection rules must generate a set of constraints
describing all the possible moves through a vacated
square, without referring to the legal moves themselves
which will be checked subsequently by the detection
component (see figure 2). This rule must be expressed
in terms that can be applied after the enabling move has
been made, but before the discovered attack is made.

CASTLE detects the opportunity to learn by observing
an expectation failure when its rook is captured by the
opponent’s bishop. As we have discussed above, CASTLE
uses a model-based reasoning approach to diagnosing
expectation failures, in which the system diagnoses the
failure by examining an explicit justification structure
which encodes the basis for its belief in its expectation
that its pieces were safe. The system’s diagnosis engine
traverses this justification, which is shown in figure 7,
to find the underlying beliefs of the system that were
responsible for the failure. In our example there were
two such incorrect assumptions: that the system’s set
of threat detection focusing rules is complete, and the
system’s set of strategy schemata 1s complete. The task
now at hand is for the system to repair its planning

—Focus
| can detect
all direct —
threats
Detection
Simple direct

threats have
counterplans Counterplanning I'll be able
Counterplanning ¢ rules are sufficient ——ID— to defend
il ol for direct threats against all
complete threats

Tried all

Setis ...
complete

Tried all —

Setis _.:
complete

My strategy
rules don't
recognize a
strategy in usehI—D_ No offensive
stralegy IS
in use

My strategy
rule selis el
complete

Figure 7: Justification for the failed expectation
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(focus *focus-method computaer
imove opponent (move-take rook) bishop (loc 1 3) (loec 5 7) (time 4}))
(world-at-tima 3))

(move-enabled- move
(move oppon@nt move -mive
pawn (loc 2 4) (loc 3 4) (cime 2})
({move opponent (move-take rook) bishop
flee 1 3 (loc 5 T (time 4)))

(move-to-make
(move opponant
(move-take rook)

(move-to-make
(move opponant
MOVe-move pawn

(loc 2 4) {loc 3 4) bishop

(cime 2)) {loe 1 3) (loc 5 7)
opponant Tgoall (Eima 4)))
{tima 2))

i (move-Lto-make
) (move opponent (move-take rook) blahop ...)
! opponant *goal? (time 4))

{loc-on-line 2 4
133M

{loc-on-diagonal
2413357

Figure 8: Explanation of desired detection focusing performance

mechanism. Each of the two faults can be repaired
by augmenting a corresponding rule set, one for the
focusing component and one for the strategy component.

To construct the new rules, CASTLE retrieves a com-
onenl performance specification for each component
Krulwich, 1991]. These performance specifications, a
form of planner self-knowledge, describe the correct
behavior of each component. These specifications
can be used to recognize correct behavior that was
not produced by the component’s rule sets. The
specification of the detection focusing component says
roughly that the focusing component will generate
bindings that include any capture thal 1s enabled by a
given move. This specification enables CASTLE to focus
on the details of the example that are relevant to the
component being repaired, by serving as an explanation-
based learning target concept. After retrieving the
specification, CASTLE invokes its deductive inference
engine to construct an explanation of why the possible
capture of the rook should have been in the set of
constraints generated by the focusing component. This
explanation, shown in figure 8, says roughly that the
opponent’s move should have been generated by the
focusing component, because the opponent’s previous
move enabled the attack, because it was on a square
between the bishop and the rook, and there were no
other pieces along the line of attack, and emptying the
line of attack is an enabling condition for the capture to
be made. CASTLE then uses explanation-based learning
[Mitchell et al., 1986; DeJong and Mooney, 1986] to
generalize this explanation and to construct the new
detection focusing rule shown in figure 9.

The same mechanism is used to construct the new
offensive strategy rule. A specification of the offensive
strategy component is retrieved, which says roughly
the offensive strategy component will generate any plans
which are sure to result in a successful attack. CASTLE
then explains why the opponent’s move resulted in a
certain capture. This explanation says roughly that the
opponent’s move was a good offensive strategy, because

it enabled one attack through the vacated square, and
it enabled a second attack from the new location of
the moved piece, and there was no counterplan for
the opponent that could disable both attacks. The
crucial inference in constructing this explanation is that
the existence of two attacks, in a situation where they
cannot both be counterplanned against simultaneously,
means that one of them will necessarily succeed. One
approach is for this knowledge to be built in, as has
been done implicitly by others. Our approach is for this
knowledge to be inferred from more primitive axioms
of plan execution [Birnbaum et al, 1990]. After this
explanation is constructed it is generalized to form a
rule for simultaneous attacks.

Discussion

In section we saw several types of reasoning in which
an agent might engage in the course of learning from a
sequence of events. In our example in section we saw

(def-brule learned-focus-method?25
(focus learned-focus-method25 ?player
(move ?player (capture ?taken-piece)
7taking-piece (loc 7?rowl 7coll)
(loc 7row2 7col2))
(world-at-time 7time2))
<=
(and (move-to-make
(move 7other-player move ?interm-piece
(loc 7r-interm 7c-interm)
(loc 7r-other 7c-other))
7player 7goal 7timel)
(loc-on-line ?r-interm 7c-interm
?rowl 7coll ?row2 %col2)
(at-loc ?player 7taking-piece
(loc ?rowl 7coll)
(- gen-time2.24 2)) ))

Figure 9: Learned focus rule for discovered attacks




how CASTLE performs some of these types of reasoning,
in particular:

e CasTLE determined which components should be
repaired (e.g., perception, planning)

e CasTLE formulated a concept for each component
being repaired (e.g., focus rule, strategy schema)

CASTLE is capable of carrying out several other types
of reasoning about the state of its knowledge. Consider,
for example, a situation in which the system applied
its simullaneous attacks strategy against an opponent,
and the opponent is able to counterplan against both
attacks in a way that CASTLE does not know about. One
such counterplanning method might, for example, be to
move one of the attacked pieces to a square along the
line of attack against the second piece. Since CASTLE
does not initially have a rule for counterplanning by
interposing pieces, it would think that its simultaneous
attack would be successful. When the strategy is seen
to be unsuccessful, CASTLE must determine whether
the fault lies with the strategy rule or with another
component. In this case casTLE should realize that
the strategy is sound, but that it needs to learn a new
counterplanning rule for interposition.

This learning process requires that CASTLE have a
self-model which describes the functions and interactions
of its components. This self-model consists of several
forms of self-knowledge. Belief justifications relate
expectations and other beliefs to the reasons that
CASTLE believes them to be true. Implicit assumptions
describe the assumptions that CASTLE is making (such
as rule set completeness) that underly the validity
of its decision-making mechanisms.  Performance
specifications describe the performance that CASTLE
expects from each of its components. Using these forms
of self-knowledge, CASTLE can reason about the state
of its knowledge and abilities in order to effectively
assimilate new knowledge.

Qur research has involved extending our model of
planning and decision-making to include a variety of
tasks and components. To date we have developed
models of threat detection, counterplanning, schema
application, goal regression, lookahead search, and
execution scheduling. Future research will determine the
degree to which our theory of model-based knowledge
assimilation through diagnosis and learning applies to
other decision-making tasks and to planning in other
domains.
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