
UC San Diego
Technical Reports

Title
New directions in traffic measurement and accounting

Permalink
https://escholarship.org/uc/item/8rx3b221

Authors
Estan, Cristian
Varghese, George

Publication Date
2002-02-11

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8rx3b221
https://escholarship.org
http://www.cdlib.org/

New Diretions in TraÆ Measurement and Aounting

Cristian Estan and George Varghese

February 8, 2002

Abstrat

Aurate network traÆ measurement is required for aounting, bandwidth provisioning and detet-

ing DoS attaks. These appliations see the traÆ as a olletion of ows they need to measure. As

link speeds and the number of ows inrease, keeping a ounter for eah ow is too expensive (using

SRAM) or slow (using DRAM). The urrent state-of-the-art methods (Ciso's sampled NetFlow) whih

log periodially sampled pakets are slow, inaurate and resoure-intensive. Previous work showed that

at di�erent granularities a small number of \heavy hitters" aounts for a large share of traÆ. Our

paper introdues a paradigm shift by onentrating on measuring only large ows | those above some

threshold suh as 0.1% of the link apaity.

We propose two novel and salable algorithms for identifying the large ows: sample and hold and

multistage �lters, whih take a onstant number of memory referenes per paket and use a small amount

of memory. If M is the available memory, we show analytially that the errors of our new algorithms are

proportional to 1=M ; by ontrast, the error of an algorithm based on lassial sampling is proportional

to 1=

p

M , thus providing muh less auray for the same amount of memory. We also desribe further

optimizations suh as early removal and onservative update that further improve the auray of our

algorithms, as measured on real traÆ traes, by an order of magnitude. Our shemes allow a new form

of aounting alled threshold aounting in whih only ows above a threshold are harged by usage

while the rest are harged a �xed fee. Threshold aounting generalizes usage-based and duration based

priing.

1 Introdution

If we're keeping per-ow state, we have a saling problem, and we'll be traking millions of ants

to trak a few elephants. | Van Jaobson, End-to-end Researh meeting, June 2000.

Measuring and monitoring network traÆ is required to manage today's omplex Internet bakbones

[9, 5℄. Suh measurement information is essential for short-term monitoring (e.g., deteting hot spots and

denial-of-servie attaks [15℄), longer term traÆ engineering (e.g., rerouting traÆ and upgrading seleted

links[9℄), and aounting (e.g., to support usage based priing[6℄).

The standard approah advoated by the Real-Time Flow Measurement (RTFM) [4℄ Working Group of

the IETF is to instrument routers to add ow meters at either all or seleted input links. Today's routers

o�er tools suh as NetFlow [17℄ that give ow level information about traÆ.

The main problem with the ow measurement approah is its lak of salability. Measurements on MCI

traes as early as 1997 [21℄ showed over 250,000 onurrent ows. More reent measurements in [8℄ using

a variety of traes show the number of ows between end host pairs in a one hour period to be as high as

1

1.7 million (Fix-West) and 0.8 million (MCI). Even with aggregation, the number of ows in 1 hour in the

Fix-West used by [8℄ was as large as 0.5 million.

It an be feasible for ow measurement devies to keep up with the inreases in the number of ows (with

or without aggregation) only if they use the heapest memories: DRAMs. Updating the ounters in DRAM

is already impossible with today's line speeds and the gap between DRAM speeds (improving 7-9% per year)

and link speeds (improving 100% per year) is only going to inrease. Ciso NetFlow [17℄, whih keeps its

ow ounters in DRAM solves this problem by sampling: only the sampled pakets result in updates. But

this sampling has problems of its own (as we show later) sine it a�ets the auray of the measurement

data.

Despite the large number of ows, a ommon observation found in many measurement studies (e.g., [9, 8℄)

is that a small perentage of ows aounts for a large perentage of the traÆ. [8℄ shows that the top 9%

of the ows between AS pairs aounts for 90% of the traÆ in bytes between all AS pairs.

For many appliations, knowledge of these large ows is most important. [8℄ suggests that salable

di�erentiated servies ould be ahieved by providing seletive treatment only to a small number of large

ows or aggregates. [9℄ underlines the importane of knowledge of \heavy hitters" for deisions about network

upgrades and peering. [6℄ proposes a usage sensitive billing sheme that relies on exat knowledge of the

traÆ of large ows but only samples of the traÆ of small ows.

We onlude that it is not feasible to aurately measure all ows on high speed links, but many applia-

tions an bene�t from aurately measuring the few large ows that dominate the traÆ mix. This an be

ahieved by traÆ measurement devies that use small fast memories. However, how does the devie know

whih ows to trak? If one keeps state for all ows to identify the heavy hitters, our purpose is defeated.

Thus a reasonable goal is to produe an algorithm that identi�es the heavy hitters using memory that

is only a small onstant larger than what we need to trak the heavy hitters. This is the entral question

addressed by this paper. We present two algorithms that identify the large ows using a small amount

of state. Further, we have low worst ase bounds on the amount of per paket proessing, making our

algorithms suitable for use in high speed routers.

1.1 Problem de�nition

A ow is generially de�ned by an optional pattern (whih de�nes whih pakets we will fous on) and an

identi�er (values for a set of spei�ed header �elds)

1

. Flow de�nitions vary with appliations: for example

for a traÆ matrix one ould use a wildard pattern and identi�ers de�ned by distint soure and destination

network numbers. On the other hand, for identifying TCP denial of servie attaks one ould use a pattern

that fouses on TCP pakets and use the destination IP address as a ow identi�er.

Large ows are de�ned as those that send more than a given threshold (say 1% of the link apaity) during

a given measurement interval (1 seond, 1 minute or even 1 hour). Appendix C gives an alternative de�nition

of large ows based on leaky buket desriptors, and investigates how our algorithms an be adapted to this

de�nition.

An ideal algorithm reports, at the end of the measurement interval, the ow IDs of all the ows that

exeeded the threshold and their exat size. There are three ways in whih the result an be wrong: it

might omit some of the large ows, it might erroneously add some small ows to the report or it might give

an inaurate estimate of the traÆ of some large ows. We all the large ows that evade detetion false

negatives, and the small ows that are wrongly inluded false positives.

1

We an also generalize by allowing the identi�er to be a funtion of the header �eld values (e.g., using pre�xes instead of

addresses based on a mapping using route tables)

2

Note that the minimum amount of memory required by an ideal algorithm is the inverse of the threshold;

for example, there an be at most 100 ows that use more than 1% of the link. We will measure the

performane of an algorithm by its memory (ompared to that of the ideal algorithm), and the probability

of false negatives and false positives.

1.2 Motivation

Our algorithms for identifying large ows an potentially be used to solve many problems. Appliations we

envisage inlude:

� Salable Threshold Aounting: The two poles of priing for network traÆ are usage based (e.g.,

a prie per byte for eah ow) or duration based (e.g., a �xed prie based on duration of aess or a

�xed prie per month, regardless of how muh the ow transmits). While usage-based priing [14, 20℄

has been shown to improve overall utility by providing inentives for users to redue traÆ, usage based

priing in its most omplete form is not salable beause we annot trak all ows at high speeds. We

suggest, instead, a sheme where we measure all aggregates that are above z% of the link; suh traÆ

is subjet to usage based priing, the remaining traÆ is subjet to duration based priing. By varying

z from 0 to 100, we an move from usage based priing to duration based priing. More importantly,

for reasonably small values of z (say 1%) threshold aounting an o�er a ompromise between the

two extremes that is salable and yet o�ers almost the same utility as usage based priing. [1℄ o�ers

experimental evidene based on the INDEX experiment that suh threshold priing ould be attrative

to both users and ISPs.

2

.

� Real-time TraÆ Monitoring: Many ISPs monitor their bakbones to look for hot-spots. One

a hot-spot is deteted one would want to identify the large aggregates that ould be rerouted (using

MPLS tunnels or new routes through reon�gurable optial swithes) to alleviate ongestion. Also

ISPs might want to monitor traÆ to detet (distributed) denial of servie attaks. Sudden inreases

in the traÆ sent to ertain destinations (the vitims) an indiate an ongoing attak. [15℄ proposes a

mehanism that reats to them as soon as they are deteted. In both these settings, it may be suÆient

to fous on ows above a ertain traÆ threshold.

� Salable Queue Management: As we move further down the time sale, there are other appliations

that would bene�t from identifying large ows. Sheduling mehanisms aiming to ensure (weighted)

max-min fairness (or an approximation thereof), need to be able to detet the ows sending above their

fair rate and penalize them. Keeping per ow state only for these ows does not a�et the fairness

of the sheduling and an aount for substantial savings. This problem is atually more ompliated

beause the de�nition of a non-onformant ow an depend on round-trip delays as well. Several papers

address this issue inluding [10℄. We do not address this appliation further in the paper, exept to

note that our tehniques may be useful as a omponent in solutions to this problem.

The rest of the paper is organized as follows. We desribe related work in Setion 2, desribe our

main ideas in Setion 3, and provide a theoretial analysis in Setion 4. We theoretially ompare our

algorithms with NetFlow in Setion 5. After showing how to dimension our algorithms in Setion 6, we

desribe experimental evaluation on traes in Setion 7. We end with implementation issues in Setion 8

and onlusions in Setion 9.

2

Besides [1℄, a brief referene to a similar idea an be found in [20℄. However, neither paper proposes a orresponding

mehanism to implement the idea at bakbone speeds. [6℄ o�ers a mehanism to implement threshold aounting that is

suitable if the timesale for billing is long.

3

2 Related work

The primary tool used for ow level measurement by IP bakbone operators is Ciso NetFlow [17℄ (see

Appendix E for a more detailed disussion). NetFlow keeps per ow state in a large, slow DRAM. Basi

NetFlow has two problems: i) Proessing Overhead: updating the DRAM slows down the forwarding

rate; ii) Colletion Overhead: the amount of data generated by NetFlow an overwhelm the olletion

server or its network onnetion. [9℄ reports loss rates of up to 90% using basi NetFlow.

The proessing overhead an be alleviated using sampling: per-ow ounters are inremented only for

sampled pakets. We show later that sampling introdues onsiderable inauray in the estimate; this is

not a problem for measurements over long periods (errors average out) and if appliations do not need exat

data. However, we will show that sampling does not work well for appliations that require true lower bounds

on ustomer traÆ (e.g., it may be infeasible to harge ustomers based on estimates that are larger than

atual usage) and for appliations that require aurate data at small time sales (e.g., billing systems that

harge higher during ongested periods).

The data olletion overhead an be alleviated by having the router aggregate ows (e.g., by soure and

destination AS numbers) as direted by a manager. However, [8℄ shows that even the number of aggregated

ows is very large. For example, olleting paket headers for Code Red traÆ on a lass A network [16℄

produed 0.5GB per hour of ompressed NetFlow data and aggregation redued this data only by a fator

of 4. Tehniques desribed in [6℄ an be used to redue the olletion overhead at the ost of further errors.

However, it an onsiderably simplify router proessing to only keep trak of heavy-hitters (as in our paper)

if that is what the appliation needs.

Many paper address the problem of mapping the traÆ of large IP networks. [9℄ deals with orrelating

measurements taken at various points to �nd spatial traÆ distributions; the tehniques in our paper an

be used to omplement their methods. [5℄ desribes a mehanism for identifying paket trajetories in the

bakbone, not identifying the networks generating the traÆ.

Bloom �lters [2℄ and stohasti fair blue [10℄ use similar but di�erent tehniques to our parallel multistage

�lters to ompute di�erent metris (set intersetions and drop probabilities). Gibbons and Matias [11℄

onsider synopsis data strutures that use small amounts of memory to approximately summarize large

databases. They de�ne ounting samples that are similar to our sample and hold algorithm. However, we

ompute a di�erent metri, need to take into aount paket lengths and have to size memory in a di�erent

way. In [7℄, Fang et al look at eÆient ways of exatly ounting the number of appearanes of popular items

in a database. Their multi-stage algorithm is similar to the multistage �lters we propose. However, they use

sampling as a front end before the �lter and use multiple passes. Thus their �nal algorithms and analyses

are very di�erent from ours.

3 Our solution

Beause our algorithms use an amount of memory that is a onstant fator larger than the (relatively small)

number of heavy-hitters, our algorithms an be implemented using on-hip or o�-hip SRAM to store ow

state. We assume that at eah paket arrival we an a�ord to look up a ow ID in the SRAM, update the

ounter(s)

3

alloate a new entry if there is no entry assoiated with the urrent paket.

The biggest problem is to identify the large ows. Two simple approahes to identifying large ows

suggest themselves immediately. First, when a paket arrives with a ow ID not in the ow memory, we

3

Furthermore, the improvement presented in Appendix E that an be applied to NetFlow and our algorithms inreases by

an order of magnitude the amount of time we an spend on a paket

4

ould make plae for the new ow by removing the ow with the smallest measured traÆ (i.e., smallest

ounter). It is easy, however, to provide ounter examples where a large ow is not measured beause it

keeps being expelled from the ow memory before its ounter beomes large enough.

A seond approah is to use lassial random sampling. Random sampling (similar to sampled NetFlow

exept using a smaller amount of SRAM) provably identi�es large ows. We show, however, in Table 1 that

random sampling introdues a very high relative error in the measurement estimate that is proportional to

1=

p

M , where M is the amount of SRAM used by the devie. Thus one needs very high amounts of memory

to redue the inauray to aeptable levels.

The two most important ontributions of this paper are two new algorithms for identifying large ows:

Sample and Hold (Setion 3.1) and Multistage Filters (Setion 3.2). Their performane is very similar, the

main advantage of sample and hold being implementation simpliity and for multistage �lters a slightly

higher auray. In ontrast to random sampling, the relative errors of our two new algorithms sale with

1=M , whereM is the amount of SRAM. This allows our algorithms to provide muh more aurate estimates

for the same amount of memory than random sampling. In Setion 3.3 we present improvements to the two

algorithms that further improve their auray on atual traes (Setion 7). We start by desribing the main

ideas behind these shemes.

3.1 Sample and hold

Base Idea: The simplest way to identify large ows is through sampling but with the following twist. As

with ordinary sampling, we sample eah paket with a probability. If a paket is sampled and the ow it

belongs to has no entry in the ow memory, a new entry is reated. However, after an entry is reated for a

ow, unlike in sampled NetFlow, we update the entry for every subsequent paket belonging to the ow as

shown in Figure 1.

Thus one a ow is sampled a orresponding ounter is held in a hash table in ow memory till the end

of the measurement interval. While this learly requires proessing (looking up the ow entry and updating

a ounter) for every paket (unlike Sampled NetFlow), we will show that the redued memory requirements

allow the ow memory to be in SRAM instead of DRAM. This in turn allows the per-paket proessing to

sale with line speeds.

Let p be the probability with whih we sample a byte

4

. Choosing a high enough value for p guarantees

that ows above the threshold are very likely to be deteted. Inreasing p too muh an ause too many

false positives (small ows �lling up the ow memory). The advantage of this sheme is that it is easy to

implement and yet gives aurate measurements with very high probability.

Preliminary Analysis: The following example illustrates the method and the analysis more onretely.

Suppose we wish to measure the traÆ sent by all the ows that take over 1% of the link apaity in a

measurement interval. There are at most 100 suh ows that take over 1%. Instead of making our ow

memory have just 100 loations, we will allow oversampling by a fator of 100 and keep 10; 000 loations.

We wish to sample eah byte with probability p suh that the average number of samples is 10; 000. Thus if

C bytes an be transmitted in the measurement interval, p = 10; 000=C.

For the error analysis, onsider a ow F that takes 1% of the traÆ. Thus F sends more than C=100

bytes. Sine we are randomly sampling eah byte with probability 10; 000=C, the probability that F will

not be in the ow memory at the end of the measurement interval (the probability of a false negative)

is (1 � 10000=C)

C=100

whih is very lose to e

�100

. Notie that the fator of 100 in the exponent is the

4

We atually sample pakets, but the sampling probability depends on paket sizes. The sampling probability for a paket

of size s is p

s

= 1� (1� p)

s

. This an be looked up in a preomputed table or approximated by p

s

= p � s.

5

F3 2

F1 3

F1 F1 F2 F3 F2 F4 F1 F3 F1

Entry updated

Sampled packet (probability=1/3)

Entry created

Transmitted packets

Flow memory

Figure 1: The leftmost paket with ow label F1 arrives �rst at the router. After an entry is reated for a

ow (solid line) the ounter is updated for all its pakets (dotted lines)

All

packets
Every xth Update entry or

create a new one
Large flow

packet

Large reports to

management station

Sampled NetFlow

Sample and hold

memory

Yes

No

Update existing entry

Create

Small flow
p ~ size

Pass with
probability

management station

Small reports to

new entry

memory
All packets

Has entry?

Figure 2: Sampled NetFlow ounts only sampled pakets, sample and hold ounts all after entry reated

oversampling fator. Better still, the probability that ow F is in the ow memory after sending 5% of its

traÆ is, using a similar analysis, 1� e

�5

whih is greater than 99% probability. Thus with 99% probability

the reported traÆ for ow F will be at most 5% below the atual amount sent by F .

The analysis an be generalized to arbitrary threshold values; the memory needs sale inversely with the

threshold perentage and diretly with the oversampling fator. Notie also that the analysis assumes that

there is always spae to plae a sample ow not already in the memory. Setting p = 10; 000=C ensures that

the average number of ows sampled is no more than 10,000 but some intervals an sample more pakets.

However, the distribution of the number of samples is binomial with a small standard deviation equal to

the square root of the mean. Thus, adding a few standard deviations to the memory estimate (e.g., a total

memory size of 10,300) makes it extremely unlikely that the ow memory will ever overow.

When ompared to Ciso's sampled NetFlow our idea has three signi�ant di�erenes depited in Figure 2.

Most importantly, we sample only to deide whether to add a ow to the memory; from that point on, we

update the ow memory with every byte the ow sends. As shown in setion 5 this will make our results

muh more aurate. Seond, our sampling tehnique avoids paket size biases unlike NetFlow whih samples

6

������������

Packet with
flow ID F

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

All Large?
Memory

Flow

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
���������������������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������

��������������������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

h2(F)

h1(F)

h3(F)
Stage 3

Stage 2

Stage 1

Figure 3: In a parallel multistage �lter, a paket with a ow ID F is hashed using hash funtion h1 into

a Stage 1 hash table, h2 into a Stage 2 hash table, et. Eah of the hash bukets ontain a ounter that

is inremented by the paket size. If all the hash buket ounters are above the threshold (shown bolded),

then ow F is passed to the ow memory for more areful observation.

every x pakets. Third, our tehnique avoids the extra resoure overhead (router proessing, router memory,

network bandwidth) of sending the large amount of sampled information to a management station (assuming

only information about heavy-hitters will be used at the station).

3.2 Multistage �lters

Base Idea: The basi multistage �lter is shown in Figure 3. The building bloks are hash stages that

operate in parallel. First, onsider how the �lter operates if it had only one stage. A stage is a table of

ounters whih is indexed by a hash funtion omputed on a paket ow ID; all ounters in the table are

initialized to 0 at the start of a measurement interval. When a paket omes in, a hash on its ow ID is

omputed and the size of the paket is added to the orresponding ounter. Sine all pakets belonging to

the same ow hash to the same ounter, if a ow F sends more than threshold T , F 's ounter will exeed the

threshold. If we add to the ow memory all pakets that hash to ounters of T or more, we are guaranteed

to identify all the large ows (no false negatives).

Unfortunately, sine the number of ounters we an a�ord is signi�antly smaller than the number of

ows, many ows will map to the same ounter. This an ause false positives in two ways: �rst, small ows

an map to ounters that hold large ows and get added to ow memory; seond, several small ows an

hash to the same ounter and add up to a number larger than the threshold.

To redue this large number of false positives, we use multiple stages. Eah stage (Figure 3) uses an

independent hash funtion. Only the pakets that map to ounters of T or more at all stages get added to

the ow memory. For example, in Figure 3, if a paket with a ow ID F arrives that hashes to ounters 3,1,

and 7 respetively at the three stages, F will pass the �lter (ounters that are over the threshold are shown

darkened). On the other hand, a ow G that hashes to ounters 7, 5, and 4 will not pass the �lter beause

the seond stage ounter is not over the threshold. E�etively, the multiple stages attenuate the probability

of false positives exponentially in the number of stages. This is shown by the following simple analysis.

Preliminary Analysis: Assume a 100 Mbytes/s link

5

, with 100,000 ows and we want to identify the

ows above 1% of the link during a one seond measurement interval. Assume eah stage has 1,000 bukets

and a threshold of 1 Mbyte. Let's see what the probability is for a ow sending 100 Kbytes to pass the

�lter. For this ow to pass one stage, the other ows need to add up to 1 Mbyte - 100Kbytes = 900 Kbytes.

5

To simplify omputation, in our examples we assume that 1Mbyte=1,000,000 bytes and 1Kbyte=1,000 bytes.

7

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

1

2

3

4

5

6

7

8

h1(flowID)

First hashing stage

h2(flowID)

Second hashing stage

h3(flowID)

Third hashing stage

Packets
on the
link

Flow
memory

Figure 4: Serial multistage �lter: pakets that hash to large bukets are passed to the next stage

There are at most 99,900/900=111 suh bukets out of the 1,000 at eah stage. Therefore, the probability

of passing one stage is at most 11.1%. With 4 independent stages, the probability that a ertain ow no

larger than 100 Kbytes passes all 4 stages is the produt of the individual stage probabilities whih is at most

1:52 � 10

�4

.

Based on this analysis, we an dimension the ow memory so that it is large enough to aommodate

all ows that pass the �lter. The expeted number of ows below 100Kbytes passing the �lter is at most

100; 000 � 15:2 � 10

�4

< 16. There an be at most 999 ows above 100Kbytes, so the number of entries

we expet to aommodate all ows is at most 1,015. Setion 4 has a rigorous theorem that proves a

stronger bound (for this example 122 entries) that holds for any distribution of ow sizes. Note the potential

salability of the sheme. If the number of ows inreases to 1 million, we simply add a �fth hash stage to

get the same e�et. Thus to handle 100,000 ows, requires roughly 4000 ounters and a ow memory of

approximately 100 memory loations, while to handle 1 million ows requires roughly 5000 ounters and the

same size of ow memory. This is logarithmi saling.

The number of memory aesses at paket arrival time performed by the �lter is exatly one read and

one write per stage. If the number of stages is small enough this is a�ordable even at high speeds sine the

memory aesses an be performed in parallel, espeially in a hip implementation.

6

While multistage �lters

are more omplex than sample-and-hold, they have a number of advantages. They redue the probability of

false negatives to 0 and by dereasing the probability of false positives, they redue the size of the required

ow memory.

3.2.1 The serial multistage �lter

In this setion we briey present another variant of the multistage �lter alled a serial multistage �lter

(Figure 4). Instead of using multiple stages in parallel, we an put them after eah other, eah stage seeing

only the pakets that passed the previous stage (and all stages preeding it).

Let d be the number of stages (the depth of the serial �lter). We set a threshold of T=d for all the stages.

Thus for a ow that sends T bytes, by the time the last paket is sent, the ounters the ow hashes to at

all d stages reah T=d, so the paket will pass to the ow memory. As with parallel �lters, we have no false

negatives. As with parallel �lters, small ows an pass the �lter only if they are luky enough to hash to

6

We desribe details of a preliminary OC-192 hip implementation of multistage �lters in Setion 8.

8

ounters with signi�ant traÆ generated by other ows.

The analytial evaluation of serial �lters is somewhat more ompliated than for parallel �lters. Sine, as

presented in Setion 7, parallel �lters perform better than serial �lters on traes of atual traÆ, the main

fous in this paper will be on parallel �lters.

3.3 Improvements to the basi algorithms

The improvements to our algorithms presented in this setion further improve the auray of the measure-

ments and redue the memory requirements. Some of the improvements apply to both algorithms, some

apply only to one of them.

3.3.1 Preserving entries aross measurement intervals

Measurements show that large ows also tend to last long. Applying our algorithms diretly would mean

erasing the ow memory after eah interval. This means that in eah interval, the bytes of large ows

sent before they are alloated an entry are not ounted. By preserving the entries of large ows aross

measurement intervals and only reinitializing the ounters, only the �rst measurement interval has this

inauray, so all long lived large ows are measured exatly.

The problem is that the algorithm annot distinguish between a large ow that was identi�ed late and

a small ow that was identi�ed by error sine both have small ounter values. A onservative solution is

to preserve the entries of not only the ows for whih we ount at least T bytes transferred in the urrent

interval, but all the ows whose entries were added in the urrent interval (sine their traÆ might be above

T if we also add their traÆ that went by before the ow was identi�ed). While more omplex rules for

whih entries to keep an be devised, we found little advantage in most of them and therefore do not disuss

them here. The next setion presents a rare exeption.

3.3.2 Early removal of entries

While the simple rule for preserving entries desribed above works well for both of our algorithms, there

is a re�nement that an help further in the ase of sample and hold whih has a more false positives than

multistage �lters. If we keep for one more interval all of the ows that got a new entry, many small ows

will keep their entries for two intervals. We an improve the situation by seletively removing some of the

ow entries reated in the urrent interval.

The new rule for preserving entries is as follows. We de�ne an early removal threshold R that is less then

the threshold T . At the end of the measurement interval, we keep all entries whose ounter is at least T and

all entries that have been added during the urrent interval and whose ounter is at least R.

3.3.3 Shielding the �lter from ows with entries

Shielding strengthens multistage �lters. Figure 5 illustrates how it works. The traÆ belonging to ows that

have an entry no longer passes through the �lter. It may not be immediately apparent how this redues the

number of false positives. Consider large, long lived ow that would go through the �lter eah measurement

interval. Eah measurement interval, the ounters it hashes to exeed the threshold. If we shield the �lter

from this large ow, many of these ounters will not reah the threshold after the �rst interval. This redues

the probability that a random small ow passes the �lters by hashing to ounters that are large beause of

other ows.

9

Yes

No

All packets

Has entry?

Update existing entry

new entry

Small flow
memory

Create

Multistage
filter

Figure 5: Shielding: we do not pass through the �lter the traÆ of the ows with an entry

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

Incoming
packet

Counter 1 Counter 3Counter 2 Counter 1 Counter 3Counter 2

Figure 6: Conservative update: without onservative update (left) all ounters are inreased by the size of

the inoming paket, with onservative update (right) no ounter is inreased to more than the size of the

smallest ounter plus the size of the paket

3.3.4 Conservative update of ounters

We now desribe an important but natural optimization for multistage �lters. Conservative update redues

the number of false positives of multistage �lters by three subtle hanges to the rules for updating ounters.

In essene, we endeavour to inrement ounters as little as possible (thereby reduing false positives by

preventing small ows from passing the �lter) while still avoiding false negatives (i.e., we need to ensure that

all ows that reah the threshold still pass the �lter.)

The �rst hange (Figure 6) applies only to parallel �lters and only for pakets that don't pass the �lter.

As usual, an arriving ow F is hashed to a ounter at eah stage. We update the smallest of the ounters

normally (by adding the size of the paket). However, the other ounters are set to the maximum of their

old value and the new value of the smallest ounter (ounters are never deremented). Sine the amount of

traÆ sent by the urrent ow is at most the new value of the smallest ounter, this hange annot introdue

a false negative for the ow the paket belongs to.

The seond hange is very simple and applies to both parallel and serial �lters. When a paket passes

the �lter and it obtains an entry in the ow memory, no ounters should be updated. This will leave the

10

ounters below the threshold. Other ows with smaller pakets that hash to these ounters will get less

\help" in passing the �lter.

The third hange applies only to serial �lters. It regards the way ounters are updated when the threshold

is exeeded in any stage but the last one. Let's say the value of the ounter a paket hashes to at stage i is

T �x and the size of the paket is s > x > 0. Normally one would inrement the ounter at stage i to T and

add s� x to the ounter from stage i+1. What we an do instead with the ounter at stage i+1 is update

its value to the maximum of s� x and its old value (assuming s� x < T). Sine the ounter at stage i was

below T , we know that no prior pakets belonging to the same ow as the urrent one passed this stage and

ontributed to the value of the ounter at stage i+ 1. We ould not apply this hange if the threshold was

allowed to hange during a measurement interval.

4 Analytial evaluation of our algorithms

In this setion we analytially evaluate our algorithms. We fous on two important questions:

� How good are the results? We use two distint measures of the quality of the results: how many of the

large ows are identi�ed, and how aurately is their traÆ estimated?

� What are the resoures required by the algorithm? The key resoure measure is the size of ow memory

needed. A seond resoure measure is the number of memory referenes required.

In Setion 4.1 we analyze our sample and hold algorithm, and in Setion 4.2 we analyze multistage �lters.

We �rst analyze the basi algorithms and then examine the e�et of some of the improvements presented

in Setion 3.3. In the next setion (Setion 5) we use the results of this setion to analytially ompare our

algorithms with sampled NetFlow (based on its analysis from appendix E).

Example: We will use the following running example to give numeri instanes for the analysis. Assume

a 100 Mbyte/s link with 100; 000 ows. We want to identify and measure all ows whose traÆ is more than

1% (1 Mbyte) of the link apaity during a one seond measurement interval.

4.1 Sample and hold

We �rst de�ne some notation we use in this setion.

� p the probability for sampling a byte;

� s the size of a ow (in bytes);

� T the threshold for large ows;

� C the apaity of the link { the number of bytes that an be sent during the entire measurement

interval;

� O the oversampling fator de�ned by p = O � 1=T ;

� the number of bytes atually ounted for a ow.

11

4.1.1 The quality of results for sample and hold

The �rst measure of the quality of the results is the probability that a ow at the threshold is not identi�ed.

As presented in Setion 3.1 the probability that a ow of size T is not identi�ed is (1 � p)

T

� e

�O

. An

oversampling fator of 20 results in a probability of missing ows at the threshold of 2 � 10

�9

.

Example: For our running example, this would mean setting p to 1 in 50,000 bytes for an oversampling

of 20 and 1 in 200,000 for an oversampling of 5. With an average paket size of 500 bytes this is roughly 1

in 100 pakets and 1 in 400 pakets respetively.

The seond measure of the quality of the results is the di�erene between the size of a ow s and our

estimate. The number of bytes that go by before the �rst one gets sampled has a geometri probability

distribution

7

: it is x with a probability

8

(1� p)

x

p.

Therefore E[s � ℄ = 1=p and SD[s � ℄ =

p

1� p=p. The best estimate for s is + 1=p and its

standard deviation is

p

1� p=p. If we hoose to use as an estimate for s then the error will be larger,

but we never overestimate the size of the ow. In this ase, the deviation from the atual value of s is

p

E[(s�)

2

℄ =

p

2� p=p. Based on this value we an also ompute the relative error of a ow of size T

whih is T

p

2� p=p =

p

2� p=O.

Example: For our example, with an oversampling fator O of 20, the relative error of the estimate of the

size of a ow at the threshold is 7% and with an oversampling of O = 5 28%. Applying the orretion would

bring down the errors to 5% and 20% respetively.

4.1.2 The memory requirements for sample and hold

The size of the ow memory is determined by the number of ows identi�ed. The atual number of sampled

pakets is an upper bound on the number of entries needed in the ow memory beause new entries are

reated only for sampled pakets. Assuming that the link is onstantly busy, by the linearity of expetation,

the expeted number of sampled bytes is p � C = O � C=T .

Example: Using an oversampling of 20 requires 2,000 entries and an oversampling of 5 500 entries.

The number of sampled bytes an exeed this value. Sine the number of sampled bytes has a binomial

distribution, we an use the normal urve to bound with high probability the number of bytes sampled

during the measurement interval. Therefore with probability 99% the atual number will be at most 2.33

standard deviations above the expeted value; similarly, with probability 99.9% it will be at most 3.08

standard deviations above the expeted value. The standard deviation of the number of sampled pakets is

p

Cp(1� p).

Example: For our example for an oversampling of 20 and an overow probability of 0.1% we need at

most 2,147 entries and with an oversampling of 5, 574 entries. If the aeptable overow probability is 1%,

the sizes are 2,116 and 558 respetively.

4.1.3 The e�et of preserving entries

We preserve entries aross measurement intervals to improve auray. The probability of missing a large

ow dereases beause we annot miss it if we keep its entry from the prior interval. Auray inreases

beause we know the exat size of the ows whose entries we keep. To quantify these improvements we need

to know the ratio of long lived ows among the large ones.

7

We ignore for simpliity that the bytes before the �rst sampled byte that are in the same paket with it are also ounted.

Therefore the atual algorithm will be more aurate than our model.

8

Sine we fous on large ows, we ignore for simpliity the orretion fator we need to apply to aount for the ase when

the ow goes undeteted (i.e. x is atually bound by the size of the ow s, but we ignore this).

12

The ost of this improvement in auray is an inrease in the size of the ow memory. We need enough

memory to hold the samples from both measurement intervals

9

. Therefore the expeted number of entries

is bounded by 2O � C=T .

To bound with high probability the number of entries we use the normal urve and the standard deviation

of the the number of sampled pakets during the 2 intervals whih is

p

2Cp(1� p).

Example: For our example with an oversampling of 20 and aeptable probability of overow equal to

0.1%, the ow memory has to have at most 4,207 entries and with an oversampling of 5, 1,104 entries. If

the aeptable overow probability is 1%, the sizes are 4,164 and 1,082 respetively.

4.1.4 The e�et of early removal

The e�et of early removal on the proportion of false negatives depends on whether or not the entries removed

early are reported. Sine we believe it is more realisti that implementations will not report these entries, we

will use this assumption in our analysis. Let R < T be the early removal threshold. A ow at the threshold

is not reported unless one of its �rst T �R bytes is sampled. Therefore the probability of missing the ow is

approximately e

�O(T�R)=T

. If we use an early removal threshold of R = 0:2�T , this inreases the probability

of missing a large ow from 2 � 10

�9

to 1:1 � 10

�7

with an oversampling of 20 and from 0.67% to 1.8% with

an oversampling of 5.

Early removal redues the size of the memory required by limiting the number of entries that are preserved

from the previous measurement interval. Sine there an be at most C=R ows sending R bytes, the number

of entries that we keep is at most C=R whih an be smaller than OC=T , the bound on the expeted number

of sampled pakets. The expeted number of entries we need is C=R+OC=T .

To bound with high probability the number of entries we use the normal urve. If R � T=O the standard

deviation is given only by the randomness of the pakets sampled in one interval and is

p

Cp(1� p).

Example: An oversampling of 20 and R = 0:2T with overow probability 0.1% requires a ow memory

with 2,647 entries and with an oversampling of 5, 1,074 entries. If the aeptable overow probability is 1%,

the sizes are 2,616 and 1,058 respetively.

4.2 Multistage �lters

In this setion, we analyze parallel multistage �lters. We only present the main results. The proofs and

supporting lemmas are in Appendix A. We �rst de�ne some new notation:

� b the number of bukets in a stage;

� d the depth of the �lter (the number of stages);

� n the number of ative ows;

� k the stage strength expresses the strength of the �ltering ahieved by a stage of the �lter: the ratio

of the threshold and the average size of a ounter. k =

T b

C

, where C denotes the hannel apaity as

before. Intuitively, this an also be seen as the memory over-provisioning ratio: by what fator do we

inate eah stage memory beyond the required minimum of C=T ?

9

We atually also keep the older entries that are above the threshold. Sine we are performing a worst ase analysis we

assume that there is no suh ow, beause if there were, many of their pakets would be sampled, dereasing the number of

entries required.

13

Example: To illustrate our results numerially, we will assume that we solve the measurement example

desribed in Setion 4 with a 4 stage �lter, with 1000 bukets at eah stage. The stage strength k is 10

beause eah stage memory has 10 times more bukets than the maximum number of ows (i.e., 100) that

an ross the spei�ed threshold of 1%.

4.2.1 The quality of results for multistage �lters

As disussed in Setion 3.2, multistage �lters have no false negatives. The error of the traÆ estimates for

large ows is bounded by the threshold T sine no ow an send T bytes without being entered into the

ow memory. The stronger the �lter, the less likely it is that the ow will be entered into the ow memory

muh before it reahes T . We �rst state an upper bound for the probability of a small ow passing the �lter

desribed in Setion 3.2.

Lemma 1 Assuming the hash funtions used by di�erent stages are independent, the probability of a ow

of size s < T (1� 1=k) passing a parallel multistage �lter is at most p

s

�

�

1

k

T

T�s

�

d

.

The proof of this bound formalizes the preliminary analysis of multistage �lters from Setion 3.2. Note

that the bound makes no assumption about the distribution of ow sizes, and thus applies for all ow

distributions. The bound is tight in the sense that it is almost exat for a distribution that has b(C �

s)=(T � s) ows of size (T � s) that send all their pakets before the ow of size s. However, for realisti

traÆ mixes (e.g., if ow sizes follow a Zipf distribution), this is a very onservative bound.

Based on this lemma we obtain a lower bound for the expeted error for a large ow.

Theorem 2 The expeted number of bytes of a large ow that go undeteted by a multistage �lter is bound

from below by

E[s� ℄ � T

�

1�

d

k(d� 1)

�

� y

max

(1)

where y

max

is the maximum size of a paket.

This bound suggests that we an signi�antly improve the auray of the estimates by adding a orretion

fator to the bytes atually ounted. The down side to adding a orretion fator is that we an overestimate

some ow sizes; this may be a problem for aounting appliations.

4.2.2 The memory requirements for multistage �lters

We an dimension the ow memory based on bounds on the number of ows that pass the �lter. Based on

Lemma 1 we an ompute a bound on the total number of ows expeted to pass the �lter.

Theorem 3 The expeted number of ows passing a parallel multistage �lter is bound by

E[n

pass

℄ � max

b

k � 1

; n

�

n

kn� b

�

d

!

+ n

�

n

kn� b

�

d

(2)

14

Example: Theorem 3 gives a bound of 121:2 ows. Using 3 stages would have resulted in a bound of

200:6 and using 5 would give 112:1. Note that when the �rst term dominates the max, there is not muh

gain in adding more stages.

This is a bound on the expeted number of ows passing. In Appendix A we derive a high probability

bound on the number of ows passing the �lter..

Example: The probability that more than 185 ows pass the �lter is at most 0.1% and the probability

that more than 211 pass is no more than 1� 10

�6

. Thus by inreasing the ow memory from the expeted

size of 122 to 185 we an make overow of the ow memory extremely improbable.

4.2.3 The e�et of preserving entries and shielding

Preserving entries a�ets the auray of the results the same way as for sample and hold: long lived large

ows have their traÆ ounted exatly after their �rst interval above the threshold. As with sample and

hold, preserving entries basially doubles all the bounds for memory usage.

Shielding has a strong e�et on �lter performane, sine it redues the traÆ presented to the �lter.

Reduing the traÆ � times inreases the stage strength to k � �, whih an be substituted in Theorems 2

and 3.

5 Comparison of traÆ measurement methods

In this setion we analytially ompare the performane of three traÆ measurement algorithms: our two

new algorithms (sample and hold and multistage �lters) and Sampled NetFlow. First, in Setion 5.1, we

ompare the algorithms at the ore of traÆ measurement devies. For the ore omparison, we assume that

eah of the algorithms is given the same amount of high speed memory and we ompare their auray and

number of memory aesses. This allows a fundamental analytial omparison of the e�etiveness of eah

algorithm in identifying heavy-hitters.

However, in pratie, it may be unfair to ompare Sampled NetFlow with our algorithms using the same

amount of memory. This is beause Sampled NetFlow an a�ord to use a large amount of DRAM (beause

it does not proess every paket) while our algorithms annot (beause they proess every paket and hene

need to store state in SRAM). Thus we perform a seond omparison in Setion 5.2 of omplete traÆ

measurement devies. In this seond omparison, we allow Sampled NetFlow to use more memory than our

algorithms. The omaparisons are based on the algorithm analysis in Setion 4 and an analysis of NetFlow

from Appendix E.

5.1 Comparison of the ore algorithms

In this setion we ompare sample and hold, multistage �lters and ordinary sampling (used by NetFlow)

under the assumption that they are all onstrained to using M memory entries. We fous on the auray of

the measurement of a ow whose traÆ is zC (for ows of 1% of the link apaity we would use z = 0:01).

The bound on the expeted number of entries is the same for sample and hold and for sampling and is

pC. By making this equal to M we an solve for p. By substituting in the formulae we have for the auray

of the estimates and after eliminating some terms that beome insigni�ant (as p dereases and as the link

apaity goes up) we obtain the results shown in Table 1.

For multistage �lters, we use a simpli�ed version of the result from Theorem 3: E[n

pass

℄ � b=k+n=k

d

. We

inrease the number of stages used by the multistage �lter logarithmially as the number of ows inreases

15

Measure Sample Multistage Sampling

and hold �lters

Relative error

p

2

Mz

1+10 r log

10

(n)

Mz

1

p

Mz

Memory aesses 1 1 + log

10

(n)

1

x

Table 1: Comparison of the ore algorithms: sample and hold provides most aurate results while pure

sampling has very few memory aesses

Measure Sample and hold Multistage �lters Sampled NetFlow

Exat measurements / longlived% longlived% 0

Relative error 1:41=O / 1=u 0:0088=

p

zt

Memory bound 2O=z 2=z + 1=zlog

10

(n) min(n,486000 t)

Memory aesses 1 1 +log

10

(n) 1=x

Table 2: Comparison of traÆ measurement devies

so that a single small ow is expeted to pass the �lter

10

and the strength of the stages is 10. At this point

we estimate the memory usage to be M = b=k + 1 + rbd = C=T + 1 + r10C=T log

10

(n) where r depends

on the implementation and reets the relative ost of a ounter and an entry in the ow memory. From

here we obtain T whih will be the error of our estimate of ows of size zC and the result from Table 1 is

immediate.

The termMz that appears in all formulae in the �rst row of the table is exatly equal to the oversampling

we de�ned in the ase of sample and hold. It expresses how many times we are willing to alloate over the

theoretial minimum memory to obtain better auray. We an see that the error of our algorithms dereases

inversely proportional to this term while the error of sampling is proportional to the inverse of its square

root.

The seond line of Table 1 gives the number of memory aesses per paket that eah algorithm performs.

Sine sample and hold performs a paket lookup for every paket

11

, its per paket proessing is 1. Multistage

�lters add to the one ow memory lookup an extra one aess per stage; the number of stages in turn inreases

as the logarithm of the number of ows. Finally, for ordinary sampling if one in x pakets get sampled, then

the average per paket proessing is 1=x.

Table 1 provides a fundamental omparison of our new algorithms with ordinary sampling as used in

Sampled NetFlow. The �rst line shows that the relative error of our algorithms sale with 1=M whih is muh

better than the 1=

p

M saling of ordinary sampling. However, the seond line shows that this improvement

omes at the ost of requiring at least one memory aess per paket for our algorithms. While this allows

us to implement the new algorithms using SRAM, the smaller number of memory aesses (< 1) per paket

allows Sampled NetFlow to use DRAM. This is true as long as x is larger than the ratio of a DRAM memory

aess to an SRAM memory aess. However, even a DRAM implementation of Sampled NetFlow has some

problems whih we turn to in our seond omparison.

10

Con�guring the �lter suh that a small number of small ows pass would have resulted in smaller memory and fewer memory

aesses (beause we would need fewer stages), but it would have ompliated the formulae.

11

We equate a lookup in the ow memory to a single memory aess. This is true if we use a ontent assoiable memory.

Lookups without hardware support require a few more memory aesses to resolve hash ollisions.

16

5.2 Comparison of traÆ measurement devies

Table 1 seems to imply that if we inrease the DRAM memory size M to in�nity, we an make the relative

error of a Sampled NetFlow estimate arbitrarily small. Intuitively, this assumes that by inreasing memory

one an inrease the sampling rate so that x dereases to beome arbitrarily lose to 1. Clearly, if x = 1, the

results for Sampled NetFlow would, of ourse, have no error sine every paket is logged. But we have just

seen that x must at least be as large as the ratio of DRAM speed to SRAM speed; thus Sampled NetFlow

will always have a minimum error orresponding to this value of x.

Another way to see the same e�et is to realize that for a �xed value of x, there is a limit M

0

to the

amount of DRAM memory that an be aessed during a measurement interval. In the worst ase, the

number of pakets sampled by ordinary sampling is M

0

out of at most C=y

min

pakets, where C is the link

apaity and y

min

is the minimum size for a paket. Thus x = C=(y

min

M

0

) and so M

0

= C=(xy

min

). Thus

inreasing M beyond M

0

does not help!

With this as the basi insight, we now ompare the performane of our algorithms and NetFlow in

Table 2 without limiting the amount of memory made available to NetFlow. Table 2 takes into aount the

underlying tehnologies (i.e., the use of DRAM versus SRAM) and one optimization (i.e., preserving entries)

for both our algorithms.

We onsider the task of estimating the size of all the ows above a fration z of the link apaity over a

measurement interval of t seonds

12

. The four harateristis of the traÆ measurement algorithms presented

in the table are: the perentage of large ows known to be measured exatly, the relative error of the estimate

of a large ow, the upper bound on the memory size and the number of memory aesses per paket.

Note that the table does not ontain the atual memory used but a bound. For example the number

of entries used by NetFlow is bounded by the number of ative ows and the number of DRAM memory

lookups that it an perform during a measurement interval (whih doesn't hange as the link apaity grows).

Our measurements in Setion 7 show that for all three algorithms the atual memory usage is muh smaller

than the bounds, espeially for multistage �lters. Memory is measured in entries, not bytes

13

. Note that

the number of memory aesses required per paket does not neessarily translate to the time spent on the

paket beause memory aesses an be pipelined or performed in parallel.

We make simplifying assumptions about tehnology evolution. As link speeds inrease, so must the

eletronis. Therefore we assume that SRAM speeds keep pae with link apaities. We also assume that

the speed of DRAM does not improve (based on its historially slow pae of progress ompared to hip

speeds).

We assume the following on�gurations for the three algorithms. Our algorithms preserve entries. For

multistage �lters we introdue a new parameter expressing how many times larger a ow of interest is than

the threshold of the �lter u = zC=T . Sine the speed gap between the DRAM used by sampled NetFlow

and the link inreases as link speeds inrease, NetFlow has to derease its sampling rate proportionally with

the inrease in apaity

14

to provide the smallest possible error. For the NetFlow error alulations we also

assume that the size of the pakets of large ows is 1500 bytes.

Besides the di�erenes (Table 1) that stem from the ore algorithms, we see new di�erenes in Table 2.

The �rst big di�erene (Row 1 of Table 2) is that unlike NetFlow, our algorithms provide exat measures for

long-lived large ows by preserving entries. More preisely, by preserving entries our algorithms will exatly

12

In order to make the omparison possible we hange somewhat the way NetFlow operates: we assume that it reports the

traÆ data for eah ow after eah measurement interval, like our algorithms do.

13

We assume that a ow memory entry is equivalent to 10 of the ounters used by the �lter beause the ow ID is typially

muh larger than the ounter.

14

If the apaity of the link is x times OC-3, then one in x pakets gets sampled. We assume based on [17℄ that NetFlow an

handle pakets no smaller than 40 bytes at OC-3 speeds.

17

measure traÆ for all (or almost all in the ase of sample and hold) of the large ows that were large in

the previous interval. Given that our measurements show that most large ows are long lived, this is a big

advantage.

15

The seond big di�erene (Row 2 of Table 2) is that we an make our algorithms arbitrarily aurate at

the ost of inreases in the amount of memory used

16

while sampled NetFlow an do so only by inreasing

the measurement interval t.

The third row of Table 2 ompares the memory used by the algorithms. The extra fator of 2 for sample

and hold and multistage �lters arises from preserving entries. Note that the number of entries used by

Sampled NetFlow is bounded by both the number n of ative ows and the number of memory aesses that

an be made in t seonds. Finally, the fourth row of Table 2 is idential to the seond row of Table 1.

Table 2 demonstrates that our algorithms have two advantages over NetFlow: i) they provide exat values

for long-lived large ows (row 1) and ii) they provide muh better auray even for small measurement

intervals (row 2). Besides these advantages, our algorithms also have three more advantages not shown in

Table 2. These are iii) provable lower bounds on traÆ, iv) redued resoure onsumption for olletion,

and v) faster detetion of new large ows. We briey examine these dvantages.

iii) Provable Lower Bounds: A possible disadvantage of Sampled NetFlow is that the NetFlow

estimate is not an atual lower bound on the ow size. Thus a ustomer may be harged for more than

the ustomer sends. While one an make the average overharged amount arbitrarily low (using large

measurement intervals), there may be philosophial objetions to overharging. Our algorithms do not have

this problem.

iv) Redued Resoure Consumption: Clearly, while Sampled NetFlow an inrease DRAM to im-

prove auray, the router has more entries at the end of the measurement interval. These reords have

to be proessed, potentially aggregated, and transmitted over the network to the management station. If

the router extrats the heavy hitters from the log, then router proessing is large; if not, the bandwidth

onsumed and proessing at the management station is large. By using muh smaller logs, our algorithm

avoids these resoure (e.g., memory, transmission bandwidth, and router CPU yles) bottleneks.

v) Faster detetion of long-lived ows: In a seurity or DoS appliation, it may be useful to quikly

detet a large inrease in traÆ to a server. Our algorithms an use small measurement intervals and

detet large ows soon after they start. By ontrast, Sampled NetFlow, espeially when mediated through

a management station, an be muh slower.

6 Dimensioning traÆ measurement devies

Before we desribe measurements, we desribe how to dimension our two algorithms. For appliations

that fae adversarial behavior (e.g., deteting DoS attaks), one should use the onservative bounds from

Setions 4.1 and 4.2 that hold for any ditribution of ow sizes. When we an make some assumptions about

the distribution of ow sizes, we an arrive to some tighter bounds as in Appendix B does for the ase of a

Zipf distribution. Setion 7 shows that the performane of our algorithms on atual traes exeeds as muh

as tens of thousands of times our onservative analysis. Dimensioning aording to the safe, onservative

bounds an be a waste resoures for appliations suh as measurement for aounting purposes, where the

15

Of ourse, one ould get the same advantage by using an SRAM ow memory that preserves large ows aross measurement

intervals in Sampled NetFlow as well. However, that would require the router to root through its DRAM log before the end of

the interval to �nd the large ows, a large proessing load. One an also argue that if one an a�ord an SRAM ow memory,

it is quite easy to do Sample and Hold.

16

Of ourse, tehnology and ost impose limitations on the amount of available SRAM but the urrent limits for on and

o�-hip SRAM are high enough to make this not be an issue.

18

ADAPTTHRESHOLD

usage = entriesused=flowmemsize

if (usage > target)

threshold = threshold � (usage=target)

adjustup

else

if (threshold did not inrease for 3 intervals)

threshold = threshold � (usage=target)

adjustdown

endif

endif

Figure 7: The threshold adapts dynamially to ahieve the target memory usage

ability to handle adversarial behavior is less important than the overall auray of the results. In this

setion we look at more aggressive methods of on�guring the traÆ measurement devies that maximize

the auray of the results by making good use of the available memory.

The measurements from setion 7 show that the atual performane depends strongly on the traÆ

mix. Sine we usually don't have a priori knowledge of ow distributions, we prefer to dynamially adapt

algorithm parameters to atual traÆ. The main idea we use is to keep dereasing the threshold below the

onservative estimate until the ow memory is nearly full (totally �lling memory an result in new large

ows not being traked). We only disuss here the algorithm used for adapting the threshold.Appendix D

gives the heuristis we use to set the on�guration parameters for the multistage �lters that are hard to

adapt dynamially to the traÆ (i.e. the number of ounters and stages).

Figure 7 presents our threshold adaptation algorithm. There are two important onstants that adapt the

threshold to the traÆ: the \target usage" (variable target in Figure 7) that tells it how full the memory an

be without risking to �ll it up ompletely and the \adjustment ratio" (variables adjustup and adjustdown in

Figure 7) that the algorithm uses to deide how muh to adjust the threshold to ahieve a desired inrease

or derease in ow memory usage. We rely on the measurements from Appendix I to determine the atual

values for these onstants.

The usage of the ow memory osillates even when the on�guration is �xed. This happens due to

hanges in the traÆ mix or simply due to the randomness of our algorithms. The measurements from

Appendix I determine how volatile the number of entries used is and based on them, set the target usage to

90% for both algorithms.

One an argue that intuitively the number of entries should be proportional to the inverse of the threshold

sine the number of ows that an exeed a given threshold is inversely proportional to the value of the

threshold. This orresponds to having an adjustment ratio of 1. In pratie it might happen that inreasing

the threshold does not redue the number of used entries by very muh beause fewer ows than expeted

are between the two values of the threshold. On the other hand dereasing the threshold an ause a ollapse

of the multistage �lter inreasing very muh the number of ows that pass. To give robustness to the traÆ

measurement devie we use two di�erent adjustment ratios: when inreasing the threshold we use a large

one (we onservatively assume that we need to inrease the threshold by adjustup% to dereases memory

usage by only 1%) and when dereasing we use a small one (we onservatively assume that dereasing the

threshold by only adjustdown% we inrease the memory usage by 1%). We use measurements to bound from

above and below the e�et of the hanges of threshold on the number of memory entries used and derive

19

Trae Number of ows (min/avg/max) Mbytes/interval

5-tuple destination IP AS pair (min/avg/max { link)

MAG+ 93,437/98,424/105,814 40,796/42,915/45,299 7,177/7,401/7,775 201.0/256.0/284.2 { 1483

MAG 99,264/100,105/101,038 43,172/43,575/43,987 7,353/7,408/7,477 255.8/264.7/273.5 { 1483

IND 13,746/14,349/14,936 8,723/8,933/9,081 - 91.37/96.04/99.70 { 370.8

COS 5,157/5,497/5,784 1,124/1,146/1,169 - 14.28/16.63/18.70 { 92.70

Table 3: The traes used for our measurements

the adjustment ratios. Based on the measurements from Appendix I, we use a value of 3 for adjustup, 1 for

adjustdown in the ase of sample and hold and 0.5 for multistage �lters.

To give further stability to the traÆ measurement devie, the entriesused variable does not ontain

the number of entries used over the last measurement interval, but an average of the last 3 intervals. If the

threshold dereased within the last 3 measurement intervals we onservatively onsider only the memory

usage values reorded with the low threshold. Sine hanges of the threshold take 2 measurement intervals

to fully show their e�ets on the memory usage we onsider that using a window of 3 measurement intervals

to average over is a good tradeo� between responsiveness to hanges in the traÆ mix and fast onvergene

to a good value for the threshold.

7 Measurements

Performane annot be evaluated solely through the use of Zen Meditation. (paraphrased from

Je� Mogul)

In Setion 4 and Setion 5 we used theoretial analysis to understand the e�etiveness of our algorithms.

In this setion, we turn to experimental analysis to show that our algorithms behave muh better on real

traes than the (reasonably good) bounds provided by the earlier theoretial analysis and ompare them

with Sampled NetFlow.

We start by desribing the traes we use and some of the on�guration details ommon to all our

experiments. In Setion 7.1.1 we ompare the measured performane of the sample and hold algorithm with

the preditions of the analytial evaluation, and also evaluate how muh the various improvements to the

basi algorithm help. In Setion 7.1.2 we evaluate the multistage �lter and the improvements that apply

to it. We onlude with Setion 7.2 where we ompare omplete traÆ measurement devies using our two

algorithms with Ciso's Sampled NetFlow.

We use 3 unidiretional traes of Internet traÆ: a 4515 seond \lear" one (MAG+) from CAIDA

(aptured in August 2001 on an OC-48 bakbone link between two ISPs) and two 90 seond anonymized

traes from the MOAT projet of NLANR (aptured in September 2001 at the aess points to the Internet

of two large universities on an OC-12 (IND) and an OC-3 (COS)). For some of the experiments use only the

�rst 90 seonds of the \lear" trae MAG+ and we refer to them as trae MAG.

In our experiments we use 3 di�erent de�nitions for ows. The �rst de�nition is at the granularity of TCP

onnetions: ows are de�ned by the 5-tuple of soure and destination IP address and port and the protool

number. This de�nition is lose to that of Ciso NetFlow. The seond de�nition uses the destination IP

address as a ow identi�er. This is a de�nition one ould use to identify at a router ongoing (distributed)

denial of servie attaks. The third de�nition uses the soure and destination autonomous system as the

20

0 5 10 15 20 25 30

Percentage of flows

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f
tr

af
fi

c

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS

Figure 8: Cumulative distribution of ow sizes for various traes and various ow de�nitions

ow identi�er. This is lose to what one would use to determine traÆ patterns in the network. We annot

use this de�nition with the anonymized traes (IND and COS) beause we annot perform route lookups on

them.

Table 3 gives a summary desription of the traes we used. The number of ative ows is given for

all appliable ow de�nitions. The reported values are the smallest, largest and average value over the

measurement intervals of the respetive traes. The number of megabytes per interval is also given as the

smallest, average and largest value. Our traes use only between 13% and 27% of their respetive link

apaities.

The best value for the size of the measurement interval depends both on the appliation and the traÆ

mix. We hose to use a measurement interval of 5 seonds in all our experiments. Appendix F gives the

measurements we base this deision on. Here we only note that in all ases 99% or more of the pakets

(weighted by paket size) arrive within 5 seonds of the previous paket belonging to the same ow.

Sine our algorithms are based on the assumption that a few heavy ows dominate the traÆ mix, we

�nd it useful to see to what extent this is true for our traes. Figure 8 presents the umulative distributions

of ow sizes for the traes MAG, IND and COS for ows de�ned by 5-tuples. For the trae MAG we also

plot the distribution for the ase where ows are de�ned based on destination IP address, and for the ase

where ows are de�ned based on the soure and destination ASes. As we an see from the �gure, the top

10% of the ows represent between 85.1% and 93.5% of the total traÆ validating our original assumption

that a few ows dominate.

7.1 Comparing Theory and Pratie

We present detailed measurements on the performane on sample and hold in and its optimizations in

Appendix G. The detailed results for multistage �lters are in Appendix H. Here we summarize our most

important results that ompare the theoretial bounds with the results on atual traes, and quantify the

bene�ts of various optimizations.

21

Algorithm Maximum memory usage / Average error

MAG 5-tuple MAG destination IP MAG AS pair IND 5-tuple COS 5-tuple

General bound 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25% 16,385 / 25%

Zipf bound 8,148 / 25% 7,441 / 25% 5,489 / 25% 6,303 / 25% 5,081 / 25%

Sample and hold 2,303 / 24.33% 1,964 / 24.07% 714 / 24.40% 1,313 / 23.83% 710 / 22.17%

+ preserve entries 3,832 / 4.67% 3,213 / 3.28% 1,038 / 1.32% 1,894 / 3.04% 1,017 / 6.61%

+ early removal 2,659 / 3.89% 2,294 / 3.16% 803 / 1.18% 1,525 / 2.92% 859 / 5.46%

Table 4: Summary of sample and hold measurements for a threshold of 0.025% and an oversampling of 4

7.1.1 Summary of �ndings about sample and hold

Table 4 summarizes our results for a single on�guration: a threshold of 0.025% of the link with an over-

sampling of 4. We ran 50 experiments (with di�erent random hash funtions) on eah of the reported traes

with the respetive ow de�nitions. The table gives the maximum memory usage over the 900 measurement

intervals and the ratio between average error for large ows and the threshold.

The �rst row presents the theoretial bounds that hold without making any assumption about the distri-

bution of ow sizes and the number of ows. These are not the bounds on the expeted number of entries

used (whih would be 16,000 in this ase), but high probability bounds. The seond row presents theoretial

bounds assuming that we know the number of ows and know that their sizes have a Zipf distribution with

a parameter of � = 1. Note that the relative errors predited by theory may appear large (25%) but these

are omputed for a very low threshold of 0:025% and only apply to ows exatly at the threshold.

17

The third row shows the atual values we measured for the basi sample and hold algorithm. The atual

memory usage is muh below the bounds. The �rst reason is that the links are lightly loaded and the seond

reason (partially aptured by the analysis that assumes a Zipf distribution of ows sizes) is that large ows

have many of their pakets sampled. The average error is very lose to its expeted value. The fourth row

presents the e�ets of preserving entries. While this inreases memory usage (espeially where large ows

do not have a big share of the traÆ) it signi�antly redues the error for the estimates of the large ows,

beause there is no error for large ows identi�ed in previous intervals. This improvement is most impressive

when we have many long lived ows.

The last row of the table reports the results when preserving entries as well as using an early removal

threshold of 15% of the threshold (our measurements indiate that this is a good value). We ompensated for

the inrease in the probability of false negatives early removal auses by inreasing the oversampling to 4.7.

The average error dereases slightly. The memory usage dereases, espeially in the ases where preserving

entries aused it to inrease most.

We performed measurements on many more on�gurations, but for brevity we report them only in

Appendix G. The results are in general similar to the ones from Table 4, so we only emphasize some

noteworthy di�erenes. First, when the expeted error approahes the size of a paket, we see signi�ant

dereases in the average error. Our analysis assumes that we sample at the byte level. In pratie, if a

ertain paket gets sampled all its bytes are ounted, inluding the ones before the byte that was sampled.

Seond, preserving entries redues the average error by 70% - 95% and inreases memory usage by 40%

- 70%. These �gures do not vary muh as we hange the threshold or the oversampling. Third, an early

17

We de�ned the relative error by dividing the average error by the size of the size of the threshold. We ould have de�ned it

by taking the average of the ratio of a ow's error to its size but this makes it diÆult to ompare results from di�erent traes.

22

1 2 3 4

Depth of filter

0.001

0.01

0.1

1

10

100

Pe
rc

en
ta

ge
 o

f
fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

General bound
Zipf bound
Serial filter
Parallel filter
Conservative update

Figure 9: Filter performane for a stage strength of k=3

removal threshold of 15% redues the memory usage by 20% - 30%. The size of the improvement depends

on the trae and ow de�nition and it inreases slightly with the oversampling.

7.1.2 Summary of �ndings about multistage �lters

Figure 9 summarizes our �ndings about on�gurations with a stage strength of k = 3 for our most hallenging

trae: MAG with ows de�ned at the granularity of TCP onnetions. It represents the perentage of small

ows (log sale) that passed the �lter for depths from 1 to 4 stages. We used a threshold of a 4096th of the

maximum traÆ. The �rst (i.e., topmost and solid) line represents the bound of Theorem 3. The seond line

below represents the improvement in the theoretial bound when we assume a Zipf distribution of ow sizes.

Unlike in the ase of sample and hold we used the maximum traÆ, not the link apaity for omputing the

theoretial bounds.

The third line represents the measured average perentage of false positives of a serial �lter, while the

fourth line represents a parallel �lter. We an see that both are at least 10 times better than the stronger of

the theoretial bounds. As the number of stages goes up, the parallel �lter gets better than the serial �lter by

up to a fator of 4. The last line represents a parallel �lter with onservative update whih gets progressively

better than the parallel �lter by up to a fator of 20 as the number of stages inreases. We an see that all

lines are roughly straight; this indiates that the perentage of false positives dereases exponentially with

the number of stages.

Measurements on other traes show similar results. The di�erene between the bounds and measured

performane is even larger for the traes where the largest ows are responsible for a large share of the traÆ.

Preserving entries redues the average error in the estimates by 70% to 85%. Its e�et depends on the traÆ

mix. Preserving entries inreases the number of ow memory entries used by up to 30%. By e�etively

inreasing stage strength k, shielding onsiderably strengthens weak �lters. This an lead to reduing the

number of ow memory entries by as muh as 70%.

23

7.2 Evaluation of omplete traÆ measurement devies

In this setion we present our �nal omparison between sample and hold, multistage �lters and sampled

NetFlow. We perform the evaluation on our long OC-48 trae, MAG+. We assume that our devies an use

1 Mbit of memory (4096 entries

18

) whih is well within the possibilities of today's hips. Sampled NetFlow

is given unlimited memory and uses a sampling of 1 in 16 pakets. We run eah algorithms 16 times on the

trae with di�erent sampling or hashing funtions.

Both our algorithms use the adaptive threshold approah. To avoid the e�et of initial mison�guration,

we ignore the �rst 10 intervals to give the devies time to reah a relatively stable value for the threshold.

We impose a limit of 4 stages for the multistage �lters. Based on heuristis presented in Appendix D, we use

3114 ounters

19

for eah stage and 2539 entries of ow memory when using a ow de�nition at the granularity

of TCP onnetions, 2646 ounters and 2773 entries when using the destination IP as ow identi�er and

1502 ounters and 3345 entries when using the soure and destination AS. Multistage �lters use shielding

and onservative update. Sample and hold uses an oversampling of 4 and an early removal threshold of 15%.

Our purpose is to see how aurately the algorithms measure the largest ows, but there is no impliit

de�nition of what large ows are. We look separately at how well the devies perform for three referene

groups: very large ows (above one thousandth of the link apaity), large ows (between one thousandth and

a tenth of a thousandth) and medium ows (between a tenth of a thousandth a hundredth of a thousandth

{ 15552 bytes).

For eah of these groups we look at two measures of auray that we average over all runs and mea-

surement intervals: the perentage of ows not identi�ed and the relative average error. We ompute the

relative average error by dividing the sum of the moduli of all errors by the sum of the sizes of all ows.

We use the modulus so that positive and negative errors don't anel out for NetFlow. For the unidenti�ed

ows, we onsider that the error is equal to their total traÆ. Tables 5 to 7 present the results for the 3

di�erent ow de�nitions.

When using the soure and destination AS as ow identi�er, the situation is di�erent from the other two

ases beause the average number of ative ows (7,401) is not muh larger than the number of memory

loations that we an aommodate in our SRAM (4,096), so we will disuss this ase separately. In the �rst

two ases, we an see that both our algorithms are muh more aurate than sampled NetFlow for large and

very large ows. For medium ows the average error is roughly the same, but our algorithms miss more of

them than sampled NetFlow.

We believe these results (and similar results not presented here for lak of spae) do on�rm that our

algorithms are better than sampled NetFlow at measuring the largest of the ows. The results for multistage

�lters are always slightly better than those for sample and hold despite the fat that we use fewer memory

loations beause we have to sari�e part of the memory for the ounters of the stages. We do not onsider

this to be a de�nitive proof of the superiority of multistage �lters, sine tighter algorithms for adapting the

threshold an possibly result in further improvements of the performane of both algorithms.

In the third ase sine the average number of very large, large and medium ows (1,107) was muh below

the number of available memory loations and these ows were mostly long lived, both of our algorithms

measured all these ows very aurately. Thus, even when the number of ows is only a few times larger than

the number of ative ows, our algorithms ensure that the available memory is used to aurately measure

the largest of the ows and provide graeful degradation in ase that the traÆ deviates very muh from the

expeted (e.g. more ows).

18

Ciso NetFlow uses 64 bytes per entry in heap DRAM. We onservatively assume that the size of a ow memory entry

will be 32 bytes (even though 16 or 24 are also plausible).

19

We onservatively assume that we use 4 bytes for a ounter even though 3 bytes would be enough.

24

Group Unidenti�ed ows / Average error

(ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.07508% 0% / 0.03745% 0% / 9.020%

0:1 : : : 0:01% 1.797% / 7.086% 0% / 1.090% 0.02132% / 22.02%

0:01 : : :0:001% 77.01% / 61.20% 54.70% / 43.87% 17.72% / 50.27%

Table 5: Comparison of traÆ measurement devies with ow IDs de�ned by 5-tuple

Group Unidenti�ed ows / Average error

(ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.02508% 0% / 0.01430% 0% / 5.720%

0:1 : : : 0:01% 0.4289% / 3.153% 0% / 0.9488% 0.01381% / 20.77%

0:01 : : :0:001% 65.72% / 51.19% 49.91% / 39.91% 11.54% / 46.59%

Table 6: Comparison of traÆ measurement devies with ow IDs de�ned by destination IP

Group Unidenti�ed ows / Average error

(ow size) Sample Multistage Sampled

and hold �lters NetFlow

> 0:1% 0% / 0.000008% 0% / 0.000007% 0% / 4.877%

0:1 : : : 0:01% 0% / 0.001528% 0% / 0.001403% 0.002005% / 15.28%

0:01 : : : 0:001% 0.000016% / 0.1647% 0% / 0.1444% 5.717% / 39.87%

Table 7: Comparison of traÆ measurement devies with ow IDs de�ned by the soure and destination AS

25

8 Implementation Issues

In this setion we briey desribe implementation issues for the two algorithms. Sample and Hold is fairly

straightforward to implement even in a network proessor beause it adds only one memory referene to

paket proessing, assuming there is suÆient SRAM for ow memory and assuming an assoiative memory.

For small ow memory sizes, adding a CAM is quite feasible. Alternatively, one an implement an assoiative

memory using a hash table and storing all ow IDs that ollide in a muh smaller CAM. Sample and Hold

does require a soure of random numbers but most routers require this anyway to implement algorithms

suh as RED.

Multistage �lters are harder to implement using a network proessor beause they need multiple memory

referenes (to stage memories) in addition to the assoiative lookup of ow memory. However, multistage

�lters are fairly easy to implement in an ASIC as the following feasibility study shows. [12℄ desribes a hip

designed to implement a parallel multistage �lter with 4 stages of 4K ounters

20

eah and a ow memory

21

of 3584 entries. The hips runs at OC-192 line speeds: it aepts a header every 32 nanoseonds. It has a

yle time of 8ns. Eah entry in the ow memory is 27 bytes wide and ontains the ow ID, number of bytes

and pakets and the timestamp of the �rst and last paket. The hip has an interfae to a management

proessor that an read and write the ow memory. The ore logi of the hip onsists of approximately

450,000 transistors that �t on 2mm x 2mm on a .18 miron proess. The hash stage ounters would oupy

a further 8.4 mm

2

and the ow memory takes 21 mm

2

. Inluding the memories and the overhead, the total

size of the hip would be 5.5mm x 5.5mm and would use a total power of less than 1 watt. Both the size

and the power put the hip at the low end of today's IC designs.

9 Conlusions

Motivated by measurements that show that traÆ is dominated by a few heavy hitters, our paper takles

the problem of diretly identifying the heavy hitters without keeping trak of potentially millions of small

ows. Fundamentally, Table 1 shows that our algorithms have a muh better saling of estimate error

(inversely proportional to memory size) than provided by the state of the art Sampled NetFlow solution

(inversely proportional to the square root of the memory size). On atual measurements, our algorithms

with optimizations do several orders of magnitude better than predited by theory.

However, omparing Sampled NetFlow with our algorithms is more diÆult than indiated by Table 1.

This is beause Sampled NetFlow does not proess every paket and hene an a�ord to use large DRAM.

Despite this, results in Table 2 and in Setion 7.2 show that our algorithms are muh more aurate for small

intervals than NetFlow. In addition, unlike NetFlow, our algorithms provide exat values for long-lived large

ows, provide provable lower bounds on traÆ that an be reliably used for billing, avoid resoure-intensive

olletion of large NetFlow logs, and identify large ows very fast.

The above omparison only indiates that the algorithms in this paper may be better than using Sampled

NetFlow when the only problem is that of identifying heavy hitters, and when the manager has a preise

idea of whih ow de�nitions are interesting. NetFlow reords allow managers to a posteriori mine patterns

in data they did not antiipate, while our algorithms rely on eÆiently identifying stylized patterns that are

de�ned a priori. To see why this may be insuÆient, imagine that CNN suddenly gets ooded with web

traÆ. How ould a manager realize before the event that the interesting ow de�nition to wath for is a

multipoint-to-point ow (de�ned by destination address and port numbers)?

20

The ounters are on 32 bits.

21

Entries are loated in the ow memory with the help of 3 hash funtions in the manner desribed in [3℄.

26

The last example motivates an interesting open question. Is it possible to generalize the algorithms in

this paper to automatially extrat ow de�nitions orresponding to large ows? A seond open question is

to deepen our theoretial analysis to aount for the large disrepanies between theory and pratie.

We end by noting that the measurement problems faed by network managers are extremely similar to the

measurement problems faed by other areas in omputer siene suh as data mining, arhiteture, and even

ompilers. For example, Jim Smith and his o-workers [19℄ reently proposed using a Sampled NetFlow-like

strategy to obtain dynami instrution pro�les in a proessor (whih are used for later optimization). We

have preliminary results that show that the use of multistage �lters with onservative update an improve

the results of [19℄ for determining instrution pro�les. Thus the tehniques in this paper may be of utility

to other areas, and the tehniques in these other areas may of utility to us.

Referenes

[1℄ Jorn Altman and Karyen Chu. A proposal for a exible servie plan that is attrative to users and

internet servie providers. In IEEE Proeedings of the INFOCOM, April 2001.

[2℄ B. Bloom. Spae/time trade-o�s in hash oding with allowable errors. In Communiations of the ACM,

volume 13, pages 422{426, July 1970.

[3℄ Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In Proeedings of ACM-SIAM

symposium on Disrete algorithms, pages 43{53, January 1990.

[4℄ N. Brownlee, C. Mills, and G. Ruth. TraÆ ow measurement: Arhiteture. RFC 2722, Otober 1999.

[5℄ N. G. DuÆeld and M. Grossglauser. Trajetory sampling for diret traÆ observation. In Proeedings

of the ACM SIGCOMM, pages 271{282, August 2000.

[6℄ Nik DuÆeld, Carsten Lund, and Mikkel Thorup. Charging from sampled network usage. In SIGCOMM

Internet Measurement Workshop, November 2001.

[7℄ Min Fang, Narayanan Shivakumar, Hetor Garia-Molina, Rajeev Motwani, and Je�rey D. Ullman.

Computing ieberg queries eÆiently. In International Conferene on Very Large Data Bases, pages

307{317, August 1998.

[8℄ Wenjia Fang and Larry Peterson. Inter-as traÆ patterns and their impliations. In Proeedings of

IEEE GLOBECOM, Deember 1999.

[9℄ Anja Feldmann, Albert Greenberg, Carsten Lund, Nik Reingold, Jennifer Rexford, and Fred True.

Deriving traÆ demands for operational ip networks: Methodology and experiene. In Proeedings of

the ACM SIGCOMM, pages 257{270, August 2000.

[10℄ Wu-hang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin. Stohasti fair blue: A queue

management algorithm for enforing fairness. In IEEE Proeedings of the INFOCOM, April 2001.

[11℄ Phillip B. Gibbons and Yossi Matias. New sampling-based summary statistis for improving approximate

query answers. In Proeedings of the ACM SIGMOD, pages 331{342, June 1998.

[12℄ John Huber. Design of an o-192 ow monitoring hip. Class Projet, Marh 2001.

27

[13℄ T. V. Lakshman and D. Stiliadis. High-speed poliy-based paket forwarding using eÆient multi-

dimensional range mathing. In Proeedings of the ACM SIGCOMM, pages 203{214, September 1998.

[14℄ J. Makie-Masson and H. Varian. Publi Aess to the Internet, hapter Priing the Internet. MIT

Press, 1995.

[15℄ Ratul Mahajan, Steve M. Bellovin, Sally Floyd, John Ioannidis, Vern Paxson, and Sott Shenker.

Controlling high bandwidth aggregates in the network. http://www.airi.org/pushbak/, July 2001.

[16℄ David Moore. Personal onversation. also see aida analysis of ode-red, 2001. http://www.aida.org/

analysis/ seurity/ ode-red/.

[17℄ Ciso netow. http://www.iso.om /warp /publi /732 /Teh /netflow.

[18℄ Sampled netow. http://www.iso.om/univerd//td/do/produt/software/ios120/120newft/

120limit/120s/120s11/12s sanf.htm.

[19℄ Subramanya Sastry, Ratislav Bodik, and James E. Smith. Rapid pro�ling via strati�ed sampling. In

28th. International Symposium on Computer Arhiteture, pages 278{289, June 2001.

[20℄ S. Shenker, D. Clark, D. Estrin, and S. Herzog. Priing in omputer networks: Reshaping the researh

agenda. In ACM Computer Communiations Review, volume 26, pages 19{43. April 1996.

[21℄ K. Thomson, G. J. Miller, and R. Wilder. Wide-area traÆ patterns and harateristis. In IEEE

Network, Deember 1997.

28

A Details of the analytial evaluation of multistage �lters

This setion presents the detailed analytial evaluation of parallel multistage �lters. We use the same notation

as in setion 4.2. We �rst derive the bound for the expeted number of ows passing the �lter. After that we

give two high probability bounds on the number of ows passing the �lter: a loose bound that has a losed

form and a tighter one we speify as and algorithm.

Lemma 4 The probability of a ow of size s � 0 passing one stage of the �lter is bound by p

s

�

1

k

T

T�s

. If

s < T

k�1

k

this bound is below 1.

Proof Let's assume that the ow is the last one to arrive into the buket. This does not inrease its

hane to pass the stage, on the ontrary: in reality it might have happened that all pakets belonging to

the ow arrived before the buket reahed the threshold and the ow was not deteted even if the buket

went above the threshold in the end. Therefore the probability of the ow passing the stage is not larger

than the probability that the buket it hashed to reahes T . The buket of the ow an reah T only if the

other ows hashing into the buket add up to T � s. The total amount of traÆ belonging to other ows

is C � s. Therefore, the maximum number of bukets in whih the traÆ of other ows an reah T � s is

b

C�s

T�s

. The probability of a ow passing the �lter is bound by the probability of it being hashed into suh

a buket.

p

s

�

b

C�s

T�s

b

�

C

b(T � s)

=

1

k

T

T � s

�

Based on this lemma we an ompute the probability that a small ow passes the parallel multistage

�lter.

Lemma 5 (1) Assuming the hash funtions used by di�erent stages are independent, the probability of a

ow of size s passing a parallel multistage �lter is bound by p

s

�

�

1

k

T

T�s

�

d

.

Proof A ow passes the �lter only if it passes all the stages. Sine all stages are updated in the same way for

the parallel �lter, lemma 4 applies to all of them. Sine the hash funtions are independent, the probability

of the ow passing all of the stages equals the produt of the probabilities for every stage. �

Before using this lemma to derive a bound on the number of ows passing a multistage �lter, we an use

it for binding from below the expeted error in the estimate of the size of a large ow.

Corollary 5.1 For a ow with size s > T and no pakets larger than y

m

ax, the probability that the number

of undeteted bytes s� is at least x is bound by P (s� � x) �

�

1

k

T

T�x�y

m

ax+1

�

d

Proof There is a sequene of pakets at the beginning of the ow of length x � s

s

� x+ y

m

ax� 1. If this

sequene does not pass the �lter than s� � s

s

� x. By lemma 1 we an bound this probability and this

gives us this orollary. �

Theorem 6 (2) The expeted number of bytes of a large ow that go undeteted by a multistage �lter is

bound from below by

E[s� ℄ � T

�

1�

d

k(d� 1)

�

� y

m

ax (3)

29

Proof

E[s� ℄ =

T�1

X

x=0

P (s� = x)x =

T�1

X

x=1

P (s� = x)x =

T�1

X

x=1

P (s� � x) �

T

k�1

k

�y

m

ax

X

x=1

P (s� � x)

=

T

k�1

k

�y

m

ax

X

x=1

1� P (s� < x) = T

k � 1

k

� y

m

ax�

T

k�1

k

�y

m

ax

X

x=1

P (s� < x)

� T

�

1�

1

k

�

� y

m

ax�

T

k�1

k

�y

m

ax

X

x=1

P (s� � x)

Through orollary 5.1 we an give an upper bound for the sum.

T

k�1

k

�y

m

ax

X

x=1

P (s� � x) �

T

k�1

k

�y

m

ax

X

x=1

�

1

k

T

T � x� y

m

ax+ 1

�

d

�

Z

T

k�1

k

�y

m

ax+1

x=1

�

1

k

T

T � x� y

m

ax+ 1

�

d

dx

=

�

T

k

�

d

Z

T

k�1

k

�y

m

ax+1

x=1

�

1

T � y

m

ax+ 1� x

�

d

dx

=

�

T

k

�

d

1

d� 1

�

1

T � y

m

ax+ 1� x

�

d�1

j

T

k�1

k

�y

m

ax+1

x=1

�

(T=k)

d

d� 1

1

T � y

m

ax+ 1� T

k�1

k

+ y

m

ax� 1

!

d�1

=

(T=k)

d

d� 1

�

1

T=k

�

d�1

=

T

k(d� 1)

By substituting this result we obtain E[s� ℄ � T

�

1�

1

k

�

� y

m

ax�

T

k(d�1)

= T

�

1�

d

k(d�1)

�

� y

m

ax . �

Now we an give the bound on the number of ows passing a multistage �lter.

Theorem 7 (3) The expeted number of ows passing a parallel multistage �lter is bound by

E[n

pass

℄ � max

b

k � 1

; n

�

n

kn� b

�

d

!

+ n

�

n

kn� b

�

d

(4)

Proof Let s

i

be the sequene of ow sizes present in the traÆ mix. Let n

i

the number of ows of

size s

i

. h

i

=

n

i

s

i

C

is the share of the total traÆ the ows of size s

i

are responsible for. It is immediate

that

P

n

i

= n, and

P

h

i

= 1. By lemma 1 the expeted number of ows of size s

i

to pass the �lter is

E[n

i

pass

℄ = n

i

p

s

i

� n

i

max(1; (

1

k

T

T�s

i

)

d

) . By the linearity of expetation we have E[n

pass

℄ =

P

E[n

i

pass

℄ .

To be able to bound E[n

pass

℄, we will divide ows in 3 groups by size. The largest ows are the ones

we annot bound p

s

i

for. These are the ones with s

i

> T

k�1

k

. For these E[n

i

pass

℄ � n

i

=

h

i

C

s

i

<

h

i

C

T

k�1

k

,

therefore substituting them with a number of ows of size T

k�1

k

that generate the same amount of traÆ is

guaranteed to not derease the lower bound for E[n

pass

℄. The smallest ows are the ones below the average

ow size of

C

n

. For these p

s

i

� pC

n

. The number of below average ows is bound by n. For all these ows

taken together E[n

small

pass

℄ � npC

n

.

30

E[n

pass

℄ =

X

E[n

i

pass

℄ =

X

s

i

>T

k�1

k

E[n

i

pass

℄ +

X

C

n

�s

i

�T

k�1

k

E[n

i

pass

℄ +

X

s

i

<

C

n

E[n

i

pass

℄

�

X

s

i

>T

k�1

k

h

i

C

s

i

+

X

C

n

�s

i

�T

k�1

k

h

i

C

s

i

�

1

k

T

T � s

i

�

d

+ n

1

k

T

T �

C

n

!

d

� C

0

�

X

s

i

>T

k�1

k

h

i

1

T

k�1

k

+

X

C

n

�s

i

�T

k�1

k

h

i

1

s

i

�

1

k

T

T � s

i

�

d

1

A

+ n

1

k

T

T �

C

n

!

d

� C max

C

n

�s

i

�T

k�1

k

1

s

i

�

1

k

T

T � s

i

�

d

+ n

1

k

T

T �

C

n

!

d

Now we will determine the maximum of the funtion f(x) =

1

x

(

1

T�x

)

d

on the domain [

C

n

; T

k�1

k

℄.

f

0

(x) = �

1

x

2

�

1

T � x

�

d

+

1

x

d

(T � x)

d+1

=

1

x

1

(T � x)

d

�

�

1

x

+

d

T � x

�

Within [

C

n

; T

k�1

k

℄ f

0

(x) = 0 for x =

T

d+1

(if it is in the interval), f

0

(x) < 0 to the left of this value and

f

0

(x) > 0 to the right of it. Therefore this represents a minimum for f(x). Therefore the maximum of f(x)

will be obtained at one of the ends of the interval CT

d

f(T

k�1

k

) =

C

T

k�1

k

=

b

k�1

or CT

d

f(

C

n

) = n(

1

k

T

T�

C

n

)

d

=

n(

n

kn�b

)

d

. Substituting these values we obtain the bound. �

For proving our high probability bounds, we use the following result from probability theory.

Lemma 8 Assume we have a sequene of n independent events sueeding with probability p. The probability

that the number of events sueeding i exeeds the expeted value by more than � is bound by

Pr(i > np+ �) � e

�

�

2

2np+

2

3

�

Corollary 8.1 If we want to limit the probability of underestimation to p

safe

for the experiment above we

an bound i by

i � bnp�

ln(p

safe

)

3

+

r

ln(p

safe

)

2

9

� 2np ln(p

safe

)

Proof By lemma 8 we have

e

�

�

2

2np+

2

3

�

� p

safe

We an determine � by solving the resulting quadrati equation.

�

2

+

2ln(p

safe

)

3

�+ 2np ln(p

safe

) = 0

Sine ln(p

safe

) < 0, the only positive solution is

� = �

ln(p

safe

)

3

+

r

ln(p

safe

)

2

9

� 2np ln(p

safe

)

�

31

Theorem 9 With probability p

safe

the number of ows passing the parallel multistage �lter is bound by

n

pass

� b� 1 + bn

�

1

k � 1

�

d

+�

ln(p

safe

)

3

+

s

ln(p

safe

)

2

9

� 2n

�

1

k � 1

�

d

ln(p

safe

)

ProofWe divide the ows into two groups: ows stritly above

C

b

and ows below it. There are at most

b� 1 with s >

C

b

and we assume that all of these pass. With lemma 1 we bound the probability of passing

for ows below

C

b

by (

1

k

T

T�C=b

)

d

= (

1

k�1

)

d

. The number of ows in this group is at most n. By applying

orollary 8.1 we an bound the number of ows from this group passing the �lter. Adding the numbers for

the two groups gives us exatly the bound we need to prove. �

For our algorithm strengthening this theorem we will divide the ows above

C

b

into k � 2 groups. The

�rst group will ontain all ows of s > T

k�2

k

and we will assume that all of these pass. The jth group will

ontain ows of sizes between T

k�j�1

k

< s � T

k�j

k

. The last (k � 1th) group will ontain as in the ase

above, the ows with sizes below

C

b

=

T

k

.

Lemma 10 The probability of an individual ow from group j passing the �lter p

j

and the number of ows

in group j n

j

will be bound by

p

j

�

�

1

j

�

d

n

j

�

�

b

b

k�j�1

 if j < k � 1

n for the last group

Proof For group 1 we have p

1

� 1, so it is a orret upper bound. For all the other groups we have an

upper bound on the size of ows. Using lemma 1 we see that no ow has a probability of passing larger that

the probability for the largest permitted ow size. The bound for p

j

is immediate.

For the last group the bound n

k�1

� n trivially holds beause n is the total number of ows. All the

other groups have a lower bound on the size of their ows. We know that the ows a group an not add up

to more than the apaity of the link C. The bound on n

j

is immediate. �

Lemma 11 If the distribution of ow sizes is Zipf, the number of ows in group j n

j

will be bound by

n

j

�

8

>

<

>

:

b

b

(k�2)ln(n+1)

 for the �rst group

b

b

(k�j�1)ln(n+1)

 � b

b

(k�j)ln(2n+1)

 if(j > 1 and j < k � 1)

n� b

b

(k�j)ln(2n+1)

 for the last group

Proof By applying lemma 12, through simple manipulations, we obtain that the number of ows i larger

than T

k�j

k

is bound by

b

b

(k � j)ln(2n+ 1)

 � i � b

b

(k � j)ln(n+ 1)

Using these bounds, the lemma is immediate. �

We an strengthen the bound from theorem 9 by applying lemma 8.1 to these groups. Eah group will

have a limit on the number of passing ows. For the �rst group this will be the number of ows. The

32

COMPUTEBOUND(psafe)

psafe = psafe=(k � 2)

for j = 1 to k � 1

p[j℄ = 1=(j

d

)

n[j℄ = COMPUTEMAXFLOWCOUNT (j)

expetedpass[j℄ = n[j℄ � p[j℄

smallest[j℄ = T � (k � 1� j)=k

if (j == 1)

worstasepass[j℄ = n[j℄

else

lambda[j℄ = COMPUTELAMBDA(expetedpass[j℄; psafe)

worstasepass[j℄ = bmin(expetedpass[j℄ + lambda[j℄; n[j℄)

endif

endfor

passingflows = 0

passingtraffi = 0

for j = k � 1 to 1

newtraffi = worstasepass[j℄ � smallest[j℄

if(newtraffi+ passingtraffi > C)

worstasepass[j℄ = (C � passingtraffi)=smallest[j℄

newtraffi = worstasepass[j℄ � smallest[j℄

endif

passingflows+ = worstasepass[j℄

passingtraffi+ = newtraffi

endfor

return passingflows

Figure 10: Algorithm for omputing a strong high probability bound on the number of ows passing a

parallel �lter

probability of the total number of ows passing the �lter exeeding the sum of these limits will be bound by

the sum of the probabilities of individual groups exeeding their bounds. We divide p

safe

evenly between

the last k � 2 groups.

There is one further optimization, we an apply in the distribution free ase. Sine we derive the limits

separately for the groups, it an happen that when we add up all the passing ows, we obtain a traÆ

larger than C. We an disard the largest ows until the size of the passing ows is C. Figure 10 gives the

pseudoode of the resulting algorithm.

33

B Analysis of the memory requirements of our algorithms under

the assumptions that the ow sizes have a Zipf distribution

In this setion we derive bounds on the number of memory entries required by sample and hold and multistage

�lters assuming the ow sizes have a Zipf distribution with parameter 1.

B.1 Sample and hold with a Zipf distribution of ow sizes

Lemma 12 If the sizes of ows have a Zipf distribution, we an bound from above and below the size of the

i-th ow by

C

i ln(2n+1)

� s

i

�

C

i ln(n+1)

.

Proof The sizes of ows are s

i

=

1

i

. We know that

P

n

i=1

s

i

= C.

Z

i+1

i

1

x

dx �

1

i

�

Z

i+0:5

i�0:5

1

x

dx

Z

n+1

1

1

x

dx �

P

n

i=1

s

i

�

Z

n+0:5

0:5

1

x

dx

ln(n+ 1) � C � (ln(n+ 0:5)� ln(0:5)) = ln(2n+ 1)

�

Corollary 12.1 If the sizes of ows have a Zipf distribution, the number of ows above a ertain threshold

T is at most b

C

T ln(n+1)

 .

Corollary 12.2 If the sizes of ows have a Zipf distribution, the number of ows above a ertain threshold

T is at least b

C

T ln(2n+1)

 .

Lemma 13 The �rst x ows represent at least a fration of

ln(x+1)

ln(2n+1)

of the total traÆ.

Proof

x

X

i=1

s

i

� ln(x+ 1) �

C

ln(2n+ 1)

ln(x+ 1)

�

Based on this, we an ompute that the total traÆ of the �rst j ows is at least C

ln(j+1)

ln(2n+1)

. The

exepeted number of entries needed will be j+Cp(1�

ln(j+1)

ln(2n+1)

). By di�erentiating, we se that we obtain the

lowest value for the number of entries by hoosing j =

Cp

ln(2n+1)

�1.

22

By substituting we obtain the number

of entries we need in the ow memory Cp(1 �

ln(Cp)�ln(ln(2n+1))�1

ln(2n+1)

) � 1. The standard deviation of the

number of sampled pakets belonging to ows smaller than the jth is

q

Cp(1� p)(1�

ln(j+1)

ln(2n+1)

). Applying

Chebyshev's inequality we obtain that the probability that the number of entries required be larger than

Cp(1�

ln(Cp)�ln(ln(2n+1))�1

ln(2n+1)

)� 1 + k

q

Cp(1� p)(1�

ln(j+1)

ln(2n+1)

) is less than

1

k

2

.

22

Atually we have to hoose either the integer just below or the one just above this value, but we ignore this detail for

simpliity.

34

B.2 Multistage �lters with a Zipf distribution of ow sizes

For proving theorem 15 we �rst need a helper lemma.

Lemma 14 For any > 0 and + 1:5 � i

0

< n we have

n

X

i=i

0

�

1

1�

i

�

d

< n+ 1� i

0

+ d(ln(n+ 1) +

1

1�

i

0

�0:5

!

d�1

)

Proof

n

X

i=i

0

�

1

1�

i

�

d

=

n

X

i=i

0

i

d

(i�)

d

=

n�

X

j=i

0

�

(j +)

d

j

d

=

n�

X

j=i

0

�

d

X

m=0

�

d

m

�

j

d�m

m

j

d

=

d

X

m=0

�

d

m

�

m

n�

X

j=i

0

�

j

�m

�

d

X

m=0

�

d

m

�

(�)

m

Z

n�+0:5

j=i

0

��0:5

j

�m

dj

= n+ 1� i

0

+ d

Z

n�+0:5

j=i

0

��0:5

1

j

dj +

d

X

m=2

�

d

m

�

m

Z

n�+0:5

j=i

0

��0:5

j

�m

dj

= n+ 1� i

0

+ dln(

n� + 0:5

i

0

� � 0:5

) +

d

X

m=2

�

d

m

�

m

m

((i

0

� � 0:5)

�m+1

� (n� + 0:5)

�m+1

)

d

X

m=2

�

d

m

�

m

m�1

(a

�m+1

� b

�m+1

) = d

d

X

m=2

�

d� 1

m� 1

�

(

�

a

�

m�1

�

�

b

�

m�1

) = d

d�1

X

r=1

�

d� 1

r

�

(

�

a

�

r

�

�

b

�

r

)

= d

d�1

X

r=0

�

d� 1

r

�

�

a

�

r

� d

d�1

X

r=0

�

d� 1

r

�

�

b

�

r

= d

�

�

1 +

a

�

d�1

�

�

1 +

b

�

d�1

�

= d

�

a+

a

�

d�1

�

�

b+

b

�

d�1

!

By ombining these two results we immediately obtain

n

X

i=i

0

�

1

1�

i

�

d

� n+ 1� i

0

+ d

ln

�

n� + 0:5

i

0

� � 0:5

�

+

�

i

0

� 0:5

i

0

� � 0:5

�

d�1

�

�

n+ 0:5

n� + 0:5

�

d�1

!

< n+ 1� i

0

+ d

0

�

ln(n+ 1) +

1

1�

i

0

�0:5

!

d�1

1

A

�

35

Theorem 15 If the ows sizes have a Zipf distribution, the expeted number of ows passing a parallel

multistage �lter is bound by

E[n

pass

℄ � i

0

+

n

k

d

+

db

k

d+1

+

db ln(n+ 1)

d�2

k

2

�

k ln(n+ 1)�

b

i

0

�0:5

�

d�1

(5)

where i

0

= dmax(1:5 +

b

k ln(n+1)

;

b

ln(2n+1)(k�1)

)e.

Proof We divide the ows into two groups. As in the general ase, for the larger ones we will assume

they will pass. For the smaller ones we will use lemma 14 to bound the expeted value of the number of

ows passing. Before deiding where to separate the two groups we will give the general formula for the

seond one using lemma 1 (i

0

is the rank of the largest ow in this group).

E[n

small

pass

℄ =

n

X

i=i

0

p

s

i

�

n

X

i=i

0

�

1

k

T

T � s

i

�

d

�

1

k

d

n

X

i=i

0

T

T �

C

i ln(n+1)

!

d

=

1

k

d

n

X

i=i

0

0

�

1

1�

b

k ln(n+1)

i

1

A

d

For lemma 14 to apply we need i

0

� 1:5 +

b

k ln(n+1)

. To be able to bound the probability of these ows

passing the �lter, by lemma 4 we need s

i

0

� T

k�1

k

. Through lemma 12 we obtain i

0

�

k

T (k�1)

�

b

ln(2n+1)(k�1)

.

To satisfy both inequalities we set i

0

to dmax(1:5 +

b

k ln(n+1)

;

b

ln(2n+1)(k�1)

)e.

E[n

pass

℄ =

n

X

i=1

p

s

i

=

i

0

�1

X

i=1

p

s

i

+

n

X

i=i

0

p

s

i

� i

0

+

n+ 1� i

0

+

db

k ln(n+1)

ln(n+ 1) +

1

�

1�

b

k ln(n+1)(i

0

�0:5)

�

d�1

!

k

d

� i

0

+

n

k

d

+

db

k

d+1

+

db ln(n+ 1)

d�2

k

2

�

k ln(n+ 1)�

b

i

0

�0:5

�

d�1

�

C De�ning large ows with leaky bukets

In this appendinx we propose an alternate de�nition of large ows based on leaky bukets instead of mea-

surement intervals. We also show how to adapt the multistage �lters to this new de�nition and provide an

analytial evaluation of the new sheme.

De�ning large ows based on measurement intervals an lead to some unfairness. For example if a ow

sends a burst of size slighlty larger than the threshold T within one measurement interval it is onsidered

large. However, if the same burst spans two intervals it's not. Even ows sending bursts of size almost

2T are not onsidered large if the bursts span measurement intervals a ertain way. It an be argued that

36

we should onsider to be a large ow all ows that send more than T over any time interval no longer

than a measurement interval. While this distintion is arguably not very important for the ase of traÆ

measurement, it might matter for other appliations.

We use a leaky buket desriptor (also known as linearly bounded arrival proess) to de�ne large ows: a

ow is large if during any time interval of size t it sends more than r�t+u bytes of traÆ. By properly hoosing

the parameters of the leaky buket desriptor, we an ensure that all ows that send T bytes of traÆ over

a time interval no longer than a measurement interval are identi�ed. We an adapt the multistage �lters to

this new de�nition by replaing the ounters with \leaky bukets" and instead of looking for ounters above

the threshold we look for bukets that violated the desriptor. We will �rst disuss how we an implement

these eÆiently at high speeds, and then give an analytial evaluation of the new algorithm.

C.1 Analytial evaluation of the parallel multistage �lter using leaky bukets

Flows sending more than r � t + u in any time interval of length t are large. For the example we used in

setion 4.2 by setting r to 0.5 Mbytes/s and u to 0.5 Mbytes, we are guaranteed that ows that send 1

Mbyte during any seond are labeled as large. This guarantees that we ath all ows that send more than 1

Mbyte during a measurement interval. We an oneptually desribe the operation of the bukets as follows.

Eah buket has a ounter initialized to 0. Every

1

r

seonds this ounter is deremented by 1 unless it is

already 0 . When a paket of size s arrives, its size is added to the ounter, but the value of the ounter is

not inresed above u. If the ounter is u the inoming paket is onsidered to belong to a large ow. We

also use the phrases the buket is in violation and the paket passes the buket to desribe this situation.

Setion C.2 destribes how this an be implemented eÆiently. Atual implementations would probably use

an approximation of this algorithm (e.g. they might derement the leaky buket less often), but we are not

onerned with these details in our analysis. We use the notations below in our analysis.

� r the steady state data rate of the leaky buket;

� u the burst size of the leaky buket;

� C the data rate of the link (in bytes/seond);

� k the stage strength: the ratio of r average data rate of the traÆ through a buket k =

r b

C

(in our

modi�ed example above k is 5);

� � the drain time for the leaky buket � =

u

r

, for our example � = 1 seond;

� the ounter of a ertain leaky buket (see below);

� a the number of \ative" bukets in a stage (bukets with non-zero ounters);

� A the ative traÆ in a partiular stage de�ned as the sum of all ounters;

� s the size of a paket or a sequene of pakets;

We formalize the desription of how the leaky bukets of the stages operate in the following two lemmas.

Lemma 16 If

initial

is the initial value of the ounter of a buket, after a time t where the buket reeived

no pakets the value of the ounter will be

final

= max(0;

initial

� rt).

37

Lemma 17 If

initial

is the initial value of the ounter of a buket when it reeives a paket of size s, the

value after the paket was proessed is going to be

final

= min(

initial

+ s; u).

Now we an prove a lemma that will help use prove we have no false negatives.

Lemma 18 Let be the value of the ounter of a leaky buket traking a ow. Let

0

be the ounter of

another buket that ounts all the pakets of our ow and possibly pakets of other ows. For any moment

in time �

0

Proof By indution on time using as steps the moments when the pakets are reeived.

Base ase The bukets are exatly idential at the beginning of the interval = `.

Indutive step Three things an happen: a paket belonging to the ow arrives, a paket not belonging

to the ow arrives or no pakets arrive for time t. In all three ases we will use the fat that by indution

hypothesis, �

0

in the beginning. If a paket of size s belonging to the ow arrives, by lemma 17 we have

new

= min(+ s; u) and

0

new

= min(

0

+ s; u) therefore

new

�

0

new

. If a paket of size s not belonging

to the ow arrives, by lemma 17 we have

new

= and

0

new

= min(

0

+ s; u) therefore

new

�

0

new

. If

no pakets arrive for time t, by lemma 16 at the end of the interval we have

new

= max(0; � rt) and

0

new

= max(0;

0

� rt), therefore

new

�

0

new

. �

Corollary 18.1 Let t be the moment in time when a ertain ow exeeds the leaky buket desriptor. The

violation will be deteted by the leaky buket at time t no matter how many pakets belonging to other ows

hash to the same buket.

Theorem 19 A parallel multistage �lter will detet any ow exeeding the leaky buket desriptor at latest

when it does so.

Proof By orollary 18.1, at all stages, the bukets the ow hashes to will detet the leaky buket desriptor

violation for the �rst paket of the ow that violates it, therefore this paket will pass the �lter ausing the

ow to be deteted. �

Just as in the ase with the measurement intervals, we an have no false negatives and we want to bound

the number of false positives. What we want to bound is the number of ows passing the �lter during a

ertain time interval whih gives us the peak rate at whih new ows are added to the ow memory.

Lemma 20 For any time interval t, if the ounter of a buket at the beginning was

initial

and the traÆ that

hit the buket during the interval is s, the �nal value of the ounter is bound by

final

� max(0;

initial

�rt)+s.

Proof By indution on time, using as steps the moments when the pakets are reeived.

Base ase At the beginning of the experiment, the time passed sine the beginning of the experiment

will be t = 0 and the sum of the sizes of the pakets sent will be s = 0 therefore =

initial

= max(0;

initial

�

rt) + s.

Indutive step Two things an happen: a paket arrives or no pakets arrive for time t

0

. In all ases

we will use the fat that by indution hypothesis, � max(0;

initial

� rt) + s in the beginning where t

is the time that passed sine the beginning of the experiment and s is the sum of the sizes of the pakets

reeived so far. If a paket of size s

0

arrives, by lemma 17 we have

new

= max(+ s

0

; u) � + s

0

�

max(0;

initial

� rt) + s+ s

0

. If no pakets arrive for time t

0

, by lemma 16 at the end of the interval we have

new

= max(0; � rt

0

) � max(0;max(0;

initial

� rt) + s � rt

0

) � max(0;max(0;

initial

� rt) � rt

0

) + s �

max(0;max(0;

initial

� rt � rt

0

)) + s = max(0;

initial

� r(t+ t

0

)) + s. �

38

Corollary 20.1 The value of the ounter of the buket is not larger than the amount of traÆ that buket

reeived during the last � .

Lemma 21 The ative traÆ in any stage is bound by A �

bu

k

.

Proof By orollary 20.1, the size of eah individual buket will be bound by the traÆ it reeived during

the last � , therefore A will be bound by the total traÆ reeived during this interval whih is bound by

C� =

bu

k

. �

Corollary 21.1 At any moment in time the number of bukets in a stage a

x

with � x is bound by

a

x

� b

bu

kx

.

We will bound the expeted number of ows passing the �lter during an interval of � , the drain time for

the leaky buket. We annot diretly use orollary 21.1 beause a partiular ow might pass the �lter at any

moment during the interval of � .

Lemma 22 The number of bukets of a stage with � x at any time during an interval of � is bound by

a

x

� b2

bu

kx

.

Proof By lemma 21.1, the maximum number of bukets above x at the start of the interval is b

bu

kx

 with the

rest of the ative traÆ in other bukets. The best way an adversary ould use the remaining ative traÆ

at the beginning at the interval and the traÆ sent during the interval is to �ll bukets one by one. Sine the

amount of traÆ sent during the interval is bound by

bu

kx

, by adding the number of bukets that were above

 at the beginning to the ones that got �lled up during the interval we obtain the bound of this lemma.�

Lemma 23 For a ow that sends a total of s bytes during an interval � and the preeding � seonds, the

probability that any of its pakets pass the parallel multistage �lter during the interval is bound by p

s

�

�

2

k

u

u�s

�

d

. If s � u

k�2

k

this bound is below 1.

Proof By lemma 20.1, the size of the bukets is hashes to is bound by the traÆ they reeived in the past �

seonds. This traÆ is made up by traÆ of the ow we are analyzing and traÆ of other ows � s+s

rest

.

The amount of traÆ our ow sends during any window of � seonds ending in the interval is bound by s.

For the ow to pass the �lter, we need all bukets to pass the ow s + s

rest

� u. By an argument similar

to the one on lemma 22, the number of buket at eah stage for whih s

rest

� u� s at any moment during

the interval is bound by a

u�s

� 2

bu

k(u�s)

. Therefore the probability of passing any single stage is bound by

2u

k(u�s)

. This gives us the bound on the probability for a ow passing all of the stages as in the lemma. �

Notie that this lemma is an upper bound, not the atual probability. It is even further from the real

probability for the ow passing the �lter than lemma 1 beause it assumes that for all stages s

rest

reahes

the right value exatly when the last paket of the ow is sent. This is quite unlikely in pratie. Based

on this lemma, we an give our �nal bound for the expeted number of ows passing the �lter during the

interval � .

Theorem 24 The expeted number of ows passing a multistage parallel �lter during any interval of length

� is bound by

E[n

pass

℄ � max

2b

k � 2

; n

�

2n

kn� 2b

�

d

!

+ n

�

2n

kn� 2b

�

d

39

Proof Let s

i

be the sequene of ow sizes present in the traÆ mix ounting the traÆ sent during the

interval and the � preeding seonds. Let n

i

the number of ows of size s

i

. h

i

=

n

i

s

i

2C�

is the share of the

total traÆ the ows of size s

i

are responsible for. We have

P

n

i

= n (n is de�ned as the number of ows

ative during the interval, not the interval and the � preeding seond), and

P

h

i

= 1. By lemma 23 the

expeted number of ows of size s

i

to pass the �lter is E[n

i

pass

℄ = n

i

p

s

i

�. By the linearity of expetation

we have E[n

pass

℄ =

P

E[n

i

pass

℄ .

To be able to bound E[n

pass

℄, we will divide ows in 3 groups by size. The largest ows are the ones

we annot bound p

s

i

for. These are the ones with s

i

> u

k�2

k

. For these E[n

i

pass

℄ � n

i

=

h

i

2C�

s

i

<

h

i

2C�

u

k�2

k

,

therefore substituting them with a number of ows of size u

k�2

k

that generate the same amount of traÆ is

guaranteed to not derease the lower bound for E[n

pass

℄. The smallest ows are the ones below the average

ow size of

2C�

n

. For these p

s

i

� p 2C�

n

. The number of below average ows is bound by n. For all these ows

taken together E[n

small

pass

℄ � np 2C�

n

.

E[n

pass

℄ =

X

E[n

i

pass

℄ =

X

s

i

>u

k�2

k

E[n

i

pass

℄ +

X

2C�

n

�s

i

�u

k�2

k

E[n

i

pass

℄ +

X

s

i

<

2C�

n

E[n

i

pass

℄

�

X

s

i

>u

k�2

k

h

i

2C�

s

i

+

X

2C�

n

�s

i

�u

k�2

k

h

i

2C�

s

i

�

2

k

u

u� s

i

�

d

+ n

2

k

u

u�

2C�

n

!

d

� 2C�

0

�

X

s

i

>u

k�2

k

h

i

1

u

k�2

k

+

X

2C�

n

�s

i

�u

k�2

k

h

i

1

s

i

�

2

k

u

u� s

i

�

d

1

A

+ n

�

2

k

nu

nu� 2C�

�

d

�

2ub

k

max

2C�

n

�s

i

�u

k�2

k

1

s

i

�

2

k

u

u� s

i

�

d

!

+ n

�

2n

kn� 2b

�

d

As we saw in the proof of theorem 3, the maximum is reahed at one of the ends of the interval. By

substituting these values we obtain the bound. �

If we ompute the number for our example we obtain a bound of 5; 202:7 ows whih is muh higher than

the 121:2 theorem 3 gave. But is the omparison fair? Are the problems solved in the two ases equivalent?

In te analysis with measurement intervals the number of ows that ould violate the threshold during the

measurement interval is 100. What is this number in our ase? We an have 199 ows that keep their

bukets at 0.5 Mbytes before our interval starts and they send one single small paket during the interval.

These pakets are all in violation and they should be deteted. After this, we an have 198 other ows

sending bursts of slightly more than 0.5 Mbytes so that they violate their leaky buket desriptor. These

ows should also all be passed by the �lter if it is to avoid false negatives. Therefore we have a traÆ pattern

that requires at least 397 ows to be deteted during the interval. If we proportionately inrease the number

of bukets at eah stage from 1000 to b = 4000, theorem 24 gives us a bound of 454:6 whih is approximately

4 times the bound of theorem 3. As with that result, we expet that in pratie the number of ows passing

will be muh smaller.

C.2 Implementing multistage �lters with leaky bukets

A naive implementation of the leaky bukets that make up the stages would keep derementing the ounters

by 1 every 1=r seonds. This needs a lot of memory aesses and is not neessary. We think of the ounters

40

as numbers that move between 0 and u and what matters to the algorithm is where the ounters are within

this interval. Instead of derementing all the ounters every 1=r seonds by one, we an move the interval:

we will have a virtual 0 and a virtual u that get inremented every 1=r seonds. Sine we an keep these

values in two registers, inrementing them often does not pose problems. With these new de�nitions, the

ounters themselves work the following way: when a new paket hashes to the ounter, we �rst hek if the

value if the ounter is below the virtual 0 we update it to 0; we add the size of the paket to the ounter

and if it is above the virtual u, we derement it to virtual u; �nally if the ounter reahed the virtual u

we delare that the buket is in violation. While this might sound long, it needs no more memory aesses

than the ounters of �lters operating with measurement intervals. With this implementation, we need to

worry about overows. We an implement the operations in suh a way that when the virtual 0 and virtual

u overow, omparisons and arithmeti operations still work orretly. However, after an overow an old

ounter that reeived no pakets an seem to have a very large value instead of a very small one. To solve

this problem we an use a bakground proess that periodially updates to virtual 0 all the ounters below

it. Improvements to the basi parallel �lter suh as shielding and onservative update easily generalize to

our �lter using leaky bukets.

D Heuristi rules for tight on�guration of the multistage �lters

Even if we have the orret onstants for the threshold adaptation algorithm, there are other on�guration

parameters for the multistage �lter we need to set. Our aim in this setion is not to derive the exat optimal

values for the on�guration parameters of the multistage �lters. Due to the dynami threshold adaptation,

the devie will work even if we use suboptimal values for the on�guration parameters. Nevertheless we want

to avoid using on�guration parameters that would lead the dynami adaptation to stabilize at a value of

the threshold that is signi�antly higher than the one for the optimal on�guration.

We assume that design onstraints limit the total amount of memory we an use for the stage ounters

and the ow memory, but we have no restritions on how to divide it between the �lter and the ow memory.

Sine the number of per paket memory aesses might be limited, we assume that we might have a limit

on the number of stages. We want to see how we should divide the available memory between the �lter and

the ow memory and how many stages to use. We base our on�guration parameters on some knowledge of

the traÆ mix.

We �rst introdue a simpli�ed model of how the multistage �lter works. Measurements on�rm this

model is loser to the atual behavior of the �lters than the onservative analysis. Beause of shielding the

old large ows do not a�et the �lter. We assume that beause of onservative update only the ounters to

whih the new large ows hash reah the threshold. Let l be the number of large ows and �l be the number

of new large ows. We approximate the probability of a small ow passing one stage by �l=b and of passing

the whole �lter by (�l=b)

d

. This gives us the number of false positives in eah interval fp = n(�l=b)

d

. The

number of memory loations used at the end of a measurement interval onsists of the large ows and the

false positives of the previous interval and the new large ows and the new false positives m = l+�l+2�fp.

To be able to establish a tradeo� between using the available memory for the �lter or the ow memory, we

need to know the relative ost of a ounter and a ow entry. Let r denote the ratio between the size of a

ounter and the size of an entry. The amount of memory used by the �lter is going to be equivalent to b�d�r

entries. To determine the optimal number of ounters per stage given a ertain number of large ows, new

large ows and stages, we take the derivative of the total memory with respet to b. Equation 6 gives the

optimal value for b and Equation 7 gives the total amount of memory required with this hoie of b.

41

b = �l

d+1

r

2n

r�l

(6)

m

total

= l +�l + (d+ 1)r�l

d+1

r

2n

r�l

(7)

We make a further simplifying assumption that the ratio between �l and l (related to the ow arrival

rate) doesn't depend on the threshold. Measurements on�rm that this is a good approximation for wide

ranges of the threshold. For the MAG trae, when we de�ne the ows at the granularity of TCP onnetions

�l=l is around 44%, when de�ning ows based on destination IP 37% and when de�ning them as AS pairs

19%. Let M be the number of entries the available memory an hold. We solve Equation 7 with respet to

l for all possible values of d from 2 to the limit on the number of memory aesses we an a�ord per paket.

We hoose the depth of the �lter that gives the largest l and ompute b based on that value.

E Ciso NetFlow

NetFlow [17℄ is a feature of Ciso routers that implements per ow traÆ measurement. It is one of the

primary tools used to ollet traÆ data by large transit ISPs today [9℄. NetFlow is intended (by Ciso)

to serve as a basis for usage based billing. We briey disuss here some details of Ciso NetFlow. We

also present an analytial evaluation of the auray of sampled NetFlow and its memory requirements.

At the end of this appendix we propose an alternative implementation solution that ould inrease by an

order of magnitude the link speeds NetFlow an handle without resorting to sampling. This implementation

proedure an also be used in onjuntion with our algorithms.

E.1 Basi NetFlow

NetFlow de�nes ows as unidiretional streams of pakets between two partiular endpoints. A ow is

identi�ed by the following �elds: soure IP address, destination IP address, the protool �eld in the IP

header, soure port, destination port, the TOS byte and the interfae of the router that reeived the paket.

In the DRAM of the router interfae ard there is a ow ahe that stores per ow information (we all it ow

memory in this paper). The entry for a ow holds, besides the ow identi�er, various types of information

about the ow: timestamp of when the ow started and ended, paket ount, byte ount, TCP ags, soure

network, soure AS (Autonomous System), destination network, destination AS, output interfae, next hop

router. Various heuristis (e.g. ows that have been inative for a partiular period of time, the RST and

FIN TCP ags) are used to determine when a ow ends.

The NetFlow data aptured by at the router is exported via UDP pakets to omputers that proess it

further. The raw NetFlow data an be proessed in a variety of ways and an give all kinds of information

about the traÆ. There are two major problems with the basi NetFlow: for interfaes faster than OC3

updating the ow ahe slows down the operation of the interfae and the amount of data generated by

NetFlow an be so large that it overwhelms the olletion server or its network onnetion ([9℄ reports loss

rates of up to 90%). Ciso's solution to the �rst problem is sampling pakets and to the seond aggregating

the measurement data on the router.

42

E.2 NetFlow Aggregation

Many appliations are not interested in the raw NetFlow data, but in an aggregated form of it. For example

when deriving traÆ demands one is interested by traÆ between networks (more exatly IP pre�xes), not

individual endpoints: all NetFlow reords of individual ows whose two endpoints are in the same two

networks are aggregated together. One an also imagine arrangements between ISPs with payment based

on traÆ that would require a similar type of aggregation.

Ciso's solution to the problem of NetFlow generating too muh data was introdued in IOS 12.0(3)T .

The aggregation of raw data is performed at the router. One or more extra ahes alled aggregation ahes

are maintained at the router. Only the aggregate data is exported thereby reduing substantially the amount

of traÆ generated. Five aggregation shemes are urrently supported: based on soure and destination AS,

based on destination pre�x, based on soure pre�x, based on soure and destination pre�x and based on

soure and destination ports.

E.3 Sampled NetFlow

Ciso introdued a feature alled sampled NetFlow [18℄ with high end routers. The performane penalty

of updating the ow ahe from DRAM is avoided by sampling the traÆ. For a on�gurable value of a

parameter x, one of every x pakets is sampled. The ow ahe is updated only for the sampled pakets.

Even though the update operation is not performed any faster, sine it is performed less often it does not

a�et the performane of the router. Ciso reommends that sampling is turned on for interfaes above

OC-3. The advantage of this solution is that it is very simple and requires no signi�ant hanges to the

hardware of the line ard.

E.4 The auray of sampled NetFlow

The atual sampled NetFlow works by ounting every x-th paket irrespetive of paket sizes. To simplify

the analysis we will assume that all pakets have the same size y and are sampled with probability p = 1=x.

Let be the number of pakets ounted for a given ow and s the atual size of the ow (in pakets).

The probability distribution of is binomial. The probability that a ow of size s is missed is the same as

the probability that no pakets get sampled whih is (1 � p)

s

. By the linearity of expetation we obtain

that E[℄ = sp. Therefore the best estimate for s is =p. Sine the probability distribution for is binomial,

its standard deviation will be SD[℄ =

p

sp(1� p). The standard deviation of our estimate of s will be

1=p

p

sp(1� p).

To ompare the auray of sampled NetFlow with our algorithms we ompute the standard deviation

of the estimate of the size of the ow that is at the threshold T = s � y (in bytes). By substituting in the

formula above, this is y=p

p

p(1� p)T=y =

p

y(1� p)T=p. Based on this number we an also ompute the

relative error of a ow of size T whih is

p

y(1� p)=Tp. We an substitute atual numbers into this formula.

Sine sampling is reommended above OC-3 (155.52 Mbits/s=19,440,000 bytes/s), if the line speed is x times

OC-3, then the sampling probability is at most p = 1=x. Smaller sampling probabilities an be used to redue

the memory requirements at the ost of auray. Let the measurement interval be i seonds. Assuming a

threshold of T = zC = xiz19; 440; 000 and a paket size of 1500 bytes (whih is ommon for large ows), the

relative error of the estimate of a ow at the threshold is

p

1500(1� 1=x)x=T �

p

1; 500=(19; 440; 000iz) =

0:0087841=

p

zi.

43

E.5 The memory requirements of sampled NetFlow

To be able to ompare NetFlow to our algorithms, for the purpose of thia analysis we hange somewhat the

way NetFlow operates: we assume that it reports the traÆ data for eah ow after eah measurement inter-

val, like our algorithms do. The number of entries used by NetFlow is bound by both the maximum number

of pakets sampled during a measurement interval and the number of ative ows n. Assuming the link is

fully utilized with minimum size pakets of 40 bytes, the number of pakets sampled in i seonds is exatly

ipC=40. As we saw in setion E.4, the maximum sampling that doesn't slow down the paket forwarding is

p = 19; 440; 00=C. If we use this sampling rate, the maximum number of updates per measurement interval

is i19; 440; 000=CC=40 = 486; 000i.

E.6 Keeping a queue of paket headers

The improvement presented in this setion signi�antly inreases the amount of time NetFlow an spend

with eah paket. It involves addition of a simple SRAM bu�er.

In [13℄ Lakshman and Stiliadis argue that paket forwarding and lassi�ation deisions have to be made

at line speed even for the smallest of pakets. We argue that this does not extend to traÆ measurement. We

an keep the paket headers and other relevant information in a small queue and proess that information

(for traÆ measurement purposes) at somewhat lower speeds after the paket was sent on the wire. This

does not ause any delay for the atual paket. We are basially deoupling the forwarding of pakets from

the traÆ measurement devie. We argue that the bene�ts far outweigh the osts of this improvement.

Pratially all of the pakets from the traes we used are at least 40 bytes large. However the average size

is around 550 bytes. If we were to dimension the traÆ measurement devie to handle at line speeds pakets

of 240 bytes instead of 40 bytes, this would give us 6 times as muh time to proess eah paket. Sine the

average time the traÆ measurement devie has to proess a paket is more than twie what it needs, the

SRAM bu�er holding the queue of paket headers need not be very large to make it very unlikely that it

ever overows. This is very similar to how paket headers are bu�ered on ards used for traÆ apture until

the driver an handle them.

F Choosing a suitable measurement interval

In this appendix we hoose the size of the measurement interval based on the traes we have. The optimal

size for the measurement interval depends on both the appliation for our algorithms and the traÆ mix.

The purpose of the measurements from this appendix is not to derive a size for the measurement interval

that we reommend for all appliations. We only want to derive a size for the measurement interval that is

lose enough to what appliations would use to make the results from setion 7 relevant.

The task of hoosing an appropriate measurement interval is further ompliated by the lak of objetive

riteria for deiding what a good value is. If the measurement intervals are too large the data olleted

might be too oarse for the purposes of the appliation. If the interval is too small than ows that have gaps

between some of their pakets larger than the measurement interval an appear as repeatedly going inative

and starting to send again. This might be undesirable for the appliation and it an redue the e�etiveness

of optimizations to our algorithms that rely on the persistene of the ows (suh as preserving entries in the

ow memory aross measurement intervals).

What do we measure in order to determine what a good value for the measurement interval is? One

would want as many as possible of the ows to send their pakets spaed apart by less than the size of

the measurement interval. An obvious measure of how good a size for the measurement interval is is the

44

Interval MAG IND COS

0.1 s 4.482% /1.617% /67.261% 5.899% /7.068% /81.572% 9.923% /4.101% /77.623%

0.2 s 13.801%/7.829% /78.805% 8.809% /19.935%/87.162% 15.415%/10.481%/86.326%

0.5 s 35.556%/31.206%/91.939% 16.471%/44.679%/93.601% 23.659%/29.416%/93.629%

1.0 s 49.682%/45.012%/95.362% 27.896%/58.222%/96.651% 36.707%/48.031%/96.614%

2.0 s 56.683%/58.119%/97.224% 32.022%/67.509%/97.979% 41.659%/61.148%/97.850%

5.0 s 67.685%/76.528%/98.969% 57.919%/83.102%/99.250% 51.282%/80.745%/99.043%

10.0 s 90.056%/87.086%/99.611% 79.765%/91.705%/99.723% 63.092%/86.705%/99.483%

Table 8: Comparing measurement intervals for ows de�ned by 5-tuples

Interval MAG IND COS

0.1 s 1.085% / 4.481%/75.160% 1.419% /13.136%/86.458% 2.373% /18.597%/89.663%

0.2 s 2.906% /10.246%/85.209% 2.884% /27.138%/91.339% 3.889% /34.595%/94.541%

0.5 s 9.683% /23.896%/95.373% 6.178% /51.617%/96.293% 6.262% /50.827%/97.919%

1.0 s 16.660%/33.579%/97.728% 11.195%/65.484%/97.871% 10.943%/60.578%/99.081%

2.0 s 21.377%/43.254%/98.780% 14.309%/73.635%/98.739% 15.162%/70.080%/99.535%

5.0 s 32.745%/59.495%/99.579% 49.080%/86.646%/99.493% 38.860%/82.997%/99.856%

10.0 s 71.205%/72.380%/99.854% 76.436%/92.668%/99.829% 61.964%/89.363%/99.941%

Table 9: Comparing measurement intervals for ows de�ned by destination IP

Interval MAG

0.1 s 2.260% / 60.499% / 95.969%

0.2 s 3.975% / 73.242% / 98.031%

0.5 s 9.003% / 82.135% / 99.408%

1.0 s 14.522% / 87.148% / 99.727%

2.0 s 19.154% / 89.814% / 99.857%

5.0 s 29.707% / 94.430% / 99.947%

10.0 s 54.700% / 96.999% / 99.979%

Table 10: Comparing measurement intervals for ows de�ned by the pair of ASes

perentage of ows that send all their paket loser than the size of the measurement interval. But often

there are many small ows that send their pakets far apart while large ows send them loser. We obtained

a less biased measure if we weigh the ows by the total traÆ they send. While this is a good measure if ows

are de�ned at the granularity of a TCP onnetion it is not that good if we look at oarser aggregates suh as

all pakets sent to a given IP address. The reason is that there might be multiple distint onnetions with

pakets lose to eah other, but spaed far apart. Even though most of the pakets of suh an aggregate are

lose some are far and it would be lassi�ed as a ow that has pakets further apart than the measurement

interval. We introdue the third measure as the perentage of pakets (weighted by paket sizes) that arrived

within a measurement interval of the previous paket of the same ow.

45

Table 8 shows our results for ows de�ned at the granularity of TCP onnetions by soure and destination

IP address and port and by protool number, Table 9 shows our results for ows de�ned by the destination IP

address and Table 10 shows our results for ows de�ned by the soure and destination autonomous system.

The �rst two tables show the results of measurements on the traes MAG, COS and IND and the third one

only on trae MAG (beause the other two traes are anonymized and we annot perform route lookups on

them). The values in the ells of the tables represent the 3 measures we disussed: the perentage of ows

that have all their pakets loser than the given interval, the same perentage weighted by the total amount

of traÆ transferred by the ows and the perentage of pakets weighted by their size that arrived within

the interval of the previous paket of the same ow. We an see that for all granularities and for all traes,

a measurement interval of 5 seonds assures that 99% or more of the pakets (weighted by their size) arrive

within a measurement interval of the previous paket of the same ow. Based on these results we will use a

measurement interval of 5 seonds in all our experiments.

G Measuring sample and hold

We �rst ompare the measured performane of the sample and hold algorithm to the values predited by our

analysis. Next we measure the improvement introdued by preserving entries aross measurement intervals.

We measure the e�et of early removal and determine a good value for the early removal threshold. We

onlude by summarizing our �ndings about the sample and hold algorithm. We have 3 measures for the

performane of the sample and hold algorithm: the average perentage of large ows that were not identi�ed

(false negatives), the average error of the traÆ estimates for the large ows and the maximum number of

loations used in the ow memory.

G.1 Comparing the behavior of the base algorithm to the analyti results

We �rst look at the e�et of oversampling on the performane of sample and hold. We on�gure sample and

hold to measure the ows above 0.01% of the link bandwidth and vary the oversampling fator from 1 to 7

(orresponding to a probability of between 37% and less than 0.1% of missing a ow at the threshold (see

Setion 4.1.1)). We perform eah experiment for the trae MAG, IND and COS and for the trae MAG we use

all 3 ow de�nitions. For eah on�guration, we perform 50 runs with di�erent random funtions for hoosing

the sampled pakets. Figure 11 shows the perentage of false negatives (large ows not identi�ed). We also

plot the probability of false negatives predited by our onservative analysis (the Y axis is logarithmi). The

measurement results are onsiderably better than predited by the analysis. The reason is that the analysis

assumes that the size of the large ow is exatly equal to the threshold while most of the large ows are

muh above the threshold making them muh more likely to be identi�ed. The measurements on�rm that

the probability of false negatives dereases exponentially as the oversampling inreases. Figure 12 shows the

average error in the estimate of the size of an identi�ed large ow. We also plot the analyti estimate for

the di�erene between the estimate and the atual traÆ of a large ow from Setion 4.1.1. The measured

error is slightly below the error predited by the analysis. The explanation is that the analysis assumed

that the size of the error is unbounded. In pratie, the size of the error is bounded by the size of the

ow. The measurements on�rm that the average error of the estimates is proportional to the inverse of the

oversampling. Figure 13 shows the maximum over the 900 measurement intervals for the number of entries

of ow memory used. The measurement results are more than an order of magnitude lower than the bound

from Setion 4.1.2. There are two main reasons. The most obvious one is that the links are lightly loaded

(between 13% and 27%) so the number of pakets sampled is muh smaller than for a ongested link as

46

Figure 11: Perentage of false negatives as the oversampling hanges

1 2 3 4 5 6 7

Oversampling

0

10

20

30

40

50

60

70

80

90

100

A
ve

ra
ge

 e
rr

or
 (

as
 p

er
ce

nt
ag

e
of

 th
re

sh
ol

d)

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS
Analytical estimate

Figure 12: Average error in the traÆ estimates for large ows

47

1 2 3 4 5 6 7

Oversampling

0

1000

2000

3000

4000

5000

6000

7000

M
ax

im
um

 n
um

be
r

of
 f

lo
w

 m
em

or
y

en
tr

ie
s

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS

Figure 13: Maximum number of ow memory entries used

assumed by the bound. The other reason is that many of the sampled pakets do not reate new entries

in the ow memory. This explains why the number of entries inreases sub-linearly with the oversampling

and not roughly linearly as predited by the analysis. The results also show that the number of entries

used depends on the number of ative ows and the dependene is stronger as the sampling probability (the

oversampling) inreases.

The next set of experiments look at how the hoie of the threshold inuenes the performane of the

sample and hold algorithm. We run the algorithm with a �xed oversampling of 5 for thresholds between

0.005% and 0.1% of the link bandwidth. Figure 14 shows the perentage of false negatives. As in the previous

ase, the atual perentage is on average between 3 and 8 times lower than the one predited by the analysis

(depending on the trae and the de�nition of the ow ID). The only value that is suspiiously high is the one

for the MAG trae with a ow de�nition at the TCP granularity. Upon loser analysis of the trae we found

out that there are only 3 ows (all 3 netnews transfers between the same two hosts but on di�erent ports)

that are above the threshold in all intervals and they are within 15% of the threshold. This explains why

in this ase the observed rate of false negatives so losely mathes the predition of the analysis. Figure 15

shows the average error in the estimate of the size of an identi�ed large ow. As expeted, the atual values

are usually slightly below the expeted error of 20% of the threshold. The only signi�ant deviations are

for the traes IND and espeially COS at very small values of the threshold. The explanation is that the

threshold approahes to the size of a large paket (e.g. a threshold of 0.005% on an OC3 (COS) orresponds

to 4860 bytes while the size of most pakets of the large ows is 1500 bytes). Our analysis assumes that we

sample at the byte level. In pratie, if a ertain paket gets sampled all its bytes are ounted, inluding the

ones before the byte that was sampled. This results in smaller error as illustrated by our results. Figure 16

shows the maximum number of entries of ow memory used. As before the atual number is muh smaller

48

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Threshold (as percentage of link capacity)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
ta

ge
 o

f
fa

ls
e

ne
ga

tiv
es

MAG 5-tuples
MAG destination IP
MAG AS pairs
IND
COS
Analythical estimate

Figure 14: Perentage of false negatives as the threshold hanges

Figure 15: Average error in the traÆ estimates for large ows

49

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Threshold (as percentage of link capacity)

0

1000

2000

3000

4000

5000

6000

7000

8000

M
ax

im
um

 n
um

be
r

of
 f

lo
w

 m
em

or
y

en
tr

ie
s MAG 5-tuples

MAG destination IP
MAG AS pairs
IND
COS

Figure 16: Maximum number of ow memory entries used

than the bound from Setion 4.1.2. As the threshold dereases, the number of entries inreases muh faster

for the traes with many ows than for the ones with few.

Findings: Sample and hold performs better than predited by our onservative analysis. The perentage

of false negatives is roughly one order of magnitude smaller than predited in setion 4.1.1 beause most large

ows are onsiderably above the threshold. The average error of the estimates is slightly below the expeted

value. When the threshold is the same order of magnitude as the size of the pakets, the improvement is

stronger. The memory requirement of the algorithm an be orders of magnitude below what Setion 4.1.2

predits. The main reasons: links are lightly loaded and large ows are sampled repeatedly.

G.2 The e�et of preserving entries

In this setion we measure the improvement introdued by preserving entries from one measurement interval

to the next one. We ompare the results with the ones from the measurements of the base algorithm. For the

false negatives and average error we omit from the omputation the �rst measurement interval beause there

no entries are preserved from the previous interval, making the behaviour of the algorithm idential to the

original sample and hold. We perform two sets of experiments: with �xed threshold and varying oversampling

and with �xed oversampling and varying the threshold. The improvement introdued by preserving entries

is not inuened muh by the oversampling but it is inuened onsiderably by the hoie of the threshold.

We onjeture that this happens beause the magnitude of the improvement depends on the distribution

of the durations for large ows and this hanges as we hange the threshold beause the mix of large ows

hanges. Figures 17 to 19 show the the number of false negatives, the average error of the estimate and the

memory usage with preserving entries. All the plots present ratios to the values obtained without preserving

50

Figure 17: E�et of preserving entries on false negatives

Figure 18: E�et of preserving entries on average error

51

Figure 19: E�et of preserving entries on memory usage

entries. As shown in Figure 17 the number of false negatives is generally redued to between 15% and 50%

. The exat amount of the improvement depends strongly on the atual trae, the ow de�nition and the

threshold. The huge spike for the MAG trae with ows de�ned based on destination IP address for a

threshold of 0.07% of the link bandwidth is due to the fat that the original algorithm has a single false

positive in 900 intervals while when preserving entries we have 2. We don't onsider this an indiation that

preserving entries an inrease the number of false negatives. The average error dereases to between 30%

and 5% strongly depending on the trae and ow de�nition. We onsider this the most important gain of

preserving entries. The inrease in memory usage is between 30% and 80% and depends strongly on the

trae and ow de�nition. We an see that traes dominated by few very heavy very long lived ows suh as

MAG with ows de�ned by AS pairs have both a low ost (small inrease in memory) and a high bene�t

(large derease in error) for preserving entries. For the COS trae where few very heavy but not very long

lived ows dominate, the ost of preserving entries is still low but the bene�ts are not as high.

Findings: Preserving entries redues the probability of false negatives by 50% - 85%. It redues the

average error by 70% - 95%. The redution is strongest when large ows are long lived. Preserving entries

inreases memory usage by 40% - 70%. The inrease is smallest when large ows make up a larger share of

the traÆ. The value of the oversampling does not a�et the magnitude of the improvements of preserving

entries.

G.3 The e�et of early removal

To measure the e�et of early removal, we hoose 9 on�gurations with oversampling of 1, 4 and 7 and with

thresholds of 0.005% 0.025% and 0.1% of the link bandwidth. For eah of these on�gurations, we measure

52

0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of early removal threshold to threshold

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N
um

be
r

of
 f

al
se

 n
eg

at
iv

es
 (

ra
tio

)

0.005 - 1
0.005 - 4
0.005 - 7
0.025 - 1
0.025 - 4
0.025 - 7
0.1 - 1
0.1 - 4

Figure 20: E�et of early removal on false negatives

0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of early removal threshold to threshold

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
ve

ra
ge

 e
rr

or
 (

ra
tio

)

0.005 - 1
0.005 - 4
0.005 - 7
0.025 - 1
0.025 - 4
0.025 - 7
0.1 - 1
0.1 - 4
0.1 - 7

Figure 21: E�et of early removal on error

53

0 0.1 0.2 0.3 0.4 0.5 0.6

Ratio of early removal threshold to threshold

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
em

or
y

us
ag

e
(r

at
io

)
0.005 - 1
0.005 - 4
0.005 - 7
0.025 - 1
0.025 - 4
0.025 - 7
0.1 - 1
0.1 - 4
0.1 - 7

Figure 22: E�et of early removal on memory usage

Trae + ow de�nition False negatives Average error Memory

MAG 5-tuple 0% - 95.2% - 200% 77.4% - 90.6% - 92.6% 64.5% - 69.3% - 81.0%

MAG destination IP 0% - 90.5% - 100% 79.9% - 90.4% - 98.2% 66.0% - 72.3% - 87.3%

MAG AS pairs 50% - 92.4% - 100% 78.7% - 88.9% - 93.2% 74.8% - 80.5% - 91.8%

IND 5-tuple 55.6% - 92.0% - 160% 81.4% - 89.5% - 96.2% 73.6% - 80.5% - 91.4%

COS 5-tuple 0% - 84.5% - 104% 77.5% - 85.0% - 92.3% 78.6% - 82.6% - 92.5%

Table 11: Various measures of performane when using an early removal threshold of 15% of the threshold

54

a range of values for the early removal threshold. We adjust the oversampling suh that the probability of

missing a ow at the threshold stays the same as without early removal (e.g. if the early removal threshold

is one third of the threshold, we inrease the oversampling by half, see Setion 4.1.4 for details). The point

of this experiment is to obtain the value for the early removal threshold that results in the smallest possible

memory usage. Figures 20 through 22 show our results for the COS trae with 50 runs for eah on�guration.

We an see that the probability of false negatives dereases slightly as the early removal threshold inreases.

This on�rms that we ompensated orretly for the large ows that might be removed early by inreasing

the oversampling. Figure 21 on�rms our expetation that the average error derease roughly linearly as

the early removal threshold inreases. Figure 22 shows that there is an optimal value for the early removal

threshold (as far as memory usage is onerned) around 15% of the threshold. From these results we an also

onlude that the larger the threshold the more memory we save but the less we gain in auray with early

removal. Also the larger the oversampling, the more we gain in auray and memory. The results for other

traes and other ow de�nitions have very similar trends, but the atual improvements ahieved for various

metris are sometimes di�erent. For brevity we do not present them in full. Instead we present in Table 11

the minimum, median and maximum values (among the 9 on�gurations) for the 3 metris of interest when

using an early removal threshold of 15% of the threshold. As in the �gures, all values are reported as ratios

to the values obtained without early removal.

Findings: A good value for the early removal threshold is 15% of the threshold. For this value, with

oversampling is adjusted to ompensate, the perentage of false negatives generally dereases slightly, the

average error always dereases slightly and the memory requirements derease typially by 20% to 30%. The

derease in memory usage is strongest when the number of ows onsiderably below the threshold is large.

The larger the oversampling the stronger the bene�ts of early removal are.

G.4 Summary of �ndings about sample and hold

On our traes, basi sample and hold has a probability of false negatives an order of magnitude smaller

than predited in setion 4.1.1. The memory requirements are also one to two orders of magnitude below

what the onservative analysis predits. Preserving entries with an early removal threshold of 15% of the

threshold inreases the memory requirements by rougly 20% but redues the error in the estimates by an

order of magnitude.

H Measuring multistage �lters

We �rst ompare the performane of serial and parallel multistage �lters to the bound of Theorem 3. We

measure the bene�ts of onservative update. Next we measure the e�et of preserving entries and shielding.

We onlude by summarizing our �ndings about multistage �lters.

H.1 Comparing the behavior of basi �lters to the analyti results

First we ompare the number of false positives for serial and parallel �lters with the bound of Theorem 3.

While the number of ow memory loations used might seem like a more meaningful measure of the per-

formane of the algorithm we use the number of false positives beause for strong �lters, the number of

entries is dominated by the entries of the atual large ows making it harder to distinguish hanges of even

an order of magnitude in the number of entries oupied by false positives. To make it easier to ompare

results from di�erent traes and di�erent ow de�nitions (therefore di�erent numbers of ative ows) we

55

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Pr
op

or
tio

n
of

 f
al

se
 p

os
iti

ve
s

(l
og

 s
ca

le
)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 23: Atual performane for a stage strength of k=1

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Pr
op

or
tio

n
of

 f
al

se
 p

os
iti

ve
s

(l
og

 s
ca

le
)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 24: Atual performane for a stage strength of k=2

56

1 1.5 2 2.5 3 3.5 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Pr
op

or
tio

n
of

 f
al

se
 p

os
iti

ve
s

(l
og

 s
ca

le
)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 25: Atual performane for a stage strength of k=3

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Pr
op

or
tio

n
of

 f
al

se
 p

os
iti

ve
s

(l
og

 s
ca

le
)

MAG serial
MAG destIP serial
MAG ASpair serial
IND serial
COS serial
MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
Strongest bound

Figure 26: Atual performane for a stage strength of k=4

57

atually report the perentage of false positives, not their number. Another important detail is that we

express the threshold as a perentage of the maximum traÆ, not as a perentage of the link apaity. While

atual implementations do not know the traÆ in advane, this hoie of thresholds gives us information

about how the �lters would behave under extreme onditions (i.e. a fully loaded link). In this �rst set of

experiments, we �x the threshold to a 4096th of the maximum traÆ and vary the stage strength from 1

to 4 and the depth of the �lter from 1 to 4 (the number of ounters used by the �lter is between 4K and

64K). For eah on�guration we measure 10 runs with di�erent random hash funtions. Figures 23 to 26

present the results of our measurements for stage strengths from 1 to 4. We also represent the strongest

bound we obtain from Theorem 3 for the on�gurations we measure. Note that the y axis is logarithmi.

We an see from the results that the �ltering is in general at least an order of magnitude stronger than the

bound. Parallel �lters are stronger than serial �lters with the same on�guration. The di�erene grows from

nothing in the degenerate ase of a single stage to up to two orders of magnitude for four stages. The atual

�ltering also depends on the trae and ow de�nition. We an see that the atual �ltering is strongest for

the traes and ow de�nitions for whih the large ows strongly dominate the traÆ. We an also see that

the atual �ltering follows the straight lines that denotes exponential improvement with the numbering of

stages. For some on�gurations, after a ertain point, the �ltering doesn't improve as fast anymore. This

orresponds to the false positives being dominated by a few ows lose to threshold. Sine the parallel �lters

learly outperform the serial ones we use them in all of our subsequent experiments.

Findings: Multistage �lters outperform Theorem 3 by up to 4 orders of magnitude (varies with the

number of stages and stage strength). The perentage of false positives dereases exponentially with the

number of stages. Parallel �lters are muh better than serial �lters. The performane of the �lter depends

on the traÆ mix.

H.2 The e�et of onservative update

Our next set of experiments evaluates the e�et of onservative update. We run experiments with �lter

depths from 1 to 4. For eah on�guration we measure 10 runs with di�erent random hash funtions. For

brevity we only present in �gures 27 and 28 the results for stage strengths of 1 and 3. The improvement

introdued by onservative update grows to more than an order of magnitude as the number of stages

inreases. For the on�guration with 4 stages of strength 3 we obtained no false positives when running on

the MAG trae with ows de�ned by AS pairs and that is why the plotted line \falls o�" so abruptly. Sine

by extrapolating the urve we would expet to �nd approximately 1 false positive, we onsider that this data

point does not invalidate our onlusions.

Findings: Conservative update redues the number of false positives by approximately an order of mag-

nitude (depending mostly on the number of stages).

H.3 The e�et of preserving entries and shielding

Our next set of experiments evaluates the e�et of preserving entries and shielding. We run experiments

with �lter depths from 1 to 4 and stage strengths of 0.5 and 2. We measure the largest number of entries

of ow memory used and the average error of the estimates. The improvement in the average error does

not depend muh on the �lter on�guration. Table 12 shows the results for eah trae and ow de�nition.

Usually for the weak �lters (few, weak stages) the redution in the average error is slightly larger than for

the strong ones.

There are two oniting e�ets of preserving entries on the memory requirements. On one hand by

preserving entries we inrease the number of entries used. On the other hand shielding inreases the strength

58

1 2 3 4

Depth of filter

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Pr
op

or
tio

n
of

 f
al

se
 p

os
iti

ve
s

(l
og

 s
ca

le
)

MAG parallel
MAG destIP parallel
MAG ASpair parallel
IND parallel
COS parallel
MAG conservative
MAG destIP cons.
MAG ASpair cons.
IND conservative
COS conservative

Figure 27: Conservative update for a stage strength of k=1

Figure 28: Conservative update for a stage strength of k=3

59

Trae + ow de�nition Error when preserving entries

MAG 5-tuple 19.12% - 26.24%

MAG destination IP 23.50% - 29.17%

MAG AS pairs 16.44% - 17.21%

IND 5-tuple 23.46% - 26.00%

COS 5-tuple 30.97% - 31.18%

Table 12: Average error when preserving entries ompared to the average error in the base ase

1 2 3 4

Depth of filter

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

C
ha

ng
e

in
 m

em
or

y
us

ag
e

MAG k=0.5
MAG destIP k=0.5
MAG ASpair k=0.5
IND k=0.5
COS k=0.5
MAG k=2
MAG destIP k=2
MAG ASpair k=2
IND k=2
COS k=2

Figure 29: Change in memory usage due to preserving entries and shielding

60

Trae + Sample and hold Multistage �lters

ow ID o=1 o=4 o=7 d=2 d=3 d=4

MAG 78.0%/92.8% 87.2%/94.4% 91.0%/95.0% 72.6%/91.3% 76.4%/92.1% 81.5%/93.0%

MAG destIP 73.6%/93.1% 88.6%/94.8% 90.2%/95.7% 65.1%/92.8% 65.7%/94.3% 85.5%/94.7%

MAG ASpair 82.3%/92.1% 87.1%/93.0% 87.8%/93.7% 63.9%/92.1% 69.5%/93.4% 70.0%/93.8%

IND 78.0%/92.5% 88.8%/94.2% 87.9%/94.4% 75.5%/91.7% 67.0%/92.4% 32.0%/92.0%

COS 83.9%/90.0% 85.7%/90.7% 86.6%/91.6% 72.1%/89.0% 66.7%/89.2% 52.1%/89.2%

Table 13: The average to maximum memory usage ratios for various on�gurations

of the �lter (see setion 4.2.3 for details) whih leads to a derease in the number of false positives. Figure 29

shows how memory usage is inuened by preserving entries. The �rst e�et predominates for strong �lters

leading to an inrease in memory usage while the seond one predominates for weak �lters leading to a

derease. The inreases in memory usage are small while the improvements due to shielding an be signi�ant.

When omputing the maximum memory requirement we ignored the �rst two measurement intervals in eah

experiment beause the e�et of shielding is fully visible only from the third measurement interval on.

Findings: Preserving entries redues the average error of the estimates by 70% to 85%. The e�et

depends on the traÆ mix. Preserving entries inreases the number of ow memory entries used by up to

30%. Shielding onsiderably strengthens weak �lters. This an lead to reduing the number of ow memory

entries by as muh as 70%.

H.4 Summary of �ndings about multistage �lters

Multistage �lters outperform Theorem 3 by many orders of magnitude (varies with on�guration and traÆ

mix). Parallel �lters are better than serial ones and onservative update helps a lot. Shielding further

inreases the strength of weak �lters. Preserving entries improves the auray of results by almost an order

of magnitude (depends on traÆ mix) ausing an inrease of up to 30% in the number of ow memory entries

used.

I Calibrating the threshold adaptation algorithm

In this setion we use measurements to determine the right onstants to be used by the algorithm for dynam-

ially adapting the threshold. We will determine di�erent parameters for sample and hold and multistage

�lters. We �rst determine the safety margin and then the range of adjustment ratios.

I.1 Finding the right target usage

We use a brute fore approah to �nding the right measurement interval: we run the algorithms with a

large number of on�gurations and thresholds on all traes and with all ow de�nitions and reord the ratio

between the average and maximum memory usage for eah on�guration. The results in table Table 13 show

the minimum and average values (over all on�gurations). We tested thresholds between 0.005% and 1% of

the link bandwidths in inrements of around 40%. For sample and hold we preserved entries, used an early

removal threshold of 15% and used oversampling of 1, 4 and 7. For multistage �lters we used parallel �lters

with onservative update, preserving entries and shielding. The number of ounters goes from less than the

61

Trae + Perfet Sample and hold Multistage �lters

ow ID knowledge o=1 o=4 o=7 d=2 d=3 d=4

MAG 0.34/1.48 1.00/1.78 1.18/1.98 1.25/2.13 0.24/7.78 0.16/10.2 0.12/12.5

MAG destIP 0.45/2.86 1.00/2.78 1.21/2.97 1.31/3.06 0.15/9.67 0.10/12.9 0.08/17.5

MAG ASpair 0.80/3.30 1.09/3.40 1.38/3.63 1.56/3.81 0.34/10.2 0.16/18.3 0.12/30.0

IND 0.95/2.27 1.23/2.97 1.38/3.64 1.35/3.76 0.35/14.0 0.17/15.9 0.17/21.4

COS 0.77/3.02 1.17/2.23 1.35/2.31 1.44/2.80 0.58/7.31 0.58/9.19 0.37/10.9

Table 14: The range of measured adjustment ratios

number of new large ows per interval for the smallest threshold up to 8 to 64 times more in inrements

of a fator of 2 (4 to 7 on�gurations) and for eah number of ounters we measure �lters with depths of

2, 3 and 4 stages. To avoid pathologial ases we do not onsider the on�gurations where the average

number of memory loations used is less than 100. We an see that for all algorithms and all traes the

average ratio between the average and maximum memory usage is between 89% and 96%, but the worst

ase numbers are muh smaller. Furthermore these numbers do not depend signi�antly on the number of

stages or oversampling. We an also see that the minimum ratios are smaller for multistage �lters than

for sample and hold espeially as the number of stages goes up. A onservative way to hoose the target

usage would be the smallest ratio seen. Sine the onsequene of oasional memory overows is not that

severe (espeially not for sample and hold that uses early removal, so most of the entries reated towards

the end of the measurement interval are not reported on anyway), we use the bolder values of 90% for traÆ

measurement devies using sample and hold and 85% for the ones using multistage �lters.

I.2 Finding the right adjustment ratios

We used the same measurements as above to get minimum and maximum values for the adjustment ratio.

We it based on the ratio of the average memory usage for onseutive thresholds (approximately 40% apart).

Table 14 ontains our maximum and minimum values for the adjustment ratio over all thresholds and

on�gurations. We also added the perfet knowledge algorithm (it deides whih ows to add to the ow

memory based on knowledge of their exat traÆ) to be able to separate the e�ets of the peuliarities of the

distributions of ows sizes from the behaviors introdued by our algorithms. We an see that sample and

hold is muh more robust than multistage �lters (adjustment ratios loser to 1) and that it is very lose (from

this point of view) to the perfet knowledge algorithm. For ertain settings (e.g. the MAG trae with ow ID

destination IP and an oversampling of 1) it is even more robust than the perfet knowledge algorithm. We an

see that the robustness of sample and hold does not depend signi�antly on the oversampling fator. Based

on these results we use a value of 1 for adjustdown and 3 for adjustup for traÆ measurement devies using

sample and hold. Multistage �lters have huge maximum adjustment ratios, espeially when the number of

stages is large. This is beause when �lters are overwhelmed with traÆ they quikly go from strong �ltering

to very little �ltering. Based on the results we would use the following values for adjustdown and adjustup:

0.24 and 10 for 2 stage �lters; 0.16 and 16 for 3 stage �lters and 0.12 and 21 for 4 stage �lters. However,

after a number of sample runs it turns down that these adjustment ratios are too onservative, so we use an

adjustdown of 0.5 and an adjustup of 3 instead.

62

