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ABSTRACT: Microbial souring in oil reservoirs produces toxic, corrosive
hydrogen sulfide through microbial sulfate reduction, often accompanying
(sea)water flooding during secondary oil recovery. With data from column
experiments as constraints, we developed the first reactive-transport
model of a new candidate inhibitor, perchlorate, and compared it with the
commonly used inhibitor, nitrate. Our model provided a good fit to the
data, which suggest that perchlorate is more effective than nitrate on a per
mole of inhibitor basis. Critically, we used our model to gain insight into
the underlying competing mechanisms controlling the action of each
inhibitor. This analysis suggested that competition by heterotrophic
perchlorate reducers and direct inhibition by nitrite produced from
heterotrophic nitrate reduction were the most important mechanisms for
the perchlorate and nitrate treatments, respectively, in the modeled column experiments. This work demonstrates modeling to be
a powerful tool for increasing and testing our understanding of reservoir-souring generation, prevention, and remediation
processes, allowing us to incorporate insights derived from laboratory experiments into a framework that can potentially be used
to assess risk and design optimal treatment schemes.

■ INTRODUCTION

Reservoir souring is the production of hydrogen sulfide (H2S)
from thermochemical or biogenic sulfate reduction in oil fields.1

Hydrogen sulfide poses significant health and environmental
risks,2 and its corrosive nature compromises the structural
integrity of production facilities.3 Sulfides also lower the quality
and profit margin of oil by ∼10%.4 Thermochemical
production of H2S occurs typically at temperatures of 100−
180 °C, whereas biogenic production by sulfate reducing
microorganisms (SRM, i.e., bacteria and archaea) occurs below
this temperature.1 Microbial souring is most pronounced
during secondary oil recovery, where the injection fluid used
to maintain pressure and sweep oil is often seawater. Seawater
contains a high sulfate concentration (28 mM), stimulating the
growth and activity of SRM.
Prevention of reservoir souring has focused primarily on

inhibiting the growth and activity of SRM using biocide. A
common alternative is the injection of nitrate.5−7 Nitrate
inhibits souring either by fostering competition between the
heterotrophic nitrate reducers (hNRM) and SRM for electron
donors or through the production of an intermediate, nitrite,
that inhibits SRM.8 Furthermore, nitrate can also stimulate
further sulfide oxidation through nitrate reducing, sulfide
oxidizing microorganisms (NR-SOM)9,10 (Figure 1B). Per-
chlorate injection has recently been demonstrated as an

alternative to nitrate injection.11−13 Perchlorate inhibits sulfide
production through multiple mechanisms (Figure 1A),
including competition between perchlorate reducers (PRM)
and SRM for electron donors, and inhibition of SRM by
perchlorate.14 PRM can also couple the oxidation of sulfide to
the reduction of perchlorate, removing sulfide as elemental
sulfur.12

These complex biogeochemical processes are often coupled
with flow and transport processes under reservoir conditions.
Process-based models provide a tool with which to differentiate
the importance of competing processes while at the same time
offering a systematic view that integrates disparate processes
and data sets. Empirical models for reservoir souring have
existed for more than two decades.15,16 The development of
mechanism-based reservoir souring models with a complex
representation of key biogeochemical processes coupled with
multiphase flow simulators, however, has been relatively
recent.10,17,18 An example is UTCHEM,18 a multicomponent
reservoir model that includes a biological souring module for
the simulation of nitrate amendments by explicitly taking into
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account the growth of SRM, hNRM, and NR-SOM.19 To our
knowledge, no process-based models have been developed to
understand perchlorate as an inhibitor of sulfide production. As
a result, the relative importance of individual inhibition
mechanisms involved in the perchlorate inhibition of sulfido-
genesis remains elusive.
The objective of this paper is to understand controlling

mechanisms during souring treatments. Specifically, we aim to
uncover the role of individual mechanisms for perchlorate and
nitrate amendments, teasing out the relative importance of
competition, inhibition, and sulfide reoxidation. To achieve this,
we develop the first model of perchlorate inhibition of
microbial sulfate reduction and validate our reaction networks
for perchlorate and nitrate using data from recent columns
experiments.11 Sulfur isotopes are integrated into the model for
additional constraints on the timing and magnitude of microbial
sulfate reduction.20−22 Sensitivity analysis is used to explore the
role of individual mechanisms in influencing sulfide production.
Lastly, we discuss implications for field treatment and suggest
future directions to constrain and improve modeling of
reservoir souring and souring-treatment processes.

■ MATERIALS AND METHODS
Description of Column Experiments. The modeled

biogeochemical reaction network was validated using column
data from Engelbrektson et al.11 This is the only published set
of column experiments to compare the effectiveness of
perchlorate against nitrate amendments in inhibiting H2S
production and, as such, is the best available data set for our
modeling study. Sealed 50 mL glass syringes were used as flow-
through columns. The columns were packed with a mixture of

50% San Francisco Bay sediment (microbial inoculum) and
50% glass beads (70−100 μm diameter), which resulted in a
porosity of ∼0.33. The injection fluid was water from the San
Francisco Bay (19−33 mM sulfate) with 1 g/L yeast extract
(labile carbon source) and 10 mM of treatment chemical
(sodium nitrate, sodium perchlorate, or no treatment control,
all performed in triplicate). The effect of amendment
concentration was explored by decreasing concentrations to 5
mM for 3 days on day 35 before returning to 10 mM. A total of
two flow regimes were prescribed throughout the experiment
(Figure 2). For the first 28 days, flow was intermittent, with
periods of flow (at a rate of 0.1 mL/min) and no flow. For the
remainder of the experiment (days 29−51), flow was
continuous at 0.025 mL/min. Engelbrektson et al.11 demon-
strated that perchlorate effectively inhibited sulfate reduction.
In contrast, nitrate inhibited sulfate reduction for the first 23
days, after which sulfate reduction continued at significant rates
following the complete consumption of nitrate. Sulfur isotope
ratios of dissolved sulfate samples from each treatment were
reported in standard delta notation relative to the Canyon
Diablo Troilite standard (Rstd = 0.0441216) as δ34S (‰) =
(Rsample/Rstd − 1) × 1000, where R = 34S/32S.

Reactive Transport Modeling. Reactive transport models
(RTM) solve equations that describe coupled fluid flow, mass
transport, and biogeochemical processes in subsurface environ-
ments. RTMs have been applied to problems in geologic
emplacement of high-level nuclear waste,23,24 contaminant
remediation,21,25,26 and geological CO2 sequestration.27−30 A
general reactive transport equation for a chemical species i is as
follows:31
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where the term on the left side is the mass accumulation rate
(mol/s), and the terms on the right side are diffusion and
dispersion, advection terms, and reaction terms: aqueous-phase
reactions, Rj; mineral reactions, Rl; and gas reactions, Rm. Nx
(where x = j, l, or m) represents the total number of reactions
(aqueous, mineral, and gas phase, respectively) that involve i,
and νix represents the stoichiometric coefficient of i associated
with reaction x. Here ϕ is porosity, SL is liquid saturation, Ci is
concentration (mole per cubic meter water), D is the diffusion
and dispersion coefficient (m2/s), and q is the Darcy flux.
In this work, we used the multicomponent, multiphase

reactive-transport simulator, TOUGHREACT,32,33 which used
the integrated finite-difference form of the species mass
conservation equation shown in eq 1. Details of the treatment
of the biogeochemical reactive-transport equations and
coupling with nonisothermal multiphase fluid flow have been
published previously.33−36 We extended TOUGHREACT
applications to modeling isotopic26,37 and biogeochemical
systems34 by explicitly representing the kinetics of individual
sulfate isotopologues, i.e., 32SO4

2− and 34SO4
2−, with a modified

dual Monod rate expression, following the approach taken in
the reactive transport model CRUNCHTOPE.20 The major
bioreduction reactions and microbes represented are shown in
Figure 1. Modeled microbially mediated reactions are divided
into two components: catabolic and anabolic. For each mole of
electron donor and substrate utilized, a fraction, fs, is conserved

Figure 1. Kinetically controlled microbial reactions and the formation
of biomass during (A) perchlorate amendment and (B) nitrate
amendment. PRM, perchlorate reducing microorganisms; SRM, sulfate
reducing microorganisms; hNRM, heterotrophic nitrate reducing
microorganisms; and NR-SOM, nitrate reducing sulfide oxidizing
microorganisms.
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by the microbial biomass for cell synthesis (anabolic), while the
remaining fraction, fe, is used for energy production (catabolic).
Detailed reaction stoichiometries are written based on the
bioenergetics concept38 (Table S1). Kinetics of these reactions
follows Monod formulation:
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+

+ +
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where r (mol/kgw/sec) is the reaction rate (kgw = kg of water),
[Biomass] (mol/kgw) is the concentration of the microbial
biomass, μ (sec−1) is the maximum specific growth rate, Ke
(mol/kgw) is the half saturation (affinity constant) of the
electron donor and acceptor, KInhibitor is the inhibitor constant
(mol/kgw), and m (sec−1) is a decay and mortality constant.
Note that the inhibition term is close to one, meaning no
inhibition effects when KInhibitor ≫ [Inhibitor]. This means that
larger KInhibitor means lower inhibition effects in the system.
Following the general rate expression in Maggi and Riley39

and the recent implementation in a reactive transport model
(CRUNCHTOPE),20 sulfate reduction rates of different
isotopologues are expressed as follows:
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where [SRM] is the concentration of SRM. Equations 3 and 4
follow the general formulation presented in equation 2. When
sulfate coexists with inhibitors such as perchlorate and nitrite,
the inhibition terms in equations 3 and 4 includes constants
KIn

ClO4 and KIn
NO2−, respectively. The fractionation factor (α)

can be calculated as α = μ
μ

34

32

In our simulation, we represent the electron donor (1 g/L
yeast extract) as 20 mM acetate. This is a simplification because
yeast extract is a complex electron donor that can be broken
down into multiple intermediates, and different microbial
populations may have different affinities for these intermediates.
This is analogous to crude oil in a reservoir, which is also a

Figure 2. Model data comparison: (A) no treatment; dashed red line is model output of sulfide concentration when iron minerals are not included.
Dashed black lines (δ34S graphs) show influent sulfate value. (B) Perchlorate treatment; (C) nitrate treatment. Open diamonds are influent data
points, and filled circles are effluent data (error bars are 1σ, n = 3) from Engelbrektson et al.11 Solid red lines are model fits to the data. Dashed blue
lines (sulfate, perchlorate, and nitrate concentration graphs) are model influent values. Gray shaded areas correspond to periods of no flow.
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complex donor. However, without additional experimental data
on intermediates, a simplification is needed, both in this
simulation and in the modeling of oil reservoir souring. Acetate
(and other volatile fatty acids) is often used to model microbial
souring. A simple anaerobic bottle experiment with San
Francisco Bay water, sediment, and yeast extract showed that
1 g/L yeast extract reduced 18.2 mM sulfate, equivalent to ∼20
mM of acetate according to our reaction stoichiometry (Table
S2). Yeast extract typically contains 10−11 wt % N. For 1 g/L
yeast extract, this is equivalent to 7.5 mM N, represented in our
simulation as NH4 (Tables S1 and S2) and used for microbial
growth. Note that NH4 was in excess in all our simulations with
≤4.6 mM consumed.
Results from the column experiment revealed a delay in

sulfide breakthrough in comparison to the δ34S trend,
suggesting the presence of iron mineral−sulfide reactions. We
modeled this sink as reaction with iron minerals (Tables S2 and
S3).20,21,25,44−46 The iron mineralogy in the sediment was not
explicitly determined and is likely to be a combination of iron-
bearing clays and iron (oxyhydr)oxides. For modeling
simplicity, we represented it as a single Fe(OH)3 phase with
an assumed surface area of 40 m2/g and log K of −10.0
(consistent with goethite44). The initial mineral quantity of
0.1% corresponds to the amount of iron contributed by the San
Francisco Bay sediment, as determined by a 6 M hydrochloric
acid leach.47 This combination of parameters provided a
reasonable fit to the data. The reactions represented here
followed previously published reaction networks.20,21,25,46 Rates
of mineral dissolution and precipitation are calculated based on
a rate law derived from transition-state theory.
Model Setup. The columns are modeled as 1D systems of

approximately 0.12 m (height of columns) discretized into 120
grid blocks of 0.001 m. The sequence of flow rates from the
experiments was used in the model. The diffusion coefficient
was set to 1.83 × 10−9 m2/s, within the range of experimental
values.40 We simulate three sets of triplicate columns with
different inlet-fluid composition depending on the type of
treatment (Table S1). All reactions and their kinetic and
thermodynamic parameters are listed in Tables S2 and S3.
The no-treatment column data were reproduced first to

obtain parameters relevant to sulfate reduction, including SRM
growth rate, half-saturation constants, iron−sulfide mineral
kinetics, and isotope fractionation factor. These values were
then used for perchlorate- and nitrate-treatment simulations to
ensure consistency. The nitrate- and perchlorate-column
simulations were fitted to the data by varying parameters
pertaining to hNRM, NR-SOM, and PRM. Gregoire et al.12

showed that perchlorate reducers preferentially use sulfide to
labile carbon as the electron donor but do not grow
significantly in this mechanism. To model this, we used the
same PRM population to mediate both heterotrophic
perchlorate reduction and perchlorate-reduction sulfide oxida-
tion (Tables S2 and S3), with a sulfide inhibition constant
applied to heterotrophic perchlorate reduction (Table S4). For
nitrate, we modeled NRM and NR-SOM separately. For each
group, the reduction of nitrate was split into two parts: (1)
NO3

− → NO2
−, and then (2) NO3

− → N2. This allowed us to
model the inhibitory effect of nitrite on sulfate reduction. No
measurements of initial microbial population sizes were made
by Engelbrektson et al.11 Following the approach of previous
modeling studies,20,21 we started with an initial homogeneous
distribution of biomass at a low concentration (Table S5). Note

that PRM initial biomass was set an order of magnitude lower,
reflecting the lower abundance of PRM in the environment.

■ RESULTS AND DISCUSSION
No-Treatment Columns. In the column experiment

influent sulfate concentrations varied between 19.0 and 33.7
mM (Figure 2), depending on when the batches of water
samples used in the experiment were collected from the San
Francisco Bay.11 The model captured the timing of the
observed effluent sulfate concentrations (Figure 2A), along
with the rise in sulfide concentration data. In general, the
increase in sulfide concentration mirrored the decrease in
sulfate concentration. The fluctuation in sulfate and sulfide
concentrations in the first 30 days is due to the intermittent
flow pattern with periods of no flow. During the shutoff period,
modeled effluent sulfate concentration decreased (the gray
shaded area in Figure 2A) in response to microbial sulfate
reduction and no sulfate influx. When flow was resumed,
effluent sulfate concentrations spiked up because sulfate
reduction rates were relatively low compared to the sulfate
influx. The model captured the rise in δ34S throughout the
experiment. Values of δ34S greater than the influent seawater
signal of 21‰ (dashed black line) correspond to the decrease
in effluent sulfate concentrations relative to influent values and
represent microbial sulfate reduction. SRM preferentially
reduce the lighter 32S, leading to a progressive increase in the
δ34S of remaining sulfate. The kinetic fractionation factor, α,
used in this study was 0.9748, within the range of 0.9579−
0.9870 used in previous studies.20,21,41−43

The data revealed a delay in sulfide breakthrough in
comparison to changes in effluent sulfate and δ34S values
(Figure 2A), interpreted as iron mineral−sulfide reactions.11

Delays in effluent sulfide had previously been observed in other
field20 and column studies21 that emphasized the value of using
δ34S as a proxy for onset of sulfate reduction.20−22 The
observed effluent sulfate and δ34S pointed toward the
occurrence of sulfate reduction as early as the first shutoff
period (days 3−7, Figure 2A). The effluent sulfate concen-
tration decreased by as much as 4.0 mmol/kgw, and δ34S
increased by 4.0‰ by the end of this period. However, no rise
in the effluent sulfide concentration was observed during this
period, suggesting a sink for sulfide within the column. We
modeled this sink as reaction with iron minerals (see the
Methods section and Tables S2 and S320−22,44−46). In the
absence of the iron mineral−sulfide reactions, sulfide break-
through mirrored the changes in effluent sulfate and δ34S, as
shown by the dashed red line in Figure 2.

Perchlorate Columns. Here, we reproduced observed
effluent sulfate, sulfide, δ34S, and perchlorate data. Effluent data
indicated the effectiveness of perchlorate in preventing souring
(Figure 2B). Effluent sulfide was only produced by the model
when influent perchlorate concentration was halved (days 35−
38), and effluent sulfate was also reduced relative to influent
during this period. Effluent perchlorate decreased after 10 days,
indicating significant perchlorate reduction. The departure of
δ34S values from the baseline 21‰ were most noticeable
toward the end of the experiment (maximum of ∼27‰),
suggesting limited SRM activity even when effluent sulfide was
not detected.11

Nitrate Columns. As with the perchlorate treatment,
effluent sulfate concentrations remained similar to influent
concentrations during much of the intermittent flow phase.
However, after day 20, sulfate reduction proceeded at
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detectable rates, as indicated by effluent δ34S and sulfate data.
In contrast to the perchlorate treatment, sulfide production
steadily increased during nitrate treatment after day 30 and
reached a maximum of about 4 mmol/kgw. The model
captured the trends of effluent δ34S, nitrate, sulfate, and sulfide
(Figure 2C). It underpredicted nitrate reduction rates in the
first 5 days; however, it reproduced the data thereafter (Figure
2C). During the intermittent phase, effluent nitrate concen-
trations remained zero, suggesting rapid nitrate utilization.
Observed effluent data suggested that nitrate is a less-effective
inhibitor of sulfide production than perchlorate on a per mole
of electron-acceptor basis, with higher effluent sulfide values
observed in the nitrate experiments. However, it should be
noted that according to our reaction-network stoichiometry
(Table S2) heterotrophic perchlorate reduction consumes 2.22
mol of acetate per mole of perchlorate, whereas heterotrophic
nitrate reduction consumes only 0.50 mol of acetate to reduce 1
mol of nitrate to nitrite and 1.44 mol of acetate to reduce 1 mol
of nitrate all the way to N2. An alternative comparison of the
two chemicals’ effectiveness as biocompetitive electron accept-
ors to sulfate would be to compare them on an electron donor
equivalent basis. The principle aims of our study, however, are
to use the column data to validate our perchlorate reaction
network and to tease out the importance of all the mechanisms,

not just biocompetition, i.e., to also explore the role of
inhibition of sulfate reducers and the role of sulfide reoxidation.

Elucidating Inhibition Mechanisms. A major advantage
of RTMs is their capability to interrogate complex systems and
identify important mechanisms. In the case of reservoir souring
and prevention, this insight is essential to help predict and
explain when and where different treatments can be successful.
For perchlorate treatment, the following scenarios were
explored: (1) no direct inhibitory effect of perchlorate on
sulfate reduction, (2) no sulfide oxidation coupled with
perchlorate reduction (PRSO), and (3) no PRMs. For the
first scenario, we removed the inhibition term in eq 2 while
leaving the remaining parameters the same as in the baseline
perchlorate case shown in Figure 2B and described earlier. For
the second scenario, we removed reactions 4 and 5 from Table
S2. For the third scenario, we removed reactions 3−5 from
Table S2. Effluent sulfate, sulfide, and perchlorate concen-
trations from each of the scenarios were compared to the
baseline perchlorate case. Simulation results (Figure 3A)
showed that suppressing sulfide oxidation (no PRSO) made
only minor differences to modeled results, with sulfide
increasing toward the end of the simulation compared with
the baseline. In comparison, removing all PRM activity resulted
in much greater microbial sulfate reduction and sulfide
generation than that shown in the baseline scenario and

Figure 3. (A) Factorial analysis of the impact of different perchlorate-related mechanisms on sulfate reduction. (B) Sensitivity analysis of the
perchlorate inhibition constant (KIn) of the sulfate reducers. (C) Sensitivity analysis of the perchlorate inhibition constant (KIn) of the sulfate
reducers in the absence of perchlorate reducers. Gray shaded areas correspond to periods of no flow.
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observed experimental data. The model therefore suggests that
competition between the PRM and SRM for limited electron
donors (biocompetition) was the dominant effect. Removing
the perchlorate inhibition term did have a minor impact on
modeled sulfate values and peak sulfide values, but in this case,
our modeling suggested that biological competition for electron
donors was stronger than the inhibition effect.
It is important to compare our model results with the

observed changes in microbial composition in the experiments
themselves. Engelbrektson et al.11 performed similarity
percentage (SIMPER) tests to determine the operational
taxonomic units that contributed to the top 10% of difference
between each set of treatment samples and the initial inoculum.
These analyses showed that perchlorate did enrich for various
members of Firmicutes and Proteobacteria; both of these phyla
include previously described (per)chlorate reducers. Specifi-
cally, Helicobacteraceae were enriched relative to the no-
treatment control; this family includes the known perchlorate
reducer Wolinella succinogenes. Perchlorate also inhibited known
sulfate reducers (Desulfobacteraceae, Desulfovibrionaceae, and
Desulfomicrobiaceae) compared to the no-treatment control,
demonstrating that inhibition clearly did play a role. Finally,
SIMPER analyses suggested that perchlorate enriched for
Desulfobulbaceae and Desulfuromonadaceae compared with
the no-treatment control. These organisms are known to be
capable of sulfide oxidation and elemental sulfur cycling
(oxidation, reduction, and disproportionation). There is
therefore microbial evidence from Engelbrektson et al.11 for
all three mechanisms of perchlorate impacting microbial sulfate
reduction; our modeling suggests that biocompetition was the
dominant mechanism, with relatively minor contributions from
sulfide oxidation and direct inhibition of sulfate reducers.
To further investigate the role of direct inhibition of

perchlorate on sulfate reduction, we conducted sensitivity
analysis on the inhibition constant of 2 and 30 mmol/kgw,
based on the range determined experimentally by Carlson et
al.14 for a marine enrichment culture and the model organism
Desulfovibrio alaskensis G20. Through experiments with wild

type, transposon pools, and rex mutants, these authors’ results
support the hypothesis that perchlorate directly inhibits the
central sulfate reduction pathway. Note that the best-fit
inhibition constant from our modeling (Figure 2B) was 30
mmol/kgw, the upper value in this range. Simulation results
showed that the higher the inhibition constant the lower the
inhibition impacts of perchlorate on sulfate reduction, resulting
in more effluent sulfide produced compared to the case with
the lower inhibition constant (Figure 3B). Also due to the
higher degree of sulfate reduction, less of the electron donor
was available for perchlorate reduction, resulting in slightly
higher effluent perchlorate.
It should be noted that perchlorate reducers are not as

abundant as sulfate reducers, and little is currently known about
the perchlorate reducing capacity of microbial populations in oil
reservoirs.13 If this capacity is low, then the role of direct
inhibition of SRM by perchlorate will be even more critical. To
explore this, we ran simulations with no PRM (and therefore
no perchlorate reduction) and with inhibition constants set at 2
and 30 mmol/kgw (Figure 3C). The scenario with a low
inhibition constant and no PRM activity effectively suppressed
sulfidogenesis and represented the ideal situation, i.e., the
delivery of an effective SRM inhibitor that can persist without
being degraded. The results show the importance of selecting
inhibitor dose rates based on the knowledge of the specific
microbial community as well as site logistics for dosing. They
also highlight the need for measuring perchlorate inhibition
constants for both pure cultures of SRM and oil reservoir
communities to make more accurate predictions.
For nitrate treatment, the following scenarios were explored

to fully appreciate the role of individual mechanisms: (1) no
direct inhibitory effect of nitrite on sulfate reduction, (2) no
sulfide oxidation by NR-SOM, and (3) no hNRMs. Simulation
results suggested that the main mechanism for inhibiting sulfate
reduction in these columns was the direct inhibitory effect of
nitrite produced from heterotrophic nitrate reduction (Figure
4A). Microbial community analysis11 showed that nitrate
addition did inhibit a known family of SRM (Desulfobacter-

Figure 4. (A) Factorial analysis of the impact of different nitrate-related mechanisms on sulfate reduction. (B) Sensitivity analysis of the nitrite-
inhibition constant (KIn) of the sulfate reducers. Gray shaded areas correspond to periods of no flow.
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aceae) relative to no-treatment controls. It should be noted that
nitrite was not directly measured in the experiments by
Engelbrektson et al.,11 and this limitation should be kept in
mind when interpreting model results. To further explore the
impact of nitrite inhibition on sulfate reduction, we conducted
sensitivity analysis using the inhibition constant (nitrite on
sulfate reduction) of 0.1 and 9.3 mmol/kgw based on the range
determined experimentally by Carlson et al.14 Note that the
best-fit inhibition constant from our first round of modeling
(Figure 2C) was 0.1 mmol/kgw, the lowest value of this range.
Although the inhibition constant values for nitrite are
approximately an order of magnitude lower than for
perchlorate, similar trends could be observed: the higher the
inhibition constant, the lower the toxicity impact of nitrite on
sulfate reduction. As a result, more effluent sulfide is produced
compared to the case with a lower inhibition constant (Figure
4B). Previous column experiments,9,48−50 have also suggested
an important role for nitrite inhibition. However, the
generation of nitrite is expected to vary depending on the
presence of specific nitrate reducing populations, the relative
activities of microbial nitrite generation and consumption, and
the abiotic reactivity of nitrite with the reservoir mineral matrix.
Therefore, the extent of nitrite inhibition is likely reservoir-
specific.
Microbial-community analysis by Engelbrektson et al.11

showed that nitrate addition produced the most distinctive
change in the columns, stimulating Proteobacteria, Firmicutes
and Tenericutes, all of which contain known nitrate reducers.
Simulation results for the case of no sulfide reoxidation were
the same as the baseline case (Figure 4A), suggesting that
hNRM were more dominant than NR-SOM in our model.
However, model results did show that if hNRM are removed or
inactive, NR-SOMs can dominate (Figure 4A). In this
modeling scenario, initial sulfate reduction occurred, with
SRM reducing sulfate to sulfide and NR-SOM then reoxidizing
sulfide to sulfate. In our particular simulation, sufficient nitrite
was produced by NR-SOM to then inhibit sulfate reduction,
limiting the sulfide produced and hence nitrate consumed by
NR-SOM. A field-relevant scenario where NR-SOM has been
shown to outcompete hNRM is when nitrate was added to a
system that already contained sulfide.51,52 In this case, hNRM
are inhibited by sulfide, although we do not model this
inhibition effect in the current study because sulfide
concentrations only start to increase toward the end of the
nitrate experiment and remain relatively low. Theoretically,
these microbial dynamics could lead to community succession
following the addition of nitrate to remediate a soured
reservoir.
Oil-reservoir biogeochemistry is complicated by the presence

of multiple carbon sources, potentially resulting in the niche
separation of different functional groups (e.g., hNRM and
SRM) using different electron donors. Yeast extract is also a
complex donor and therefore offers similar experimental
advantages to crude oil when compared with more defined
donors (e.g., volatile fatty acids) and is also more rapidly
degraded than crude oil, making it attractive for proof-of-
concept studies. However, care needs to be taken when
extrapolating results to crude oil systems, and follow-up
experiments are clearly warranted. Each system has its
advantages and disadvantages, leading to souring experiments
in the literature with a range of electron donors.8,9,48−50,53,54

This range of donors and the complexity of the microbial
interactions may help to explain why previous studies have

suggested different dominant mechanisms8,9,48−50,53,54 and why
it is difficult to predict the efficacy of nitrate in the field. The
efficacy of an inhibitor relies on its ability to persist in the
reservoir at effective concentrations over a bioactive zone
defined by temperature and electron donor availability. If the
inhibitor is consumed but there is still sufficient electron donor
available to reduce sulfate, then the inhibitor will simply push
the zone of sulfidogenesis further into the reservoir.54,55

Future Modeling Directions. The examples presented
here illustrate how models can be used to gain insight into the
competing mechanisms controlling reservoir souring, preven-
tion, and treatment. This is an important use of models, and the
type of approach we outline should be applied more widely in
souring studies to thoroughly test and explore our under-
standing of processes. This will allow souring models to be
more than a predictive tool, generating testable hypotheses and
highlighting areas where we currently need greater under-
standing and model-parameter constraints.
It should be noted that our current model does have

limitations. A fundamental question in modeling is the level of
complexity required to represent realistic systems. Overly
simple representations do not always capture the dynamics of a
system, while too much complexity can lead to a large number
of parameters and processes that would lead to challenges in
realistically constraining the system. In the interest of
improving the accuracy of simulating field-scale reservoir
souring and predicting the impacts of different treatment and
prevention options, we look to the caveats of the current model
and suggest focus areas worthy of exploring in more
complexity.
Here, we assumed that the diverse sulfate reducing

community can be effectively represented by a single sulfate
reducing microorganism characterized by a single set of
effective kinetic parameters: maximum growth rate and half-
saturation constant for electron acceptors and donors. These
kinetics-parameter values are assumed to be constant across all
treatments (no treatment and nitrate and perchlorate treat-
ments). This does not necessarily represent a sulfate reducing
community likely to emerge in situ, which can be made up of
different sulfate reducing families, each with different
physiologies. Analysis of the microbial community within the
columns by Engelbrektson et al.11 revealed that different
treatments can select for or inhibit different microbial taxa. To
better capture the microbial community dynamics, we look
toward incorporating a trait-based modeling approach, where
microbial communities are divided into metabolically and
functionally important groups (guilds) defined by a collection
of physiological traits.56,57 These traits, and the biochemical
trade-offs between traits, determine the fitness of the guilds as a
function of the environment and species interactions.
Secondly, the columns modeled in this study were

isothermal, which is unlikely to be the case for reservoir
environments where the injection of relatively cold water can
create large temperature gradients. SRM catalyze the reduction
of sulfate to sulfide via the action of intracellular enzymes. Due
to the temperature sensitivity of the enzymes, SRM activities
are impacted by the reservoir thermal regime. SRM have been
classified according to their temperature optima into three
groups (mesophiles (20−40 °C), thermophiles (40−80 °C),
and hyperthermophiles (80−113 °C)) in a recent modeling
study.18 Temperature functions that modulate SRM growth
rate58,59 and trait-based modeling are therefore the next steps in
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modeling complexity worthy of exploration in the context of
microbial souring.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.est.6b00081.

Tables showing aqueous chemical species concentrations
in Initial Water (IW) and Amendment Water (AW) for
all three modeling cases, microbial and iron sulfide
reactions modeled, kinetic and thermodynamic parame-
ters of reactions, inhibition constants of reactions, and
initial biomass concentrations. Additional details on
microbial reactions and energetics and thermodynamic
limitations on microbial reaction rates. (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: yiweicheng@lbl.gov.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was funded by the Energy Biosciences Institute. We
acknowledge the associate editor, Dr. T. David Waite, for
handling this manuscript and the four anonymous reviewers for
their constructive reviews that have improved the manuscript.

■ REFERENCES
(1) Machel, H. G. Bacterial and thermochemical sulfate reduction in
diagenetic settings − old and new insights. Sediment. Geol. 2001, 140,
143−175.
(2) Fuller, D. C.; Suruda, A. J. Occupationally related hydrogen
sulfide deaths in the United States from 1984 to 1994. J. Occup.
Environ. Med. 2000, 42, 939−942.
(3) Vance, I.; Thrasher, D. R. Reservoir souring mechanisms and
prevention in Petroleum Microbiology; Ollivier, B., Magot, M., Eds.;
ASM Press: Washington, DC, 2005; pp 123−142.
(4) Semcrude. Rose Rock Daily Price Bulletin. http://
crudeoilpostings.semgroupcorp.com (accessed Jan 2011).
(5) Voordouw, G.; Grigoryan, A. A.; Lambo, A.; Lin, S.; Park, H. S.;
Jack, T. R. Sulfide remediation by pulsed injection of nitrate into a low
temperature Candian heavy oil reservoir. Environ. Sci. Technol. 2009,
43, 9512−9518.
(6) Hubert, C. Microbial ecology of oil reservoir souring and its
control by nitrate injection. In Handbook of Hydrocarbon and Lipid
Microbiology; Timmis, K., Ed.; Springer: Berlin, Germany, 2010; pp
2753−2766.
(7) Gieg, L.; Jack, T.; Foght, J. Biological souring and mitigation in
oil reservoirs. Appl. Microbiol. Biotechnol. 2011, 92, 263−282.
(8) Callbeck, C. M.; Agrawal, A.; Voordouw, G. Acetate production
from oil under sulfate-reducing conditions in bioreactors injected with
sulfate and nitrate. Appl. Environ. Microbiol. 2013, 79, 5059−5068.
(9) Hubert, C.; Voordouw, G. Oil field souring control by nitrate-
reducing Sulfurospirillum spp. that outcompete sulfate reducing
bacteria for organic electron donors. Appl. Environ. Microbiol. 2007,
73 (8), 2644−2652.
(10) Haghshenas, M.; Sepehrnoori, K.; Bryant, S.; Farhadinia, M.
Modeling and simulation of nitrate injection for reservoir souring
remediation. SPE International Symposium on Oilfield Chemistry 2011,
DOI: 10.2118/141590-MS.
(11) Engelbrektson, A.; Hubbard, C. G.; Piceno, Y.; Boussina, A.; Jin,
Y. T.; Wong, H.; Carlson, H.; Conrad, M. E.; Anderson, G.; Coates, J.
D.; Tom, L. M. Inhibition of microbial sulfate reduction in a flow-

through column system by (per)chlorate treatment. Front. Microbiol.
2014, DOI: 10.3389/fmicb.2014.00315.
(12) Gregoire, P.; Engelbrektson, A.; Hubbard, C. G.; Metlagel, Z.;
Csencsits, R.; Auer, M.; Conrad, M. E.; Thieme, J.; Northrup, P.;
Coates, J. D. Control of sulfidogenesis through bio-oxidation of H2S
coupled to (per)chlorate reduction. Environ. Microbiol. Rep. 2014, 6,
558.
(13) Liebensteiner, M. G.; Tsesmetzis, N.; Stams, A. J.; Lomans, B. P.
Microbial redox processes in deep subsurface environments and the
potential application of (per)chlorate in oil reservoirs. Front. Microbiol.
2014, 5, 428.
(14) Carlson, H.; Kuehl, J.; Hazra, A.; Justice, N.; Stoeva, M.;
Sczesnak, A.; Mullan, M.; Iavarone, A.; Engelbrektson, A.; Price, M.;
Deutschbauer, A.; Arkin, A.; Coates, J. Mechanisms of direct inhibition
of the respiratory sulfate-reduction pathway by (per)chlorate and
nitrate. ISME J. 2015, 9, 1−11.
(15) Ligthelm, D. J.; de Boer, R. B.; Brint, J. F.; Schulte, W. M.
Reservoir Souring: An Analytical Model for H2S Generation and
Transportation in an Oil Reservoir Owing to Bacterial Activity. Paper
SPE 23141. In Proceedings of Offshore Europe, Aberdeen, Scotland,
Sept 3−6 1991; Society of Petroleum Engineers: Richardson, TX,
1991.
(16) Eden, B.; Laycock, P. J.; Fielder, M. Oilfield Reservoir Souring.
HSE Books: Suffolk, England, 1993.
(17) Coombe, D.; Jack, T.; Voordouw, G.; Zhang, F.; Clay, B.; Miner,
K. Simulation of Bacterial Souring Control in an Albertan Heavy Oil
Reservoir. J. Can. Petrol. Technol. 2010, 49, 19−26.
(18) Farhadinia, M. A.; Bryant, S. L.; Sepehrnoori, K.; Delshad, M.
Development and implementation of a multidimensional reservoir
souring module in a chemical flooding simulator. Pet. Sci. Technol.
2010, 28 (6), 535−546.
(19) Haghshenas, M.; Sepehrnoori, K.; Bryant, S.; Farhadinia, M. A.
Modeling and simulation of nitrate injection for reservoir souring
remediation. Soc. Petrol. Eng. J. 2012, 17, 817−827.
(20) Druhan, J. L.; Steefel, C. I.; Molins, S.; Williams, K. H.; Conrad,
M. E.; DePaolo, D. J. Timing the onset of sulfate reduction over
multiple subsurface acetate amendments by measurement and
modeling of sulfur isotope fractionation. Environ. Sci. Technol. 2012,
46 (16), 8895−8902.
(21) Druhan, J. L.; Steefel, C. I.; Conrad, M. E.; DePaolo, D. J. A
large column analog experiment of stable isotope variations during
reactive transport: I. A comprehensive model of sulfur cycling and δ34S
fractionation. Geochim. Cosmochim. Acta 2014, 124, 366−393.
(22) Hubbard, C. G.; Cheng, Y.; Engelbrekston, A.; Druhan, J.; Li, L.;
Ajo-Franklin, J.; Coates, J. D.; Conrad, M. E. Isotopic insights into
microbial sulfur cycling in oil reservoirs. Front. Microbiol., 2014,
5(480), DOI:10.3389/fmicb.2014.00480.
(23) Sonnenthal, E.; Ito, A.; Spycher, N.; Yui, M.; Apps, J.; Sugita, Y.;
Conrad, M.; Kawakami, S. Approaches to modeling coupled thermal,
hydrological, and chemical processes in the Drift Scale Heater Test at
Yucca Mountain. International Journal of Rock Mechanics and Mining
Sciences. 2005, 42, 698−719.
(24) Spycher, N. F.; Sonnenthal, E. L.; Apps, J. A. Fluid flow and
reactive transport around potential nuclear waste emplacement tunnels
at Yucca Mountain, Nevada. J. Contam. Hydrol. 2003, 62−63, 653−
673.
(25) Li, L.; Steefel, C. I.; Kowalsky, M. B.; Englert, A.; Hubbard, S. S.
Effects of physical and geochemical heterogeneities on mineral
transformation and biomass accumulation during biostimulation
experiments at Rifle, Colorado. J. Contam. Hydrol. 2010, 112, 45−63.
(26) Wanner, C.; Sonnenthal, E. Assessing the control on the
effective kinetic Cr isotope fractionation factor: A reactive transport
approach. Chem. Geol. 2013, 337−338, 88−98.
(27) Aradot́tir, E. S. P.; Sonnenthal, E. L.; Björnsson, G.; Jońsson, H.
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