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Abstract
Tobacco dependence is a leading cause of preventable disease and death world-
wide. Nicotine, the main psychoactive component in tobacco cigarettes, has also
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been garnering increased popularity in its vaporized form, as derived from
e-cigarette devices. Thus, an understanding of the molecular mechanisms under-
lying nicotine pharmacology and dependence is required to ascertain novel
approaches to treat drug dependence. In this chapter, we review the field’s current
understanding of nicotine’s actions in the brain, the neurocircuitry underlying
drug dependence, factors that modulate the function of nicotinic acetylcholine
receptors, and the role of specific genes in mitigating the vulnerability to develop
nicotine dependence. In addition to nicotine’s direct actions in the brain, other
constituents in nicotine and tobacco products have also been found to alter drug
use, and thus, evidence is provided to highlight this issue. Finally, currently
available pharmacotherapeutic strategies are discussed, along with an outlook
for future therapeutic directions to achieve to the goal of long-term nicotine
cessation.

Keywords
Neurobiology nicotine dependence · Nicotine · Nicotinic receptors · Smoking
cessation

1 Introduction

Cigarette smoking is the principal cause of premature death and disability in the
United States. In 2014, about 480,000 deaths in the United States were caused by
cigarette smoking. Globally, smoking-related illnesses result in over four million
deaths annually. However, despite enormous educational efforts about the health
hazards of smoking and other tobacco control efforts, many smokers continue to
encounter extreme difficulty quitting and staying tobacco-free in the long-term. The
2017 CDC report estimated that 15.1% of the US population was “current smokers,”
(11.2% (75%) of them are daily smokers).

Addiction to tobacco smoking depends not only on the positive reinforcing and
hedonic actions of nicotine but also on escape from the aversive consequences of
nicotine withdrawal. Many studies suggest that avoidance of the negative emotional
state produced by nicotine withdrawal represents a motivational component that
promotes continued tobacco use and relapse after smoking cessation. The difficulty
in overcoming nicotine dependence is illustrated by the poor success rates among
smokers who try to quit. While the majority of smokers (~70%) report an interest in
quitting, and around 55% have attempted to quit in the previous year, ~7% of
smokers are abstinent at 1 month after their quit date, and fewer than 2% are
abstinent 1 year after quitting when they do not receive assistance in smoking
cessation (CDC 2015).

While several smoking cessation therapies are available, the success rate of these
therapies after 1 year remains only about 20–25% (Gonzales et al. 2006). Therefore,
understanding the various mechanisms and factors involved in the different aspects
of nicotine dependence is crucial to develop successful prevention and intervention
approaches, including newer and more effective pharmacotherapies.
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2 Basic Neurocircuitry of Nicotine Addiction

Tobacco smoke contains about 9,000 chemicals, among which about 70 are known
carcinogens. However, nicotine is the major psychoactive ingredient in tobacco
smoke and the component most associated with tobacco dependence. The develop-
ment and persistence of dependence on tobacco is due to the actions of nicotine,
acting at neuronal nicotinic acetylcholine receptors (nAChRs). nAChRs belong
to the Cys-loop receptor family, which are ligand-gated ion channels that
form pentamers arranged around a water-filled pore and allow for the influx of
both Na+ and Ca2+ (Changeux et al. 1998). The subunits of mammalian neuronal
nAChRs range from α2–α7, α9, α10, to β2–β4, which form multiple combinations of
homomeric and heteromeric receptor subtypes having varying function (Changeux
et al. 1998). These receptors have three broad conformational states: resting closed
states, open states, and desensitized states (Changeux et al. 1998). The typical resting
closed state is induced when the orthosteric site (traditional ligand binding site) is
unoccupied and the cation channel is closed. Upon binding of an orthosteric agonist,
the cation channel is opened, allowing for cation influx into the cell. Following the
open state, the receptor is then desensitized; despite agonist binding, the cation
channel is closed, rendering the receptor inactive (Changeux et al. 1998). Due to
their predominant presynaptic location, nAChRs in the CNS primarily function via
modulation of neurotransmitter release (Mansvelder and McGehee 2000). This
modulation, in turn, results in long-term synaptic plasticity, which is a prominent
neuronal signature of exposure to nicotine (Ji et al. 2001). The most abundant
nAChRs found in the mammalian brain are the low-affinity homomeric α7 and the
high-affinity heteromeric α4β2 containing (α4β2�), which have diverse
characteristics (Hill et al. 1993). The α7 nAChR has high calcium permeability,
low probability of opening, and rapid desensitization (in milliseconds) (Williams
et al. 2011). In contrast, the α4β2� nAChR has a high probability of opening and
desensitizes at a slower rate (in seconds) (Li and Steinbach 2010). These differing
characteristics, however, do not necessarily drive divergent effects on neuronal
plasticity. For example, previous studies have shown that both α4β2� and α7
nAChR activation can either elicit (Lagostena et al. 2008; Tang and Dani 2009;
Welsby et al. 2009) or prevent (Alkondon and Albuquerque 2001; Alkondon et al.
1997; Ji et al. 2001) long-term potentiation (LTP) in the hippocampus, with these
variable effects attributed to activation of differing subtypes on specific interneuron
populations. Further, accessory nAChR subunits, such as α5 and β3, can integrate
into the α4β2, α3β4, or α3β2 nAChR subtypes to alter receptor function. For
instance, insertion of the α5 subunit into the α4β2 or α3β2 nAChR subtypes results
in increased ligand-mediated receptor activation, rate of desensitization, and con-
ductance (Gerzanich et al. 1998; Ramirez-Latorre et al. 1996).

Nicotine initiates its rewarding effects by activating nAChRs in the natural
reward system of the brain, the mesolimbic pathway. This pathway is comprised
of dopaminergic neurons originating in the ventral tegmental area (VTA) that
project to regions such as the nucleus accumbens (NAc), prefrontal cortex (PFC),
amygdala, and hippocampus (De Biasi and Dani 2011; Lisman and Grace 2005).
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Dopamine release, especially in the NAc, is associated with the rewarding and
reinforcing effects of all drugs of abuse. nAChRs are localized throughout the
mesolimbic circuitry and when activated, increase dopaminergic firing and release
(De Biasi and Dani 2011; Di Chiara 2000). Further, infusion of nAChR antagonists
directly into the VTA attenuates nicotine self-administration (Corrigall et al. 1994).
This pathway has a complex circuitry that also involves other neurotransmitters; for
instance, glutamatergic, GABAergic, and cholinergic inputs converge on dopamine
neurons to modulate dopamine release (Dani and Bertrand 2007). Cholinergic
neurons in the laterodorsal tegmentum and the pedunculopontine tegmentum initiate
excitation of dopamine neurons in VTA that project to the NAc (Maskos 2010;
Omelchenko and Sesack 2005), and these cells in the pedunculopontine tegmentum
have been shown to regulate nicotine self-administration (Lanca et al. 2000). In
opposition to reward-related signaling, dense nAChR expression is also found in the
projection from the medial habenula (MHb) to the interpeduncular nucleus (IPN), a
circuit involved in aversive processing and nicotine withdrawal (Fowler et al. 2011;
Salas et al. 2009). The major neurotransmitters of this pathway are acetylcholine,
glutamate, and substance P, and it is thought that presynaptic nAChRs on MHb
axons facilitate glutamate release from cholinergic and glutamatergic coexpressing
axons in the IPN to mediate the aversive signal to high doses of nicotine (Fowler
et al. 2011; Girod and Role 2001), which serves to limit drug intake.

3 Role of Nicotinic Receptors in Nicotine Dependence
and Brain Function

The utilization of genetically mutant mice, pharmacological interventions, and viral
reexpression approaches have implicated particular brain areas and specific nAChR
subtypes in nicotine dependence. For instance, in a β2 knockout mouse model, the
β2� nAChRs have been shown to be required for nicotine reward and reinforcement,
as revealed in nicotine conditioned place preference (CPP) and intravenous self-
administration studies (Orejarena et al. 2012; Picciotto et al. 1998; Walters et al.
2006). The β2 subunit co-assembles with the α6 and α4 subunits to form several
α6β2�, α4β2�, and α4α6β2� nAChR subtypes, which are notably expressed in the
VTA-NAc circuit (Champtiaux et al. 2003; Klink et al. 2001; Salminen et al. 2004).
These findings are consistent with the fact that stimulation of α4β2� high-affinity
nAChRs located on the dopaminergic cells in the VTA shifts firing from tonic to
phasic modes, resulting in increased DA release in both the NAc and the PFC (Dani
et al. 2011). Nicotine CPP revealed a critical role of the α4, α6, and β2 subunits in the
NAc via genetic mutant mice and site-specific infusions (Sanjakdar et al. 2015). In
addition, genetic ablation of the β2, α6, and α4 nAChR subunits attenuated nicotine
self-administration in mice, an effect which could be rescued by reexpression of
these subunits in the VTA via a lentiviral vector (Picciotto et al. 1998; Pons et al.
2008). Furthermore, α4 “knock-in” mice (Leu9’ Ala mutation renders animals
hypersensitive to nicotine) demonstrated a preference for nicotine at a dose 50-fold
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lower than the typical nicotine dose that induces a preference in wild-type
(WT) mice in the CPP test (Tapper et al. 2004).

Reward systems in the brain undergo neuroadaptations after chronic exposure to
nicotine in tobacco products, which likely underlie nicotine dependence. Cessation
from cigarette smoking induces a withdrawal syndrome comprised of physical,
affective, and cognitive symptoms. The severity of these symptoms is a risk factor
for relapse (Le Foll and Goldberg 2005; Markou and Kenny 2002), and nAChRs are
important mediators of nicotine withdrawal symptoms. The nonselective nAChR
antagonist mecamylamine is known to precipitate nicotine withdrawal signs in
nicotine-dependent rodents (Damaj et al. 2003). Pharmacological interventions and
mouse knockout studies have revealed that nAChR subunits modulate different
aspects of the nicotine withdrawal syndrome. For example, some affective signs of
withdrawal such as aversion-, anxiety-, and anhedonia-like measures are mediated
by the β2, α6, β4, and α7 nAChR subunits (Jackson et al. 2008, 2009). The physical
signs of the nicotine withdrawal syndrome are mediated by α3, α5, α2, and β4
(Jackson et al. 2008, 2013; Salas et al. 2009), and a subset are mediated by α7
subunits (Stoker et al. 2012). One interesting feature of chronic nicotine exposure is
the upregulation of nAChRs, most notably α4β2� (Flores et al. 1992). This phenom-
enon has been observed both in vitro and in vivo and in human imaging studies
(Kassiou et al. 2001; Marks et al. 1983; Perry et al. 1999). Interestingly, rodent and
human studies suggest a positive correlation of nicotine withdrawal signs with
upregulation of α4β2� nAChRs (Cosgrove et al. 2010; Turner et al. 2011). Further-
more, the MHb-IPN pathway has been selectively implicated in withdrawal-induced
somatic signs with α5� and β4� nAChRs (Salas et al. 2009). In addition, infusion of
the α6� nAChR-selective antagonist α-conotoxin MII in the MHb attenuated
anxiety-like behavior in nicotine-withdrawn mice (Pang et al. 2016). Aberrant
synaptic and circuitry function is also thought to underlie abnormal behavioral
phenotypes, including nicotine withdrawal phenotypes like cognitive impairments
and affective dysfunction (Ashare et al. 2014; Turner et al. 2013). For example, the
hippocampus and the orbitofrontal cortex (OFC) are two well-described circuits
impinging upon these nicotine withdrawal symptoms (Schoenbaum et al. 2016;
Turner et al. 2011; Zhou et al. 2018), including impulsivity, altered affect, and
cognition in humans. Supporting data in human (Dani and Harris 2005) and animal
(Jackson et al. 2008) models link hippocampal function with nicotine withdrawal-
induced symptoms, which are reliable determinants for smoking cessation outcomes.
Functional imaging studies in smokers have shown that activation of the hippocam-
pus can be correlated with both cognitive and affective withdrawal symptoms
(Froeliger et al. 2010; McClernon and Gilbert 2004). Additionally, human studies
report a correlation between hippocampal volume and successful quit attempts
(Froeliger et al. 2010). This link may be due to nAChRs present at both excitatory
and inhibitory terminals (Alkondon and Albuquerque 2001; Jones and Yakel 1997;
Wada et al. 1989), well-positioning nicotinic signaling to influence the balance of
excitatory and inhibitory transmission within the hippocampus (John and Berg
2015). The OFC regulates impulsivity, affective value of reinforcers, and emotion-
attention interactions (Schoenbaum et al. 2016). Previous studies reported that
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nicotine self-administration in rodents alters synaptic morphology in the OFC
(Vazquez-Sanroman et al. 2016), while tobacco smokers display both morphological
and functional connectivity changes within this region (Claus et al. 2013; Li et al.
2015). For example, smoking has been consistently shown to reduce the thickness of
gray matter volume in the OFC (Kuhn et al. 2010; Li et al. 2015), and acute nicotine
increases blood oxygen level-dependent fMRI signal in the striato-thalamo-
orbitofrontal circuit (Ashare et al. 2014). However, the neuronal mechanisms under-
lying these effects are not easily examined, given that nicotine modulates the release
of a number of neurotransmitters, including glutamate, GABA, and dopamine, and
can lead to both facilitation and suppression of neuronal firing. For example,
electrophysiological experiments have shown that nicotine impacts long-term poten-
tiation (LTP) generation in the orbitofrontal cortex (Couey et al. 2007; Zhou et al.
2018). Classical LTP is based on the observation that a neuron’s excitability to a
particular synaptic input is increased following high-frequency stimulation,
representing the molecular basis for Hebb’s postulate, which states that when two
connected cells fire simultaneously, the connection between them is strengthened.
Previous studies examining nicotine’s effect on this phenomenon have reported
enhancement of LTP in a number of brain regions, such as the hippocampus
(Nakauchi and Sumikawa 2012), amygdala (Huang et al. 2008), and VTA
(Mansvelder and McGehee 2000). However, these effects diverge in the OFC.
Zhou and colleagues (Zhou et al. 2018) demonstrated that acute nicotine application
to the OFC during LTP induction resulted in nicotine-mediated conversion of LTP to
LTD, a form of “metaplasticity,” due to enhanced GABAergic transmission. These
effects were in agreement with studies in nearby frontal cortical regions, where
nicotine was observed to raise the threshold for LTP induction via enhancing
GABAergic transmission (Couey et al. 2007). As appreciation grows for the impor-
tance of frontocortical excitatory/inhibitory balance in nicotine dependence (Pittaras
et al. 2016), understanding nicotine’s effects in this region may not only lead to
better understanding of circuit-level mechanisms of nicotine dependence but also to
potential therapeutic interventions.

4 Modulatory Factors That Influence nAChR Expression
and Signaling

Several mechanisms that regulate nAChR expression, assembly, and trafficking
were reported in the last two decades. Recent studies have shown that nicotine can
act as a “chaperone” which expedites the transport of nAChR subunits, including α4
and β2 nAChRs, to the endoplasmic reticulum and facilitates the passage and
insertion of assembled nAChRs to the plasma membrane (Henderson et al. 2014;
Srinivasan et al. 2011). In this context, this pharmacological chaperone mechanism
may represent an important molecular mechanism of the first step in neuroadaptation
to chronic nicotine and possibility of the emergence of neuronal adaptations under-
lying nicotine dependence. Another class of nAChR signaling modulators is
represented by the Ly-6/neurotoxin gene superfamily of proteins that exhibit cellular
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specific expression patterns in the brain and include Lynx1, Lynx2, and Lypd6.
These proteins are negative modulators of nAChR signaling and feature a three-
looped fold, a structural characteristically shared with the snake venom toxin
α-bungarotoxin. Thus, as endogenous prototoxins, these proteins can bind directly
to the extracellular face of nAChRs (Arvaniti et al. 2016; Miwa et al. 1999). The
presence of Lynx1 and Lynx2 increases the desensitization rate and decreases ligand
binding efficiency for multiple nAChR subtypes (George et al. 2017; Ibanez-Tallon
et al. 2002; Lyukmanova et al. 2011; Tekinay et al. 2009). In cortex, Lynx1 is
expressed in both glutamatergic and γ-aminobutyric acid-ergic (GABAergic)
neurons, whereas Lynx2 has been mainly localized in glutamatergic neurons
(Demars and Morishita 2014). Results suggest that lynx proteins can modulate
nAChR function in the brain with important consequences for cholinergic-dependent
synaptic plasticity (reviewed in Miwa et al. 2011; Miwa and Walz 2012; Thomsen
and Mikkelsen 2012). Recently, Nissen and colleagues reported that the
antinociceptive effect of nicotine and epibatidine in acute thermal pain tests is
enhanced in Lynx1 knockout mice (Nissen et al. 2018). Further, computer
simulations predict preferential binding affinity of Lynx1 to the α:α interface that
exists in the stoichiometry of the low sensitivity (α4)3(β2)2 nAChRs.

5 Genomics and Genetics of Nicotine Dependence

5.1 Overview

Nicotine addiction is a complex disorder with multiple factors contributing to its
dependence. Though a large host of factors contribute to nicotine dependence,
reward, withdrawal effects, and relapse, twin studies have shown that genetics
play a pivotal role (Li et al. 2003; Sullivan and Kendler 1999). Approximately
70% of the variability in nicotine dependence and smoking persistence has been
attributed to genetic influences (Broms et al. 2006; Carmelli et al. 1992; Kendler
et al. 2000; Li et al. 2003). Furthermore, twin studies have shown that ~50% of the
individual differences that contribute to smoking relapse can be attributed to herita-
bility (Xian et al. 2003). Ongoing studies examining not only genetics, but genomics
and epigenetics, are increasing our understanding of how individual differences
drive vulnerability or resilience to nicotine dependence.

5.2 Human and Animal Genetic Studies

In recent years, genome-wide association studies in humans revealed that a variant in
the CHRNA5/A3/B4 gene cluster (encodes α3, α5, β4 nAChR subunits), located in
chromosome region 15q25, serves as a risk factor for lung cancer and nicotine
dependence (Berrettini et al. 2008; Liu et al. 2010; Saccone et al. 2009). More
specifically, a single nucleotide polymorphism (SNP) in the CHRNA5 gene
(rs16969968) (D398N), which encodes the α5 nAChR subunit, has been repeatedly
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linked to increased risk for tobacco dependence (Bierut et al. 2008; Kuryatov et al.
2011). The mechanisms behind this increased risk have been investigated in in vitro
and in vivo functional studies. The α5 SNP was shown to reduce the function of the
α3β4 and α4β2 nAChR subtypes that incorporate the mutant subunit (Bierut et al.
2008), a loss of function that subsequently was shown to influence addiction-like
behaviors in vivo. Initial studies were conducted in α5 nAChR subunit gene
knockout mice (Fowler et al. 2011). The α5 knockout mice were found to exhibit
far greater motivation to consume large quantities of nicotine, and reexpression of α5
subunits within this pathway attenuated nicotine intake to wild-type levels (Fowler
et al. 2011). Further, decreased expression of α5 subunits in rats similarly increased
nicotine intake while decreasing the inhibitory effects of higher nicotine doses on
brain reward circuitries (Fowler et al. 2011, 2013). Similar observations occurred in
the nicotine CPP paradigm where α5 knockout mice exhibited a maintained nicotine
preference at higher doses not maintained by α5 wild-type mice (Jackson et al.
2010). In addition, in mice expressing the α5 human mutation, an increase in
nicotine self-administration was reported (Wilking and Stitzel 2015). Furthermore,
using rats carrying the α5 human mutation, Forget et al. (2018) found greater
nicotine intake in the SNP-expressing mutant rats compared with wild-type rats, as
well as an increase in nicotine motivation mutant rats. In addition, the
SNP-expressing rats exhibited a higher reinstatement of nicotine-seeking lever-
pressing responses than the wild-type rats (Forget et al. 2018). Collectively, these
studies suggest that the α5 subunit acts as an inhibitory signal that limits nicotine
consumption and rewarding effects in smokers.

5.3 Transcriptionally Adaptive Changes

A potential way smoking and genetics may interact is through transcriptionally
driven adaptive changes. It is now clear that continued drug use induces adaptive
changes in the central nervous system that lead to drug dependence. Long-term
adaptations in cellular signaling mechanisms are likely part of the maintenance of
drug dependence, which may be necessary for their development and persistence.
One well-characterized protein responsible for regulating gene expression is the
transcription factor cAMP response element binding protein (CREB). Both human
and animal studies have shown that CREB-dependent transcription is an important
molecular mechanism underlying dependence on multiple drugs of abuse, including
nicotine (Nestler 2005). In human studies, CREB expression correlates with the
number of cigarettes smoked per day (Lenz et al. 2010). In adult mice, CREB
activation is necessary for nicotine reward (Walters et al. 2005). These studies and
others suggest a role for CREB in mediating the neuroplasticity changes that
characterize nicotine dependence (Kenney et al. 2012; Portugal et al. 2012; Turner
et al. 2014). For example, Turner and colleagues (Fisher et al. 2017; Turner et al.
2014) showed that hippocampal CREB signaling and the associated changes in
synaptic plasticity impacted nicotine withdrawal phenotypes in mice. Further studies
(Fisher et al. 2017) then demonstrated that site-specific CREB deletion in the
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hippocampus impacted both cognitive and affective nicotine withdrawal phenotypes
due to reduced CREB-mediated transcription of neuroplasticity-related genes, such
as Arc and TrkB. However, while CREB is an important regulator of transcription,
its widespread function precludes its use for development of targeted therapeutics.
Instead, current studies are examining genomic CREB targets as potential therapeu-
tics. For example, CREB ChIP-Seq data show that CREB’s activation by chronic
nicotine and withdrawal differentially modulate its binding to the genome and
network pathway analyses of these data highlight the importance of different
families of neuroplasticity genes, such as neurotrophin, netrin, and neuregulin family
members (Turner et al. 2014).

Genes encoding a member of the epidermal growth factor family, neuregulin
3 (NRG3), and its receptor, ErbB4, have been recently linked to smoking cessation
outcomes (Loukola et al. 2014; Turner et al. 2014). NRG3 is present on excitatory
cells and signals transsynaptically through the ErbB4 receptor, which is found on
select inhibitory cell types (Vullhorst et al. 2017). Genetic variation in this pathway
has been demonstrated to impact multiple dimensions of smoking behavior, includ-
ing smoking initiation, amount smoked, and nicotine dependence (Loukola et al.
2008, 2014). In particular, single nucleotide polymorphisms in the gene for NRG3
result in impaired ability to quit smoking in the clinical population (Turner et al.
2014). Conserved and consistent association of variants in this pathway with nico-
tine dependence measures lends confidence to future mechanistic evaluation of these
associations. Furthermore, these data suggest that while therapeutic interventions for
molecules such as CREB are unlikely, evaluation of those gene families regulated by
CREB has great potential for future therapeutic development. For example,
compounds targeting downstream effectors of ErbB4, the receptor for the CREB
target gene NRG3, are already being developed for clinical use in psychiatric
conditions such as schizophrenia (Law et al. 2012), a condition highly comorbid
with nicotine dependence.

6 Other Constituents in Nicotine and Tobacco Products
Mediating Dependence

While the field has focused on nicotine as the main psychoactive constituent in
cigarettes and e-cigarettes, it is important to consider other compounds in the
products that may alter the pharmacokinetics of nicotine and/or exert independent
reinforcing effects on the substance user. Accumulating research has provided
evidence that some non-nicotine constituents have innate reinforcing properties,
which may thereby increase product use. For instance, anatabine, anabasine, cotin-
ine, and myosmine have all been shown to increase the reinforcing properties of
nicotine (Clemens et al. 2009; Hall et al. 2014). Mesolimbic dopamine levels are also
increased in the presence of cotinine, acetaldehyde, and nornicotine at a level similar
to that found for other substances of abuse (Bardo et al. 1999; Dwoskin et al. 1993,
1999; Foddai et al. 2004). Acetaldehyde and several minor alkaloids have also been
shown to act as reinforcers (Myers et al. 1982; Peana et al. 2010; Smith et al. 2015),
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although it is debatable as to whether this potentiative effect occurs at the
concentrations of product consumed by humans. Another potential candidate
mediating the enhanced reinforcing effect of nicotine in tobacco cigarettes is MAO
inhibition with chronic exposure (Fowler et al. 1996, 2000). Consistent with the
findings in humans, pharmacological inhibition of MAO in rodents has been shown
to increase low-dose nicotine self-administration (Smith et al. 2015). Furthermore,
the β-carbolines, harman and norharman, appear to inhibit MAO and may partially
explain the effects found with tobacco consumption (Truman et al. 2017). With
specific regard to e-cigarettes, several factors may interact to affect nicotine absorp-
tion and bioavailability, including pH, concentration of propylene glycol to glycer-
ine vehicle, alcohol, nicotyrine, temperature, concentration of nicotine, and user
characteristics (e.g., puff topography, level of experience) (DeVito and Krishnan-
Sarin 2018). In addition, propylene glycol has been shown to decrease the aversive
effects of high-dose nicotine, which may subsequently promote higher levels of
nicotine consumption (Harris et al. 2018).

Various flavorant additives are also found in tobacco and e-cigarette products,
and this topic has garnered recent attention since product flavor has been reported to
be a main reason for the initiation of e-cigarette use among adolescents (Kong et al.
2015). Interestingly, a fMRI study found that e-cigarette advertisements showing
sweet- and fruit-flavored products elicited a greater increase in nucleus accumbens
activity compared to tobacco e-cigarette advertisements or control images of sweets
and fruits (Garrison et al. 2018), thus demonstrating the strong cue-associated effects
of these flavorants on brain reward circuity. In addition to enhancing the attractive-
ness and palatability of the cigarette, the additives may additionally interact with
nicotine or other constituents at a biological level. For instance, menthol, a common
flavoring additive to cigarettes and e-cigarettes, has garnered much attention recently
given the preferential use of mentholated products among youth, adult women, and
racial/ethnic minorities (FDA 2013; Villanti et al. 2017). In addition to focused
marketing in targeted communities, the disproportional use by these populations has
been proposed to be due to underlying genetic or biological factors, such as
differences in nAChR expression or nicotine metabolism. Indeed, the presence of
menthol in cigarettes has been demonstrated to alter nicotine’s effects in smokers
(Benowitz et al. 2004; Williams et al. 2007), which may be due to menthol-mediated
inhibition of nicotine metabolism (Caraballo et al. 2011; Fagan et al. 2016) and
potentiative effects on nicotine-mediated dopamine release in brain reward pathways
(Zhang et al. 2018). Furthermore, menthol has also been shown to allosterically
modulate α7 nAChRs (Ashoor et al. 2013) and can further upregulate nAChR
expression (Alsharari et al. 2015). Thus, the pharmacological and addictive
properties of nicotine may be enhanced and prolonged in the presence of menthol.
This is further evidenced by the finding that mentholated cigarette smokers are less
successful in maintaining abstinence following cessation (Caraballo et al. 2011;
Fagan et al. 2016; Okuyemi et al. 2007).
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7 Therapeutic Approaches for Tobacco and Nicotine
Dependence

7.1 Nicotine Replacement Therapies

Nicotine replacement therapies (NRT) represent one of the first effective strategies to
promote smoking cessation. In most formulations, nicotine is slowly administered
over a prolonged period of time; this approach is thought to attenuate the negative
somatic and cognitive effects found during drug withdrawal, while minimizing the
reinforcing properties of the drug. A variety of available products include nicotine
containing gums, lozenges, and patches. In controlled studies, NRT has been shown
to be moderately efficacious in the short-term (days to weeks) (Hartmann-Boyce
et al. 2018). However, over longer periods, relapse is often found in most individuals
(Hartmann-Boyce et al. 2018), thus necessitating the development of alternate
approaches. Along these lines, e-cigarette devices were developed as an NRT and
harm reduction product. Compared to the traditional tobacco cigarette, e-cigarettes
have been promoted as reducing exposure to carcinogens while providing
reinforcing properties of nicotine via inhalation and quick delivery of the drug to
the brain. Although e-cigarettes have been reported to assist some individuals in
tobacco cessation, the emerging incidence of e-cigarette use among never smokers
has represented a concerning trend for the promotion of nicotine dependence,
especially among adolescents (Miech et al. 2019). Indeed, while e-cigarettes may
be less harmful than tobacco cigarettes, they are by no means harmless, as evidenced
by the multitude of chemicals and carcinogens emitted (Goniewicz et al. 2018). It is
currently debatable as to whether electronic nicotine delivery devices should be
employed by physicians for tobacco cessation since inconsistent findings have been
reported with effectiveness and the potential harmful effects with short- and long-
term use remain to be resolved (Livingston et al. 2019).

7.2 Varenicline and Bupropion

Given the direct action of nicotine on α4β2� nAChRs to mediate the reinforcing
properties of the drug, it is perhaps not surprising that the most efficacious
pharmacotherapeutics available is varenicline, a partial agonist of α4β2� nAChRs.
Varenicline also has full agonist, but less potent, effects at α7 and α3β4� nAChRs
and serotonin 5-HT3 receptors. Approved by the FDA in 2006, varenicline has been
shown to have similar or greater effectiveness in promoting smoking cessation
compared to NRT and other approved therapeutics, such as bupropion (Gonzales
et al. 2006). Bupropion was first characterized as a dopamine and norepinephrine
reuptake inhibitor with antidepressant actions but more recently became approved as
a first-line treatment for tobacco cessation. In addition to its actions as a catechol-
amine reuptake inhibitor, bupropion has also been shown to result in noncompetitive
antagonism of α4β2� and α3β4� nAChRs (Carroll et al. 2014) and negative alloste-
ric modulation of serotonin 5HT3A receptors (Pandhare et al. 2017), either of which
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may underlie the beneficial effects found for smoking cessation. In addition to NRT,
varenicline, and bupropion, the tricyclic antidepressant nortriptyline and the
α-adrenergic agonist clonidine have also been prescribed for smoking cessation,
although studies have generally found them to be less effective than the aforemen-
tioned therapeutics (Dodd et al. 2018).

7.3 Novel Approaches

With advances in our understanding of the biological mechanisms underlying
nicotine’s physiological, reinforcing, and aversive effects, novel approaches for
therapeutic development hold the promise of achieving substantial long-term clinical
outcomes. Since α5� nAChRs in the MHb-IPN pathway have been demonstrated to
mediate the aversive properties of nicotine that limit intake (Fowler et al. 2011), drug
development efforts are focused on generating positive allosteric modulators of these
receptors, with the idea of enhancing aversive processing in the presence of nicotine
to decrease further drug intake (Jin et al. 2014). Another compound, AT-1001,
which is an α3β4 partial agonist, has been shown to reduce nicotine relapse-related
behaviors in rodents (Yuan et al. 2017), likely through action on the α3β4� nAChRs
expressed in the MHb. GLP-1 receptor signaling has also been implicated in
MHb-IPN modulation of nicotine intake (Tuesta et al. 2017), and a GLP-1 receptor
agonist, liraglutide, is currently being tested for smoking cessation in a clinical trial
(Ashare 2019). Another potentially beneficial strategy is to inhibit the main enzyme
responsible for metabolizing nicotine, CYP2A6. The foundation of this approach is
based on the observation that individuals with allelic variation in the CYP2A6
enzyme exhibit lower levels of nicotine consumption and greater abstinence rates
when attempting to quit (Strasser et al. 2007). With CYP2A6 inhibition, lower levels
of drug consumption would result in higher levels of nicotine intake, which may
thereby lead either to an aversive effect with moderate levels of nicotine consump-
tion or a reinforcing effect at lower levels of nicotine. Methoxsalen, a CYP2A5/
CYP2A6 inhibitor, was a promising candidate as it was shown to decrease nicotine
dependence-associated behaviors in rodents (Alsharari et al. 2014; Bagdas et al.
2014), but this drug was not further advanced for smoking cessation due to carcino-
genic side effects that were unrelated to the CYP2A6 inhibitor actions. As such,
current drug development efforts are ongoing to derive alternative CYP2A6
inhibitors. In addition to pharmacotherapeutics, nicotine vaccines have been under
development. Conceptually, vaccination results in the generation of antibodies that
bind to nicotine in the blood, thereby reducing the amount of nicotine capable of
entering the brain. However, double-blind randomized trials have failed to demon-
strate sustained benefit in long-term cessation (Hartmann-Boyce et al. 2012; Tonstad
et al. 2013), likely due to insufficiently sustained antibody levels. In another
approach to minimize nicotine entry into the brain, NicA2-J1 has been developed
as a reengineered nicotine-degrading enzyme (Kallupi et al. 2018). Interestingly,
while NicA2-J1 did not induce significant differences from the control in nicotine
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intake, an attenuation of withdrawal and relapse-related behaviors was found in rats
(Kallupi et al. 2018).

8 Conclusion

Tobacco use disorder is the leading cause of preventable disease and death in the
United States and worldwide. The health consequences of nicotine addiction
resulting from prolonged drug use are tremendous and devastating. After more
than three decades of research on the neurobiology of nicotine dependence, health
professionals can now turn to several efficacious pharmacotherapies to treat smok-
ing. These agents often double the odds for quitting over placebo and in some cases
(i.e., varenicline) almost triple the odds of quitting over those of placebo. However,
despite these advances, many smokers relapse, and unfortunately the long-term
abstinence rates among smokers attempting to quit remain low. Therefore, a better
understanding of the various genetic, behavioral, and biological mechanisms
mediating the various aspects of nicotine dependence is paramount.
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