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Exploring Educational Needs and Practices in Structural Analysis 
 
Abstract 

For decades, the gap between academic training and practical skills in structural engineering has 
been a concern for both practitioners and educators. This disconnect is often attributed to several 
factors including an imbalance in the teaching of analytical and theoretical methods, too much or 
too little exposure to computer software, inadequate focus on developing an intuitive 
understanding of structures, and a deficiency in nurturing engineering thinking and imaginative 
problem-solving abilities. 
 
This paper examines the alignment between industry needs and academic curricula for structural 
analysis education. Recent surveys of practitioners and educators reveal agreement on the 
importance of both classical methods and competency with analysis software. However, an 
investigation of structural analysis course descriptions in 264 U.S. undergraduate civil 
engineering programs indicates that only 54% explicitly cover computer techniques, while just 
22% teach approximate methods useful for verifying software—a skill rated as 'Important' or 
'Very Important' by the vast majority (>90%) of practitioners and educators surveyed. This 
highlights the disconnect between valued industry skills and current teaching practices. The 
investigation further reveals there may also be mismatches such as limited emphasis on topics 
like load path understanding, again despite its applied value. As automation shapes the 
profession, developing forward-thinking, integrated curricula that merges classical skills with 
software proficiency and an understanding of structural behavior is increasingly critical. 
 

Introduction and Background 

It should come as no surprise that there is a lack of consensus on exactly what to teach 
engineering students in order to properly prepare them for professional practice. The topics and 
skills required of new engineering graduates are broadly influenced by ABET through program 
accreditation and often propagated through tradition. But, when it comes to specific areas of 
practice such as structural engineering, or even more specifically in the topic of structural 
analysis, there are persistent challenges that educators face in order to prepare students to 
efficiently join the profession.  
 
This problem is many decades old but the specifics have shifted along with advances in 
technology used in both engineering practice and education. A brief but comprehensive history 
of civil engineering education including the 18th and 19th centuries is given by Aparicio and 
Ruiz-Teran [1]. Civil engineering education in the U.S., starting around the late 18th century, 
followed two European traditions of British and French origins. The former placed emphasis on 
practical application of scientific principles, while the latter put more emphasis on sound 



 

 

theoretical understanding as a basis of engineering practice. However, many civil engineers were 
still trained through apprenticeships and so they received a great deal of practical training. 
 
With the technological and economic advancements of the mid and late-19th century, together 
with the establishment of land grant universities, many engineering degree programs  
were developed and led to the decline of the apprenticeship model. In the early 20th century an 
acceleration of developing theoretical knowledge quickly forced both university models to take 
on less and less discipline-specific technical knowledge. It was then that the gap between 
industry needs and education began to widen [1].  
 
The advent of World War II and the increase in funding for technical research had a profound 
impact on engineering education as curricula shifted towards math and science and away from 
“drawings and shopwork.” [2]  This move towards a more math- and science-based curriculum 
was perhaps most prevalent in electrical engineering, but other disciplines including civil 
engineering were also impacted. 
 
In the 1960s, Malcolm Gregory, in [3] and [4], described the lack of “engineering attitude” in 
engineering education. He reflected on the 19th century apprenticeship model and early 20th 
century practical application training that nurtured an engineering mindset through personal 
contact and hands-on learning. Gregory believed past approaches better instilled design intuition 
and real-world know-how, developing design proficiency by imitation, learned rules-of-thumb, 
and learned the practical rules of design and construction. 
 
Gregory described a problem with overly theoretical training. He argued the growing emphasis 
on analytical skills came at the expense of teaching engineering intuition and practical 
application. This caused students to view problems as just mathematical exercises, disconnected 
from real-world applicability. Gregory believed past educational models produced graduates 
better equipped to handle novel problems and transition to practice more easily. 
 
Through the second half of the 20th century, though, the situation was complicated further with 
the introduction of mainframe computers, [5] and [6], then widespread access to personal 
computers [7]. A popular sentiment was expressed by Wagh, in 1987 [7], that likely still 
resonates with many today: students ought to be taught fundamentals and practical aspects using 
manual calculation before using computer software tools.  
 
Hand Calculations or Analysis Software Competency? 

Throughout the last several decades many have argued for increasing the emphasis on hand 
calculations in order to combat the over reliance on computers. As Powell points out in [8], many 
seasoned engineers and educators complain that students do not have a “feeling” for structures 
and that they often point to hand calculation methods like moment distribution as the solution. 



 

 

Even in 2007, [9], at least a decade after ubiquitous use of computers in engineering practice 
became common, engineers were warning that the use (conflated as the over reliance) of 
computers deprived new engineers the experience that countless hours of calculations provided 
in order to gain a feeling for structures. 
 
But is this 40-year-old attitude, that mastery of hand calculations is necessary to understand 
structures, really applicable for today’s engineers who are vastly more computer competent than 
they were in the 1980s? Since then, the internet, cloud computing, BIM, and many other 
advances have occurred and been incorporated into practice for engineers to remain competitive. 
Further, these technologies are now simply native to how people work in the third decade of the 
21st century. Certainly we should expect graduates to be fairly competent in the use of structural 
analysis and design software upon graduation.   
 
Today more than ever graduates enter a profession that uses tools vastly more powerful than 
were available just a few years ago. Meanwhile, their structural engineering curriculum was 
likely minimally different from two or even three decades ago (or more!). In fact, some papers 
on this discrepancy are now even two decades old but read as if they were just published. 
Criswell in 2004 [10], discusses the dilemma that educators face in covering classical methods, 
such as the iterative moment distribution, in an environment where students have tools that 
instantly provide exact solutions. Criswell describes the situation twenty years ago: 
 

“...increasingly, a primary task of our graduates in their role [as] young engineers is to 
be intelligent users and managers of design and analysis software. This change in the 
role of the individual designer… from being the direct producer of numerical solutions to 
the manager changed with utilizing software written by others to produce a correct 
numerical solution is a major shift, perhaps qualifying as a paradigm shift.” 

 
As we approach the Artificial Intelligence (AI) paradigm shift, the intensity of the imbalance 
between academic training and professional needs is certain to accelerate especially with respect 
to the use of computer and classical methods. In fact, a recent five-part series of articles on 
automation in structural engineering was published in Structures Magazine, indicating the push 
for AI tools (starting with [11]). If there was ever a time to reevaluate and seriously consider 
modernizing how we, as educators, prepare students to enter the profession, it is now.  
 
Therefore, this paper begins a larger effort by the authors to explore the needs of the industry 
regarding structural analysis skills and the current educational practices, with one major 
component being the balance of classical and computer methods. The ultimate goal is to provide 
a suggested forward thinking and compelling way of teaching engineers to understan structural 
behavior through analysis.  
 



 

 

In this work, we summarize recent surveys of structural engineering practitioners and educators 
with an emphasis on the results most relevant to structural analysis topics and skills. In order to 
better understand how these opinions align with the current curricula in the U.S., course 
descriptions are analyzed from the 268 ABET-accredited U.S. undergraduate civil engineering 
programs.  
 
Contemporary Opinions on Structural Analysis of Practitioners and Educators  

The National Council of Structural Engineers Association (NCSEA) Basic Education Committee 
(BEC) recently conducted two wide-reaching surveys asking practitioners about skills and 
educational requirements they value in new hires. Structures Magazine has reported on the 2016 
and 2021 survey results in [12] and [13]. Additional details from the 2021 survey results were 
provided by Dong and Francis in [14]. The NCSEA BEC also conducted an educator survey in 
2019 focused on the structural engineering curriculum of 168 undergraduate programs, [15]. 
Here, only the survey data on structural analysis is reported and is compared in a way that it was 
not originally presented in order to draw conclusions more directly about structural analysis (and 
not structural design, technical communication skills, etc.). The survey was, in a way, granular 
on specific structural analysis topics and did not ask participants to rate a comprehensive list of 
particular analysis methods. It did ask for an importance rating of ancillary analysis topics like 
load path, stability, and dynamics. But, as it pertains specifically to structural analysis (i.e., 
moment/shear diagrams, deflection analysis, load distributions) the survey questions were more 
in the direction of how structural analysis education should be approached, e.g., the importance 
of classical methods, coverage of matrix methods, and the use of computer software. However, 
this aligned well with the takeaways from the literature review.  
 
Approximately 415 practitioners participated in the 2016 survey and approximately 515 did so in 
2021. Well-seasoned engineers with over 21 years of experience were very well represented in 
both years. The great majority (~70%, each) had at least 11 years of experience, as shown in Fig. 
1. The majority of respondents worked primarily on buildings in both surveys.    
 

 

 
(a) Experience Level  (b) Region of Primary Practice 

Figure 1 - 2016 and 2021 NCSEA Practitioner Survey Demographics, [12] and [13] 



 

 

Structural Analysis Courses 

Using the 2019 NCSEA Curriculum Survey, [15], the NCSEA BEC developed a suggested 
structural engineering curriculum, [16], which contained a detailed description of many courses 
including three structural analysis courses: Structural Analysis I - Determinate, Structural 
Analysis II - Indeterminate, and Structural Analysis III - Matrix Methods. Referencing these, 
practitioners in 2021 were asked to rate the importance of each to the undergrad curriculum. The 
results are compared in Fig. 2 to corresponding course and/or topic descriptions appearing in the 
2016 Practitioner survey. The rating scheme is presented in the figure.  
 
It is no surprise that practitioners overwhelmingly strongly valued a full course covering 
determinate analysis and a full course covering indeterminate analysis. Note, in 2016 no 
distinction was made between determinate and indeterminate analysis courses. Matrix methods, 
on the other hand, received mixed importance ratings, with many (44%) in 2021 indicating 
students need a full course in matrix methods. Only 15% and 14%, in 2016 and 2021, 
respectively, indicated that matrix methods were “Not Important.” 
 
Skills and topics related to structural analysis were rated in the same way. In Fig. 3, both surveys 
indicate very strong support for loading and load paths. Structural stability and structural 
dynamics also were also strongly advised to be full courses within the curriculum. Only finite 
element analysis received a significant portion rating it as “Not Important” (19%). 
 
Classical versus Computer Methods in Structural Analysis 

A thematic analysis was performed, [12], on independent personal responses provided in the 
2016 survey results. Many responses (=42%) included strong views regarding the need for 
classical or “hand” calculation structural analysis methods. Many (=38%) expressed the 
importance of the use of computer modeling and students’ skills in interpreting results. 
 

  
 

Figure 2 Practitioner importance rating of structural analysis courses 2016 vs. 2021, [12] and [13] 



 

 

  
Figure 3 Practitioner importance rating of structural analysis related skills 2016 vs 2021, [12] and [13] 

 
The 2019 curriculum survey [15] and the 2021 survey [14], then, contained explicit questions 
asking educators and practitioners, respectively, to rate the importance of classical and computer 
methods in the undergraduate curriculum. The results and rating choices are shown in Fig. 4. 
Both groups rated computer methods as “very important” at a higher rate than hand/classical 
methods. However, both groups recognized the importance of both hand/classical and computer 
methods. Interestingly, the “not important” rating was phrased in a way that placed importance 
on the other method. In other words, rating hand methods as not important meant the respondent 
placed more value on computer methods. Considering the “not important” rating in this way, it is 
clear that both groups placed the most importance on computer methods.  
 

  
 

Figure 4 Practitioner versus educator opinions on importance of classical “hand” and 
computer methods of structural analysis in the undergraduate curriculum, [14]. 

The 2021 survey also included a section where participants were asked to rate the importance of 
‘hand’ calculation methods when completing various tasks and the importance of using computer 
programs for various topics in the curriculum, [14]. From Fig. 5, computer methods were again 
clearly rated as critical either as a skill in itself or in applying hand methods to computer results.  
 
Additionally, in 2021, 57% of practitioners said programing, modeling, and software use are 
needed to complement students’ education. This is compared to only 43% responding that basic 
knowledge and hand calculation methods are required, [13].  



 

 

 
Figure 5 Practitioner opinions on use of hand or computer methods in structural analysis tasks and topics, [14] 

(“Structural modeling…” did not have a hand method component) 

 
Overall Preparedness of Undergraduates 

When evaluating the overall structural engineering skills of graduates, 72% of practitioners [14] 
and 83% of educators [15] felt that they were not well prepared to enter the workforce. Clearly 
there is still room to improve structural engineering and analysis undergraduate education with 
respect to preparing graduates for practice. Looking specifically at structural analysis courses, 
practitioners and educators agree that traditional classical (“hand”) methods are highly important. 
But both groups also clearly agree (if not even more strongly) on the importance of student 
competency in applying the concepts, learned through classical methods, within computer 
programs.  
 
From the early 1800’s and the first industrial revolution [1], World War II [2] [3] [4], the 
computer age [6] [7], and now entering into the fourth industrial revolution with AI tools on the 
horizon [11], academia continues to lag behind the needs of the practice. It could be argued that 
some lag is appropriate and that academic training should remain rooted, mainly, in theory to 
provide students with the proper foundation. However, there are certainly manual calculation 
methods that are surely no longer needed. For example, some have pointed to the moment 
distribution method to develop students’ ability to gain a feeling for structures, [8] and [10], but 
do practitioners use this method? The answer is almost certainly, no. As Powel argues in [17], 
carefully constructed computer software analysis exercises can achieve so much more 
understanding of structural behavior through experience with structures while applying 
fundamental understanding.  
 
With these insights into practitioner and educator opinions, it is next pertinent to look at what 
educators are actually teaching. Educators seem to value computer methods, but are they being 
taught or used? 
 



 

 

What is Being Taught in Structural Analysis Courses? 

To get an initial sense of how current structural analysis curricula align with the NCSEA 
recommendations, an analysis of structural analysis course descriptions was conducted for the 
268 ABET-accredited civil engineering programs in the United States.  Generative AI was used 
to help determine common course topics in structural analysis courses.  The common course 
topics were then used to quantify (by hand) the extent of coverage in structural analysis courses. 
 
Methodology 

The following steps outline the methodology for the course description analysis used for this 
study. 
 

1. Course Selection Criteria 
For the purposes of this study, the “structural analysis” course at the institution was a 
follow-on from the strengths of materials class.  In addition, the course had to be required 
for all civil engineering students or a breadth elective and not a course specific to one 
emphasis or a specialty course.1 In cases where universities offered more than one 
structural analysis course2, the course descriptions from both courses were analyzed to 
capture the comprehensive structural content delivered to all students.  Finally, schools 
within the same system with identical course descriptions were treated as one course and 
were not counted twice in the results.  Based on these criteria, 264 distinct course 
descriptions were analyzed for this study. 

2. Selecting Common Course Topics Using the OpenAI API 
The 264 course descriptions were used as input to the gpt-3.5-turbo model [18] 
(ChatGPT) to identify common topics such as influence lines, moment distribution, etc.  
The first 20 course descriptions were analyzed by hand to verify that the 15 common 
topics identified by ChatGPT were helpful in identifying the content taught in the 
courses.  Some refinements to the list of topics were made, including deleting topics that 
were represented in all course descriptions (explicitly or implicitly) and splitting others 
into separate categories, resulted in the following 14 topics that were used in the analysis: 

(a) Influence lines and loading (moving & live load) 
(b) Virtual Work and/or other energy methods 
(c) Displacement (stiffness) methods, including matrix methods 
(d) Slope-deflection methods 
(e) Moment Distribution 
(f) Force (flexibility) methods 

 
1 For example, at the Milwaukee School of Engineering (MSOE) the “Principles of Structural Engineering” was 
used for this study since it is a breadth elective for all students, whereas the “Analysis of Structures” course was not 
used because it is an elective course for the structural specialty of the BSCE. 
2Such as Structural Analysis I and Structural Analysis II at California State Polytechnic University, Pomona 



 

 

(g) “Classical” methods (or similar, e.g., “elementary methods”) 
(h) Computer techniques and applications 
(i) Approximate analysis methods 
(j) Design concepts & methodologies 
(k) Stability and determinacy 
(l) Shear and moment diagrams 
(m) Introduction to design loads and structural idealization 
(n) Analysis of cables and/or arches 

3. Hand Analysis and Exclusion Criteria 
All 264 course descriptions were analyzed by hand to determine how many of the 14 
common topics were taught in each course.  The GPT-4 generative AI system was used to 
help verify the hand results. In compiling the final results, we excluded course 
descriptions that matched two or less of the 14 identified topics from the analysis because 
such course descriptions were typically too generic to get a good sense of the content 
covered.3  This resulted in 93 course descriptions that were classified as “generic,” 
leaving 171 course descriptions used for the final analysis. 
 

Results and Discussion - Course Topics 

Table 1 shows the percentages of each of the 14 structural analysis topics listed from most 
common to least common for the 171 course descriptions used in this analysis.  Comparison of 
these results with the survey data from practitioners reveals several interesting trends in how 
structural analysis is currently being taught and point to some potential misalignments with 
recommendations from structural engineering practitioners. 
 
First, influence lines and moving/live load analysis was by far the most commonly mentioned 
topic, appearing in 64% of course descriptions. This prevalence likely stems from influence lines 
lending themselves well to being a distinct module within a broader structural analysis course. 
Determining influence lines and analyzing moving loads calls for specific techniques not 
required for analyzing typical static loading scenarios. Thus, many instructors appear to 
deliberately carve out time in their courses to cover this unique and practically relevant topic. 
 
Another clear trend is the prominence of computer-based analysis, with 54% of courses 
explicitly mentioning instruction in or application of computer techniques. This aligns with the 
contemporary reality that computer software ubiquitously supports engineering analysis and 
design in practice. Civil engineering educators seem to recognize the necessity of students 
developing fluency with such tools.  

 
3 An example of a “generic” description is: “Analytical stress and deflection analysis of determinate and 
indeterminate structures under static and moving loads by classical methods.” 



 

 

Table 1 Percentage of course descriptions mentioning each topic 

Topic 
% of course 
descriptions 

Influence lines and loading (moving & live load) 64% 
Computer techniques and applications 54% 
Virtual Work and/or other energy methods 47% 
Displacement (stiffness) methods, including matrix methods 42% 
Force (flexibility) methods, (or similar, e.g., “consistent deformations") 42% 
Moment distribution 33% 
Introduction to design loads and structural idealization (load paths, trib. area, etc.) 33% 
Slope deflection methods 25% 
Shear and moment diagrams 23% 
Approximate analysis methods 22% 
"Classical" methods (or similar, e.g., "elementary methods", "Analytical") 18% 
Design concepts & methodologies 18% 
Analysis of cables and/or arches 15% 
Stability and determinacy 11% 
 

In contrast, some topic areas that practitioners highly recommend receive limited emphasis based 
on the course description analysis. For example, over two-thirds of surveyed practitioners rated 
“verifying computer results” and “understanding structural behavior” as very important skills 
(Fig. 4). Approximate analysis methods provide means to manually verify computer solutions, 
gain insights into structural behavior, and develop intuition about results. Such methods were 
covered in only 22% of the surveyed courses and only 11% of course descriptions mentioned 
both computer applications and approximate methods, representing a mismatch with their 
potential benefits.  Additionally, fewer than one third of courses mention introducing concepts of 
design loads and load paths, despite over 80% of industry respondents rating load path 
understanding as very important for graduates. Incorporating such qualitative, conceptual aspects 
of analysis could better align curricula with practitioner needs. 
 
Lastly, though not quantified here, it was observed that a substantial number of courses include 
lab components. Well-structured laboratory experiences present impactful opportunities to 
tangibly explore structural concepts like load paths and redundancy hands-on before or in 
tandem with computer analysis. This integration of physical and virtual experiences, informed by 
practitioners' needs, seems a promising direction for nurturing students’ structural intuition. 
 
Results and Discussion - ChatGPT Analysis 

Once the hand analysis was complete, we attempted to use ChatGPT to replicate the results and 
help check the hand analysis.  The details of the ChatGPT methodology are given in the 
Appendix along with the Python code used for the analysis. Fig. 6 shows the number of false 



 

 

positives and false negatives when comparing the ChatGTP analysis to the hand analysis.4  The 
hand analysis and ChatGPT matched exactly for the “Moment Distribution” and “Analysis of 
Cables and Arches” topics, so they are omitted from Fig. 6.  Also, omitted from Fig. 6 are the 
“Classical Methods” and “Stability and Determinacy” topics.  The “Classical Methods” item (45 
false positives and 4 false negatives) was intended to match course descriptions that mentioned 
classic hand methods (e.g., virtual work, moment distribution, etc.) without mentioning them by 
name, but ChatGPT matched the topic with any course description containing the term 
“classical,” including those that specifically identified all such methods.  There were 178 false 
positives and no false negatives for the “Stability and Determinacy” topic.  Most commonly, 
ChatGPT matched the term “analysis of statically determinate and indeterminate structures” to 
this topic while the intent was to determine the number of courses that specifically cover 
concepts such as the difference between unstable, determinate, and indeterminate structures and 
calculating the degree of indeterminacy. 
 
The ChatGPT analysis performed surprisingly well with only 357 total mischaracterizations 
(false positives plus false negatives).  With 14 topics and 264 course descriptions, this represents 
a 9.7% error rate.  Neglecting the “Classical Methods” and “Stability and Determinacy” topics, 
the error rate drops to 3.4%.  In addition, comparing the hand results and ChatGPT results 
identified 37 errors in the hand analysis (a 1% error rate). 
 
Limitations 

This study has several limitations that should be considered when interpreting the results: 
 

1. This analysis focuses solely on structural analysis topics and does not examine the full 
civil engineering curricula at the 264 institutions. Other required courses may address 
skills like computing techniques and approximate methods. 

2. Course descriptions provide limited information about actual course content and the 
depth of coverage for each topic. Analysis of syllabi and lecture materials would offer 
more insight. 

3. The selection criteria for courses may have omitted relevant structural analysis content at 
some institutions. For example, elective courses were excluded though they may 
reinforce key concepts. 

4. Benchmarking course topics does not capture the quality of instruction, learning 
outcomes, or how well graduates are actually prepared for practice. Surveys of recent 
graduates could complement this curriculum analysis. 

 
4 False positive:  ChatGPT identified a topic in the course description that was not identified by the hand analysis. 
  False negative:  The hand analysis identified a topic that was not identified by ChatGPT. 



 

 

 
Figure 6 Frequency of mischaracterized topics when comparing ChatGPT analysis to hand analysis. 

 
 
Conclusions and Future Work 

A close look at the recent NCSEA surveys of practitioners and educators, [12], [13], [14], [15] 
revealed both practitioners and educators strongly value both classical/hand methods and 
computer methods in structural analysis. Each group also felt strongly that undergraduates do not 
emerge from their program ready to enter the structural engineering workforce. Although this 
sentiment was reflective of the overall structural engineering education, and not specifically 
structural analysis, a clear theme arose regarding classical analysis versus computer analysis 
methods. Along with decades of similar observations, clearly there are still improvements to be 
made in aligning academic training in structural analysis with the needs of the practice.  
 
Studying the publicly available course descriptions showed that only about half of U.S. programs 
(~54%) explicitly claim to cover computer methods and applications. Perhaps most concerning is 
the lack of approximate analysis methods (~22%) in the course descriptions. These methods can 
be useful to verify and interpret computer analysis methods, a skill that most practitioners rated 
as very important (see Fig. 5). 
 
The many classical methods present in the course descriptions seems to indicate that academic 
training is still quite focused on traditional hand calculation methods. How are these methods 
approached in the classroom? Are students still trudging through endless hours of hand 
calculations in the name of “learning structural behavior” as some believe [9] is necessary? Is 
that appropriate nearly a quarter into the 21st century? We suggest that classical skills need to be 
merged with the use of modern tools. In a similar observation, Powell [8] humorously compares 



 

 

moment distribution problems on licensing exams to requiring one to show they can ride a horse 
in order to get a driver's license. There are hard choices ahead. At some point we must give up 
breadth (and in some cases depth) in the interest of mastery of what is important for the 
profession. 
 
As future work, the authors intend to develop a survey that probes a significant sample of 
educators to determine (i) what classical methods they feel are most pertinent in contemporary 
training, (ii) how/if they integrate computer software in their structural analysis courses, and (iii) 
how they plan to incorporate new (and existing) technologies in the near future. We also plan to 
analyze course syllabi and schedules to better understand the depth and breadth of coverage of 
structural analysis topics.  This will give us a better understanding of topics covered and the 
emphasis placed on each topic. 
 
We cannot ignore the technological tools that engineers have and must use in modern practice. 
Academic training is already behind in incorporating current technologies. Reconfiguring our 
teaching approach to incorporate the powerful analysis tools already used by practitioners is 
overdue. Time is of the essence to prepare for the quickly approaching AI-powered tools that 
will undoubtedly be adopted in the industry. 
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APPENDIX - ChatGPT Analysis of Course Descriptions 

Methodology 

We adopted a pair-wise analysis approach in using ChatGPT to determine the topics covered in 
each course description.  We scripted the API so that the LLM considered only one course 
description and one topic per request.5 The LLM was asked if a given course topic was included 
in the course description. The LLM is necessary because of semantic differences in how course 
topics are described between institutions, which makes exhaustive string searches over all 
possible phrasings of a topic time prohibitive. If the LLM determined that a course topic was 
indeed covered by the course description, it returned a short (~10 word) quotation from the 
course description it determined was relevant. If not, it returned “no.”  This 10 word quotation 
was useful for validating the LLM's arbitrations and refining prompts with subsequent analyses. 
We scripted this procedure so that the output was stored in a .csv file. This calculation for 264 
courses and 14 topics requires 3696 requests to a given LLM, which takes between 50 to 70 
minutes (clock time, not machine time) depending on the model. We used the gpt-3.5-turbo 
ChatCompletion model and the gpt-4 model [19] , OpenAI's leading LLM as of this writing. 
 
Once the hand analysis was complete, we ran new analyses using ChatGPT (both gpt-3.5 and 
gpt-4) and compared results.  The gpt-3.5-turbo model for a given course topic would, on 
average, assert that some 6 additional topics were addressed in a course description beyond the 
hand analysis. The gpt-4 model offered significant improvements in completing the task, with an 
average error of +1 topic attributed to a given course description over the hand analysis. A 
comparison of the two misattributions is shown in Fig. A-1. 
 
When looking specifically at each course topic, the gpt-4 model agrees much more strongly with 
the hand analysis than the gpt-3.5 model (Fig. A-2), which is encouraging for the prospect of 
using LLMs, albeit very capable ones, to compare curricula between institutions at the level of 
course descriptions. The gpt-4 model notably over-asserted that “Stability and determinacy” was 
contained in many more course descriptions than the hand analysis, likely because the string 
“determinacy” and “indeterminate” appeared in many course descriptions. This issue with this 
single topic is the dominant contributor to the +1 average topic error per course description for 
the get-4 model. While human arbitration is challenging to replace in such a task, these results 
show promise for implementations of LLMs to shed light on these types of questions, though we 
recommend only models of exceptional sophistication capable of handling logically complex 
tasks. 

 

 
5 The chatGPT web interface is ill adapted for an exhaustive analysis of the 264 course descriptions and 14 topics, 
even with the file upload function in the ChatPro interface. OpenAI's LLMs, like all interfaces, have limited context, 
and this constrains the complexity and size of tasks these AIs can accurately perform. The API, on the other hand, 
allows OpenAI's models to be scripted, e.g. with Python, leading to a more surgical implementation of their models. 



 

 

 
Figure A-1 Distributions of misattributions of a topic to a given course description by model.  

 

 
Figure A-2 Topic frequency in course descriptions as determined by GPT-3.5-turbo, GPT-4 and our 

manual analysis.  
 



 

 

Source Code 

import sys 
import openai 
import time 
import requests 
import numpy as np 
  
# Set the OpenAI API key 
openai.api_key=<API_KEY> 
  
def chat_with_model(messages): 
    response = openai.ChatCompletion.create( 
        model="gpt-4”, #or “gpt-3.5-turbo” 
        messages=messages 
    ) 
    return response['choices'][0]['message']['content'] 
  
if len(sys.argv) < 2: 
    print("Please provide the filename as a command-line 
argument.") 
    sys.exit(1) 
  
filename = sys.argv[1] 
  
# 
retry_count = 0 
max_retries = 100 # define the maximum number of retries 
retry_delay = 30 
  
category_counts = np.zeros(15) 
  
  
# Define list of course topic names 
category_names = ["Influence lines and loading (moving and live 
load)", 
   "Virtual work and/or other energy methods", 
   "Displacement (stiffness) methods, including matrix 
methods", 
   "Slope deflection methods", 
   "Moment distribution", 



 

 

   "Force (flexibility) methods, a.k.a. conisisten 
deformations", 
   "Classical methods (or elementary methods or analytical 
methods)", 
   "Computer techniques and applications", 
   "Approximate analysis methods", 
   "Design concepts and methodologies", 
   "Stability and determinacy", 
   "Shear and moment diagrams", 
   "Introduction to design loads and structural idealization 
(load paths, trib. area, etc.)", 
   "Analysis of cables and/or arches" 
] 
  
#Write a csv file for output from LLM: 
  
fp = open(f"course_description_spreadsheet.csv", "w") 
  
#Write the first line of this csv file which will be the column 
headers line of course topics: 
  
fp.write(f'Course description \t') 
fp.write('\t '.join(category_names)) 
fp.write('\n') 
  
  
try: 
   # Open the file of course descriptions 
    with open(filename, 'r') as file: 
       # for each course description 
        for line in file: 
            list_of_responses = [] 
  
            # For each category: 
            for i in range(len(category_names)): 
                name = category_names[i] 
  
               # Construct prompt for AI. For each topic, check 
if that topic is addressed in the course description. If it is, 
return the part of the course description that addresses it. 
                conversation = [ 



 

 

                    {"role": "system", "content": "Return up to 
a 10 word response, quoting verbatim only the appropriate 
portion of the course description."}, 
                    {"role": "user", "content": "Does the 
following topic: " + name + "explicitly appear to be addressed 
in this course description? If yes, quote the applicable 
portion of the course description. If no, return No." + line} 
                ] 
                
               # OpenAI’s API is rate-limited: an IP address 
making too many requests in too short of a time will be 
temporarily blocked. If this happens, we retry the request 
after some period of time 
                while retry_count < max_retries: 
                   try: 
                      # talk to this model and store the 
response to the above question in response 
                       response = chat_with_model(conversation) 
                        
                      list_of_responses.append(response) 
                        
                       break 
                   except openai.error.RateLimitError: 
                       retry_count += 1 
                       print(f"Rate limit error, retrying after 
{retry_delay} seconds... (attempt {retry_count})") 
                       time.sleep(retry_delay) 
                   except openai.error.ServiceUnavailableError: 
                       retry_count += 1 
                       print(f"Rate limit error, retrying after 
{retry_delay} seconds... (attempt {retry_count})") 
                       time.sleep(retry_delay) 
                   except openai.error.APIError as e: 
                       print(f"An error occurred: {e}") 
                       time.sleep(retry_delay) 
           # Write the course description in the first column 
of the file (this is a tab-delimited csv) 
            fp.write('"' + line.replace("\n", "") + '"\t') 
  
           # write the responses of the LLM for this course 
description. 



 

 

            fp.write('\t '.join(map(str, list_of_responses))) 
  
            fp.write('\n') 
            
    
                
  # Print the list of strings 
except FileNotFoundError: 
    print(f"File '{filename}' not found.") 
    sys.exit(1) 
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