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HIGHLIGHTED ARTICLE
| INVESTIGATION

Discovering Single Nucleotide Polymorphisms
Regulating Human Gene Expression Using Allele

Specific Expression from RNA-seq Data
Eun Yong Kang,*,1 Lisa J. Martin,†,1 Serghei Mangul,*,1 Warin Isvilanonda,* Jennifer Zou,*

Eyal Ben-David,‡ Buhm Han,§,** Aldons J. Lusis,† Sagiv Shifman,‡ and Eleazar Eskin*,†,2

*Department of Computer Science and †Department of Human Genetics, University of California, Los Angeles, California 90095-
1596, ‡Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904, Israel, §Division of
Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, and **Program in Medical and

Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142

ABSTRACT The study of the genetics of gene expression is of considerable importance to understanding the nature of common,
complex diseases. The most widely applied approach to identifying relationships between genetic variation and gene expression is the
expression quantitative trait loci (eQTL) approach. Here, we increased the computational power of eQTL with an alternative and
complementary approach based on analyzing allele specific expression (ASE). We designed a novel analytical method to identify cis-
acting regulatory variants based on genome sequencing and measurements of ASE from RNA-sequencing (RNA-seq) data. We
evaluated the power and resolution of our method using simulated data. We then applied the method to map regulatory variants
affecting gene expression in lymphoblastoid cell lines (LCLs) from 77 unrelated northern and western European individuals (CEU),
which were part of the HapMap project. A total of 2309 SNPs were identified as being associated with ASE patterns. The SNPs
associated with ASE were enriched within promoter regions and were significantly more likely to signal strong evidence for a regulatory
role. Finally, among the candidate regulatory SNPs, we identified 108 SNPs that were previously associated with human immune
diseases. With further improvements in quantifying ASE from RNA-seq, the application of our method to other datasets is expected to
accelerate our understanding of the biological basis of common diseases.

KEYWORDS Allele specific expression; expression quantitative trait loci; causal variants

Studying the genetics of gene expression has proved useful
in identifying the genes and genetic variants underlying

common human diseases. The usual approach to studying the
genetic factors of gene expression is to map eQTL. An eQTL
study isbasedon treatingexpressionasaquantitative trait and
associating it with genetic variation. eQTL studies have been
tremendously successful, and have identified many loci in-
volved in gene regulation (Ghazalpour et al. 2008; Veyrieras
et al. 2008; Cookson et al. 2009; Farber et al. 2009; Hayes
et al. 2009; Jiménez-Gómez et al. 2010; van Nas et al. 2010;

Steibel et al. 2011; Gaffney et al. 2012; Kabakchiev and
Silverberg 2013; Francesconi and Lehner 2014). However,
the traditional eQTL approach has some fundamental limita-
tions. First, due to the linkage disequilibrium (LD) or corre-
lation structure of the genetic variation in the genome, it is
difficult to distinguish between the regulatory variant and
neighboring variants in LD. Second, like other quantitative
traits, the total expression of a gene is influenced by multiple
genetic and environmental factors. As a result, for any given
variant the effect size is small, and the study requires a large
sample size to identify the effect.

An alternative approach to identify genetic variants associ-
atedwith variation in gene expression is based on allele specific
expression (ASE). The principle behind the ASE mapping ap-
proach is that if an individual’s phenotype is heterozygous for a
regulatory variant, then the two copies of the gene will show
different level of expression (also known as allelic expression
imbalance, AEI). It was previously shown that the pattern of
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ASE within families may follow Mendelian inheritance (Yan
et al. 2002). Analysis of ASE is advantageous over analyzing
total expression levels because the two alleles express in the
same cellular environment, thus providing an internal con-
trol for each other. Consequently, trans-acting environmen-
tal and genetic factors that increase variation between
samples are minimized to similar eQTL studies, since the
analysis of ASE is influenced by the local LD structure and
by the amount of allelic heterogeneity. However, the rela-
tionship between LD and variant identification has a differ-
ent flavor when utilizing ASE compared with eQTL studies.
Thus, ASE provides a complementary approach to identify-
ing variants affecting expression compared with traditional
eQTL studies.

ASE measured using microarrays and RNA-seq has been
used for mapping variants associated with gene expression
(Tao et al. 2006; Bjornsson et al. 2008; Serre et al. 2008; Bell
and Beck 2009; Degner et al. 2009; Ge et al. 2009; Palacios
et al. 2009; Daelemans et al. 2010; Gregg et al. 2010; Heap
et al. 2010; Pastinen 2010; Ritchie et al. 2010; Sun et al.
2010; Wagner et al. 2010; Hill et al. 2011; Sun 2011; Wolff
et al. 2011; Castel et al. 2015; van de Geijn et al. 2015).

In this study, we developed and used a novel analytical
approach for identifying cis-acting regulatory variants based
on ASE. Our method is based on a nonparametric approach
that is robust and computationally very efficient. We demon-
strated the utility of our method by analyzing RNA-seq data
from 77 unrelated northern and western European individ-
uals (CEU). For the mapping of each gene, we employed
ASE measurements across a set of sequenced individuals
simultaneously. We then identified genetic variants in prox-
imity to those genes that can explain the observed patterns
of ASE.

Materials and Methods

Reads alignment and quality control

For measuring ASE, we used the RNA-seq data of 77 unrelated
northern and western European individuals (CEU) whose
phasedSNP information is available through the1000Genomes
Project (phase 1). For accurate ASE measurements, individual
RNA-seq data were prepared, and only reads that mapped
uniquely to the genomewere used to calculate the allele counts.
Inorder to be consistentwith current analyses of these datasets,
we used the alignments from a previous study (Lappalainen
et al. 2013). In this study, individual human transcriptomes
were sequenced using a 75-bp paired-end protocol, and the
mRNA reads were mapped to the human genome with the
GEM mapper. Reads mapped to multiple locations in the hu-
man genome were filtered out, together with reads having a
low mapping quality score. (We included reads having a map-
ping quality score.10) To ensure high accuracy of the counts
at each SNP position, mRNA reads were further filtered based
on individual nucleotide quality scores (“phred quality scores”).
(We included positions with phred quality scores .10).

Correcting for allelic bias in RNA-seq

Biases in readingandmappingofdifferent allelesmay result in
inaccurate ASE measurements. To exclude SNPs with biased
allele signals,weapplied themethodproposed inDegner et al.
(2009). We created a simulated dataset consisting of all pos-
sible 75-bp reads (369 million reads in total) that overlap the
1000 Genomes Project exonic SNPs. For each SNP, 150 refer-
ence allele reads (75 matching each strand) and 150 nonre-
ference allele reads were generated for the 75-bp reads. We
mapped the simulated reads back to the genome using the
MAQ software. Any SNP successfully mapped to the genome,
yet having an unequal number of reads from the two alleles,
was removed in order to filter out the SNPs showing a map-
ping bias in favor of a specific allele. To determine whether or
not a read mapped successfully, we applied the same read
mapping quality threshold that we used for RNA-seq map-
ping [mapping quality score (MAPQ) = 10].

Filtering out low-quality SNPs

Tominimize the effect of noise in the RNA-seq data, we used a
rigorous SNP filtering scheme, which helped us to accurately
measure the amount of allelic expression by removing low-
quality SNPs. We identified low-quality SNPs by looking at
SNP quality information at the individual level and at the
population level. After removing SNPs showing inherent
allelic bias using the approach explained in the previous
section, we had a set of SNPs for each individual and the
reads mapped to them. This set and the corresponding reads
represented the amount of allelic expression for the tran-
scripts containing SNPs. In the first filtering process, we used
the individual-level SNP quality information. We removed all
SNPs for each individual whose coverage was,10. We chose
a threshold of 10 because the transcript harboring these SNPs
was not expressed or the SNPs did not accurately measure
allelic expression for various reasons, including read align-
ment errors. Second, for each SNP we compared allele in-
formation from the 1000 Genomes Project data with the
actual alleles collected from the reads mapped to the SNP
position. Due to noise and inaccuracy in the RNA-seq data,
we observedmany readswith alleles other than those reported
in the 1000 Genomes Project SNP information. When we ob-
served many reads containing other alleles, we excluded
the SNP from our allelic expression measurement process
according to the rules described below. If the SNP of an
individual from the 1000 Genomes Project data was heterozy-
gous, we filtered out the SNP when (1) the frequency of the
alternative allele was higher than two alleles recorded in
the 1000 Genome Project data or (2) the total frequency of
the third and fourth alleles combined was greater than 5%,
where the third and fourth alleles are not recorded in the
1000 Genomes Project data. If the SNP of the individual from
the 1000 Genomes Project data was homozygous, we filtered
out the SNP when (1) the frequency of the alternative allele
was higher than an allele recorded in the 1000 Genomes Proj-
ect data, (2) the total frequency of the combined third and
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fourth alleles was.5%, or (3) the total frequency of the com-
bined second, third, and fourth alleles was .5%. After fil-
tering SNPs using individual-level SNP quality information,
we categorized the remaining SNPs as “good” SNPs. Next,
we used the SNP quality information from the population
level to exclude SNPs that did not exhibit high quality across
all individuals. To achieve this, we kept SNPs only if 80% of
the individuals had at least a 10-read coverage for the SNP
and 80% of individuals had a “good” SNP at the same time.
By filtering SNPs with individual- and population-level SNP
quality information, we produced a set of high-quality “in-
formative SNPs” allowing us to measure the amount of al-
lelic expression accurately.

ASE calling

After removing low-quality SNPs using the filtering scheme
described above, we applied a simple ASE calling for each
heterozygous site.We developed the ASE calling based on the
three options: (1) higher expression of the paternal chromo-
some, (2) balanced expression, or (3) higher expression of the
maternal chromosome. For each individual and transcribed
SNP,wemadeASEcallsbycomputing theratiobetweenallelic
counts from maternal and paternal chromosomes using the
following equation:

Cp

Cm þ Cp
(1)

where Cm is the read count from the maternal chromosome
and Cp is the read count from the paternal chromosome. The
ASE calls are computed based on the allelic ratio between the
allelic counts from the maternal and paternal chromosomes.
If the ratio is greater than 0.65, then the paternal chromo-
some is more expressed. If the ratio is less than 0:35, then the
maternal chromosome is more expressed. Otherwise, the ex-
pression is balanced between the two chromosomes.

Mapping regulatory variants using ASE

Our ASE mapping method fundamentally assumes that the
ASE is a discrete event. As explained above, we discretize the
ASE status into three groups, which can be simply expressed
mathematically as21, 0, and 1. Since we are only looking at
SNPs in the proximal region of the transcript, SNPs located
within6250-kb flanking sequences of the start and end of the
transcript region were considered in our ASE mapping. Ana-
lyzing a large window around the gene helps to identify cis-
acting variants located far from the gene, such as enhancers.
This approach also helps to test the distribution of ASE-
associated SNPs relative to the transcription start site (TSS). In
addition, a larger window size was used by others for ASE
mapping (Ge et al. 2009).

Data availability

The genomic sequencing data discussed in this paper are
available as part of the 1000 Genomes Project. The ASE
mapping software we developed is available for download
at http://genetics.cs.ucla.edu/ase.

Results

The principle of ASE mapping

We have proposed a method that uses ASE measurements to
identify the most likely regulatory variants in a genome. We
measure ASE for each gene in a set of individual samples for
which we know the entire sequence and have identified the
genetic variations on each chromosome. (Data with a high
resolution of detail are becoming available more often as full
genome sequencing becomes increasingly feasible and cost-
effective.) Taking one gene at a time,we attempt to inferwhich
variants in the gene regionmay be responsible for the observed
pattern of ASE. For example, assumewehave three individuals
withSNPsintheproximalregionforaparticulargeneof interest
and relative expressionof the two copies of the gene (Figure1).
In our framework, ASE is a discrete phenomenon: individuals
1 and 3 have AEI for the gene while individual 2 does not. In
this example, there is one regulatory SNP (the third SNP from
the left), which is the variant that is responsible for the ob-
served ASE. The “A” allele at the regulatory SNP site causes
higher expression of the gene relative to the “T” allele.

Our goal is to identify the regulatory variant based on both
the ASE measurements and the genotypes of all SNPs in the
region.Weassume that the regulatory variant iswithin this set
of genotyped SNPs. However, only variants that are hetero-
zygous with AEI are possible candidates. For example, even
though the first SNP has AEI, it could not be the regulatory
variant since the first individual is homozygous. If we apply
this principle to evaluate every SNP in the region, we identify
the third and seventh SNPs as the only possible variants that
may be responsible for the observed pattern of ASE.

This example assumes that our calls of ASE are error free
and that there is only one regulatory variant. However,we can
incorporate the possibility of errors or multiple regulatory
variants into our approach by allowing for a fixed number of
errors when matching genotypes with the ASE pattern. If we
allow for one error, assuming that one of the three individuals
is called incorrectly, the first, second, and ninth SNPs can now
explain the observed ASE. A mismatch between the observed
ASE pattern and the genotypes for the regulatory variant can
be explained by mechanisms other than measurement errors.
For example, rare variants could generate or eliminate AEI
(Montgomery et al. 2010, 2011). In our approach, analyti-
cally incorporating errors allows us to take into account
biases produced by both measurement errors and other mis-
matches in the model, assuming that they affect only a small
number of individuals.

We characterize the efficacy of this method as the “reduc-
tion rate.” The reduction rate is defined as the ratio between
the number of candidate regulatory SNPs to the total number
of SNPs in the proximal region of the gene. This ratio indi-
cates exactly how effective the measurements of ASE are in
identifying the regulatory variant. In the example above (Fig-
ure 1), we reduced the set of candidate SNPs from ten to two
(a reduction rate of 80%). Allowing for one error increases
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the number of candidate SNPs to five, decreasing the reduc-
tion rate to 50%: We also observe that the relationship be-
tween LD and variant identification has a different flavor in
ASE mapping when compared with eQTL studies. In our ap-
proach, the genotypes of each single individual with ASE pro-
vide information useful in determining which variants are
potentially responsible for the observed ASE. On the other
hand, in eQTL studies, each individual contributes only a
limited amount to the association signal since the effect of
a variant is small compared with the variance of the total
expression.

Power and resolution of ASE mapping

We evaluated the analytical power and resolution of our
method using data generated from the SNPs of 54 unrelated
Nigerian HapMap individuals. In comparison with other
modern populations, African populations have small regions
of LD and higher genetic diversity. These factors allow the
evaluation of our method to produce potentially higher-
resolution results. Phased genotypes were obtained for the
54 unrelated Nigerian individuals from HapMap (HapMap
phase 2). From this dataset, we evaluated 10.2 million
polymorphic SNPs located in proximity to 18,849 human
Ensembl genes (see Materials and Methods for details). We
found 540 average SNPs per gene (Supplemental Material,
Figure S1).

The efficacy of ASEmapping or the reduction rate depends
on the number of individuals, the minor allele frequency
(MAF) of the SNPs, and the number of SNPs in a specific gene
region. We used simulations to measure the expected reduc-
tion rate as a function of theMAF. For each gene,we randomly
selected an SNP to be the regulatory variant, and then gen-
erated ASE calls for each individual. We used our methodol-
ogy to identify the set of possible candidate SNPs, and
computed the reduction rate. Figure 2A shows the average
reduction rate as a function of the MAF for the 54 unrelated
Nigerian individuals. Figure 2B shows the results for a vary-
ing number of ASE measurement errors when matching the
SNP genotypes to a pattern of observed ASE.

The reduction in the number of candidate SNPs does not
necessarily mean that the association is “significant.” It is
possible that an SNP pattern in the gene randomly fits the
observed ASE pattern. To compute the significance levels of
SNP patterns in relation to ASE patterns, we permuted the
ASE observations and applied our mapping method to the
permuted data. We kept track of how many times an SNP
in the gene fitted the permuted ASE measurements. Since
our methodology was used for each gene, we applied a ge-
nome-wide threshold of 2:53 1026; which is the Bonferroni
correction for an overall significance level of 0.05, assuming
20,000 genes.

We canmeasure the power of our ASEmapping strategy by
randomly selectingavariant tobe responsible for theobserved
ASEand then setting theASEstatus accordingly and randomly

Figure 2 The reduction rate of ASE mapping was measured as a function
of the MAF in the simulation experiments using 54 unrelated Nigerian
individuals (HapMap phase 2). (A) Reduction rate without ASE measure-
ment errors. (B) Reduction rate with a varying number of ASE measure-
ment errors.

Figure 1 ASE example and the corresponding mathematical representa-
tion of three individuals (1, 2, and 3). We assume that the third SNP is the
causal SNP site affecting the differential gene expression level (allele A/al-
lele T).
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changing some of these statuses to simulate a specific number
of errors. We can then use our ASE mapping approach to
measure power. Figure 3A shows the power of our approach
when applied to the 54 Nigerian individuals using the ge-
nome-wide thresholds. The power computes the percentage
of simulated instances, which are more significant than the
genome-wide threshold. The power is calculated as a func-
tion of different MAFs. Figure 3B shows how including ASE
measurement errors affects the power. The results presented
in Figure 2B and Figure 3A show that, with this sample size
and 10% errors, there is still sufficient power and reduction
rate to identify the potential regulatory variants affecting
gene expression. As long as the sum of the error rate of the
ASE measurements or the frequencies of the additional reg-
ulatory variants in the gene are ,10%; the method still has

significant statistical power and reduction rate. Clearly, the
same error rate can be achieved with even larger ASE mea-
surement error rates given larger sample sizes.

Our simulation also implies that, given a sample size of
54 individuals, the observed pattern of ASE is unlikely to
randomly match the genotype distribution of a random var-
iant. Thus, other deviations from the model, such as the
presence of multiple variants affecting expression, will likely
avoid producing either false positives or an observed ASE
pattern matching any single SNP genotype pattern.

ASE mapping in 77 European samples

We applied our methodology to the RNA sequencing data of
77 lymphoblastoid cell lines (LCLs) derived from unrelated
European individuals (CEU). Phased haplotypes were avail-
able fromthe1000GenomesProject. Theallelic count for each
exonic SNP was calculated from a previously mapped RNA
sequencing of the LCLs (Lappalainen et al. 2013). Tomaintain
the integrity of the ASE calls, we applied rigorous SNP filter-
ing schemes using individual- and population-level SNP qual-
ity information. Further, we only considered “informative
SNPs,”which are SNPs with at least 10 reads from each allele
in an individual (seeMaterials and Methods for more details).
After conducting all quality control processes, we identified
281,653 informative SNPs (counting the same SNP found in
different individuals multiple times) to accurately measure
the allelic expression abundance. For each transcribed SNP,
the ASE calling assigned each individual into one of three
different categories: (1) higher expression of the maternal
allele, (2) balanced expression, and (3) higher expression
of the paternal allele. In our combinatorial model, each cat-
egory is denoted by 21, 0, and 1, respectively. We used the
ASE calls in the mapping algorithm to identify candidate
regulatory SNPs, and we tested the significance of these can-
didates using a permutation test (explained in Materials and
Methods).

Among 18,849 Ensembl transcripts, we found 850 tran-
scripts with at least one informative SNP that allowed us to
measure ASE. Table 1 shows the number of informative SNPs
observed per transcript. There were 1706 informative SNPs
in at least one individual. Across the 1706 SNPs, the average
number of individuals with AEI and balanced expression was
12 and 10, respectively (Figure 4).

We used our ASE mapping method for each transcript. We
considered only SNPs that were proximal to or within the
transcript (250-kb flanking sequences of the start and end of
the transcript). To identify candidate regulatory variants, we
examined in total 6,445,845 SNPs in the proximal region of
the 850 gene. We found at least one significant SNP
(P, 2:53 1026) for 104 transcripts (the total number of

Figure 3 The power of ASE mapping is measured as a function of the
MAF in the simulation experiments using 54 unrelated Nigerian individ-
uals (HapMap phase 2). (A) Power of ASE mapping without ASE mea-
surement errors. (B) Power of ASE mapping with a varying number of ASE
measurement errors.

Table 1 The number of informative SNPs per transcript

No. of distinct informative SNPs 1 2 3 4 5 >6

No. of transcripts 527 163 69 27 21 41

Of these transcripts, 62% had only one informative SNP for measurement of ASE.
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SNPs associated with ASEwas 2309). The average number of
candidate SNPs after the ASEmapping was 22.2. For 85 tran-
scripts (81:7%), we found that either one variant or multiple
variants in perfect LD could explain the ASE patterns. Of
these transcripts, 53:8% had ,10 candidate SNPs, and
21:1% had one or two candidate SNPs. The average reduc-
tion rate was 98:7%: File S1 reports all the transcripts and
their significantly associated SNPs.

The mapped SNPs are enriched in promoter regions and
known functional regulatory variants and are
associated with immune-related diseases

The SNPs mapped to the ASE are expected to be highly
enriched for regulatory SNPs (some may be in LD with such
variants). Therefore, we expect those candidate SNPs to be
distributed nonrandomly relative to the distribution of known
regulatory sequences. The major regulatory element of tran-
scription is the region upstream of the transcription start site
(TSS), known to contain a core promoter sequence.

To see if the 2309 significantly associated SNPs identified by
the ASE mapping are within possible promoter regions, we
computed the distance between the associated SNPs and TSSs.
As shown in Figure 5, the mapped SNPs (denoted by a red line)
were enriched near the TSS. Furthermore, the SNPs were more
abundant downstream of the TSS in the gene bodies and less
abundant in the region upstream of the TSS (P, 6:53 10285).
To further test the significance of these observations, we com-
pared the density of SNPs associated with ASE to the density
of SNPs not associated with ASE as a function of distance
from the TSS (Figure 5). These comparisons showed a strik-
ing difference in the distance from the TSS between the
two types of SNPs (P, 5:83 102195). This difference indi-
cates that the enrichment around the TSS cannot be attrib-
uted to the initial distribution of distances between the
candidate SNPs and the TSS.

To further test the functional evidence for the variants
associatedwithASE,weused the list of functionally annotated
SNPs in the RegulomeDB database. RegulomeDB integrates a
large collection of regulatory information collected fromhigh-
throughput experimental datasets from ENCODE and other
sources. In addition, RegulomeDB uses computational pre-
dictions and manual annotations to identify putative regula-
tory potential and functional variants (Boyle et al. 2012). The
annotation information contained in RegulomeDB is particu-
larly useful for genome-wide association studies (GWASs),
because the database includes functional annotations of ge-
nomic regions outside of genes as well as those in regions
showing direct changes in protein-coding genes. To evaluate
the functional evidence, we tested the enrichment of ASE-
mapped SNPs among the annotated SNPs in RegulomeDB.
We used a Fisher’s exact test to assess the relationship be-
tween the ASE-mapped SNPs and the category 1 annotated
SNPs in RegulomeDB. The RegulomeDB category 1 SNPs are
most likely to be functional, as they are predicted to alter
transcription factor binding and were previously found to
be linked to gene expression. We found that the ASE-mapped
SNPs were significantly enriched for the functional annota-
tions category 1 (P ¼ 4:63 10217; odds ratio = 4.0). Out of
the 1809 uniquely ASE-mapped SNPs, 55 were in category 1
(File S2), although only 13 would be expected by chance.

We next investigated whether the SNPs identified in our
study were reported in GWASs. A large number of SNPs have
been identified as associated with different human traits and
diseases in GWASs; however, in most cases the molecular
mechanism is unknown. To study the connection between
GWASs and the ASE mapping results, we matched the list of
candidate regulatory SNPs to the list of significant SNPs
reported by GWASs (based on GWAS Central). We included
high-LD SNPs (r2 . 0:8)with the GWAS-reported SNPs, since
GWASs use SNP arrays that do not cover all SNPs in the

Figure 4 The number of individuals with AEI or balanced expression.
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genome. We found six clusters of SNPs with high LD
(r2 . 0:7) that were reported in multiple GWASs to be asso-
ciated with ASE (File S1). The diseases were all immune re-
lated, and included inflammatory bowel disease, Crohn’s
disease, type 1 diabetes, and asthma.

Discussion

We have developed a novel method based on ASE for iden-
tifying cis-regulatory variants. The fundamental assumption
of the proposed approach is that the AEI is a discrete event
[i.e., balanced (0), or imbalanced in two different directions
(21 or 1)]. The discretization may cause errors in the ASE
calling. However, as we show with our simulation experi-
ments, a strong correlation between observed ASE calls and
a random set of genotypes is uncommon, even for samples
with only 54 individuals. Further, the proposed mapping ap-
proach is resistant to ASE calling errors with increased sam-
ple size. Our proposed approach is simple, powerful, and
capable of flexibly handling a wide range of sample sizes.

Our approach has several limitations. First, our method
dependsonaccuratemeasurement ofASE fromRNA-seqdata.
Obtaining accuratemeasurementofASEhasbeen shown tobe
challenging, as the reads fromeachalleleare subject tovarious
biases including the alignment procedure (Degner et al. 2009;
Stevenson et al. 2013). In addition, a single clone can take
over in cell lines grown for many generations, increasing the
chance of random monoallelic expression (Eckersley-Maslin
and Spector 2014).

Second, like any other method based on ASE, we could
identify regulatory variants acting in cis, but we could not

identify regulatory variants acting in trans. Third, with the
current coverage of RNA-seq, we mainly rely on transcribed
SNPs. Thus, not all genes have informative SNPs to measure
ASE in each individual. Instead, to expand the number of
genes having sufficient informative SNPs to measure ASE,
we rely on both rare and common variants, and use intronic
SNPs, larger sample sizes, and increased sequencing depths.

Third, our approach assumes that one causal variant
drives the observed ASE. However, it is likely that in each
region there is more than one variant affecting expression.
Thus, more than one variant can be responsible for the
observed ASE. In this scenario, each secondary variant that
affects ASE will appear as an error in our framework. If the
number of individuals affected by these secondary variants is
smaller than the error threshold, our framework formapping
will still correctly identify the variant primarily responsible
for the observed ASE. In the future, we plan to extend our
framework to incorporate the possibility of multiple variants
affecting ASE.

Finally, our approach assumes that the haplotype phase is
both known and accurately inferred. In practice, errors in
haplotype inference may manifest as errors in our ASE map-
ping approach. In the event that the haplotype phase is un-
available, we can use a modified version of our approach
where we consider variants as being either homozygous or
heterozygous, and consider a match between an ASE obser-
vation and a variant if the variant is heterozygous. In this
scenario, the lack of phase will lead to a loss of power, but our
framework will still control false positives.

Our method inherently assumes that the ASE calls are
discrete. This has several advantages. First of all, in principle,
it should be easier to make accurate discrete ASE calls when
we are allowed to declare a call as ambiguous, rather than
estimating the quantity of ASE. In addition, the discrete
nature of our calls naturally predisposes the nonparametric
mapping methodology we have presented. However, this
approach has several disadvantages, including loss of in-
formation regarding the effect size of the variants that are
causing ASE and loss of information about the confidence in
the ASE calls themselves.

Despite the above limitations, ASE studies are a powerful
approach to identifying associations between genetic varia-
tionandgeneexpression.WhenASE is accuratelymeasured, it
has a high power in identifying cis-acting regulatory variants
associated with common diseases. Our developedmethod for
ASE mapping is a step forward in establishing the functional
risk alleles for these diseases and using this information to
develop new hypotheses about their causes and treatment.
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