
UC Merced
UC Merced Previously Published Works

Title
Optimal Routing Schedules for Robots Operating in Aisle-Structures

Permalink
https://escholarship.org/uc/item/8rw9v9gt

Authors
Sorbelli, Francesco Betti
Carpin, Stefano
Corò, Federico
et al.

Publication Date
2019-09-12

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8rw9v9gt
https://escholarship.org/uc/item/8rw9v9gt#author
https://escholarship.org
http://www.cdlib.org/

Optimal Routing Schedules for Robots Operating in Aisle-Structures

Francesco Betti Sorbelli, Stefano Carpin, Federico Corò, Alfredo Navarra, and Cristina M. Pinotti

Abstract— In this paper, we consider the Constant-cost Ori-
enteering Problem (COP) where a robot, constrained by a
limited travel budget, aims at selecting a path with the largest
reward in an aisle-graph. The aisle-graph consists of a set of
loosely connected rows where the robot can change lane only at
either end, but not in the middle. Even when considering this
special type of graphs, the orienteering problem is known to be
NP -hard. We optimally solve in polynomial time two special
cases, COP-FR where the robot can only traverse full rows, and
COP-SC where the robot can access the rows only from one
side. To solve the general COP, we then apply our special case
algorithms as well as a new heuristic that suitably combines
them. Despite its light computational complexity and being
confined into a very limited class of paths, the optimal solutions
for COP-FR turn out to be competitive even for COP in both
real and synthetic scenarios. Furthermore, our new heuristic for
the general case outperforms state-of-art algorithms, especially
for input with highly unbalanced rewards.

I. INTRODUCTION

Numerous robotic tasks can be abstracted using a graph
model featuring vertices associated with rewards and edges
associated with costs. Vertices usually represent locations
that the robots must visit to perform some task, while edges
costs represent the energy or time spent while moving be-
tween locations. Models like these emerge for example when
robots are used for environmental monitoring, surveillance,
logistic, urban mobility, and precision agriculture, just to
name a few. Owing to the fact that most robots and vehicles
have to periodically stop to recharge their batteries or refuel,
this type of tasks are naturally connected to the combinatorial
optimization problem known in literature as orienteering. In
orienteering one is given a graph where each vertex has a
reward and each edge has a cost. The objective is to deter-
mine a path on the graph maximizing the sum of collected
rewards while ensuring that the cost of the path does not
exceed a given budget. An important feature of this problem
is that if a vertex is visited more than once the reward is
collected only once, while the cost associated with an edge is
incurred every time it is traversed. As pointed out in [1], this
optimization problem is computationally hard, and therefore
it is of interest to study either heuristic solutions that perform
well on large problem instances, or exact solutions when one
considers special types of graphs or specific classes of paths.
In [1] the orienteering problem was used to solve a routing
problem associated with robots used for precision irrigation
in vineyards. A vineyard imposes specific motion constraints
because a robot operating in it can change row only when it
is at either end of the row, but not when it is in the middle.
The same motion constraints can be found in warehouses,
which are typically organized with long rows of parallel
shelves, and crossing in the middle is typically impossible

due to stored goods [2]. Fig. 1 illustrates the two scenarios
above. These motion constraints can be captured by the
aisle-graph (a.k.a. irrigation graph [1]), formally defined in
Sec. II. On such graphs, an associated orienteering problem
can be defined to account for the limited battery runtime of
the robot. In [1] it was shown that solving the orienteering
problem on the special class of aisle-graphs is NP -hard,
and two different heuristics were proposed. In this work

(a) Vineyard.

(b) Warehouse.
Fig. 1: Real examples of aisle-structures.

we propose various improvements to the results presented
in [1]. First, we provide an efficient, optimal algorithm to
solve the orienteering problem on graphs when one restricts
the solution to a specific class of paths called full rows, that
were heuristically explored in [1]. Then, we introduce a new
class of paths called single column that is related to one of
the heuristics given in [1], and for this case we also provide

ar
X

iv
:1

90
9.

05
71

1v
2

 [
cs

.D
S]

 1
5

Se
p

20
19

an efficient, optimal solution. Finally, building upon the two
optimal solutions found, we introduce a new heuristic that
performs well in practical different scenarios. To evaluate the
strength of our findings, we test our algorithms on synthetic
instances based on various Zipf distributions [3], and on the
same benchmarks proposed in [1] that are generated from a
real world robotic precision irrigation application with graphs
featuring more than 50,000 vertices.

A. Related Work

The orienteering problem was first formalized and studied
in [4], where its NP -hardness was also proven. Later, Blum
et al. showed that the problem is APX -hard [5]. Due to
its inherent computational complexity, numerous heuristic
approaches are found in literature, and due to space con-
straints, the reader is referred to [6] for a comprehensive
overview of heuristics and problem variants. A distinct line of
research aims instead at solving the orienteering using exact
formulations [7]. These solutions, however, do not scale to
instances as large as those we consider in this work.

Besides its theoretical interest, the orienteering problem
finds applications also in robotics and automation [8]–[11].
In [1], it was shown that robotic routing problem described
above in aisle-graphs can be formulated in terms of orienteer-
ing, and the most recent greedy solutions ad-hoc for aisle-
graphs were proposed. In [2], the aisle-graphs are used to
model a warehouse where an automated picking system is
implemented. The warehouse has cabinets that form long
lanes separated by aisles. In the automated picking system,
the robot has to collect all the items requested by a customer
order minimizing the distance (i.e., budget) traversed and
changing lane only at the lane extreme, not in the middle. The
picking problem has been solved by applying the well-known
Christofides’ algorithm for Traveling Salesman Problem [12].

Organization: The remainder of this paper is organized
as follows. The formal problem definition is provided in
Sec. II. Our novel algorithms are presented in Sec. III,
together with their complexity analysis. In Sec. IV we
evaluate the effectiveness of our approach on large scale
instances, and in Sec. V we draw conclusions and sketch
avenues for future work.

II. PROBLEM DEFINITION

Let us consider an undirected Aisle Graph A(m,n) =
(V,E), where m and n denote the number of rows and
columns, respectively. We define the set of vertices V =
{vi,j |1 ≤ i ≤ m, 1 ≤ j ≤ n} ∪ vi,0, vi,n+1∀i ∈ 1, . . . , n and
the set of edges E is built as follows:
• Each vertex vi,j with 1 ≤ i ≤ m and 1 ≤ j ≤ n has two

edges, one toward vi,j−1 and the other toward vi,j+1;
• each vertex vi,0 with 1 < i < m has three edges:

one toward vi−1,0, one toward vi+1,0, and one toward
vi,1; symmetrically, each vertex of type vi,n+1 with
1 < i < m has three edges: one toward vi−1,n+1,
one toward vi+1,n+1, and one toward vi,n. Accordingly,
edges connected to the corner vertices v1,0, vm,0, v1,n+1

and vm,n+1 are then well defined.

The graph A(m,n) has therefore m rows and n+2 columns.
Note that, the vertices in the first and last columns (e.g.,
Fig. 2(a) with indices j = 0 and j = n+1, respectively) do
not provide any reward, and their purpose is just to connect
the m rows.

Problem 1 (Constant-cost Orienteering Problem (COP)). Let
A(m,n) be an aisle-graph, vs, vd ∈ V be two of its vertices,
r : V → R≥0 be a reward function where r(vi,j) = 0 if
j ∈ {0, n+1}, and c : E → R≥0 be a constant cost function
on A, i.e., c(e) = α for each e ∈ E. The COP asks, for a
given constant B, to find a path of maximum reward starting
at vs and ending at vd of cost no greater than B.

W.l.o.g., it can be considered the case c(e) = 1 for each
e ∈ E, whereas for our purposes we restrict to the case
vs = vd = v1,0. In what follows, by ri and cj we denote
the i-th row and the j-th column of A, respectively, and by
R = {r1, . . . , rm} and C = {c0, . . . , cn+1} the set of rows
and columns of A, respectively.

v4,0 v4,1 v4,2 v4,3 v4,4

v3,0 v3,1 v3,2 v3,3 v3,4

v2,0 v2,1 v2,2 v2,3 v2,4

v1,0 v1,1 v1,2 v1,3 v1,4

(a) A(4, 3).

v4,0 v4,1 v4,2 v4,3

v3,0 v3,1 v3,2 v3,3

v2,0 v2,1 v2,2 v2,3

v1,0 v1,1 v1,2 v1,3

(b) AC(4, 3).
Fig. 2: Examples of graphs: the interconnecting vertices are dark.

Moreover, we define an undirected single column graph
AC(m,n) = (V,E) as an Aisle Graph which interconnects
the m rows just using c0. The set of vertices V and the
set of edges E are equal to those of A(m,n) with the only
exception of column cn+1 which is missing in AC and thus
the vertices of type vi,n, with 1 ≤ i ≤ m, admit just one
edge toward vi,n−1. An instance of AC is shown in Fig. 2(b).

III. PROPOSED ALGORITHMS

In this section, we first optimally solve two special cases
of COP: COP-FR (full row) which forces the robot to entirely
traverse rows in A, and COP-SC (single column) which
optimally solves COP on AC .

COP-FR is a direct abstraction of real-world scenarios
in which the robot can neither turn around nor reverse its
movement. For example, if we are representing a warehouse
with very narrow aisles or environments with multiple robots
working simultaneously, in that case reversing the direction
may be prohibited to avoid crashes, or impossible due to
maneuvering limits. On the other hand, COP-SC may model
instead robot motions in combed-shaped or star-shaped struc-
tures. Moreover, COP-SC can be easily modified to be used
to solve COP with two robots working in parallel: one on
the left side and one on the right side of an aisle-graph.

Lastly, we provide the HGC heuristic for solving COP on
an aisle-graph by suitably combining the aforesaid optimum
strategies.

A. Optimal Solutions for COP-FR

In this section we propose two polynomial algorithms,
called OFR and OFR-I, to solve COP-FR. The latter is an
efficient implementation of OFR. Both algorithms return a
subset S of rows as a solution, i.e., S ⊆ R, such that the
path starting and ending at v1,0 has cost no greater than B
and collects maximum reward.

The following properties hold for COP-FR:
• P1: A reasonable budget B ≥ 2(n + 1) must hold since

a smaller value makes impossible to traverse any row
of the graph and coming back to v1,0. In contrast if
B ≥ (n+ 1)m+ 2(m− 1) then the problem becomes
trivial since the robot can easily perform a complete
visit of the graph.

• P2: In any optimal solution S, the robot performs a cycle
traversing the rows in S in an increasing (or decreasing)
order with respect to their indices. Any other cycle
would require a larger budget.

• P3: Any optimal solution S that starts and ends at v1,0
must fully traverse an even number of rows to prevent
the robot to get stuck in cn+1.

1) The OFR Algorithm: We now introduce the OPT
FULL-ROW (OFR) algorithm that optimally solves COP-FR.
The pseudo-code of OFR is provided in Algorithm 1.

Algorithm 1: OFR(Graph A,Budget B)

1 V cycle ← ∅, opt← −∞
2 Ri ←

∑n
j=1 r(vi,j) ∀i ∈ 1, . . . ,m , R̃← SORT(Ri)

3 for m′ ← 1,m do
4 V = ∅, val← 0
5 B′ ← B − 2(m′ − 1)
6 if B′ > 0 then // Build current solution

7 k(m′) = 2
⌊

B′

2(n+1)

⌋
8 if k(m′) ≥ m′ then
9 val←

∑m′

j=1Rj , UPDATETOUR(V)

10 else
11 j ← 1, s← 1
12 val← Rm′

13 while s ≤ k(m′)− 1 do
14 if ij < m′ then
15 val← val + R̃ij , UPDATETOUR(V)
16 s← s+ 1

17 j ← s+ 1

18 if val > opt then
19 V cycle ← V, opt← val

OFR consists of two steps. In the first pre-processing step,
for each row i a cumulative reward Ri, i.e., the reward
collected by completely traversing the i-th row, is computed
(Line 2), as Ri =

∑n
j=1 r(vi,j). Then (Line 2), we sort the

Ri values in decreasing order obtaining the row permutation
R̃ = [i1, . . . , im] such that R̃i1 ≥ . . . ≥ R̃im . This phase has
cost O(mn+m logm).

In the second step, exploiting the three properties above,
the optimal solution with budget B can be easily determined

if we fix the furthest row traversed by the algorithm.
Letting m′ be the furthest traversed row (Line 3), the

solution moving vertically spends (m′ − 1) units of budget
to reach row m′ from v1,0, and additional (m′ − 1) units to
go back to v1,0. Any optimal solution can either first visit
the selected rows up to row m′ and then come back, or first
reach the furthest row m′ and then come back visiting the
selected rows. The two options have the same vertical cost
of 2(m′− 1): the vertical movements of the robot from row
1 to row m′ alternate on c0 and cn+1. In the former case,
the vertical movement from row 1 to the first row selected
in the solution are performed on c0. Once the first row is
reached, the robot traverses it left to right, ends up in cn+1,
and moves vertically from the first to the second selected row
on cn+1. Since the second row is traversed right to left, the
robot ends up in c0, and starts again going down to reach the
third selected row. After traversing the furthest row m′, if m′

is even, the robot goes back to v1,0 traversing c0. Otherwise,
if m′ is odd, the robot traverses row m′ again from right to
left and reaches v1,0 moving on c0.

Given that 2(m′−1) is the budget required for the vertical
movements, the residual budget B′ = B−2(m′−1) (Line 5)
is spent to traverse as many even rows as possible (Line 7)
that is k(m′) = 2

⌊
B′

2(n+1)

⌋
. The optimal solution than

includes row m′ and the k(m′) − 1 rows with the largest
reward among the first m′ rows (Line 13) if k(m′) ≤ m′.
If k(m′) > m′ (Line 8), then all the m′ rows are selected.
If m′ is odd, to make an even number of rows, a row, say
m′ for the sake of simplicity, is traversed twice. Note that, if
B < 2(m′ − 1), the m′-th row cannot be reached and there
is no feasible solution that includes row m′.

To find the optimal solution constrained to budget B, we
compute the most profitable solution for any possible value
of m′ (Line 3) and we retain the solution with the largest
overall reward (Line 18).

Finally, the procedure UPDATETOUR(V) constructs the
path accordingly to the rows that the robot has to take, and
adding the suitable vertical movements as explained above.

The total computational cost of the algorithm is O(m ·
max{n,m}) since it spends O(mn+m logm) for the pre-
processing phase and O(m2) for the second phase.

By the above discussion the next theorem can be stated.

Theorem 1. Algorithm OFR optimally solves COP-FR in
time O(m ·max{n,m}).
Proof. About the complexity of the algorithm, it has been
already analyzed above.

Given a graph A(m,n) and a budget B, consider the
optimal solution given as the set of rows traversed by the
robot, OPT = {ri1 , . . . , rik∗ } of size k∗. By property P3,
k∗ is even. By P2, rij ≤ rij+1

for any j < k∗, i.e., the rows
are increasingly ordered with respect to their index. Now
consider Algorithm 1 at iteration m′ = ik∗ . To reach the
m′-th row and go back, at least 2(m − 1) units of budget
have to be spent. Let k = k(m′) be the number of rows
defined at Line 7 that will be visited by the robot with the

residual budget B′. Since k(m′) = 2
⌊

B′

2(n+1)

⌋
is even and

since there is not enough budget to traverse any other pair of
rows given that B − k(m′)(n+1) < 2(n+1), k(m′) is the
largest possible even number of full rows when the solution
includes row m′. If k(m′) > m′ and m′ is odd, then the sub-
procedure UPDATETOUR(V) will make the robot traverse
row m′ twice. Finally, fixed m′ and computed k(m′), the
solution is optimal because it selects the most profitable rows
(see Line 13) according to the sorting of Line 2. Since all
the possible values of m′ are tested, Algorithm 1 optimally
solve COP-FR.

2) The OFR-I Algorithm: We next present a faster im-
plementation for OFR, called OFR-I. The idea is to reduce
the cost of selecting the rows of the optimal solution from
O(m2) time for OFR to O(m) time for OFR-I. The pseudo-
code of OFR-I is provided in Algorithm 2.

Algorithm 2: OFR-I(Graph A,Budget B)

1 V cycle ← ∅, opt← −∞, old← 0
2 S ← [1 . . .m], j ← 1 // Current index

3 Ri ←
∑n

j=1 r(vi,j) ∀i ∈ 1, . . . ,m, R̃← SORT(R)
4 for m′ ← m, 1 do // Decreasing cycle
5 V = ∅, val← 0
6 B′ ← B − 2(m′ − 1)

7 k(m′) = 2
⌊

B′

2(n+1)

⌋
8 if m′ = m then // 1-st iteration
9 while j ≤ k(m′) do

10 S[ij]← 1

11 val← val + R̃ij , UPDATETOUR(V)
12 j ← j + 1 // j scans R̃

13 old← k(m′)

14 else if m′ < k(m′) then
15 for i← 1,m′ do
16 S[i]← 1
17 val← val +Ri, UPDATETOUR(V)

18 m′ ← 1

19 else
20 c← 0
21 if k(m′) 6= old then
22 c← 2

23 if S[m′ + 1] = 1 then
24 c← c+ 1, S[m′ + 1]← 0
25 val← val −Rm′+1, UPDATETOUR(V)

26 t← 1
27 while t ≤ c do // Finds c feasible rows
28 if ij ≤ m′ then
29 S[ij]← 1

30 val← val + R̃ij , UPDATETOUR(V)
31 t← t+ 1

32 j ← j + 1

33 old← k(m′)

34 if val > opt then
35 V cycle ← V, opt← val

Initially, OFR-I performs the same pre-processing phase
as the one of OFR. Then, in the second step, the optimal

solution is calculated in the opposite way with respect to
OFR. In fact, we first set m′ as the farthest possible row, i.e.,
m′ = m (Line 4). Then, the main loop proceeds decreasing
m′ and, at each step, according to the value of m′, the
residual budget and the number of permitted rows to be
considered are computed (Line 7). During the first iteration
of the main loop, i.e., m′ = m (Line 8), the algorithm
builds the current solution S by picking the first k(m′) rows
in R̃ (Line 9). The indices of the top k(m) rows with the
largest rewards (Line 9) are inserted in the Boolean vector S
(Line 10). Precisely, S[ij] = 1 if ij is one of the first k(m)
entries in R̃, and S[ij] = 0 otherwise, with 1 ≤ ij ≤ m.
Clearly, the insertion procedure can be done in constant time
for each row. Note that using this approach we are not forcing
row m′ to belong to the current solution. It is worthy to note
that when m′ = m the total reward obtained by OFR-I is
larger or equal to that of OFR constrained to use row m
because OFR-I takes the best possible top k(m) rows and
OFR only the top k(m)−1 best possible rows plus the m-th.
When m′ < m, OFR-I evaluates the new residual budget.
As in OFR, the best solution using the rows from 1 to m′

is searched. It may happen that 1) the number of permitted
rows k(m′) increases with respect to k(m′ + 1), and 2) the
row m′ + 1 has to be removed from the current solution to
be substituted by a row with index no larger than m′. In
the first case, the number of permitted rows may increase
since the length of the vertical movements decreases by 2
and thus, the residual budget increases by 2. According to
Line 7, it must hold c = k(m′ + 1) − k(m′) = 2. In the
second case the algorithm is able to remove the (m′ + 1)-
th row in constant time just by setting S[m′ + 1] = 0 and
increasing by 1 the number c of rows to be added to the
current solution (Line 23).

For every value of m′, the algorithm adds c rows scanning
R̃ starting from the position j of the last row inserted and
ignoring the rows with index larger than m′ (Line 27). If c =
0, the solution S is unchanged and the algorithm proceeds
decreasing m′. Otherwise, R̃ is scanned from position j to
find c new rows. Note that j never decreases because any
row discarded during a previous iteration cannot be inserted
in this iteration either. Namely, whenever a row ij in R̃
is discarded from S it is because its row index is greater
than the current value m′, i.e., ij > m′, and since m′

decreases, ij cannot be reinserted in any subsequent iteration.
The algorithm terminates when at least one of the following
conditions is satisfied:

1) m′ < k(m′): in such a case the current solution takes
just the first m′ rows (Line 14);

2) m′ = 1: which is the main condition of the algorithm.

Even if more than c positions of R̃ may be visited for
each value of m′ (Line 27), overall during the second phase
(Line 4), no more than |R̃| = m rows are visited. Since
any row visited is handled in constant time, to update the
solutions for all the values of m′ costs O(m).

The total cost of OFR-I is then O(m · max{n, logm})
since it spends O(mn + m logm) for the pre-processing

phase and O(m) for the second phase. Thus, the overall time
complexity of OFR-I is never worse than that of OFR, but
ignoring the first pre-processing step whose results could be
passed in input to the algorithm along with the reward graph,
OFR-I is much faster than OFR. Indeed, OFR-I costs O(m)
time, while OFR O(m2) time.

By the optimality of OFR and by the above discussion the
next theorem can be stated.

Theorem 2. Algorithm OFR-I optimally solves COP-FR in
time O(m ·max{n, logm}).
Proof. By the optimality of OFR and by the arguments pro-
vided in describing the algorithm, optimality is achieved.

B. Optimal Solution for COP-SC

For COP-SC, since there is only one column in AC , the
robot is forced to go back-and-forth on each selected row.
We devise a dynamic programming algorithm, called OPT
SINGLE-COLUMN (OSC), that optimally solves COP-SC in
polynomial time. Clearly, OSC sub-optimally solves COP.

During the initialization, we create two tables T and R of
size m× (n+1) and m× (B2 +1), respectively. Table R has
columns j = 0, 1, . . . , B2 . We initialize table T as follows:
T [i, j] =

∑j
k=0 r(vi,k) =

∑j
k=1 r(vi,k) for each i, j which

represents, fixed a row i, the cumulative reward up to the
j-th column starting from the leftmost side, with 0 ≤ j ≤ n.
This phase has cost O(mn). In table R, let R[i, b] be the
largest reward that can be attained with budget 2b visiting
the first i vertices of row 0. Let S[i, b] be the last column
visited in row i to obtain the reward R[i, b].

As for COP-FR, COP-SC there are some general prop-
erties that will be exploited by our dynamic programming
solution:
• PA: If B ≥ 2nm+ 2(m− 1) then the robot can visit the

whole graph.
• PB: An optimal solution must traverse the selected rows

in increasing (or decreasing) order w.r.t. their indices.
• PC: An optimal solution visits a row at most once. Two

(or more) visit of the same row can be in fact replaced
by the only visit that reaches the furthest vertex.

• PD: For each row the algorithm has to select the last
vertex to visit. If no vertex is visited, still vi,0 has to be
traversed to reach the subsequent row i+ 1.

The optimal solution that visits the first j vertices in row
i, with j ≥ 0, gains T [i, j] reward from row i, and spends
budget 2b− 2j− 2 to reach the previous row i− 1. Namely,
we reserve 2 units of budget to change row and 2j units to
traverse row i. We thus have the next recurrence. The first
row of table R is defined as follows:

R[1, b] =

{
T [1, b] 0 ≤ b ≤ n− 1

T [1, n] n ≤ b ≤ B
2

Then, for each subsequent row R[i, b], i ≥ 2:

R[i,b]=

−∞ b<i−1
0 b= i−1

max
0≤j≤min{b−i,n}

{R[i−1, b−j−1]+T [i, j]} b>i−1

Note that j ≤ min{b − i, n} is obtained by observing that
j ≤ n, b−j−1 ≥ 0 and more strictly b−j−1 ≥ i−1 to avoid
−∞ reward. If b = i− 1 and i ≥ 2, R[i, b] is just 0 because
there is only enough budget to reach row i traversing c0.
Precisely, R[i, b] = maxj=0{R[i− 1, b− j − 1] + T [i, j]} =
R[i− 1, b− 1] and recursively back up to R[1, 0] = 0.

Table S is then filled recalling for each position the column
that has given the maximum reward, i.e., S[i, b] ← j =
argmaxR[i, b]. Finally, the reward of the optimal solution
with budget B

2 is found by calculating max1≤i≤mR[i, B2]
because we do not know in advance the furthest row reached
by the optimal solution. The solution is computed in O(m)
tracing back the choices using the table S. Note that with a
single execution of OSC, we compute the optimal reward for
any value b, with 0 ≤ b ≤ B

2 . That is, the maximum reward
for budget b is the maximum in column b of table R.

The algorithm runs in time O(mnB
2) plus O(mB

2) to
retrieve the solution, and takes O(mn +mB

2) space. Since
by property PA budget B is upper bounded by O(mn), then
algorithm OSC is strictly polynomial in the size of the input.

By the above discussion and sub-optimality arguments, the
next theorem can be stated.

Theorem 3. Algorithm OSC optimally solves COP-SC in
time O(mnB

2).

Proof. The running time is obvious. Let us define R(i, b)
as the optimal profit to reach any vertex of row i when
the budget is 2b. The solution S(i, b) associated with
R(i, b) has maximum profit and must traverse the vertices
v1,0, v2,0, . . . , vi,0 of c0.

For the correctness we prove by induction. For the base
case, i = 1 and any b, or any row i and b ≤ i−1, the
correctness follows from the above discussion.

Induction Step: When computing R[i, b] by induction
hypothesis, we have that R[i − 1, b − j − 1] for any 0 ≤
j ≤ min{b− i, n− 1} are already computed correctly. Since
any optimal solution S[i, b] visits the rows in increasing index
order, traverses only once row i, up to any cj (recall that j =
0 means that the row is not visited), and must traverse the
vertices v1,0, v2,0, . . . , vi,0 of c0, S[i, b] is built starting from
a sub-problem that traverses the vertices v1,0, v2,0, . . . , vi−1,0
and some vertices of row i. Then, S[i, b] is based on a sub-
problem that considers up to row i − 1, leaves 1 unit of
budget to reach row i, and leaves j units of budget to reach
vertex j in row i, for some 0 ≤ j ≤ b − i. Hence, the
value of R[i, b] in Eq. (III-B) is correct. Induction Step:
When computing R[i, b] by induction hypothesis, we have
that R[i−1, b−j−1] for any 0 ≤ j ≤ min{b−i, n− 1} were
already computed correctly. Note that any optimal solution
S[i, b] is built starting from a sub-problem that traverses the
vertices v1,0, v2,0, . . . , vi−1,0 and some vertices of row i. In
fact, such solution visits the rows in increasing index order,
traversing any row i only once up to a cj (recall that j = 0
means that the row is not visited), and must traverse the
vertices v1,0, v2,0, . . . , vi,0 of c0. Then, S[i, b] is based on a
sub-problem that considers up to row i − 1 keeping aside
enough budget to reach vertex j in row i, i.e., 1+ j units of

budget for some 0≤ j≤ b−i. Hence, the value of R[i, b] in
Eq. (III-B) is correct.

Now, assume by contradiction, that there exists a solution
S′[i, b] 6= S[i, b] with cost R′[i, b] > R[i, b], and that is the
first time that Eq. (III-B) does not provide the optimum.
Let vertex vi,j be the vertex reached by S′[i, b] in row
i. The solution S′[i, b] gains T [i, j], and R′[i, b] − T [i, j]
corresponds to the profit of a sub problem S[i−1, b−j−1] for
which R[i−1, b−j−1] is optimal. That is, R′[i, b]−T [i, j] =
R[i− 1, b− j − 1] and thus R[i, b] = R[i− 1, b− j − 1] +
T [i, j] = R′[i, b].

Finally, since we do not know in advance the furthest row
that belongs to the optimal solution, the optimal solution
with budget B is found in column b and precisely it is
max1≤i≤mR[i, B].

C. Heuristic solution for COP

We propose an heuristic, called HEURISTIC GENERAL-
CASE (HGC), that combines the sub-optimal solutions of
COP returned by OFR-I and OSC algorithms in three
strategies: H1, H2, and H3. H1 prefers full rows, while
H2 and H3 select partial rows on both the left and right
side plus some full rows to complete the tour: H3 traverses
only two full rows (i.e., the minimum number of rows to
reach the right side and be back at v1,0), while H2 replaces
all sufficiently long partial rows with full rows. Precisely:

• H1: First OFR-I is applied. If some budget p there re-
mains, then clearly p < 2(n + 1). OSC is applied to
select partial rows on both the sides of the aisle-structure
A, constrained to p and to the requirement to return
in v1,0. In particular, the partial rows can be selected
among all the rows of the left side not yet selected, and
among the rows of the right side that the robot passes
in front traversing the tour created for OFR-I.
It is worthy to note that the reward of H1 always
dominates that of OFR-I.

• H2: Here first OSC is applied with the full budget B,
obtaining a temporary solution SL then again OSC is
applied with the full budget B but starting and returning
in v1,n, hence optimizing on the right side and obtaining
another temporary solution SR. Successively, SL and
SR are analyzed so as to select an even number of
full rows. These will be the rows where SL and SR

combined together select at least n
2 elements. If none

of such rows exist, then bounds n
3 , n

4 , . . ., will be
considered just to select two rows. The final solution
will then include the selected full rows. According to
the residual budget, the solution will be completed with
all possible partial rows similarly to H1;

• H3: Here firstly two rows are selected: the first one and the
furthest row reachable with the budget B. Successively,
OSC is applied with the residual budget selecting the
partial rows as in H1.

Heuristic HGC then returns the best solution among H1,
H2, H3, OFR-I and OSC.

IV. SIMULATIONS

We test our algorithms on the same benchmarks proposed
in [1] that are generated from a real world robotic precision
irrigation application. The reward map of one of them
is illustrated in Fig. 3(a), where the cold and hot colors
represent low and high rewards, respectively. We also test our
algorithms on synthetic instances whose rewards are based
on various Zipf distributions [3]. The synthetic instances
consist of graphs A(100, 50) and A(50, 100). The rewards
are random integers in the interval [0, 100) that follow a Zipf
distribution of parameter θ = {0, 0.9, 1.8, 2.7}. To avoid a
punctiform reward in A and make it more continuous as
it is in the real world, we generate m·n

5·5 = 50·100
5·5 random

numbers and we assign each of them to a 5× 5 sub-graph.
When θ = 0, the rewards are uniformly distributed in [0, 100)
(see Fig. 3(b)), while when θ increases the lowest rewards
become more and more frequent (see Figs. 3(c)-3(e)).

(a) Real (b) θ = 0

(c) θ = 0.8 (d) θ = 1.9

(e) θ = 2.7

Fig. 3: Reward maps for real and synthetic graph instances.

For each A and θ, we run our new algorithms OFR,
OSC, HGC and contrast them with the two greedy heuristics
GREEDY FULL-ROW (GFR) and GREEDY PARTIAL-ROW
(GPR) presented in [1]. Both OFR and OFR-I optimally
solve COP-FR, so we do not need to test both.

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

A = [274× 214]

GFr

OFr

OSc

GPr

HGc

(a) Real

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

A = [100× 50]

GFr

OFr

OSc

GPr

HGc

(b) θ = 0

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

A = [100× 50]

GFr

OFr

OSc

GPr

HGc

(c) θ = 0.8

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

A = [100× 50]

GFr

OFr

OSc

GPr

HGc

(d) θ = 1.9

0 20 40 60 80 100
0

20

40

60

80

100

B(%)

R
(%

)

A = [100× 50]

GFr

OFr

OSc

GPr

HGc

(e) θ = 2.7

Fig. 4: The performances for the real benchmark and synthetic data with different values of θ.

The GFR and GPR heuristics choose a subset of full and
partial rows to be traversed, respectively. At each selection,
the robot computes the budget required to collect rewards
from its current position, and prefers row/vertices with max-
imum reward per unit of budget. The time complexities of
GFR and GPR are O(m2) and O(m2n), respectively. Fixed
m and n (i.e., the size of A) and θ, we populate 30 random
graphs. For each graph, we test each algorithm with budget
B increasing in 20 steps from the minimum to the maximum
value (see P1, Sec. III-A). Since the overall reward differs for
each graph (as rewards are randomly generated), we return
the reward gained as a percentage of the overall reward.
Finally, we plot the average of the results on the 30 instances,
along with their 95% confidence interval. Fig. 4 compares
the reward over the different algorithms on the real and
synthetic data and different θ. When θ = 0, the performance
of OFR increases linearly with the budget and it is absolutely
comparable with that of the general heuristics GPR and HGC
even if it is computationally lighter. GFR instead performs
poorly with respect to OFR. OSC is the worse in the uniform
case and not surprisingly it gains about half of the reward
of OFR. In fact, OSC requires the double of the budget
than OFR to explore a single row. When θ increases, and
rewards become scarcer, the percentage of gained reward
increases faster than the budget: at θ = 1.9 with 50% of the

budget, OFR gains already more than 70% of the reward.
The performances of OFR is coincident with that of HGC
up to θ = 1.9, and about 1–2% less when θ = 2.7. For large
values of θ, the performance of GPR slightly downgrades
especially for budget between 50% and 80%, whereas that
of OSC upgrades although OSC explores only the left side
of A. In fact, when the reward is unbalanced, for OSC it is
easier to decide which vertices to take, while GPR may waste
budget on useless vertical movements because the rewards
are widely scattered. OSC reaches the same performance of
HGC and GPR when θ ≥ 1.9 and B ≤ 20%.

Fig. 4(a) compares the algorithms behavior on a set of 20
real world robotic precision irrigation graphs, collected in
the open fields by the authors of [9]. HGC and OFR achieve
the best results, and generally improves by less than 2% the
performance of GPR (with a peak of 5% when B < 20%).
In general, the GFR heuristic performs better on the real data
than on the synthetic ones. Vice-versa, OSC performs better
on the synthetic data than on the real ones. According to our
experiments, the performance on real graphs are comparable
with that of synthetic graphs of moderate skewness.

Observations: Although all experiments show excellent
performance for GPR and even better for OFR, we are
aware that one can hand-pick graphs where such algorithms
behaves rather poorly compared the optimal solution. For

example, consider a graph A = A(m,n) built as follows: for
each vertex vi,2 with i ∈ 1, . . . ,m−1 we set r(vi,2) = 2i−ε;
we set reward r(vm,m−2) = m − 1 + 2(m − 2) = 2m − 3
for the vertex r(vm,m−2) of the last row; and finally we
set reward equal to zero for all the other vertices. Let B =
2(m− 2)+2(m− 1) the given budget. The OFR will select
the furthest row m′ it can reach constrained on B and the
previous row m′− 1 for a total reward that cannot be larger
than 2m−5+m− ε < 3m− ε. The GPR will choose in the
first iteration the vertex vm,m−2 consuming the whole budget
for a total reward of r(vm,m−2) = m−1+2(m−2) = 2m−5.
The OSC algorithm will compute a solution composed by
the first m− 1 rows with a total reward of

∑m−2
i=2 (i− ε) =

1
2 (m − 3)(m − 2ε). Since the optimal solution will gain at
least the same reward as OSC, both OFR and GPR are away
from the optimum by an arbitrarily large factor m.

Similar examples can be found where OSC looses, while
GPR and OFR are much closer to the optimum. In conclu-
sion, since OSC and OFR seem to show opposite behaviors
in the same instance (like in the example above) and since
HGC applies both, our aim for HGC is to limit performance
losses. On the one hand we could not find any dramatic in-
stance for HGC as for the other heuristics. On the other hand
we are looking forward for formal arguments to guarantee
some limited approximation ratio.

V. CONCLUSION

We have shown how to optimally solve in polynomial time
the two special cases COP-FR and COP-SC of COP. We
have also simulated the new optimal proposed algorithms
OFR and OSC as well as the new heuristic HGC in the
special vineyard context where COP was originally defined.
Although HGC gains in percentage few units over the
previous best algorithm, it can be still valuable in high
constrained scenario. As future work, we will undertake
further investigations for providing formal guarantees on the
quality of the solutions in the general case.

REFERENCES

[1] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Routing
algorithms for robot assisted precision irrigation,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 2221–2228.

[2] F. Betti Sorbelli, F. Corò, C. M. Pinotti, and A. Shende, “Automated
picking system employing a drone,” in 15th International Conference
on Distributed Computing in Sensor Systems, DCOSS 2019, Santorini,
Greece, May 29-31, 2019, 2019, pp. 633–640.

[3] C. Tullo and J. Hurford, “Modelling zipfian distributions in lan-
guage,” in Proceedings of language evolution and computation work-
shop/course at ESSLLI, 2003, pp. 62–75.

[4] B. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics, vol. 34, no. 3, pp. 307–318, 1987.

[5] A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson,
and M. Minkoff, “Approximation algorithms for orienteering and
discounted-reward tsp,” SIAM Journal on Computing, vol. 37, no. 2,
pp. 653–670, 2007.

[6] A. Gunavan, H. C. Lin, and P. Vansteenwegen, “Orienteering problem:
A survey of recent variants, solution approaches and applications,”
European Journal of Operational Research, vol. 255, no. 2, pp. 315–
332, 2016.

[7] M. Fischetti, J. S. Gonzalez, and P. Toth, “Solving the orienteering
problem through branch-and-cut,” INFORMS Journal on Computing,
vol. 10, no. 2, pp. 133–148, 1998.

[8] S. Jorgensen, R. Chen, M. Milam, and M. Pavone, “The team surviving
orienteers problem: Routing teams of robots in uncertain environments
with survival constraints,” Autonomous Robots, vol. 42, no. 4, pp. 927–
952, 2018.

[9] T. C. Thayer, S. Vougioukas, K. Goldberg, and S. Carpin, “Multi-robot
routing algorithms for robots operating in vineyards,” in Proceedings
of the International Conference on Automation Science and Engineer-
ing, 2018, pp. 7–14.

[10] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem
and its application to persistent monitoring tasks,” IEEE Transactions
on Robotics, vol. 32, no. 5, pp. 1106–1118, 2016.

[11] R. Pěnička, J. Faigl, and M. Saska, “Physical orienteering problem
for unmanned aerial vehicle data collection planning in environments
with obstacles,” IEEE Robotics and Automation Letters, vol. 4, no. 3,
pp. 3005–3012, 2019.

[12] N. Christofides, “Worst-case analysis of a new heuristic for the
travelling salesman problem,” Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, Tech. Rep., 1976.

	I Introduction
	I-A Related Work

	II Problem Definition
	III Proposed Algorithms
	III-A Optimal Solutions for COP-FR
	III-A.1 The OFr Algorithm
	III-A.2 The OFr-I Algorithm

	III-B Optimal Solution for COP-SC
	III-C Heuristic solution for COP

	IV Simulations
	V Conclusion
	References

