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Yichen Xu, X.W., Chao-Ming Jian, Cenke Xu,
Phys. Rev. B 101, 205426 (2020)

7. Interacting valley Chern insulator and its topological imprint on Moiré supercon-
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Abstract

Exotic Phases and Phase Transitions in Quantum Matter

by

Xiaochuan Wu

This dissertation is devoted to the theoretical study of strongly correlated quantum

many-body systems. The central theme is to understand the universal properties of

quantum matter from the perspective of renormalization group (RG) fixed points. The

guiding principles are provided by symmetries and ’t Hooft anomalies, which are both

preserved under RG flow and serve to constrain physical properties. The main body of

this dissertation can be divided into four main parts.

The first part concerns boundary critical phenomena associated with symmetry-

protected topological (SPT) phases and unconventional quantum phase transitions. Our

results include new stable boundary phases and exotic boundary phase transitions in

various dimensions. For example, a continuous Néel-VBS transition can be potentially

realized at the 1+1D boundary of a 2+1D SPT state protected by SO(3) symmetry.

The second part is about two strongly correlated Moiré materials. (1) The band

topology in twisted bilayer graphene (TBG) severely complicates the standard lattice

model descriptions. Therefore, we seek an alternative and provide a coupled-wire frame-

work describing the correlated physics in TBG. (2) As for the experimentally observed

continuous metal-insulator transition in MoTe2/WSe2 heterobilayer, we provide a theoret-

ical proposal involving charge fractionalization, which potentially explains the observed

anomalously large critical resistivity.

xi



The third part concerns exotic metallic states beyond Landau Fermi liquid theory. We

study the problem mainly from two approaches. (1) In the perturbative RG approach,

we show analytically controlled examples of marginal Fermi liquids involving non-Landau

quantum critical points. In addition, we show charge fractionalization naturally leads to

the bad metal behavior at low temperatures. (2) The other approach is based on exactly

solvable toy models for quantum matter without quasiparticles. We construct a square-

lattice model for the strange metal phase and generalize it for non-Fermi liquids with

tunable transport scalings.

The fourth part is about generalized symmetries and their ’t Hooft anomalies. (1) We

illustrate how to unambiguously characterize generalized symmetries (including higher-

form symmetries, categorical symmetries, and subsystem symmetries) at quantum phase

transitions. (2) We discuss physical constructions and classifications of SPT states in-

volving higher-form symmetries. Special attention is paid to anomaly constraints for

condensed matter systems such as quantum dimer models.
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3.2 The triangular moiré lattice, and its dual honeycomb lattice. In the parton
construction-II, the bosonic parton bα is at half-filling for each spin/valley
flavors, which becomes a π−flux of the dual gauge field Aµ through the
hexagon of the dual honeycomb lattice. Hence the vortex ψ defined on
the dual honeycomb lattice does not have a uniform hopping amplitude,
the dashed links on the dual honeycomb lattice have negative hopping
amplitudes. The symmetry of the lattice will be realized as a projective
symmetry group. There are eight dual sites per unit cell (shaded area)
in this gauge choice. At each spin/valley flavor, there are translation
symmetries T1,2, a rotation symmetry R 2π

3
, and a product of reflection

Px(x→ −x) and time-reversal T . We also argue that Py is a symmetry of
the system as long as there is no valley mixing; and the six-fold rotation
Rπ/3 becomes a good approximate symmetry of the Hubbard model in the
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Chapter 1

Introduction

Condensed matter physics is a branch of physics that studies the macroscopic properties

of many quantum particles that form the matter in our universe. In principle, one could

describe each quantum mechanical particle by its Schrödinger equation, and try to un-

derstand the whole system by solving around 1023 coupled equations. However, this is a

task virtually unreachable with today’s computational power. In fact, in most cases, we

do not need to take track of all fundamental constituents of matter, and it is possible to

make progress by isolating a few relevant variables that characterize the system’s behav-

iors on a particular time or length scale. The emergent physics laws are sometimes very

simple and appealing. What’s more, due to the correlations between many particles, the

emergent laws can be very different from the microscopic description of each individual.

The philosophy of “more is different” has been demonstrated over and over again in the

history of condensed matter physics. In addition to emergence, the other central theme

of modern physics is universality, which is the observation that very different microscopic

systems can have identical long-distance and low-energy properties. The idea serves to

unify the experimental and numerical data from wildly different systems under different

conditions.

1



Introduction Chapter 1

The interacting electrons in crystalline solids are historically the playground for con-

densed matter physics. Much of our understanding of quantum many-electron systems

is based on two cornerstones, namely Landau’s Fermi liquid theory [8] and Landau’s

symmetry-breaking theory of phase transitions [9]. Landau’s Fermi liquid theory is a per-

turbation theory based on the assumption that collective excitations above an electronic

ground state can be described by long-lived quasiparticles which resemble the original

electrons (i.e., they carry the same quantum numbers and statistics). It successfully

describes all ordinary metals. Landau’s symmetry-breaking theory provides a general

understanding of conventional phases of matter (e.g., liquid crystal states, superfluid,

ferromagnetic and antiferromagnetic states, etc). It points out that different phases re-

ally correspond to different symmetries in the organizations of the constituents of matter.

Landau (together with Ginzburg) also laid out the foundation of the theoretical descrip-

tion of phase transitions. With the help of renormalization group (RG) machinery, all

universal properties of conventional phase transitions can be systematically understood

within the so-called Landau-Ginzburg-Wilson-Fisher (LGWF) paradigm. From a modern

point of view, both Landau Fermi liquids and Landau phase transitions can be identified

as RG fixed points. We see that the notions of emergence and universality are deeply

rooted in the foundations of condensed matter physics.

Although the two theoretical frameworks by Landau are so successful, it is not the end

of the story. The discovery of a wide range of exotic phenomena in the past few decades

challenges conventional paradigm and deserves new languages and conceptual advances.

In very recent years, it turned out that, with certain generalizations of symmetries, the

Landau paradigm can even incorporate many examples that were once believed to be

outside the paradigm. We are going mention some examples that are relevant to the

dissertation (instead of examples in historical order).

2
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Figure 1.1: Understanding universal properties of classical or quantum matter by
renormalization group (RG) fixed points. In the parameter space, attractive RG fixed
points (in blue) represent stable phases, and RG fixed points with repulsive directions
(in red) represent critical points of phase transitions.

This is an outline of the introductory chapter 1. In Sec. 1.1 and Sec. 1.2, we in-

troduce the Landau symmetry paradigm of conventional phase transitions and related

boundary critical phenomena. In Sec. 1.3, we discuss various metallic states that are

beyond the Landau quasiparticle paradigm. Sec. 1.4 is about unconventional quantum

phase transitions, and our focus will be on two examples, deconfined quantum criti-

cal points (DQCPs) and continuous metal-insulator transitions. Sec. 1.5 serves as an

introduction to the extended Landau paradigm based on generalized symmetries and

anomalies. Sec. 1.6 concerns a type of experimental platforms for exotic phases and

phase transitions, the strongly correlated Moiré materials.

1It is nearly impossible to make our notations consistent everywhere throughout the dissertation.
All the sections in the main body (Sec. 2.1,2.2,2.3,3.1,3.2,4.1,4.2,4.3,4.4,5.3,5.1,5.2) are from different
publications, and they are considered self-contained. In the introductory chapter, we try to make
things as consistent as possible. Dimensionality is important in discussing phases of matter, but related
notations may be confusing sometimes. Let us add some clarifications here. For bulk or boundary
quantum phase transitions (with dynamical exponent z = 1) inD spacetime dimensions, we use d = D−1
to denote the spatial dimension or the boundary (spacetime) dimension. The notation “2+1D system” (or
“(2+1)d system” in later chapters) means a system in 2+1 spacetime dimensions, “2d system” means a
system in 2 spatial dimensions, and “3D O(N) universality class” means the universality class of classical
phase transitions in 3 spatial dimensions or quantum phase transitions in 2 + 1 spacetime dimensions.
In discussing classical boundary phase transitions, we still use D to denote the total dimension and
d = D − 1 the boundary dimension, but now they both are spatial.
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1.1 Landau Symmetry Paradigm

Provided a sufficiently large piece of material, we can measure some of its macroscopic

properties (e.g., magnetization, compressibility, and susceptibility). Then we can divide

it into two halves and do the measurement again under the same external conditions

(i.e., the same temperature, pressure, etc.). Usually, we would find that each part has

the same macroscopic properties compared to those of the whole. But if we keep dividing

the system, the “self-similarity” will break down at a certain point, and the length scale

phenomenologically defines the correlation length ξ of the material. We are interested in

the situation when the length scale ξ diverges. In this case, the theoretical description

of the system only depends on a set of universal data, which is universal in the sense

that wildly different systems may share the same theoretical description. From the point

of view of renormalization group (RG), a system with ξ → +∞ is at an RG fixed

point. If the RG fixed point is attractive, it represents a stable phase of matter. While

if the RG fixed point is repulsive, it describes a continuous phase transition, which is

the point where the macroscopic properties of the system change qualitatively. In the

Landau paradigm, phases of matter are labeled by how they represent their symmetries,

particularly whether the symmetries are spontaneously broken or not. For a continuous

transitions between different phases, the set of universal data only depends on the space(-

time) dimensions and the symmetry group.

1.1.1 Classical Phase Transitions

The classic example of universality is that of symmetry-breaking transitions at finite

temperature T . The correlation length ξ at such transitions typically diverges as

ξ ∼ |T − Tc|−ν , (1.1)
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where Tc is the critical temperature of the transition, and ν is the correlation length

exponent. The transition happens as a consequence of the competition between energy

E and entropy S, since we need to minimize the free energy

F = E − TS. (1.2)

At low-temperature T , the entropy S becomes unimportant, and we essentially need

to minimize the energy E. While for high-temperature T , the entropy S becomes the

dominant term in the free energy, and we need to maximize S. Since entropy refers to

the level of disorder, randomness, or uncertainty in the thermodynamic system, we can

intuitively understand this is an “order-to-disorder” phase transition.

The Landau theory of phase transition is based on a key concept called order param-

eter. By definition, an order parameter ϕ must transform nontrivially under the symme-

try group G of the system. One can evaluate the expectation value ⟨ϕ⟩ under different

external conditions (i.e., at different temperatures in classical phase transitions). The

low-temperature phase with ⟨ϕ⟩ ≠ 0 is called an ordered phase, and the high-temperature

phase with ⟨ϕ⟩ = 0 is called disordered. The different phases can also be characterized

by the correlation function ⟨ϕ(x)ϕ(0)⟩, which is a measurable quantity in experiments.

In the disordered phase, we have the short-range correlation ⟨ϕ(x)ϕ(0)⟩ ∼ exp(−|x|/ξ),

which is exponentially decay. At the critical point, ξ diverges and the correlation obeys

the power law ⟨ϕ(x)ϕ(0)⟩ ∼ 1/|x|2∆[ϕ], where ∆[ϕ] is called the scaling dimension of ϕ.

While in the ordered phase, we have the long-range correlation ⟨ϕ(x)ϕ(0)⟩ ∼ const. As

we will see in Sec. 1.5, Sec. 5.1, and Sec. 5.2, for generalized symmetries (e.g., higher-

form symmetries and subsystem symmetries), the concepts of short-range and long-range

correlations (with certain generalizations of ⟨ϕ(x)ϕ(0)⟩) can still be used to distinguish

different phases of matter.
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exponent definition conditions

specific heat α C ∼ |t|−α h = 0, t→ 0
order parameter β ϕ ∼ (−t)β h = 0, t→ 0−

susceptibility γ χ ∼ |t|−γ h = 0, t→ 0

critical isotherm δ ϕ ∼ |h|1/δ h→ 0, t = 0
correlation length ν ξ ∼ |t|−ν h = 0, t→ 0

correlation function η ⟨ϕ(x)ϕ(0)⟩ ∼ |x|−(d−2+η) h = 0, t→ 0

Table 1.1: The definitions of critical exponents in classical phase transitions, where
t = (T − Tc)/Tc is the rescaled temperature and h is the symmetry-breaking field
conjugate to the order parameter ϕ.

In the ordered phase, the condensation ⟨ϕ⟩ ≠ 0 could be invariant under a subgroup

H ⊆ G, and G is said to be spontaneously broken down to H. The inequivalent ground

states with the same free energy form a manifold G/H. The critical theory can be

equally well formulated using the Landau-Ginzburg model of the order parameter ϕ or

the non-linear sigma model (NLSM) with the target space G/H.

Let us first look at the Landau-Ginzburg formulation. We consider the expansion of

the free energy around the critical point

S[ϕ] =
∫

ddx |∂xϕ|2 + r |ϕ|2 + u |ϕ|4 − h · ϕ+ . . . (1.3)

where d is the spatial dimension, and we have included an external field h conjugate to

ϕ. In this simple example, the RG flow in the vicinity of the critical point is controlled

by only two relevant scaling variables r ∼ t = (T − Tc)/Tc and h. In addition to the

correlation length Eq. 1.1, various physical quantities exhibit universal scaling behaviors
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with the critical exponents defined in TABLE. 1.1. They satisfy the following relations

scaling relations: 2− α = 2β + γ (Rushbrooke law), (1.4)

γ = β(δ − 1) (Widom law); (1.5)

hyperscaling relations: γ = ν(2− η) (Fisher law), (1.6)

2− α = νd (Josephson law). (1.7)

There are only two independent degrees of freedom. Namely, we can express

α = 2− νd, β =
1

2
ν(d+ η − 2), γ = ν(2− η), δ =

d− η + 2

d+ η − 2
(1.8)

in terms of η and ν. All critical exponents are uniquely determined by the symmetry

group G (which specifies ϕ) and the dimension d. To determine their numerical values,

one needs to evaluate the RG flow of Eq. 1.3. Perhaps the quickest way to obtain the

leading-order result in d = 4 − ϵ expansion is to use the conformal perturbation theory

(i.e., the method of OPE) introduced in Appendix A.1. One only needs to work out

the fusion algebra of operators ϕ2 and ϕ4 by counting symmetry factors. Then the beta

functions are readily read from Eq. A.14. For O(N) model, the anomalous dimension η

to leading order O(ϵ) is zero, and the exponent ν is given by the scaling dimension of r

ν−1 = ∆[r] = 2− N + 2

N + 8
ϵ+O(ϵ2). (1.9)

We will extensively use the method of OPE for RG calculations in this dissertation.

According to the Calla-Coleman-Wess-Zumino coset construction [10, 11], the same
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Wilson-Fisher fixed point is expected to be described by the NLSM

S[φ] = 1

2

∫
gabdφ

a ∧ ⋆dφb, (1.10)

where φa and gab are the coordinate and the metric on the ground-state manifold G/H.

To compare with the O(N) Landau-Ginzburg model, we take the groups G = O(N) and

H = O(N − 1). The space of ground states is the coset space

φ ∈ G/H =
O(N)

O(N − 1)
= SN−1. (1.11)

The Nambu-Goldstone theorem guarantees there are Goldstone gapless modes when a

continuous symmetry is spontaneously broken. There is a Goldstone mode for each

broken symmetry generator, so the total number is

# Goldstone modes = dimG− dimH =
N(N − 1)

2
− (N − 1)(N − 2)

2
= N − 1, (1.12)

which is indeed the dimension of the sphere SN−1. We can try to reproduce the critical

exponents using d = 2 + ϵ expansion. Since the target space SN−1 is highly symmetric,

perhaps the quickest way to obtain the RG flow of NLSM is to use the Ricci flow method

introduced in Appendix. A.2. There is a fixed point at Eq. A.46, which leads to

ν−1 = ϵ+O(ϵ2), η =
ϵ

N − 2
+O(ϵ2). (1.13)

We can compare the numerical values for three-dimensional O(3) model in TABLE. 1.2

by extrapolating ϵ → 1. We can see the leading-order d = 2 + ϵ expansion is not very

satisfactory. Nonetheless, by going to higher powers in ϵ, one can try more sophisticated

matching techniques to compare the two expansions.
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η ν
mean-field 0 1/2
d = 4− ϵ 0 0.647
d = 2 + ϵ 1 1
actual 0.0386 0.702

Table 1.2: The comparison of the leading-order d = 4 − ϵ expansion and d = 2 + ϵ
expansion for 3D O(3) universality class.

One may wonder if quantum mechanics is essential in classical phase transitions at fi-

nite temperatures. At microscopic scales, quantum mechanics is crucial in understanding

the existence of various ordered phases (at finite temperatures), such as superconductiv-

ity and magnetism. However, quantum fluctuations are not necessarily important for

the macroscopic critical behaviors at phase transitions. There is a typical time scale for

the correlation of order parameters τc ∼ ξz ∼ |t|−νz where z is called the dynamical

exponent. It leads to a typical energy scale ωc ∼ ξ−z ∼ |t|νz. Quantum fluctuations

are more important than thermal fluctuations only when ωc ≫ T (where ℏ = kB = 1).

However, for any continuous transition at Tc, quantum mechanics becomes unimportant

when T
1/(νz)
c ≫ |t| → 0 (which means ωc ≪ T ). In conclusion, only classical thermal

fluctuations dominate at the macroscopic scales that control the critical behaviors.

1.1.2 Quantum Phase Transitions

In recent years, lots of efforts have been devoted to understanding phase transitions

at zero temperature. As we have mentioned before, when T = 0 we essentially need to

minimize the ground-state energy. In many cases, the minimization is not a trivial task

since there are non-commutative terms in the quantum Hamiltonian. When different

terms dominate, the macroscopic properties could be qualitatively different, and there

could be a continuous transition (which is driven by quantum fluctuations instead of

9
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Figure 1.2: The schematic phase diagram for a quantum critical point at g = gc.

thermal fluctuations.). The correlation length typically diverges as

ξ ∼ |g − gc|−ν , (1.14)

where gc is the critical value of the tuning parameter g. In quantum mechanical systems

with the dispersion relation ω ∼ kz, there is an associated vanishing energy scale

ωc ∼ ξ−z ∼ |g − gc|zν , (1.15)

where z is called the dynamical exponent.

In experiments, we can never reach the absolute zero temperature. Given a quantum

critical point, what we would observe is the “quantum critical fan” shown in FIG. 1.2.

To understand what is going on, we can take a conventional quantum critical point and

consider the Landau expansion of free energy

Z = Tre−Ĥ/T =

∫
D[ϕ]e−S[ϕ], (1.16)

S[ϕ] =
∫ + 1

2T

− 1
2T

dτ

∫
ddx |∂τϕ|2/z + |∂xϕ|2 + r |ϕ|2 + u |ϕ|4 − h · ϕ+ . . . (1.17)

10
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where r ∼ (g − gc) is the tuning parameter for the condensation of ϕ. In momentum

space, the Lagrangian reads L ∼ |ωn|2/z + |p|2 + . . . where ωn = 2πTn is the bosonic

Matsubara frequency. Something special happens at the energy scale of T

|p|2 ∼ |ωn|2/z ∼ T 2/z =⇒ ωc ∼ |g − gc|zν ∼ ξ−z ∼ |p|z ∼ T. (1.18)

If the temperature T is much higher than ωc, the configurations with ωn ̸= 0 are strongly

suppressed (due to |ωn|2/z ≫ |p|2 in the action) and give very little contribution to

the functional integral. Therefore, the partition function is dominated by configurations

which are independent of τ and we can replace
∫ + 1

2T

− 1
2T

dτ → 1/T . We effectively have a

classical theory in d dimensions, which is out of the quantum critical region. On the other

hand, at very low temperature T → 0, we can replace
∫ + 1

2T

− 1
2T

dτ →
∫ +∞
−∞ dτ and obtain a

quantum critical theory in d+ 1 (or effectively d+ z) dimensions. The quantum critical

point controls the physics inside the region ωc ∼ |g − gc|zν < T , and the critical region

looks like a fan (shown in FIG. 1.2). If one is interested in the dynamics of the system,

the thermal equilibration time τeq behaves quite differently in the two regimes [12]


τeq ≫ 1/T ωc > T

τeq ∼ 1/T ωc < T

. (1.19)

For conventional quantum phase transitions, various discussions in Sec. 1.1.1 also apply.

We only need to pay attention to the difference in dimensionality.

In the most general sense, as long as a critical point enjoys certain continuous sym-

metry, one can define the conserved Noether current J and its conductivity, which is a

measurable quantity. Namely, we can look at the superfluid-insulator transition in d = 2,

which is described by Eq. 1.17 with z = 1 and ϕ being a U(1) order parameter. Before
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doing any calculation, we can try some dimensional analysis for the conductivity

σ ∼ e2

h
a2−d, (1.20)

where a is certain length scale. We immediately see that d = 2 is special since the

conductivity σ can be a dimensionless number independent of any length scale, which is a

universal quantity associated with the critical point. The fascinating transport properties

have attracted a series of experimental and theoretical studies. To compare theories and

experiments, an important point needs to be made. In terms of the magnitudes of

frequency ω and temperature T , there are two important regimes. When ω ≫ T , the

charged excitations created by the external fields are mainly responsible for transport,

and the collision with thermally excited carriers can be neglected. This limit makes

theorists’ life much easier since we can only focus on the ground-state properties which

are described by a conformal field theory (CFT). In any CFT3
2, the two-point correlation

of conserved current J(τ,x) has the structure

⟨Jµ(x)Jν(0)⟩ =
CJ

|x|4

(
δµν −

2xµxν

|x|2

)
, (1.21)

where the current central charge CJ ∼ σ (which belongs to universal CFT data) can be

analytically computed using various techniques. However, all experiments are performed

at low but nonzero temperatures T , and frequencies ω easily satisfy ω ≪ T . In this

regime, the transport is dominated by repeated inelastic scattering between thermally

excited carriers. In general, the conductivity has the expression

σ(ω) =
e2

h
Σ

(
ℏω
kBT

)
, (1.22)

2The notation CFTD means conformal field theory in D dimensions.
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Σ(0) Σ(∞)
≈ 1 experiment in PRL 62, 2180 (1989)

0.315 ϵ-expansion in PRB 8883 (1996)
1.037 0.3927 ϵ-expansion in PRB 56, 8714 (1997)
1.068 large-N in PRB 86, 245102 (2012)

0.359(4) Monte Carlo in PRL 112, 030402 (2014)
0.355155(11) conformal bootstrap in JHEP 2020, 142 (2020)

Table 1.3: Some existing results about the universal conductivity Eq. 1.22 (under the
limit ω/T → 0 or ω/T → ∞) at the XY fixed point in D = 2 + 1.

where Σ(ω/T ) is a scaling function, which is universal but hard to entirely determined

theoretically. Some existing results regarding the two limiting cases are summarized in

TABLE. 1.3. Maybe we can trust Σ(∞) ≈ 0.36 from the conformal bootstrap result

and Σ(0) ≈ 1 from the experiment. In both cases, the resistivity ρ = σ−1 is an order

of one quantity in the unit of h/e2. In Sec. 5.2, we are going to make some conceptual

connections between the current central charge CJ defined in Eq. 1.21 to the universal

behaviors of higher-form symmetries. In Sec. 3.2, we will discuss the critical transport

at a continuous Mott transition, which is beyond the conventional Landau paradigm.

The phase transitions driven by quantum fluctuations have much richer possibilities

than classical phase transitions. One important reason is that the Berry phase term

can not be neglected at zero temperature. For example, quantum antiferromagnets in

d = 2 are described by O(3) NLSM (defined in Eq. 1.10 with G = SU(2) and H = U(1))

together with the summation of all single-spin Berry phase terms (see e.g. [13])

S[n] = iS
∑
j

SWZ[nj] +
1

2g

∫
dτd2x((∂τn)

2 + (∂xn)
2), (1.23)

SWZ[n] =

∫ β

0

dτ

∫ 1

0

dun · (∂τn× ∂un), (1.24)

where n is a O(3) unit vector (i.e., the Néel order parameter) defined on each site j.

In the Wess-Zumino term SWZ[n], one has to extend the definition of n to another
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direction u with the boundary conditions n(τ, u = 0) = (0, 0, 1) and n(τ, u = 1) = n(τ).

This consideration leads to the possibility of a direct continuous transition between two

symmetry-breaking phases, the Néel phase and the VBS phase, on the square lattice (see

Ref. [14] and references therein). But in Landau’s language, the competition between the

two order parameters can only lead to either the coexistence of two phases or a first-order

transition, i.e., a continuous phase transition without fine-tuning is not possible. We will

explain the continuous Néel-VBS transition in slightly more detail in Sec. 1.4.1.

In view of the Landau paradigm, it seems the disordered phase (without breaking any

ordinary symmetry) is a featureless gapped phase. But this conclusion was overturned

by many examples in the past few decades. Namely, some gapped systems have robust

gapless boundary states (e.g., topological insulators and topological superconductors).

Some other gapped systems have robust ground-state degeneracy which depends on the

topology of the spatial manifold (e.g., gapped spin liquids and fractional quantum hall

states). The first types of states are related to ’t Hooft anomalies of (internal and

spacetime) symmetries. The second types of state are actually spontaneous symmetry-

breaking states of generalized symmetries instead of ordinary symmetries. We will explain

all these topics in slightly more detail in Sec. 1.5.

1.1.3 Topological Defects & Dualities

In the previous discussions, the degrees of freedom at a critical point is described by

the fluctuating order parameter ϕ, and the phase transition is driven by the condensation

of ϕ which breaks the symmetry groupG down toH. Usually, there is a dual version of the

story, i.e., the ordered phase can be destroyed by the condensation or proliferation of the

topological defects associated with G/H. In general, p-dimensional topological defects

in D = d + 1 spacetime dimensions are classified by the homotopy group πd−p−1(G/H)
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in space or πD−p−1(G/H) in spacetime. The topological defects defined in space only

are usually referred to as “solitons”. They can be viewed as particles with their own

dynamics, and they can condense. While the spacetime topological defects are usually

referred as “instantons”, which can be viewed as events. They have nonzero contributions

to the path integral, which can be relevant or irrelevant under RG. The relevant case

corresponds to the proliferation of instantons. After introducing the concepts, we can

look at some simple examples of quantum phase transitions in low dimensions.

Ising domain wall The simplest example is the Ising domain wall characterized by

π0(Z2) = Z2. Let us look at the transverse Ising chain

H = −J
∑
j

σ3
jσ

3
j+1 − h

∑
j

σ1
j , (1.25)

where σ1
j and σ

3
j are Pauli matrices on site j. There is a global Z2 symmetry which takes

σ3
j → −σ3

j . (The Landau order parameter should be the coarse-graining of σ3
j .) The

phase with J/h≫ 1 spontaneously breaks Z2, and the phase with J/h≪ 1 preserves the

symmetry. We can equally well describe the transition using the other set of variables

via σ3
jσ

3
j+1 = τ 1j̄ and σ1

j = τ 3j̄−1τ
3
j̄ . The dual Hamiltonian now reads

H = −J
∑
j̄

τ 1j̄ − h
∑
j̄

τ 3j̄−1τ
3
j̄ , (1.26)

where τ 3j̄ is the Ising domain wall. When J/h ≪ 1, τ 3j̄ will condense and destroy the

Z2 ordered phase. This is usually referred to as Kramers-Wannier duality [15]. It is

remarkable that the model is self-dual, which implies the critical point is right at J = h.

The duality also poses a question about how to understand symmetry at the critical

point. (Is it enlarged by another Z2 that takes τ 3j̄ → −τ 3j̄ ?) We will get back to this
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point in Sec. 1.5.1, Sec. 5.1, Sec. 5.2, and Appendix. A.4 (also see Ref. [16]).

Superfluid vortex The second example is about the superfluid vortex characterized

by π1(U(1)) = Z. The superfluid-insulator transition in D = 2 + 1 is believed to be

described by the abelian Higgs model (due to Peskin [17] and Dasgupta-Halperin [18])

L =
1

2e2
f ∧ ⋆f + |Daϕ̃|2 + r̃|ϕ̃|2 + ũ|ϕ̃|4 + . . . , (1.27)

where f = da is the gauge curvature, and Da = d− ia is the gauge covariant derivative.

We call the gauge field non-compact in the sense that there is U(1)m symmetry for the

conservation of the topological current Jµm = 1
4π
εµνρfνρ. The physical meaning of ϕ̃ is the

vortex at the superfluid-insulator transition. To see how Eq. 1.27 is dual to Eq. 1.17 with

a U(1) order parameter ϕ, let us first understand what phases Eq. 1.27 describes. In the

Coulomb phase with r̃ ≫ e4 > 0, we can integrate out ϕ̃ which is gapped, which leaves

the free Maxwell theory below the scale of r̃ (in the field-strength formulation [19])

Z =

∫
D[f ] exp

(
−
∫

1

2e2
f ∧ ⋆f +

i

2π
ϑ(df)

)
, (1.28)

where a Lagrangian multiplier ϑ(x) is introduced to impose the Bianchi identity df = 0.

The Dirac quantization condition 1
2π

∫
df ∈ Z leads to the periodicity ϑ ≃ ϑ + 2π. We

see that a charge-qm monopole operator can be implemented as M(x) ∼ eiqmϑ(x), since

the insertion of M(x) in the path integral leads to ∂µJ
µ
m(x) = qmδ

3(x). After integrating

out f , we are left with the effective action for the gapless dual photon ϑ

S[ϑ] =
∫

d3x
e2

8π2
∂µϑ∂µϑ =

∫
e2

2

dϑ

2π
∧ ⋆dϑ

2π
. (1.29)
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In this formulation, the U(1)m symmetry is manifested as ϑ → ϑ + α, and the Noether

current is Jµm = e2

(2π)2
∂µϑ. It is clear that we can interpret ϑ as the Goldstone mode of the

spontaneously broken U(1)m symmetry. In the Higgs phase with r ≪ −e4 < 0, the con-

densation of ϕ̃ gives the dual photon ϑ a mass. The monopole operator M ∼ eiqmϑ has a

short-range correlation, which means the U(1)m symmetry is preserved. The observations

imply that the Higgs transition in Eq. 1.27 indeed corresponds to a Landau transition

for the U(1)m symmetry. We can identify the Landau order parameter ϕ in eq. 1.17 to

the charge-1 monopole operator ϕ ∼ eiϑ in the theory eq. 1.27. Furthermore, inside the

superfluid phase, an isolated vortex of ϕ has logarithmically divergent energy, which is in

perfect agreement with the behavior of ϕ̃ in the Coulomb phase. In principle, the duality

can be verified by evaluating the critical exponents from both theories. Especially the

scaling dimensions of the following operators should be equal to each other

∆[ϕ] = ∆[Mqm=1], ∆[|ϕ|] = ∆[|ϕ̃|]. (1.30)

However, the critical point |r̃| ≪ e4 is strongly coupled in IR, and we do not have an

analytical control. Fortunately, the existing numerical works seem to be very supportive.

Néel skyrmion Let us consider spin-1/2 quantum antiferromagnets on the the square

lattice, which can be described by Eq. 1.23. The Néel order parameter n enjoys the

homotopy group π2(S
2) = Z, where S2 = G/H = SU(2)/U(1) is the famous Hopf

fibration. It allows skyrmion defects in space and hedgehog events in spacetime, such

that each hedgehog corresponds to a tunneling event of the skyrmion number

Q =
1

4π

∫
dxdy(∂xn× ∂yn) · n ∈ Z. (1.31)
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The proliferation of hedgehog events necessarily destroys the Néel order. However, this

case is more nontrivial than the previous examples. According to the Lieb-Schultz-

Mattis (LSM) theorem [20, 21, 22], for a spin system with translation and spin rotation

symmetries and half-integer spin per unit cell, the ground state must be gapless or gapped

with degeneracy. Therefore, a conventional Néel order-to-disorder transition can not

exist in ordinary spin-1/2 systems on the square lattice. The resolution is based on the

observation by Haldane [23] and Read-Sachdev [24, 25] that the hedgehog defects must

transform nontrivially under lattice translation. Therefore, the proliferation leads to a

lattice symmetry-breaking phase. If continuous, this transition is, of course, beyond the

Landau paradigm. We leave the discussion of the critical theory to Sec 1.4.1.

In recent years, the study of non-supersymmetric dualities around quantum crit-

ical points has been quite fruitful. In addition to the previously mentioned bosonic

particle-vortex duality, there is a SL(2,Z) web of dualities that relates gauged/ungauged

Wilson-Fisher bosons and gauged/ungauged Dirac fermions (see Ref. [26, 27] for review).

Generalizing the ideas to D = 2 + 1 CFTs with U(1)N symmetry, one finds a Sp(2N,Z)

duality web [28, 29]. In particular, the Sp(4,Z) duality web can be applied to the easy-

plane version of the Néel-VBS transition on the square lattice [14] (also see Sec. 1.4.1).

1.2 Boundary Critical Phenomena

In Sec. 1.1, we have considered critical behaviors of systems under the thermodynamic

limit (i.e., the infinity volume limit). But any experimental sample in the lab can never

be truly infinitely large. Provided that the system size is sufficiently larger than the

correlation length, the scaling behaviors in Sec. 1.1 are, of course, valid deep into the

bulk. But what happens at the boundary is an experimental relevant excellent question,

as one would generally expect a different set of critical exponents at the boundary. The
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study of conventional Landau transitions with boundaries has a long history (see Ref. [30,

31, 32] and references therein). It has recently attracted renewed attention due to the

connections to the physics of symmetry-protected topological (SPT) phases [33, 34, 35, 36,

37, 38, 39, 40]. A nontrivial SPT state typically has protected gapless boundary modes,

and one may wonder if the boundary modes are stable if the bulk is at criticality and

becomes gapless. From a theoretical point of view, one concerns the RG flow for coupled

degrees of freedom from different dimensions, and the problems of gapless boundaries (and

defects) offer exciting opportunities to realize new fixed points and universal physics.

Namely, for a 3-dimensional system with boundaries, the projection of bulk-boundary

couplings to the boundary usually leads to nonlocal interactions. Even if we start with

a purely local lattice model, the 2-dimensional boundary is capable of escaping from the

Mermin-Wagner theorem. (The statement and proof of the Mermin-Wagner theorem are

given in the discussion around Eq. 1.120.) In Sec. 2.1, we will discuss the possibility of

a continuous Néel-VBS transition on the boundary of the (2 + 1)-dimensional Affleck-

Kennedy-Lieb-Tasaki (AKLT) state.

But before moving to the exciting physics associated with boundaries and defects

in Chap. 2, in this introductory section, let us introduce conventional boundary phase

transitions and the theoretical methods to explore them. In this section, the transitions

can be either classical or quantum. We use D to denote the bulk dimension (i.e., spa-

tial dimension in classical phase transitions or spacetime dimension in quantum phase

transitions), and the boundary dimension is given by d = D − 1.

1.2.1 Boundary Universality Classes

In general, given a bulk universality class, there exist several distinct boundary uni-

versality classes. For conventional phase transitions, much physics can already be under-
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stood by looking at the classical ferromagnetic spin model

H/T = −K1

∑
⟨i,j⟩∈∂X

S⃗i · S⃗j −K
∑

⟨i,j⟩/∈∂X

S⃗i · S⃗j, (1.32)

where S⃗j are classical O(N) spins on the lattice X, and the nearest neighbor coupling

is taken to be K1 for links between boundary sites and K for all other links. Let us

first consider the case D > 3 such that the boundary is above its own lower critical

dimension (which is 2 for the continuous symmetry O(N) with N ≥ 2). In other words,

the boundary can become ordered itself even if decoupled from the bulk. (The case of

D = 3 will be commented on later.) We would not expect the bulk phase to depend

on the boundary coupling K1 for such a local Hamiltonian. But the boundary should

be sensitive to what happens in the bulk. At a large bulk coupling K > Kc (or a low

temperature T < Tc), the bulk phase should be ordered. Due to the coupling to the

bulk, the boundary will see a background mean-field from the ordered bulk, leading to

symmetry breaking at the boundary. In the bulk disordered phase with a small K < Kc

(or a high temperature T > Tc), the boundary phase depends on K1. One can define

the ratio κ = K1/K. Under the small κ limit, the boundary will be in the same phase

as the bulk. But when κ is sufficiently large, the boundary can be ordered, disordered,

or critical depending on the temperature. Thus, there is a critical value κc, which leads

to three boundary universality classes. When κ < κc, the boundary undergoes the same

transition at the bulk critical point. This is called an ordinary transition. When κ > κc,

the boundary is already ordered at the bulk critical point, which is called an extraordinary

transition. The multicritical point with κ = κc and K = Kc is called a special transition.

We summarize the phase diagram in FIG. 1.3.
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Figure 1.3: The schematic phase diagram for a ferromagnet with a boundary (de-
scribed by Eq. 1.32). The dimension of the boundary is assumed to be higher than
its own lower critical dimension.

To explore the critical behaviors, we can write down the continuum field theory

S =

∫
X

dDx(|∂ϕ|2 + r|ϕ|2 + u|ϕ|4 + . . .) +

∫
∂X

dD−1x(r1|ϕ|2 + . . .), (1.33)

where X is a D-dimensional spatial (or spacetime) manifold for classical (or quantum)

phase transitions. To understand why |ϕ|4 boundary term is not included, one should

note that its bare scaling dimension is ϵ − 1 in the D = 4 − ϵ expansion for the bulk

Wilson-Fisher fixed points. Thus, the |ϕ|4 boundary term is irrelevant. For the case of

Eq. 1.32 (and FIG. 1.3 in D > 3), the order parameter ϕ is the coarse-grained object of

S⃗j. The relations between the coupling constants are r ∼ (1/K−1/Kc) and r1 ∼ (κ−κc).

We can see the three boundary universality classes are given by

ordinary: r1 → +∞, special: r1 → 0, extraordinary: r1 → −∞. (1.34)

The case of D = 3 is special, since the boundary reaches its lower critical dimension.

For O(2) symmetry, we need to replace the boundary ordered phase (when bulk is dis-
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ordered) in FIG. 1.3 to quasi-long-range order. Recently, Metlitski [41] suggests that in

the case of κ > κc at K = Kc, the order parameter has the logarithmic correlation

⟨ϕ(x)ϕ(x′)⟩ ∼ 1

(log |x− x′|)q
, x, x′ ∈ ∂X, (1.35)

where q is a universal exponent. This is called the extraordinary-log universality class

in Ref. [41]. What about N > 2? It is known that under the N → +∞ limit, one only

has an ordinary transition without a special fixed point. For finite N , Ref. [41] suggests

that there is a critical value Nc such that the case of 2 < N < Nc at bulk criticality

is qualitatively the same as the case of N = 2. But the precise value of Nc and what

will happen when N is slightly larger than Nc are not entirely conclusive at this stage.

The results about classical O(N) transitions in Ref. [41] are potentially related to the

Néel-VBS quantum phase transition discussed in Sec. 2.1, where we have considered a

spin-1/2 quantum spin chain on the boundary of a two-dimensional bulk with SO(3)

symmetry. Compared to the classical model, we also need to add a topological θ-term in

our boundary theory. It is an open question whether the “Néel phase” that we found is

a truly long-range ordered phase or an extraordinary-log phase. This part of the phase

diagram is out of the reach of our perturbative RG calculation around the boundary

critical point.

1.2.2 Example–Ordinary Transition

In this section, we use an example to illustrate why the bulk criticality is unaffected

by the boundary and how the boundary scaling dimensions are calculated. (This section

is a bit technical and could be skipped if you are not interested in the details.)

For illustrative purposes, let us consider the semi-infinite U(N) model on the manifold
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X = {(x, y) ∈ RD|0 ≤ y <∞} which will be used in Sec. 2.2

S =

∫
dD−1x

[
r1|ϕ(x, 0)|2 +

∫ +∞

0

dy|∂ϕ|2 + r|ϕ|2 + u|ϕ|4 + . . .

]
, (1.36)

where we parametrize the D-dimensional coordinate as x = (x, y), and the boundary ∂X

is given by y = 0. In this section, we will use the notations for dimensionality

d = (boundary dimension), D = (bulk dimension) = d+ 1. (1.37)

Method of images The boundary condition of the propagator of ϕ is given by

∂yG(x, y → 0; x′, y′) = r1G(x, y → 0; x′, y′),

∂y′G(x, y; x
′, y′ → 0) = r1G(x, y; x

′, y′ → 0). (1.38)

Since the system has translation invariance alone direction of x, G(x, y; x′, y′) can be

written as G(x− x′; y, y′). The free propagator (after the partial Fourier transformation

x → p) that satisfies the boundary condition is

G(p; y, y′) =
2π

d+1
2

Γ(d−1
2
)

1

Ω

(
e−Ω|y−y′| +

Ω− r1
Ω + r1

e−Ω|y+y′|
)

with Ω =
√
p2 + r. (1.39)

We call the first term (∼ e−Ω|y−y′|) the bulk part GB and the second term (∼ e−Ω|y+y′|)

the image part GI. The bulk part GB is the expression that one would get for an infinite

system with any boundary

GB(x− x′) =
1

|x− x′|d−1
(at bulk criticality r = 0) . (1.40)
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Figure 1.4: The illustration of the method of images in boundary critical problems.
The total propagator is given by G = GB + GI where the bulk part B depends on
the distance |x− x′| and the image part GI is a function of |x− x̂′| = |x̂− x′|.

The image part only depends on the distance |x−x̂′| = |x̂−x′|, where x̂ = (x,−y) denotes

the imagine of x = (x, y). Namely, we have the two prototype boundary conditions (b.c.)

GI(x, x
′) =


−GB(x− x̂′) Dirichlet b.c. under r1 → +∞

+GB(x− x̂′) Neumann b.c. under r1 → −∞
. (1.41)

It is important to notice that the UV singularities in GB and GI are quite different. The

bulk part GB (x− x′) always has a UV singularity when x = x′ ∈ X. However, the image

part GI (x, x
′) only diverges at the boundary x = x̂′ ∈ ∂X.

Ordinary transition Let us focus on the boundary universality class with r1 → +∞.

There is a subtle point about how to define the boundary fields properly, since ϕ(x, y = 0)

vanishes under the large r1 limit. One way to solve this problem is to use the boundary
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condition to rewrite the boundary mass term

∂yϕ(x, y = 0) = r1ϕ(x, y = 0) =⇒ r1|ϕ|2 = |∂yϕ|2/r1 (1.42)

and consider the leading-order perturbative expansion in terms of 1/r1. In other words,

we use ∂yϕ to represent the boundary order parameter. It makes sense since ϕ and ∂yϕ

(on the boundary) transform in the same way under symmetries. In the real-space RG

approach introduced in Appendix A.1, the operators of interest are the following

Φ4 =: (ϕ†ϕ)2 : −2 (N + 1) (2y)1−d : ϕ†ϕ : Φ2 =: ϕ†ϕ : Ψ2 =: ϕ2 :

Φ⊥
1 = ∂yϕ|y=0 Ψ⊥

2 =: (∂yϕ)
2 : |y=0 (1.43)

where the boundary operators are labeled by ⊥ (to remind ourselves that they involve a

derivative normal to the boundary). We define their coupling constants as

uΦ4, rΦ2, wΨ2, h⊥Φ
⊥
1 , w⊥Ψ

⊥
2 . (1.44)

Bulk critical point We can prove the image part GI do not contribute to the scaling

dimensions of bulk operators. We first observe that GI does not contribute to any OPE

linear in G = GB +GI simply because GI is UV-finite in bulk. One example is

: |ϕ(x1, y1)|2 : ϕ(x2, y2) = GB(x1 − x2; y1 − y2)ϕ(x2, y2) + . . . (1.45)

Then we consider slightly more complicated OPEs which are proportional to G2 = G2
B+

2GBGI +G2
I. For example, we can look at

: |ϕ(x1, y1)|4 :: |ϕ(x2, y2)|2 := 2(N + 1)(G2
B + 2GBGI) : |ϕ(x2, y2)|2 : + . . . , (1.46)
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where GBGI should be kept due to the UV divergence in GB. To proceed, we plug it

into Eq. A.13, and we have G2
B ∼ a−2(d−1) and GBGI ∼ a−(d−1) within the thin shell

a < ((x1 − x2)
2 + (y1 − y2)

2)1/2 < aeδℓ, where a is the real-space UV cut off. It is clear

that only G2
B will generate the bulk operator

∫
ddxdya−2 |ϕ|2, and GBGI vanishes as

e−(d−1)ℓ under RG. The OPEs involving higher powers of G can be analyzed in the same

way. Finally, we find only GB contributes, and the bulk critical point is identical to the

standard Wilson-Fisher fixed point. The bulk RG flow can be found in Eq. A.26.

Boundary scaling dimensions The boundary operators will be generated by bulk-

boundary interactions. It is convenient to split Φ4 into two operators Φ4,1 =: (ϕ†ϕ)2 :

and Φ4,2 = −2 (N + 1) (2y)1−d : ϕ†ϕ :. Just by counting all possible Wick contractions,

we have the following bulk-boundary OPEs

[Φ4,2]× [Φ⊥
1 ] = −2(N + 1)[Φ⊥

1 ] + . . .

[Φ4,2]× [Ψ⊥
2 ] = −4(N + 1)[Ψ⊥

2 ] + . . .

[Φ4,1]× [Ψ⊥
2 ] = 2[Ψ⊥

2 ] + . . . (1.47)

from which we read the coefficient Cijk in Eq. A.31. In addition, we need to evaluate the

dimensionless factor Υijk in Eq. A.31

Υ (Φ4,2,Φ
⊥
1 ,Φ

⊥
1 ) = Υ (Φ4,2,Ψ

⊥
2 ,Ψ

⊥
2 ) =

1

Sd

∫
half-shell

ddx1dy

a(2d+1)−2(d−1)

(d− 1)(2y)3−d

2((x1 − x2)2 + y2)
d+1
2

=
1

2

Υ (Φ4,1,Ψ
⊥
2 ,Ψ

⊥
2 ) =

1

Sd

∫
half-shell

ddx1dy

a(2d+1)−2(d−1)

4(d− 1)2y4

((x1 − x2)2 + y2)d+1
= 1, (1.48)
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where Sd = 2π
d+1
2 /Γ(d+1

2
) is the surface area of d-sphere. Finally, the one-loop beta

functions of boundary couplings can be directly read from Eq. A.33

dh⊥
dl

=
d− 1

2
h⊥ + 2(N + 1)h⊥u+ . . .

dw⊥

dl
= −w⊥ + 4(N + 1)w⊥u− 4w⊥u+ . . . (1.49)

which leads to the boundary scaling dimensions

∆[Φ⊥
1 ] =

d+ 1

2
− N + 1

2 (N + 4)
ϵ, ∆[Ψ⊥

2 ] = (d+ 1)− N

N + 4
ϵ. (1.50)

These results will be used in Sec. 2.2.

The theoretical machinery illustrated in this example (i.e., the combination of con-

formal perturbation theory and method of images) is very powerful (also see Ref. [30]).

It can be applied to other boundary critical problems as well.

1.3 Beyond Landau Fermi Liquids

The other side of the world of condensed matter physics is about understanding met-

als, such as a piece of iron, copper, or silver, that are ubiquitous in our daily lives.

Landau’s fermi liquid (FL) theory [8] has served as the paradigm of our understanding

of conducting electrons. Landau’s great insight is that despite interactions between elec-

trons, they retain their identity as quasiparticles, which carry the same quantum numbers

as electrons and have a diverging lifetime at low energies. The “quasiparticle assump-

tion” leads to various universal properties that have been experimentally verified in a wide

range of materials. From a theoretical perspective, based on modern RG treatment [42],

one can show that Landau’s assumption is valid in quite general considerations.
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With the discovery of cuprate high-temperature superconductors, heavy fermion com-

pounds, iron pnictides, and twisted bilayer graphene, people have found more and more

experimental signatures (typically close to some quantum critical points in metals) that

are not consistent with the universal predictions from the quasiparticle paradigm. These

exotic metallic states are generally termed non-fermi liquids (NFLs). The theoretical

study of NLFs is incredibly challenging. On the one hand, the system is below the upper

critical dimension and exhibits strong quantum fluctuations. On the other hand, the

extended fermi-surface manifold hosts a large number of gapless excitations. The combi-

nation of the two features makes perturbative RG calculations especially hard. Despite

the efforts from the last three decades (see e.g. [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53]),

there is still no satisfying expansion method that is commonly accepted. In the past

few years, the Sachdev-Ye-Kitaev (SYK) model [54, 55], which is an exactly solvable

model under a certain theoretical limit, has attracted a lot of attention since it pro-

vides a controlled approach to model metallic states without quasiparticles (see Ref. [56]

and references therein). Very recently, people have started to understand the univer-

sal features of metals (e.g., Luttinger theorem) in view of symmetries, anomalies, and

multidimensional bosonization (see e.g. [57, 58, 59]).

1.3.1 Experimental Signatures

Since the criterion for non-fermi liquid behaviors is usually based on “what it is not”

rather than “what it is,” we will begin by quickly reviewing some properties of fermi

liquids and related experimental signatures of the breakdown of quasiparticle paradigm.

To describe fermi liquids, we can start with non-interacting electrons

H =
∑
k

ϵkc
†
kck (1.51)
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Figure 1.5: The low-energy expansion Eq. 1.52 around the fermi wave vector kF . The
component k⊥ is in the direction of fermi velocity, and k∥ is in the (d−1)-dimensional
tangent space of the fermi-surface manifold.

where ck is the electron operator with momentum k, and the band structure ϵk is de-

termined by the underlying microscopic physics. In our notation, the chemical potential

µ is absorbed in ϵk, and the location of the fermi surface (FS) in the Brillouin zone is

given by ϵk = 0, which separates occupied and unoccupied states at zero temperature.

The (d+1)-dimensional low-energy theory is given by the expansion ϵk+kF ≈ vFk⊥+κk2
∥

around any momentum on the fermi surface kF ∈ FS (shown in FIG. 1.5)

SF =

∫
dτdx⊥d

d−1x∥ψ
†(∂τ − ivF∇⊥ − κ∇2

∥)ψ, (1.52)

where x⊥ denotes the normal direction of the FS and x∥ is a (d− 1)-dimensional vector

in the tangent space of the FS. The coefficient vF is called the fermi velocity, and κ is

the FS curvature. Both vF and κ generally depend on the location of kF ∈ FS. Eq. 1.52

is usually the starting point of theoretical analysis of the properties of metals.

Quasiparticle decay rate The abundance of gapless excitations around the FS will

interact with each other and result in quasiparticle decay. We can calculate the fermion
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self-energy due to four-fermion scatterings

Σψ(iω,k) = !fLa�f! ∼


iω2sgn(ω) log(Λ/|ω|)/(v2Fκ) d = 2

iω2sgn(ω)Λd−2/(v2Fκ) d > 2

, (1.53)

where Λ is a momentum-space UV cut-off. It physically means the quasiparticle decay

rate scales as 1/τqp ∼ T 2, which is much smaller than the quasiparticle energy. It

justifies Landau’s assumption about long-lived quasiparticles in FLs. The decay rate can

be measured in angle-resolved photoemission spectroscopy (ARPES) experiments [60].

In a number of experimental systems (see e.g. [61, 62]), people found 1/τqp ∼ T , which

signals the breakdown of the quasiparticle concept.

T -dependence of resistivity Closely related to the quasiparticle decay rate is the

momentum relaxation rate, which determines the electrical transport properties. After

considering Umklapp scatterings, one can show that it still scales as ∼ T 2. Therefore,

the low-temperature resistivity of fermi liquids is commonly

ρ ∼ ρ0 + T 2, (1.54)

where ρ0 denotes the impurity contribution. (Notice that we have neglected the scatter-

ings between phonons and electrons. When the temperature T is much lower than the

Debye temperature TD, phonon contribution ∼ T d+2 is not as relevant as the electron-

electron scattering contribution ∼ T 2. In the other region T ≫ TD, the electron-phonon

scattering mechanism largely dominates the transport and gives ρ ∼ T .) A famous de-

parture from the FL resistivity is the strange metal phase in cuprate high-temperature

superconductors (see e.g. [63, 64, 65, 66, 67] and Ref. [68] for a recent review), which has

linear-T resistivity at low temperatures T ≪ TD. The strange metal behavior was also
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Figure 1.6: The resistivity exponent α in ∆ρ ∼ Tα versus x in BaFe2(As1−xPx)2
(Figures from Ref. [1] with permission).

observed in various heavy-fermion compounds (see Ref. [69] for a review) and recently

in twisted bilayer graphene [70, 71]. In addition to linear-T behavior, other transport

scalings have also been observed [72, 73, 74, 75, 76, 77, 1]

ρ ∼ ρ0 + Tα, 1 ≤ α < 2, (1.55)

where α is usually tunable by varying the charge carrier density. See FIG. 1.6 for a set

of experimental data for the isovalent doped pnictide BaFe2(As1−xPx)2.

Mott-Ioffe-Regel limit There is an upper bound for the electrical resistivity for the

so-called “good metals,” which is good in the sense that we have the well-defined semi-

classical wave-packet description of electrons. At the simplest level, we can describe the

electrical resistivity by the Drude formula. A majority of the systems in this dissertation

are in (quasi) two spatial dimensions, and we can write

ρ =
h

e2
1

kF lm
≤ h

e2
, (1.56)
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where kF is the fermi wave vector, and lm is the scattering mean free path. Due to

the Heisenberg uncertainty principle, we need kF lm ≥ 1, which gives rise to the upper

bound h/e2, sometimes referred to as the Mott-Ioffe-Regel (MIR) limit. Any compressible

system going beyond the MIR limit is called a “bad metal” [78, 79, 80], and we no longer

have a valid Boltzmann transport theory based on quasiparticle pictures.

1.3.2 Phase Transitions in Metals

In this section, we want to understand spontaneous symmetry breaking in metals. In

Sec. 1.1, the critical theory (for insulators) is governed by a fluctuating bosonic order

parameter. The situation becomes much more complicated in metals since there are

a large number of fermionic excitations around the fermi surface. For simplicity, we

consider the order parameters at zero momentum in this section, such as ferromagnetic

order and nematic order. (We do not consider spin-density-wave and charge-density-wave

orders.) In practice, we can start with a FL described by Eq. 1.52 and couple it to a

bosonic order parameter ϕ through a Yukawa interaction, where ϕ is described by the

Landau theory Eq. 1.17. At present, no RG treatment completely solves this problem in

two spatial dimensions. The original attempt at the problem, known as the Hertz-Millis

theory [81, 82], has tried to evade the difficulties associated with the FS by integrating

out the fermion part. But it has some serious pitfalls [83, 84]. We will briefly review

the Hertz-Millis approach and then discuss an ϵ-expansion method first considered by

Nayak-Wilczek [45, 46] (also see Ref. [85], Sec. 4.1, and Appendix. A.3).

32



Introduction Chapter 1

Hertz-Millis theory In principle, by integrating out the FS, the effective Landau

action Eq. 1.17 receives corrections of all orders in ϕ

δS[ϕ] =
+∞∑
n=2

n∏
i=1

∫
dd+1qiΓ

(n)(q1, . . . , qn)ϕ(q1) . . . ϕ(qn)δ
d+1(q1 + . . .+ qn), (1.57)

where q = (ω, q) includes frequency and momentum. In general, the interaction vertex

Γ(n) could be singular and non-local. The basic assumption in the Hertz-Millis approach

is that one can truncate the infinite series in Eq. 1.57 at second order. Considering the

Yukawa interaction between bosons and fermions, one finds the one-loop boson self-energy

Σϕ(iω,p) = "`L�`" = γ
|ω|
|p∥|

(1.58)

where p∥ is tangent to the FS manifold. The coefficient γ is related to the fermi velocity

vF and the FS curvature κ as γ ∼ Λd−2/(vFκ), where Λ is a momentum-space UV cut-off.

Adding this term to the Landau action 1.17, we obtain the Hertz action

S[ϕ] =
∫

dωddk

(2π)d+1

(
γ
|ω|
|k|

+ |k|2 + r

)
|ϕ (ω,k)|2 + u

∫
dτddx |ϕ|4 , (1.59)

where we have averaged the boson self-energy over different patches on the FS. The first

singular term is called the Landau damping term, which means the order parameter ϕ

can decay into particle-hole excitations around the FS. The original term |∂τϕ|2 is no

longer relevant, and the dynamical exponent is modified to z = 3. Under the scale

transformation of coordinates x → xe−ℓ and τ → τe−zℓ, we have the scaling dimension

∆[ϕ] =
d+ z − 2

2
=⇒ du

dℓ
= (4− d− z)u (1.60)
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at the Gaussian fixed point. Therefore, when d > 1 (provided that z = 3) the u-term

is irrelevant, and the critical theory is simply given by the Gaussian part of Eq. 1.59.

There are several reasons to suspect that the Hertz-Millis theory is incomplete. In the

justification of the Gaussian fixed point, the fermion-boson Yukawa coupling has not

been checked carefully, which could be relevant. The feedback of bosons to fermions also

has been completely ignored. In fact, the one-loop fermion self-energy in d = 2 satisfies

Σψ(iω,k) = FfayfF ∼ −i|ω|2/3sgn(ω). (1.61)

The Landau quasiparticles become ill-defined, which means the procedure of integrating

out the FL part is not going to be self-consistent. From another perspective, neglecting

higher-order terms in Eq. 1.57 is also suspicious since they could be highly singular terms.

Perturbative NFL fixed points Let us consider a more careful treatment of the

problem in d = 2. We couple the single-patch theory Eq. 1.52 to the boson sector

S[ϕ] =
∫

dωdk⊥dk∥
(2π)3

(
γ
|ω|∣∣k∥∣∣ + ∣∣k∥∣∣zϕ−1

)
|ϕ(ω,k)|2 ,

SYukawa = g

∫
dτdx⊥dx∥ϕψ

†ψ, (1.62)

where zϕ is the boson dynamical exponent. To have a theoretical control of the system,

we introduce zϕ = 2 + ϵ and consider the perturbative RG calculation under a small ϵ

expansion. The details can be found in Sec. 4.1 (also see Ref. [45, 46, 85]). To leading-

order in ϵ, there is a new fixed point g2 = 2π2vF ϵ, and the fermion propagator becomes

Gψ(iω,p) =
1

i|ω|1−ϵ/2sgn(ω)− vFp⊥ − κp2∥
, (1.63)
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which no longer has a quasiparticle pole. Within this framework, we can show that the

system flows to a NFL fixed point. But the physical value of the boson dynamical expo-

nent is zϕ = 3, which means we need to extrapolate ϵ → 1. The validity of the small ϵ

expansion is not really justified. In Sec. 4.1, we will consider a situation where ϵ is natu-

rally small, and we indeed have a controlled expansion. In that case, the boson sector no

longer undergoes a Landau-type transition but a deconfined quantum phase transition

(which will be introduced in Sec. 1.4.1). There are also other scenarios where similar

NFL fixed points show up. The gapless bosons could be emergent gauge fields other

than quantum critical modes. Namely, the problem of FS states coupled to dynamical

U(1) gauge fields appears for the spinon FS at the continuous metal-insulator transi-

tion [86, 87] (which will be introduced in Sec. 1.4.2), and the FS of composite fermions

in the Halperin-Lee-Read theory [88] for the half-filled Landau level. In Sec. 4.2, we will

add one more example about metallic states with charge fractionalization. A technical

generalization of the perturbative RG to the case of non-abelian gauge fields is in need

(see Appendix. A.3 for details, also see Ref. [89]). As we will see in Sec. 4.2 and Sec. 3.2,

charge fractionalization also provides a simple physical picture to construct bad metals

with resistivity beyond the MIR limit 1.56 at low temperatures.

1.3.3 Large-N Solvable Models

In the last section, we start with free fermions and try to show the RG flow to a NFL

fixed point. Recently, there has been another popular approach that directly gives us

a NFL fixed point. This approach is based on an exactly solvable quantum mechanical

model called the Sachdev-Ye-Kitaev (SYK) model (see Ref. [56] and references therein).

The SYK model with (q/2)-body interactions of complex fermions (which is usually
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Figure 1.7: The diagrammatic representation of the Schwinger-Dyson equation in the
complex SYKq model Eq. 1.64. The self-energy only contains melon diagrams.

referred to as the complex SYKq model) can be written as

HSYK =
N∑

{i},{j}=1

Ui1...i q
2
,j1...j q

2

c†i1 . . . c
†
i q
2

cj1 . . . cj q
2

− µ
N∑
i=1

c†ici, (1.64)

where N is an integer, and q is an even integer. The antisymmetric random couplings

Ui1...i q
2
,j1...j q

2

= U[i1...i q
2
],[j1...j q

2
] are Gaussian distributed complex variables which satisfy

U∗
i1...i q

2
,j1...j q

2

= Uj1...j q
2
,i1...i q

2

, Ui1...i q
2
,j1...j q

2

= 0, (Ui1...i q
2
,j1...j q

2

)2 ∼ U2

N q−1
. (1.65)

Under the large-N limit, only the melon diagrams (shown in FIG. 1.7) contribute to the

self-energy Σ, and the Schwinger-Dyson equation reads

G(iω) =
1

iω + µ− Σ(iω)
, Σ(τ) = −(−1)

q
2U2[G(τ)]

q
2 [G(−τ)]

q
2
−1, (1.66)
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The two-point Green function is solved as G(τ) ∼ sgn(τ)/(U |τ |)2/q, which gives the

fermion scaling dimension at the SYKq fixed point

∆[c] = 1/q. (1.67)

To build a lattice model for NFLs, we consider a collection of strongly interacting

quantum dots shown in FIG. 1.8. In each dot labeled by the site index x, there are

a large number of fermions described by the complex SYK model Eq. 1.64. Between

nearest neighbor quantum dots, we turn on a random hopping term

H =
∑
x

HSYK[ci,x] +
∑
⟨x,x′⟩

(tij,xx′c
†
i,xcj,x′ + h.c.), (1.68)

where tij,xx′ are also Gaussian distributed variables satisfying (tij,xx′)2 ∼ t2/N . Under

the strong coupling limit U ≫ t, the physic is dominated by the SYKq fixed point (q ≥ 4)

which is far away from the free-fermion fixed point. We should pay attention that the

single-particle hopping is relevant under RG, which becomes non-perturbative at the

energy scale ∼ t2/U . Therefore, the NFL fixed point is only expected within a finite

temperature window. If one is careful enough, there is also a superconducting pairing

instability, which will be discussed in detail in Sec. 4.3.

The lattice model Eq. 1.68 enjoys a U(1) global symmetry. Therefore, we can define its

electrical current which is written in terms of fermion bilinears. At the SYK fixed point,

the exponent α = 2(1 − 2∆[c]) in the resistivity Eq. 1.55 is determined by the fermion

scaling dimension Eq. 1.67. It is remarkable that q = 4 leads to strange metal behavior

ρ ∼ ρ0 + T and four-fermion interactions are natural in condensed matter systems.

There are, however, several unrealistic features in the approach mentioned above. To

describe the strange metal phase in cuprates, we would like to know how to realize SYK
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Figure 1.8: The typical setup for non-fermi liquids (NFLs) built from SYK models.
One can build a lattice model using a collection of strongly correlated quantum dots.
In each quantum dot, a large number of fermions interact with each other through
a random coupling U (see Eq. 1.64). Between any pair of nearest neighbor quantum
dots, there is a random hopping term t (see Eq. 1.68). Under the strong coupling
limit U ≫ t, the NFL behaviors are expected within the finite temperature window
T ∼ (t2/U,U). (Figure credit to Leon Balents.)

physics without quenched disorder (without randomness), and with only a few orbitals of

fermions per site. Such a square-lattice model will be constructed in Sec. 4.3. In addition

to the Hubbard model, we also turn on a plaquette spin-singlet ring exchange, which de-

scribes the tunneling between two singlets on the diagonal of the plaquette on the square

lattice. Under a certain theoretical limit, this model has the same conformal solution as

the original SYK model. Another question is about how to realize the transport scalings

1 < α < 2 in Eq. 1.55. In the SYKq construction, it seems we can take q > 4. But

the physics dominated by higher-order interactions seems unrealistic. In Sec. 4.4, we are

going to present a generalization of the model in Sec. 4.3, which can realize 1 < α < 2

with four-fermion interactions. The exponent α is tunable by changing charge density

which mimics the behavior in experimental systems (see FIG. 1.6 for example).

1.4 Unconventional Phase Transitions

There are a large number of quantum phases known to be beyond the Landau

paradigm (strictly speaking, based on 0-form symmetries), including topological orders

(such as gapped spin liquids and fractional quantum Hall states), symmetry-protected
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topological (SPT) phases (such as electronic topological insulators and topological su-

perconductors), gapless states with fractionalization (such as Dirac spin liquids, spinon

fermi-surface states, and composite fermi liquids in the half-filled Landau level), gapped

fractons, etc. Any quantum phase transition that involves such an exotic quantum phase

is usually referred to as an example of unconventional phase transitions. Furthermore,

as we have mentioned before, a direct continuous phase transition between two Lan-

dau symmetry-breaking phases is also unconventional. Based on the Lieb-Schultz-Mattis

(LSM) theorem [20, 21, 22] and its various generalizations (see e.g. [90, 91, 92, 93, 94, 95]),

a non-degenerate gapped ground state is forbidden in the presence of certain lattice and

internal symmetries, and hence Landau-type order-to-disorder transitions are not possi-

ble in these situations. Our natural expectation is that unconventional quantum phase

transitions should be ubiquitous. In this introductory section, we are going to mention

two types of examples that are highly relevant to the later part of the dissertation.

1.4.1 Deconfined Quantum Criticality

This section concerns quantum phase transitions between two Landau-ordered phases

that necessarily involve fractionalized degrees of freedom. We will start with the example

of isotropic Néel-VBS transition to illustrate the simple pictures and physical properties

behind this new paradigm. An exotic quantum phase transition sometimes involves

emergent symmetries at the critical point, which is hard to fully understand by looking

at a particular critical theory in the UV. A good understanding comes from a web of

dualities, which will be illustrated using the example of easy-plane Néel-VBS transition.

Finally, we will briefly mention the superfluid-insulator transition at fractional fillings,

which is very useful for Sec. 1.6 and Sec. 3.2.
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Isotropic Néel-VBS Transition

We continue the discussion of the Néel-VBS transition on the square lattice. In

Sec. 1.1.3, we have already mentioned that the topological defect of the Néel order pa-

rameter carries lattice symmetry. Let us first explain this in slightly more detail. A

crucial observation is that the Berry phase term in Eq. 1.23 takes a nontrivial value

in the presence of hedgehog events (i.e., the tunneling events of the skyrmion number

Eq. 1.31). As shown in Ref. [23, 24, 25], if the order parameter has hedgehogs with charge

qj̄ ∈ Z localized on the plaquette of dual lattice site j̄, the Berry phase term equals to

SB = iπS
∑
j̄

ζj̄qj̄, (1.69)

where S = 1/2 is the spin value, and ζj̄ takes a value from 0, 1, 2, 3 depending on whether

the dual lattice site j̄ = (j̄x, j̄y) is (even, even), (even, odd), (odd, even), or (odd, odd).

The implication is that charge-1 hedgehog events occurring on nearby dual lattice sites

interfere destructively and do not survive in the continuum field theory. Only hedgehog

events with qj̄ = 4 contribute to the critical theory. Under a four-fold lattice rotation

C4, the hedgehog operator M transforms as M(x) → iM(C4x). Therefore, M can be

identified as the VBS operator, and the quadrupled hedgehog term is allowed

δL = λ4(M4 + (M†)4). (1.70)

Using the famous Hopf fibration, the critical theory Eq. 1.23 can be formulated as the

non-compact CP1 (NCCP1) model (i.e., the two-flavor bosonic QED3)

L = db ∧ ⋆db+ |Dbz|2 + r|z|2 + u(|z|2)2 + . . . (1.71)
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Figure 1.9: The schematic RG flow diagram of the continuous Néel-VBS transition,
where r is the coupling that drives the transition, and λ4 is the 4-monopole fugacity.

where the two-component spinon z = (z1, z2) is related to the Néel order as ni = z†σiz

with i = 1, 2, 3, and Db = d−ib is the covariant derivative for the emergent abelian gauge

field b. Since the skyrmion number Eq. 1.31 translates to Q = 1
2π

∫
db, the monopole

operator of b is identified as the hedgehog operator M. When r < 0, the spinon con-

densation ⟨zα⟩ ≠ 0 describes the Néel state with ⟨n⟩ = ⟨z†α⟩σαβ⟨zβ⟩ ≠ 0. When r > 0,

the spinon is gapped, the Coulomb phase is a U(1) spin liquid. However, away from the

critical point at r = 0, the Coulomb phase is unstable due to charge-4 monopole events,

and finally the gauge field will confine. The monopole proliferation breaks the lattice

symmetry and leads to the VBS order. The schematic RG flow is shown in FIG. 1.9.

There are two divergent length scales at the critical point, one is the spin correlation

length, and the other is the confinement length.

In the previous discussion, our starting point is the O(3) NLSM Eq. 1.23 in terms

of the Néel order parameter. In fact, the critical theory Eq. 1.71 can be understood

from another perspective [96]. We can start with the VBS ordered state on the square

lattice, and try to draw its topological defect which is a Z4 vortex (shown in FIG. 1.10).

We immediately see that the vortex core is a free spin-1/2 moment, which transforms
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Figure 1.10: The phase diagram of the continuous Néel-VBS transition on the square
lattice. The degrees of freedom at the critical point are deconfined spinon excitations.

nontrivially under the SU(2) symmetry. To destroy the VBS order, we can condense

the Z4 vortices, which breaks the SU(2) spin symmetry and leads to the Néel order. In

the field-theoretical description, the VBS order is described by a discrete Z4 clock order

parameter. We recognize that the domain walls of the VBS order can be understood

as electric field lines of the dual Z4 gauge theory, and the Z4 vortex carries a Z4 gauge

charge. At the critical point, Z4 can be embedded into U(1), since the Z4 clock anisotropy

is irrelevant (e.g., the 3D Z4 clock model belongs to the 3D XY universality class).

Therefore, we arrive at the same field theory Eq. 1.71 for the vortex of the VBS order.

Emergent SO(5) symmetry At the critical point, an enlarged SO(5) symmetry has

been numerically observed [97], which rotates the Néel and VBS order parameters

(n1, n2, n3, n4, n5) ∼ (z†σ1z, z†σ2z, z†σ3z, 2ReMb, 2ImMb). (1.72)

Recently, the emergent SO(5) symmetry was theoretically rationalized using a web of

dualities [98] between self-dual NCCP1 models and self-dual QED-Gross-Neveu models
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(with hints from the NLSM by Senthil-Fisher [99]). The scaling dimension of the SO(5)

vector was numerically found to be ∼ 0.62 on the largest system so far, which is lower

than the bound of 0.76 from the conformal bootstrap [100]. The nature of this transition

is currently under debate. But there is no question that a continuous deconfined quantum

critical point (DQCP) can exist. Namely, one could consider a version in SU(N) spin

systems with a sufficiently large N . It is theoretically confirmed that the critical theory

flows to a CFT in the IR.

Experimental signatures The fractionalization of Landau order parameters at the

critical point has important implications for experimental observables. For example, the

Néel order has a very large anomalous dimension η which is far away from the Wilson-

Fisher result (see TABLE. 1.2). If we use the spinon mean-field value in D = 2+1 to do

the estimation

⟨n(x)n(0)⟩ ∼ ⟨z†(x)σz(x)z†(0)σz(0)⟩ ∼ 1

|x|2(D−2)
=

1

|x|D−2+η
, (1.73)

we find η is an order of one quantity. In Sec. 4.1, we will calculate scaling dimensions in

some examples more seriously under the large-N expansion.

Easy-Plane Néel-VBS Transition

Let us turn on an easy-plane anisotropy (n3)
2 = |z1|4 − 2|z1|2|z2|2 + |z2|4. The SU(2)

symmetry is broken down to the in-plane U(1) rotation of (n1, n2) around the z-axis and

the Ising Z2 spin reflection n3 → −n3 along the z-axis. The in-plane U(1) symmetry

can be described by the complex order parameter ΦB = n1 + in2 = 2z†1z2 (or Φ†
B =
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n1 − in2 = 2z†2z1). Since n3 = |z1|2 − |z2|2, the ordering in the x-y plane corresponds to

|⟨z1⟩| = |⟨z2⟩| ≠ 0. (1.74)

We should notice that this is not as simple as a 3D XY transition. In the vortex core

of ΦB = n1 + in2, the XY order (n1, n2) vanishes, and the z-component has two choices

n3 = ±1, which are related via the Ising symmetry n3 → −n3. The topological defects are

actually merons (half-skyrmions) of the O(3) order parameter n. The tunneling between

two different merons is a monopole event. In view of the expression ΦB = 2z∗1z2, we can

see that a 2π-vortex of ΦB can be realized by a 2π-vortex of z2 or a 2π-antivortex of z1. In

the vortex core, n3 = |z1|2 − |z2|2 is positive or negative depending on which condensate

⟨z1,2⟩ is destroyed by its vortex. Based on the [U(1)B ⋊Zspin
2 ]×U(1)C symmetry (where

U(1)B is the in-plane spin rotation of (n1, n2), Zspin
2 is the Ising symmetry n3 → −n3,

and U(1)C forbids the monopole events of n), we can formulate the critical theory as

L = |Dbz1|2 + |Db+Bz2|2 + |z1|4 + |z2|4 −
i

2π
bdC, (1.75)

where B is the U(1)B background field, and C is the U(1)C background field. All coupling

constants are neglected for simplicity. Under Zspin
2 symmetry, we interchange z1 and z2.

The Néel-VBS transition is driven by a single mass term rz†z = r(|z1|2 + |z2|2). When

z1, z2 condense simultaneously (which preserves Zspin
2 ), the gauge field b is Higgsed, U(1)B

symmetry is broken and U(1)C symmetry is preserved. This is the in-plane Néel ordered

state. When z1, z2 are gapped, U(1)
B symmetry is preserved, and we are left with gapless

b right at the DQCP. However, b will eventually confine. The U(1)C symmetry-breaking

phase corresponds to the VBS order.
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Emergent O(4) symmetry Similar to the isotropic Néel-VBS transition, the easy-

plane case has an enlarged symmetry at the critical point and enjoys a duality web [98, 27]

under Sp(4,Z) duality transformations. Let us be more precise about the dual theories

which include a pair of self-dual two-flavor bosonic QED3 (i.e., a pair of easy-plane

NCCP1 models) and a pair of self-dual two-flavor fermionic QED3

LbQED = |Db+Xz1|2 + |z1|4 + |Db+Y z2|2 + |z2|4 −
i

2π
bd(X + Y )− i

2π
Y dX

↔ L̃bQED = |Db̃−Y ϕ1|2 + |ϕ1|4 + |Db̃+Xϕ2|2 + |ϕ2|4 −
i

2π
b̃d(X − Y ) +

i

2π
Y dX

↔ LfQED = ψ̄1 /Da+Xψ1 + ψ̄2 /Da−Xψ2 −
i

4π
ada− i

2π
adY +

i

4π
Y dY − i2CSg

↔ L̃fQED = χ̄1 /Dã−Y χ1 + χ̄2 /Dã+Y χ2 −
i

4π
ãdã− i

2π
ãdX +

i

4π
XdX − i2CSg (1.76)

where the original background fields are B = Y − X and C = Y + X, b, b̃ are dy-

namical U(1) gauge fields, and a, ã are dynamical Spinc connections. The gravita-

tional Chern-Simons term CSg is normalized such that the thermal Hall conductance

is κxy = π2k2BT/(6h). Our convention about the regularization of Dirac fermions is the

same as Ref. [26, 27]. The Néel U(1)B order ΦB and the VBS U(1)C order ΦC are

represented by the following operators in the different dual theories

(ΦB,ΦC) ∼ (z†1z2,Mb) ∼ (M†
b̃
, ϕ†

1ϕ2) ∼ (ψ†
2Ma, ψ

†
1Ma) ∼ ((χ†

1Mã)
†, χ†

2Mã), (1.77)

where Ma (or Mb) is the monopole operator of a (or b), and ψ†
1Ma denotes a monopole

of a with a fermion zero mode of ψ1 filled. Provided that the duality web is valid, we

observe that the global symmetry group is much larger than one would expect based on

Eq. 1.75. Let us take a closer look at the symmetries in the fermionic theories [98, 27, 101,

102]. In LfQED[ψ, a], the global symmetry group is SU(2)X × Pin−(2)Y /Z2. The explicit

background field X couples to U(1)X ⊆ SU(2)X , and Y couples to U(1)Y ⊆ Pin−(2)Y .
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There is also a charge conjugation CY : Y → −Y, a → −a,X → X,ψ → iσ2ψ̄ that

commutes with SU(2)X . The notation Pin−(2)Y means (CY )2 = −1. In addition, we

should pay attention that global symmetries only act on gauge-invariant operators. Any

composite operator of ψ, ψ̄ should carry the U(1)X charge qX = even and the U(1)Y

charge qY = 0. Any gauge-invariant monopole is filled with a fermion zero mode and

carries (qY = 1, qX = ±1). More generally, it is easy to see that all gauge-invariant

operators satisfy qX+qY ∈ 2Z. Similar agreements hold for L̃fQED[χ, ã], and the symmetry

group is Pin−(2)X ×SU(2)Y /Z2. Therefore, we find the symmetry at the critical point is

at least as large as SO(4) = SU(2)X ×SU(2)Y /Z2. Notice that there is an extra self-dual

symmetry between the two fermionic theories

Zfdual
2 : X ↔ Y, (ψ1, ψ2) ↔ (χ2, χ1), a↔ ã, (ΦB,ΦC) ↔ (Φ†

B,ΦC). (1.78)

In conclusion, the symmetry group is enlarged from GUV to GIR at critical point

GUV =



[U(1)Y−X ⋊ Z2]× U(1)Y+X LbQED

U(1)Y−X × [U(1)Y+X ⋊ Z2] L̃bQED

SU(2)X × Pin−(2)Y /Z2 LfQED

Pin−(2)X × SU(2)Y /Z2 L̃fQED

,

GIR =
SU(2)X × SU(2)Y

Z2

⋊ Z2 = SO(4)⋊ Z2 = O(4). (1.79)

It is easy to check the four-component vector (n1, n2, n3, n4) that transforms under O(4)

is related to the Néel and VBS order parameters as

(ΦB,ΦC) ∼ (n1 + in2, n3 + in4). (1.80)
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Figure 1.11: The structure of UV and IR symmetries in a web of dualities.

In principle, the enlarged O(4) symmetry can be proven by explicitly checking the scaling

dimensions ∆[ΦB] = ∆[ΦC ]. But all of them are strongly coupled field theories, and we

do not have good analytical control. Nevertheless, symmetry enhancement is a comment

feature of dualities, the logic of which is summarized in FIG. 1.11.

Self-dual symmetries We first notice that the self-dual Zfdual
2 symmetry in Eq. 1.78

is identified as the spin-flip Zspin
2 symmetry in the bosonic theories

Zfdual
2 = Zspin

2 : (z1, z2) ↔ (z2, z1), b↔ b, (ϕ1, ϕ2) ↔ (ϕ†
2, ϕ

†
1), b̃↔ −b̃. (1.81)

We should note that only B = Y −X and C = Y +X are properly quantized background

fields, which transform as B → −B and C = C (according to X ↔ Y ). We find both

dual bosonic theories get an extra term under the Zspin
2 symmetry

L = |Dbz1|2 + |z1|4 + |Db+Bz2|2 + |z2|4 −
i

2π
bdC

Z2−→ L− i

2π
BdC,

L̃ = |Db̃−Cϕ1|2 + |ϕ1|4 + |Db̃ϕ2|2 + |ϕ2|4 +
i

2π
b̃dB

Z2−→ L̃ − i

2π
BdC, (1.82)

47



Introduction Chapter 1

where − i
2π
XdX has been added to both theories LbQED and L̃bQED in Eq. 1.76. The

same behavior is also manifested under the self-dual Zfdual
2 symmetry of fermionic theories

LfQED = ψ̄1 /Daψ1 + ψ̄2 /Da−C+Bψ2 − iCS[a+B] +
i

2
CS[C +B]− i2CSg

↔ L̃fQED = χ̄1 /Dã−C−Bχ1 + χ̄2 /Dãχ2 − iCS[ã−B] +
i

2
CS[C −B]− i2CSg (1.83)

where the notation CS[A] = i
4π
AdA has been used. Except for i

2
CS[C ±B], all the other

Chern-Simons terms are properly normalized. To make the expressions well-defined, we

could add − i
2π
XdX on both sides. Then one theory has an additional term i

2π
BdC

compared to the other. In conclusion, from both sides, we find Zspin
2 = Zfdual

2 is anoma-

lous. One way to make the continuum field theory consistent is to put the system on

the boundary of a (3 + 1)-dimensional bulk manifold W4 (see Sec. 1.5.2 for a general

introduction to ’t Hooft anomalies)

S =

∫
∂W4

L − iπ

∫
W4

dB

2π
∧ dC

2π
, (1.84)

where the bulk topological term describes a SPT state with [U(1)⋊Z2]×U(1) symmetry.

From a microscopic point of view, deconfined criticality can nevertheless be realized in

two-dimensional lattice models because lattice rotation symmetries are not on-site, and

therefore can be implemented in a seemingly anomalous fashion in the continuum theory.

There is also a self-dual Zbdual
2 symmetry between the two bosonic theories

Zbdual
2 : Y ↔ −Y (or B ↔ −C), (z1, z2) ↔ (ϕ2, ϕ1), b↔ b̃, ΦB ↔ Φ†

C . (1.85)
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It turns out to be an explicit global Zχ2 symmetry of the fermion χ, which is a subgroup

of the SU(2)Y flavor symmetry

SU(2)Y ⊇ Zbdual
2 = Zχ2 : X ↔ X, Y ↔ −Y, (χ1, χ2) ↔ (χ2, χ1), ã↔ ã. (1.86)

In conclusion, we have seen that a certain Z2 global symmetry of one theory in the duality

web is not manifested as a symmetry of the other theory but the self-dual symmetry

between a pair of dual theories. The logic is summarized in FIG. 1.11.

Superfluid-Insulator Transition at Fractional Fillings

A famous example that realizes a conventional quantum phase transition in the 3D

XY universality class is the Bose-Hubbard model at integer fillings [103]. The model

has a global U(1) symmetry that corresponds to the conservation of the total boson

number, and the spontaneous breaking of the U(1) symmetry realizes an insulator-to-

superfluid transition. The critical point can be described by the Landau theory Eq. 1.17

with z = 1, d = 2 or the dual vortex theory Eq. 1.27. The situation, however, will

be very different if we consider the Bose-Hubbard model at fractional fillings [104, 105]

since the LSM theorem forbids a non-degenerate disordered state that preserves lattice

symmetries. It resembles what we have encountered in the Néel-VBS transition. One

possible resolution is that the insulating state is actually a commensurate density-wave

state which spontaneously breaks lattice translation symmetry. (It can also be a topo-

logically ordered state which will be discussed in Sec. 3.2.) This transition between two

Landau-ordered phases is again an example of deconfined quantum criticality.

Under the particle-vortex duality introduced in Sec. 1.1.3, the critical theory can be

49



Introduction Chapter 1

formulated in terms of the dual vortex fields φI

L =
N∑
I=1

(
|(∂ − ia)φI |2 + r|φI |2

)
+ u

(
N∑
I=1

|φI |2
)2

− i

2π
a ∧ dA+ . . . (1.87)

where all PSG-allowed terms 3 should be included. The dynamical U(1) gauge field a is

defined by da = ⋆2πJ , where J is the conserved U(1) current coupled to the background

field A. The dual vortex theory looks very different compared to Eq. 1.17, since the

vortex band structure has multiple minima Q1,Q2, . . . ,QN in the Brillouin zone which

leads to multiple dual vortex fields φI under the low-energy expansion

φ(x) =
N∑
I=1

φIe
iQI ·x. (1.88)

The vortex condensation carries finite momentum and therefore breaks translation sym-

metry. This is the density-wave insulating state that we are after. On the other hand,

when the vortex band is gapped, we are left with the Coulomb phase, where the photon

corresponds to the Goldstone mode in the superfluid phase.

Similar to the Néel-VBS transition mentioned above, the superfluid-insulator transi-

tion also involves symmetry fractionalization. Let us consider the dual vortex φ̃I of each

low-energy vortex field φI . The dual critical theory reads

L =
N∑
I=1

∣∣∣(∂ − iãI − i
e

N
A
)
φ̃I

∣∣∣2 + r̃|φ̃I |2 + . . . where
N∑
I=1

ãI = 0. (1.89)

We clearly see that each charge carrier φ̃I has a fractional charge e/N of the background

field A. The charge fractionalization is only expected right at the critical point. When

charge carriers φ̃I are gapped, the gauge fields ãI will confine due to the proliferation of

3The concept of projective symmetry group (PSG) is introduced in Ref. [106]
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monopoles carrying lattice translation symmetry.

1.4.2 Mott Metal-Insulator Transition

Understanding metal-insulator transitions (MITs) is one of the oldest yet one of the

fundamentally least understood problems in condensed matter physics. Strictly speaking,

a sharp difference between a metal and an insulator only exists at zero temperature. We

can look at the electrical resistivity ρ at T = 0. A vanishing resistivity ρ = 0 means a

superconducting phase, an infinity resistivity ρ = +∞ means an insulating phase, and

any finite value 0 < ρ < +∞ means a metal phase. At any finite temperature T > 0, an

insulator typically has activated behavior ρ(T ) ∼ e∆/T where ∆ is the charge gap, and

an ordinary metal has ρ(T ) ∼ ρ0 + T 2 according to fermi liquid theory (see Sec. 1.3.1).

Therefore, sometimes people use the sign of dρ/dT to distinguish between metals and

insulators. But various mechanisms may complicate the situation, and ρ(T ) could be a

non-monotonic function. A sharp transition between two zero-temperature phases is a

quantum phase transition. It is believed to be outside the Landau paradigm since no

obvious Landau order parameter can fully describe the transition.

The simplest MIT can be understood at the level of band theory. We know the ma-

terial is an insulator when the fermi level lies in the band gap (i.e., the occupied bands

are fully filled), and partially filled bands give a metal. Therefore, changing the particle

filling factor can induce a metal-insulator transition. However, if we are interested in

the transition at fixed fractional particle filling, how would an insulator be even possible

within the band theory picture? One resolution by Slater [107] is that the metal under-

goes a certain symmetry-breaking transition that breaks the original lattice translation

symmetry. For example, an antiferromagnetic order leads to unit cell doubling and gap

opening at the new Brillouin zone boundary.
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There are two main exceptions to the simple picture of band theory. The first type

is the disorder-driven MIT. Introducing quenched disorder into a metal can change the

electron wave function from spatially extended to localized, known as Anderson localiza-

tion [108]. Our focus will be on the second type, the interaction-driven MIT, also known

as the Mott transition [109]. The most studied model showing such a transition is the

one-band Hubbard model

H = −
∑
⟨i,j⟩

∑
α=↑,↓

tij(c
†
i,αcj,α + c†j,αci,α) + U

∑
j

nj,↑nj,↓, (1.90)

where c†j,α is the creation operator for an electron with spin α on site j, and nj,α =

c†j,αcj,α is the density operator. Let us fix the particle density at half-filling. There is a

competition between the hopping energy t and the on-site Coulomb repulsion U . When

t/U ≫ 1, we know from band theory that it has to be a metal (if without translation

symmetry breaking). The other limit t/U ≪ 1 prevents doubly occupied sites and

hence completely suppresses the electric current. The value of t/U (i.e., the bandwidth)

is generally tunable in different correlated materials by changing external parameters.

Namely, the Mott organic material κ-(ET)2Cu2(CN)3 is tuned by pressure [110], and

the TMD Morié bilayer MoTe2/WSe2 is tuned by a displacement field [4]. According

to Mott [109], the bandwidth-tuned MIT is a first-order transition. The argument is

that the carrier density is smaller with decreasing t/U , and the screening of long-range

Coulomb interaction becomes ineffective, leading to the formation of particle-hole bound

states. However, we want to mention the old argument may not apply to the TMD Morié

system [4] since the nearby gates still screen the Coulomb interaction.
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Continuous Mott Transition

A theoretical proposal for interaction-driven continuous MIT was systematically stud-

ied by Senthil [86, 87]. In order to make the electronic fermi surface disappear abruptly in

a continuous fashion, a neutral fermi surface remains on the insulator side. It necessarily

involves spin-charge separation. One type of parton construction is

cj,α = bjfj,α, (1.91)

where each electron cj,α is fractionalized into a spinless bosonic chargon bj which car-

ries the electric charge and a charge neutral fermionic spinon fj,α which carries the spin

quantum number. There is a U(1) gauge redundancy, i.e., the electron operator is in-

variant under the local gauge transformation bj → bje
iθj , fj,α → e−iθj , which leads to a

dynamical U(1) gauge field aµ = (aτ ,a) that couples b and f . Close to the critical point,

the low-energy field theory can be written as

L = L[f, a] + L[b, a] + L[a] + L[b, f ] + . . . , (1.92)

L[f, a] = f †
α(∂τ − iaτ − µf + E(∇− ia))fα, (1.93)

L[b, a] = |(∂µ − iaµ)b|2 + r|b|2 + u|b|4 + . . . , (1.94)

L[a] = 1

e2
(εµνρ∂νaρ)

2, L[b, f ] = |b|2f †
αfα, (1.95)

where E(k) denotes the spinon mean-field dispersion. The transition is controlled by a

single parameter r ∼ (gc− g) where g = t/U . When r > 0, the chargon b is gapped, and

we are left with a spinon fermi-surface state, which corresponds to a spin-liquid Mott

insulator. When r < 0, the chargon condensation will Higgs the gauge field a, and the

system goes back to a fermi-surface state of the original electron c ∼ ⟨b⟩f .

There are some salient features associated with this critical theory. Although we
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should start with a compact U(1) gauge field aµ in the microscopic derivation, the

monopole events are strongly suppressed by the spinon fermi surface, and therefore aµ be-

comes non-compact in the critical theory. Another important feature is that the chargon

sector is dynamically decoupled from the rest, and the boson condensation transition

belongs to the 3D XY universality class. We first check the spinon-chargon coupling

L[b, f ] = Obf
†f where Ob = |b|2 carries zero momentum. (The case of Ob with a finite

momentum will considered in Sec. 3.2.) As we have discussed in Sec. 1.3.2, a Landau

damping term will be generated

Seff[b] ⊃
∫

dωd2k

(2π)3
γ̃
|ω|
|k|

|Ob(ω,k)|2 . (1.96)

The scaling dimension of Ob at the 3D XY fixed point is ∆[Ob] = 3 − 1/ν where the

exponent ν is defined in TABLE. 1.1. The coupling γ̃ can be seen to be irrelevant since

∆[Ob] > 3/2 is satisfied. (If Ob is a density-wave order, then the generated term is instead

L ∼ |ω| |Ob|2, and one needs ∆[Ob] > 1 for dynamical decoupling.) The second task is to

examine whether the gauge field will affect the critical point of the chargon sector. We

first notice that the effective action of the transverse gauge field becomes

Seff[a] =

∫
dωd2k

(2π)3

(
γf

|ω|
|k|

+ vb|k|+
|k|2

e2

)
|a(ω,k)|2 , (1.97)

where the γf term describes the Landau damping due to spinon fermi surface, and the

vb term is the chargon contribution. It resembles Eq. 1.62 with the dynamical exponent

z = 2, which leads to a marginal fermi liquid fixed point of the spinon-gauge system. At

the critical point of the chargon sector, ω and k should scale identically. Therefore, the

γf term in Eq. 1.97 behaves like a mass term and quenches the effects of the gauge field

fluctuations. In conclusion, the chargon condensation identifies the 3D XY transition.
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Figure 1.12: The schematic phase diagram of the continuous Mott metal-insulator
transition involving spin-charge separation. The transition is driven by the chargon
condensation which belongs to the 3D XY universality class. One has two crossover
scales T∗∗ < T∗ on both sides of the phase diagram. When T∗∗ < T < T∗, one has
marginal fermi-liquid states for electrons and spinons. Only below the much lower
scale T < T∗∗, one has an electron fermi liquid and a spinon non-fermi liquid.
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Finally, we want to mention that this transition has richer crossover phenomena

than the single critical fan shown in FIG. 1.2. From Sec. 1.1.2, we know there is a

crossover temperature scale T∗ ∼ |g − gc|ν for the XY transition. But after the chargon

condensation, the gauge field will not immediately feel the Higgs mechanism and will

continue to affect the dynamical properties of the fermi-surface state. Only below a

lower temperature scale T∗∗ ∼ |g− gc|2ν , we have the electron fermi-liquid state. Similar

considerations apply to the insulating side as well. The spin-gauge system will not

immediately feel the chargon gap until a lower energy scale. There is a crossover of

the gauge field dynamical exponent from z = 2 to z = 3 (with/without the vb term in

Eq. 1.97). As for the spinon fermi-surface state, this is a crossover from marginal fermi

liquid to non-fermi liquid. We summarize the phase diagram in FIG. 1.12.

Experimental Signatures

There are various physical properties of the proposed continuous Mott transition that

can be checked in experimental systems. If we approach from the fermi-liquid side, the

quasiparticle residue Z will behave as

Z ∼ |g − gc|2β

log(1/|g − gc|)
, (1.98)

where the critical exponent (defined in TABLE. 1.1) is roughly β ≈ 0.33 at the 3D XY

fixed point. In addition, the electron effective mass will diverge logarithmically

m∗ ∼ log(1/|g − gc|), (1.99)

which can be detected via the Kadowaki-Woods scaling in the transport measurement.

There are also thermodynamic signatures. Namely, the specific heat at the critical point is
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Figure 1.13: The predicted universal resistivity jump ∆ρ = Rh/e2 at the continuous
Mott transition, where R is the is of the order 1 < R < 10 (expected).

dominated by the spinon-gauge contribution, which has the marginal fermi-liquid scaling

C ∼ T log(1/T ). (1.100)

One particularly interesting prediction is the universal resistivity jump at the tran-

sition. According to the Ioffe-Larkin rule, the total electrical resistivity is given by

ρ = ρf + ρb, where ρf is the spinon contribution and ρb is the chargon contribution. In

the insulating phase at T = 0, the gapped chargon sector has ρb = +∞, and therefore

the total resistivity is ρ = +∞. In the metallic phase at T = 0, the chargon superfluid

has ρb = 0, and therefore ρ = ρf is totally determined by the fermi-surface state. In

principle, ρf can be nonzero due to some weak disorder (which is weak in the sense that

the localization effect is negligible). There is something very interesting right at the

transition. According to Sec. 1.1.2, the critical bosons at the 3D XY transition should

have a universal resistivity ρb = Rh/e2. Consequently, if we approach from the metal

side, there is a universal resistivity jump right at the critical point

ρ = ρf +R
h

e2
. (1.101)
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In general, R is a universal scaling function of ω/T . But only the two limits ω/T → ∞

and ω/T → 0 are more accessible in theoretical calculations. The simpler case ρb(∞) ≈

3h/e2 is determined by the ground-state properties and identifies the 3D XY result in

TABLE. 1.3. As for ρb(0), one also needs to consider the scattering between critical

bosons and damped gauge fields, and therefore ρb(0) is expected to be larger than the

result in TABLE. 1.3. A large-N calculation is provided by Ref. [111], which gives

ρb(0) ≈ 7.93h/e2. One may not take this number too seriously, but 1 < R < 10 is still

expected. If one finds a huge resistivity jump with R ≫ 10 in an experimental system,

the theoretical construction may need serious modifications.

One may wonder if there are available experimental realizations of this theoretical

proposal. There is a claimed continuous metal-insulator transition in the organic system

κ-(ET)2Cu2(CN)3 [110] which is also a spin-liquid candidate because no magnetic order

has been found at very low temperatures. Although the early specific heat data support

the proposed spinon fermi-surface state [112], the thermal transport appears to show a

gap [113], and the recent electron spin resonance measurement also confirms the spin

gap [114]. Another potential realization is the TMD Morié bilayer MoTe2/WSe2 [4]. But

the observed critical resistivity seems to be much larger than the prediction. We will get

back to this point in Sec. 1.6.

1.5 Generalized Landau Paradigm

The concept of symmetry has long been a guiding principle in different areas of

physics. If a system has a certain symmetry, then we know immediately that the states

are organized according to the representations of the symmetry group. Symmetries also

provide superselection rules that tell us which physical processes are allowed. If a sym-

metry is continuous, then the Noether theorem leads to a local conserved current. Our
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modern understanding of phases of matter and phase transitions is based on RG flows

(see FIG. 1.1). Under coarse-graining, a lot of information gets lost. But symmetries are

always preserved under RG. (Symmetries can be spontaneously broken, but local opera-

tors are still in the representations of the symmetry group.) Therefore, symmetries are

at least part of the information that completely determines the universal properties of

any quantum many-body system. Namely, as reviewed in Sec. 1.1, conventional phases

of matter are labeled by how they represent their symmetries, and critical properties at

Landau phase transitions are entirely determined by the symmetry group and the dimen-

sionality. Furthermore, a global symmetry can sometimes be anomalous, meaning it can

not be consistently promoted to a local one (i.e., gauge symmetry). The inconsistency

(called ’t Hooft anomaly) is always preserved under RG, making symmetries even more

powerful in constraining low-energy dynamics.

The concept of symmetry has also been evolving with time (see Ref. [115, 116] and ref-

erences therein). With certain generalizations of symmetries, many famous non-Landau

phases of matter, such as topological orders, fracton phases, and SPT phases, can actu-

ally be understood in a flavor similar to the Landau paradigm, namely by how the states

represent their symmetries. The purpose of this section is to briefly introduce some of

the recent developments.

1.5.1 Generalized Symmetries

There are two features of ordinary symmetries: (1) symmetries are acting on zero-

dimensional objects, e.g., quantum numbers are carried by quasiparticles; (2) symmetry

transformations form a group structure. For the purpose of understanding universal

properties of quantum matter, both of them can be generalized. Namely, one can define

symmetries acting on higher-dimensional objects such as loops and membranes [117]. One
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step further, a symmetry algebra does not have to be a group algebra, which can even be

a fusion category algebra [118, 119]. The generalized symmetries not only provide new

organizing principles of known phases of matter, but can also have ’t Hooft anomalies

constraining low-energy dynamics of strongly correlated systems.

Higher-Form Symmetries

Ordinary symmetries To set the stage for subsequent generalizations, we summa-

rize some basic facts about ordinary global symmetries. The charged operators are 0-

dimensional objects, and therefore ordinary symmetries are called 0-from symmetries.

Let us denote the (d+1)-dimensional spacetime manifold by Yd+1, which is given by the

foliation of spatial slices denoted byXd ⊆ Yd+1. For each symmetry group element g ∈ G,

there is a unitary (or anti-unitary) operator U(g;Md) associated with a d-dimensional

manifold Md ⊆ Yd+1 that satisfies the group algebra

U(g;Md)U(h;Md) = U(gh;Md) for ∀g,h ∈ G. (1.102)

The symmetry transformation on a charged operator V (pt) defined on the point pt ∈ Xd

is implemented via the equal-time commutation relation

U(g;Xd)Va(pt)U
†(g;Xd) = Rab(g)Vb(pt) for ∀g ∈ G, (1.103)

where Rab(g) is the representation of the group element g ∈ G. We recall that the equal-

time commutation relation should be understood as a time-ordered product. In the point-

splitting definition, the charged object V (pt) at the time t is sandwiched by U(g;X+
d )

and U †(g;X−
d ) at t+ϵ and t−ϵ respectively. We can define a d-dimensional manifoldMd

by gluing the two spatial slices Md = X+
d ∪ (−X−

d ), which is topologically equivalent to a
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sphere Md
∼= Sd surrounding pt (see FIG. 1.14). The equal-time commutator Eq. 1.103

then becomes the time-ordered operator equation (i.e., the Ward identity)

U(g;Md)Va(pt) = Rab(g)Vb(pt). (1.104)

Written in this way, the Ward identity 1.104 holds for both continuous and discrete

symmetries. For each group generator t ∈ G, we say there is a charge Q(Md) = U(t;Md)

associated with the manifold Md. If the symmetry is continuous, the conserved charge

Q(Md) is given by integrating the Noether 1-form current J

Q(Md) =

∫
Md

⋆J, (1.105)

where d ⋆ J = 0 implies the conservation law. For the group element g = eiαt, we have

U(eiαt;Md) = eiαQ(Md). (1.106)

The nonlocal operator U(g;Md) is usually referred to as a symmetry defect. For Lorentz

invariant field theories, the symmetry defect U(g;Md) is topological because its corre-

lation functions are not affected by any continuous deformation of Md without passing

through other charged objects. The topological invariance is a fancy way of stating the

conservation law. For non-relativistic theories, including lattice models, we can not freely

deform Md in the total spacetime. The symmetry defect is not topological. But we still

have conservation laws based on deformations in restricted directions.

A helpful perspective is to regard the existence of defect operators and associated

Ward identities (i.e., conservation laws) as the definition of any symmetries 4.

4There is a subtle point that symmetries may be inexplicit sometimes, and not all charged objects are
necessarily present in the Hilbert space. But inexplicit symmetries can still be defined by the existence
of conservation laws. The concepts are clarified in Appendix. A.4
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Figure 1.14: (a) The spacetime manifold Yd+1 given by the foliation of spatial slices
Xd. (b) The equal-time commutator 1.103 for ordinary symmetry transformations
is deformed to a linked configuration Eq. 1.104 of d-dimensional symmetry defects
U(Md) and charged particles V (pt). (c) The equal-time commutator 1.108 for
p-form symmetry transformations is deformed to a linked configuration Eq. 1.107
of (d− p)-dimensional symmetry defects U(Md−p) and charged p-sheets V (Np).

p-form symmetries We are ready to consider the generalization to higher-form sym-

metries [117]. A charged object V (Np) is supported on a p-dimensional manifold Np. Let

us call it charged p-sheet. The Ward identity Eq. 1.104 is generalized to

U(g;Md−p)V (Np) = R(g)Lk(Md−p,Np)V (Np), (1.107)

where the symmetry defect U(g;Md−p) is associated with a group element g ∈ G(p) and a

(d−p)-cycleMd−p, R(g) is a representation of the group G(p), and Lk(Md−p, Np) denotes

the linking number between Md−p and Np. See FIG. 1.14 for an illustration of how it is

deformed from the equal-time commutator

U(g;Xd−p)V (Np)U
†(g;Xd−p) = R(g)#(Xd−p,Np)V (Np), (1.108)

where Xd−p ⊆ Xd is a spatial submanifold, and #(Np, Xd−p) denotes its intersection

number number with Np. By definition, the symmetry defects satisfy the group algebra

U(g;Md−p)U(h;Md−p) = U(gh;Md−p) for ∀g,h ∈ G(p). (1.109)
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For Lorentz invariant field theories on a simply connected spacetime manifold Yd+1, the

symmetry defects are topological and the group G(p) when p > 0 has to be abelian. (We

do not exclude the possibility of nonabelian higher-form symmetries in field theories on

topologically nontrivial manifolds or nonrelativistic lattice models.) For any generator t

in a continuous symmetry group, there is a conserved (p+ 1)-form current J (p+1) which

satisfies d ⋆ J (p+1) = 0. The conserved charge Q is associated with Md−p

Q(Md−p) =

∫
Md−p

⋆J (p+1). (1.110)

For the group element g = eiαt, we still have U(eiαt;Md−p) = eiαQ(Md−p).

Physical examples of higher-form symmetries The concept of 1-form symmetry

can be associated with conserved gauge fluxes through a (d− 1)-dimensional subsystem

Md−1. Namely, Maxwell theory in d = 3 without magnetic monopoles has a continuous

1-form symmetry (denoted by U(1)
(1)
m ) with the conserved current Jm = ⋆f/2π, where

f = da is the gauge curvature. The conservation law is simply due to the Bianchi identity

df = 0, and the charged objects are ’t Hooft lines. If no electric charge is present, there

is a second conserved 1-form current Je = f/e2 (for U(1)
(1)
e symmetry) in view of the

Maxwell equation d ⋆ f = 0. The objects that transform under U(1)
(1)
e are Wilson

lines. In addition, it is not surprising that discrete gauge theories enjoy discrete 1-form

symmetries. In Z2 gauge theory with exact Gaussian law constraint, the electric fluxes

through a closed surface are conserved mod 2. Furthermore, continuous gauge theories

can have discrete 1-form symmetries if only certain matter fields are allowed. For U(1)

gauge theory with only even electric charges, the Gauss law ∇ ·E ∈ 2Z again means the

electric fluxes are conserved mod 2. For SU(2) gauge theory with only adjoint matter

fields, the gauge group center Z2 gives rise to a 1-form symmetry. Therefore, the different
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gauge fields (with gauge groups Z2,U(1), SU(2), etc) can share the Z(1)
2 1-form symmetry

depending on the matter fields.

Other Generalized Symmetries

Subsystem symmetries In non-relativistic theories, the notation of symmetry can

also be generalized by defining symmetry transformations independently on rigid sub-

spaces of space Xd. This type of generalized symmetry is called subsystem symmetry.

An example in d = 2 with U(1) subsystem symmetry has been considered in Ref. [120]

L =
1

2U
(∂τθ)

2 +
K

2
(∂x∂yθ)

2, (1.111)

where θ ≃ θ+2π is a compact scalar. It is invariant under the symmetry transformation

θ(τ, x, y) → θ(τ, x, y) + f(x) + g(y), (1.112)

where f, g are arbitrary functions of one spatial coordinate. The Noether currents are

Jτ =
1
U
∂τθ and Jxy = −K∂x∂yθ which satisfy the dipole conservation law ∂τJτ+∂x∂yJxy =

0. There are a large number of conserved charges labeled by one spatial coordinate

Qx(x) =

∫
dyJτ , Qy(y) =

∫
dxJτ . (1.113)

We observe the restricted mobility of charged objects since x or y needs to be specified.

A more extensive discussion of related lattice models can be found in Sec. 5.1. Subsystem

symmetries are also crucial in understanding fracton phases of matter. In such a gapped

phase, one typically has a large ground state degeneracy growing exponentially with

system size and has excitations with restricted mobility. Some fracton models can be

realized by gauging subsystem symmetries (see Ref. [116, 115] for a list of references).

64



Introduction Chapter 1

Categorical symmetries A further generalization is that the fusion of symmetry de-

fects Eq. 1.109 does not have to obey a group algebra. More generally, it can be

ta × tb =
∑
c

Nc
abtc, , (1.114)

where Nc
ab are non-negative integers that satisfy the commutative and associative relations

Nc
ab = Nc

ba,
∑
d

Nd
abN

f
dc =

∑
d

Nd
acN

f
bd. (1.115)

One can understand Eq. 1.114 as the fusion algebra of anyons ta in a topological order

or the OPE of primary fields ta in a rational CFT. There are currently two perspectives

about generalizing the notion of symmetries based on Eq. 1.114. The perspective taken

by Ref. [119] is based on duality walls. The simplest example is the Ising CFT that

describes the critical transverse Ising chain introduced in Sec. 1.1.3. The duality wall N

is defined as a defect operator such that when we pass through the wall, we act by the

Kramers-Wannier duality interchanging the spin and the domain wall. Together with the

ordinary Z2 symmetry defect η, they form the algebra η×η = 1, η×N = N×η = N , and

N ×N = 1+ η, which identity the fusion algebra Eq. 1.114 for Ising anyons. The second

perspective that will be taken in Sec. 5.1 and Sec. 5.2 is based on Ref. [118]. We want to

understand emergent symmetries at quantum critical points by looking at dual theories

in the same spirit as FIG. 1.11. Let us again look at the transverse Ising chain. We have

seen in Sec. 1.1.3 that there is a Z2 symmetry in the spin description and another Z̃2

symmetry in the domain-wall description. Is the symmetry simply enlarged to Z2 × Z̃2?

The answer is no since the symmetry charges have nontrivial π mutual statistics. To make

the two symmetries on equal footing, one also needs to project all symmetry-breaking

states to the symmetric sector (e.g., the cat state |↑, . . . , ↑⟩ ± |↓, . . . , ↓⟩). The idea of
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Ref. [118] is to put the system on the boundary of the Z2 topological order in d = 2.

There are four types of excitations {1, e,m, f}, where e and m have π mutual statistics.

The two gapped edge phases are given by e condensation and m condensation. The

fusion rules Eq. 1.114 in this case are e× e = 1, m×m = 1, f × f = 1, and e×m = f .

Spontaneous Symmetry Breaking (SSB)

Generalized symmetries can be spontaneously broken, which leads to generalized

Landau phases of matter. In this section, we first illustrate how to characterize whether

the system is in the symmetric (Sym) phase or the spontaneous symmetry breaking (SSB)

phase. Then we will briefly discuss the physical consequences of the SSB of higher-form

symmetries. For simplicity, we assume the spacetime manifold Yd+1 is simply connected

such that all higher-form symmetries are abelian.

Order diagnosis operators To set the stage for subsequent generalizations, let us

first review some facts about 0-form symmetries from Sec. 1.1. In order to distinguish

the two phases, we can define a nonlocal operator called order diagnosis operator (ODO)

using the Landau order parameter ϕ(x)

Ox,x′ = ϕ†(x)ϕ(x′). (1.116)

The order parameter ϕ(x) transforms under the unitary representation of the global

symmetry group ϕ(x) → Uϕ(x), and accordingly the ODO is symmetry invariant. One

can imagine Ox,x′ is associated with a line with two ends x and x′. One can stretch the
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line and check the scaling behavior of ⟨Ox,x′⟩, which defines the two phases

⟨Ox,x′⟩ ∼


exp(−|x− x′|/ξ) Sym

const. SSB

(1.117)

where ξ is the correlation length. This is the criterion for short-range and long-range

correlations mentioned in Sec. 1.1.1. The generalization to p-form symmetries is straight-

forward. The ODO is a nonlocal operator O(p)
C associated with a p-dimensional boundary

Cp = ∂Ap+1 (e.g., a Wilson p-sheet supported on a trivial p-cycle Cp). We can deform

Cp = ∂Ap+1 and check the scaling behavior of the expectation value

⟨O(p)
C ⟩ ∼


exp(−tp+1Vol(Ap+1)) Sym

exp(−tpVol(Cp)) SSB

(1.118)

where tp and tp+1 are nonuniversal coefficients. When p = 0, Eq. 1.118 reduces back to

Eq. 1.117. When p = 1, the Wilson loop’s area-law and perimeter-law behaviors mark

the confined and deconfined phases of 1-form gauge fields. For subsystem symmetries,

ODOs can be defined accordingly, with special forms and behaviors. Some examples of

subsystem ODOs will be discussed in Sec. 5.1.

Explicit and inexplicit symmetries Our motivation of introducing the concept of

ODO in Ref. [121, 122] is to treat categorical symmetries (defined in the way of Ref. [118]).

If we do not go to one-higher dimension (do not introduce the bulk topological order),

the dual symmetry is inexplicit and elusive to understand. For example, let us take

the transverse Ising chain with periodic boundary conditions. In the original Ising spin

Hilbert space, only states with an even number of domain walls are allowed. Therefore,

there is no charged object that transforms nontrivially under the dual Z̃2 symmetry. In

67



Introduction Chapter 1

other words, we are not able to define the Landau order parameter for Z̃2 in the original

Hilbert space. There is also no ground-state degeneracy when Z̃2 is spontaneously bro-

ken. However, the ODO for Z̃2 can still be defined in the original Ising model, and can

characterize the phases of Z̃2 without any ambiguity. See Appendix. A.4 for a more de-

tailed illustration. From the perspective of categorical symmetries, we also observe some

similarities between Landau transitions and DQCPs introduced in Sec. 1.4.1. Namely,

the Z2 defect is charged under the Z̃2 symmetry, while the Z̃2 defect is charged under

the Z2 symmetry. The condensation of one type of defect will break one symmetry and

preserve the other. There is, however, a key difference. In the Landau transition, the

symmetry is explicit, while the dual symmetry is inexplicit. But in the DQCP, both the

Néel and VBS order parameters carry explicit symmetries.

Coulomb phase as SSB We know photons are gapless in our universe. A satisfying

understanding comes from interpreting photons as Goldstone modes of a U(1)(1) 1-form

symmetry. The Goldstone theorem for continuous higher-form symmetries guarantees

that Goldstone modes are gapless. In general, when a U(1)(p) p-form symmetry is spon-

taneously broken, one has a gapless p-form field a(p)

S[a(p)] =
∫
Yd+1

1

2e2
da(p) ∧ ⋆da(p) + . . . (1.119)

When p = 0, a(p) reduces to a compact scalar. When p ≥ 1, a(p) is a p-form gauge field.

This is the familiar Coulomb phase of gauge theories. There is a p-form generalization

of the Mermin-Wagner theorem, which states that the SSB of continuous symmetries is

only possible when d > p+ 1. It can be understood from the IR divergence of the ODO
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O(p)
C = exp(i

∫
Cp
a(p)) for the continuous p-form symmetry, i.e.,

− log⟨O(p)
C ⟩ = 1

2

∫
Cp

∫
Cp

dpx ∧ dpyD(x− y) ∼ e2Lp

2

∫
dd+1−pk

(2π)d+1−p
1

|k⊥|2
, (1.120)

where the propagator of a(p) satisfies D(k) ∼ e2/|k|2, L is the linear length scale of Cp,

and k⊥ represents the momentum perpendicular to Cp. When d < p+1, the momentum

integral is IR divergent, which means long-wavelength fluctuations will destroy the would-

be long-range order. When d > p+ 1, the UV divergence in − log⟨O(p)
C ⟩ ∼ Lp ∼ Vol(Cp)

can be absorbed by local counterterms, and the SSB phase is stable. In the marginal

case d = p + 1, we have − log⟨O(p)
C ⟩ ∼ Lp logL, which is in between the perimeter law

Vol(Cp) ∼ Lp and the area law Vol(Ap+1) ∼ Lp+1. One example is the free QED3 (with

d = 2 and p = 1). There is a logarithmic potential between test charged particles, which

is an extremely mild form of confinement. It can be linearly confined due to monopole

proliferation, a higher-form analog of the vortex proliferation in the Kosterlitz-Thouless

transition. As we have seen in Sec. 1.4.1, this mechanism is essential in realizing DQCPs.

Namely, when the spinons are gapped, the emergent U(1) gauge field is going to confine

due to the condensation of the VBS order parameter.

Topological order as SSB Discrete p-form symmetries can be spontaneously broken

in spatial dimension d > p, which is one dimension lower than continuous symmetries. In

d = 2, abelian topological orders are described by deconfined topological gauge theories

with 1-form symmetries spontaneously broken. Namely, the ν = 1/k Laughlin state is

described by the U(1) Chern-Simons theory at level k

S =
ik

4π

∫
Y3

a ∧ da. (1.121)
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The system has a Z(1)
k 1-form symmetry with the symmetry defects given by the Wilson

loops

Um(M1) = exp

(
im

∫
M1

a

)
, m = 0, 1 . . . , k − 1. (1.122)

In this case, the charged objects are the Wilson loops themselves. The Ward identity

Eq. 1.107 is given by the braiding of the Wilson loops

Um(M1)Un(N1) = (ei2πmn/k)Lk(M1,N1)Un(N1), (1.123)

where Lk(M1, N1) is the linking number between the two 1-cycles M1 and N1. This is a

symmetry since the Chern-Simons action is invariant under a → a + γ/k, where γ is a

flat connection with
∫
1-cycle

γ ∈ 2πZ. The fact that the symmetry generators are charged

under the symmetry, indicates the symmetry is actually anomalous. (We will define the

anomaly more precisely in Sec. 1.5.2.) More generally, all abelian topological orders are

described by the K-matrix Chern-Simons theories

S =
iKIJ

4π

∫
Y3

aI ∧ daJ , (1.124)

where aI are abelian 1-form gauge fields, and the invertible K-matrix satisfies KIJ =

KJI ∈ Z. There are 1-form symmetries generated by the Wilson loops

Ul(M1) = exp

(
i

∫
M1

lTa

)
, (1.125)

where each l is an integer-valued vector, sometimes referred to as a quasiparticle vec-

tor. The symmetry transformation Eq. 1.107 is again given by nontrivial self or mutual
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braiding of quasiparticles

Um(M1)Un(N1) = (ei2πm
TK−1n)Lk(M1,N1)Un(N1), (1.126)

where m,n are quasiparticle vectors, and M1, N1 are 1-cycles. In this context, gauging

1-form symmetries corresponds to the condensation of anyons, and nontrivial self statis-

tics (or mutual statistics) are interpreted as anomalies (or mixed anomalies). Based on

the Haldane null vector condition [123, 124, 125], each gapped boundary of an abelian

topological order is characterized by a non-anomalous subgroup of 1-form symmetries.

1.5.2 Anomalies & Constraints

So far, we have encountered many examples of ’t Hooft anomalies without mention-

ing their common properties and defining features. In this section, we give a general

discussion and provide more examples of ’t Hooft anomalies of higher-form symmetries.

’t Hooft anomalies If a system on a (d+1)-dimensional manifold Yd+1 enjoys a global

symmetry, one can couple it to a non-dynamical background gauge field A. We denote

its partition function by Z[Yd+1, A]. Depending on the context, A could be a background

connection for ordinary/generalized symmetries or a Riemannian metric for spacetime

symmetries. It may also contain discrete topological data, such as a spin structure

in theories with fermions. The ’t Hooft anomaly is defined by the non-invariance of

Z[Yd+1, A] under background gauge transformations A→ Aλ

Z[Y,Aλ] = Z[Y,A] exp

(
−i

∫
Y

α[λ,A]

)
, (1.127)
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where gauge parameters are generally denoted by λ, and α[λ,A] is a local functional that

can not be removed by any local counterterms. From the perspective of anomaly inflow,

the phase ambiguity can be removed by introducing a higher-dimensional bulkWd+2 such

that ∂Wd+2 = Yd+1. The bulk response functional ω[A] satisfies

exp

(
i

∫
W

ω[Aλ]− i

∫
W

ω[A]

)
= exp

(
i

∫
∂W

α[λ,A]

)
. (1.128)

In other words, the system can be made gauge-invariant by including a bulk extension

Ẑ[W,A] = Zbulk[W,A]Z[∂W,A], Zbulk[W,A] = exp

(
i

∫
W

ω[A]

)
, (1.129)

which satisfies Ẑ[W,A] = Ẑ[W,Aλ]. The gauge non-invariance of Z[Y,A] is translated

to the W -dependence of the gauge-invariant Ẑ[W,A] with ∂W = Y . For two different

bulk extensions W and W ′, the total partition functions Ẑ differ by

Ẑ[W ′, A]

Ẑ[W,A]
= exp

(
i

∫
W ′
ω[A]− i

∫
W

ω[A]

)
= Zbulk[W

′ ∪ (−W ), A] ̸= 1, (1.130)

where W ′ ∪ (−W ) is a (d + 2)-cycle (see FIG. 1.15). We can reverse the logic and say

the ’t Hooft anomaly is detected in a gauge-invariant way by Zbulk[Cd+2, A] ̸= 1 where

∂Cd+2 = 0. The physical meaning of Zbulk[W,A] is the response theory of a nontrivial

SPT state in d+2 spacetime dimensions. It is famously a non-Landau phase (see Ref. [126]

for a review), but nevertheless can still be characterized by how symmetries are realized

at the boundary. Under RG flow, the local functional ω[A] can only change continuously

and therefore stays in the same topological class. The anomaly matching between UV

and IR serves as a powerful tool in constraining low-energy properties nonperturbatively.

The nontrivial phase factor in Eq. 1.127 means there can not be a non-degenerate gapped

ground state on Y . It gives rise to an LSM-type theorem, meaning the ground state must
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Figure 1.15: The schematic pictures of two bulk extensions Wd+2,W
′
d+2 for Yd+1, the

reversal −Wd+2 of Wd+2, and the glued manifold W ′
d+2 ∪ (−Wd+2).

be either gapless, symmetry-broken, or topologically ordered.

Mixed anomaly of two U(1)(1) 1-form symmetries in 3+1D Maxwell theory

For free gapless photons, we have mentioned there are U(1)
(1)
e and U(1)

(1)
m 1-form sym-

metries from the Maxwell equation and the Bianchi identity. We can introduce two

2-form background fields Be, Bm for them respectively

S =

∫
Y4

1

2e2
(da+Be) ∧ ⋆(da+Be)−

i

2π
Bm ∧ da, (1.131)

where a is the dynamical U(1) gauge field in the Maxwell theory. The background gauge

transformations for U(1)
(1)
e and U(1)

(1)
m are given by

B(2)
e → B(2)

e − dλ(1)e , a(1) → a(1) + λ(1)e , (1.132)

B(2)
m → B(2)

m − dλ(1)m , ã(1) → ã(1) + λ(1)m , (1.133)

where λe, λm are 1-form parameters, and the dual gauge field ã is defined by dã = 2π
e2
⋆da.

The Maxwell action is clearly not gauge-invariant under the simultaneous transformations

of U(1)
(1)
e and U(1)

(1)
m . We find an example of α = i

2π
Bmdλe in Eq. 1.127. To make it
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gauge-invariant, we consider an extension to a 4+1D bulk W5 such that Y4 = ∂W5

Ŝ =

∫
∂W5

1

2e2
(da+Be) ∧ ⋆(da+Be)−

∫
W5

i

2π
dBm ∧ (da+Be), (1.134)

The price we pay is that now Ŝ depends on the extension W5. Namely, we check the

difference between two different extensions W5 and W ′
5

Ŝ[W ′
5]− Ŝ[W5] =

∫
W ′

5∪(−W5)

−i

2π
dBm ∧ (da+Be) =

∫
5-cycle

−i

2π
dBm ∧Be. (1.135)

We find an example of the bulk topological term ω = −i
2π
dBm ∧Be in Eq. 1.129.

Mixed anomaly of two Z(1)
2 1-form symmetries in 2+1D toric code Let us

consider a simple example of Eq. 1.124 with

K =

 0 2

2 0

 , (1.136)

which describes the Z2 toric code model (i.e., the Z2 topological order). In the K-matrix

theory, the e particle and the m particle are give by the integer vectors

le =

 1

0

 , lm =

 0

1

 . (1.137)

The system has two Z(1)
2 1-form symmetries generated by the Wilson loops

Ue(M1) = exp

(
i

∫
M1

lTe a

)
, Um(N1) = exp

(
i

∫
N1

lTma

)
. (1.138)
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where M1, N1 are 1-cycles. The two symmetry generators are mutually charged under

each other. From Eq. 1.126, we have the two Z(1)
2 symmetry transformations

Ue(M1)Um(N1) = (−1)Lk(M1,N1) Um(N1), (1.139)

Um(N1)Ue(M1) = (−1)Lk(M1,N1) Ue(M1). (1.140)

We can couple the system to two background 2-form Z2 gauge fields Be and Bm

S =
i

2π

∫
Y3

ae ∧ (dam +Bm) + am ∧ (dae +Be). (1.141)

where ae = lTe a and am = lTma. Under the two Z(1)
2 background gauge transformations

B(2)
e → B(2)

e − dλ(1)e , a(1)e → a(1)e + λ(1)e /2, (1.142)

B(2)
m → B(2)

m − dλ(1)m , a(1)m → a(1)m + λ(1)m /2, (1.143)

the partition function Eq. 1.127 has a phase ambiguity α = i
4π
(λedλm − λeBm − λmBe),

which can be canceled by introducing a bulk term Eq. 1.129 in one higher dimension

∫
W4

ω = iπ

∫
W4

Be

2π
∧ Bm

2π
where ∂W4 = Y3. (1.144)

How do we connect the gauge invariance of Eq. 1.141 to the braiding of Wilson loops?

We first notice that the background fields should be understood as Be/2π,Bm/2π ∈

H2(Y3,Z2). Under the Poincaré duality H
2(Y3,Z2) ≃ H1(Y3,Z2), they correspond to two

1-cycles Ce, Cm ∈ H1(Y3,Z2) such that
∫
Y
η ∧B/2π =

∫
C
η for any 1-form η. The action
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Eq. 1.141 now becomes

S =
i

2π

∫
Y3

(ae ∧ dam + am ∧ dae) + i

∫
Cm

ae + i

∫
Ce

am. (1.145)

Therefore, introducing background fields Be, Bm is equivalent to inserting the Wilson

loops Ue(Cm), Um(Ce) in the partition function. The gauge transformation of Be, Bm

amounts to deforming the Wilson loops. Hence, the partition function is not gauge-

invariant due to nontrivial braiding statistics between e and m particles. Finally, let

us mention an interesting manifestation of the bulk mixed anomaly in the edge theory

of toric code. The two gapped edge phases (i.e., e condensation and m condensation)

correspond to gauging one of the two Z(1)
2 symmetries. At the domain wall between two

different gapped edge regions, there is a localized Majorana zero mode!

We will get back to ’t Hooft anomalies of higher-form symmetries in Sec. 5.3. A lot

more examples in various dimensions will be constructed and classified based on physical

arguments. Our special attention is paid to the generalized LSM theorem for condensed

matter systems such as quantum dimer models.

1.6 Strongly Correlated Moiré Materials

Quantum materials in two (spatial) dimensions are fascinating. On the one hand, they

are allowed to have various symmetry-breaking orders (recall the Mermin-Wagner theo-

rem Eq. 1.120 for 0-form symmetries). On the other hand, they have enhanced quantum

effects compared to 3d materials, which leads to exotic electronic and magnetic proper-

ties. With the recent advancements in the fabrication methods of 2d atomic crystals, a

large number of Van der Waals heterostructures are realized in the labs by stacking 2d

materials [127, 128]. Examples include the combinations of graphene, hexagonal boron
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Figure 1.16: The Moiré pattern formed by bilayer honeycomb lattices: (a) with a
small twisting angle; (b) with a small lattice constant mismatch.

nitride (hBN), transition-metal dichalcogenides (TMDs), etc. Adding a lattice mismatch

(e.g., a twisting angle or a difference in lattice constants) to two-layer 2d materials opens

a whole new realm of electronic states. A new periodic structure emerges at a larger

distance, known as Moiré superlattice (see FIG. 1.16). The Moiré pattern acts as a long-

wavelength modulating potential dramatically affecting the electronic band structures.

The resulting emergent physical properties often differ qualitatively from the underlying

monolayers. Namely, many correlated phenomena have been experimentally observed in

graphene-based Moiré systems [2, 3, 129, 130, 131, 132, 133, 134, 135, 70, 136], which

are tantalizingly similar to those seen in cuprate high-temperature superconductors. In

conventional strongly correlated materials, experimentally controlled knobs are often lim-

ited due to the comparative lack of tenability of conventional chemical compounds. But

Moiré heterostructures provide a highly tunable platform by changing the external pa-

rameters such as gating, straining, packing, and twist angle. It is promising that many

paradigmatic theoretical models, such as the Hubbard model, can be simulated in the

lab by the versatile Moiré heterostructures [137].
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Magic-Angle Twisted Bilayer Graphene

The correlated physics in Moiré materials was first reported by Ref. [2, 3]. Both Mott

insulating states and superconducting states were observed in twisted bilayer graphene

at a “magic angle” of around 1.1 degrees. These experiments built on earlier theoretical

predictions [138, 139] about the existence of exceptionally narrow and isolated bands on

the Moiré superlattice at certain twisting angles. As shown in FIG. 1.17.(a), two Dirac

cones near either valley mix through the interlayer hybridization, which leads to an energy

gap around 2w. At the magic angle, the interlayer hybridization energy 2w is comparable

to the energy difference ℏv0kθ between two Dirac cones at the intersection point, where v0

is the single-layer fermi velocity. It leads to a strong renormalization of the fermi velocity

vF , and the layer hybridized states are pushed toward narrow bands close to zero energy.

The Moiré flat bands enable electronic correlations to play the dominant role in many

material properties. The observed phase diagram FIG. 1.17.(c) exhibits some similarities

to those seen in strongly correlated unconventional superconducting materials. If one

compares the ratios between the superconducting critical temperatures Tc and the fermi

temperatures TF in various systems in FIG. 1.17.(d), the magic-angle twisted bilayer

graphene is actually located above the trend line on which most cuprates, heavy-fermion,

and organic superconductors lie. It looks appealing to construct a Hubbard model on

the Moiré superlattice, using the fact that the electron density is strongly concentrated

in the regions with AA stacking, as shown in FIG 1.17.(b). However, band topology

severely complicates the problem, as one runs into the Wannier obstruction in writing

down a tight-binding model that involves flat bands alone. Careful considerations lead

to exceedingly complicated models (see e.g. [140, 141] for early works), which are hard

to make progress analytically.

There are many analogies between correlated physics in graphene Moiré materials
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Figure 1.17: (a) Illustration of the effect of interlayer hybridization on Moiré bands;
(b) Normalized local density of states (LDOS) calculated for the flat bands at the
twisting angle θ = 1.08o; The phase diagram at the twisting angle θ = 1.16o; (d) The
comparison of the ratios of critical temperatures and fermi temperatures in different
superconducting materials. (Figures from Ref. [2, 3] with permission.)
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and quantum Hall physics. Some connections between the flat bands and the lowest

Landau level can be made by looking at a simplified chiral model (see Ref. [142] for a

review). Alternatively, in Sec. 3.1, we will make progress by generalizing another theoret-

ical framework existing in quantum Hall physics, the coupled-wire network construction.

Namely, the Chalker-Coddington model [143, 144] has been used to describe quantum

states with the similar topological obstruction. Our network model is constructed by

the conducting wires along the AB/BA domain walls on the Moiré superlattice. These

domains are enlarged due to lattice relaxation, and are driven into the quantum valley

Hall insulators under a out-of-plane displacement field. The non-interacting physics in

such a network has already been addressed in Ref. [145]. In Sec. 3.1, using the power-

ful techniques of 1+1D conformal field theory, we are able to incorporate a correlated

insulator as well as superconductivity.

TMD Heterobilayer (MoTe2/WSe2) without Twisting

The other Moiré material relevant to this dissertation is the TMD heterobilayer

MoTe2/WSe2. TMD-based Moiré systems (including heterobilayers and twisted homo-

bilayers) and twisted bilayer graphene (TBG) differ in important ways. In TBG, in

addition to spin, the band has valley degeneracy to an excellent approximation, and the

interlayer hybridization is relatively weak. As a result, completely filled flat bands allow

8 electrons. For TMDs, as shown in FIG. 1.18.(a), every single layer has fewer degrees of

freedom since strong spin-orbit coupling locks the spin and valley quantum numbers. In

addition, the TMD-Moiré bands are dominated by one of the two layers, since in twisted

homobilayers the hybridization energy between layers is strong, and the band offset is

large in heterobilayers. TMD Moiré materials are strongly correlated electron systems

since the hopping energy around 1-10 meV is significantly smaller than the local Coulomb

repulsion around 50-100 meV. Most importantly, the flat band is topologically trivial,
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and there is no Wannier obstruction. Consequently, we can write down a single-band

Hubbard model Eq. 1.90 on the Moiré triangular lattice [146].

In Ref. [4], a bandwidth-tuned continuous metal-insulator transition at half-filling

is observed in the TMD heterobilayer MoTe2/WSe2 without twisting. There is a 7%

lattice mismatch, which leads to a Moiré triangular superlattice schematically shown

in FIG. 1.16.(b). There are various experimental evidences that support the transition

being continuous. If one approaches the transition from the insulating side, the charge gap

vanishes continuously. From the metal side, the electron effective mass (extracted from

Kadowaki–Woods scaling in transport measurements) diverges near the critical point.

The temperature-dependent resistivity also exhibits scaling collapse. As for magnetic

properties, the system does not show any sign of long-range ordering in the insulating

phase, and the magnetic susceptibility shows a smooth dependence on the electric field

across the transition. It is believed to be an interaction-driven transition instead of a

disorder-driven one, supported by the estimation that the half-band filling density is two

orders of magnitude larger than the disorder density [4].

Putting everything together, it seems to be an ideal realization of the theoretical

construction introduced in Sec. 1.4.2. But there is one experimental feature that is really

puzzling. As shown in FIG. 1.18.(c), the critical resistivity is huge compared to h/e2.

(This is also significantly larger than the experimental data from other 2d materials, see

e.g. [147].) According to the Ioffe-Larkin rule, the total electrical resistivity ρ = ρf + ρb

has contributions from spinons f and chargons b. The spinon fermi-surface contribution

ρf is likely from weak disorder scattering and is expected to be below the Mott-Ioffe-

Regel limit (recall Eq. 1.56). As we illustrated in Sec. 1.4.2, the chargon contribution ρb

(i.e., the universal resistivity jump) is also an order of one quantity in the unit of h/e2.

Therefore, the total critical resistivity should not be significantly larger than h/e2, which

is in conflict with FIG. 1.18.(c). One possible resolution will be discussed in detail in

81



Introduction Chapter 1

Figure 1.18: (a) The schematic band structure of monolayer TMD at two valleys.
The valence bands have a large splitting due to strong spin-orbit coupling. (b) (Figure
credit to Kin Fai Mak.) The experimental setup for the continuous Mott transition [4]
where the bandwidth is tuned by an out-of-plane electric field. (3) (Figure from Ref. [4]
with permission.) The temperature dependence of the resistivity at fixed half-filling
under varying electric fields. The critical point is labeled by Ec. (4) The schematic
phase diagram based on the theoretical proposal in Sec. 3.2. In addition to spin-charge
separation, it involves charge fractionalization at the critical point, naturally leading
to a large critical resistivity.

82



Introduction Chapter 1

Sec. 3.2. We propose a new parton construction cj,α = fj,αbj,α such that each electron

cj,α in each valley (or spin) α =↑, ↓ is fractionalized into a spinon fj,α and a chargon

bj,α. This is supported by the microscopic symmetries of the system (see Sec. 3.2 for

details). As required by the Lieb-Schultz-Mattis theorem, the chargon sector now at

fractional fillings must undergo a more exotic transition instead of the XY transition

described in Sec. 1.4.2. One scenario is introduced in Sec. 1.4.1, which exhibits charge

fractionalization at the critical point, and significantly enhances the value of ρb. Our

new construction with charge fractionalization naturally leads to a large total critical

resistivity. The schematic phase diagram is shown in FIG. 1.18.(d).

1.7 Summary

We set up the stage in this chapter by introducing (1) the conventional Landau

symmetry paradigm, including bulk and boundary phase transitions; (2) the extended

Landau symmetry paradigm based on generalized symmetries and ’t Hooft anomalies;

(3) strongly correlated metals beyond Landau-Fermi liquid theory; (4) a highly tunable

experimental platform for exotic phases and phases transitions, the strongly correlated

Moiré materials. In the main body of the dissertation, we will continue to explore these

topics. Chap. 2 is about boundary phases and boundary phase transitions, Chap. 3

concerns Moiré quantum matter, Chap. 4 presents our theoretical constructions of exotic

metals, and Chap. 5 is about characterizations and applications of generalized symmetries

and anomalies in condensed matter systems.
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Chapter 2

Quantum Phase Transitions with

Non-Locality

In Sec. 1.2, we have seen interesting boundary critical phenomena associated with con-

ventional symmetry-breaking transitions. In this chapter, we are going to explore the

interplay of gapless boundaries (or defects) and unconventional quantum phase transi-

tions introduced in Sec. 1.4.

One dimensional (1d) interacting systems with local Hamiltonians can be studied

with various well-developed analytical methods. Recently novel 1d physics was found

numerically in systems with either spatially nonlocal interactions, or at the 1d boundary

of 2d quantum critical points, and the critical fluctuation in the bulk also yields effective

nonlocal interactions at the boundary. Sec. 2.1 studies the edge states at the 1d boundary

of 2d strongly interacting symmetry protected topological (SPT) states, when the bulk

is driven to a disorder-order phase transition. We will take the 2d Affleck-Kennedy-

Lieb-Tasaki (AKLT) state as an example, which is a SPT state protected by the SO(3)

spin symmetry and spatial translation. We found that the original (1 + 1)d boundary

conformal field theory of the AKLT state is unstable due to coupling to the boundary
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avatar of the bulk quantum critical fluctuations. When the bulk is fixed at the quantum

critical point, within the accuracy of our expansion method, we find that by tuning one

parameter at the boundary, there is a generic direct transition between the long-range

antiferromagnetic Néel order and the valence bond solid (VBS) order. This transition

is very similar to the Néel-VBS transition recently found in numerical simulation of a

spin-1/2 chain with nonlocal spatial interactions. Connections between our analytical

studies and recent numerical results concerning the edge states of the 2d AKLT-like state

at a bulk quantum phase transition will also be discussed.

In Sec. 2.2, we discuss the boundary critical behaviors of two dimensional quantum

phase transitions with fractionalized degrees of freedom in the bulk, motivated by the

fact that usually it is the 1d boundary that is exposed and can be conveniently probed

in many experimental platforms. In particular, we mainly discuss boundary criticality of

two examples: (1) the quantum phase transition between a 2d Z2 topological order and an

ordered phase with spontaneous symmetry breaking; (2) the continuous quantum phase

transition between metal and a particular type of Mott insulator (U(1) spin liquid). This

theoretical study could be relevant to many purely 2d systems, where recent experiments

have found correlated insulator, superconductor, and metal in the same phase diagram.

In Sec. 2.3, we study the interplay between two nontrivial boundary effects: (1) the

two-dimensional (2d) edge states of three dimensional (3d) strongly interacting bosonic

symmetry protected topological states, and (2) the boundary fluctuations of 3d bulk

disorder-to-order phase transitions. We then generalize our study to 2d gapless states

localized at an interface embedded in a 3d bulk, when the bulk undergoes a quantum

phase transition. Our study is based on generic long-wavelength descriptions of these

systems and controlled analytic calculations. Our results are summarized as follows: (i.)

The edge state of a prototype bosonic symmetry protected states can be driven to a new

fixed point by coupling to the boundary fluctuations of a bulk quantum phase transition;
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(ii.) the states localized at a 2d interface of a 3d SU(N) quantum antiferromagnet may

be driven to a new fixed point by coupling to the bulk quantum critical modes. The

properties of the new fixed points identified are also studied.

2.1 Continuous Néel-VBS Transition in Non-Local

1d Systems

Our understanding of one dimensional (1d) quantum many-body systems with lo-

cal Hamiltonians is far more complete compared with higher dimensional systems, since

many powerful analytical methods such as Bethe ansatz [148], Virasoro algebra [149],

etc. are applicable only to 1d systems (or (1+ 1)d space-time). We also understand that

1d systems have many unique features that are fundamentally different from higher di-

mensions. For example, with local Hamiltonians, generally there can not be spontaneous

continuous symmetry breaking in (1 + 1)d even at zero temperature (with exceptions of

the scenarios when a fully polarized ferromagnet is the exact ground state), the closest

one can possibly get is a quasi-long range power-law correlation of order parameters that

transform nontrivially under a continuous symmetry. There is also no topological order

in 1d systems analogous to fractional quantum Hall states which have a gap and simul-

taneously ground state topological degeneracy [150]. This means that many phenomena

that are found in higher dimensions do not occur in 1d systems.

To seek for richer physics in one dimensional systems, we need to explore beyond the

restriction of local Hamiltonians. One way to get around this restriction is to consider

1d systems at the boundary of a 2d systems, and drive the 2d bulk to a quantum phase

transition. The physics becomes especially interesting when the disordered phase in the

phase diagram of the 2d bulk is a symmetry protected topological (SPT) phase, which
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already has topologically protected 1d edge state. The interplay between the topological

edge state and gapless quantum critical modes can lead to very nontrivial physics, which

has been studied through numerical methods recently [151, 152, 37, 38]. One can also

directly turn on nonlocal spatial interaction in a 1d Hamiltonian. 1d quantum spin chains

with nonlocal spatial interactions have also been studied recently, and very intriguing

physics was found [153, 154]. We will discuss the results of these numerical works later

in this paper.

In this work we investigate the 2d SPT state protected by symmetry SO(3) × G,

where SO(3) is the ordinary spin symmetry, while G is a discrete symmetry, which could

be an onsite unitary Z2 symmetry, or an anti-unitary time-reversal ZT
2 . G can also be a

lattice symmetry such as translation by one lattice constant. For example, when G is the

translation along the x̂ axis (Tx), this state can be realized as the Affleck-Kennedy-Lieb-

Tasaki (AKLT) state of the spin-2 system on a 2d square lattice [155]. In the example of

spin-2 AKLT state, there is a chain of dangling spin-1/2 at the boundary of the system,

as long as the boundary is along the x̂ axis and preserves the translation symmetry Tx.

The nature of the SPT states, and the Lieb-Shultz-Mattis (LSM) theorem [20, 21, 22]

guarantee that this boundary system cannot be trivially gapped, i.e. it must be either

gapless, or gapped but degenerate (For a closed 1d system without 0d boundaries, a

generic ground state degeneracy can only originate from spontaneous discrete symmetry

breaking [150]). In this work we will take the AKLT state as an example, but our results

can be straightforwardly generalized to other discrete symmetries G.

Our study will mainly focus on the 1d boundary of strongly interacting 2d bosonic

SPT phases, using a controlled renormalization group method. We would like to men-

tion that previous literature has discussed the coupling between quantum criticality and

topologically localized gapless states in various fermionic topological insulators [39]; other

approaches such as constructing soluble models and various numerical methods have also
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been used to study edge states of interacting SPT states at a bulk quantum critical-

ity [33, 34, 35]. Our main finding is that there is a generic continuous quantum phase

transition between a long range antiferromagnetic Néel order which spontaneously breaks

the SO(3) spin symmetry, and a valence bond solid state, at the 1d boundary of an AKLT

state that couples to the bulk quantum critical modes. The bulk quantum critical modes

effectively yield nonlocal interactions at the 1d boundary, which makes the long range

Néel order possible.

In principle the 1d boundary of this AKLT state should be effectively described by

an extended Heisenberg model

H =
∑
j

JS⃗j · S⃗j+1 + · · · (2.1)

where S⃗j is the spin-1/2 operator, and the ellipsis includes other possible terms allowed

by SO(3) × Tx. The ground state of Eq. 2.1 depends on the entire lattice Hamiltonian.

But a useful starting point of analyzing this boundary system is the SU(2)1 conformal

field theory (CFT) described by the following Hamiltonian in the infrared limit:

H0 =

∫
dx

1

3 · 2π
(J⃗L · J⃗L + J⃗R · J⃗R). (2.2)

The SU(2)1 CFT has a larger symmetry than the lattice Hamiltonian Eq. 2.2, since J⃗L

and J⃗R generate the SU(2)L,R symmetries for the left and right chiral modes respectively.

The relation between the microscopic operator S⃗ and the low energy field is [156]

S⃗(x) ∼ 1

2π
(J⃗L(x) + J⃗R(x)) + (−1)xn⃗(x), (2.3)

where n⃗(x) is the Néel order parameter at the boundary. J⃗L,R both have scaling dimension
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+1 at the SU(2)1 CFT fixed point, while n⃗(x) has scaling dimension 1/2 at the SU(2)1

CFT.

The diagonal SU(2) symmetry (simultaneous SU(2) rotation between the left and

right modes) corresponds to the original SO(3) spin symmetry on the lattice scale. And

because the lattice Hamiltonian has a lower symmetry than the infrared theory Eq. 2.2,

another term is allowed in the low energy Hamiltonian:

H1 =

∫
dx λJ⃗L · J⃗R. (2.4)

Since J⃗L,R have scaling dimension +1, power-counting indicates the coefficient λ has

scaling dimension 0. Depending on the sign of λ, this term can be either marginally

relevant or marginally irrelevant. When λ is negative and marginally irrelevant the system

flows back to the SU(2)1 CFT with an enlarged SU(2)L × SU(2)R symmetry. When this

term is positive and marginally relevant, it will flow to infinite (nonperturbative) and

generate a mass gap, which based on the nature of the SPT phase would imply that the

system spontaneously breaks the discrete symmetry G. For example, when this system

is realized as the AKLT state, and G is the translation Tx, the LSM theorem demands

that when the boundary of the system generates a mass gap, it spontaneously breaks the

translation symmetry and develops a nonzero expectation value of a dimerized valence

bond solid (VBS) order: v ∼ (−1)jS⃗j · S⃗j+1. As a side-note, we emphasize that the state

we are studying here is different from the SO(3) or SU(2) SPT state defined through the

group cohomology of SO(3) or SU(2) [157, 158, 159], since in those states the symmetry

acts chirally, i.e. it only acts on either the left or right modes. While in our case the

spin symmetry acts on both the left and right modes of the 1d boundary, and another

discrete symmetry such as translation is demanded.

Our goal is to study the edge states when the bulk undergoes a disorder-order quantum
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phase transition, and the disordered phase of the bulk phase diagram is the AKLT state.

The quantum critical fluctuation in the bulk may affect the edge of the AKLT state. To

study the interplay between the topologically protected edge states, and the quantum

critical modes, we adopt the “two layer” picture used in Ref. [160]: in layer-1, the system

remains a gapped AKLT state in the bulk with solid edge states described by Eq. 2.1

and Eq. 2.2; in layer-2 the system undergoes a phase transition between an ordinary

trivial disordered phase and an ordered phase. These two systems are glued together

at the boundary. We have used the common wisdom that the transition between the

SPT phase and the ordered phase is generically in the same universality class as the

transition between an ordinary disordered phase and an ordered phase 1. We will discuss

two kinds of ordered phases: an SO(3) antiferromagnetic order, and an Ising-like VBS

order that spontaneously breaks Tx, assuming the boundary is at y = 0. In the bulk the

two disorder-order transitions under discussion correspond to the three dimensional (3D)

SO(3) and Ising Wilson-Fisher transitions respectively, which can be studied through a

standard ϵ = 4−D expansion, where D = 2+1 is the space-time dimension in the bulk.

We only extend the bulk dimensionality of layer-2 to 3− ϵ spatial dimensions, while the

layer-1 still has a two-dimensional bulk and one-dimensional boundary.

We denote the bulk SO(3) antiferromagnetic order parameter, and the Ising-VBS

order parameter in layer-2 as ϕ⃗ and ϕ respectively, which should couple to the Néel

order parameter n⃗ and the VBS order parameter v at the boundary theory of layer-1,

and this coupling could lead to new physics in the infrared. However, ϕ⃗ and ϕ do not

directly couple to n⃗ and v due to the boundary condition of the Wilson-Fisher fixed

point. Assuming the boundary of the 2d system is at y = 0, the most natural boundary

1This statement can be inferred based on the observation that, the topological effects of many of the
SPT states can be captured by a nonlinear Sigma model plus a topological Θ−term at Θ = 2π [161, 162].
The Θ = 2π topological term reduces precisely to a boundary term, and we do not expect this topological
term to change the bulk universality class.
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condition for fields ϕ⃗, ϕ would be ϕ⃗(y = 0) = ϕ(y = 0) = 0 2. Then the leading

nonvanishing boundary fields with the same quantum number as ϕ⃗ and ϕ are Φ⃗ ∼ ∂yϕ⃗

and Φ ∼ ∂yϕ [163].

The SO(3) order parameter ϕ⃗ and the Ising order parameter ϕ will not become critical

simultaneously without fine-tuning, but they can be treated in the same framework. The

boundary quantum critical modes Φ⃗ and Φ couple to the fields at the boundary of layer-1

through the following terms in the action

S =

∫
d2xgnΦ⃗(x) · n⃗(x) + gvΦ(x)v(x)

+

∫
d2xd2x′1

2
Φa(x)C−1

n (x,x′)abΦ
b(x′)

+

∫
d2xd2x′1

2
Φ(x)C−1

v (x,x′)Φ(x′), (2.5)

where x = (x, τ) is the space-time coordinate. Cn(x,x
′)ab and Cv(x,x

′) are the normal-

ized correlation functions of Φa and Φ at the boundary:

Cn(x, 0)ab = ⟨Φa(x, τ)Φb(0, 0)⟩ = δab
(x2 + τ 2)3/2−ϵn

,

Cv(x, 0) = ⟨Φ(x, τ)Φ(0, 0)⟩ = 1

(x2 + τ 2)3/2−ϵv
. (2.6)

The scaling dimension of Φ⃗ and Φ is ∆n = D/2− ϵn+O(ϵ2) and ∆v = D/2− ϵv +O(ϵ2),

where D = 3 is the bulk space-time dimension. ϵn/v can be computed again through the

ϵ = (4 − D) expansion, following the calculation of boundary criticality of the Wilson-

Fisher fixed points [163, 164, 165, 166, 167]: for an O(N) Wilson-Fisher fixed point in

2This boundary condition corresponds to the “ordinary transition” in the standard boundary criti-
cality literatures; other possibilities can also occur such as special and extraordinary boundary transi-
tions [163].
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the bulk, the scaling dimension of the boundary modes of the order parameter is

∆O(N) =
D

2
− N + 2

2(N + 8)
ϵ+O(ϵ2). (2.7)

In our case ϵn/v = ϵ(N + 2)/(2(N + 8)) with N = 3, 1 respectively. We again stress

that the ϵ dimensionality was introduced for layer-2 only. The effective action of Φ⃗ and

Φ in Eq. 2.5 already received leading order correction from the ϵ−expansion due to the

self-interaction of the bulk critical modes. These effective actions can in principle receive

further corrections from the gv and gn couplings with the boundary fields n⃗ and v, but

this correction should be at least at the order of g2n, g
2
v , which will be at higher order of

ϵ−expansion. As we can see later, the main physics we will discuss is at the vicinity of

a fixed point where gn, gv ∼ ϵ.

Eq. 2.2, 2.4, 2.5 together can be viewed as an effective non-local 1d theory, and this

theory will be the starting point of our discussion hereafter. Considering the fact that

the scaling dimension of both the Néel and VBS order parameter at the SU(2)1 CFT is

1/2, to the leading order of ϵ expansion, the scaling dimensions of the coupling constants

must be

∆gn = ϵn +O(ϵ2), ∆gv = ϵv +O(ϵ2), ϵn =
5

22
ϵ, ϵv =

1

6
ϵ. (2.8)

gn/v are hence weakly relevant assuming a small parameter ϵ. Hence the SU(2)1 CFT

at the boundary of the AKLT state will be unstable against coupling to the quantum

critical modes, while fortunately due to the weak relevance of the coupling constants,

this effect can be studied perturbatively.

To proceed we need to compute the coupled renormalization group (RG) flow of λ

and gn/v in Eq. 2.4 and Eq. 2.5. The RG equations can be derived based on the following
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Figure 2.1: The coupled RG flow of λ and gn based on Eq. 2.11. A new fixed point
(λ∗, g∗n) = (2ϵnπ ,

4ϵn
π ) is found, which separates two phases: the phase where λ→ +∞

is the VBS phase, and the phase with (λ, gn) → (−∞,+∞) is the long range Néel
order at the 1d boundary. But on the Néel order side of the phase diagram, the RG
flow is complicated and nonmonotonic, hence it may take a long RG scale, or a large
system size to finally reveal the true long range order.

operator product expansion (OPE):

JaL(z)n
b(w, w̄) ∼ 1

2

1

z − w
(iδabv(w, w̄) + iϵabcn

c(w, w̄)) , (2.9)

JaR(z̄)n
b(w, w̄) ∼ 1

2

1

z̄ − w̄
(−iδabv(w, w̄) + iϵabcn

c(w, w̄)) ,

JaL(z)v(w, w̄) ∼ −1

2

i

z − w
na(w, w̄), JaR(z̄)v(w, w̄) ∼

1

2

i

z̄ − w̄
na(w, w̄),(∑

a

na(z, z̄)Φa(z, z̄)

)(∑
b

nb(w, w̄)Φb(w, w̄)

)

∼ 3

2

1

|z − w|4
+

1

2

1

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄) +

3

4

1

(z̄ − w̄)2
TL(w) +

3

4

1

(z − w)2
TR(w̄) + ...,

(v(z, z̄)Φ(z, z̄)) (v(w, w̄)Φ(w, w̄))

∼ 1

2

1

|z − w|4
− 1

2

1

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄) +

1

4

1

(z̄ − w̄)2
TL(w) +

1

4

1

(z − w)2
TR(w̄) + ...,

( ∑
a=1,2,3

JaL(z)J
a
R(z̄)

) ∑
b=1,2,3

JbL(w)J
b
R(w̄)


∼ 3

4

1

|z − w|4
− 2

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄) +

3

2

1

(z̄ − w̄)2
TL(w) +

3

2

1

(z − w)2
TR(w̄) + ....

In these equations, z and w are the chiral coordinates (z = τ + ix); and the ellipsis

contains less singular terms of the OPEs. The fields TL/R are the energy-momentum
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tensor of the left and right movers, which are given via the Suguwara construction by

TL = 1
3

∑
a : JaLJ

a
L : and TR = 1

3

∑
a : JaRJ

a
R :. Notice the form of energy-momentum

tensors is similar to the Hamiltonian Eq. 2.2 but with an extra factor of 2π. The OPEs

above involving the fields Φa and Φ are derived to the leading order of ϵn/v.

These OPEs are sufficient to derive the desired RG equations to the second order of

the coupling constants. For example, using the first two lines of Eq. 2.9, we can derive

another set of secondary OPEs:

( ∑
a=1,2,3

JaL(z)J
a
R(z̄)

)(∑
b

nb(w, w̄)Φb(w, w̄)

)
∼ 1

4

1

|z − w|2

(∑
b

nb(w, w̄)Φb(w, w̄)

)
,( ∑

a=1,2,3

JaL(z)J
a
R(z̄)

)
(v(w, w̄)Φ(w, w̄)) ∼ −3

4

1

|z − w|2
(v(w, w̄)Φ(w, w̄)) . (2.10)

The coupled RG equations (beta functions) for λ and gn/v then read

β(λ) =
dλ

d ln l
= 2πλ2 − π

2
g2n +

π

2
g2v ,

β(gn) =
dgn
d ln l

= ϵngn −
π

2
λgn,

β(gv) =
dgv
d ln l

= ϵvgv +
3π

2
λgv. (2.11)

These RG equations are valid as long as we restrict our analysis to the parameter region

with λ, gn, gv ∼ ϵ, since every term in the RG equations Eq. 2.11 would be at the same

order of ϵ2.

As we explained before, there is no general reason for ϕ⃗, ϕ to become critical simul-

taneously in the bulk. Hence let us ignore the Φ field first, and consider the coupled RG

equation for λ, gn only. If there is no bulk quantum critical modes, an initial positive

value λ = λ0 will be marginally relevant, and open up an energy gap when it flows to

positive infinite. According to the LSM theorem, and the nature of the SPT state, this

1d boundary cannot be trivially gapped, hence a nonperturbative positive λ would drive
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the system into an SO(3) invariant VBS state with spontaneous symmetry breaking of

translation symmetry Tx. But by coupling to the boundary modes Φ⃗ of quantum critical

fluctuation, the beta functions have an new unstable fixed point at

(λ∗, g∗n) =

(
2ϵn
π
,
4ϵn
π

)
. (2.12)

The two eigenvectors of RG flow expanded at the new fixed point have scaling dimensions

(8.9ϵn,−0.89ϵn).

Of course the RG analysis above is only at the leading nontrivial order of ϵ−expansion,

and at this order of accuracy, no other fixed point is found in the phase diagram. The new

fixed point found above separates two phases: phase I where λ flows to positive infinity,

and phase II where λ and gn flow to negative and positive infinity respectively. Then

both phases no longer have scaling invariance, so both phases should have certain long

range order considering the fact that there is no topological order in one dimension [150].

Phase I with λ → +∞ is the dimerized VBS phase as we discussed before; phase II

with (λ, gn) → (−∞,+∞) should be a Néel ordered phase, i.e. the 1d boundary can

develop the Néel order before the bulk, even though the bulk is still at a quantum critical

point. A negative λ would enhance the correlation of the Néel order parameter, and after

integrating out Φ⃗, a long range interaction proportional g2 would be generated between

the Néel order parameters. Hence the infrared limits λ→ −∞ and g → +∞ of phase II

both favor the long range Néel order.

The correlation length critical exponent ν of this Néel-VBS transition is ν ∼ 1/(8.9ϵn).

At the transition point (λ∗, g∗n) = (2ϵn/π, 4ϵn/π), the scaling dimensions of the Néel and

VBS order parameters can again be computed to the leading order of ϵ−expansion:

∆n⃗ =
1

2
+
πλ∗

2
=

1

2
+ ϵn, ∆v =

1

2
− 3πλ∗

2
=

1

2
− 3ϵn. (2.13)
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One can see that compared with the SU(2)1 CFT, the Néel order correlation is suppressed

while the VBS order correlation is enhanced at the new transition fixed point, since

λ∗ > 0. This also implies that this Néel-VBS transition has no enlarged symmetry of

SU(2)L × SU(2)R. An enlarged SU(2)L × SU(2)R ∼ SO(4) symmetry would guarantee

that the Néel and VBS order parameters have the same scaling dimension, because

(n⃗, v) transform as a vector under SO(4). Many previous studies suggest that at an

unconventional quantum critical point between two phases with different spontaneous

symmetry breaking, an enlarged emergent symmetry in the infrared is often expected

due to a series of dualities [168, 169, 170, 98, 171, 172, 173]. But in our current case

we expect the infrared symmetry at the Néel-VBS transition is still the microscopic

symmetry SO(3)×G.

As we mentioned before, suppose we integrate out the field Φ⃗ in Eq. 2.5, a long

range interaction in space-time will be generated between the Néel order parameter. The

scenario is similar to the spin-1/2 chain with a long range spin-spin interaction, the

only difference is that in the latter case the long range interaction is instantaneous and

only nonlocal in space. Recently a direct transition between the Néel and VBS order

was found in a spin-1/2 chain with nonlocal two-spin interaction and local four-spin

interaction [153, 154]. It was found numerically that at the direct Néel-VBS transition the

scaling dimension of the Néel order parameter is greater than the VBS order parameter,

which is fundamentally different from the SU(2)1 CFT, but consistent with our RG

calculations Eq. 2.13. We also note that a previous RG analysis was performed for

1d spin-1/2 system with an instantaneous nonlocal spin interaction, but the Néel-VBS

transition was not found therein. Instead the previous analysis identified a transition

between the true long range Néel order and a quasi-long range order at the parameter

region ϵn < 0 and λ < 0 with our notation [174].

So far we have assumed that the fields n⃗, v and Φ⃗,Φ have the same velocity in our
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effective 1d theory Eq. 2.5, hence the theory we considered so far has a Lorentz invariance.

We can also turn on a weak velocity difference between these two sets of fields, and analyze

how it flows under RG. This velocity anisotropy corresponds to modifying the correlation

function of Φ⃗:

Cn(x, 0)ab = ⟨Φa(x, τ)Φb(0, 0)⟩ = δab(
(1− δv

2
)2x2 + (1 + δv

2
)2τ 2

)3/2 . (2.14)

Here we have assumed that the velocity of Φ⃗ exceeds the velocity of n⃗ by a factor of

(1+ δv) (to the first order of δv). We have taken ϵn = 0 for the leading order calculation.

δv can flow under RG as it is the “seed” for velocity difference. Based on symmetry, the

RG flow of δv should look like

dδv

d ln l
= −αg2nδv. (2.15)

And eventually we will plug in the fixed point value of gn = g∗n. Based on previous experi-

ence, at an interacting fixed point, a weak velocity anisotropy is often irrelevant [175, 176],

since intuitively in the infrared all the interacting modes are expected to have the same

velocity. Hence we expect α > 0, i.e. a weak velocity difference between the boundary

and bulk will be irrelevant at the Néel-VBS transition fixed point.

To evaluate α, we expand the correlation function of Φ⃗ to the leading order of δv:

Cn(x, 0) =
1

|z|3
− 3

2

δv

|z|5
z2 + z̄2

2
+O(δv2) (2.16)

Using the OPEs in Eq. 2.10, the second order perturabtion of gn would generate the
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Figure 2.2: The plot of ln[3πGn(k)(1 + A(g∗′n )
2)] against ln[1/|k|], where Gn(k) is

given by Eq. 2.20. From top to bottom, A(g∗′n )
2 = 0, 1/2, 2, and 5.

following term:

− 1

2
g2n

(∑
a

na(z, z̄)Φa(z, z̄)

)(∑
b

nb(w, w̄)Φb(w, w̄)

)
(2.17)

∼ − 3g2n
4|z − w|4

− g2n
1

4

1

|z − w|2
∑

a=1,2,3

JaL(w)J
a
R(w̄) + g2nδv

9

32

1

|z − w|2
(TL(w) + TR(w̄)) + · · ·

Here we only kept the terms that will lead to nonzero effect under real space RG. The

last term in Eq. 2.17 would contribute a renormalization (or acceleration) for the velocity

of n⃗. Under rescaling, the ratio between the two velocities reduces by a factor:

1 + δv → 1 + δv

1 + g2nδv
9π2

8
ln l

, (2.18)

which leads to the RG equation for δv:

dδv

d ln l
= −9π2

8
(g∗n)

2δv, (2.19)

which confirms our expectation that δv is an irrelevant perturbation at the Néel-VBS

transition fixed point.

Suppose we start with δv > 0, namely the velocity of n⃗ is smaller than Φ⃗, the velocity

of n⃗ will increase under RG. This means that in this case the system will qualitatively
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Figure 2.3: The RG flow of (λ, gv). As long as the initial value gv is nonzero, both
parameters will flow to positive infinity, which implies that the boundary will likely
develop the Ising-VBS order before the bulk.

behave like z < 1, where z is the dynamic critical exponent (not to confuse with the chiral

coordinate). On the contrary, if we start with δv < 0, the velocity of n⃗ would decrease

under RG, which means that effectively z > 1. The former scenario is analogous to a

spin chain with instantaneous spatial nonlocal interaction [154], which is equivalent to

taking the velocity of the effective action of Φ⃗ and Φ to infinity in our effective 1d theory

Eq. 2.5. Although our calculation is for δv > 0, rather than taking the velocity in the Φ⃗

action to be infinity, the “acceleration” of the modes derived here (including z < 0) is

qualitatively consistent with what was observed in Ref. [154] at the Néel-VBS transition

in a spin-1/2 chain with nonlocal spatial interactions.

In the phase diagram Fig. 2.1, on the side of the Néel order, the path of the RG flow

towards the long range order can be complicated. It may take a long RG scale and hence

large system size to reveal the true long range order. For example, on part of the phase

diagram, λ changes its sign and eventually flow away to the negative nonperturbative

regime. While λ changes sign, gn first decreases its magnitude from the initial value g0,

then after reaching its minimum g∗′n along the RG flow, gn keeps increasing and eventually

become nonperturbative. Hence it is possible that for a relatively large intermediate

scale, the system behaves like gn ∼ g∗′n . The effect of this nonmonotonic RG flow can be

illustrated by a simple perturbation theory to the correlation function of the Néel order
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parameter:

Gn(x) = ⟨n⃗(x) · n⃗(0)⟩ ∼ 3

2

1

|x|
+

3

4

∫
d2x1d

2x2
(g∗′n )

2

|x− x1||x1 − x2|3−2ϵn |x2|
+O(g∗′n )

4 + · · · . (2.20)

Hence Gn(k) in the momentum-frequency space k = (k, ω) reads

Gn(k) ∼
1

G(0)(k)−1 − Σ(k)
, (2.21)

where G(0)(k) = 3π/|k|, Σ(k) = −A(g∗′n )2|k|1−2ϵn/(3π), and A > 0 for 0 < ϵn < 1/2. The

system will have enhanced spin-spin correlation function compared with the SU(2)1 CFT

of the spin-1/2 chain, as was observed in numerical simulations [151, 37, 38]. The mixture

of the two terms in G−1(k) may yield results that appear to be power-law correlation

with different scaling dimensions, which is illustrated in Fig. 2.2, where we have fixed

ϵn = 5/22ϵ but chosen different g∗′n . This nonuniversal power-law like scaling of spin

correlation was also observed in recent numerics concerning the edge states of the AKLT

state during a bulk phase transition [37, 38].

Now we briefly consider the situation when the bulk undergoes a disorder-order quan-

tum phase transition between the AKLT state and the Ising like VBS order, which is

described by order parameter ϕ. The boundary mode of ϕ is Φ ∼ ∂yϕ, and it couples to

the VBS order parameter v at the boundary CFT. In this case, the coupled RG flow of λ

and gv in Eq. 2.5 is relatively simple: as long as we start with nonzero (λ0, gv0), both gv

and λ quite generally flow to positive infinity, which corresponds to a nonzero long range

order of v. Hence the 1d boundary of the system should develop the Ising-VBS order

before the bulk. when the bulk is tuned closer and closer to a VBS (Ising) transition, the

boundary will go through a transition between the gapless SU(2)1 CFT state to a VBS

phase, before the bulk actually hits criticality. This boundary transition should be in the

same universality class as the transition from an SU(2)1 CFT to a VBS phase in a purely
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one-dimensional spin-1/2 chain with both nearest and next nearest neighbor Heisenberg

interactions (see, for example, Ref. 177 for the one-dimensional transition). We note that

this transition is not an ordinary 1 + 1d Ising transition and, hence, is different from the

“extraordinary transition” studied in the standard boundary criticality literature. But if

we start with a negative initial value λ0, it may take a long RG time before the coupling

constants become positive and nonperturbative. Hence the VBS order parameter may

still appear to have quasi long range correlation for a finite system.

In conclusion, we have found that there can be a direct continuous quantum phase

transition between the long range antiferromagnetic Néel order, and the VBS order, in an

effective 1d spin-1/2 system with nonlocal interactions (Eq. 2.5). Due to the nonlocality

of the model, even in a 1d system with a continuous SO(3) spin symmetry there can be a

long range Néel order. Within the accuracy of our method, the effective spin-1/2 system

Eq. 2.5 arises from coupling the 1d boundary of a 2d SPT phase to bulk quantum critical

modes. Our results were drawn from a controlled renormalization group study, and the

critical exponents extracted (including the anomalous dimensions of order parameters

and the dynamical exponent) are qualitatively consistent with the Néel-VBS transition

found numerically in recent simulation of a spin-1/2 chain with spatially instantaneous

nonlocal interactions [153, 154]. If a 1d system has local interactions only, there can

only be spontaneous discrete symmetry breaking. Previous numerical and analytical

works [178, 179, 180] have studied the analogue of deconfined quantum critical point

between two phases that spontaneously break different discrete symmetries.
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2.2 Boundary Criticality of 2d Topological Phase Tran-

sitions

2.2.1 Introduction

Two dimensional quantum many body systems at zero temperature gave us a plethora

of exotic phenomena beyond the classical wisdom of phases of matter. These phenomena

include topological orders [181, 150], symmetry protected topological orders [157, 158]

(generalization of topological insulators), and unconventional quantum phase transitions

beyond the Landau’s paradigm [182, 183, 184, 185, 186, 187]. The unconventional quan-

tum phase transitions usually have very distinct universal scalings compared with the

ordinary (2+1)d Landau’s transitions. These unconventional quantum phase transitions,

or unconventional quantum critical points (QCP), could happen between two ordinary

Landau’s phases with different patterns of spontaneous symmetry breaking [182, 183],

they can also happen between a topological order and an ordered phase [184, 185, 186].

Although many appealing numerical evidences of these unconventional QCPs have been

found [188, 189, 190, 191], direct clear experimental observation of these unconventional

QCPs is still demanded.

To identify an unconventional QCP in an experimental system, we need to measure

the correlation functions and scaling dimensions of various operators at this QCP, and

compare the results with analytical predictions. In this work we do not attempt to pro-

pose a particular experimental system that realizes one of the unconventional QCPs,

instead we try to address one general issue that many experimental platforms would

face, platforms where potentially these unconventional QCPs can be found. In numerical

simulations of a QCP, correlation functions and scalings in the bulk can be directly com-

puted. But experimentally many purely 2d systems of interests are sandwiched between
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other auxiliary layers in a Van der Waals heterostructure [128]. Hence the bulk of the 2d

system is often not exposed for probing for many experimental techniques. Instead, the

1d boundary of the 2d system is exposed and can often be probed directly. Based on the

early studies of the boundary of Wilson-Fisher fixed points [192, 164, 165, 166] and the

boundary of two dimensional conformal field theories [193], we learned that the scaling

of operators at the boundary of a system can be very different from the bulk, hence the

previous calculations about unconventional QCPs in the bulk may not be so relevant

to many experimental platforms. We need to restudy the critical exponents at the 1d

boundary of the system in order to compare with future experimental observations.

2.2.2 Boundary Criticality of Z2 Topological Transition

In this section we discuss the boundary critical behaviors of a 2d topological quantum

phase transition between a fully gapped Z2 topological order, and an ordered phase which

spontaneously breaks the global symmetry of the system and has no topological order.

We assume that the “electric gauge particle” (the so called e−anyon) of the Z2 topological

order is an N−component complex boson ba. This topological transition is described by

the following field theory:

S =

∫
dτd2x

N∑
a=1

|∂ϕa|2 + r|ϕa|2 + g(
N∑
a=1

|ϕ|2a)2, (2.22)

where the complex scalar ϕa is the low energy field of anyon ba, and it is coupled to a

Z2 gauge field which is not written explicitly. Because a Z2 gauge field does not have

gapless gauge boson, it does not contribute any infrared corrections to gauge invariant

operators. When r > rc, ϕa is disordered and the system is a Z2 topological order which

is also the deconfined phase of the Z2 gauge field; when r < rc, ϕa condenses and destroy

the Z2 topological order through the Higgs mechanism, and the condensate of ϕa has
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ground state manifold S2N−1/Z2, where S
2N−1 is a 2N − 1 dimensional sphere.

This theory Eq. 2.22 with different N can be realized in various scenarios. For N = 1,

this theory can be realized as the transition between a 2d superconductor and a Z2 spin

liquid. Similar unconventional topological transitions have been observed in numerical

simulations in lattice spin (or quantum boson) models [184, 185], and theoretical predic-

tions of the bulk critical exponents have been confirmed quantitatively. In this realization

the boson b can be introduced by formally fractionalizing the electron operator on the

lattice as

cj,α = fj,αbj, (2.23)

where bj is a charge-carrying bosonic “rotor”, fj,α is the fermionic parton that carries

the spin quantum number. fj,α and bj share a U(1) gauge symmetry, and the Z2 topo-

logical order is constructed by assuming that bj has a finite mass gap, while fj,α forms a

superconductor at the mean field level, which breaks the U(1) gauge symmetry down to

Z2. The quantum phase transition between the superconductor and the Z2 topological is

described by Eq. 2.22 with N = 1. In the condensate of ϕ (r < rc), the physical pairing

symmetry of the superconductor is inherited from the mean field band structure of fα.

The long range Coulomb interaction between charge carriers is often screened by auxiliary

layers such as metallic gages in experimental systems, hence in Eq. 2.22 there is only a

short range interaction. Eq. 2.22 with N = 1 is often referred to as the “XY∗” transition.

In the dual picture, starting from the superconducing phase, the XY∗ transition can also

be viewed as the condensation of double vortices of the superconductor.

Eq. 2.22 with even N and N ≥ 2 can be realized in Sp(N) spin systems, as the Z2 spin

liquid can be naturally constructed in Sp(N) spin systems. ba ∼ ϕa is introduced as the

fractionalized Schwinger boson of the spin system, and the Z2 topological order emerges
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when a pair of ba (which forms a Sp(N) singlet) condenses on the lattice [194, 195].

In particular, when N = 2, the theory Eq. 2.22 can be realized as the quantum phase

transition between a Z2 topological order and a noncollinear spin density wave of spin-1/2

systems on a frustrated lattice, for example the so-called 120◦ antiferromagnetic state on

the triangular lattice [186]. The order parameter of the noncollinear spin order of a fully

SU(2) invariant Hamiltonian will form a ground state manifold SO(3), which is equivalent

to SU(2)/Z2 = S3/Z2, where the Z2 is identified as the Z2 gauge group, and also the

center of the spin SU(2) group. The gauge invariant order parameter can be constructed

with the low energy field ϕa as

N⃗1 = Re[ϕtiσ2σ⃗ϕ], N⃗2 = Im[ϕtiσ2σ⃗ϕ], N⃗3 = ϕ†σ⃗ϕ, (2.24)

and one can show that N⃗i are three orthogonal vectors. In this case theory Eq. 2.22 is

referred to as the O(4)∗ transition, because there is an emergent O(4) symmetry that

rotates between the four component real vector (Re[ϕ1], Im[ϕ1],Re[ϕ2], Im[ϕ2]). Other

systems can potentially realize the theory with larger−N , for instance spin systems with

Sp(4) symmetry can be realized in spin-3/2 cold atom systems [196].

We are most interested in the composite operator
∑

a ϕ
2
a, which is invariant under the

Z2 gauge symmetry, but transforms nontrivially under the physical symmetry, hence it

is a physical order parameter. When N = 1, in the condensate of ϕ (or bj), the electron

operator has a finite overlap with the fermionic parton operator cj,α ∼ fj,α⟨ϕ⟩, hence

the superconductor order parameter ∆ ∼ ⟨ϕ2⟩. In the bulk the scaling dimension of ϕ2

can be extracted through the standard ϵ expansion or numerical simulation [197]. Near

the critical point the superconductor order parameter should scale as ∆ ∼ |r|β, where

β = [ϕ2]ν and [ϕ2] is the scaling dimension of operator ϕ2. At the XY∗ critical point the

exponent ν ∼ 2/3. When N = 2, the composite operator
∑

a ϕ
2
a is one component of the
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spin order parameter of the noncollinear spin density wave.

All the results above are only valid in the 2d bulk. But in experiments on the boundary

(as we discussed previously, it is the boundary that is exposed and hence can be probed

conveniently), many of the critical exponents are modified. We now consider a system

whose 2d bulk is in the semi-infinite xz plane with z > 0, with a 1d boundary at z = 0.

For simplicity, let us tentatively ignore the Z2 gauge field, and view ϕa as a physical order

parameter. The most natural boundary condition is the Dirichlet boundary condition, i.e.

the field vanishes at the boundary and also outside of the system z ≤ 0. The boundary

condition of the system can be imposed by turning on a large c|ϕa|2 term along the

boundary, which fixes ϕa(x, z = 0) = 0, where x = (τ, x).

At the mean field level, the correlation function of the ϕa field near the boundary can

be computed using the “image method” [192]:

G(x1 − x2, z1, z2) = ⟨ϕa(x1, z1)ϕ
∗
a(x2, z2)⟩

= G(x1 − x2, z1 − z2)bulk −G(x1 − x2, z1 + z2)bulk. (2.25)

where Gbulk = ⟨ϕa(x1, z1)ϕ
∗
a(x2, z2)⟩bulk is the bulk correlation function far from the

boundary. Notice that the boundary breaks the translation symmetry along the z di-

rection, hence the full expression of the correlation function near the boundary is no

longer a function of z1 − z2. The expression in Eq. 2.25 guarantees that the correlation

function satisfies G(x1 − x2, 0, z2) = G(x1 − x2, z1, 0) = 0, which is consistent with the

boundary condition. The fact that the correlation function of the ϕa field vanishes at the

boundary means that ϕa itself is no longer the leading representation of the field at the

boundary z = 0. Instead, another field with the same symmetry and quantum number
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Figure 2.4: The diagrams that renormalize Φ2 at the first order of ϵ. In the bulk the
first diagram only shifts the mass of ϕa, but at the boundary it makes a nontrivial
contribution to the wave function renormalization.

at the boundary,

Φ1,a = ∂zϕa, (2.26)

should be viewed as the leading representation of the field near the boundary. In fact,

since Φ1,a and ϕa have the same symmetry transformation near the boundary, an external

field that couples to ϕa should also couple to ∂zϕa. At the mean field level, a typical

configuration of ϕa scales as ϕa(x, z) ∼ z near the boundary, hence Φ1,a = ∂zϕa is

not suppressed by the boundary condition. Also, the correlation function of Φ1,a at

the boundary does not vanish, and at the mean field level it has scaling dimension

[Φ1,a] = [ϕa] + 1 = D/2, where D is the total space-time dimension of the bulk.

The gauge invariant order parameter
∑

a ϕ
2
a we are interested in reduces to Φ2 =∑

aΦ
2
1,a at the boundary, and it has scaling dimension [Φ2] = D at the mean field level.

If the Z2 gauge field is ignored, the correlation function of Φ1,a at the boundary reads

⟨Φ1,a(x1)Φ
∗
1,a(x2)⟩ = lim

z1,z2→0
∂z1∂z2G(x1 − x2, z1, z2), (2.27)

where G(x1 − x2, z1, z2) is still given by the image method Eq. 2.25. If we assume that

107



Quantum Phase Transitions with Non-Locality Chapter 2

Gbulk takes the standard form at the Gaussian fixed point

⟨ϕa(x1, z1)ϕ
∗
a(x2, z2)⟩bulk =

1

(|x1 − x2|2 + (z1 − z2)2)
D−2
2

, (2.28)

the boundary correlation function of Φ1,a at the mean field level reads

⟨Φ1,a(x1)Φ
∗
1,a(x2)⟩ =

2(D − 2)

|x1 − x2|D
. (2.29)

At the Gaussian fixed point, the correlation function of Φ2 can be derived using the Wick

theorem:

⟨Φ2(x1)Φ
∗
2(x2)⟩ =

∑
a

⟨Φ1,a(x1)Φ
∗
1,a(x2)⟩2 ∼

1

|x1 − x2|2D
. (2.30)

The scaling dimension of Φ2 will acquire further correction from interaction, which

can be computed through the ϵ = (4 − D) expansion. Interestingly, at the leading ϵ

order, [Φ2] will receive corrections from both wave function renormalization and vertex

corrections:

[Φ2] = D + 2δwf + δv. (2.31)

The wave function renormalization δwf can be extracted from the previously calculated

ϵ−expansion of the anomalous dimension at the boundary of the Wilson-Fisher fixed

points, i.e.

[Φ1,a] =
D

2
+ δwf =

D

2
− N + 1

2(N + 4)
ϵ. (2.32)

In contrast, in the bulk renormalization group (RG) analysis of the Wilson-Fisher fixed
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point, the wave function renormalization only appears at the second and higher order of

ϵ expansion.

The vertex correction is most conveniently computed using the standard real-space

RG, since now the momentum along the ẑ direction is no longer conserved. We will use

the following operator-product-expansion (OPE) between Φ2(x, 0) and the interaction

term in Eq. 2.22 (Fig. 2.4b), where Φ2(x, 0) is defined as Φ2(x, 0) = limz→0 (∂zϕ(x, z))
2:

Φ2(x, 0)g

(∑
a

ϕ∗
a(x

′, z′)ϕa(x
′, z′)

)2

= 2g lim
z→0

(∂zG(x− x′, z, z′))2
∑
a

ϕ2
a(x

′, z′)

∼ 32z′4g

((x− x′)2 + z′2)4
lim
z→0

(∂zϕ(x, z))
2 . (2.33)

Notice that like all the 4− ϵ expansions, the OPE and loop integrals were performed by

assuming the bulk system is in a four dimensional space-time. Under rescaling x → x/b,

through the vertex correction the operator Φ2 will acquire a correction

δΦ2 = −Φ2

∫ a

a/b

4πr2dr

∫ +∞

0

dz′
32z′4g

(r2 + z′2)4
= −4gπ2 (ln b) Φ2. (2.34)

The integral of z′ is within the upper semi-infinite plane z′ > 0.

Using epsilon expansion, g will flow from the noninteracting Gaussian fixed point to

an interacting fixed point g∗ = ϵ/(4(N + 4)π2). Plugging the fixed point value of g into

Eq. 2.34, we obtain the vertex correction

δv =
ϵ

N + 4
. (2.35)

The wave function renormalization δwf can be reproduced in the same way through OPE

(Fig. 2.4a). Eventually the scaling dimension of the gauge invariant order parameter Φ2
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at the boundary is

[Φ2] = D − Nϵ

N + 4
. (2.36)

We have also confirmed these calculations through direct computation of the correlation

function of Φ2 near the boundary (with diagrams in Fig. 2.5).

As we discussed before, the case with N = 1 can be realized as the transition between

a Z2 topological order and a superconductor. If the system is probed from the boundary,

in the ordered phase but close to the critical point, the superconductor order parameter

should scale with the tuning parameter r as

∆ ∼ |r|[Φ2]ν ∼ |r|1.87, (2.37)

and we have taken ν ∼ 2/3 for the XY∗ fixed point [197].

For N = 2, the Φ2 operator is one component of the noncollinear spin order of a

SU(2) spin system, which scales as

⟨S⃗⟩ ∼ Φ2 ∼ |r|[Φ2]ν = |r|1.97 (2.38)

Again, we have taken ν = 0.74 for the O(4)∗ fixed point [197]. As a comparison, in the 2d

bulk Φ2 should scale with r as Φ2 ∼ |r|0.82(N = 1) and Φ2 ∼ |r|0.87(N = 2) respectively,

which is significantly different from the boundary scaling.

When N = 1, the action Eq. 2.22 may or may not allow an extra chemical potential

term µϕ∗∂τϕ, depending on whether the system has a (emergent) particle-hole symmetry

ϕ → ϕ∗ or not. With nonzero µ the system has the same scaling as a mean field

transition (with logarithmic corrections) as the total space-time dimension is effectively

D = 2 + d = 4, and g is marginally irrelevant. In this case the scaling dimension of the
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Figure 2.5: The renormalization of operator Φ2 at the leading order of ϵ can also be
computed directly using the correlation functions in this figure.

Cooper pair at the boundary becomes [Φ2]µ̸=0 = D = 4, and ν = 1/2 as in the mean field

transition.

The boundary scaling is valid as long as we consider correlation function G(x1 −

x2, z1, z2) with |x1−x2| ≫ z1, z2. Right at the boundary of a 2d Z2 topological order, the

gauge field is confined, due to the condensation of the m−anyons of the Z2 topological

order at the boundary (the boundary of a Z2 topological order can also have e−anyon

condensate, but since in our case the e−anyons carry nontrivial symmetry transforma-

tions, we assume our boundary always has m−anyon condensate). Near the boundary,

the system still has a finite confinement length ξ(z) as a function of z, i.e. the distance

from the boundary, due to the “proximity effect” of the m−condensation at the bound-

ary. In order to guarantee that we can approximately assume a deconfined Z2 gauge field

near the boundary, we need ξ(z) ≫ z.

The most convenient way to estimate the confinement length ξ(z) close to the bound-

ary, is to evaluate the energy cost of two gauge charged particles separated with distance

x near the boundary. This energy cost can be estimated in the “dual” Hamiltonian

of a Z2 gauge theory, which is a (2 + 1)d quantum Ising model: Hdual =
∑

j̄ −hτxj̄ −∑
µ=x,y Jj̄,µτ

z
j̄ τ

z
j̄+µ, where τ

x
j̄ , τ

z
j̄ are a pair of Pauli operators defined on the dual lattice

sites j̄. The dual Ising operator τ zj̄ is a creation/annihilation operator of the Z2 gauge
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flux. A confined (and deconfined) phase of the Z2 gauge field corresponds to the ordered

(and disordered) phase of the dual quantum Ising model with nonzero (and zero) ex-

pectation value ⟨τ z⟩ [198]. If there is a pair of static e−particles with Z2 gauge charges

separated with distance x, this system is dual to a frustrated Ising model with Jj̄,µ = −J

on the links along the branch-cut that connects the two particles, while Jj̄,µ = +J ev-

erywhere else. The energy cost of the two separated static particles corresponds to the

energy difference between this frustrated Ising model nonuniform Jj̄,µ, and the case with

uniform Jj̄,µ. Then if τ zj̄ has a nonzero expectation value ⟨τ z⟩, the pair of Z2−gauge

charges will approximately cost energy E ∼ J⟨τ z⟩2x, i.e. the system is in a confined

phase with a linear confining potential between the two Z2 gauge charges, and the con-

finement length is roughly ξ ∼ 1/(J⟨τ z⟩2). In our system with a boundary at z = 0,

although ⟨τ z⟩ is nonzero at the boundary, its expectation value decays exponentially with

z because the Z2 gauge field is in a deconfined phase deep in the bulk with ⟨τ z⟩ = 0.

Hence the confinement length ξ(z) also increases with z exponentially, and we can safely

assume that the Z2 gauge field is still approximately deconfined near the boundary.

2.2.3 Boundary Properties of Continuous Mott Transition

Another unconventional quantum phase transition that can happen in 2d systems is

the continuous metal-insulator transition, where the insulator is a U(1) liquid phase with

a fermi surface of the fermionic parton fj,α. Both fj,α and bj are coupled to an emergent

U(1) gauge field, which is presumably deconfined in the 2d bulk due to the existence of

the Fermi surface and finite density of states of the matter fields. The critical behavior

of this transition in the bulk was studied in Ref. 199, and it is again described by the

condensation of bj, but in this case bj is coupled to an dynamic U(1) gauge field aµ.

Although there is a gapless gauge field aµ in the bulk, the gauge field dynamics is

112



Quantum Phase Transitions with Non-Locality Chapter 2

over-damped by the fermi surface of fα through a term Sdamp ∼ 1
e2

∑
ω,q⃗ |atω,q|2

|ω|
|q| based

on the standard Hertz-Millis formalism [81, 82], where at is the transverse mode of the

gauge field. A simple power-counting would suggest that the gauge coupling e2 becomes

irrelevant at the transition where bj condenses, for both µ = 0 and µ ̸= 0. Hence the

universality class of this transition does not receive relevant infrared corrections from the

gauge field. Moreover, the direct density-density interaction between the bosonic and

fermionic partons also does not lead to relevant effects [199]. Hence the metal-insulator

transition can still be described by Eq. 2.22. The quasiparticle residue is proportional to

|⟨b⟩|, and the electron Green’s function is proportional to |⟨b⟩|2. Hence if one probes from

the boundary, the local density of states of electrons at low energy, which is proportional

to the electron Green’s function, scales with the tuning parameter r as

ρ ∼ |⟨Φ1⟩2| ∼ |r|2[Φ1]ν . (2.39)

For µ = 0, [Φ1] is calculated in Eq. 2.32, and ν ∼ 2/3; for µ ̸= 0, [Φ1] = 2 and ν = 1/2.

Again we need to address the question of confinement length near the boundary, and

demonstrate that ξ(z) ≫ z. A pure U(1) gauge field in (2+ 1)d is dual to a scalar boson

φ ∼ exp(iθ) which physically is the Dirac monopole operator, and the confined phase of

a U(1) gauge field corresponds to a phase with a pinned nonzero expectation value of φ.

A U(1) gauged particle becomes a vortex of θ in the dual formalism, and in a deconfined

phase a vortex costs logarithmically divergent energy; but if φ has a pinned nonzero

expectation value, a vortex will cost linearly diverging energy and hence confined. Now

suppose we consider a pair of gauge charged particles separated at distance x, the energy

cost will be roughly x⟨φ⟩2. Hence we need to evaluate ⟨φ(z)⟩ as a function of z away

from the boundary, assuming a nonzero expectation value of φ at the boundary φ0 =

⟨φ(z = 0)⟩. ⟨φ(z)⟩ can be inferred from the correlation function ⟨φ(z)⟩ ∼ ⟨φ(z)φ(0)∗⟩ ∼
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exp(⟨θ(z)θ(0)⟩).

A (2 + 1)d pure U(1) gauge field without the matter field is dual to a scalar boson

model with an ordinary action S ∼
∫
d2xdτρs(∂µθ)

2, then θ has a positive scaling dimen-

sion [θ] = 1/2. The correlation function of θ reads ⟨θ(r)θ(0)⟩ ∼ 1/r, which makes the

correlation function of the monopole operator saturates to a nonzero value as r → ∞.

Hence a positive scaling dimension of θ in the dual action renders the confinement of the

compact gauge field in (2 + 1)d. If θ has a negative scaling dimension in its (dual) ac-

tion, the correlation function of φ will decay exponentially. Then the confinement length

ξ(z) ∼ 1/⟨φ(z)⟩2 ∼ 1/⟨φ(z)φ(0)∗⟩2 will grow exponentially with z in the bulk away from

the boundary. And since ξ(z) ≫ z, the boundary scaling behavior calculated in this work

can be applied under the assumption that the gauge field is sufficiently deconfined near

the boundary since the confinement length is long enough in the vicinity of the boundary.

Now we need to derive the dual action for θ more carefully. Schematically the action

for the transverse gauge field is

S =
∑
ω,q⃗

1

2

(
1

e2
|ω|
q

+ c2q2
)
|at|2. (2.40)

The canonical conjugate field of a⃗, i.e. the electric field of the gauge field is defined as

E⃗ = δL/δ ˙⃗a, hence E⃗ω,q⃗ ∼ a⃗ω,q⃗/(e
2q), hence the action can also be written as

S =
∑
ω,q⃗

e2

2
|ω||q⃗||E⃗ω,q⃗|2 +

c2

2
q2|atω,q⃗|2. (2.41)

Then we can use the standard duality transformation that preserves the commutation

relation between the canonical conjugate variables E⃗ and A⃗: E⃗ = ∇⃗θ, ∇⃗ × a⃗ = n, where

n is the flux density, or the particle density conjugate to θ. Eventually the dual action
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reads

Sd =
∑
ω,q⃗

1

2

(
e2|ω|q3 + 1

c2
ω2

)
|θω,q⃗|2. (2.42)

Indeed, θ(x, τ) has a negative scaling dimension in this dual action, which is consistent

with our expectation that ⟨φ(z)⟩ decays exponentially in the bulk, hence the gauge field

is still approximately deconfined in the vicinity of the boundary.

2.2.4 Discussion

In this work we computed the boundary universal scaling behaviors of a class of

deconfined quantum phase transitions, which is relevant to future realization of these ex-

otic transitions in experimental systems. From the perspective of the pure Laudau’s

paradigm, the cases we study correspond to the “ordinary transitions” of boundary

CFT [192], meaning the bulk will enter an ordered phase before the boundary, which

we believe is the most natural case in real systems. Measurement of the scaling laws

we calculated depends on the specific realization of the theory Eq. 2.22. For example,

if the N = 1 theory is realized (as we proposed in this work) as the transition between

the Z2 spin liquid to superconductor, the amplitude of the Cooper pair at the boundary

predicted in our calculation can be measured through the Josephson effect by building a

junction between the boundary of the system and another ordinary bulk superconductor,

as the Josephson current is proportional to the amplitude of the superconductor order

parameter near the boundary. The Josephson current should follow the same scaling law

as Eq. 2.37.

The studies in this work can be naturally generalized to higher dimensions. If there is

a deconfined QCP between the Z2 topological order and an ordered phase in the (3+1)d

bulk, at its (2+1)d boundary the gauge invariant order parameter Φ2 has precise scaling
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dimension [Φ2] = 4, since in the bulk this transition is described by a mean field theory

and received no extra corrections.

The direct transition between the Néel and valance bond solid (VBS) order is another

type of deconfined QCP that has attracted a great deal of attentions. The boundary effect

of this deconfined QCP is more complex than the situations we have considered because

the boundary breaks the lattice symmetry, hence the boundary condition would couple to

the VBS order parameter. Another interesting scenario worth studying is the boundary

scaling of a bulk transition between a symmetry protected topological (SPT) states and

an ordered phase which spontaneously breaks part of the defining symmetries of the

SPT phase. Although the bulk transition should belong to the same universality class as

the ordinary Ginzburg-Landau transition, its boundary is expected to be very different

due to the existence of symmetry protected nontrivial boundary states even in the SPT

phase. Efforts have been made along this direction including numerical simulation [200]

and construction of exactly soluble models [201]. We will leave these subjects to future

studies.

2.3 Topological Edge and Interface States at 3d Bulk

Criticality

2.3.1 Introduction

The most prominent feature of topological insulators (TI) [202, 203, 204, 205, 206,

207, 208] and more generally symmetry protected topological (SPT) states [157, 158]

is the contrast between the boundary and the bulk of the system. In particular the

2d edge of 3d SPT states hosts the most diverse zoo of exotic phenomena that keep

attracting attentions and efforts from theoretical physics. It has been shown that many
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exotic phenomena such as anomalous topological order [209, 210, 211, 212, 213, 214, 215],

deconfined quantum critical points [161], self-dual field theories [168, 170, 169, 98] can all

occur on the 2d edge of 3d SPT stats. Sometimes the symmetry of the system is secretly

realized as a self-dual transformation of the field theories at the boundary [216, 172].

All these suggest that the 2d boundary of a 3d system is an ideal platform of studying

physics beyond the standard frameworks of condensed matter theory.

On the other hand, even the boundary of an ordinary Landau-Ginzburg type of

quantum phase transition can have nontrivial behaviors. It was studied and understood in

the past that the boundary of a bulk conformal field theory (CFT) follows a very different

critical behavior from the bulk [163, 193, 164, 165, 166, 167], due to the strong boundary

condition imposed on the CFT. The boundary fluctuations (or the boundary CFT) of

the Landau-Ginzburg phase transitions were studied through the standard ϵ−expansion,

and it was shown that the critical exponents are very different from the bulk. Hence

if experiments are performed at the boundary of the system, one should refer to the

predictions of the boundary instead of the bulk CFT. These two different boundary

effects were studied separately in the past. In this work we will study the interplay of

these two distinct boundary effects. Our goal is to seek for new physics, ideally new fixed

points under renormalization group (RG) flow due to the coupling of the two boundary

effects.

For our purpose we give the system under study a virtual two-layer structure Fig. 2.6:

layer-1 is a SPT state with nontrivial edge states, and it is not tuned to a bulk phase

transition; layer-2 is a topological trivial system which undergoes an ordinary Landau-

Ginzburg disorder-to-order phase transition. Then as a starting point we assume a weak

coupling between the boundary of the two layers, and study the RG flow of the coupling.

Besides the edge state localized at the boundary of a SPT state, we will also consider

symmetry protected gapless states localized at a 2d interface embedded in a 3d bulk. We
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Figure 2.6: We view the system under study as a two layer system. Layer-1 is a
SPT or TI with nontrivial edge states; layer-2 is an ordinary disorder-to-order phase
transition whose order parameter at the boundary follows the scaling of boundary
CFT. The boundary of the entire system may flow to new fixed points due to the
coupling between the two layers.

will demonstrate that in several cases, including the edge state of a prototype bosonic

SPT state, the 2d boundary or interface will flow to a new fixed point due to the bulk

quantum phase transition.

Previous works have explored related ideas with different approaches. Exactly soluble

1d and 2d Hamiltonians have been constructed for gapless systems with protected edge

states [33]; fate of edge states was also studied for 1d and 2d SPT states [34, 35, 36, 37, 38].

But the 2d edge of 3d bosonic SPT systems coupled with boundary modes which originate

from bulk quantum critical points, i.e. the situation that potentially hosts the richest

and most exotic phenomena, have not been studied to our knowledge. We note that the

interaction between bulk quantum critical modes and the boundary of free or weakly

interacting fermion topological insulator (or topological superconductor) was studied in

Ref. 39, but the coupling in that case was strongly irrelevant hence will not lead to new

physics in the infrared (we will review the interplay between the bulk quantum critical

modes and the edge states of free fermion topological insulator in the next section). We

will focus on bosonic SPT state with intrinsic strong interaction in this work. We use
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the generic long wavelength field theory description of both the bulk bosonic SPT states

and the edge states. Due to the lack of exact results of strongly interacting (2+ 1)d field

theories, we seek for a controlled calculation procedure that allows us to identify new

fixed points under RG flow. Indeed, in several scenarios we will explore in this work, new

fixed points are identified based on controlled calculations.

2.3.2 Edge States of 3d SPT at Bulk QCP

Edge States of Non-Interacting 3d TIs

We first consider the edge state of 3d topological insulator (TI) and symmetry pro-

tected topological states. The edge state of free fermion TI is described by the action

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ∂µψα, (2.43)

with γ1 = σ2, γ2 = −σ1, γ0 = σ3, ψ̄ = ψ†γ0. Based on the “ten-fold way classifica-

tion” [206, 207, 208], for the AIII class, at the noninteracting level the TI is always non-

trivial and topologically different from each other for arbitrary integer−Nf ; while for the

AII class the TI is nontrivial only for odd integer Nf , and they are all topologically equiv-

alent to the simplest case with Nf = 1. In both cases the fermion mass term
∑

α ψ̄αψα

is forbidden by the time-reversal symmetry. Hence let us consider the disorder-to-order

phase transition in the 3d bulk associated with a spontaneous time-reversal symmetry

breaking, which is described by an ordinary (3 + 1)d Landau-Ginzburg quantum Ising

theory:

Sb =
∫
d3xdτ (∂ϕ)2 + uϕ4. (2.44)
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Because u is a marginally irrelevant coupling at the (3 + 1)d noninteracting Gaussian

fixed point, the scaling dimension of ϕ in the bulk is precisely [ϕ] = 1.

Here we stress that the disorder-to-order transition is driven by the physics in the

bulk. Without the bulk, the boundary alone does not support an ordered phase. To

study the fate of the edge state when the bulk is tuned to the quantum critical point, we

view the bulk as a “two layer” system (Fig. 2.6): layer-1 is a 3d TI which is not tuned

to the quantum phase transition; while layer-2 is at the disorder-to-order bulk quantum

phase transition between a time-reversal invariant trivial insulator and a spontaneous

time-reversal symmetry breaking phase. Now both layers have nontrivial physics at

the edge. The quantum critical fluctuation (from layer-2) at the 2d boundary must

satisfy the boundary scaling law. When we impose the most natural boundary condition

ϕ(z ≥ 0) = 0, the leading field at the boundary which carries the same quantum number

as ϕ is Φ ∼ ∂zϕ. Since ϕ has scaling dimension 1, Φ should have scaling dimension

[Φ] = 2, i.e.

⟨Φ(x, z = 0)Φ(0, z = 0)⟩ ∼ 1/|x|4, (2.45)

where x = (τ, x, y). Eq. 2.45 is a much weaker correlation than ϕ in the bulk (more

detailed derivation of boundary correlation functions can be found in Ref. 163, 164, 165,

166).

Now we turn on coupling between the 2d boundaries of the two layers. The edge

state of the TI in layer-1 is affected by the boundary fluctuations of layer-2 through the

“proximity effect”. The coupling between the two layers at the 2d boundary is described

by the following term in the action:

Sc =
∫
d2xdτ

∑
α

gΦψ̄αψα. (2.46)
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Since Φ ∼ ∂zϕ has scaling dimension 2, g will have scaling dimension [g] = −1, i.e. it is

strongly irrelevant. This conclusion is consistent with previous study Ref. 39. A negative

“mass term” Φ2 will be generated through the standard fermion loop diagram, but since

Φ has scaling dimension 2, this mass term will be irrelevant. Hence the edge state of a 3d

TI is stable even at the bulk quantum critical point where the time-reversal symmetry

is spontaneously broken, and the properties of the edge states (such as electron Green’s

function) should be identical to the edge state of TI in the infrared. To make the coupling

g relevant, the quantum critical modes also need to localize on the boundary, which is

one of the situations studied in Ref. 39.

Edge States of Bosonic SPT States

The situation of bosonic SPT phases can be much more interesting. The bosonic SPT

state can only exist in strongly interacting systems. We use the prototype 3d bosonic

SPT phase with (U(1) × U(1)) × ZT
2 symmetry as an example, since this phase can be

viewed as the parent state of many 3d bosonic SPT phases by breaking the symmetry

down to its subgroups, without fully trivializing the SPT phase. The topological feature

of this phase can be conveniently captured by the following nonlinear sigma model in the

(3 + 1)d bulk [161, 217]:

S =

∫
d3xdτ

1

g
(∂n)2 +

i2π

Ω4

ϵabcden
a∂xn

b∂yn
c∂zn

d∂τn
e, (2.47)

where n is a five component vector field with unit length, and Ω4 is the volume of the four

dimension sphere with unit radius. (n1, n2), and (n3, n4) transform as a vector under the

two U(1) symmetries respectively, and the ZT
2 changes the sign of all components of the

vector n. The nonlinear sigma model Eq. 2.47 is invariant under all the transformations.

121



Quantum Phase Transitions with Non-Locality Chapter 2

The 2d edge state of this SPT phase can be described by the following (2+1)d action:

S =

∫
d2xdτ

∑
α=1,2

|(∂ − ia)zα|2 + r|zα|2 + u|zα|4 +
1

e2
(da)2, (2.48)

where aµ is a noncompact U(1) gauge field. The theory Eq. 2.48 is referred to as the “easy-

plane noncompact CP1” (EP-NCCP1) model. We are most interested in the point r = 0.

The term
∑

α r|zα|2 would be forbidden if there is an extra Z2 self-dual symmetry that

exchanges the two U(1) symmetries [218], while without the self-duality symmetry r needs

to be tuned to zero, and the point r = 0 becomes the transition point between two ordered

phases that spontaneously breaks the two U(1) symmetries respectively [182, 183]. At

r = 0, starting with the UV fixed point with noninteracting zα and aµ, both u and e are

expected (though not proven) to flow to a fixed point with u = u∗, e = e∗.

The putative conformal field theory at r = 0 and its fate under coupling to the

boundary fluctuations (boundary modes) of the bulk quantum critical points is the goal

of our study in this section. As was discussed in previous literatures, it is expected that

there is an emergent O(4) symmetry in Eq. 2.48 at r = 0, when we fully explore all the

duality features of Eq. 2.48 [218, 168, 170, 171, 169, 98, 172]. In the EP-NCCP1 action,

the following operators form a vector under O(4):

(n1, n2, n3, n4) ∼ (z†σ1z, z†σ2z, Re[Ma], Im[Ma]), (2.49)

whereMa is the monopole operator (the operator that annihilates a quantized flux of aµ).

In the equation above, (n1, n2) and (n3, n4) form vectors under the two U(1) symmetries

respectively. The emergent O(4) includes the self-dual Z2 symmetry of the EP-NCCP1,

i.e. the operation that exchanges the two U(1) symmetries.

Now we consider the 3d bulk quantum phase transition between the SPT phase and
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the ordered phases that break part of the defining symmetries of the SPT phase. We

first consider two order parameters: ϕ0, ϕ3. ϕ0 is the order parameter that corresponds

to the self-dual Z2 symmetry; and ϕ3 is a singlet under the emergent SO(4) but odd

under the improper rotation of the emergent O(4), and also odd under ZT
2 . Again we

view our system as a two layer structure: layer-1 is a SPT phase with solid edge states

described by Eq. 2.48; layer-2 is a topological-trivial system that undergoes the transition

of condensation of either ϕ0 or ϕ3. Both order parameters have an ordinary mean field

like transition in the bulk of layer-2. Again at the boundary, both order parameters will

have very different scalings from the bulk. We assume that system under study fills the

entire semi-infinite space at z < 0, then at the boundary plane z = 0, the most natural

boundary condition is that ϕ0(z ≥ 0) = ϕ3(z ≥ 0) = 0, hence all order parameters

near but inside the bulk should be replaced by the following representations: Φ0 ∼ ∂zϕ0,

Φ3 ∼ ∂zϕ3. Both order parameters have scaling dimensions 2 at the (2 + 1)d boundary

of layer-2.

Now we couple Φ0 and Φ3 to the edge states of layer-1. The coupling will take the

following form:

Lc0 =
∑
α

g0Φ0|zα|2, Lc3 = g3Φ3z
†σ3z. (2.50)

The RG flow of coupling constants g0,3 can be systematically evaluated in certain large−N

generalization of the action in Eq. 2.48:

S =

∫
d2xdτ

∑
α=1,2

N/2∑
j=1

|(∂ − ia)zj,α|2 + u(
∑
j

|zj,α|2)2. (2.51)

The large−N generalization facilitate calculations of the RG flow, but the down side is

that the duality structure and emergent symmetries no longer exist for N > 2. In the
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large−N limit of Eq. 2.51, the scaling dimension of the operators under study is

N → +∞ : [z†σ3z] = [|z|2] = 2. (2.52)

In the equation above, each operator has a sum of index j, which was not written ex-

plicitly. Apparently coupling constants g0,3 are both irrelevant with large−N due to the

weakened boundary correlation of Φ0 and Φ3.

We are seeking for more interesting scenarios when the boundary is driven to a new

fixed point due to the bulk quantum criticality. For this purpose we consider another

order parameter ϕ⃗ which transforms as a vector under one of the two U(1) symmetries.

Here we no longer assume the Z2 self-dual symmetry on the lattice scale. Again at the

boundary ϕ⃗ should be replaced by Φ⃗ ∼ ∂zϕ⃗. At the 2d boundary, the coupling between

Φ⃗ and the edge state of layer-2 reads

Lcv = gv
(
Φ1z

†σ1z + Φ2z
†σ2z

)
. (2.53)

In the large−N limit of Eq. 2.51, the scaling dimension of the operators under study is

N → +∞ : [z†σ1z] = [z†σ2z] = 1. (2.54)

Hence gv is marginal in the large−N limit, and there is a chance that gv could drive the

system to a new fixed point with 1/N corrections.

We introduce the following action in order to compute the RG flow of gv with finite

but large N :

S =

∫
d2xdτ

∑
α=1,2

N/2∑
j=1

|(∂ − ia)zj,α|2 + iλ+|zj,α|2 + iλ−z
†
jσ

3zj + igvΦ⃗ · z†j σ⃗zj +
1

2
Φ⃗ · 1

|∂|
Φ⃗. (2.55)

The λ± are two Hubbard-Stratonovich (HS) fields introduced for the standard 1/N
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Figure 2.7: (a, b) the 1/N contribution to z†σ1,2z and ψ̄τ1,2ψ from the gauge field
fluctuation, the solid lines represent either the propagator of zα or ψα, the wavy line
represents the propagator of the photon; (c, d) the 1/N contribution to z†σ⃗z from λ±
in Eq. 2.55; (e, f) the contribution to B in Eq. 2.56.

calculations [219, 220]. The scaling of |z|2 and z†σ3z in Eq. 2.51 are replaced by the HS

fields λ+, λ− in the new action Eq. 2.55 respectively. A coefficient “i” is introduced in

the definition of gv by redefining Φ → iΦ for convenience of calculation.

The schematic beta function of gv reads

dgv
d ln l

= (1−∆v)gv −Bg3v +O(v5). (2.56)

∆v is the scaling dimension of z†j σ⃗zj in the large−N generalization of the EP-NCCP1
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Figure 2.8: The two diagrams at g3v order which cancel each other for arbitrary gauge choices.

model Eq. 2.51, with σ⃗ = (σ1, σ2). The standard 1/N calculation leads to

∆v = 1− 56

3π2N
+O(

1

N2
). (2.57)

The 1/N correction of ∆v comes from diagram Fig. 2.7(a − d), where the wavy line is

the gauge boson propagator, and the dashed line represents propagators of both λ±. The

first term of Eq. 2.57 implies that gv is indeed weakly relevant with finite but large−N .

The constant B in the beta function arises from the operator product expansion

of the coupling term Eq. 2.53, which is equivalent to the diagrams Fig. 2.7e, f . This

computation leads to B = 1/(3π2). The two diagrams in Fig. 2.8 which are also at g3v

order cancel each other for arbitrary gauge choices. Similar two-loop diagrams at the

same order of 1/N do not enter the RG equation due to lack of logarithmic contribution,

as was explained in Ref. 220. Φ⃗ does not receive a wave function renormalization due to

the singular form of its action. Hence with finite but large−N , gv indeed flows to a new

fixed point:

g2v∗ =
56

N
+O(

1

N2
). (2.58)

We stress that this result is drawn from a controlled calculation and it is valid to the
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Figure 2.9: The g2v diagrams that contributes to the scaling dimension of [λ+]. Here
the solid line represents the propagator of zj,α, the dotted line represents the vector

operator Φ⃗, and the dashed line represents λ+.

leading order of 1/N .

As we explained before, the point r = 0 is a direct transition between two ordered

phases that spontaneously break the two U(1) symmetries. This transition will be driven

to a new fixed point by coupling to the boundary fluctuations of bulk critical points as

we demonstrated above. At this new fixed point, the critical exponent ν follows from the

relation

ν−1 = 3− [λ+]. (2.59)

To evaluate the scaling dimension [λ+] we have to incorporate the contributions of g2v

from the diagrams shown in Fig. 2.9, and combined with 1/N calculations performed

previously [221, 220]. Then in the end we obtain

ν−1
∗ = 1 +

160

3π2N
+

4g2v∗
3π2

+O(1/N2) = 1 +
128

π2N
+O(1/N2). (2.60)

Again, there are other loop diagrams which appear to be at the same order of 1/N but

do not make any logarithmic contributions [220].
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Figure 2.10: We consider a SU(N) antiferromagnet with self-conjugate representation
on each site. The system forms a background VBS pattern, with opposite dimeriza-
tions between semi-infinite spaces z > 0 and z < 0. There is a 2d antiferromagnet
localized at the interface z = 0, and the entire bulk can undergo phase transition
simultaneously due to the mirror (reflection) symmetry that connects the two sides of
the domain wall.

2.3.3 Interface States Embedded in 3d Bulk

Interface states of Non-Interacting electron systems

In previous examples we studied topological edge states at the boundary of a 3d

system. In this section we will consider the 2d states localized at an interface (z = 0)

in a 3d space, when the entire 3d bulk (for both z > 0 and z < 0 semi-infinite spaces)

undergoes a phase transition simultaneously. Without fine-tuning, we need to assume

an extra reflection symmetry z → −z that connects the two sides of the interface, which

guarantees a simultaneous phase transition in the entire system. In this case there is no
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physical reason to impose the strong boundary condition at the interface embedded in

the 3d space, hence the quantum critical modes at the interface follow the ordinary bulk

scalings, instead of the weakened correlation of boundary CFT.

Again we will consider free fermion systems first. Let us first recall that the AIII

class TI has a Z classification which is characterized by a topological index nT . nT will

appear as the coefficient of the electromagnetic response of the TI: L ∼ iπnTE · B. nT

must change sign under spatial reflection transformation Mz : z → −z. To construct

the desired system, we assume the semi-infinite space z < 0 is occupied with the AIII

class TI with Hamiltonian Ĥ, whose topological index is nT ; and its “reflection conjugate”

M−1
z ĤMz fills the semi-infinite space z > 0. Then there are Nf = 2nT flavors of massless

Dirac fermions localized at the 2d plane z = 0, which are still protected by time-reversal

symmetry. Now we assume the entire bulk undergoes a quantum phase transition with

a spontaneous time-reversal symmetry breaking, whose order parameter couples to the

domain wall Dirac fermions as

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ∂µψα + gϕψ̄αψα +
1

2
ϕ(−∂2)1/2ϕ. (2.61)

The last term in the action is still defined in the (2 + 1)d interface, and it reproduces

the correlation of ϕ in the bulk: ⟨ϕ(0)ϕ(r)⟩ ∼ 1/r2. We stress that, since now the

order parameter resides in the entire bulk, ϕ no longer obeys the boundary scaling as

we discussed in previous examples. A negative boson mass term −rϕ2 can be generated

through the standard fermion mass loop diagram, hence we need to tune an extra term

at the interface to make sure the mass term of ϕ vanishes.

In this case the coupling constant g is a marginal perturbation based on simple

power-counting. But g will flow under renormalization group (RG) with loop corrections
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Figure 2.11: The Feynman diagrams that renormalizes the extra velocity δ in Eq. 2.63.
The box represents the vertex δ, and all three diagrams contributes to the fermion
self-energy and renormalize δ.

in Fig. 2.7(e, f):

β(g) =
dg

d ln l
= − 2

3π2
g3 +O(g5). (2.62)

Hence even in this case, the coupling between the domain wall states and the bulk

quantum critical modes is perturbatively marginally irrelevant.

So far we have assumed that the velocity of the interface state is identical with the

bulk. Now let us tune the velocity of the domain wall Dirac fermions slightly different,

which can be captured by the following term in the Lagrangian:

∑
α

δψ̄α(γ
1∂x + γ2∂y − 2γ3∂3)ψα. (2.63)

δ defined above is an eigenvector under the leading order RG flow. With the loop dia-

grams in Fig. 2.11, we obtain the leading order beta function of δ:

β(δ) =
dδ

d ln l
= − 1

5π2
g2δ. (2.64)

Together with β(g), the velocity anisotropy is also perturbatively irrelevant.
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Figure 2.12: The extra diagrams that contribute to the scaling dimension of
∑

α ψ̄αψα
at the leading order of 1/Nf in QED3. Again the wavy lines are photon propagators.

Interface States of Quantum Antiferromagnet

We now consider a SU(N) quantum antiferromagnet on a tetragonal lattice with a self-

conjugate representation on each site (we assume N is an even integer). With large−N ,

an antiferromagentic Heisenberg SU(N) model has a dimerized ground state [222, 223]

where the two SU(N) spins on two nearest neighbor sites form a spin singlet (valence

bond). We consider the following background configuration of valence bond solid (VBS):

the spins form VBS along the ẑ direction which spontaneously break the translation

symmetry, while there is a domain wall between two opposite dimerizations at the 2d XY

plane z = 0, namely z = 0 is still a mirror plane of the system (Fig. 2.10). In each 1d

chain along the ẑ direction, there is a dangling self-conjugate SU(N) spin localized on the

site at the domain wall. Hence the 2d domain wall is effectively a SU(N) antiferromagnet

on a square lattice.

One state of SU(N) antiferromagnet which is the “parent” state of many orders and

topological orders on the square lattice, is the gapless π−flux U(1) spin liquid [224, 175].

At low energy this spin liquid is described by the following action of (2 + 1)d quantum
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electrodynamics (QED3):

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ(∂µ − iaµ)ψα + · · · (2.65)

ψα is Nf = 2N flavors of 2−component Dirac fermions, and they are the low energy

Dirac fermion modes of the slave fermion fj,α defined as Ŝbj = f †
j,αT

b
αβfj,β, T

b with b =

1 · · ·N2 − 1 are the fundamental representation of the SU(N) Lie Algebra. Besides the

spin components, there is an extra two dimensional internal space which corresponds to

two Dirac points in the Brillouin zone. There is an emergent SU(Nf ) flavor symmetry in

QED3 which includes both the SU(N) spin symmetry and discrete lattice symmetry.

It is known that when Nf is greater than a critical integer, the QED3 is a conformal

field theory (CFT). We will consider the fate of this CFT when the three dimensional bulk

is driven to a quantum phase transition. We will first consider a disorder-to-order quan-

tum phase transition, where the ordered phase spontaneously breaks the time-reversal

and parity symmetry of the XY plane. Notice that due to the reflection symmetry

z → −z of the background VBS configuration, the two sides of the domain wall will

reach the quantum critical point simultaneously. The bulk transition is still described

by Eq. 2.44. When we couple the Ising order parameter ϕ to the domain wall QED3, the

total (2 + 1)d action reads

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγµ(∂µ − iaµ)ψα + gϕψ̄αψα +
1

2
ϕ(−∂2)1/2ϕ. (2.66)

If the gauge field fluctuation is ignored, or equivalently in the large−Nf limit, the scaling

dimension of ψ̄ψ is [ψ̄ψ] = 2, and hence the scaling dimension of g is [g] = 0, i.e. g is

a marginal perturbation. The 1/Nf correction to the RG flow arises from the Feynman
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diagrams (Fig. 2.7(a, b) and Fig. 2.12) which involves one or two photon propagators:

Ga
µν(p⃗) =

16

Nfp

(
δµν −

pµpν
p2

)
. (2.67)

Again in this case the fermions will generate a mass term for the order parameter at the

interface, which we need to tune to zero. At the leading order of 1/Nf the corrected beta

function for g reads

β(g) =
dg

d ln l
= − 128

3π2Nf

g − 2

3π2
g3 +O(g3). (2.68)

But this beta function does not lead to a new unitary fixed point other than the decoupled

fixed point g = 0. Hence in this case the domain wall state is decoupled from the bulk

quantum critical modes in the infrared limit.

A more interesting scenario is when the bulk undergoes a transition which sponta-

neously breaks the translation and C4 rotation symmetry by developing an extra VBS

order within the XY plane. The inplane VBS order parameters are Vx ∼ ψ̄τ 1ψ, and

Vy ∼ ψ̄τ 2ψ, where τ 1,2 are the Pauli matrices operating in the Dirac valley space. The

coupling between the VBS order parameter and the domain wall QED3 reads

Sc =
∫
d2xdτ g

(
ϕ∗ψ̄τ−ψ + ϕψ̄τ+ψ

)
+ ϕ∗(−∂2)1/2ϕ. (2.69)

Here τ± = (τ 1± iτ 2)/2. The scaling dimension of the VBS order parameter at the QED3

fixed point has been computed previously [175, 225, 226]: [ψ̄τaψ] = 2− 64/(3π2Nf ), and

the beta function of g to the leading order of 1/Nf reads

β(g) =
64

3π2Nf

g − 1

6π2
g3 +O(g3). (2.70)
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In the large−Nf limit, the coupling g is marginally irrelevant; but with finite and

large−Nf , g is weakly relevant at the noninteracting fixed point, and it will flow to

an interacting fixed point

g2∗ =
128

Nf

+O(
1

N2
f

). (2.71)

This new fixed point will break the emergent SU(Nf ) flavor symmetry down to

SU(N) × U(1) symmetry, where U(1) corresponds to the rotation of the Dirac valley

space. The following gauge invariant operators receive different corrections to their scal-

ing dimensions from coupling to the bulk quantum critical modes:

[ψ̄ψ] = 2 +
128

3π2Nf

+
2

3π2
g2∗ +O(1/N2

f ),

[ψ̄T bψ] = 2− 64

3π2Nf

+
2

3π2
g2∗ +O(1/N2

f ),

[ψ̄τ 3ψ] = 2− 64

3π2Nf

− 1

3π2
g2∗ +O(1/N2

f ),

[ψ̄τ 1,2ψ] = 2− 64

3π2Nf

+
1

6π2
g2∗. (2.72)

The operators ψ̄τ 1,2ψ have exactly scaling dimension 2, the Feynman diagram contribu-

tions from Fig. 2.7 cancel each other for operator ψ̄τ 1,2ψ as they should. Notice that the

last three operators in Eq. 2.72 should have the same scaling dimension in the original

QED3 fixed point due to the large SU(Nf ) flavor symmetry, but at this new fixed point

they will acquire different corrections.

Another interesting scenario is that the bulk is at a critical point whose order pa-

rameter couples to the Ising like operator ψ̄τ 3ψ, which breaks the inplane parity but
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preserves the time-reversal:

Sc =
∫
d2xdτ gϕψ̄τ 3ψ +

1

2
ϕ(−∂2)1/2ϕ. (2.73)

The microsopic representation of the operator ψ̄τ 3ψ can be found in Ref. 175. The beta

function of the coupling g reads

β(g) =
64

3π2Nf

g − 2

3π2
g3 +O(g3), (2.74)

and once again there is new stable fixed point g2∗ = 32/Nf +O(1/N2
f ). And at this fixed

point,

[ψ̄ψ] = 2 +
128

3π2Nf

+
2

3π2
g2∗ +O(1/N2

f ),

[ψ̄T bψ] = 2− 64

3π2Nf

+
2

3π2
g2∗ +O(1/N2

f ),

[ψ̄τ 1,2ψ] = 2− 64

3π2Nf

− 1

3π2
g2∗ +O(1/N2

f ),

[ψ̄τ 3ψ] = 2− 64

3π2Nf

+
2

3π2
g2∗. (2.75)

The domain wall state considered here is formally equivalent to the boundary state of

a 3d bosonic SPT state with pSU(N) × U(1) symmetry, which can also be embedded

to the 3d SPT with pSU(Nf ) symmetry discussed in Ref. 162. This SPT state can be

constructed as follows: we first break the U(1) symmetry in the 3d bulk by driving the

bulk z < 0 into a superfluid phase, and then decorate the vortex loop of the superfluid

phase with a 1d Haldane phase with pSU(N) symmetry [227, 228, 229, 230]. Eventually

we proliferate the decorated vortex loops to restore all the symmetries in the bulk. A 1d

pSU(N) Haldane phase can be constructed as a spin-chain with a pSU(N) spin on each

site, and there is a dangling self-conjugate representation of SU(N) on each end of the
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chain. And this dangling spin will also exist in the U(1) vortex at the boundary of the

pSU(N) × U(1) SPT state. Notice that the self-conjugate representation of SU(N) is a

projective representation of pSU(N).

2.3.4 Discussion

In this work we systematically studied the interplay of two different nontrivial bound-

ary effects: the 2d edge states of 3d symmetry protected topological states, and the

boundary fluctuations of 3d bulk quantum phase transitions. New fixed points were

identified through generic field theory descriptions of these systems and controlled cal-

culations. We then generalized our study to the 2d states localized at the interface

embedded in the 3d bulk.

The last case studied in Eq. 2.74, 2.75 is special when Nf = 2, and when the gauge

field is noncompact. This is the theory that has been shown to be dual to the EP-NCCP1

model [171, 98] studied in Eq. 2.48, the operator
∑

α r|zα|2 is dual to rψ̄τ 3ψ, and both

theories are self-dual. By coupling the operator ψ̄τ 3ψ to the bulk critical modes (rather

than the boundary fluctuations of the bulk critical points), we have shown that this

(2 + 1)d theory is driven to a new fixed point, and the self-duality structure still holds.

The self-duality transformation of Eq. 2.48 now is combined with the Ising symmetry of

the order parameter ϕ. However, the O(4) emergent symmetry no longer exists at this

new fixed point, due to the nonzero fixed point of g in Eq. 2.73.

The methodology used in this work can have many potential extensions. We can

apply the same field theory and RG calculation to the 1d boundary of 2d SPT states (for

instance the AKLT state), which was studied through exactly soluble lattice Hamiltoni-

ans [33] and also numerical methods [36, 37, 38]. Also, 1d defect in a 3d topological state

can also have gapless modes [231, 232], it would be interesting to investigate the fate
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of a 1d defect embedded in a 3d bulk at the bulk quantum phase transition. Defects of

free or weakly interacting fermionic topological insulator and topological superconductor

coupled with bulk critical modes was studied in Ref. 39, but we expect the defect of

an intrinsic strongly interacting topological state can lead to much richer physics. Last

but not least, the “higher order topological insulator” has nontrivial modes localized at

the corner instead of the boundary of the system [233]. The coupling between the bulk

quantum critical points and corner topological modes is also worth exploration.
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Chapter 3

Quantum Phase Transitions in

Moiré Systems

In this chapter, we continue to discuss the two examples of strongly correlated Moiré

materials introduced in Sec. 1.6, i.e., the magic-angle twisted bilayer graphene and the

TMD heterobilayer MoTe2/WSe2.

Since the discovery of superconductivity and correlated insulator at fractional electron

fillings in the twisted bilayer graphene, most theoretical efforts have been focused on

describing this system in terms of an effective extended Hubbard model. However, it was

recognized that an exact tight-binding model on the Moiré superlattice which captures

all the subtleties of the bands can be exceedingly complicated. In Sec. 3.1, we pursue an

alternative framework of coupled wires to describe the system based on the observation

that the lattice relaxation effect is strong at a small twist angle, which substantially

enlarges the AB and BA stacking domains. Under an out-of-plane electric field which can

have multiple origins, the low energy physics of the system is dominated by interconnected

wires with (approximately) gapless 1d conducting quantum valley hall domain wall states.

We demonstrate that the Coulomb interaction likely renders the wires a U(2)2 (1 + 1)d
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conformal field theory with a tunable Luttinger parameter for the charge U(1) sector.

Spin triplet and singlet Cooper pair operator both have quasi-long range order in this

CFT. The junction between the wires at the AA stacking islands can lead to either a

two-dimensional superconductor or an insulator.

It has been proposed that an extended version of the Hubbard model which po-

tentially hosts rich correlated physics may be well simulated by the transition metal

dichalcogenide (TMD) Moiré heterostructures. Motivated by recent reports of contin-

uous metal-insulator transition (MIT) at half-filling, as well as correlated insulators at

various fractional fillings in TMD Moiré heterostructures, in Sec. 3.2, we propose a theory

for the potentially continuous MIT with fractionalized electric charges. The charge frac-

tionalization at the MIT will lead to various experimental observable effects, such as a

large critical resistivity as well as large universal resistivity jump at the continuous MIT.

These predictions are different from previously proposed theory for interaction-driven

continuous MIT. Physics in phases near the MIT will also be discussed.

3.1 Coupled-Wire Description of Correlated Physics

in Twisted Bilayer Graphene

Surprising correlated physics such as superconductivity and correlated insulator at

fractional electron fillings away from charge neutrality has been discovered in different

systems with Moiré superlattices [234, 235, 236, 237], which motivated a series of active

theoretical studies [238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 36,

252, 253, 254, 141, 255, 256, 257, 258]. These systems have narrow electron bandwidth

near charge neutrality [259, 260, 261, 262], hence interaction effects are significantly

enhanced. In several systems that are microscopically different, for example, (1) the
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heterostructure of trilayer graphene (TLG) and hexagonal boron nitride (hBN), and

(2) twisted bilayer graphene (TBG), (3) twisted double bilayer graphene (TDBG) [263],

insulating behavior was observed at commensurate fractional fillings away from the charge

neutral point [234, 235, 237]; superconductivity has been observed in all these systems

near the insulator phases [236, 237, 264, 263].

A consensus of the mechanism for the observed insulator and superconductor has

not yet been reached. A minimal triangular lattice extended Hubbard model [238] at

least describes the TLG/hBN heterostructure and twisted double bilayer graphene with

certain out-of-plane electric field (displacement field) [239, 265, 266, 267], since in these

cases there is no symmetry protected band touching below the fermi energy, and the

isolated narrow band has trivial topology. This minimal model would then naturally

predict either a spin-triplet [238] or spin-singlet d+ id topological superconductor [240],

depending on the sign of the Hund’s coupling. Signatures of spin triplet pairing predicted

in Ref. [238] was recently found in TDBG [263], though further experiments are demanded

to determine the exact pairing symmetry.

On the contrary, for one of the systems, i.t. the TBG, it was recognized that a

standard tight binding model on the superlattice that captures all the subtleties of the

band structure can be exceedingly complicated, and it may demand as many as ten

bands for each valley and each spin component [140, 268], which makes analytical or

numerical studies of this system very difficult. These results suggest that an alternative

theoretical framework to understand the observed correlated physics is highly desired for

the TBG. Here we pursue a coupled wire network framework to describe the TBG with

a small twisted angle. A similar description based on coupled wires, such as the Chalker-

Coddington model [143, 144], has been used to describe states without local Wannier

orbitals. But in TBG, the coupled wire network description is not just motivated by

theoretical convenience, it is also physically realistic, based on the following observations:
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(1) At small twisted angle, the lattice relaxation and deformation effect is expected

to be strong, and lead to substantially enlarged AB and BA stacking domains [5, 6], and

narrow 1d domain walls.

(2) A displacement field will drive an AB (or BA) stacking bilayer graphene into a

“quantum valley Hall insulator” [269, 270, 271, 272, 273, 274, 275], and this displace-

ment field can be turned on manually experimentally [237], or intrinsically exists in the

system due to lack of ẑ → −ẑ reflection symmetry (strongly asymmetric response to

the displacement field was indeed observed in Ref. [237]), or even be generated sponta-

neously due to interaction [276]. Compared with a single layer graphene, in an AB (or

BA) stacking bilayer graphene, interaction has much stronger effects due to the quadratic

band touching at each valley [277, 278, 279, 280, 281].

(3) Under a uniform displacement field (regardless of its origin), the AB and BA

stacking domains are quantum valley Hall insulators with opposite valley Hall conduc-

tivities, and they are separated by domain walls with conducting 1d states. The long

wavelength modulation of the entire system prohibits large momentum transfer, hence

the valley quantum number is approximately conserved, and the domain wall states are

approximately gapless. These conducting wires (AB/BA domain walls) have been ob-

served directly in numerics [282] and experiment on TBG [7, 283].

In fact, an effective network model has been proposed to describe the noninteracting

physics of the system [145]. In the current work we will focus on the correlated phenom-

ena. Along each 1d wire, there are four counter-propagating localized electron modes,

which without interaction would constitute the U(4)1 conformal field theory (CFT). The

1d fermions carry three quantum numbers: valley (L,R), spin (↑, ↓), and channel (1, 2)
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Figure 3.1: The Moiré superlattice of TBG. If the lattice relaxation and deformation
effect is taken into account [5, 6, 7], the AB/BA stacking domains would be substan-
tially enlarged. There are four (two channels and two spin components) left moving
fermion modes and four right moving modes along each wire (AB/BA domain wall).
The left and right moving fermions differ by a large lattice momentum (orthogonal to
the wires) which is the size of the Brillouin zone of the original honeycomb lattice.

index (Fig. 3.1):

H =

∫
dx

∑
c=1,2

∑
α=↑,↓

iv(ψ†
L,c,α∂xψL,c,α − ψ†

R,c,α∂xψR,cα). (3.1)

The left and right moving modes come from two different valleys (which differ by a

large momentum orthogonal to the wire), and each valley will contribute two channels

of chiral fermions, each with two degenerate spin components. The displacement field in

experiment (for instance 0.5V/nm) corresponds to a much higher energy scale compared

with the sub kelvin environment of the experiments. Thus we can safely assume that

the quantum valley Hall insulators are rather robust and these 1d wires, which form a

triangular lattice network, are dominating the low energy physics.

The most important interaction in the system is still the Coulomb interaction. The
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most noticeable effect of the Coulomb interaction is to energetically favor two electrons

to form a “channel-singlet” state, which is very similar to the mechanism of the standard

Hund’s rule in transition metals. Let us consider two electrons with the following two-

body wave functions ΨA(x1,x2) and ΨB(x1,x2) (x1, x2 are 2d coordinates):

ΨA(x1,x2) ∼ φL,1(x1)φR,2(x2)− φL,2(x1)φR,1(x2)

+ φR,1(x1)φL,2(x2)− φR,2(x1)φL,1(x2), (3.2)

ΨB(x1,x2) ∼ φL,1(x1)φR,2(x2)− φL,2(x1)φR,1(x2)

− φR,1(x1)φL,2(x2) + φR,2(x1)φL,1(x2). (3.3)

Here φL,1(x) represents the spatial wave function of the left-moving fermions (which

comes from one of the two valleys) at channel 1. Both states ΨA,B are “channel singlet”

states (they are antisymmetric in the channel indices), while ΨA is symmetric in the valley

space, ΨB is antisymmetric in the valley space. The spin space wave function was not

written down but can be straightforwardly inferred. Both states cost low energy under

Coulomb interaction, i.e. they have considerable lower energy compared with states that

are symmetric in the channel space, and this energy difference is not suppressed by large

momentum transfer (more detailed estimate will be given in the supplementary material).

Thus the channel space is analogous to the gauged “color space” of spin chains [284, 285],

which must form a color singlet state.

A U(4)1 CFT can be decomposed as

U(4)1 ∼ U(1)e4 ⊕ SU(2)s2 ⊕ SU(2)c2, (3.4)

where SU(2)c2 corresponds to the sector of the channel space. The interaction effect

discussed in the previous paragraph contributes to the marginally relevant term λJ c
L ·J c

R
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in the CFT, where J c
L,R are the left and right Kac-Moody currents of the channel space,

and it will gap out the SU(2)c2 sector of the CFT. The residual degrees of freedom would

form CFT

U(2)2 ∼ U(1)e4 ⊕ SU(2)s2. (3.5)

The U(1)e4 sector of the CFT corresponds to the charge degrees of freedom, and it can be

represented by a pair of conjugate bosons θ and ϕ which satisfy [∇xϕ, θ] = [∇xθ, ϕ] = i.

The SU(2)s2 corresponds to the spin degrees of freedom, and as we discussed before, due

to the prohibition of large momentum transfer, the left and right modes have approx-

imately separate spin SU(2) symmetries. The SU(2)s2 CFT can be represented by a

(1 + 1)d nonlinear sigma model whose order parameter is a SU(2) matrix gαβ, plus a

Wess-Zumino-Witten term at level-2 [286]. The left and right spin symmetry acts on gαβ

as the left and right SU(2) transformations.

Physical operators can be represented as CFT fields. For example, a fermion mass

operator (which is a back-scattering term) can be written as [286]

M̂αβ =
∑
c

ψ†
L,c,αψR,c,β ∼ exp

(
i
√
πϕ
)
gαβ, (3.6)

where gαβ is the spin SU(2) matrix order parameter mentioned previously. Notice that

the mass operator must be a channel singlet, because otherwise it must involve the SU(2)c2

sector, which as we argued is already gapped out.

Likewise, a Cooper pair operator can be written as

∆̂αβ = ϵαγϵcdψL,c,γψR,d,β ∼ exp
(
i
√
πθ
)
gαβ, (3.7)

θ and ϕ are the pair of conjugate bosons that describe the charge sector of the CFT. The
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representation of the mass operator M̂αβ is given in Ref. [286]. The Cooper pair operator

representation can be inferred by defining a new set of fermions: ψ̃L = ϵϵψ†
L, ψ̃R = ψR,

where the two ϵ matrices act in the spin and channel indices respectively. The fermion

operator ψ̃L transforms exactly the same as ψL in the channel and spin space, but carries

opposite charge. The Cooper pair operator in Eq. 3.7 becomes precisely the mass term

(backscattering) between ψ̃L and ψ̃R.

The Cooper pair operator ∆̂αβ is a channel singlet pairing. The pairing matrix ∆̂αβ

can always be expanded as a four component vector (∆0, ∆⃗):

∆̂αβ = ∆012×2 + i∆⃗ · σ⃗. (3.8)

Here ∆0 is a spin singlet pairing order parameter, while ∆⃗ is a spin triplet pairing

order parameter. Together they form a four component vector representation under

the SO(4) ∼ SU(2)L × SU(2)R symmetry. Without a further Hund’s (or anti-Hund’s)

coupling that favors either spin triplet or singlet pairing, these four components pairing

order parameters are all degenerate. In the supplementary material, we discuss a different

method to obtain the CFT field expressions Eq. 3.6 and Eq. 3.7 where the fermion mass

and the Cooper pair operators are treated on equal footing.

The scaling dimensions of the fermion mass and Cooper pair operators are

[M̂αβ] =
3

8
+

1

4K
, [∆̂αβ] =

3

8
+
K

4
, (3.9)

where 3/8 comes from the scaling dimension of the g matrix order parameter in the

SU(2)s2 CFT, and K is the Luttinger parameter in the U(1)e4 CFT. Soon we will see that

these scaling dimensions will determine whether the system becomes superconductor

or insulator due to wire junctions at the AA islands. Notice that both M̂αβ and ∆̂αβ
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can simultaneously have lower scaling dimensions (which implies enhanced correlation)

compared with noninteracting 1d fermion systems, where both operators have scaling

dimensions 1. Thus the interaction which gaps out the SU(2)c channel space indeed

enhances the system’s tendency to form superconductor and insulator.

The U(1)e4 CFT deserves some clarifications. It can always be written as a free boson

theory with the Hamiltonian:

H =

∫
dx

1

2K
(∇xθ)

2 +
K

2
(∇xϕ)

2. (3.10)

θ and ϕ are a pair of conjugate bosons. We can fermionize this theory through standard

procedure, and define new fermion operators as

CL,R ∼ ηL,R exp(i
√
πθ ± i

√
πϕ), (3.11)

where ηL,R are the Klein factors. Then the Cooper pair and the mass term of the new

fermion CL,R should be represented as exp(i
√
4πθ), and exp(i

√
4πϕ). But these Cooper

pairs should correspond to the charge−4e bound state of the electrons, and the mass

term should correspond to a two electron backscattering. This is because under the

assumption of separate left and right spin SU(2) symmetries, a charge−2e Cooper pair,

or a singlet electron back scattering term, cannot be invariant under the SU(2)L×SU(2)R

spin symmetry. Later we will show that the charge−4e U(1)e sector may become relevant

to the finite temperature physics of the system.

The 1d CFTs will intersect at the AA stacking islands, and due to the lattice relax-

ation and deformation, the size of the AA stacking islands has shrunk [5]. Let us first

look at a single AA island which is a junction between CFTs along three directions. At

this junction, the Cooper pairs can tunnel between 1d CFTs along different wires. This

146



Quantum Phase Transitions in Moiré Systems Chapter 3

Josephson tunnelling between CFTs can be described by a (0+1)d action at the junction

S =

∫
dτ
∑
I,J

u0∆
0†
êI
∆0
êJ

+ u1∆⃗
†
êI
· ∆⃗êJ , (3.12)

êI with I = 1, 2, 3 represent wires along three directions that meet at this junction. The

scaling dimension of u0 and u1 are both [u0] = [u1] = 1/4−K/2, where K is the Luttinger

parameter in Eq. 3.10, thus when K < 1/2 even a single junction Josephson Cooper pair

tunnelling becomes relevant, and we expect this Josephson tunnelling to drive the entire

system into a superconductor. If we take into account of the tunnelling between parallel

wires, which happens along the entire 1d wires rather than one junction, then this parallel

tunnelling will be relevant and the entire system becomes a superconductor for K < 5/2.

Here we allow u0 and u1 to be different, which breaks the two separate SU(2) spin

symmetries to its diagonal spin SU(2) symmetry. The AA island has shrunk substantially

due to lattice relaxation, thus the potential modulates at a shorter length scale compared

with other regions of the system, which enhances the large momentum transfer and leads

to the mixing between the left and right SU(2) symmetries. If u0 dominate u1, the system

would favor to form a global spin singlet pairing. Now the global structure of the system

can be mapped to the following classical XY model:

H ∼
∑
r⃗

−V
3∑
I=1

cos(θIr⃗ − θIr⃗+aêI ) + u0

3∑
I,J=1

cos(θIr⃗ − θJr⃗ ) + · · · (3.13)

Here r⃗ denote the AA stacking islands of the lattice, and êI with I = 1, 2, 3 are unit

vectors along the wires (Fig. 3.1). a is the distance between two AA stacking islands,

and θIr⃗ is the phase angle of the spin singlet Cooper pair of wire along direction êI . The

ellipsis in Eq. 3.13 represent other weaker terms allowed by symmetry in the system

Here naturally V > 0, which reflects the fact that along each wire the superconduc-
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wires u0 < 0, s-wave pairing u0 > 0, d+ id or d− id pairing
I = 1 ∆ ∆

I = 2 ∆ ∆e±i
2π
3

I = 3 ∆ ∆e∓i
2π
3

Table 3.1: The SC order parameter along different wires, with u0 < 0 and u0 > 0 in
Eq. 3.13. The index I refers to the wires in Fig. 3.1.

tor order parameter has a quasi long range order and prefers the Cooper pair to have

a uniform pairing phase along the wire. Then when u0 < 0, the Josephson couplings

between different wires are “unfrustrated”, hence the entire system should form a spin

singlet s−wave pairing with a uniform pairing phase; while when u0 > 0, the Josephson

coupling between wires along three directions is “frustrated”. The two terms in Eq. 3.13

demands a uniform θI along direction êI , while wires that intersect each other at one

island will have Cooper pair phases which differ from each other by ±120 degrees. Then

the pairing symmetry of the entire system is identical to the d + id (or d − id) pair-

ing, as under a spatial 60 degree rotation (a cyclic permutation between wires along

three directions), the pairing phase angle changes by ±120 degrees. This d + id pairing

superconductor is a singlet of spin, valley, and channel indices.

When u1 dominates u0 in Eq. 3.12, the system will form a spin triplet superconductor.

As an example let us assume that ∆⃗êI (r⃗) = exp(iθIr⃗)n⃗
I
r⃗ (the real and imaginary parts

of the spin triplet Cooper pair are parallel with each other), which is similar to the

so called “polar state” of Bose-Einstein condensate (BEC) of the spin-1 spinor cold

atoms [287, 288, 289]. Then the effective Hamiltonian of the coupled Josephson wires

reads

H ∼
∑
r⃗

−V
3∑
I=1

n⃗Ir⃗ · n⃗Ir⃗+aêI cos(θ
I
r⃗ − θIr⃗+aêI ) + u1

3∑
I,J=1

n⃗Ir⃗ · n⃗Jr⃗ cos(θIr⃗ − θJr⃗ ) + · · · (3.14)

When u1 < 0, the system forms a uniform s−wave spin triplet pairing. When u1 > 0,
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again the Josephson coupling on every AA island is frustrated, then the system either

forms a uniform state of θ, with a 120 degree “antiferromagnetic” pattern of n⃗, or forms

a d+ id pattern of θ, with a “ferromagnetic” state of n⃗. Other symmetry allowed terms,

or quantum fluctuation may lift the degeneracy of the two scenarios described above.

There is a Z2 gauge transformation shared between exp(iθIr⃗) and n⃗Ir⃗, i.e. the spin

triplet pairing order parameter is invariant under n⃗Ir⃗ → −n⃗Ir⃗ and θIr⃗ → θIr⃗ + π. At any

finite temperature, the vectors n⃗Ir⃗ will be disordered due to thermal fluctuation because

this system is purely two dimensional, then as was predicted in Ref. [238], the super-

conductor vortex at finite temperature will carry magnetic flux quantized as nhc/(4e).

This means that the charge sector will form an effective charge−4e superconductor with

algebraic correlation of charge−4e order parameters. This charge-4e superconductor is

qualitatively the same as the Cooper pair of the fermions CL,R defined before. The same

logic led to fractionalized vortices of the polar state of spin-1 BEC, which was confirmed

numerically in Ref. [289].

At the AA islands, symmetry also allows charge backscattering within each wire. The

charge sector of the system is described by the C fermions defined in Eq. 3.11. CL and

CR come from two different valleys in the bulk, which project to the same momentum

(Dirac crossing) along the 1d domain wall. Upon doping away from charge neutrality,

the CL,R fermion will acquire a fermi wave vector ±δkf away from the Dirac crossing,

thus a backscattering involves a momentum transfer of 2δkf . The backscattering of the

C fermion is described by

S =

∫
dτdx uU(x)

(
C†
LCRe

2iδkfx +H.c.
)

(3.15)

where U(x) is the periodic potential along the wire due to the AA stacking islands.

If the integral along the entire wire
∫
dxU(x)ei2δkfx is nonzero, then this implies that
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2δkf = ±2π/a, where a is the lattice constant of the Moiré superlattice, or the distance

between two AA stacking islands. This implies that there must be extra integer multiple

of ±2e charges between two AA islands on each wire (one C fermion carries charge 2e).

And if wires along two directions acquire +2e between every two neighboring AA islands,

and the wires along the third direction acquire −2e between AA islands, the entire system

becomes an insulator at half-filling away from charge neutrality with +2e charge per unit

cell on the superlattice. The insulator observed at the 1/4 filling should correspond to

two particle backscattering, which is a much weaker effect. The backscattering will be

more relevant with larger Luttinger parameter K.

We also notice that in experiment the resistivity at the same charge density can

strongly depend on the displacement field [237]. This is a natural phenomenon in our

formalism, because a stronger displacement field would lead to a larger gap in the quan-

tum valley Hall insulator, and hence stronger localization of the electron wave function

at the wires. Stronger localization of the domain wall states would lead to a stronger

effective particle density-density interaction in the (1+1)d CFT, and hence a larger Lut-

tinger parameter K based on the standard bosonization formalism. A larger K would

render the backscattering at the AA islands more relevant. This means that the Lut-

tinger parameter K is tunable by the displacement field, and the field can potentially

lead to a metal-insulator transition.

Summary: We study the correlated physics of the TBG based on a coupled wire

framework. The low energy physics of the system is dominated by the conducting wires

which are the domain walls between the AB/BA domains. These domains are enlarged

due to lattice relaxation, and are driven into the quantum valley Hall insulators under a

displacement field which can have multiple origins. The observed superconductivity and

the correlated insulator of the system are interpreted as consequences of the Josephson

tunneling and also backscattering at the AA stacking islands, which are the junctions
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where the wires along three directions meet. One puzzle from the experiment is the

weakness of the insulators at fractional fillings. In our description, the insulating behavior

is due to the backscattering at the AA islands, which is still suppressed due to large

momentum transfer (large momentum transfer orthogonal to the wire, which is still

approximately defined due to the smoothness of the background potential), thus it will

at most lead to a weak correlated insulator. In our formalism, a displacement field can

tune the Luttinger parameter of the CFT, and hence affect the relevance of backscattering

and also charge transport, as was observed experimentally.

3.2 Interaction-Driven Metal-Insulator Transition with

Charge Fractionalization

3.2.1 Introduction

Many correlated phenomena have been observed in graphene-based moiré systems,

such as high temperature superconductivity (compared with the bandwidth of the moiré

bands), correlated insulators [2, 3, 129, 130, 131, 132, 133, 134, 135], and the strange

metal phase [70, 136], etc. The most fundamental reason for the emergence of these

correlated physics is that the slow modulating moiré potential leads to very narrow

bandwidths [138, 139]. Great theoretical interests and efforts have been devoted to the

graphene based moiré systems [290, 291, 248, 249, 292, 293, 294, 295, 254, 296, 297, 298,

299, 300, 301, 302, 303, 304]. But the theoretical description and understanding of the

graphene based moiré systems may be complicated by the fact that in the noninteracting

limit the moiré mini bands can have various types of either robust or fragile nontrivial

topologies [305, 306, 307, 308, 309, 310, 311, 312, 313, 314], although the exact role of

the band topology to the interacting physics at fractional filling is not entirely clear.
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Hence similar narrow band systems with trivial band topology and unambiguous concise

theoretical framework would be highly desirable. It was proposed that much of the

correlated physics of the transition metal dichalcogenide (TMD) moiré heterostructure

can be captured by an extended Hubbard model with an effective spin-1/2 electron on a

triangular moiré lattice [146]

H =
∑
r,r′,α

−tr,r′c†r,αcr′,α +H.c.+
∑
r

Unr,↑nr,↓ + · · · (3.16)

The electron operator cr,α is constructed by states within a topologically trivial moiré

mini band. Due to the strong spin-orbit coupling, the spin and valley degrees of freedom

are locked with each other in the TMD moiré system. We will use α =↑, ↓ or 1, 2 to

denote two spin or equivalently two valley flavors. When a moiré band is partially filled,

the correlated physics within the partially filled moiré mini bands may be well described

by Eq. 3.16, which only contains half of the degrees of freedom of a mini band in a

graphene based moiré system. The ellipsis in Eq. 3.16 can include further neighbor

hopping, “spin-orbit” coupling terms allowed by symmetry [315], and further neighbor

interaction. Note the “spin-orbit” coupling here refers to the hopping terms in Eq. 3.16

that depend on the spin index α and should not be confused with the bare spin-orbit

coupling within the TMD system before the moiré superlattice is imposed. The TMD

moiré systems are hence considered as a simulator for the extended Hubbard model on

a triangular lattice [316].

Like the graphene-based moiré systems, the TMD moiré heterostructure is a plat-

form for many correlated physics. This manuscript mainly concerns the metal-insulator

transition (MIT) driven by interaction. The MIT of the Hubbard model on a triangular

lattice has attracted much numerical efforts recently [317, 318]. The symmetry of the

TMD moiré heterostructure is different from the simplest version of the Hubbard model,
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hence even richer physics can happen in the system. Continuous MIT has been reported

at half-filling of the moiré bands (electron filling ν = 1/2, or one electron per moiré unit

cell on average) in the TMD moiré system [4, 319]. The experimental tuning parameter

of the MIT in the TMD heterostructure is the displacement field, i.e. an out-of-plane

electric field, which tunes the width of the mini moiré bands, and hence the ratio be-

tween the kinetic and interaction energies in the effective Hubbard model. Correlated

insulators have also been observed at various other fractional electron fillings, though

the nature of the MITs at these fractional fillings have not been thoroughly inspected

experimentally [320, 321, 322, 323]. In this manuscript we will mainly focus on ν = 1/2,

but other fractional fillings will also be briefly discussed.

The nature of an interaction driven MIT depends on the nature of the insulator phase

near the MIT. The Hubbard model on the triangular lattice has one site per unit cell,

which based on the generalized Lieb-Shultz-Matthis theorem [20, 22] demands that the

insulator phase at half-filling should not be a trivial incompressible (gapped) state which

preserves the translation symmetry. If the insulator phase has a semiclassical spin order

that breaks the translation symmetry, the evolution between the metal and insulator

could involve two transitions: at the first transition a semiclassical spin order develops,

which reduces the Fermi surface to several Fermi pockets; and at the second transition

the size of the Fermi pockets shrink to zero, and the system enters an insulator phase.

A more interesting scenario of the MIT only involves one single transition [324, 86, 87],

but then the insulator phase is not a semiclassical spin order, instead it is a spin liquid

state with a spinon Fermi surface. An intuitive picture for this transition is that, at the

MIT, the charge degrees of freedom are gapped, but the spins still behave as if there is a

“ghost” Fermi surface. The spinon Fermi surface can lead to the Friedel oscillation just

like the metal phase [325]. The structure of the Fermi surface does not change drastically

across the transition.
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In a purely two dimensional system, conductivity (or resistivity) is a dimensionless

quantity, hence it can take universal value at the order of e2/h (or h/e2) in various

scenarios. For example, the Hall conductivity of the quantum Hall state is precisely

σH = νe2/h; the conductivity (or resistivity) at a (2 + 1)d quantum critical point also

takes a universal value at the order of e2/h (or h/e2) [326]. One central prediction given

by the theory above for interaction driven continuous MIT is that, there is a universal

resistivity jump at the order of ∼ h/e2 at the MIT compared with the metal phase;

and the critical resistivity at the MIT should also be close to the order of h/e2 (we will

review these predictions in the next section). In this manuscript we will argue that the

current experimental observations suggest that the nature of the MIT in MoTe2/WSe2

moiré superlattice without twisting [4] is beyond the previous theory [324, 86, 87], and we

propose an alternative candidate theory of MIT with further charge fractionalizations.

We will discuss how the alternative theory can potentially address the experimental

puzzles, and more predictions based on our theory will be made. Our assumption is

that the MIT in this system is indeed driven by electron-electron interaction (as was

suggested by Ref. 4); If the disorder plays the dominant role in this system, the MIT

may be described by the picture discussed in Ref. 327.

The paper is organized as follows: In section 3.2.2 we introduce an alternative parton

construction for systems described by the extended Hubbard model with a spin-orbit

coupling, which naturally leads to charge fractionalization at the interaction-driven MIT

even at half-filling; we also give an intuitive argument of physical effects caused by charge

fractionalization at the MIT. In section 3.2.3, we will discuss the theory for MIT when the

insulating phase spontaneously breaks the translation symmetry. Section 3.2.4 studies

the theory of MIT when the insulating phase has different types of topological orders.

In section 3.2.5 we discuss various experimental predictions based on our theory, for the

MIT and also the phases nearby. We present the details of our theory in the appendix,
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including the projective symmetry group, field theories, and calculation of DC resistivity,

etc.

3.2.2 Two Parton Constructions

The previous theory for the interaction-driven continuous MIT for correlated electrons

on frustrated lattices was based on a parton construction. The parton construction splits

the quantum number of an electron into a bosonic parton which carries the electric charge,

and a fermionic parton which carries the spin. In the current manuscript we compare

two different parton constructions:

I : cr,α = brfr,α, II : cr,α = br,αfr,α. (3.17)

In parton construction-I only one species of charged bosonic parton b is introduced for

electrons with both spin/valley flavors; while in parton construction-II a separate charged

bosonic parton bα is introduced for each spin/valley flavor. As we will see later, the

two different parton constructions will lead to very different observable effects. The

construction-I is the standard starting point of the theory of MIT that was used in pre-

vious literature [324, 86, 87]; construction-II is usually unfavorable for systems with a

full spin SU(2) invariance, because the parton construction itself breaks the spin rotation

symmetry. But the construction-II is a legitimate parton construction for the system un-

der study, whose band structure in general does not have full rotation symmetry between

the two spin/valley flavors.

The time-reversal symmetry of the microscopic TMD system relates the two spin/valley

flavors. But it is not enough to guarantee a full SU(2) rotation symmetry between the

two flavors. In fact, since the two flavors can be tied to the two valleys of the TMD

material, the trigonal warping of the TMD bands, which takes opposite signs for the
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two different valleys, can lead to the breaking of such an SU(2) rotation symmetry. To

estimate the trigonal warping effect in the Hubbard model, one can compare the k2 term

and the k3x − 2kxk
2
y term in the electron dispersion of one of the two layers in the het-

erostructure expanded at one valley. Then the relative strength of the trigonal warping

compared to the SU(2)-invariant hopping in Eq. 3.16 is given by the ratio between the

lattice constant of the original TMD material and that of the morié superlattice. In addi-

tion, the natural microscopic origin of the interactions in the Hamiltonian Eq. 3.16 is the

Coulomb interaction between the electrons. The Coulomb interaction when projected to

the low-energy bands relevant to the moiré-scale physics is expected to contain SU(2)-

breaking interaction terms. The momentum conservation only guarantees the valley U(1)

symmetry. Assuming the unscreened Coulomb interaction between electrons before the

projection to the low-energy bands, further neighbor interaction will appear in the ex-

tended Hubbard model. The relative strength of the SU(2)-breaking interaction terms

obtained from the projection compared to the SU(2)-invariant interactions can again be

estimated by the ratio between the lattice constant of the original TMD material and

the moiré superlattice, as the Fourier transform of unscreened Coulomb interaction in 2d

space is Vq ∼ 1/q.

The most important difference between these two parton theories resides in the filling

of the bosonic partons. Since each bosonic parton carries the same electric charge as an

electron, the total number of bosonic partons should equal to the number of electrons.

Hence at electron filling ν (meaning 2ν electrons per unit cell), the filling factor of boson

b in construction-I is νb = 2ν, i.e. 2ν bosonic parton per unit cell; in construction-II

the filling factor of boson bα has filling factor ναb = ν for each spin/valley flavor. Hence

even with one electron per site (half-filing or ν = 1/2 of the extended Hubbard model),

the bosonic parton in construction-II is already at half filling for each spin/valley flavor.

The half-filling will lead to nontrivial features inside the Mott insulator phase, as well
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as at the MIT. Another more theoretical difference is that, in construction-I there is

one dynamical emergent U(1) gauge field aµ which couples to both b and fα; while in

construction-II there are two dynamical U(1) gauge fields aα,µ, one for each spin/valley

flavor.

In construction-I, the bosonic parton b is at integer filling, and the MIT is naturally

interpreted as a superfluid to Mott insulator (SF-MI) transition of boson b. At the MIT,

using the Ioffe-Larkin rule [328], the DC resistivity of system is ρ = ρb+ρf , where ρb and

ρf are the resistivity contributed by the bosonic and fermionic partons respectively. ρf

caused by disorder or interaction such as the Umklapp process is a smooth function of

the tuning parameter, the drastic change of ρ across the MIT arises from ρb. In the metal

phase, i.e. the “superfluid phase” of b, ρb is zero, and the total resistivity is just given by

ρf . Also, in the superfluid phase of b, the U(1) gauge field aµ that couples to both b and

fα is rendered massive due to the Higgs mechanism caused by the condensate of b. In

the insulator phase, ρb and ρ are both infinity, and the system enters a spin liquid phase

with a spinon Fermi surface of fα that couples to the dynamical U(1) gauge field aµ.

The MIT which corresponds to the condensation of b belongs to the 3D XY universality

class. The dynamical gauge field aµ is argued to be irrelevant at the transition due to

the overdamping of the gauge field that arises from the spinon Fermi surface [86, 87],

and hence does not change the universality class of the SF-MI transition of b.

In parton construction-I, at the MIT the bosonic parton contribution to the resistivity

ρb is given by ρb = Rh/e2, where R is an order-1 universal constant. In the order

of limit T → 0 before ω → 0, R is associated to the 3D XY universality class [329],

because the gauge field aµ is irrelevant as mentioned above. This universal conductivity

at the 3D XY transition has been studied through various analytical and numerical

methods [326, 330, 331, 332, 333, 334, 335, 336, 337]. At finite T and zero frequency,

the gauge field aµ can potentially enhance the value R to R′ > R, based on a large-N
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calculation in Ref. 111 (N is different from N in our work). The evaluation in Ref. 111

gave R′ ∼ 7.92, while we evaluate the same quantity to be R′ ∼ 7.44. Hence the

prediction of the construction-I is that, the DC resistivity of the system right at the

MIT has a universal jump compared with the resistivity at the metallic phase close to

the MIT [86, 87], i.e. ∆ρ = ρb = R′h/e2. With moderate disorder, at the MIT ρb of

the bosonic parton is supposed to dominate the resistivity ρf of the fermionic parton fα,

hence the total resistivity ρ = ρb + ρf should be close to ρb.

In the experiment on the MoTe2/WSe2 moiré superlattice, it was reported that dis-

order in the system is playing a perturbative role, and the continuous MIT is mainly

driven by the interaction [4]. However, the reported resistivity ρ increases rapidly with

the tuning parameter (the displacement field) near the MIT. The bare value of ρ near and

at the MIT is significantly greater than h/e2 (and significantly larger than the computed

value of ρb ∼ R′h/e2 mentioned above), and it is clearly beyond the Mott-Ioffe-Regel

limit, i.e. the system near and at the MIT is a very “bad metal” [338, 339]. This sug-

gests that the MIT is not a simple SF-MI transition of b, or in other words b should be

“much less conductive” compared with what was predicted in construction-I considered

in previous literature. We will demonstrate that construction-II can potentially address

the large resistivity at the MIT. The most basic picture is that, since b1 and b2 are both

at half-filling, the LSM theorem [20, 22] dictates that the Mott insulator phase of each

flavor of boson cannot be a trivial insulator, namely the Mott insulator must either be

a density wave that spontaneously breaks the translation symmetry, or have topological

order. In either case, the MIT is not a simple 3D XY transition, and the most prominent

feature of the transition is that, the bosonic parton number (or the electric charge) must

further fractionalize.

The MIT with charge fractionalization will be discussed in detail in the next section

using the dual vortex formalism, but the consequence of this charge fractionalization can
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be understood from a rather intuitive picture. Suppose b fractionalizes into N parts at

the MIT, meaning the charge carriers at the MIT have charge e∗ = e/N , then each charge

carrier will approximately contribute a resistivity at the order of h/e2∗ ∼ N2h/e2 at the

MIT; and if there are in total Nb species of the fractionalized charge carriers, at the MIT

the bosonic parton will approximately contribute resistivity

ρb ∼
N2h

Nbe2
. (3.18)

There is a factor of Nb in the denominator because intuitively the total conductivity of

b will be a sum of the conductivity of each species of fractionalized charge carriers, i.e.

σb =
∑Nb

j=1 σj, in the unit of e2/h (a more rigorous rule of combining transport from

different partons will be discussed later). Hence when N2/Nb > 1, the construction-II

with inevitable charge fractionalization can serve as a natural explanation for the large

ρ at the MIT, and it will also predict a large jump of resistivity ∆ρ at the MIT.

3.2.3 Mott Insulator with Translation Symmetry Breaking

General Formalism

In this section we will discuss the MIT following the parton construction-II discussed

in the previous section. The MIT is still interpreted as the SF-MI transition of both

spin/valley flavors of the bosonic parton bα, although as we discussed previously the

insulator cannot be a trivial incompressible state of bα. In the superfluid phase of bα,

both U(1) gauge fields a1,µ and a2,µ that couple to the two flavors of partons are gapped

out by the Higgs mechanism, and the system enters a metal phase of the electrons; b1 and

b2 must undergo the SF-MI transition simultaneously, since the time-reversal or spatial

reflection symmetries both interchange the two flavors of partons due to the spin-valley
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Figure 3.2: The triangular moiré lattice, and its dual honeycomb lattice. In the
parton construction-II, the bosonic parton bα is at half-filling for each spin/valley
flavors, which becomes a π−flux of the dual gauge field Aµ through the hexagon of
the dual honeycomb lattice. Hence the vortex ψ defined on the dual honeycomb lattice
does not have a uniform hopping amplitude, the dashed links on the dual honeycomb
lattice have negative hopping amplitudes. The symmetry of the lattice will be realized
as a projective symmetry group. There are eight dual sites per unit cell (shaded area)
in this gauge choice. At each spin/valley flavor, there are translation symmetries T1,2,
a rotation symmetry R 2π

3
, and a product of reflection Px(x → −x) and time-reversal

T . We also argue that Py is a symmetry of the system as long as there is no valley
mixing; and the six-fold rotation Rπ/3 becomes a good approximate symmetry of the
Hubbard model in the case of long moiré lattice constant.

locking.

The dual vortex theory [340, 18, 341] is the most convenient formalism that describes

a transition between a superfluid and a nontrivial insulator of a boson at fractional filling.

If we start with a boson b, after the boson-vortex duality, a vortex of the superfluid phase

of b becomes a point particle that couples to a dynamical U(1) gauge field Aµ, which

is the dual of the Goldstone mode of the superfluid (not to be confused with the U(1)

gauge field aµ mentioned before that couples to the bosonic parton b). In the dual picture,

the superfluid phase of b (which corresponds to the metal phase of the electron) is the
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insulator phase of the vortex field; while the Mott insulator phase of b corresponds to

the condensate of the vortices, which “Higgses” the U(1) gauge field Aµ, and drives the

boson b into a gapped insulator phase. If at low energy there is only one component of

vortex field with gauge charge 1 under Aµ (which corresponds to integer filling of boson

b), the insulator phase of b is a trivial insulator without any further symmetry breaking

or topological order; if there are more than one component of the vortex fields at low

energy, or if the vortex field carries multiple gauge charges of Aµ, the insulator must be

of nontrivial nature.

For example, when b has a fractional filling νb = 1/q with integer q, Ref. 342, 105

studied the quantum phase transition between the bosonic SF and various MIs with

commensurate density waves which spontaneously break the translation symmetry but

have no topological order. The study is naturally generalized to filling factor νb = p/q

with coprime integers (p, q). We can use this formalism in our system. Hereafter we

focus on one spin/valley flavor α, and the index α will be hidden for conciseness. In this

case the theory for the SF-MI transition at one spin/valley flavor is:

L(1) =
N−1∑
j=0

(|(∂µ − iAµ)ψj |2 + r|ψj |2) + u(
N−1∑
j=0

|ψj |2)2 +
i

2π
A ∧ d(a+ eAext) + · · · (3.19)

Here ψj with j ∈ {0, · · ·N − 1} are N flavors of vortex fields of the boson b at low

energy, and Aµ is the dual gauge field of boson b: 1
2π
dA = Jb, where Jb is the current

of boson b. aµ is the gauge field that couples to both b and f , and Aext is the external

electromagnetic field. The reason there are N flavors of the vortex field is that, the

vortex which is defined on a dual honeycomb lattice will view the partially filled boson

density as a fractional background flux of the dual gauge field Aµ through each hexagon,

and the band structure of the vortex will have multiple minima in the momentum space.

The degeneracy of the multiple minima is protected by the symmetry of the triangular
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lattice. ψj transforms as a representation of the projective symmetry group (PSG) of

the lattice. Notice that since Eq. 3.19 describes one of the two spin/valley flavors, the

PSG that constrains Eq. 3.19 should include translation, and 2π/3 rotation of the lattice

(R 2π
3
). There is another more subtle symmetry PxT for each spin/valley flavor of the

boson and vortex fields. Px that takes x → −x, and time-reversal T both exchange the

two spin/valley indices, but their product will act on the same spin/valley species, and

part of its role is to take momentum ky to −ky.

In the appendix we will argue that Py which takes y to −y within each valley is also a

good symmetry of the system, as long as valley mixing is negligible. One consequence of

the Py symmetry is that the expectation value of gauge flux da can be set to zero for the

theory Eq. 3.19, or equivalently the Py symmetry ensures that the “chemical potential”

term ψ∗
j∂τψj does not appear in Eq. 3.19, as Py transforms a vortex to anti-vortex:

ψa → Uabψ
∗
b . Also, with long moiré lattice constant, the trigonal warping k3x − 3kxk

2
y in

each valley of the original BZ of the system becomes less important compared with the

leading order quadratic dispersion expanded at each valley, hence the six-fold rotation

Rπ/3 becomes a good approximate symmetry of the effective Hubbard model with long

moiré lattice constant.

The theory in Eq. 3.19 also has an emergent particle-hole symmetry. The simplest

choice of the particle-hole symmetry is ψa → Uabψ
∗
b , A→ −A, a→ −a and Aext → −Aext.

Although we used the same transformation matrix Uab as Py, this emergent particle-hole

symmetry is different from Py as it does not involve any spatial transformations. Note

that any (spatially uniform) Py-symmetric terms involving only the “matter fields” ψj

must also preserve this emergent particle-hole symmetry. Another potentially relevant

particle-hole-symmetry-breaking perturbation that needs to be examined is given by the

finite density of the fluxes dA. dA is tied to the physical U(1) charge density (compared

to the charge density set by the fixed electron filling ν = 1/2) and hence should have
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a vanishing spatial average. At the SF-MI transition point, the translation symmetry

of the theory Eq. 3.19 and the fact that dA has a vanishing spatial average guarantee

that dA has a vanishing expectation value everywhere, which respects the particle-hole

symmetry. Therefore, the particle-hole symmetry is a valid emergent symmetry at the

SF-MI critical point described by Eq. 3.19. The same argument would also conclude the

emergent particle-hole symmetry at the ordinary SF-MI transition in the Bose-Hubbard

model.

For parton construction-II, when the electron has filling ν = 1/2, both b1 and b2 are

at filling ναb = 1/2. For each flavor of bα, the formalism in Ref. 105 would lead to a dual

vortex theory with N = 4 components of vortex fields, i.e. there are four degenerate

minima of the vortex band structure in the momentum space for each spin/valley index.

This calculation is analogous to the frustrated Ising model on the honeycomb lattice [343,

344]. Using the gauge choice of Fig. 3.2, the four minima are located at the K and K ′

points of the reduced Brillouin zone (BZ), with two fold degeneracy at each point.

From N = 4 to “N = ∞”

Ref. 105 considered a specific band structure of the vortex, which only involved the

nearest neighbor hopping of vortices on the dual honeycomb lattice. But there is no

fundamental reason that further neighbor hopping of vortices should be excluded. Indeed,

once we take into account of further neighbor hopping, the dual vortex theory has a much

richer possibility. We have explored the phase diagram of the dual vortex theory up to

seventh neighbor hopping, and we obtained the phase diagram in Fig. 3.3a. Further

neighbor hopping of the vortex field can modify the band structure, and lead to N = 6

or N = 12 components of vortex fields by choosing different hopping amplitudes. The

N = 6 minima are located at three inequivalent M points of the reduced BZ (Fig. 3.3),

each M point again has two-fold degeneracy. The two-fold degeneracy at each M point
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Figure 3.3: (a) The minima of the vortex band structure. With nearest neighbor
vortex hopping on Fig. 3.2, the minima locate at the K and K ′ points of the Brillouin
zone, each K point has two fold degeneracy; with further neighbor hoppings, the
minima can shift to the threeM points, still with two fold degeneracy at eachM point.
(b) The phase diagram of vortex modes with seventh neighbor hopping t7 = 0.1t1,
and by tuning t2 there are two regions in the phase diagram with N = 12 vortex
modes at low energy. The 12 vortex modes are located either on the lines between Γ
and K/K ′ or Γ and M . (c) With only t1 and t2, there is a large region of the phase
diagram where there is a ring degeneracy of the vortex band structure. (d) All the
symmetries (including approximate symmetries) of the system can protect up to 24
degenerate vortex modes, which locate at 12 incommensurate momenta in the BZ.

is protected by the translation symmetry of the triangular moiré lattice only, which is

required by the LSM theorem. The shift of the vortex field minima from the K points

to M points is similar to what was discussed in the context of frustrated quantum Ising

models with further neighbor couplings [345, 346]. With symmetries T1,2, R 2π
3
and PxT

at each spin/valley flavor, the degeneracy of the N = 6 minima at the M points are

protected.

There are two regions in the phase diagram in Fig. 3.3b with N = 12 modes of vortex,
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two at each momentum. The six incommensurate momenta at the minima of the vortex

band structure can be located either on the lines between Γ and K/K ′ or Γ andM . With

the Rπ/3 symmetry that becomes a good approximate symmetry with long moiré lattice

constant, the degeneracy of the N = 12 vortex modes is protected. In principle, all the

symmetries together including Rπ/3 can protect up to N = 24 degenerate minima, as

shown in Fig. 3.3d.

For a theory with N components of vortex fields, the electric charge carried by the

boson b will fractionalize. Under the boson-vortex duality 1
2π
dA = Jb, the boson number

of b becomes the flux number of the dual gauge field Aµ. The gauge flux of Aµ is trapped

at the vortex core of each field ψj (we denote the vortex of ψj as φj). With N components

of the vortex fields, the vortex of each ψj field will carry 1/N flux quantum of the gauge

field Aµ, hence the charge e∗ of each fractionalized charge carrier should be e/N at the

MIT. And there are in total Nb = 2N species of the charge carriers (the factor of 2 comes

from the two spin/valley flavors).

With just t1 and t2 (first and second neighbor vortex hopping), there is a large region

of the parameter space where the minima of the vortex band structure form a ring.

This one dimensional ring degeneracy is not protected by the symmetry of the system,

but its effect may still be observable for a finite energy range. A ring degeneracy is

analogous to N = ∞ in Eq. 3.19. Condensed matter systems with a ring degeneracy

have attracted considerable interests [347, 348, 349, 350]. By integrating out the vortices

with ring degeneracy, a “mass term” for the transverse component of Aµ is generated

in the infrared limit [350] (in the limit of momentum goes to zero before frequency),

meaning the fluctuation of Aµ is highly suppressed, which is consistent with the intuition

of N = ∞.

The ellipsis in Eq. 3.19 includes other terms allowed by the PSG of the triangular

lattice, but break the enlarged flavor symmetry of the CPN−1 model field theory. More
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details about PSG, extra terms in the Lagrangian, coupling to fermionic parton fα [351],

and the possible valence bond solid orders with N = 6 will be discussed in appendix A

and B. The exact fate of the critical theory in the infrared is complicated by these extra

perturbations. It was shown previously that nonlocal interactions can drive a transition

to a new fixed point [39, 352, 353], and here nonlocal interactions arise from coupling to

the fermionic partons [351]. Hence the transition may eventually flow to a CFT different

from the CPN−1 theory in Eq. 3.19, or be driven to a first order transition eventually.

But as long as the first order nature is not strong, the charge fractionalization and

large resistivity to be discussed in the next subsection is expected to hold at least for a

considerable energy/temperature window.

So far we have not paid much attention to the dynamical gauge fields aµ in parton

construction-I or aα,µ in construction-II shared by the bosonic and fermionic partons, as

the gauge coupling between b (bα) and the gauge field is irrelevant at the MIT with a

background spinon Fermi surface. Here we briefly discuss the fate of the spinon Fermi

surface in the insulator phase. When the bosonic parton b is gapped, the theory of spinon

Fermi surface coupled with the dynamical U(1) gauge field is a problem that has attracted

a great deal of theoretical efforts [44, 45, 46, 48, 49, 50, 51]. These studies mostly rely

on a “patch” theory approximation of the problem, which zooms in one or two patches

of the Fermi surface. Then an interacting fixed point with a nonzero gauge coupling is

found in the IR limit based on various analytical perturbative expansion methods.

Previous studies have also shown that the non-Fermi liquid obtained through coupling

a Fermi surface to a dynamical bosonic field can be instable against BCS pairing of

fermions [354, 355, 356, 357, 358, 359, 360]. If there is only one flavor of U(1) gauge

field, the low energy interacting fixed point is expected to be robust against this pairing

instability, because the U(1) gauge field leads to repulsive interaction between the spinons.

However, when there are two flavors of U(1) gauge fields [360, 361], like the case in our
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parton construction-II, the two U(1) gauge fields can lead to interflavor spinon pairing

instability. This interflavor pairing can still happen at the MIT. But depending on the

microscopic parameters this instability can happen at rather low energy scale.

Resistivity at the MIT

For low frequency and temperature, the resistivity of a system is usually written as

ρ(x) with x = ω/T . The DC conductivity at zero temperature corresponds to x = 0,

i.e. the limit ω → 0 before T → 0. As we have mentioned, the interaction driven MIT

has a jump of resistivity at the MIT compared with the metal phase near MIT, and this

jump is given by the resistivity ρb of the bosonic parton bα. For a bosonic system with

an emergent particle-hole symmetry in the infrared, ρb(x) with x = 0 or x = ∞ have

attracted most studies. In general both ρb(0) and ρb(∞) should be universal numbers at

the order of ∼ h/e2. The reason ρb(0) could be finite even without considering disorder

and Umklapp process is that, with an emergent particle-hole symmetry in the infrared

discussed in the previous subsection, there is zero overlap between the electric current

and the conserved momentum density (extra subtleties about this from hydrodynamics

will be discussed in section VI). The universal ρb(0) was evaluated in Ref. 111 for the

interaction-driven MIT without charge fractionalization. The calculation therein was

based on Boltzmann equation in a theoretical large−N limit and eventually N was taken

to 1 (we remind the readers that the N introduced in Ref. 111 was for technical reasons,

it is not to be confused with N used in this work).

We have generalized the computation in Ref. 111 to our case with N−components of

vortex fields and charge fractionalization. To proceed with the computation we need to

turn on “easy plane” anisotropy to Eq. 3.19 and perform duality to the basis of fractional

charge carriers φj (Eq. B.44). The φj will be coupled to multiple gauge fields which are

the dual of the ψj fields. Eventually the total resistivity ρb(0) is obtained through a
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generalized Ioffe-Larkin rule, which combines the resistivity of each parton φj into ρb:

ρb =
ℏ
e2

(
N−1∑
j=0

ρb,j

)
. (3.20)

ρb,j is the resistivity of each charge carrier φj when its charge is taken to be 1. The detail

of the computation is presented in the appendix, and we summarize the results here.

For N flavors of vortices in Eq. 3.19, the resistivity ρb(0) at the MIT roughly increases

linearly with N , as was expected through the intuitive argument we gave before:

ρb(0) = ∆ρ =
(
R(0) +R(1)(N − 1)

) h
e2
, (3.21)

where R(0) ∼ 3.62, R(1) ∼ 1.68. We would like to compare our prediction with the

previous theory of MIT without charge fractionalization. In the previous theory, the DC

resistivity jump is evaluated to be ∆ρ ∼ 7.92h/e2 [111] (we reproduced this calculation

and our result at N = Nb = 1 is 7.44h/e2). Eq. 3.18 suggests that when N ≥ 4, the

resistivity jump in our case is indeed larger than that predicted by the previous theory

of MIT.

We would also like to discuss the AC resistivity ρb(∞). One way to evaluate ρb(∞) is

to again start with Eq. B.44, and follow the same strategy as the calculation of the DC

resistivity. According to the generalized Ioffe-Larkin rule, the AC resistivity contributed

by each valley is given by

ρb = N
1

σφ

ℏ
e2
, σφ = lim

ω→0

1

iω
⟨JφωJ

φ
−ω⟩p⃗=0, (3.22)

where Jφ = iφ∗
j∇φj + h.c. is the current of the charge carrier φj. With the theoretical

large-N limit mentioned above, the effects of all the dynamical gauge fields are sup-
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pressed, and φj will contribute conductivity σφ(∞) = 1
16

(contrary to DC transport,

σφ(∞) does not need collisions; the effects of dynamical gauge fields can be included

through the 1/N expansion). Eventually one would obtain resistivity from each valley

ρb =
8N

π

h

e2
, (3.23)

the final resistivity of the system is half of Eq. 3.23 due to the two spin/valley flavors.

With N = 1, the transition should belong to the ordinary 3D XY universality class, and

the value given by Eq. 3.23 is not far from what was obtained through more sophisticated

methods (see for instance Ref. 332, 331, 333, ρb ∼ 2.8h/e2). This should not be surprising

as the 3D XY universality class can be obtained perturbatively from the free boson theory.

In our current case with charge fractionalization, with N ≥ 4, the total AC resistivity

which is half of the value in Eq. 3.23 is larger than the universal resistivity at the 3D XY

transition.

Another way to evaluate the resistivity of Eq. 3.19 is by integrating out ψj from

Eq. 3.19, and an effective Lagrangian for Aµ is generated

L =
∑
pµ

Np

16

(
δµν −

pµpν
p2

)
Aµ(p)Aν(−p). (3.24)

This effective action is supposed to be accurate in the limit of N → ∞. The electric

current carried by b is J b = e
2π
dA, hence the current-current correlation can be extracted

from the photon Green’s function based on the effective action Eq. 3.24:

ρb,N→∞ =
πN

8

h

e2
. (3.25)

Again the final resistivity of the system is half of Eq. 3.25 due to the two spin/valley

flavors. The evaluation Eq. 3.25 is still proportional to N just like Eq. 3.23. These two
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different evaluations discussed above give different values for N = Nb = 1, and compared

with the known value of the universal resistivity at the 3D XY transition, the evaluation

in Eq. 3.23 is much more favorable, though the evaluation Eq. 3.25 based on Eq. 3.24 is

supposed to be accurate with large N .

When there is a ring of degeneracy in the vortex band structure, as we mentioned

before the gauge field Aµ will acquire a “mass term” after integrating out ψj [350]. In

this case the resistivity of the system at the MIT will be infinity, as the dynamics of Aµ is

fully suppressed by the mass term in the infrared. One can also integrate out the action

of Aµ with the mass term, and verify that the response theory of Aext is no different from

that of an insulator in the infrared limit. This is consistent with both Eq. 3.23,3.25 by

naively taking N to infinity. In Ref. 350 when the boson field has a ring degeneracy, the

phase is identified as a bose metal; this is because in Ref. 350 it is the boson with ring

degeneracy that carries charges. But in Eq. 3.19 the electric charge is carried by the flux

of Aµ.

3.2.4 Mott Insulator with Topological Order

As we explained in the previous subsection, due to the fractional filling of boson bα,

the vortex dynamics is frustrated by the background fractional flux through the hexagons.

To drive the system into an insulator phase, the vortex can either condense at multiple

minima in the BZ as was discussed in the previous section, or form a bound state that

carries multiple gauge charge of Aµ and become “blind” to the background flux. In

parton construction-II, with electron filling ν = 1/2, each flavor of boson is at filling

νb = 1/2. The double-vortex, i.e. bound state of two vortices, or more generally the

bound state of N vortices with even integer N , no longer see the background flux. Hence

the N -vortex can condense at zero momentum, and its condensate will drive the system
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into a ZN topological order.

After the boson-vortex duality, the theory for the N -vortex condensation at one of

the two spin/valley flavors is

L(2) = |(∂µ − iNAµ)ψ|2 + r|ψ|2 + g|ψ|4 + i

2π
A ∧ d(a+ eAext) + · · · (3.26)

The condensate of ψ will break the U(1) gauge field to a ZN gauge field, whose deconfined

phase has a nontrivial ZN topological order. In the ZN topological order as well as at

the MIT, the charge carrier is an anyon of the ZN topological order, and it carries charge

e∗ = e/N . We still label the fractional charge carrier as φ. φ carries charge e/N , and

is coupled to a ZN gauge field originated from the ZN topological order discussed in the

previous paragraph.

In our case, in order to preserve the time-reversal symmetry, both spin/valley flavors

should form a ZN topological order simultaneously. Hence there is one species of φα

field for each spin/valley flavor. The MIT can equally be described as the condensation

of the φα field, and since the ZN gauge field does not lead to singular correction in the

infrared, the condensation of φα is a 3D XY∗ transition, and the transition for N = 2 was

discussed in Ref. 197, 362, 22, 182, 183, 363. The bα field is now a composite operator of

φα. In the condensate of φα, the electron operator cα is related to the fermionic parton

operator fα through cα ∼ ⟨bα⟩fα ∼ ⟨φNα ⟩fα. The coupling between the two flavors of φα,

i.e. the coupling |φ1|2|φ2|2 is irrelevant at the decoupled 3D XY∗ transition according

to the known critical exponents of the 3D XY∗ transition. There are also couplings

such as |φα|2f †
αfα allowed by all the symmetries, but after formally integrating out the

fermions, the generated couplings for φα is also irrelevant at the two decoupled 3D XY∗

universality class. The reason is that after formally integrating out the fermions, terms

such as |ω|
q
|φα|2ω,q⃗|φβ|2−ω,−q⃗ can be generated, but this term is irrelevant knowing that the
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standard critical exponent ν > 2/3 for the 3D XY∗ transition.

Following the large−N calculation discussed before, the DC resistivity jump ρb(0)

would be N2/2 times that of the previous theory [111], namely

ρb(0) ∼ R(2)N2 h

e2
, (3.27)

where R(2) = R′/2 ∼ 3.7 based on our evaluation. The AC resistivity jump at the MIT

is enhanced by the same factor compared with the previous theory. We also note that

the fractional universal conductivity at the transition between the superfluid and a Z2

topological order was observed numerically in Ref. 363.

Another set of natural topological orders a boson at fractional filling can form are

bosonic fractional quantum Hall (bFQH) states which are close analogues to the bosonic

Laughlin’s wave function. We would like to discuss this possibility as a general explo-

ration, although this state breaks the Py symmetry (but it still preserves the product PxT

symmetry). If we interpret the half-filled boson at each site as a quantum spin-1/2 sys-

tem, this set of states are analogous to a chiral spin liquid [364, 365]. The Chern-Simons

theory for this set of states at each valley reads

Lcs = − ik

4π
A ∧ dA+

i

2π
A ∧ d(a+ Aext), (3.28)

with an even integer k and a dynamical Spinc U(1) gauge field A. The topological order

characterized by this theory is the SU(k)1 topological order. Here, the integer k needs to

be even so that this theory is compatible with the LSM constraint imposed by the boson

filling 1/2 on the lattice [366]. This is because the boson filling 1/2 requires the topological

phase to contain an Abelian anyon that carries a fractional charge 1/2 (modulo integer).

There should be one such anyon per unit cell to account for the boson filling 1/2 on the
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lattice. The fact that such an anyon carries a fractional charge 1/2 implies that this

anyon should generate under fusion an Abelian group Zp with p an even number. Such

a fusion rule is incompatible with any odd value of k. Therefore, k needs to be even in

the theory given by Eq. 3.28. The time-reversal of the TMD moiré system demands that

the bosonic parton bα with opposite spin/valley index α forms a pair of time-reversal

conjugate bFQH states. Or in other words if we take both spin/valley flavors together,

this state is a fractional topological insulator, like the state discussed in Ref. 367.

The MIT is now a direct transition between the bFQH state and the superfluid of

bα. When the even integer k is k = 2n2 with odd integer n, there is a natural theory

for this direct continuous transition, and its simplest version with n = 1 was proposed

in Ref. 368. The transition is a 3D QED with two flavors of Dirac fermions coupled to

the dynamical U(1) Spinc gauge field Aµ (the dual of the Goldstone mode of the boson

superfluid) with a Chern-Simons term at level-n2, and the fermions have gauge charge-n:

L(3) =

2∑
j=1

χ̄jγ · (∂ − inA)χj +Mχ̄jχj −
in2

4π
A ∧ dA+

i

2π
A ∧ d(a+ eAext) + · · · (3.29)

In this theory, the fact that A is a Spinc U(1) gauge field and that n is odd guarantee

that this theory describes the phases of a boson. A Spinc connection Aµ means a U(1)

gauge field with a “charge-statistics relation”: there is no fermionic object that is neutral

under Aµ. When Aµ is a Spinc U(1) gauge field, and n is an odd integer in Eq. 3.29,

Eq. 3.29 describes an interacting state of bosons that carries electric charge e. The

charge−e object of Eq. 3.29 that is also neutral under Aµ, is a composite of 2π flux of

Aµ and n fermions χ. This composite is a boson as long as n being an odd integer, and

this composite should be identified as bα in Eq. 3.17. The ellipsis in this Lagrangian

includes other terms such as the Maxwell term of the gauge field Aµ. Please note that

this equation is for one of the two spin/valley flavors of the physical system. The mass
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M of the Dirac fermions is the tuning parameter of the transition. With one sign of

the mass term, after integrating out the Dirac fermions, the Spinc U(1) gauge field A

will acquire a Chern-Simons term at level −2n2, which describes the SU(k)1 topological

order with k = 2n2. With the opposite sign of M , there is no Chern-Simons term of

the gauge field A after integrating out the Dirac fermions, and the Maxwell term of the

gauge field A is the dual description of the superfluid phase. Hence by tuning M the

system undergoes a transition between the k = 2n2 bFQH state and the superfluid state

of b (the metal phase of the original electron system).

The translation symmetry of the system actually guarantees that the two flavors of

Dirac fermions are degenerate in Eq. 3.29. If these two Dirac fermions are not degenerate,

an intermediate topological order is generated by changing the sign of the mass of one of

the Dirac fermions in Eq. 3.29. Then after integrating out the fermions, the gauge field

A acquires a total CS term with an odd level −n2, which violates the LSM constraint

imposed by the boson filling 1/2. Therefore, the masses of the two flavors of the Dirac

fermions in Eq. 3.29 should be the same. In fact, for the simplest case with n = 1 (k = 2),

an explicit parton construction of this transition can be given following the strategy in

Ref. 368, and the two Dirac fermions in Eq. 3.29 are two Dirac cones of a π−flux state of

χ on the triangular lattice. The degeneracy of these two Dirac fermions is protected by

the translation symmetry of the triangular lattice. From the parton formalism one can

also see that the boson b is constructed as a product of the two fermions χi.

At the transition M = 0, though it is difficult to compute the resistivity of Eq. 3.29

exactly, the resistivity ρ(x) should scale as 1/k with large k ∼ n2, as after integrating

out χj the entire effective action of A scales linearly as k. Then after integrating out A,

the response theory to Aext is proportional to 1/k.
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3.2.5 Summary of Predicted Physical Properties

So far we have discussed three different kinds of possible Mott insulators at half filling

of the extended Hubbard model, based on the parton construction-II: (1) Mott insulators

with translation symmetry breaking; (2) a ZN topological order at each spin/valley flavor

with even integer N ≥ 2; and (3) a pair of conjugate bFQH states at two spin/valley

flavors. For all scenarios, we have evaluated the bosonic parton contribution to the

resistivity ρb at the MIT, which is also the universal jump of resistivity ∆ρ. The predicted

resistivity jump for the three scenarios are summarized in the table below.

Nature of Insulator ∆ρ, or ρb
(1) Density wave ρb(0) ∼ (R(0) +R(1)(N − 1)) h

e2

(2) ZN TO each flavor ρb(0) = R(2)N2 h
e2

(3) Conjugate bFQH ρb(x) ∼ 1
k
h
e2

Another observable effect predicted by the previous theory of interaction-driven MIT

is the scaling of quasi-particle weight
√
Z near the MIT [86, 87], where

√
Z ∼ rβ1 ∼ |r|0.33.

Our theory also gives a different prediction of the quasi-particle weight compared with

the previous theory, and this is most conveniently evaluated for scenario (2). In the metal

phase but close to the MIT, the quasi-particle weight scales as

√
Z ∼ ⟨φNα ⟩ ∼ |r|βN , (3.30)

where βN = ν∆N . ν ∼ 0.67 is the standard correlation length exponent at the 3D XY∗

transition (it is the same as the 3D XY transition) and ∆N is the scaling dimension of φN

at the 3D XY transition. These exponents can be extracted from numerical simulation

on the 3D XY and XY∗ transitions. For example, when N = 2, β2 should be close to

0.8 [197, 362, 369], hence
√
Z ∼ |r|0.8. The scaling of quasi-particle weight can be checked

in future experiments through the measurement of local density of states of electrons.

For scenario (1), i.e. where the insulator has translation symmetry breaking, the
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scaling of quasiparticle weight can be estimated with large-N in Eq. 3.19. The boson

creation operator b† is a monopole operator of Aµ which creates a 2π gauge flux. With

large-N in Eq. 3.19 the monopole operator has scaling dimension proportional to N [370,

371], hence the critical exponent β in the quasiparticle weight
√
Z ∼ |r|β is expected

to be proportional to N . The similar evaluation applies to Eq. 3.29, and the creation

operator b† has a scaling dimension proportional to k, which is also proportional to
√
Z.

As we explained, our theory provides a natural explanation of the anomalously large

resistivity at the MIT. Another qualitative experimental feature reported in Ref. 4 is

that, the resistivity drops rapidly as a function of temperature at the MIT where the

charge gap vanishes. Our theory also provides a natural explanation for the temperature

dependence of the critical resistivity. At zero temperature the bosonic chargeon parton b

fractionalizes into multiple partons with smaller charges, and these partons will couple to

extra gauge fields. These extra gauge fields will all confine at finite temperature. Hence

at finite temperature, there is a crossover from transport with fractionalized charge to

unfractionalized charge, which will cause a significant drop of resistivity with increasing

temperature.

In the following paragraphs we discuss physics in phases near the MIT, based on our

theory. These analysis can distinguish the three possible scenarios discussed to this point.

Let us first discuss the insulator phase at fixed electron filling ν = 1/2. The scenario

(3) describes a topological order that is essentially a topological fractional quantum spin

Hall insulator, hence this insulator phase, if does exists, must have nonchiral gapless

modes localized at the boundary of the system. This nonchiral edge gapless modes

should lead to similar experimental phenomena as the experiments on quantum spin Hall

insulator [372]; but rather than edge conductance 2e2/h, the edge conductance of the

fractional quantum spin Hall insulator should be 2e2/(kh), which is twice of the edge

conductance of the bFQH state with CS level-k. Also, the edge conductance should be
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suppressed by external magnetic field, also analogous to what was observed in Ref. 372.

The insulating phase of scenario (1) and scenario (2) also lead to distinctive pre-

dictions. In scenario (1), the electric charges are only deconfined at the MIT, but still

confined in the insulating phase, which has no topological order. Hence the charge de-

confinement of scenario (1) is analogous to the original deconfined quantum critical point

discussed in Ref. 182, 183. The confinement of fractional charges in scenario (1) happens

even at zero temperature in the insulating phase. However, in scenario (2), the insula-

tor phase has a ZN topological order that supports deconfined fractional charge at zero

temperature even in the insulator phase. While at finite temperature, the ZN gauge field

will lead to confinement of fractional charges with confinement length ξ ∼ exp(c∆m/T ),

where ∆m is the gap of the fractionalized ZN gauge fluxes, which is an anyon with non-

trivial statistics with the fractional charges. If we look at the insulator phase close to

the MIT, the gap of the fractional charge, i.e. the e−anyon of the ZN topological order

is suppsosed to be smaller than ∆m, as the MIT corresponds to the condensation of the

e−anyon, hence at very low temperature the thermally activated e−anyon has a much

smaller distance le with each other compared with ξ. Then at low but finite temperature

the transport is governed by charge carriers with gap ∆e and charge e∗ = e/N . The

gap ∆e can be extracted from fitting the low temperature transport data versus tem-

perature. However, if one measures the tunnelling gap through tunnelling spectroscopy,

since the external device can only inject a single electron which fractionalizes into multi-

ple e−anyons, the tunneling gap should be approximately N∆e. This contrast between

tunneling gap and the thermally activated transport gap happens in scenario (2) but not

scenario (1).

We also consider the metallic phase next to the insulator after charge doping, and we

will see the scenario (2) also leads to very nontrivial predictions due to the deconfined

nature of the ZN topological order. In scenario (2), after some charge doping, we expect
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a metallic state with charge fractionalization at low temperature. The bosonic charge

carriers are coupled to the ZN gauge field as well as the U(1) gauge field aµ that are shared

with the fermionic partons fα. When the temperature is increased, the ZN gauge field will

confine, and due to the time-reversal symmetry, the confine-deconfine crossover should

happen for both spin/valley flavors simultaneously. In the following, we shall only focus

on one spin/valley. According to the Ioffe-Larkin composition rule, the total resistivity is

composed of contributions from both bosonic and fermionic partons ρ = σ−1 = σ−1
b +σ−1

f .

Let us assume the resistivity of both the bosonic and fermionic sectors are dominated

by the scattering with the gauge field aµ (this of course assumes that the momentum of

the gauge field aµ can relax through other mechanism such as disorder). This scattering

mechanism was first evaluated in Ref. 373. The gauge-field propagator can be written as

D(ω, q)−1 = iγω/q + χdq
2, where the ω/q term is due to the Landau damping from the

fermi-surface, and the “diamagnetic” χd is roughly a constant within the temperature

window of interest. The scattering rate can then be estimated using the imaginary part

of the boson/fermion self-energy:

ImΣb,f (ω,k) =

∫ ∞

0

dω′
∫

d2k′

(2π)2
(1 + nb(ω

′))(1± nb,f (ωk′))

(kα + k′α)(kβ + k′β)

2mb,f

δαβ − qαqβ
q2

δ(ω − ωk′ − ω′)ImD(ω′, q), (3.31)

where q = k′−k, nb,f (ω) denotes the Bose-Einstein (Fermi-Dirac) distribution function,

and mb,f is the boson/fermion mass. We must stress that the expression of Σb,f is valid

for partons with gauge charge-1. When the ZN gauge field is deconfined, each boson

carries the gauge charge-1/N of the gauge field aµ, and therefore there is an additional

factor 1/N2 in the self-energy. The integral was evaluated in Ref. 373, and the time-scale

responsible for transport has an extra factor proportional to q2 in the integral. After
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taking these into account, we obtain the “transport” scattering rate for boson/fermion

1

τf
∼ T 4/3,

1

τb
≈ kBT

mbχd
. (3.32)

Comparing 1/τb and 1/τf , we can see that the resistivity is dominated by the boson-

gauge scattering at low temperature, and the bosonic partons are in a disordered phase

rather than a quasi long range order at finite temperature due to their coupling to the

dynamical gauge field aµ. We take the Drude formula for the dilute Bose gas that we use

to model the bosonic partons at finite temperature:

ρ ∼ mb

n∗e2∗

1

τb
∼ g2∗
n∗e2∗

kBT

χd
, (3.33)

where e∗ = e/N and g∗ = 1/N denote the electric and gauge charges of bosons, and n∗e∗

is the doped physical electric charge density. Here, we have assumed that the resistivity

ρ is dominated by the boson contribution because (i.) the scattering rate of the boson is

bigger compared to the fermions at low temperature as shown in Eq. 3.32, and (ii.) the

bosons have much lower density at low charge doping compared to the fermions which

already has finite fermi surface at zero charge doping. In the following discussion, we

will work under these assumptions at least up to the temperature scale Tc around which

the ZN gauge becomes fully confined.

The ZN gauge field is fully confined when ξ is at the same order as the lattice constant;

i.e. T > Tc ∼ ∆m. Here we assume that the gauge field aµ that is coupled to the fermionic

parton is less prone to confinement due to its coupling to the large density of gapless

fermoins. Above Tc, the charge carriers in the system carry charge-e. The equation

above still hold with the substitutions e∗ → e = Ne∗, g∗ → g = Ng∗, n∗ → n = n∗/N .

We expect there is a crossover from the deconfined value of resistivity ρ(T ∼ 0) to the
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confined value ρ(T ≥ Tc):

(dρ/dT )T≥Tc
(dρ/dT )T∼0

∼ N, (3.34)

This is an observable effect of scenario (2) that can be experimentally verified. Note that

the crossover caused by confinement at the metallic phase is different from the critical

point of the MIT; as transport at the critical point originates from rather different physics;

for example both particles and holes will contribute to the charge transport at the critical

point [374].

Contrary to the Ioffe-Larkin rule, the total thermal conductivity of the system is a sum

of the contribution from the bosonic parton, fermionic parton, and also the gauge boson.

With low charge doping away from ν = 1/2, we expect the fermionic partons dominates

the thermal transport according to Ref. 375: κf ∼ T 1/3. As we discussed above, in

scenario (2) the low-temperature charge transport is dominated by the boson contribution

σb ∼ 1/T , while the thermal transport is dominated by the fermion contribution κf ∼

T 1/3. Due to the crossover of charge transport at finite temperature caused by the

confinement of the ZN gauge field in scenario (2), there is also an observable prediction

one can make for the Lorentz number L = κ/(Tσ) ≈ κf/(Tσb):

(L/T 1/3)T≥Tc
(L/T 1/3)T∼0

∼ N. (3.35)

3.2.6 Summary, Discussion, & Other Fractional Fillings

In this work we proposed a theory for a potentially continuous metal-insulator transi-

tion for the extended Hubbard model on the triangular lattice at half-filling (one electron

per unit cell). The extended Hubbard model is simulated by the TMD moiré systems.

We introduce a different parton construction from the previous literature, which leads
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to a series of observable predictions. We demonstrated that our theory is more favorable

given the current experiments on the heterobilayer TMD moiré systems. Although our

theory was motivated by the recent experiments on MoTe2/WSe2 moiré superlattice [4],

we envision our theory can have broad application given the recent rapid progresses in

synthesizing pure two dimensional systems.

The moiré potential in the MoTe2/WSe2 moiré superlattice with no twisting is formed

due to the mismatch of the lattice constants of the two layers. There is another experi-

ment on MIT in twisted WSe2 [319]. The situation in twisted WSe2 seems rather different

from MoTe2/WSe2 moiré superlattice. Inside the “insulator phase”, the resistivity ρ(T )

at some displacement fields first increases with decreasing temperature, and eventually

the plot seems to saturate at a finite value, which is much lower than the resistivity ob-

served in the MoTe2/WSe2 moiré superlattice near the MIT. Hence the MIT of twisted

WSe2 could be of a different nature, between the metallic phase and the insulator phase,

there could be an intermediate phase with an order at nonzero momentum and reduced

size of electron Fermi pockets.

Correlated insulators at other fractional fillings ν = p/q have been reported in various

TMD moiré systems [320, 321, 322, 323]. Although the nature of the MIT at these fillings

has not been looked into carefully, here we briefly discuss the theory for the possible

continuous MIT at general fractional filling ν = p/q. As long as q > 2, even for parton

construction-I, the bosonic parton b will have fractional filling, and hence the insulator

phase of b cannot be a trivial incompressible state without translation symmetry breaking

or topological order. Here we would like to acknowledge that charge fractionalization for

interacting electron system at fractional electron number per unit cell was discussed in

previous literature [376], using similar formalism as the parton construction-I. At electron

filling ν = 1/q, the boson filling νb = 2/q; if we only consider nearest neighbor hopping of

the vortex, the insulator has commensurate density wave that spontaneously breaks the
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translation symmetry, and the MIT is described by Eq. 3.19 with N = q for odd integer

q; N = q/2 for q = 4k + 2; and N = q for q = 4k. The electron charge will further

fractionalize at the continuous MIT. In parton construction-I, there are in total N species

of the charge carriers each carrying electric charge e∗ = e/N . Hence the estimate of ρb is

ρb ∼ Nh/e2.

For parton construction-II, with electron filling ν = 1/q, the boson filling for each

spin/valley flavor is νb = 1/q. Again, if only nearest neighbor hopping of the vortices

is considered, the MIT is described by Eq. 3.19 with N = q for odd integer q; N = 2q

for even integer q. The field theory describing the MIT is two copies of Eq. 3.19: ψj,

Aµ and aµ should all carry a spin index α. There are in total Nb = 2N species of

the charge carriers each carrying electric charge e∗ = e/N . Hence the estimate of ρb is

ρb ∼ Nh/(2e2). If we consider further neighbor hopping like section 3.2.3, the charge

carriers may carry even smaller fractional charge, and hence larger ρb.

Here, we would like to discuss some subtlety regarding the conductivity σb of the

bosonic parton. In a generic theory with momentum conservation, one expects a finite

overlap between the electric current and the conversed momentum. Such a finite overlap

would lead to a Drude peak in the (optical) conductivity (see Ref. 374 for a review)

σ(ω) = σQ+D
(
i
ω
+ δ(ω)

)
where D > 0 is the Drude weight and ω is the frequency. In a

theory with an exact particle-hole symmetry, this overlap between the electric current and

momentum is strictly zero and, consequently, the Drude weight D vanishes. In the MIT

considered in this paper and previous literature such as Ref. 324, 86, 111, the theories that

govern the bosonic partons all have an emergent particle-hole symmetry. This emergent

particle-hole symmetry is expected to produce a Drude weight that vanishes at zero

temperature, namely D → 0 as T → 0. If there is a finite momentum relaxation time

τp induced by for example disorder, the Drude peak should take the form D
τ−1
p −iω and

should be viewed as an extra correction, when we take ω → 0, to the bosonic parton DC
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conductivity σb calculated for the MIT. Since D vanishes as T → 0 due to the emergent

particle-hole symmetry, the DC limit, i.e. ω → 0, of the Drude peak becomes a small

correction to the bosonic parton DC conductivity σb at low temperature.

There is another subtlety associated with the bosonic parton conductivity due to ex-

tra hydrodynamical corrections and the purely two dimensional nature of the system. It

was known (see, for example, Ref. 377 for a review) that, when momentum is strictly

conversed, even in the presence of particle-hole symmetry, hydrodynamical fluctuations

lead to a logarithmic correction to the optical conductivity that scale as log(τthω). Here,

τth is the time scale of local thermalization [378] and can be estimated as ∼ T−1. This

hydrodynamical correction to the conductivity diverges in the DC limit. This divergence

is due to the long-lived hydrodynamical mode associated with the conserved momentum.

As we mentioned before, in real systems disorder and Umklapp process always induce a

finite momentum relaxation time τp. The diverging hydrodynamical correction is only

valid when τp ≫ τth ∼ T−1, meaning momentum is strictly conserved over the thermal-

ization time scale, where the hydrodynamical description becomes applicable. When the

temperature T is low compared to τ−1
p , hydrodynamical corrections are cut-off by τ−1

p

and are again expected to be small corrections to the bosonic parton conductivity calcu-

lated in the rest parts of this paper. In fact the divergent hydrodynamical correction may

be already cut-off at a higher temperature scale that is favorable to us, as the crossover

scale is suppressed by a large factor depending on the dimensionless entropy density of

the system [378].

We would like to stress that the optical conductivity σ(∞) which is much easier to

evaluate theoretically (see section.III for an example) is free of these subtleties, and we

encourage future experiments to measure the optical conductivity at the MIT as well.

In recent years very impressive progresses have been made on numerically simulating

interacting fermionic systems (for examples see Ref. 379, 380, 381, 382). It is conceivable

183



Quantum Phase Transitions in Moiré Systems Chapter 3

that an extended Hubbard model with spin-orbit coupling can be constructed on the

triangular lattice, and by changing the parameter (for example the strength of the spin-

orbit coupling), two types of interaction-driven MIT may be realized, one described by

the original theory [324, 87], the other described by our current theory. Predictions made

in these two theories, such as different universality classes and transport properties at

the MIT, different scalings of quasiparticle weight, and the existence of the spinon Fermi

surface in the insulator phase, can potentially be directly tested through various numerical

methods on the extended Hubbard model. We will leave this to future exploration.
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Chapter 4

Theoretical Constructions of

Non-Fermi Liquids

In Sec. 1.3, we have seen examples of metallic states beyond Landau-Fermi liquid the-

ory and the difficulties in their theoretical descriptions. This chapter collects some of

our efforts in theoretically constructing metallic states with exotic properties, including

quasiparticle breakdown, bad metal behavior, strange metal behavior, etc.

Non-fermi liquid and unconventional quantum critical points (QCP) with strong frac-

tionalization are two exceptional phenomena beyond the classic condensed matter doc-

trines, both of which could occur in strongly interacting quantum many-body systems.

Sec. 4.1 demonstrates that using a controlled method one can construct a non-fermi liq-

uid within a considerable energy window based on the unique physics of unconventional

QCPs. We will focus on the “nearly-marginal non-fermi liquid”, defined as a state whose

fermion self-energy scales as Σf (iω) ∼ isgn(ω)|ω|α with α close to 1 in a considerable

energy window. The nearly-marginal non-fermi liquid is obtained by coupling an elec-

tron fermi surface to unconventional QCPs that are beyond the Landau paradigm. This

mechanism relies on the observation that the anomalous dimension η of the order pa-
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rameter of these unconventional QCPs can be close to 1, which is significantly larger

than conventional Landau phase transitions, for example the Wilson-Fisher fixed points.

The fact that η ∼ 1 justifies a perturbative renormalization group calculation proposed

earlier. Various candidate QCPs that meet this desired condition are proposed.

In Sec. 4.2, we discuss examples of two-dimensional metallic states with charge frac-

tionalization, and we will demonstrate that the mechanism of charge fractionalization

leads to exotic metallic behaviors at low and intermediate temperature. The simplest

example of such a state is constructed by fermionic partons at finite density coupled to

a ZN gauge field, whose properties can be studied through rudimentary methods. This

simple state has the following exotic features: (1) at low temperature this state is a “bad

metal” whose resistivity can be much larger than the Mott-Ioffe-Regel limit; (2) while

increasing temperature T the resistivity ρ(T ) is a nonmonotonic function, and it crosses

over from a bad metal at low T to a good metal at relatively high T ; (3) the optical

conductivity σ(ω) has a small Drude weight at low T , and a larger Drude weight at in-

termediate T ; (4) at low temperature the metallic state has a large Lorenz number, which

strongly violates the Wiedemann-Franz law. A more complex example with fermionic

partons at finite density coupled to a SU(N) gauge field will also be constructed.

In Sec. 4.3, we propose a lattice model for strongly interacting electrons with the

potential to explain the main phenomenology of the strange metal phase in the cuprate

high-temperature superconductors. Our model is motivated by the recently developed

“tetrahedron” rank-3 tensor model that mimics much of the physics of the better-known

Sachdev-Ye-Kitaev (SYK) model. Our electron model has the following advantageous

properties: (1) it only needs one orbital per site on the square lattice; (2) it does not

require any quenched random interaction; (3) it has local interactions and respects all

the symmetries of the system; (4) the soluble limit of this model has a longitudinal DC

resistivity that scales linearly with temperature within a finite temperature window; (5)
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again the soluble limit of this model has a fermion pairing instability in the infrared, which

can lead to either superconductivity or a “pseudogap” phase. The linear−T longitudinal

resistivity and the pairing instability originate from the generic scaling feature of the

SYK model and the tetrahedron tensor model.

A variety of exotic non-fermi liquid (NFL) states have been observed in many con-

densed matter systems, with different scaling relations between transport coefficients and

temperature. The “standard” approach to studying these NFLs is by coupling a fermi

liquid to quantum critical fluctuations, which potentially can drive the system into a

NFL. In Sec. 4.4, we seek for an alternative understanding of these various NFLs in a

unified framework. We first construct two “elementary” randomness-free models with

four-fermion interactions only, whose many properties can be analyzed exactly in a cer-

tain limit just like the Sachdev-Ye-Kitaev (SYK) model. The most important new feature

of our models is that, the fermion scaling dimension in the conformal invariant solution in

the infrared limit is tunable by charge density. Then based on these elementary models,

we propose two versions of lattice models with four fermion interactions which give us

non-fermi liquid behaviors with DC resistivity scaling ϱ ∼ Tα in a finite temperature

window, and α ∈ [1, 2) depends on the fermion density in the model, which is a rather

universal feature observed in many experimental systems.

4.1 Fermi-Surface States Coupled to Non-Landau Crit-

ical Modes

4.1.1 Introduction

In the past few decades, a consensus has been gradually reached that quantum many-

body physics with strong quantum entanglement can be much richer than classical physics
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driven by thermal fluctuations [383, 384]. Classical phase transitions usually happen

between a disordered phase with high symmetries, and an ordered phase which spon-

taneously breaks such symmetries. Typical classical phase transitions can be well de-

scribed by the Landau’s paradigm, but the Landau’s paradigm may or may not apply

to quantum phase transitions that happen at zero temperature. Generally speaking, the

Landau’s formalism can only describe the quantum phase transition between a direct-

product quantum disordered state and a spontaneous symmetry breaking state; but it

can no longer describe the quantum phase transition between two states when at least one

of the states cannot be adiabatically connected to a direct product states, i.e. when this

state is a topological order [221]; nor can the Landau’s paradigm describe generic con-

tinuous quantum phase transitions between states with different spontaneous symmetry

breakings [182, 183, 173].

Phenomenologically, in contrast with the ordinary Landau’s transitions, non-Landau

transitions often have a large anomalous dimension of order parameters, due to fraction-

alization or deconfinement of the order parameter [188, 189, 190, 191]. The ordinary

Wilson-Fisher (WF) fixed point in (2 + 1)d space-time (or three dimensional classical

space) has very small anomalous dimensions [197], meaning that the Wilson-Fisher fixed

point is not far from the mean field theory. In particular, in the large−N limit, the

anomalous dimension of the vector order parameter of the O(N) Wilson-Fisher fixed

point is η ∼ 0; while the CPN−1 model, the theory that describes a class of non-Landau

quantum phase transition [182, 183], has η ∼ 1 in the large-N limit [219]. Numerically

it was also confirmed that the quantum phase transition between the Z2 topological

order and the superfluid phase has η ∼ 1.5 [184, 185], as was predicted theoretically.

The large anomalous dimension has been used as a strong signature when searching for

unconventional QCPs numerically.

In this work we propose that the unique physics described above about the uncon-
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ventional QCPs with strong fractionalization can be used to construct another broadly

observed phenomenon beyond the classic Landau’s theory: the non-Fermi liquid whose

fermion self-energy scales Σf (iω) ∼ isgn(ω)|ω|α with α < 1. When α = 1, this non-

fermi liquid is referred to as marginal fermi liquid [385]. Signature of marginal fermi

liquid and nearly-marginal fermi liquid have been observed rather broadly in various

materials [77, 386, 136]. In this work we will focus on the non-Fermi liquid that is

“nearly-marginal”, meaning α is close to 1.

We assume that there exists a field O(x, τ) in the unconventional QCP that carries

zero momentum, and it couples to the fermi surface in the standard way:
∫
d2xdτ gψ†TψO,

where T is a flavor matrix of the fermion. We assume that we first solve (or approxi-

mately solve) the bosonic part of the theory, i.e. the strongly interacting QCP without

coupling to the fermi surface, and calculate the anomalous dimension η at the QCP:

⟨O(q, ω)O(−q,−ω)⟩ ∼ 1

Ω2−η (4.1)

where Ω ∼
√
v2q2 + ω2. Then the fermion self-energy, the quantity of central interest to

us, is computed perturbatively with the boson-fermion coupling g.

When the anomalous dimension η is close to 1, we can take η = 1 − ϵ with small ϵ.

Ref. [387, 388, 389] developed a formalism for the boson-fermion coupled theory with an

expansion of ϵ, though eventually one needs to extrapolate the calculation to ϵ = 1 for

the problems studied therein [387, 388, 389], and the convergence of the ϵ−expansion at

ϵ = 1 is unknown, i.e. even if we start with a weak boson-fermion coupling, it would

become nonperturbative under renormalization group (RG). But we will demonstrate in

the next section that in the cases that we are interested in, ϵ is naturally small when

η is close to 1, due to the fractionalized nature of many unconventional QCPs. To the

leading nontrivial order, our problem can be naturally studied by the previously proposed
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perturbative formalism with small ϵ.

Here we stress that our goal is to construct a scenario in which a non-Fermi liquid

state within an energy window can be constructed using a controlled method. Recently

many works have taken a similar spirit, and various non-Fermi liquid states especially a

state that mimics the strange metal were constructed by deforming the soluble Sachdev-

Ye-Kitaev (SYK) and related models [54, 55, 390, 391, 392]. Then within the energy

window where the deformation remains perturbative, the system resembles the non-Fermi

liquid [393, 394, 395, 396, 397, 398]. Our current work also starts with (approximately)

soluble strongly interacting bosonic systems (in the sense that the gauge invariant order

parameters in these systems are bosonic), and then we turn on perturbation, which in

our case is the boson-fermion coupling. We will demonstrate that a non-Fermi liquid can

be constructed based on the unique nature of the strongly interacting bosonic system.

4.1.2 ϵ-Expansion for Non-Fermi Liquids

A controlled reliable study of the non-Fermi liquid problem is generally considered as

a very challenging problem, one example of the difficulties was discussed in Ref. [399].

Over the years various approximation methods were proposed. We begin by reviewing

the ϵ−expansion developed in Ref. [387, 388, 389], and demonstrate how perturbation

of ϵ is naturally justified for some unconventional QCPs. It is often convenient to study

interacting fermions with finite density by expanding at one patch of the Fermi surface.

The low-energy theory of the fermions expanded at one patch of the fermi surface is

Lf = ψ†(ξ∂τ − ivF∂x − κ∂2y)ψ, (4.2)

where x is perpendicular to the fermion surface and y is the tangent direction. The

initial value of ξ is ξ0 = 1, and it will be renormalized by the fermion self-energy. Our
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main goal is to evaluate the fermion self-energy to the leading nontrivial order of the

boson-fermion coupling. We will show that this is equivalent to the leading nontrivial

order of ϵ = 1 − η. At this order of expansion of ϵ, for our purpose it is sufficient to

consider a simple “effective action” of O(x, τ):

Seff ∼
∫
d2xdτ O(x, τ)(−∂2τ − v2∇2)1−

η
2O(x, τ) (4.3)

which will reproduce the correlation function of O(x, τ), assuming we have fully solved

the interacting bosonic system first.

When the boson-fermion coupling is zero, i.e., g = 0, the system is at a Gaussian

fixed point with the following scaling dimensions of spacetime coordinates and fields

[τ ] = −2, [x] = −2, [y] = −1, (4.4)

[ψ (x, τ)] =
3

2
, [O(x, τ)] =

3

2
+
η

2
= 2− ϵ

2
. (4.5)

We then turn on the boson-fermion interaction

∫
d2xdτ gψ†TψO (4.6)

and consider the perturbative RG at the Gaussian fixed point. We find that the scaling

dimension of g is [g] = ϵ/2, hence it is weakly relevant if ϵ is naturally small, and it may

flow to a weakly coupled new fixed point in the infrared which facilitates perturbative

calculations with expansion of ϵ. Indeed, the beta function of g2 at the leading order of

ϵ was derived in Ref. [387, 388, 389]:

dg2

d log b
=
ϵ

2
g2 −Υg4. (4.7)
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Thus there is a fixed point at weak coupling g2∗ = ϵ/(2Υ), where the parameter Υ ∼

1/(4π2vFv).

Under the rescaling x′ = xb−1, namely after integrating out the short scale degrees of

freedom, the fermion acquires a one-loop self-energy

δΣf (iω,p) ∼ g2
∫
dνdq⟨O∗

q,νOq,ν⟩Gf (iω + iν, q + p) (4.8)

∼ g2
∫
dνdqx

∫ Λ

Λ√
b

dqy
1∣∣v2q2x + v2q2y + ω2

∣∣ 1+ϵ2 1

i (ω + ν)− vF (px + qx)− κ (py + qy)
2 .

In the boson correlation function, v2q2x and ω2 are irrelevant compared with v2q2y , hence

we first integrate over qx, and the fermion propagator contributes a factor sgn (ω + ν) i/(2vF ).

We then perform the ν integral and finally integrate qy over the momentum shell Λb−1/2 <

|qy| < Λ. The last integral is evaluated at ϵ = 0, which is valid at the leading order per-

turbation of ϵ. This procedure leads to

δΣf (iω,p) = −iωg2Υ log b+O
(
ϵ2
)
. (4.9)

Combining the calculations above, at the fixed point g2∗, the renormalized iξ(ω)ω in the

Fermion Green’s function reads

iξ(ω)ω ∼ −isgn (ω) |ω|1−ϵ/2 . (4.10)

The fermion self-energy, hence the decay rate of the fermion, scales in the same way as

Eq. 4.10. The calculation above gives a nearly-marginal non-Fermi liquid behavior for

small but finite ϵ. For small η such as the cases in the Wilson-Fisher fixed points, the

calculation of the scaling of fermion self-energy is not reliable with the leading order

expansion of ϵ described above.

Here we stress that, our main purpose is to compute iξ(ω)ω, or the fermion self-energy
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to the leading order of boson-fermion coupling g2∗ ∼ ϵ, assuming a weak initial coupling g.

At higher order expansion of the boson-fermion coupling, corrections to the boson field

self-energy (for example the standard RPA diagram) from the boson-fermion coupling

needs to be considered. The RPA diagram is proportional to LRPA ∼ |Oω,q|2g2|ω|/(vFκq).

Several parameters can be tuned, including the weak coupling fixed point value of g2∗, to

make this term weak enough to allow an energy window where the calculations in this

section apply. At the elementary level, we need the terms in Eq. 4.3 to dominate the

RPA effect |Oω,q|2g2|ω|/(vFκq). A field O at momentum q should correspond to energy

scale ω ∼ vq. For Eq. 4.3 at η = 1 to dominate the RPA effect, we need q > g2/(vFκ),

or ω > g2v/(vFκ). If we start with a weak initial bare coupling constant g0, and also

ϵ ≪ 1 hence the fixed point value of g∗ is also perturbative, there is a sufficiently large

energy window for our result. Tuning the parameter v/vF and κ can further expand the

energy window. A full analysis of the term LRPA ∼ |Oω,q|2g2|ω|/(vFκq) in the bosonic

sector of the theory in the infrared limit requires more detailed analysis because Oω,q is

a composite operator in the field theories discussed in the next section.

4.1.3 Candidate Unconventional QCPs

Bosonic-QED-Chern-Simons Theory

In the following we will discuss candidate QCPs which suffice the desired condition

η ∼ 1, or ϵ ≪ 1. When we study the pure bosonic sector of the theory, we ignore

the coupling to the fermions, assuming the boson-fermion coupling is weak, which is

self-consistent with the conclusion in the previous review section that the boson-fermion

interaction will flow to a weakly coupled fixed point g2∗ ∼ ϵ. As we stated in the previous

section, we will start with a weak boson-fermion coupling g, and eventually we only com-

pute the fermion self-energy to the leading nontrivial order of the fixed point g2∗ ∼ ϵ. In
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the purely bosonic theory, the scaling of the space-time has the standard Lorentz invari-

ance. To avoid confusion, we use “[ ]” to represent scaling dimensions under the scaling

Eq. 4.5 of the one-patch theory in the previous section, and “{ }” represent the scaling

dimension in the Lorentz invariant purely bosonic theory. At a QCP, multiple operators

will become “critical”, namely multiple operators can have power-law correlation. We

will demand that the operator with the strongest correlation (smallest scaling dimen-

sion) satisfy the desired condition, since this is the operator that provides the strongest

scattering with the electrons.

We consider (2 + 1)d bosonic quantum electrodynamics (QED) with N flavors of

bosons coupled to a noncompact U(1) gauge field with a Chern-Simons term:

LbQED =
2∑

α=1

N/2∑
a=1

|(∂µ − ibµ)zα,a|2 + r(z†α,azα,a) (4.11)

+ u(
∑
α,a

|zα,a|2)2 + u′
2∑

α=1

(

N/2∑
a=1

|zα,a|2)2 +
ikN

4π
b ∧ db. (4.12)

The following operators are gauge invariant composite fields, which we assume are all at

zero momentum:

O0 =
2∑

α=1

N/2∑
a=1

z†α,azα,a, O1,3 =

N/2∑
a=1

z†aσ
1,3za. (4.13)

Potential applications of this field theory to strongly correlated systems will be discussed

later.

To compute their scaling dimensions, we introduce two Hubbard-Stratonovich(HS)
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Figure 4.1: The self-energy of field σ+ and gauge field bµ in the large−N limit.

fields to decouple the quartic potentials:

L′
bQED =

2∑
α=1

N/2∑
a=1

|(∂µ − ibµ)zα,a|2 + r(z†α,azα,a) + iσ+O0 (4.14)

+ iσ−O3 +
1

2u′ + 4u
σ2
+ +

1

2u′
σ2
− +

ikN

4π
b ∧ db. (4.15)

We will consider the following two scenarios: (1) u′ → 0, u > 0, where σ− is fully

suppressed and the system has a full SU(N)× U(1)T symmetry, where the U(1)T is the

“topological symmetry” that corresponds to the conservation of the gauge flux; and (2)

u, u′ > 0 when the SU(N) symmetry is broken down to SU(N/2)×SU(N/2)×U(1)⋊Z2,

where the U(1)⋊ Z2 is the symmetry within the Pauli matrix space in Eq. 4.13.

In scenario (1) with a full SU(N) symmetry, at the critical point r = 0, the field σ+

acquires a self-energy in the large−N limit

Σσ+(p) = N

∫
d3q

(2π)3
1

q2(q + p)2
=
N

8p
. (4.16)

Hence the propagator of field σ+ in the large−N limit reads

Gσ+(p) = 1/Σσ+ =
8p

N
. (4.17)
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Similarly, for the gauge field, the self-energy in the large−N limit is

Σb,µν(p) = −N
∫

d3q

(2π)3
(2q + p)µ(2q + p)ν

q2(q + p)2
=

N

16p
(p2δµν − pµpν). (4.18)

When combined with the Chern-Simons term, in the Landau gauge, the gauge field has

the following large−N propagator [221]

Gb,µν(p) =
1

Np

(
F

(
δµν −

pµpν
p2

)
+H

ϵµνρp
ρ

p

)
, (4.19)

where

F =
16π2

π2 + 64k2
, H = − 128πk

π2 + 64k2
. (4.20)

After introducing the HS fields, the scaling dimension of the composite operator O0

of the original field theory Eq. 4.12 is “transferred” to the scaling dimension of the HS

fields σ+. To the order of O(1/N), the Feynman diagrams in Fig. 4.2 contribute to the

σ+ self energy, which was computed in Ref. [221].

But it is evident that in the large−N limit, the scaling dimension of σ+ (and the

scaling dimension of operatorO0 of the original field theory Eq. 4.12) is limN→∞{O0} = 2,

hence it does not meet the desired condition. When O0 couples to the Fermi surface,

the boson-fermion coupling will be irrelevant in the one patch theory discussed in the

previous section according to the scaling of space-time Eq. 4.5.

The scaling dimension of σ1,3 equal to each other with a full SU(N) symmetry, and

unlike O0, they have scaling dimension 1 in the large−N limit. The 1/N corrections

to their anomalous dimensions come from diagram (a) − (d) in Fig. 4.2, or equivalently
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Figure 4.2: In scenario (1), diagrams (a)−(e) contribute to the anomalous dimension of
O0 in Eq. 4.12 or equivalently σ+ in Eq. 4.15; while only diagrams (a)−(d) contribute
to the anomalous dimension of O1,3. The solid line represents the propagator of
zα,a, the dashed and wavy lines represent the large−N propagators of σ+ and bµ
respectively.

through the standard momentum shell RG:

{O1,3} = 1 +
16

3π2N
− 4

3π2N
F. (4.21)

Ref. [219] and references therein have computed scaling dimensions of gauge invari-

ant operators for theories with matter fields coupled with a U(1) gauge field, without

a Chern-Simons term. Our result is consistent with these previous references, since

limk→0{O1,3} = 1 − 16/(π2N), which is the result of the CPN−1 model with a noncom-

pact gauge field. Also, in the limit of k → +∞, our result is consistent with Ref. [219]

when the fermion component is taken to be infinity, since both limits suppress the gauge

field fluctuation completely. In general operators O1,3 have stronger correlations than O0,

hence they will make stronger contributions to scattering when coupled with the fermi
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surface. As an example, the anomalous dimension of O1,3 with k = 1/2 reads

η1,3 ∼ 1− 0.57

N
, (4.22)

which is reasonably close to 1 even for the most physically relevant case with N = 2.

In scenario (2) we should keep both σ+ and σ− in the calculation, and both σ± (oper-

ator O0 and O3 in theory Eq. 4.12) have scaling dimension 2 in the large−N limit [220].

Now O1 has the strongest correlation, and at the order of O(1/N), its scaling dimension

reads:

{O1} = 1 +
8

3π2N
− 4

3π2N
F. (4.23)

When k = 1, its anomalous dimension reads

η1 ∼ 1− 0.037

N
, (4.24)

which is always very close to 1. Using the formalism reviewed in the previous section, by

coupling to O1, the fermion self-energy would scale as Σf (iω,p) ∼ −isgn (ω) |ω|0.99 for

N = 2.

The field theory Eq. 4.12 describes a quantum phase transition from a topological

order with Abelian anyons to an ordered phase that spontaneously breaks the global

flavor symmetry. The flavor symmetry can be either a full SU(N) symmetry (scenario 1)

or SU(N/2)×SU(N/2)×U(1)⋊Z2 (scenario 2). So far we have assumed that the gauge

invariant O1,3 have zero momentum, hence they cannot be the ordinary antiferromag-

netic Néel order parameter. They must be translational invariant order parameters with

nontrivial representation under the internal symmetry group, for example they could be

the quantum spin Hall order parameter for N = 2.
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The topological order described by the Chern-Simons theory with N = 2, k = 1 is

the most studied state in condensed matter theory. This topological order is the U(1)2

or equivalently the SU(2)1 topological order with semionic anyons. It is the most natural

topological order that can be constructed from the slave particle formalism [106]. And

recently it was conjectured that this topological order is also related to the parent state

of the cuprates high temperature superconductor [400] motivated by the giant thermal

Hall signal observed [401].

Another interesting scenario is when N = 2, k = 0 and u > 0. In this case Eq. 4.12

is the same field theory as the easy-plane deconfined QCP between the inplane antifer-

romagnetic Néel order and the valence bond solid state on the square lattice. Recent

numerical studies have shown that this quantum phase transition may be continuous,

and the scaling dimension of both O0 and O3 are fairly close to 1 based on numerical

results [191, 402]. It has been proposed that this field theory is self-dual [218], and it is

dual to the transition between the bosonic symmetry protected topological (SPT) phase

and the trivial phase [98, 171], which is directly describe by a noncompact QED with

N = 2 flavors of Dirac fermion matter fields [403, 404]. The tuning parameter for this

topological transition is instead coupled to O3. Hence this SPT-trivial transition is also

a candidate quantum phase transition which meets the desired criterion proposed in our

paper that leads to a nearly-marginal fermi liquid. But in these cases there are other

fields (for example the inplane Néel order parameter) with smaller scaling dimensions,

and we need to assume that these operators carry finite lattice momentum hence couple

to the Fermi surface differently.
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Gross-Neveu-Yukawa QCP

Another candidate QCP that likely suffices the desired condition η ∼ 1 is the Gross-

Neveu-Yukawa QCP with N−flavors of Dirac fermion:

LGNY =
N∑
a=1

χ̄aγµ∂µχa + gϕχ̄aχa + (∂ϕ)2 + rϕ2 + uϕ4. (4.25)

At the critical point r = 0, both u and g flows to a fixed point. In our context, the QCP

describes a bosonic or spin system, hence χ is viewed as a fermionic slave particle of spin,

i.e. the spinon, and we assume that χ is coupled to a Z2 gauge field, namely the system

is a Z2 spin liquid with fermionic spinons. But the dynamical Z2 gauge field does not

lead to extra singular corrections to low energy correlation functions of gauge invariant

operators, hence the universality class of Eq. 4.25 is still identical to the Gross-Neveu-

Yukawa (GNY) theory, as long as we only focus on gauge invariant operators.

The GNY QCP can still be solved in the large−N limit, and the cases with finite N

can approached through a 1/N expansion. At the GNY QCP coupled with a Z2 gauge

field, the gauge invariant operator with the lowest scaling dimension is ϕ, and its scaling

dimension can be found in Ref. [405] and references therein:

{ϕ} ∼ 1− 16

3π2N
. (4.26)

Other gauge invariant operators such as χ̄Tχ with a SU(N) matrix T have much larger

scaling dimension at the GNY QCP, for example {χ̄Tχ} = 2 in the large−N limit. If we

replace the Z2 gauge field by a U(1) gauge field, the U(1) gauge fluctuation will enhance

the correlation of ϕ, hence increases ϵ = 1 − η compared with the situation with only a

Z2 gauge field. Hence a GNY QCP with a U(1) gauge field is less desirable according to

our criterion.
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The GNY QCP coupled with a Z2 gauge field can be realized in various lattice model

Hamiltonians for quantum antiferromagnet. For example, for SU(M) spin systems on the

triangular lattice with a self-conjugate representation on each site, using the fermionic

spinon formalism, when there is a π−flux through half of the triangles, there are N = 2M

components of Dirac fermions at low energy [406]. SU(M) quantum magnet may be re-

alized in transition metal oxides with orbital degeneracies [407, 408, 409], and also cold

atom systems with large hyperfine spins [410, 411, 412, 413]. Recently it was also pro-

posed that an approximate SU(4) quantum antiferromagnet can be realized in some of the

recently discovered Moiré systems [238, 414, 415], and a SU(4) quantum antiferromagnet

on the triangular lattice may realize the Z2−gauged GNY QCP with N = 8 (with lower

spatial symmetry compared with SU(2) systems as was pointed out in Ref. [416]). On

the other hand, a SU(M) spin systems on the honeycomb lattice can potentially realize

the GNY QCP with N = 2M (with zero flux through the hexagon) or N = 4M (with

π−flux through the hexagon).

The operator ϕ is odd under time-reversal and spatial reflection, hence physically ϕ

corresponds to the spin chirality order. Hence the Z2−gauged GNY QCP is a quantum

phase transition between a massless spin liquid and a chiral spin liquid.

Non-Fermi liquid is often observed only at a finite temperature/energy window in

experiments. At the infrared limit, the non-Fermi liquid is usually preempted by other

instabilities, for example a dome of superconductor [417, 418, 419]. In Ref. [417] the insta-

bility of non-Fermi liquid towards the superconductor dome was systematically studied

in the framework of the ϵ−expansion. According to Ref. [417], when O is an order pa-

rameter at zero momentum, at ϵ = 0 the superconductor instability will occur at an

exponentially suppressed temperature/energy scale ∆sc ∼ Λω exp(−A/|g0|), where g0 is

the bare boson-fermion coupling constant. In our case the estimate of the superconduc-

tor instability is complicated by the fact that O is a composite field, but the qualitative
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exponentially-suppressed form of ∆sc is not expected to change because g is still at most

a marginally relevant coupling. When ϵ = 0, the imaginary part of the fermi self-energy

(the inverse of quasi-particle life-time) scales linearly with ω. Because the bare electron

dispersion has no imaginary part at all, the imaginary part of the self-energy should be

much easier to observe compared with the real part, assuming other scattering mecha-

nisms of the fermions are weak enough. The scaling behavior of the fermion self-energy

is also observable numerically like Ref. 420. This linear scaling behavior of the imaginary

part of self-energy is observable for fermionic excitations at energy scale ω > ∆sc, . Hence

above the superconductor energy scale ∆sc, the non-Fermi liquid behavior is observable.

This result should still hold for small enough ϵ. 1

4.1.4 Conclusion

In this work we proposed a mechanism based on which a nearly marginal non-fermi

liquid can be constructed with a controlled method in an energy window. This mechanism

demonstrates that two exceptional phenomena beyond the standard Landau’s paradigm,

i.e. the non-Landau quantum phase transitions and the non-fermi liquid may be con-

nected: a non-Landau quantum phase transition can have a large anomalous dimension

η ∼ 1, which physically justifies and facilitates a perturbative calculation of the Boson-

Fermion coupling fixed point. Several candidate QCPs that suffice this condition were

proposed, including topological transitions from Abelian topological orders to an ordered

phase, and a Gross-Neveu-Yukawa transition of Z2 spin liquids.

We would like to compare our construction of non-fermi liquid states and the con-

1In Ref. [417], the non-Fermi liquid energy scale Enfl is defined as the energy scale where the fermi
velocity vF is renormalized strongly from its bare value, hence Enfl was defined based on the real part of
the fermion self-energy. In other words the Enfl was defined as the scale where the real part of self-energy
dominates the bare energy in the Green’s function. But since the bare dispersion of fermion is difficult
to observe, and the bare fermion energy has no imaginary part at all, we prefer to use the imaginary
part of fermion self-energy as a characteristic definition of non-Fermi liquid state.
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structions based on the SYK related models. In the constructions based on SYK-like

models, the existence of a strange-metal like phase was based on the fact that in the

soluble limit, i.e. in the SYK model the scaling dimension of fermion is 1/4 (scaling with

time only). But since the definition of the electric current operator in these construc-

tions is proportional to the perturbation away from the SYK model, the current-current

correlation function and the electrical conductivity is small in the energy window where

the construction applies. Recently an improved construction was proposed which can

produce the Planckian metal observed in cuprates materials [421]. In our construction,

since the boson-fermion coupling will flow to a weakly coupled fixed point, the scattering

rate of the fermion due to the boson-fermion coupling is expected to be low. We will

further study if a Planckian metal like state can be constructed by developing our current

approach. In this future exploration, a mechanism of momentum relaxation, for instance

the disorder, or Umklapp process, needs to be introduced.

4.2 Transport in Metallic States with Charge Frac-

tionalization

4.2.1 Introduction

Dimensionless quantities in nature can be universal, meaning they are insensitive

to the microscopic details of the system. Dimensionless universal quantities can arise

from two different mechanisms: either criticality, or topology. At a critical point (either

classical or quantum critical point), the diverging correlation length renders most of the

the microscopic details irrelevant to infrared physics, hence each universality class is

characterized by a series of numbers referred to as critical exponents. Examples of these

critical points include various two dimensional statistical mechanics models such as the
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Ising model [422], the “Yang-Lee singularity” [423], and the Wilson-Fisher fixed points

of three dimensional systems [424]. Topology can lead to universal quantities due to

topological quantization. The simplest example of such is the magnetic flux quantization

in Dirac monopole [425], and in superconductor [426, 427]. The Hall conductivity of

quantum Hall systems (either integer or fractional) is a discrete universal number, it

is related to the level of the Chern-Simons topological field theory [428, 429, 430, 431],

which has to be quantized due to mathematical consistency.

Electrical resistivity/conductivity is a dimensionless quantity in two spatial dimen-

sions, hence it can in principle take universal values that are independent of the micro-

scopic details of the system. A universal resistivity can arise with various mechanisms.

Besides the Hall resistivity of the quantum Hall states mentioned above, the resistivity

of (2 + 1)d quantum critical points with gapless charge degree of freedom [329, 326], the

resistivity jump at (2+ 1)d metal-insulator transition driven by interaction [86, 87, 111],

and the criterion of the so-called “bad metal” in two dimensions [78, 79, 80] are all “uni-

versal”. In all these examples, the resistivity (or the bound of resistivity) is always an

order-unity dimensionless number times h/e2.

This work concerns the metallic states with finite charge density and finite charge

compressibility. The usual theory that describes the transport of a metal is the Boltz-

mann equation. The Boltzmann equation most conveniently applies when the concept of

quasiparticles remains valid in the system 2, which usually requires that lmkF ≫ 1, where

lm is the mean free path, and kF is the Fermi wave vector. When lmkF becomes order

1, the resistivity saturates the Mott-Ioffe-Regel (MIR) limit of a metal, and the system

becomes a “bad metal” [78, 79, 80], where descriptions based on quasiparticles break

down. For a purely two dimensional system, the condition of lmkF ∼ lmn
1/2 ∼ 1 implies

2A generalized quantum Boltzmann equation can be developed when well-defined quasiparticles are
lost due to interaction with bosonic modes [432].
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that the resistivity ρ should be at the order of h/e2. When the measured resistivity ρ

of a purely two dimensional metal is significantly larger than h/e2, or in other words

the estimated value of lmkF exceeds order unity for a 2d metal, one has to abandon the

conventional description based on quasiparticles, and resort to other theoretical tools.

In real systems metallic states without quasiparticles usually arise from coupling

electrons to bosonic gapless quantum critical modes. The theoretical formalism for these

states usually start with a decoupled system with noninteracting electrons, and analyze

how the fermion-boson coupling modifies the system [44, 45, 46, 48, 85, 50, 51]. Through

various perturbative renormalization group methods, one can show that the coupling

between the Fermi surface and the gapless bosonic modes is relevant, and potentially

drive the system into a non-Fermi liquid fixed point without quasiparticles. In recent

years, a new route of constructing non-Fermi liquid has been explored, which was based

on models that are soluble in certain limit (such as the Sachdev-Ye-Kitaev model and

other related models) [54, 55, 390, 391, 392]. These models have no notion of spatial

dimensions, but solution of these models already have no quasiparticles. Lattice models

built upon these soluble models quite naturally lead to non-Fermi liquids in various

spatial dimensions [393, 433, 434, 394, 395, 396, 397, 435].

In this work we explore an alternative construction of exotic metallic states. The

constructions used in this work are not based on soluble lattice models of interacting

electrons, but there are sufficient theoretical arguments to show that these are indeed

stable states. Though these examples are far from weakly interacting electrons with

quasiparticles, the design of these states allows them to be studied through rudimentary

theoretical tools.
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4.2.2 Fractionalized Metal with ZN Gauge Structure

The central idea of our construction is “charge fractionalization”. Fractionalization

of quantum numbers is most well-known and well established in particle physics [436],

but it is also predicted and observed in condensed matter systems such as fractional

quantum Hall states [437, 438, 439]. Quantum number fractionalization is also one of the

signatory phenomena in quantum spin liquids [108, 440, 441, 442, 443]. Electric charge

fractionalization was discussed in the context of Mott transition in systems with partially

filled 3d pyrochlore lattice [376]. Recently, motivated by experiments on transition metal

dichalcogenide (TMD) moiré heterostructures [4], effects of charge fractionalization at

the metal-insulator transition in pure 2d systems have been discussed in Ref. 444, 351.

In this work we will explore the consequences of charge fractionalization in a metallic

state.

The first example we consider is a ZN topological order enriched with a global U(1)

symmetry, which corresponds to the ordinary electric charge conservation. The elemen-

tary anyon ψα of the ZN topological order carries a ZN gauge charge, and it is also a

spin-1/2 fermion with fractional electric charge e∗ = e/N . When N is an odd integer,

the gauge invariant states of the system include fermions that carry odd integer electric

charges and half-integer spins; as well as bosons with even integer charges and integer

spins. This is the same Hilbert space as a many-body electron system.

It is known that the discrete gauge field at two spatial dimensions has a stable decon-

fined phase at zero temperature, in which the anyon ψα can be separated infinitely far

from each other, hence the anyon ψα plays the role as the charge carriers in the system at

least at zero temperature. Although we do not pursue an exactly soluble model based on

electrons in this work, the state discussed here should be a stable state of electrons, given

that a discrete gauge theory is free from confinement at zero temperature in (2 + 1)d.
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At finite temperature the thermal equilibrium state of the system is in a confined phase,

but at low temperature the observable physics should still crossover to the deconfined

phase at zero temperature. In fact, the finite temperature confinement of the ZN gauge

field is caused by thermally activated population of gauge fluxes with nontrivial mutual

statistics with ψα. The confinement length ξ(T ), i.e. the distance that a single ψα can

be separated from the “crowd”, takes the form of ξ(T ) ∼ exp(c∆/T ), where ∆ is the

gap of ZN gauge fluxes, and c is a constant. We argue that when ξ(T ) simultaneously

satisfy two criteria, namely (i.) ξ(T ) is large compared with the distance between ψα

anyons (assuming a sufficiently large charge density), and (ii.) ξ(T ) is large compared

with the mean free path lm, the anyon ψα still plays the role of charge carrier in the

nonequilibrium process of charge transport, as ψα does not travel long enough between

two consecutive scatterings to “feel” the confinement.

Charge Transport

In the follows we will discuss various properties of the state described above. We first

consider electrical resistivity at zero temperature. The key advantage of this construction

is that, at zero temperature, the ZN gauge field dynamics is gapped, and does not

lead to any scattering to the gapless charged partons below the gap of the ZN gauge

fields. The main source of relaxation of electric current at zero temperature still comes

from conventional mechanisms, such as impurities, which give the partons a mean free

length lm. If we assume the electric charge density is ene, in an ordinary system without

fractionalization, the rudimentary semiclassical theory of transport breaks down when

lmn
1/2
e ∼ 1, i.e. lm ∼ 1/n

1/2
e . Since the parton carries charge e/N , the density of the

parton is n∗ = Nne, hence the usual transport theory can be applicable for even smaller

lm, i.e. lm ∼ 1/(n∗)
1/2 ∼ 1/(Nne)

1/2. When lm saturates this limit, the system should be
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a “bad metal of partons”, with an “upper bound” of resistivity

ρmax ∼
h

e2∗
∼ N2 h

e2
. (4.27)

When lm ∼ 1/(n∗)
1/2 > 1, rudimentary formalism of describing metallic states should

still apply; the only difference is that now the charge carrier ψα carries charge e∗ = e/N ,

and the density of ψα is higher than electric charge density.

At low temperature, a 2d ZN gauge field will cause confinement in equilibrium. As

we mentioned above, the confinement of a 2d ZN gauge theory is caused by the thermally

activated gauge fluxes, and the confinement length ξ(T ) is roughly the distance between

two thermally activated gauge fluxes, hence ξ(T ) ∼ exp(c∆/T ), where ∆ is the energy

gap for the ZN gauge flux. We need to compare ξ(T ) with other length scales of the

system: the distance between anyons ψα, which is given by 1/n
1/2
∗ ; the lattice constant

a; and the mean free path lm. To ensure that the transport of the state can be studied

with controlled methods, we assume that the mean free length lm is at the order of, or

larger than N1/2/n
1/2
e ; or equivalently lmn

1/2
∗ is at the order of, or greater than N . In

this limit, at least at low temperature, the following hierarchy of length scales holds:

ξ(T ) > lm > 1/n
1/2
∗ . In this limit the simple theory of metal, such as the Drude formula

still applies. The conductivity at zero and low temperature would be

σ0 =
n∗e

2
∗lm

m∗v∗F
∼ e2∗

h
(lmn

1/2
∗ ) ∼ 1

N

e2

h
, (4.28)

which can still be a bad metal, even with the choice of relatively long mean free length.

We assume that lm mostly arises from scattering with impurities with a hard-sphere

like potential, and hence is insensitive to temperature. With rising temperature, the

resistivity first increases with conventional mechanism, such as scattering with phonon,

208



Theoretical Constructions of Non-Fermi Liquids Chapter 4

or interaction between the partons. These scattering are still suppressed due to the

small electric charge carried by the partons. For example, the parton-phonon interaction

is down by a factor of 1/N compared with the electron-phonon interaction, and the

resistivity due to parton-phonon interaction is down by a factor of 1/N2. For short-

range parton-parton interactions which presumably leads to Fermi liquid like scaling of

resistivity (i.e. ρ ∼ ρ0+AT
2), if the short-range interaction arises from screened Coulomb

interaction, the interaction is suppressed by a factor of 1/N2 3.

When temperature rises further, the confinement length ξ(T ) becomes shorter, and

eventually at temperature scale T1 where ξ(T1) ∼ lm, the semiclassical picture of ψα

breaks down. At even higher temperature scale where the confinement length ξ(T ) is

comparable with the lattice constant a, i.e. T > T2 with ξ(T2) ∼ a, the partons are

fully confined, and the charge carriers should still be viewed as electrons. The electron

density is ne, and since we assumed a hard-sphere like potential of the impurities, lm

from impurities remains approximately unchanged from before. The conductivity at

temperature T2 should be

σ(T2) ∼
nee

2lm
mvF

∼ N1/2 e
2

h
, (4.29)

which can be a good metal. Hence with rising temperature, the resistivity evolves in a

nonmonotonic way; it will crossover from a bad metal with T < T1 to a good metal at

T ∼ T2. The schematic behavior of ρ(T ) is sketched in Fig. 4.3.

We have chosen lm so that the simple pictures of metal such as the Drude theory

applies for both temperature ranges T < T1 and T > T2. In the low temperature range

the semiclassical theory of metal with fractional charge carrier ψα becomes applicable;

while with T > T2 the system becomes a conventional metal with electrons. We lack the

3The screening of the Coulomb interaction is affected by the charge of the parton as well, which will
complicate the estimate of the screened-short range interaction.
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Figure 4.3: The schematic behavior of resistivity ρ(T ) constructed with fermionic
partons carrying fractional charges coupled with a ZN gauge field.

reliable theoretical tools to describe the intermediate temperature range T1 < T < T2,

but sufficient argument can lead to the conclusion that the system crossover from a bad

metal phase at low temperature range, to a good metal phase in the higher temperature

range. Also, if the optical conductivity is measured, our construction implies that the

Drude weight of the optical conductivity is small at T < T1, but the Drude weight will

crossover to a larger value proportional to σ(T2) at T ∼ T2.

Hall Effect

For both temperature ranges T < T1 and T > T2, the transport coefficients can be

derived with the rudimentary semiclassical theory of metal. We take the semiclassical

Boltzmann transport equation under the relaxation-time approximation

∂g

∂t
+ ẋ · ∂g

∂x
+ k̇ · ∂g

∂k
=

(
∂g

∂t

)
coll

≈ −δg
τ
, (4.30)

where g(t,x,k) denotes the non-equilibrium distribution function, and δg is its deviation

from the equilibrium distribution f(ϵ). This Boltzman equation can be applied to the

parton ψα at temperature T < T1, and to electrons at temperature T > T2.
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At low temperature, according to the Ong’s formula [445] based on the Jones-Zener

solution to Eq. 4.30, the weak-field Hall conductivity in 2d metals has a geometric inter-

pretation

σxy =
e2∗
h

Al

π(l∗B)
2

(4.31)

where l∗B =
√
ℏ/(e∗B) is the magnetic length for partons, and Al is the area swept out

by the vector l(k) = τ(ϵ(k))v(k) when k moves around the FS, i.e.,

Al =
B

B
·
∫
FS

dl(k)× l(k) ∼ l2m. (4.32)

If we assume electrons and partons share the same isotropic lm and therefore the same

area Al, there is a large ratio between σxy at low temperature and the second crossover

temperature T2:

σxy(T2)

σxy(T < T1)
∼ N3. (4.33)

The situation is different in the strong field limit. In this limit the collision integral

in Eq. 4.30 can be neglected. Taking the directions B = Bẑ and E = Eŷ, one obtains

the solution δg = (ℏkxE/B)(∂f/∂ϵ) which has no explicit dependence on N . In this

case, the integral of vx(k)δg(k) over the Brillouin zone gives n∗E/B, which leads to the

high-field Hall conductivity

σxy =
n∗e∗
B

=
nee

B
. (4.34)

The answer only depends on the total charge density.
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Thermoelectric Properties

In the presence of nonzero electric field E and temperature gradient −∇T , the linear

response of electric current J e and heat current Jh are usually organized in one equation

 J e

Jh

 =

 σ α

Tα κ̄


 E

−∇T

 . (4.35)

The electrical conductivity σ and thermoelectric transport coefficients α, κ̄ are matrices of

spatial coordinates. When J e = 0, the thermal conductivity is given by κ = κ̄−Tασ−1α.

The semiclassical equation of motion of partons in electric and magnetic fields reads

ẋ ≡ vn(k) =
1

ℏ
∂ϵn(k)

∂k
− k̇ ×Ωn(k),

ℏk̇ = −e∗E(x)− e∗ẋ×B(x), (4.36)

where n is the band index, and Ωn(k) is the Berry curvature associated with each band.

We first evaluate the diagonal thermoelectric response by neglecting the magnetic field

B and the Berry curvature Ωn. With nonzero electric field and temperature gradient,

the solution of the Boltzmann equation Eq. 4.30 for deconfined partons reads

δg = −
(
e∗E +

ϵ(k)− µ

T
∇T
)
· v(k)τ(ϵ(k))

(
−∂f
∂ϵ

)
, (4.37)

which leads to the diagonal transport coefficients

σxx = e2∗sxx(ϵ
∗
F ) ∼

sxx(ϵ
∗
F )

N2
,

αxx = −e∗
T

∫
dϵ

(
−∂f
∂ϵ

)
(ϵ− µ)sxx(ϵ) ∼

T s′xx(ϵ
∗
F )

N
,

κ̄xx =
1

T

∫
dϵ

(
−∂f
∂ϵ

)
(ϵ− µ)2sxx(ϵ) ∼ T sxx(ϵ

∗
F ), (4.38)
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where we have used (−∂f/∂ϵ) ≈ δ(ϵ − ϵ∗F ) and µ ≈ ϵ∗F at low temperature, and the

function sij(ϵ) is defined as

sij(ϵ) = τ(ϵ)

∫
d2k

(2π)2
δ(ϵ− ϵ(k))vi(k)vj(k). (4.39)

Assuming the band mass is isotropic and k-independent, one reproduces the Drude form

for partons sij = δijτn∗/m∗. The thermopower Q (i.e., Seebeck coefficient) of the charge

fractionalized metal is given by:

Q(T < T1) =
αxx
σxx

= −N π2

3

k2BT

e

σ′

σ
. (4.40)

Note that the mean free path lm gets cancelled in the ratio.

Experimentally, one clear signature for a charge fractionalized metal is the strong

violation of the Wiedemann-Franz law. The Lorentz number acquires a large factor due

to charge fractionalization:

L(T < T1) =
κxx
Tσxx

= N2π
2

3

k2B
e2
. (4.41)

This strong violation of the Wiedemann-Franz law can be naively understood by the fact

that, though each fermionic parton carries a much smaller charge, it still carries the same

entropy as an electron.

When the temperature reaches T2 and the partons are fully confined, we expect these

transport coefficients to decrease due to confinement

Q(T2)

Q(T < T1)
∼ 1

N
,

L(T2)

L(T < T1)
∼ 1

N2
. (4.42)

For systems that break time-reversal symmetry such as a ferromagnetic metal, the
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transport coefficients σ, α, κ could have nonzero off-diagonal terms even in the absence

of B. They receive intrinsic contributions from the Berry curvature in the band struc-

ture. Considering the nonzero Berry curvature Ω(k) in Eq. 4.36, the parton wave packet

acquires an anomalous velocity orthogonal to E, which leads to the anomalous Hall

conductivity

σxy(ϵ) =
e2∗
ℏ

∫
d2k

(2π)2
Θ(ϵ− ϵ(k))Ωz(k), (4.43)

where Θ(ϵ) is the Heaviside step function. Similar to their diagonal counterparts, the

thermal Hall conductivity κxy is given by

κxy(ϵ) =
π2

3

k2BT

e2∗
σxy(ϵ). (4.44)

At low temperature, the transverse Wiedemann-Franz law is still strongly violated due

to charge fractionalization.

4.2.3 Fractionalized Metal with SU(N) Gauge Fields

In this section we consider a more complex example of metal with charge fraction-

alization. For simplicity we will consider spin polarized electrons, hence the electron

operator no longer carries a spin index. The first step of our construction is a parton

construction:

cj ∼
∑
{αi}

ϵα1,α2,···αNψj,α1ψj,α2 · · ·ψj,αN . (4.45)

This parton construction introduces a SU(N) gauge degree of freedom with an odd integer

N . The nonabelian gauge field was also first introduced for particle physics [446], but
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later used broadly in the study of spin liquids (see for example Ref. 443), and other

strongly correlated electron systems [447, 448]. The parton ψα with α = 1 · · ·N carries a

fundamental representation of the SU(N) gauge group, and also physical electric charge

e∗ = e/N . The starting point of our analysis is the following Lagrangian:

LUV[ψ
†, ψ, a] = LUV[ψ, a] + LUV[a], LUV[a] = −1

4
F I
µν(F

I)µν

LUV[ψ, a] = ψ†(i∂t + gaI0t
I + e∗A0 + µ)ψ − 1

2m
ψ†(−i∇+ gaIi t

I + e∗Ai)
2ψ (4.46)

where ψ = (ψ1, ψ2, ..., ψN)
T, aIµ = (aI0, a⃗

I) is the SU(N) gauge field with µ = 0, 1, 2; tI

is the SU(N) Lie algebra in the fundamental representation, with I = 1, 2, . . . , N2 − 1.

g is the strength of the gauge coupling, the non-Abelian gauge field stress tensor is

F I
µν = ∂µa

I
ν−∂νaIµ+gϵIJKaJµaKν , and Aµ = (A0, A⃗) is the background U(1) electromagnetic

field.

Just like all systems that involve nonabelian gauge fields, Eq. (4.46) needs gauge

fixing. The systematic method of gauge fixing is through the Faddeev-Popov proce-

dure [449], by introducing the ghost fields. Since our system does not have Lorentz

invariance to begin with, we will consider the Coulomb gauge ∇ · a⃗ = 0. It was shown

in Ref. 89 that the ghost fields are decoupled from the system in the infrared limit.

Further more, the nondynamical component of the gauge field a0 is suppressed by the

Thomas-Fermi screening of the Fermi surface, hence will be dropped in the rest of the

consideration.

Eq. 4.46 with a finite Fermi surface is a highly challenging theory to study. Starting

with the Lagrangian Eq. 4.46, one standard approximate treatment is to construct the

low energy effective theory assuming that the Fermi energy is the largest energy scale in

the problem, and T ≪ EF . Below the cutoff Λ that satisfies T ≪ Λ ≪ EF , the fermion

operators can be expanded on two opposite patches of the Fermi surface. A patch model
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can be constructed following the logic of Ref. 44, 45, 46, 48, 85, 50, 51, 354, 89. The

patch lagrangian Lpatch reads

Lpatch[ψ, a] = ψ†
[
iη∂t −

(
lvFkx +

k2y
2m

)]
ψ − lgvFψ

†aIxt
Iψ,

Lpatch[a] =
1

2
q2y(a

I
x)

2. (4.47)

x and y are the local coordinates orthogonal and transverse to the patch Fermi surface

of interest, l = ±1 labels the antipodal patches that can be connected by the transverse

gauge fluctuations. The form of the patch Lagrangian implies the following scaling of

space-time coordinates under coarse graining

ω′ = bzψω, k′x = bkx, k
′
y = b1/2ky (4.48)

with zψ = 1, and b > 1. Due to the different scaling dimensions of the x and y coordinate

and the Coulomb gauge constraint, we find ∆ay = ∆ax + 1/2, where ∆O is the scaling

dimension of a field or coupling O, e.g. a′y = b∆ayay, a
′
x = b∆axax. Due to the highly

anisotropic scaling of space-time, the form of the Lagrangian of the patch theory Eq. 4.47

is very different from a standard Lorentz invariant theory.

Unlike the U(1) gauge theory, a non-Abelian gauge field has self-interactions. It

can be argued within the framework of the patch theory [89] that the self-interaction

between gauge bosons is irrelevant in the infrared, hence we can use Eq. 4.47 as the

starting point of RG analysis. Note that the irrelevance of gauge field self-interactions

is due to the highly anisotropic scaling of local coordinates x and y in Eq. 4.47. To

get a controlled interacting RG fixed point, we need one more step of transformation of

Eq. 4.47: we consider a small ϵ expansion by replacing q2y with q
1+ϵ
y , as was first introduced

by Ref. 45, 46. At the leading order of ϵ, only the 1-loop diagrams contribute, which
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leads to a weakly interacting RG fixed point [45, 46, 85]. The self-energy correction to

the parton propagator G = −i⟨Ttψψ̄⟩ obtained by integrating out modes from qy = Λ to

qy = Λ/b1/2 reads

δΣ = −iω
g2vF
4π2

c21 ln b (4.49)

where c21 =
∑

I t
ItI = N2−1

2N
1, with c2 the quadratic Casimir operator for the funda-

mental representation of SU(N); and 1 is the identity matrix in the color space. The

vertex correction vanishes at the leading order ϵ-expansion, as was argued in Ref. 85.

Eventually the one-loop corrections lead to a new fixed point g2∗ = 2π2ϵ/(c2vF ). The

existence of this fixed point is physically due to the screening of the gauge coupling from

matter fields with finite density of states.

Physical properties at this new fixed point can be self-consistently solved. To be gen-

eral, we consider the gauge field kinetic energy as k2y → |ky|1+ϵ, while ϵ is not necessarily

small for the self-consistent calculation. Assuming that the parton self-energy does not

depend on the momentum, which can be checked posteriori, the self-consistent equation

reads

Σαα′(iω,k) = σψ(iω,k)δαα′ ,

σψ(iω,k) = (−)g2v2Fc2

∫
dνdqxdqy
(2π)3

1

i(ω + ν) + σψ(ω + ν)− ξk+q

1

iν + πa(iν, q) + q1+ϵy

;

ΠIJ(iν, q) = π(iν, q)δIJ ,

π(iν, q) = g2v2Fc

∫
dkdω

(2π)3
1

iω + σψ(ω)− ξk

1

i(ω + ν) + σψ(ω + ν)− ξk+q

. (4.50)
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The solution for the fermion and gauge boson self-energy is given by

σψ(ω) = −i
c2γ

−ϵ/(2+ϵ)

2(8π)ϵ/(2+ϵ)
csc

(
2π

2 + ϵ

)
ḡ

2
2+ϵE

ϵ
2+ϵ

f |ω|
2

2+ϵ sgn(ω),

π(iν, q) =
1

v2+ϵF

γ

8π
ḡE1+ϵ

f

∣∣∣∣νq
∣∣∣∣ . (4.51)

Here we have defined a dimensionless coupling constant ḡ =
g2v1−ϵF

(2m)ϵ
. One can see that

the standard Landau damping term emerges in the self-consistent solution of the gauge

boson self-energy. And the fermion self-energy takes the form of a non-Fermi liquid.

Confinement and Crossover at Finite Temperature

To evaluate transport properties at different temperature scales, like the ZN gauge

theory discussed earlier, we need to determine the two temperature scales T1 and T2 at

which the confinement length satisfies ξc(T1) ∼ lm and ξc(T2) ∼ a. When ξc > lm the

transport is governed by fractionalized charges. Like the case with the ZN gauge field,

here we need to evaluate the scaling of ξc with temperature at the fixed point discussed

above, and in this section we are going to take ϵ = 1. First of all, the gauge fields would

become classical when g2∗
|νn=1|
q

> q2, where νn is the n-th Matsubara frequency. This

gives a quantum-classical crossover length ξcl ∼ q−1
cl ∼ (Tg2∗)

− 1
3 above which the gauge

field dynamics is classical. A classical gauge theory in 2d is described by the action

Sclassical =

∫
dx

∑
I

1

Tg2
(F I

µν)
2 (4.52)
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The scaling dimension of Tg2 now becomes ∆Tg2 = 2. At the confinement length ξc, Tg
2

renormalizes to Tg2 ∼ 1. We then find

Tg(ξc)
2

Tg2∗
∼ 1

Tg2∗
∼
(
ξc
ξcl

)2

=⇒ ξc(T ) ∼ (Tg2∗)
−5/6 ∼ T−5/6. (4.53)

Hence at low temperature T , due to the Landau damping physics arising from the Fermi

surface, when we observe the system with increasing length scale, physics of the gauge

field will first crossover to classical at ξcl ∼ (Tg2∗)
−1/3, then crossover to confinement at an

even longer scale ξc(T ) ∼ (Tg2∗)
−5/6. This analysis implies that the crossover temperature

T1 scales with the mean free path T1 ∼ l
−6/5
m .

Transport Properties

At low temperature, we assume that the impurity still dominates the momentum

relaxation. This assumption is valid at strictly zero temperature, and also valid at finite

temperature with the artificial limit of small ϵ, since the fixed point gauge coupling

g2∗ ∼ ϵ, scattering with the gauge field is weak in this limit. The resistivity caused by

gauge boson scattering can be computed following the procedure in Ref. 373. One key

difference from the ZN example we discussed before is that, there are N species of the

fermionic partons now, each with the same density as the electron, and hence the same

size of Fermi sea as the electron, i.e. n∗ = ne, and k
∗
F = kF . In this case, the conductivity

of the fractionalized metal at zero temperature reads

σ(T = 0) = N

(
n∗e

2
∗lm

m∗v∗F

)
∼ 1

N

e2

h
(lmn

1/2
e ), (4.54)

which can still be a bad metal. Notice that in other parton constructions for example in

Ref. 86, the total electrical conductivity is governed by the Ioeffe-Larkin rule [328]; while
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in our case the conductivity should be a direct sum of conductivity of each parton. Once

again, when the confinement length ξc becomes the order of lattice constant a (which

occurs at temperature T2 with ξc(T2) ∼ a ), the partons are fully confined to electron,

and the conductivity is given by the standard form σ(T2) =
e2

h
(lmn

1/2
e ).

At low temperature, both the partons and the gauge bosons will contribute to the

thermal transport. But it was shown that the gauge boson contribution is subdomi-

nant [450] compared with the fermionic partons, hence it will be ignored in the following

discussion. At low temperature the thermal transport of the fermionic partons will also

be mostly determined by their scattering with impurities:

κ

T
= N

(
π2

3

k2Bn∗lm
m∗v∗F

)
∼ N

π2

3

k2B
h
(lmn

1/2
e ), (4.55)

again we have taken into account of the fact that, there are N color species of the partons,

and for each species n∗ = ne. There is still a strong violation of the Wiedmann Franz

law same as the ZN gauge field case Eq. (4.41) at zero temperature:

L(T = 0) =
κxx
Tσxx

= N2π
2

3

k2B
e2
. (4.56)

4.2.4 Summary and Discussion

We proposed two constructions of exotic metallic phases based on the idea of charge

fractionalization. It was proposed before that charge fractionalization may be playing an

important role [444] in the metal-insulator transition (MIT) observed in transition metal

dichalcogenide (TMD) moiré heterostructures [4], where an anomalously large resistivity

was observed at low temperature near and at the MIT, followed by a rapid drop of

resistivity at slightly higher temperature, analogous to the physics discussed between

T1 and T2 in Fig. 4.3. Similar physics has also been observed in another TMD moiré
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sample [451].

The two constructions discussed in this work are actually related to each other. The

SU(N) gauge group always has a ZN center, hence the SU(N) gauge field can be broken

down to a ZN gauge field by condensing Higgs fields [452, 453, 454] with the right repre-

sentation. The condensed Higgs field is also expected to mix the different color species

and lift the degeneracy of the fermionic parton Fermi surface. In fact, a spin liquid

usually has a U(1) or even SU(2) gauge degrees of freedom in the UV, but the gauge

group can be broken down to Z2 through the Higgs mechanism, hence in the infrared the

system becomes a Z2 spin liquid [441, 442, 443].

4.3 Exactly Solvable Square-Lattice Models for Strange

Metal

4.3.1 Introduction

Non-fermi liquid (NFL) state represents a family of exotic metallic states that do

not have long-lived quasi-particles, and hence behave fundamentally differently from the

standard Landau Fermi liquid theory [43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 455]. The

NFLs usually occur at certain quantum critical point in itinerant fermion systems, and

the quantum critical fluctuations couple strongly with the fermions and hence “kill” the

quasiparticles. But the most well-known (yet poorly understood) NFL, the “strange

metal” phase at the optimal doping of the cuprate high temperature superconductors,

seems more generic than the byproduct of a certain quantum critical point, because its

anomalous temperature dependence of longitudinal DC resistivity (ρ ∼ T ) persists up to

a rather high temperature in the phase diagram [63, 64, 65, 66, 67], which is presumably

much higher than the ultraviolet cut-off of any possible quantum critical point in the

221



Theoretical Constructions of Non-Fermi Liquids Chapter 4

system. However, like many other NFLs [354, 355, 356, 357, 358, 359, 456], the strange

metal phase is also preempted by a dome of “ordered phase” with pair condensate of

fermions (high Tc superconductivity) at low temperature. Thus the strange metal phase

is more fundamental than the superconductor phase itself: it is the “parent state” of the

high Tc superconductor, just like the Fermi liquid is the parent state (or normal state)

of conventional BCS superconductors. And we had better view this parent state as a

generic non-Fermi liquid state, instead of a quantum critical behavior.

A series of toy models for NFL, despite their relatively unnatural forms, seem to cap-

ture the key universal features mentioned above. These models are the so-called Sachdev-

Ye-Kitaev (SYK) model and its generalizations [54, 55, 457, 458, 390, 391, 392, 459]. 1.

the fermion Green’s function in these models has a completely different scaling behavior

from the noninteracting fermions in the infrared limit, thus it has no quasi-particle and by

definition is a NFL. 2. it was found that the SYK model has marginally relevant “pairing

instability” just like the ordinary Fermi liquid state [460, 461], which is again consistent

with one of the universal features of the NFLs observed experimentally. 3. Recently

measured charge density fluctuation of the strange metal [462] agrees with the unique

scaling behavior of the SYK model [54]. 4. Last but not least, recently a generalization

based on the SYK model has shown linear-T resistivity for a large temperature window,

and the scaling behavior of the SYK model is the key for the linear-T resistivity [393]

(similar effect can be achieved in models with large−N generalization of the electron-

phonon coupling [433, 434, 463]). All these developments suggest that some version of

the SYK model and its generalizations may indeed have to do with the strange metal

phase.

More often than not, an exactly soluble model has to sacrifice reality to some extent

by making some artificial assumptions. To ensure its solubility, the original SYK model

has the following necessary ingredients that make it unlikely to be directly related to the
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cuprates: 1. It needs an all-to-all four-fermion interaction, while a natural Hamiltonian

for a real condensed matter system usually has local interactions only; 2. The four-

fermion interaction is fully random with a Gaussian distribution, which is also far from

the real system. 3. So far the NFL models constructed based on generalizations of the

SYK model all have a large number of fermion states on each unit-cell of the lattice with

a fully random all-to-all intra unit-cell interaction [464, 465, 466, 467, 393, 394, 396],

while the common wisdom is that the cuprate materials only have one active d−orbital

on each copper site.

In this work we will construct two lattice models for strongly interacting electrons

that are still motivated by the SYK physics, but are much closer to real systems. 1.

Our models only need one orbital per unit-cell on the square lattice; 2. Our models have

no quenched randomness; 3. Our models still capture the most desired physics of the

SYK model, such as the linear−T scaling of the longitudinal DC resistivity, and pairing

instability in the infrared. In the soluble limit, the solution of our model is identical to

the SYK model, thus our analytical results largely rely on the known solution of the SYK

model in for instance Ref. 457. But we will also check our analytical predictions based

on the soluble limit by exact diagonalization of the minimal and most realistic version

of our model away from the soluble limit, on a finite system. The phase diagram of our

proposed model for the physics near the strange metal phase including the low energy

phases induced by different perturbations considered in this paper are plotted in Fig. 4.4.

It was shown previously for the Sachdev-Ye model, that away from the exactly soluble

large−N limit 4, the SYK scaling still persists at finite energy scale (for example finite

temperature), while instabilities due to 1/N corrections emerge at low energy which are

suppressed (sub)exponentially with increasing−N [468]. Although the exactly soluble

4Actually the original Sachdev-Ye model requires two parameters, N and M , be taken infinite. Here
for simplicity we use large−N to represent both limits.
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version of our models still requires some large−N limit, by evaluating the next order

diagrams, we argue that for finite−N , the scaling behavior of the large−N limit may

still apply to an intermediate energy or temperature window, which is where the strange

metal phase was observed in real systems.

4.3.2 The Hamiltonian

Let us first write down the most important term of the interacting electron Hamilto-

nian that we will study on the square lattice:

H =
∑
j

Hj , (4.57)

Hj = Un̂2j +
∑
ê=x̂,ŷ

J

(
S⃗j · S⃗j+ê −

1

4
n̂jn̂j+ê

)
−K

(
ϵαβϵγσc

†
j,αc

†
j+x̂+ŷ,βcj+ŷ,γcj+x̂,σ +H.c.

)
,

where ϵαβ is an 2×2 antisymmetric matrix in the spin space. Other terms, such as single

particle hopping, will later be treated as perturbations. We will study this model with

a fixed particle density both analytically and numerically. n̂j = n̂j,↑ + n̂j,↓ is the total

electron number on site j, S⃗j =
1
2
c†jσ⃗cj is the spin operator. Besides the standard charge

density and spin interactions, we also turned on a “ring exchange” term with coefficient

K, which takes a spin singlet pair of electrons on two diagonal sites of a plaquette to

the two opposite diagonal sites of the same plaquette. This Hamiltonian preserves the

square lattice symmetry (because this interaction only has parity-even and spin singlet

pairing between fermions), and also spin SU(2) symmetry.

We will try to make connection between Eq. 4.57 and the SYK physics. As we

explained previously, many necessary ingredients of the original SYK model are not

very realistic. Instead of directly using the SYK model, our construction Eq. 4.57 is

motivated by the randomness-free “tetrahedron” model (or the so-called rank-3 tensor
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Figure 4.4: The schematic phase diagram of our Hamiltonian Eq. 4.57 or Eq. 4.80
plus single particle hopping parametrized by t and nearest neighbor perturbation Hu

(Eq. 4.75) with coefficient u. The strange metal phase is dominated by Eq. 4.57 or
Eq. 4.80 only, and is characterized by the non fermi liquid behavior and an anomalous
linear−T scaling of the DC resistivity. The pseudogap crossover temperature scale T ∗

is given by Eq. 4.77. The exact phase boundaries need further calculations.

model) [469, 391, 392]:

H t
1 =

g

(NaNbNc)1/2
c†a1b1c1c

†
a2b2c1

ca1b2c2ca2b1c2 . (4.58)

a1, a2 = 1 · · ·Na, b1, b2 = 1 · · ·Nb, and c1, c2 = 1 · · ·Nc. This model has a U(Na) ×

U(Nb)×O(Nc) symmetry. It was shown in the literature that, in the large Ni limit, the

dominant contribution to the Fermion Green’s function comes from a series of “melon

Feynman diagrams”, which can be summed analytically by solving the Schwinger-Dyson

equation.

To make connection to electron systems, the first step is to modify the tetrahedron
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model as follows:

H t
2 = − g

(NaNbNc)1/2
Jc1,c′1Jc2,c′2c

†
a1b1c1

c†a2b2c′1
ca1b2c2ca2b1c′2 , (4.59)

where J is the antisymmetric matrix associated with the Sp(Nc) group, and Jabcacb forms

a Sp(Nc) singlet. The total symmetry of this model is now U(Na) × U(Nb) × Sp(Nc).

The solubility of this model is unchanged from Eq. 4.58 in the large−Ni limit, and the

single particle Green’s function in this limit is identical to the disorder-averaged Green’s

function of the SYK model [457]:

G (τ) = −B (θ) e−2πTEτ

√
πT

2g sin (πTτ)
, (4.60)

G (iω)T=0 =
B (θ)

sin
(
π
4
+ θ
) e−isgn[ω](π2+θ)

|2gω|
1
2

, (4.61)

where a real angle parameter −π
4
< θ < π

4
and the spectral asymmetry E have been

introduced. Both parameters depend on the charge density, and they are related to each

other by

e2πE =
sin
(
π
4
+ θ
)

sin
(
π
4
− θ
) . (4.62)

The angle θ = 0 corresponds to the case of half-filling. By solving consistent equations

with the same method as Ref. 457, the coefficient B is found to be

B (θ) =

(
1

π cos (2θ)

) 1
4

sin
(π
4
+ θ
)
. (4.63)

In Eq. 4.60, we have assumed 0 < τ < β in the Green’s function, and the Green’s function

with −β < τ < 0 is determined by the standard relation G (τ + β) = −G (τ).
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Now we can draw connection between the modified tetrahedron model Eq. 4.59 and

our original model Eq. 4.57. When U = K = ηJ/2 (η = ±1), the total Hamiltonian

Eq. 4.57 is equivalent to the following model with N = 3 and M = 2:

H =
∑
j

(N−1)/2∑
r,r′=−(N−1)/2

M∑
α,β,γ,σ=1

−
gηr,r′

N
√
M

JαβJγσc†jx,jy ,αc
†
jx+r,jy+r′,β

cjx,jy+r′,γcjx+r,jy ,σ. (4.64)

Just like the tetrahedron model Eq. 4.59, every fermion still carries three indices: the

Sp(M) spin, the x−coordinate, and y−coordinate. We will consider and numerically

study two versions of the models with ηr,r′ = +1 uniformly (when N = 3, M = 2 it

corresponds to U = K = −J/2) and ηr,r′ = (−1)r+r
′
(which corresponds to U = K =

+J/2) respectively. Here we allow J to take both signs. Although an antiferromagnetic

order is well-known in cuprates in the underdoped regime, ferromagnetism has also been

discussed in the overdoped regime [470].

The minimal version of the model Eq. 4.64 with N = 3, M = 2, is identical to

Eq. 4.57, which should be analogous to the case with Na = Nb = 3 in Eq. 4.59. In

analytical calculations, we always take the thermodynamics limit first (the sum of j is

taken on a square lattice with infinite size). Then in the large−N and large−M limit,

for both choices of ηr,r′ , the fermion Green’s function is still dominated by the “melon

diagrams”, and hence the Schwinger-Dyson equations, as well as their solutions, remain

the same as models Eq. 4.58, and Eq. 4.59:

Gj,j′,α,β (τ) = G (τ) δj,j′δα,β, (4.65)

from which we can extract the fermion spectral function (local density of states)

ρf (ω) =

√
1

gT

B (θ)

sin
(
π
4
+ θ
)Im

ie−iθ
2π

Γ
(

1
4
+ β(ω−ωS)

2πi

)
Γ
(

3
4
+ β(ω−ωS)

2πi

)
 . (4.66)
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Here ωS = 2πET . The Fermion Green’s function has a form of local quantum criticality,

and the scaling dimension of the fermion operator is ∆[c] = 1/4.

We have introduced a fixed fermion density defined as

Q =
1

M

M∑
α=1

〈
c†j,αcj,α

〉
. (4.67)

The value of Q can be varied within the range 0 < Q < 1. Using the same method

as Ref. 457, the relation between fermion density Q and the angle parameter θ in the

Green’s function is found to be

Q =
1

2
− θ

π
− sin (2θ)

4
, −π

4
< θ <

π

4
. (4.68)

The fact that the Fermion Green’s function Eq. 4.65 remains localized in space is

due to the fact that the Hamiltonian Eq. 4.57 and Eq. 4.64 preserve the center-of-mass

of the electrons on the square lattice. Any nonzero fermion correlation with a finite

spatial separation would violate the center of mass conservation, thus the Fermion Green’s

function is fully localized in space. Single particle hopping will later be introduced as

perturbation, which breaks center-of-mass conservation and leads to spatial correlation

between fermions, and also charge transport.

For finite N and M , we need to estimate the corrections coming from the subdom-

inant Feynman diagrams. For any diagram, if we evaluate it with the solution in the

large−N,M limit, it will roughly lead to a “marginal” correction, namely it will correct

the large−N,M solution with a logarithmic function of infrared cut-off, say the temper-

ature. This is because in the large−N,M soluble limit the coupling constant g becomes

marginal, since the scaling dimension of the fermion operator is 1/4. Subdominant Feyn-

man diagrams of SYK like models have been carefully calculated in Ref. 471, and the
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result is consistent with our expectation. Thus we expect that any subdominant diagram

will at most lead to corrections with the form ∼ 1/NA1/MB(log(Λ/T ))C , where A,B

and C are all positive numbers. This diagram will hence become significant only when

T ≤ Λexp(−cN
A
CM

B
C ), (4.69)

where Λ is the ultraviolet cut-off of the system, which can be identified as g in our model.

Thus we expect the correction to the NFL solution is suppressed rapidly with increasing

N and M , hence it is possible that there is a finite energy window where the solution

Eq. 4.65 applies. This is consistent with the expectation for the original Sachdev-Ye

model away from the exactly soluble limit [468]. Away from the exactly soluble limit,

the ground state has no finite entropy density.

4.3.3 Properties of the NFL

Longitudinal Conductivity

Assuming Eq. 4.65 applies to a finite energy window, we can use it to compute

quantities at finite temperature within such energy window. Because Eq. 4.57 conserves

the center of mass of the electrons, it is incapable of transporting electric charge. More

formally, this interaction term does not couple to the zero momentum component of

the external electromagnetic field, analogous to models studied previously with center of

mass conservation [120, 472]. Thus the single particle hopping term is still responsible for

charge transport. In cuprates both the nearest neighbor and second neighbor hoppings

are important [473]. In the soluble large−N,M limit, we formally generalize the electric
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current density to the following form:

Jx =
1√
NM

(∑
α

itc†j,αcj+x̂,α +

√
N − 1

2
itc†j,αcj+x̂±ŷ,α

)
+H.c. (4.70)

This electric current density can be derived by designing a corresponding single electron

hopping term in the large−N,M limit (which involves both nearest and second neighbor

hopping), and couple it to the external electromagnetic field.

Assuming the solution in the large−N,M limit Eq. 4.65 applies to a finite energy

window of the system, then according to the Kubo formula, the central task is to cal-

culate the retarded current-current correlation function. The imaginary-time correlation

function is defined as C (J, J ; τ) = ⟨TτJ (τ) J (0)⟩. We find ⟨Jx Jy⟩ correlation vanishes

due to the symmetry of the model, and the leading order nonzero contribution to ⟨Jx Jx⟩

takes the form C (J, J ; τ) = −2t2G (τ)G (−τ). Then we Fourier transform C (J, J ; τ) to

obtain the correlation function in the Matsubara frequency space:

C (J, J ; iωn) = 2t2
∫ β−δ

δ

dτeiωnτG (τ)G (β − τ) , (4.71)

where we have regulated the integral by introducing a small positive cut-off δ. After

removing the divergent term log δ (which does not contribute to the real part of the

conductivity), we obtain the analytically continued correlation function

C (J, J ; z) = −2
t2

g
B2e−2πEψ

(
1

2
+
βz

2πi

)
, (4.72)

where ψ (z) = d
dz
log Γ (z) is the polygamma function, and the complex frequency z

satisfies Imz > 0. The function C (J, J ; iωn) can be obtained by setting z → iωn on

the above expression, and the retarded/advanced correlation function CR/A (J, J ;ω) is

obtained by taking z → ω ± i0+. Finally, using the relation σ (ω) = 1
iω
CR (J, J ;ω), we
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find the real part of the optical conductivity

Reσ (ω) =

√
πt2

4gT
Υσ (Q, ω/T ) , (4.73)

where

Υσ (Q, ω/T ) =
√
cos (2θ (Q))

tanh (ω/2T )

ω/2T
(4.74)

is the scaling function of conductivity. From another perspective, Υσ can also be com-

puted from the convolution of the scaling function of the fermion spectral function ρf in

Eq. 4.66.

By our definition, Υσ depends on both the fermion density Q and the ratio ω/T . The

Q-dependence of the conductivity is contained in the coefficient
√
cos (2θ) in the scaling

function Υσ (Q, ω/T ), and the function θ (Q) can be obtained by inverting Eq. 4.68. The

half-filling θ = 0 gives the maximum conductivity, as one would naively expect. Once we

fix the ratio ω/T (for example the DC limit with ω/T = 0), the longitudinal conductivity

σ(ω, T ) is proportional to 1/T , which is the most important phenomenon of the strange

metal phase.

In the calculation above we have assumed that the correlation function between cur-

rent operators factorizes into a product of two Fermion Green’s functions. This is true

in the large−N,M limit using the current operator Eq. 4.70, and the expression Eq. 4.73

is exact in this limit.

We also studied the minimal and most realistic version of our model, Eq. 4.57, with

exact diagonalization on a small 3×4 lattice with periodic boundary condition, and a fixed

particle number Np = 4. With our numerical method, it is most convenient to compare

the quantity F (ωc, T ) =
∫∞
0
dωe−ω/ωcωσ(ω, T ) with the analytical result Eq. 4.73. We
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Figure 4.5: The quantity F (ωc, T ) =
∫∞
0 dωe−ω/ωcωσ(ω, T ) extracted from exact

diagonalization of Eq. 4.64 on a 3× 4 lattice, with g = 1, M = 2, N = 3, and a fixed
particle number Np = 4. The solid lines are the plot of the same quantity calculated
based on the scaling function Eq. 4.73. In the definition of electric current we have
also taken N = 3, M = 2, namely both the nearest neighbor and second neighbor
hopping will contribute to conductivity. On this small system our data with a uniform
ηr,r′ = +1 compares better with the analytical solution in the large−N,M limit.

found that the case with a uniform choice ηr,r′ = +1 compares better with the solution in

the large−N,M limit. The general shape of the function F (ωc, T ) obtained numerically

is similar to the analytical expression in the large−N,M limit (Fig. 4.5), but further

numerical evidences are demanded for larger system sizes, for both choices of ηr,r′ .

The value of the DC conductivity is tunable by the parameter t in the definition of

the electric current (which is determined by the size of the hopping term), and the overall

energy scale g. Thus the resistivity in the minimal version of our model can easily exceed

the Mott-Ioffe-Regel limit, i.e. it can naturally become the so-called “bad metal”, which

is another puzzling phenomenon observed in cuprate materials and has attracted a lot of

attentions [78, 79, 80].
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Pairing instability and “pseudogap”

Besides hopping, we can also turn on other perturbations on Eq. 4.57. For example,

we can turn on the following perturbation on every link of the lattice:

Hu =
∑
<i,j>

− u

2M

(
∆†
i,j∆i,j +∆i,j∆

†
i,j

)
. (4.75)

Here ∆i,j = Jαβci,αcj,β is a Sp(M) singlet pairing operator on a nearest neighbor link

< i, j >. This term can be reorganized into a nearest neighbor density-density interaction

and a Heisenberg interaction using the Fierz identity of the symplectic Lie algebra [474].

This interaction term is marginal at the large−N,M limit by power-counting, again

based on the fact that the fermion operator has scaling dimension 1/4, and in the

large−N,M limit all the renormalization from Eq. 4.64 to this term is contained in

the renormalization of the fermion operator. In this limit, the RG equation of u can be

computed through the standard loop diagram in the same way as Ref. 460, using the

fermion Green’s function in Eq. 4.61:

du

d ln l
=

u2√
g2π cos (2θ)

. (4.76)

Thus the u term is marginally relevant in this limit, and it will likely lead to the fermion

pairing instability just like the BCS instability of the ordinary Fermi liquid.

Hu and single particle hopping will compete with each other under RG. Hu will

become nonperturbative at scales T ∗:

T ∗ ∼ g exp
(
−
√
π cos(2θ)

g

u

)
. (4.77)

Assuming the single particle hopping becomes nonperturbative at scale E0 (by naive
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power-counting a single particle hopping is indeed relevant, and will become nonpertur-

bative at scale E0 ∼ t2/g), Then obviously there are two possible scenarios: If E0 > T ∗,

the hopping term will dominate the low energy physics and generate a Fermi sea. And

at low energy the RG flow of u will be controlled by the standard RG equation of inter-

actions on the Fermi sea, and again u will be marginally relevant and lead to a pairing

instability [42]. Hu and the band structure together will likely favor a d−wave supercon-

ductor [475, 476, 477] on the square lattice near half-filling.

The possibility of T ∗ > E0, i.e. u becomes nonperturbative first under renomralization

while lowering energy, is even more interesting. Without single electron hopping, based

on the RG equation Eq. 4.76 alone, one cannot determine the pairing symmetry. In fact,

in this case, while lowering temperature (energy scale), before forming a superconductor

with global phase coherence, the system would favor to form Sp(M) spin singlet fermion

pairings on as many nearest neighbor links as possible. At half-filling, a generalization of

the Rokhsar’s theorem [222] can be straightforwardly applied to our case, and the ground

states of Eq. 4.75 in the large−M limit are all the “dimerized” configurations with one

quarter of the links occupied byM/2 pairs of fermions that each forms a Sp(M) singlet 5.

All these dimerized configurations are degenerate in the large−M limit [222]. Weak

disorder and 1/M correction could energetically select certain pattern of dimerization

from the extensively degenerate configurations, as was observed experimentally [478].

This state has a single particle excitation gap which necessarily breaks a Sp(M) singlet

on one of the links, but there is no global fermion-pair phase coherence. This case

could be identified as the pseudogap phase in the cuprates phase diagram above the

superconducting dome.

5Rokhsar’s original theorem was proven for spin systems instead of fermion systems. But this theorem
was formulated in the slave-fermion language, and the gauge constraint on the slave-fermions becomes
less and less important with increasing N . In the large−N limit, energetically the slave fermions become
physical fermions, because the gauge field dynamics is completely suppressed in this limit.
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The “pseudogap” crossover temperature T ∗ is given by Eq. 4.77, below which the

system develops a nonzero expectation value of ⟨∆ij⟩ = ∆ on a maximal possible num-

ber of links, based on our physical picture given above. With a nonzero ∆, for each

pair of sites i and j coupled by the Sp(M) singlet pair, we consider the perturbation

u
M
∆∗ (Jγδci,γcj,δ)+H.c. to the original model Eq. 4.59. Let us consider two sites (j = 1, 2)

connected by a dimer. We introduce a 2M -component fermion basis Ψ =
(
c1,α , c

†
2,α

)T
and the 2M × 2M Green’s function matrix G(τ) ≡ −⟨TτΨ(τ)Ψ(0)†⟩. To the first order

of ∆, the Green’s function in the imaginary-frequency domain is given by

G−1 (iωn) =

 G−1 (iωn)
u
M
∆J

u
M
∆∗J T −G−1 (−iωn)

 , (4.78)

where G (iωn) is the original single fermion Green’s function given by Eq. 4.61,Eq. 4.60.

By inverting Eq. 4.78, we obtain the final Green’s function −⟨Tτc1,α(τ)c†1,β(0)⟩:

δαβ

G−1 (iωn) +
u2

M2 |∆|2G (−iωn)
. (4.79)

We can analytically continue this expression to real frequency to obtain the retarded

Green’s function on each site, whose imaginary part can be identified as the local density

of states (see Fig. 4.6), where a “pseudogap” is manifest. In this calculation the Green’s

function only depends on the amplitude of ⟨∆ij⟩, thus even if the phase angle of ⟨∆ij⟩ is

disordered the pseudogap in the local density of states is still expected to exist.

A schematic global phase diagram with the parent strange metal phase dominated by

Hs, and the competition between perturbationsHu and single particle hopping parametrized

by t is depicted in Fig. 4.4.

We must stress that all the analysis discussed in this section is based on the physics

of the tetrahedron model in the soluble limit, which is identical to the disorder-averaged
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Figure 4.6: The local density of states at half filling (θ = 0) with T > T ∗ and
⟨∆ij⟩ = 0 (blue upper curve), and T < T ∗ with nonzero ⟨∆ij⟩ (red lower curve). In
the former case we have chosen gβ = 2; in the latter case we have chosen gβ = 4.5
and (u∆)/(gM) = 0.15 for illustration.

physics of the SYK model. No matter how exactly the SYK physics is realized in the

real system, these analysis always applies. Our Eq. 4.57 and Eq. 4.64 only give one

possible realization of these physics. Very similar physics can be realized in another

model discussed in the following section.

4.3.4 Another Possible Model

Another model which is slightly less natural but probably leads to very similar physics

is also worth discussion. Again, the most important term (but not the only term) of the

Hamiltonian reads

H =
∑
j

Hj , (4.80)

Hj = Un̂2j +
∑

ê=ê1,ê2

J

(
S⃗j · S⃗j+ê −

1

4
n̂jn̂j+ê

)
−K

(
ϵαβϵγσc

†
j,αc

†
j+ê1+ê2,β

cj+ê2,γcj+ê1,σ +H.c.
)
,

where ê1 = x̂ + ŷ, and ê2 = x̂ − ŷ. This term has no interaction between sublattice A

and B yet, and like before we will consider the single particle hoppings and interactions

that mix the two sublattices as perturbations.
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The advantage of this model is that, we no longer needs a large−N generalization

of the hopping term. The ordinary nearest neighbor hopping bridges the two sublat-

tices, i.e. it bridges two “SYK-clusters”, similar to the previously studied coupled SYK

cluster models [479, 480]. The nearest neighbor hopping with coefficient t is a relevant

perturbation based on the scaling dimension of the fermion operator ∆[cj] = 1/4 in the

soluble limit. The scaling dimension of t is ∆[t] = 1/2. Thus with the perturbation

of the nearest neighbor hopping, we expect the large−N,M solution of the tetrahedron

model to be applicable roughly to the energy window (t2/g, g), and within this window

the longitudinal conductivity σ(ω, T ) takes the same form as the previous case. Other

analysis like the perturbation of Hu (Eq. 4.75) and pairing instability remains unchanged

compared with the last model we considered.

4.3.5 Summary and Discussion

In this work we proposed two strongly interacting electron models on the square

lattice, with one orbital per unit cell. And we demonstrated that in certain limit these

models mimic the behavior of the “tetrahedron” tensor model, and hence can be solved.

The physics in this limit is consistent with the main phenomenology of the strange metal

non fermi liquid phase observed in the cuprates. We argue that away from this exactly

soluble limit, there is still a finite energy window where the solution is applicable. We

then checked our predictions numerically by exactly diagonalizing the minimal version

of the proposed Hamiltonian (which is away from the soluble limit and hence takes a

realistic form) on a small lattice. We also discussed effects of perturbations including

the single particle hopping, and argued that depending on the competition between two

perturbations, the system can develop either a d−wave superconductor, or a “pseudogap”

phase at low temperature.
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More numerical effort is demanded in the future to further analyze both our models

Eq. 4.57, Eq. 4.80. Also, more predictions on thermodynamics and transport can be

made below the crossover temperature T ∗ where the system enters the pseudogap phase

driven by Hu. The exact phase boundaries in the phase diagram Fig. 4.4 also needs

further detailed calculations. In this work we have treated single particle hopping as a

perturbation on top of the SYK-like physics. A complete treatment of the interaction

term Eq. 4.57, Eq. 4.80 together with a single particle hopping is demanded in the future

in order to study the momentum space structure of our theory. We will leave these open

questions to future studies.

4.4 Lattice Models for NFLs with Tunable Transport

Scalings

4.4.1 Introduction

Non-fermi liquid (NFL) states represent a family of exotic metallic states that do

not have long-lived quasi-particles, and hence behave fundamentally differently from the

standard Landau Fermi liquid theory [81, 82, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 455].

The most well-known NFL, the “strange metal” phase at the optimal doping of the

cuprate high temperature superconductors, has a universal scaling of its DC resistivity

ϱ ∼ T [63, 64, 65, 66, 67], while the standard Fermi liquid theory predicts ϱ ∼ T 2.

Recently the same strange metal behavior was observed in twisted bilayer graphene above

the superconductor phase [70]. A consensus of the nature of the strange metal phase has

not been reached yet, but a series of toy models, despite their relatively unnatural forms,

seem to capture many of the key universal features of the strange metal phase. These

models are the so-called Sachdev-Ye-Kitaev (SYK) model and its generalizations [54,
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55, 457, 458, 390, 391, 392, 459]. For example, it was found that the SYK model has

marginally relevant “pairing instability” just like the ordinary Fermi liquid state [460,

461], which is consistent with the fact that the non-Fermi liquid phase is often preempted

by a dome of “ordered phase” with pair condensate of fermions (superconductivity) at

low temperature [354, 355, 356, 357, 358, 359, 456]. Thus the “SYK phase” can be viewed

as a candidate parent phase of superconductor. Also, the recently observed anomalous

charge density fluctuation of the strange metal [462] suggests connection to the SYK

model [54]. Last but not least, a series of generalizations based on the SYK model has

shown linear-T resistivity for a large temperature window, and the scaling dimension

of the fermion operators in the SYK model is the key for the linear-T scaling of the

resistivity [393, 465, 394, 396]. But these models, in order to ensure solubility, require

fully random four-fermion interactions with a Gaussian distribution and zero mean, which

is unlikely to exist in real materials. More recently a model on the square lattice without

random interaction was constructed [397], which in the soluble limit mimics the physics

of the so called three-index tensor models [391, 392, 469], and gives us the same desirable

physics such as linear−T scaling of DC resistivity, and marginally relevant instability

towards superconductor and other competing phases.

Most of the previously discussed generalizations of the SYK model aimed at con-

structing the strange metal phase with precisely linear−T scaling of resistivity. But

NFL can have much richer physics than the strange metal. In various systems with

NFL behaviors, the DC resistivity can scale with temperature as ϱ ∼ Tα with 1 ≤ α <

2 [72, 73, 74, 75, 76, 77], and α is usually tunable by varying the charge density. As

we mentioned in the previous paragraph, the linear−T scaling of the DC resistivity is

a direct consequence of the scaling dimension ∆f = 1/4 of the fermion operator in the

SYK model after disorder average. To design a model with α between 1 and 2, we can

in principle start with the SYKq model with q > 4. But these models require a q−body
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interactions between the fermions, and hence are also not realistic for condensed matter

systems. Thus to construct a relatively realistic NFL with ϱ ∼ Tα and an arbitrary

α ∈ [1, 2), we need to start with a model with four-fermion interaction only and no ran-

domness, but with conformal solutions whose fermion scaling dimensions can be different

from 1/4. And most ideally the fermion scaling dimension is tunable with charge density.

The standard approach of understanding these NFLs is by coupling the Fermi liquid

state to a fluctuating bosonic quantum critical mode, and the relevant boson-fermion

coupling can potentially drive the system into a NFL [81, 82, 43, 44, 45, 46, 47, 48, 49,

50, 51, 52, 455]. And the transport-temperature scaling would depend on the spatial

dimensionality and also the momentum carried by the quantum critical mode. In this

paper we take a different approach. We will first design two elementary models for

interacting fermions that is free of randomness, whose solution in certain theoretical limit

is a conformal field theory, and most importantly the fermion has a scaling dimension

that depends on the charge density of the model. Then based on these elementary models

we design two versions of lattice models which naturally give us ϱ ∼ Tα, and α ∈ [1, 2)

is tunable by charge density. Our models provide an alternative approach of studying

various experimentally observed NFLs in a unified framework.

4.4.2 Two Elementary Models

We first give a brief review of the “tetrahedron” three-index tensor model without

any disorder, and in the large-N limit their solutions mimic the better-known SYK4

model. As was discussed in Ref. 392, the original U (Na) × U(Nb) × O(Nc) symmetric

tetrahedron model can be written as

H =
g√

NaNbNc

ψ†
a1b1c1

ψ†
a2b2c1

ψa1b2c2ψa2b1c2 , (4.81)
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where a = 1, . . . , Na, b = 1, . . . , Nb, c = 1, . . . , Nc. One can prove that as long as

0 <
Na

Nb

,
Nb

Nc

,
Nc

Na

<∞, (4.82)

this tensor model is dominated by the melonic diagrams in the large-Na, Nb, Nc limit

(Fig. 4.7), and its solution is a conformal field theory fixed point in the infrared limit.

At the conformal fixed point, the melonic diagrams can be summed by solving the

Schwinger-Dyson equations which are identical to the original SYK4 model for the com-

plex fermions [54, 457, 55]:

G (iωn) =
1

iωn + µ− Σ (iωn)
, (4.83)

Σ (τ) = −4g2G (τ)2G (−τ) , (4.84)

where the two-point Green’s function G (τ) is defined as

G (τ) δaa′δbb′δcc′ = −
〈
Tτψabc (τ)ψ†

a′b′c′ (0)
〉

(4.85)

Σ is the self energy, ωn is fermionic Matsubara frequency ωn = (2n+ 1) πT, n ∈ Z, and

τ is imaginary time. One key feature of this model is that in its conformal solution the

fermions have the scaling dimension

∆ψ =
1

4
(4.86)

just like the SYK4 model.

This model certainly has many variants with the same large-N solution. In Ref. 397

in order to make connection to the cuprates, we constructed a lattice model based on a
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Figure 4.7: The large-N Schwinger-Dyson equation for various complex tetrahedron models.

modified tensor model with the form

H =
gJc1c′1Jc2c′2√
NaNbNc

ψ†
a1b1c1

ψ†
a2b2c′1

ψa1b2c2ψa2b1c′2 , (4.87)

where J is the antisymmetric matrix associated with the Sp (Nc) group and Jcc′ψcψc′

forms an Sp (Nc) singlet.

So far all the tetrahedron models are comprised of one-orbital of fermions with three

indices and conformal dimension 1/4 in the soluble limit. In this paper, we consider

generalizations to two versions of “elementary” models each with two orbitals (types)

of fermions ψ and χ, and a mutual four-fermion interaction. The existence of multi-

orbitals of fermions is analogous to the situation in many heavy fermion systems, where

most of the NFLs were observed. This simple generalization leads to some important new

features: the conformal dimensions ∆χ and ∆ψ can be tuned by changing the parameters,

especially the particle density in the models. These elementary models enable us to build

several lattice models for NFLs with different transport scalings with randomness-free

four-fermion interactions.
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Model A

The first “elementary model” we construct takes the following form:

HA
0 =

N∑
a1,a2,b1,b2=1

M1∑
c=1

M2∑
d=1

g

N
√
M

(
ψ†
a1,b1,c

ψa2,b2,cχ
†
a1,b2,d

χa2,b1,d + h.c.
)
, (4.88)

where M =
√
M1M2. ψ and χ are two orbitals (types) of fermions each carries three

indices. The model above is the simplest model with the desired features. It has contin-

uous symmetries just like the original tetrahedron model, but these symmetries are not

essential to our results. There are also some discrete symmetries that are more important

for the solution, which will be spelled out later.

In the large-N,M1,M2 limit, just like the three-index tensor models, only the “melonic

diagrams” dominate. The sum of all the melonic diagrams must satisfy the coupled

Schwinger-Dyson (S-D) equations:

Gψ (iωn) =
1

iωn + µψ − Σψ (iω)
, (4.89)

Gχ (iωn) =
1

iωn + µχ − Σχ (iω)
, (4.90)

and the self energies are

ΣA
ψ (τ) = −4g2

√
M2

M1

Gψ (τ)Gχ (τ)Gχ (−τ) , (4.91)

ΣA
χ (τ) = −4g2

√
M1

M2

Gχ (τ)Gψ (τ)Gψ (−τ) , (4.92)

where we have introduced different chemical potentials µψ, µχ for the two fermions to fix

the particle densities.

Apparently, in this model the particle density of ψ and χ are separately conserved,
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thus we can introduce filling factor Qψ,Qχ ∈ (0, 1) separately. Qψ is defined as

Qψ =

∑
a,b,c⟨ψ

†
a,b,cψa,b,c⟩

N2M1

, (4.93)

and Qχ is defined accordingly. The role of the filling factors will be specified later and

derived in detail in the supplementary material. With fixed filling factors Qψ and Qχ,

just like the original S-Y model Ref. 54, we should set Σ (iωn = 0) = µ. Thus, we can

redefine the self energy as

Σ̃ψ/χ (iωn) = Σψ/χ (iωn)− µ (4.94)

Now in the infrared limit, assuming the self-energy always dominates the iωn term in the

infrared, the S-D equations are simplified as

Gψ (iωn) Σ̃ψ (iωn) = Gχ (iωn) Σ̃χ (iωn) = −1. (4.95)

At general filling factors Qψ and Qχ, and at zero temperature T = 0, we use the

following power law ansatz at complex frequency z (Im (z) > 0, |z| ≪ g) to solve the S-D

equations

Gψ (z) = Cψ
e−i(π∆ψ+θψ)

z1−2∆ψ
, (4.96)

Gχ (z) = Cχ
e−i(π∆χ+θχ)

z1−2∆χ
, (4.97)
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where the real parameters C, θ,∆ satisfy

Cψ > 0, −π∆ψ < θψ < π∆ψ, (4.98)

Cχ > 0, −π∆χ < θχ < π∆χ. (4.99)

There are in general six unknowns that we need to solve for: Cψ/χ, ∆ψ/χ and θψ/χ.

But through the S-D equations which are exact in the large-N,M1,M2 limit, we will

be able to determine five of them: C2
ψC

2
χ, ∆ψ/χ and θψ/χ. The scaling dimensions ∆ψ/χ

are the most important quantities which will determine the scaling of the transport

coefficients, as we will calculate explicitly later. In the large-N,M1,M2 limit, only the

product C2
ψC

2
χ is determined, while Cψ and Cχ may be determined separately through

subleading diagrams.

The S-D equation, or the melonic diagrams, demand that the self energies at complex

frequency z, Im (z) > 0 take the following form:

Σ̃A
ψ (z) ∝ CψC

2
χ

√
M2

M1

ei(π∆ψ+θψ)z1−2∆ψ , (4.100)

Σ̃A
χ (z) ∝ CχC

2
ψ

√
M1

M2

ei(π∆χ+θχ)z1−2∆χ . (4.101)

Eventually the coupled S-D equations Eq. 4.95 lead to the following self-consistent equa-

tions:

2g2C2
ψC

2
χ

√
M2

M1

cos (2π∆ψ) + cos (2θχ)

π (1− 2∆ψ) sin (2π∆ψ)
= 1, (4.102)

2g2C2
χC

2
ψ

√
M1

M2

cos (2π∆χ) + cos (2θψ)

π (1− 2∆χ) sin (2π∆χ)
= 1. (4.103)

The conformal dimensions ∆ψ and ∆χ also must satisfy another relation, which physically
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guarantee that the system is at a fixed point controlled by the four fermion interaction:

2∆ψ + 2∆χ = 1. (4.104)

Additionally, the filling factors Qψ and Qχ give further constraints on ∆ψ/χ, and θψ/χ

(please refer to the supplementary material):

Qψ =
1

2
− θψ

π
−
(
1

2
−∆ψ

)
sin (2θψ)

sin (2π∆ψ)
, (4.105)

Qχ =
1

2
− θχ

π
−
(
1

2
−∆χ

)
sin (2θχ)

sin (2π∆χ)
. (4.106)

The five equations above, i.e. Eq. 4.102 to Eq. 4.106 involve five unknown real numbers

that we need to solve for: ∆ψ, ∆χ, θψ, θχ, and C
2
ψC

2
χ. These equations imply that the

conformal dimension ∆ψ/χ can be tuned by the particle filling factors Qψ and Qχ, as we

will demonstrate explicitly later.

The imaginary time correlation function can be obtained by Fourier transforming

Eq. 4.96 and Eq. 4.97:

Gψ/χ (τ) =
Bψ/χ

|τ |2∆ψ/χ
(τ > 0), (4.107)

Gψ/χ (τ) = −
B′
ψ/χ

|τ |2∆ψ/χ
(τ < 0). (4.108)

Following the convention of the literatures on the complex SYK model (for example

Ref. 457), we can introduce the spectral asymmetry Eψ/χ

e2πEψ/χ =
sin
(
π∆ψ/χ + θψ/χ

)
sin
(
π∆ψ/χ − θψ/χ

) , (4.109)
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and the coefficient Bψ/χ, B′
ψ/χ is related to Cψ/χ as

Bψ/χ = −
Cψ/χΓ

(
2∆ψ/χ

)
sin
(
π∆ψ/χ + θψ/χ

)
π

, (4.110)

B′
ψ/χ = −

Cψ/χΓ
(
2∆ψ/χ

)
sin
(
π∆ψ/χ − θψ/χ

)
π

= Bψ/χe−2πEψ/χ . (4.111)

Although we cannot determine Cψ and Cχ separately from the S-D equations, dimensional

analysis determines that Bψ/χ ∼ Cψ/χ ∼ g−2∆ψ/χ , thus C2
ψC

2
χ ∼ 1/g2.

The finite temperature solution can be obtained by performing the conformal map-

ping τ → 1
πT

tan (πTτ), where τ becomes a periodic imaginary time coordinate with

periodicity 1/T . Using the rules of reparametrization transformation, we obtain

G (τ) =


Be−2πETτ

∣∣∣ πT
sin(πTτ)

∣∣∣2∆ 0 < τ < 1
T

−B′e−2πETτ
∣∣∣ πT
sin(πTτ)

∣∣∣2∆ 0 < −τ < 1
T

, (4.112)

Now we are ready to solve the equations from Eq. 4.102 to Eq. 4.106. In general an

analytic solution would be very tedious. But for the simplified case where M1 = M2,

there are only two parameters in this theory: qψ = Qψ − 1/2 and qχ = Qχ − 1/2, and

all the relevant quantities can be expanded as a polynomial of qψ, qχ. We also define

d = ∆ψ − 1/4 = 1/4 −∆χ. Then Eq. 4.104 implies that dψ = −dχ = d. We will obtain

analytic solutions for small qψ and qχ.

In fact, in Eq. 4.106 and Eq. 4.105, we do not need to compute the exact prefactor

before sin(2θψ) and sin(2θχ). Without loss of generality, we can assume the prefactor

f(∆, θ) is a function of ∆ and θ, and some general constraints of the its form would

be sufficient for the lowest nontrivial order of solutions as a polynomial of qψ/χ. For

example, f(∆, θ) must be consistent with the results in Ref. 468. When qψ = qχ, there

is a Z2 symmetry that exchanges ψ and χ, hence in this case ∆ψ = ∆χ = 1/4, or
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d = dψ = −dχ = 0. And to be consistent with the result in Ref. 468, the f(∆, θ) function

must satisfy

f(1/4, θ) = 1/4, (4.113)

and this statement is independent of θ. This is consistent with the result of Ref. 465

where it was found that f(∆, θ) does not depend on θ at all.

Under the particle-hole transformation, the Green’s function G(τ) at filling factor

qψ, qχ will become −G(−τ) at filling factor −qψ, −qχ. This implies that d must be an

even function of qψ and qχ, while θψ, θχ must be odd functions of qψ, qχ. If we assume

qψ ∼ qχ ∼ q ≪ 1 , to the lowest order expansion of qψ and qχ, d ∼ (q2ψ−q2χ), which follows

from the aforementioned fact that d = 0 when qψ = qχ. Thus to the lowest nontrivial

order of expansion of q, we can just take f(∆, θ) = 1/4 +O(q2ψ − q2χ) +O(q3).

All the five equations from Eq. 4.102 to Eq. 4.106 can be expanded as a polynomial of

qψ and qχ. And at the lowest nontrivial order, we obtain the following analytic solutions:

θψ = − 2πqψ
π + 2

+O(q3), (4.114)

θχ = − 2πqχ
π + 2

+O(q3), (4.115)

∆ψ =
1

4
+ d =

1

4
+

2π2(q2ψ − q2χ)

(π + 2)2(π − 2)
+O(q4), (4.116)

∆χ =
1

4
− d =

1

4
−

2π2(q2ψ − q2χ)

(π + 2)2(π − 2)
+O(q4). (4.117)

These solutions are consistent with all the previous observations, and also consistent with

numerical solutions of the equations
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Model B

Another elementary model that we will start with is also constructed with two orbitals

of fermions, each with three indices. The Hamiltonian takes the following form:

HB
0 =

N∑
a1,a2,b1,b2=1

M1∑
c,c′=1

M2∑
d,d′=1

g

N
√
M

J ψ
c,c′J

χ
d,d′

(
ψ†
a1,b1,c

ψ†
a2,b2,c′

χa1,b2,dχa2,b1,d′ + h.c.
)
, (4.118)

Here ψc and χd form fundamental representation of Sp(M1) and Sp(M2) group. J ψ
c,c′ψcψc′

and J χ
d,d′χdχd′ form singlets under Sp(M1) and Sp(M2) respectively.

Although both model A and model B share a similar three-index structure, there

are some fundamental differences between them. First of all, the particle density of ψ

and χ are no longer separately conserved in model B. Only the total particle density is

conserved. Thus, we should introduce

Q =
M1Qψ +M2Qχ

M1 +M2

∈ (0, 1) (4.119)

as a “total” filling factor, Notice that Qψ and Qχ are defined as the expectation values

of ψ and χ fermion number operator (Eq. 4.93), while only Q is a conserved quantity in

this case.

Secondly and very importantly, the self energies are different compared with those of

model A, based on the melonic diagrams:

ΣB
ψ (τ) = −4g2

√
M2

M1

Gχ (τ)
2Gψ (−τ) , (4.120)

ΣB
χ (τ) = −4g2

√
M1

M2

Gψ (τ)
2Gχ (−τ) , (4.121)

Again, we want to solve the coupled S-D equations Eq. 4.95 self-consistently in the

conformal limit, and we still use the power law ansatz Eq. 4.96 and Eq. 4.97. We found
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that the self energies Σ̃B
ψ , Σ̃

B
χ can still be written as the form of Eq. 4.100, Eq. 4.101. But

now the self-consistency of the S-D equation imposes another constraint on θψ, θχ (for

more details, please refer to Appendix. B.3.1):

sin (π∆ψ + θψ)

sin (π∆ψ − θψ)
=

sin (π∆χ + θχ)

sin (π∆χ − θχ)
, (4.122)

which implies that the two types of fermions have the same spectral asymmetry. Under

this constraint, the S-D equation Eq. 4.95 leads to the same expressions as Eq. 4.102 and

Eq. 4.103.

In addition, we have verified in the supplementary material that the expectation

values of the particle numbers for ψ and χ fermions share the same expressions Eq. 4.105

and Eq. 4.106 as model A. The total filling factor Q imposes further constraints on ∆ψ/χ,

and θψ/χ

Q =
1

2
− M1θψ +M2θχ

π(M1 +M2)
− M1∆χ sin (2θψ) +M2∆ψ sin (2θχ)

sin
(
2π∆ψ/χ

)
(M1 +M2)

, (4.123)

where ∆ψ/χ can be either ∆ψ or ∆χ due to Eq. 4.104.

Still, we have five equations that involve five unknown real quantities ∆ψ,∆χ, θψ, θχ,

and C2
ψC

2
χ. Compared to model A, the conditions that Qψ and Qχ are fixed separately

is replaced by fixing Q, together with the constraint Eq. 4.122. Now the conformal

dimension ∆ψ/χ can be tuned by changing the total particle filling factor Q.

4.4.3 Lattice Models for NFLs

Lattice model (1)

Based on the elementary models constructed in the previous section, we can construct

lattice models with the desired resistivity scaling ϱ ∼ Tα with α ∈ [1, 2). Our first lattice
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Figure 4.8: The relation between the transport scaling power α (defined as resistivity
ϱ ∼ Tα) and parameters in the lattice models for NFLs. (a) α plotted against Qψ

and Qχ with M2/M1 = 1 for the lattice model (1) with the on-cluster Hamiltonian
HA

0 (r); (b) α plotted against Q and M2/M1, for lattice model (1) with the on-cluster
Hamiltonian HB

0 (r); and also the lattice model (2) Eq. 4.134.
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model is constructed with coupled clusters (following the previous efforts [393, 465, 394,

396] of constructing the strange metal phase with the SYK4-like clusters), and the physics

on each cluster r is described by Eq. 4.88 or Eq. 4.118, which is the leading energy scale

of the system. Different clusters are coupled together through hoppings of both ψ and

χ:

H =
∑
r

H
A/B
0 (r)−

∑
⟨r,r′⟩

(
t1ψ

†
rψr′ + t2χ

†
rχr′

)
+ . . . (4.124)

The indices of ψ and χ are summed over in the equation above. Although the t-terms

are expected to drive the system into a Fermi liquid state at low energy, our goal is to

construct a NFL phase at a finite energy/temperature window, which is where most of

the NFLs are observed experimentally. Thus let us focus on the finite energy window

where H
A/B
0 is dominant, and the hopping term is perturbative.

The electric current operator of model Eq. 4.124 can be obtained by coupling the

model to the external electromagnetic field, and perform functional derivative of the

external field:

Jδ =
∑
r

it1ψ
†
rψr+δ + it2χ

†
rχr+δ +H.c. (4.125)

In order to compute the electric conductivity, we define the imaginary-time current-

current correlation function as C (J, J ; τ) = ⟨TτJ (τ) J (0)⟩. The leading order nonzero

contribution takes the form

C (J, J ; τ)

N
= −2t21Gψ (τ)Gψ (−τ)− 2t22Gχ (τ)Gχ (−τ) , (4.126)

where N is N = N2MV with V being the size of the lattice.

Then we perform Fourier transformation of C (J, J ; τ) to obtain correlation function
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in the Matsubara frequency space:

C (J, J ; iωn)

N
=
Cψ (J, J ; iωn)

N
+
Cχ (J, J ; iωn)

N
, (4.127)

where Cψ is calculated as

Cψ (J, J ; iωn)

N
= 2t21

∫ 1
T

0

dτeiωnτGψ (τ)Gψ

(
1

T
− τ

)
, (4.128)

which is exact in the large−N,M1,M2 limit, and Cχ has a similar expression.

When 0 < ∆ψ < 1/4, the integral Eq. 4.128 has a finite expression, but it diverges

when 1/4 ≤ ∆ψ < 1/2. For 1/4 ≤ ∆ψ < 1/2, we regulate the integral by introducing a

small positive cutoff δ > 0: ∫ 1
T

0

→
∫ 1

T
−δ

δ

. (4.129)

There is a O (log δ) divergence when ∆ψ = 1/4, and a O
(
1/δ4∆−1

)
divergence when

1/4 < ∆ψ < 1/2. The divergence is in the real part but not the imaginary part of the

correlation function, hence does not contribute to the conductivity, thus the divergence

can be removed in order to calculate the conductivity. The retarded/advanced correlation

function CR/A (J, J ;ω) can then be derived by taking z → ω± i0+. And eventually using

the relation σ (ω) = 1
iω
CR (J, J ;ω), we find the real part of the optical conductivity

Re[σ (ω)] ∼
t21B2

ψe
−2πEψ

T 2−4∆ψ
Υ
(
∆ψ,

ω

T

)
+
t22B2

χe
−2πEχ

T 2−4∆χ
Υ
(
∆χ,

ω

T

)
, (4.130)

where we have introduced the scaling function

Υ
(
∆,

ω

T

)
=

(2π)4∆−1

Γ (4∆) cos (2π∆)

2πT

ω
Im

[
Γ
(
2∆ + ω

i2πT

)
Γ
(
1− 2∆ + ω

i2πT

)] (0 < ∆ < 1/2) . (4.131)
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One can check that when ∆ = 1/4, the scaling function above reproduces the scaling

function for SYK4-like models [397]

Υ (∆ = 1/4, ω/T ) =
π tanh (ω/2T )

ω/2T
. (4.132)

The DC limit ω → 0 of the scaling function Υ (∆, 0) is a function of ∆ which takes

finite positive values for ∆ ∈ (0, 1/2). Since 2∆ψ + 2∆χ = 1, the final result of the DC

conductivity takes the following form

Re[σ] ∼ A

T 2−4∆
+

B

T 4∆
, (4.133)

where ∆ takes values in 0 < ∆ < 1/2. The constants A ∼ t21B2
ψ ∼ t21/g

4∆, and B ∼

t22B2
χ ∼ t22/g

2−4∆. Hence when T < g, the A/T 2−4∆ part of the DC conductivity will

dominate for 0 < ∆ < 1/4, and B/T 4∆ dominates for 1/4 < ∆ < 1/2. Thus, in a finite

temperature window for T lower than the dominant energy scale g, and higher than the

infrared scale below which the hopping terms become nonperturbative, we are able to

realize non-fermi liquid behaviors with resistivity ϱ ∼ Tα, and α ∈ [1, 2) depends on

parameters in the theory, especially the filling factors in the model.

The relation between α and the filling factors is plotted in Fig. 4.8. If we start with

model A on every cluster, α will depend on both Qχ and Qψ even when M1 =M2; if we

start with model B, then α depends on the total filling factor Q when M1 ̸=M2.

Lattice model (2)

In this section we we propose another different construction of lattice model for NFL,

by relating two of the three tensor indices to the lattice site coordinates of a two dimen-

sional square lattice.
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The dominant interaction in this model is

H =
∑
j

(N−1)/2∑
r,r′=−(N−1)/2

M1∑
c,c′=1

M2∑
d,d′=1

gJ ψ
c,c′J

χ
d,d′

N
√
M

(
ψ†
jx,jy,c

ψ†
jx+r,jy+r′,c′

χjx,jy+r′,dχjx+r,jy,d′ + h.c.
)
.(4.134)

This Hamiltonian is motivated by and resembles HB
0 . (jx, jy) represents the x and y

coordinates of the lattice site j. Physically ψc and χd can be thought of as two types of

fermions with M1 = 2J1 + 1 and M2 = 2J2 + 1 total angular momentum components,

and the Hamiltonian represents the process of tunnelling between the pair singlets of χ

and ψ. The cluster model in the previous section is insensitive to the spatial dimensions,

while the construction of Eq. 4.134 most naturally applies to a two dimensional system.

In Eq. 4.134, we always take the thermodynamics limit first (the sum of j is taken on

a square lattice with infinite size). Then in the large-N (in this model larger−N means

longer range interaction) and large-M1,M2 limit, the fermion Green’s function is still

dominated by the “melonic diagrams” and hence the Schwinger-Dyson equations, and

their solutions, remain the same as model HB
0 . Notice that the single fermion Green’s

function is completely local in space, which is guaranteed by the fact that the Eq. 4.134

conserves the center of mass.

In addition to the dominant interaction, we will also turn on a single-particle hopping

term as perturbations. Because Eq. 4.134 conserves the center of mass of the electrons,

the interaction Eq. 4.134 alone cannot transport electric charge. Thus the electric current

operator only comes from the electron hopping terms. In the soluble large-(N,M1,M2)

limit, we formally generalize the electric current operator to the following form

Jx =
it1√
NM1

(∑
c

ψ†
j,cψj+x̂,c +

√
N − 1

2
ψ†
j,cψj+x̂±ŷ,c

)

+
it2√
NM2

(∑
d

χ†
j,dχj+x̂,d +

√
N − 1

2
χ†
j,dχj+x̂±ŷ,d

)
+H.c. (4.135)
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This electric current density can be derived by designing a corresponding single-electron

hopping term in the large-(N,M1,M2) limit (which involves both nearest- and second-

neighbor hopping) and coupling it to the external electromagnetic field.

Using the large-(N,M1,M2) solution of Eq. 4.134, we can repeat all the calculations

for conductivity as we did for the previous model (1), and we arrive at the same expression

of conductivity Eq. 4.130. Thus, we again have tunability of transport scalings within

this construction. The exponent α of ϱ ∼ Tα is plotted against the filling factor Q and

M2/M1 in Fig. 4.8b.

4.4.4 Summary and Discussion

We constructed two examples of lattice models for non-fermi liquid states whose DC

resistivity scalings are tunable by adjusting the charge density, which is a phenomenon

observed in many physical systems. Our lattice models are based on two versions of

“elementary” models with randomness free four fermion interactions, which are soluble

in certain theoretical limit just like the SYK model and the fermion tensor models.

But unlike the previous models, our elementary models have tunable fermion scaling

dimensions in their conformal solutions.

In this work we assumed that both orbitals (types) of the fermions in the model carry

electric charges. But at least for model A, where the number of each type of fermions

is conserved separately, we can also assume that one of the two types of fermions are

charge neutral slave particles, which comes from “fractionalizing” the localized spins.

This perspective is similar to the the case in the original Sachdev-Ye model [54], and also

similar to a series of recent studies [465, 394, 396]. In this case, the slave fermions will

be coupled to a U(1) gauge field, whose effect in the large−N limit is expected to be

suppressed, and the solution of our model in the large−N limit remains unchanged. In
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this case the electric transport only comes from one of the two orbitals of the fermions,

and it is still tunable by changing the charge density of the system.

In Ref. 460, 397, it was shown that the SYK-type of models are instable against

extra marginally relevant four-fermion interactions, and these perturbations can lead to

instability at low energy/temperature. In experiment, many of the observed NFLs are

preempted by ordered phases (for example superconductivity) at low temperature. Also,

it was shown in Ref. 468 that the 1/N effect of the original Sachdev-Ye model plays a role

only at an exponentially suppressed energy scale, and at finite temperature there is a wide

window where the conformal solution of the Sachdev-Ye model applies. Similar effects

were shown for the SYK model and also the three-index tensor models by studying the

subleading order of the Feynmann diagrams [471]. All these analysis can be performed

for our models as well, which we will defer to future study.
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Chapter 5

Characterizations of Symmetries

and Anomalies

In Sec. 1.5, we have seen the important role of generalized symmetries and anomalies

in the modern understanding of quantum phases and phase transitions. This chapter

presents our understanding of how to unambiguously characterize generalized symme-

tries at quantum phase transitions, and some applications of generalized anomalies in

condensed matter systems.

In Sec. 5.1, we study the concept of “categorical symmetry” introduced recently, which

in the most basic sense refers to a pair of dual symmetries, such as the Ising symmetries of

the 1d quantum Ising model and its self-dual counterpart. In this manuscript, we study

discrete categorical symmetry at higher dimensional critical points and gapless phases.

At these selected gapless states of matter, we can evaluate the behavior of categorical

symmetries analytically. We analyze the categorical symmetry in the following examples

of criticality: (i.) (2 + 1)d Lifshit critical point of a quantum Ising system; (ii.) (3 + 1)d

photon phase as an intermediate gapless phase between the topological order and the

confined phase of 3d Z2 quantum gauge theory; (iii.) 2d and 3d examples of systems
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with both categorical symmetries (either 0-form or 1-form categorical symmetries) and

subsystem symmetries. We demonstrate that at some of these gapless states of matter

the categorical symmetries have very different behavior from the nearby gapped phases.

In Sec. 5.2, we investigate the behavior of higher-form symmetries at various quantum

phase transitions. We consider discrete 1-form symmetries, which can be either part of the

generalized concept “categorical symmetry” (labeled as Z̃
(1)
N ) introduced recently, or an

explicit Z
(1)
N 1-form symmetry. We demonstrate that for many quantum phase transitions

involving a Z
(1)
N or Z̃

(1)
N symmetry, the following expectation value ⟨(logOC)

2⟩ takes the

form ⟨(logOC)
2⟩ ∼ −A

ϵ
P + b logP , where OC is an operator defined associated with loop

C (or its interior A), which reduces to the Wilson loop operator for cases with an explicit

Z
(1)
N 1-form symmetry. P is the perimeter of C, and the b logP term arises from the sharp

corners of the loop C, which is consistent with recent numerics on a particular example.

b is a universal microscopic-independent number, which in (2 + 1)d is related to the

universal conductivity at the quantum phase transition. b can be computed exactly for

certain transitions using the dualities between (2+1)d conformal field theories developed

in recent years. We also compute the “strange correlator” of OC: SC = ⟨0|OC|1⟩/⟨0|1⟩

where |0⟩, |1⟩ are many-body states with different topological nature.

In Sec. 5.3, we discuss physical constructions and boundary properties of various

symmetry-protected topological phases that involve 1-form symmetries, from one spatial

dimension (1d) to four spatial dimensions (4d). For example, the prototype 3d boundary

state of 4d SPT states involving 1-form symmetries can be either a gapless photon phase

(quantum electrodynamics) or gapped topological order enriched by 1-form symmetries,

namely the loop excitations of these topological orders carry nontrivial 1-form symmetry

charges. This study also serves the purpose of diagnosing anomalies of 3d states of mat-

ter. The connection between SPT states with 1-form symmetries and condensed matter

systems such as quantum dimer models at one lower dimension will also be discussed.
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Whether a quantum dimer model can have a trivial gapped phase or not depends on the

nature of its corresponding bulk state in one higher dimension.

5.1 Order Diagnosis Operators and Categorical Sym-

metries at Criticality

5.1.1 Basics of Categorical Symmetry

Categorical symmetry is a new concept introduced in Ref. 481, which expanded the

conventional notion of symmetries in physics, and how one should think about them.

The basic examples of categorical symmetry correspond to a pair of dual symmetries,

whose local symmetry charges in general do not commute with each other. The simplest

example of such, are the Z2 and Z̃2 dual symmetry of the 1d quantum Ising model:

H =
∑
j

−Kσ3
jσ

3
j+1 − hσ1

j ↔ Hd =
∑
j̃

−Kτ 1
j̃
− hτ 3

j̃
τ 3
j̃+1
. (5.1)

This model has a well-known self-duality point K = h; σ3
j and τ

3
j̃
are order parameters of

the original Z2 and the dual Z̃2 symmetry. Let us label the entire categorical symmetries

of the 1d quantum Ising model as Z2 ⋆ Z̃2.

For the convenience of generalizing to higher dimensional systems with higher form

symmetries and more exotic subsystem symmetries that we will discuss in this manuscript,

we will introduce the concept “Order Diagnosis Operator” (ODO) for each symmetry.

The expectation value of the ODO diagnoses the behavior of its corresponding symmetry.

An ODO should commute with all the conserved global symmetry charges (which implies

that the expectation value of the ODO is in general nonzero 1), but creates local charges

1The expectation value of ODOs should not be viewed as an analogue of order parameter, they
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of the corresponding symmetry. For the Z2 and Z̃2 symmetries of the 1d quantum Ising

model, the ODOs are respectively

Oi,j = σ3
i σ

3
j , Õĩ,j̃ = τ 3

ĩ
τ 3
j̃
=
∏
i<k<j

σ1
k. (5.2)

Oi,j creates a pair of Z2 charges at sites i and j (but it preserves/commutes with the

global Z2 charge
∏

j σ
1
j ), while Õĩ,j̃ creates a pair of domain walls of σ3 at ĩ and j̃, which

are local charges of the Z̃2 symmetry.

When K > h, there is a long range correlation of σ3, short range correlation of τ 3

(long range expectation value of ODO Oi,j, and short range expectation value of Õĩ,j̃);

hence this is a phase that spontaneously breaks Z2, but preserves Z̃2. When K < h,

there is a long range correlation of τ 3, but short range correlation of σ3 (long range

expectation value of Õĩ,j̃, short range expectation value of Oi,j); hence this is a phase

that spontaneously breaks Z̃2, but preserves Z2. Whether a symmetry is preserved or

spontaneously broken, can be defined by the behavior of its ODO. When K = h, both

order parameters have power-law correlation, hence this is a criticality which preserves

both symmetries.

In what sense is Z̃2 a symmetry, and in what sense is there a spontaneous symmetry

breaking (SSB) of Z̃2? In the 1d quantum Ising model, without changing the physical

Ising Hilbert space, the SSB phase of the Z̃2 symmetry does not lead to ground state

degeneracy (GSD), after all it is just a quantum disordered phase of the Ising model.

However, with some global constraint on the physical Hilbert space, or when we view

the 1d system as the boundary of a 2d topological order [481], neither phase (K > h or

K < h) has GSD. Hence we no longer view GSD as a criterion for SSB. The SSB should

should be viewed as analogue of correlation of order parameters. The ODOs were studied as the “patch
symmetry operators” of the categorical symmetry in Ref. 481.
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be defined solely by the behavior of ⟨O⟩ and ⟨Õ⟩.

In higher dimensions, the possible categorical symmetries are much richer. In the 2d

quantum Ising model, there is a Z2 ⋆ Z̃
(1)
2 symmetry. Here Z̃

(1)
2 is a 1-form symmetry

as a generalization of ordinary symmetries introduced in recent years (see for instance

Ref. 482, 483, 484, 485, 486, 117, 487, 488, 489):

H =
∑
⟨x,x′⟩

−Kσ3
xσ

3
x′ −

∑
x

hσ1
x ↔

Hd =
∑
x̃,µ̂

−Kτ 1x̃,µ̂ −
∑
x̃

hτ 3x̃,x̂τ
3
x̃,ŷτ

3
x̃+x̂,ŷτ

3
x̃+ŷ,x̂. (5.3)

The lattice site x and dual lattice site x̃ are illustrated in Fig. 5.1. The subscripts (x̃, x̂)

and (x̃, ŷ) label the links of the dual lattice. The ODO of the Z2 symmetry is still

Ox,x′ = σ3
xσ

3
x′ ; while the ODO of Z̃

(1)
2 symmetry is

Õ
(1)
C =

∏
l̃∈C

τ 3
l̃
=

∏
x∈A, ∂A=C

σ1
x. (5.4)

Here l̃ also labels a link in the dual lattice, which belongs to the contractible loop C.

Õ
(1)
C creates an Ising domain wall of σ3, the one dimensional domain wall carries the dual

Z̃
(1)
2 1-form symmetry charge. Here A is a finite 2d patch on the dual lattice, C is the

boundary of A, which is a contractible loop. Again, the ODO Õ
(1)
C commutes with all

the conserved 1-form symmetry charges, which is defined as a product of τ 1 along any

closed 1d loop C ′. Notice that C ′ always intersects with the contractible C for even times,

hence the ODO Õ
(1)
C commutes with the conserved 1-form symmetry charges

∏
l̃∈C′ τ 1l̃ .

There are again two phases with K/h greater or smaller than a critical value. These

two phases have the following known behaviors of the ODOs [490], which can be computed
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through a reliable perturbation theory due to the gap in the spectrum of both phases

K/h≫ 1 : ⟨Ox,x′⟩ ∼ Const, ⟨Õ(1)
C ⟩ ∼ e−α1 log(K/h)A;

K/h≪ 1 : ⟨Ox,x′⟩ ∼ e−|x−x′|/ξ, ⟨Õ(1)
C ⟩ ∼ e−α2(K/h)2C. (5.5)

αi are order 1 numbers. Hence in the phase K ≫ h, the Z̃
(1)
2 symmetry Õ

(1)
C decays

with an area law; while in the phase K ≪ h, the domain walls proliferate/condense, and

Õ
(1)
C has a perimeter law. Again, in the phase h ≫ K, even though the domain walls

proliferate/condense, there is no GSD. This is in stark contrast with ordinary 1-form

symmetry SSB state, which would lead to topological degeneracy. Hence here we should

view the behavior of ⟨Õ(1)
C ⟩ as a criterion of SSB of Z̃

(1)
2 , rather than the GSD.

At the (2+1)d Ising critical point, the Z2 order parameter has a power-law correlation

(the expectation value of Ox,x′ falls off as a power-law), hence the Z2 symmetry is not

broken. Intuitively, since Ox,x′ has a power-law correlation, the expectation value of the

dual ODO Õ
(1)
C should be stronger than the area law deep in the K ≫ h phase, but

weaker than the perimeter law deep in the K ≪ h phase. But the exact behavior of

Õ
(1)
C is difficult to compute analytically at the 3D Ising critical point, and in other lattice

models that will be discussed in the following sections. The main goal of this manuscript

is to find critical points (or fine-tuned critical points) where the ODOs of the categorical

symmetries can be evaluated analytically. The strategy we will generally take is that,

we embed the target lattice model into a larger “parent” system where the ODOs of

the original system have a clear representation. Then we tune the parent system to a

multi-critical point, or even a gapless phase, where we can use tools in the continuum

limit to compute ODOs defined in both sides of the duality. Since many of the states we

discuss in this manuscript do not have Lorentz invariance, we will focus on expectation

value of time-independent operators at static states.
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Figure 5.1: The 2d square lattice, and its dual lattice. The lattice site is labelled as
x, and the dual lattice site (the plaquette of the original lattice) is labelled as x̃. The
links of the lattice are labelled as (x, µ̂), while the links of the dual lattice are labelled
as (x̃, µ̂).

5.1.2 Ising Categorical Symmetries at Criticality

2d Lifshitz Point

We can embed the target 2d quantum Ising model into a parent system described by

a U(1) quantum “rotor”:

H =
∑
x,µ

−t cos
(
∇µθ̂(x)

)
+
∑
x

U

2
n̂(x)2 − g cos

(
2θ̂(x)

)
. (5.6)

θ̂(x) and n̂(x) are a pair of conjugate variables, i.e. [n̂(x), θ̂(x′)] = iδx,x′ . n̂(x) takes

discrete integer eigenvalues, while θ̂(x) is periodically defined: θ̂(x) = θ̂(x) + 2π. The

last g term in Eq. 5.6 breaks the U(1) symmetry down to Z2. The operators σ3
x and σ1

x

of the Ising model correspond to the operators in the parent U(1) theory:

σ3
x = eiθ̂(x), σ1

x = eiπn̂(x). (5.7)
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If the g term is ignored, the U(1) model is dual to a lattice QED:

Hd =
∑
x̃

−t cos
(
ˆ⃗e(x̃)

)
+
∑
x̃

U

2

(
∇⃗ × ˆ⃗a(x̃)

)2
,

ˆ⃗e(x̃) = ẑ × ∇⃗θ̂(x), ∇⃗ × ˆ⃗a(x̃) = n̂(x). (5.8)

The electric field ˆ⃗eµ and gauge vector potential ˆ⃗aµ were defined on the links (x̃, x̂), (x̃, ŷ)

of the dual lattice, but we can also equivalently define ˆ⃗e(x̃) = (ˆ⃗ex(x̃), ˆ⃗ey(x̃)) = (ˆ⃗ex̃,x̂, ˆ⃗ex̃,ŷ),

ˆ⃗a(x̃) = (ˆ⃗ax(x̃), ˆ⃗ay(x̃)) = (ˆ⃗ax̃,x̂, ˆ⃗ax̃,ŷ). In the parent U(1) system, the Z2 and Z̃
(1)
2 ODO are

Ox,x′ = eiθ̂(x)e−iθ̂(x′),

Õ
(1)
C =

∏
A, ∂A=C

σ1
x = exp

(
iπ
∑
x∈A

n̂(x)

)
= exp

(
iπ

∮
C

ˆ⃗a · d⃗l
)
. (5.9)

In model Eq. 5.6, there is a critical point at critical value (U/t)c. Without the g

term, the transition in Eq. 5.6 is a 3D XY transition between the superfluid phase with

small U/t and a boson Mott insulator phase at large U/t. While with the g term, it is

expected that the 3D XY critical point will flow to the 3D Ising fixed point, because g

is obviously relevant at the 3D XY fixed point. However, one can fine-tune the critical

point to reach a Lifshitz point described by the following field theory Hamiltonian and

action in the continuum limit

H =

∫
d2x

U

2
n̂(x)2 +

ρ

2

(
∇2θ̂(x)

)2
,

S =

∫
d2xdτ

1

2U
(∂τθ)

2 +
ρ

2
(∇2θ)2. (5.10)

It is known that the g operator can be irrelevant at the (2 + 1)d Lifshitz Gaussian fixed

point for certain range of U and ρ, more precisely for large enough U/ρ [491, 492]. The
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irrelevance of g guarantees that the continuum limit field theory description in terms of

θ is applicable at this Lifshitz fixed point. One can also compute the expectation value

of O, which is the equal-time correlation function between σ3:

⟨O0,x⟩ = ⟨eiθ̂(0)e−iθ̂(x)⟩ ∼ 1

|x|2∆θ
, ∆θ ∼

√
U

ρ
. (5.11)

Hence at the Lifshitz point, the Z2 symmetry is preserved.

The situation is rather different for the Z
(1)
2 ODO ÕC. The dual Hamiltonian and

action of the Lifshitz theory Eq. 5.10 is

Hd =

∫
d2x̃

U

2

(
∇⃗ × ˆ⃗a

)2
+
ρ

2

(
(∇x

ˆ⃗ey)
2 + (∇y

ˆ⃗ex)
2
)
,

Sd =
∫
d2x̃dτ

1

2ρ

(
ˆ⃗ax
∂2τ
∂2y

ˆ⃗ax + ˆ⃗ay
∂2τ
∂2x

ˆ⃗ay

)
+
U

2
(∇⃗ × ˆ⃗a)2. (5.12)

This is the same Hamiltonian and action describing the 2d quantum dimer model at the

Rohksar-Kivelson point [493, 494]. The correlation function of a⃗q⃗,ω is

⟨ˆ⃗aµ(−ω,−q⃗)ˆ⃗aν(ω, q⃗)⟩ ∼
ρ(q2δµν − qµqν)

ω2 + ρUq4
, ⟨ˆ⃗aµ(0, 0)ˆ⃗aν(0,x)⟩ ∼

√
ρ

U

1

|x|2
. (5.13)

The expectation of Õ
(1)
C can be evaluated using the Gaussian theory of the gauge field:

⟨exp(iπ
∮
C

ˆ⃗a · d⃗l)⟩ ∼ exp

(
−π

2

2

∮
C

∮
C
⟨ˆ⃗aµ(x)ˆ⃗aν(x′)⟩dxµdx′ν

)
. (5.14)

Power-counting suggests that this is still a perimeter law: the 1/|x|2 decay of the correla-

tion function of the gauge fields do not lead to extra divergence with large loop size, the

expectation value of Õ
(1)
C is dominated by small distance correlation of the gauge field.

Since in the gapped phase h ≫ K (Eq. 5.3) where the domain walls clearly proliferates,

Õ
(1)
C follows a perimeter law, we will use the perimeter law of Õ

(1)
C as a criterion of SSB
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of Z̃
(1)
2 . Then this Lifshitz point still spontaneously breaks the Z̃

(1)
2 symmetry, while

preserving the Z2 symmetry. One can also see that when the expectation value of Ox,x′

is stronger (smaller ∆θ at smaller U/ρ), the expectation value of Õ
(1)
C becomes weaker

(larger ρ/U). The results of this section are summarized in the table below.

2d Quantum Ising theory K ≫ h in Eq. 5.3 K ≪ h in Eq. 5.3 Fine-tuned Lifshitz Point

Ox,x′ Long range Short Range Power law

Õ
(1)
C Area law Perimeter law Perimeter law

3d Z2 Quantum Gauge Theory

It was well-known that the 3d lattice Z2 gauge theory has a self-dual structure [490,

495, 496]:

H =
∑
x,µ̂,ν̂

−Kσ3
x,µ̂σ

3
x,ν̂σ

3
x+µ̂,ν̂σ

3
x+ν̂,µ̂ − hσ1

x,µ̂

↔ Hd =
∑
x̃,µ̂,ν̂

−Kτ 1x̃,µ̂ − hτ 3x̃,µ̂τ
3
x̃,ν̂τ

3
x̃+µ̂,ν̂τ

3
x̃+ν̂,µ̂. (5.15)

This system has a Z
(1)
2 ⋆ Z̃

(1)
2 categorical symmetry. The ODOs for Z

(1)
2 and Z̃

(1)
2 are

O
(1)
C =

∏
l∈C

σ3
l , Õ

(1)
C =

∏
l̃∈C

τ 3
l̃
. (5.16)

The O
(1)
C and Õ

(1)
C are products of the K and h terms of Eq. 5.15 within 2d patch A with

∂A = C.

There are two phases of this model: for K ≫ h, ⟨O(1)
C ⟩ decays with a perimeter law,

while ⟨Õ(1)
C ⟩ decays with an area law; this is a phase with SSB of Z

(1)
2 but preserves Z̃

(1)
2 .

In the opposite limit h≫ K, ⟨O(1)
C ⟩ decays with an area law, while ⟨Õ(1)

C ⟩ decays with

an perimeter law; this is the phase with SSB of Z̃
(1)
2 but preserves Z

(1)
2 .

Unfortunately, model Eq. 5.15 does not have a second order transition between the

two phases, hence there is no critical point in model Eq. 5.15 where Z
(1)
2 and Z̃

(1)
2 are
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on equal footing. But we can embed the Z2 gauge theory Eq. 5.15 into a QED model

with U(1)(1) ⋆ Ũ(1)(1) symmetries, and this QED model has a gapless photon phase. In

this gapless photon phase, both O
(1)
C and O

(1)
C′ in Eq. 5.16 can be computed using the

Gaussian fixed point theory of the U(1) gauge field, and its self-dual Ũ(1) gauge field.

The Gaussian theory of the U(1) and Ũ(1) gauge bosons indicates that both OC and ÕC

follow a perimeter law. Since in the gapped phases of Eq. 5.15 OC and ÕC at most have a

perimeter law, we view the gapless photon phase of the U(1) gauge field as a phase which

spontaneously breaks both Z
(1)
2 and Z̃

(1)
2 symmetries. This gapless QED would still have

Z
(1)
2 ⋆ Z̃

(1)
2 as the UV symmetry, while the U(1)(1) ⋆ Ũ(1)(1) symmetry are IR emergent

symmetries. The IR emergent symmetries are spontaneously broken, which still leads to

gapless photons as their Goldstone modes 2.

One can also fine-tune the QED to a Lifshitz point with non-Lorentz invariant disper-

sions of the U(1) gauge bosons. However, we have checked and verified that, at various

Lifshitz points (meaning fine-tuned states with different non-Lorentz invariant disper-

sion), at least one of the Z
(1)
2 and Z̃

(1)
2 symmetries is spontaneously broken, i.e. one of

OC and ÕC must have a perimeter law.

5.1.3 Examples of Subsystem Categorical Symmetries

2d Example

Let us consider a special 2d lattice Z2 quantum gauge theory, which can be constructed

in Josephson arrays of superconductor and ferromagnet deposited on top of a quantum

2Spontaneous breaking of emergent higher form symmetries in the infrared would still lead to gapless
Goldstone modes, this is very different from the scenario of ordinary 0-form symmetries.
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spin Hall insulator [497]:

H =
∑
x

−Kσ3
x,x̂σ

3
x,ŷσ

3
x+x̂,ŷσ

3
x+ŷ,x̂ − Jσ1

x,x̂σ
1
x+x̂,x̂ − Jσ1

x,ŷσ
1
x+ŷ,ŷ. (5.17)

The last two terms of this model are actually identical, due to the Z2 Gauss law gauge

constraint σ1
x−x̂,x̂σ

1
x,x̂σ

1
x−ŷ,ŷσ

1
x,ŷ = 1, which we will impose strictly on the Hilbert space of

the system.

This model has an ordinary Z
(1)
2 1-form symmetry, and extra Z

(sub)
2 subsystem sym-

metries. The subsystem symmetry grants the system a series of conserved quantities:

Σx̂,y =
∏

y=Const

σ3
x,x̂, Σŷ,x =

∏
x=Const

σ3
x,ŷ. (5.18)

x and y are the two coordinates of x. The subsystem symmetries of Eq. 5.17 guarantee

that Σx̂,y and Σŷ,x are conserved for arbitrary x and y. The ODO for Z
(1)
2 , and its

expectation value in the topological ordered phase K ≫ J is

O
(1)
C =

∏
l∈C

σ3
l , ⟨O(1)

C ⟩ ∼ e−α3(J/K)2NC . (5.19)

The O
(1)
C commutes with conserved quantities Σx̂,y and Σŷ,x, hence it meets the criterion

of ODO we introduced in the first section. Due to the conservation of the extra quantities

Σx̂,y and Σŷ,x, the ODO has a generic “corner law” instead of perimeter law, where NC

is the number of corners of loop C. For example, in Fig. 5.1, the rectangular loop C has

four corners, And O
(1)
C is a product of finite segments of Σx̂,y and Σŷ,x. The expectation

value of the rectangular O
(1)
C does not decay with the length of C. Because Σx̂,y and Σŷ,x

are conserved when the product is along an infinitely straight line, then for a generic C,

if we compute the expectation value of O
(1)
C through a perturbation of J/K like Ref. 490,
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the value can only decay when C “takes a turn”.

In the other limit of the model, K ≪ J , the ODO O
(1)
C decays as an area law like the

ordinary confined phase of a Z2 lattice gauge theory, and there is a SSB of the subsystem

symmetries Z
(sub)
2 . The most convenient way to study this limit, is to take the dual

Hamiltonian of Eq. 5.17, which still has subsystem Z̃
(sub)
2 symmetries:

Hd =
∑
x̃

−Kτ 1x̃ − 2Jτ 3x̃τ
3
x̃+x̂τ

3
x̃+ŷτ

3
x̃+x̂+ŷ. (5.20)

The duality mapping between σi and τ i is the same as the standard 2d Ising-Gauge

duality discussed in the previous section. Z̃
(sub)
2 inherits and contains Z

(sub)
2 , but is

slightly larger: Z̃
(sub)
2 includes another Z̃2 element which changes the sign of all τ 3x̃. This

extra Z̃2 element is the dual of Z
(1)
2 , and it does not change σ1

l in Eq. 5.17.

The ODO of Z̃
(sub)
2 is a product of τ 3 on four corners of a rectangle:

Õ(sub)
x,y = τ 30,0τ

3
x,0τ

3
0,yτ

3
x,y. (5.21)

The ODO defined above is also a product of the J term in Eq. 5.17 within the rectangle.

In the original topological order K ≫ J , Õ
(sub)
x,y can be computed through a perturbation

of J/K, and it decays as an exponential of the area of the rectangle; while at the SSB

phase of Z̃
(sub)
2 (K ≪ J), Õ

(sub)
x,y has long range expectation value [498].

Like the previous section, we can embed the dual model Eq. 5.20 into a model with

Ũ(1)(sub) symmetry:

Hd =

∫
d2x̃

U

2
n̂(x̃)2 − t cos

(
∇x∇yθ̂(x̃)

)
− g cos

(
2θ̂(x̃)

)
. (5.22)

The relation between the operators of the Z̃
(sub)
2 theory Eq. 5.20 and the Ũ(1)(sub) theory
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Eq. 5.22 is

τxx̃ = exp (iπn̂(x̃)) , τ zx̃ = exp
(
iθ̂(x̃)

)
(5.23)

When g is relevant, it will break the Ũ(1)(sub) down to Z̃
(sub)
2 .

However, as was studied before [499], the g term can only flow strong and become non-

perturbative under renormalization group through “assistance” from some other terms

such as γ(2∇µθ). If we tune γ to zero, then there exists a stable gapless phase of the

model Eq. 5.22 with a larger Ũ(1)(sub) symmetry, and the g term is irrelevant. And in

this gapless phase the system is described by the following action:

Sd =
∫
dτd2x̃

1

2U
(∂τθ)

2 +
t

2
(∇x∇yθ)

2, (5.24)

where θ can be viewed as a free boson instead of a compact boson. The Ũ(1)(sub) reads

θ(x̃) → θ(x̃) + f(x̃) + g(ỹ). (5.25)

This gapless phase can also be described by a U(1) gauge theory, which can be viewed

as the parent theory where the original Z2 lattice gauge theory Eq. 5.17 is embedded to:

H =

∫
d2x

U

2
(∇⃗ × ˆ⃗a)2 +

t

4

(
(∇x

ˆ⃗ex)
2 + (∇y

ˆ⃗ey)
2
)
. (5.26)

In this gapless phase, the expectation value of the ODO of the original Z2 gauge

theory O
(1)
C will depend on the shape of C, but it no longer follows the “corner law”

Eq. 5.19 of the gapped topological ordered phase K ≫ J in Eq. 5.17. In the gapless
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phase, the ODO O
(1)
C can be written as

⟨O(1)
C ⟩ = ⟨

∏
x̃∈A,∂A=C

τ 1x̃⟩ ∼ ⟨e
∑

x̃∈A iπn̂(x̃)⟩. (5.27)

In order to evaluate ⟨O(1)
C ⟩ we will make use of another duality of Eq. 5.22 and Eq. 5.24:

Hd2 =

∫
d2x

U

2
(∇x∇yϕ̂(x))

2 − t cos
(
N̂(x)

)
. (5.28)

Now ϕ̂(x) and N̂(x) are still defined on the sites of the original lattice x (Fig. 5.1):

∇x∇yθ̂(x̃) = −N̂(x), ∇x∇yϕ̂(x) = n̂(x̃). (5.29)

The gapless phase has a new dual description in terms of the continuum limit model of

ϕ̂(x):

S2d =

∫
d2xdτ

1

2t
(∂τϕ)

2 +
U

2
(∇x∇yϕ)

2. (5.30)

In this gapless phase, if we consider a loop C which is a rectangle with four corners

at (0, 0), (x, 0), (0, y), (x, y) (Fig. 5.1), the expectation value O
(1)
C is

⟨O(1)
C ⟩ = ⟨

∏
x̃∈A,∂A=C

τ1x̃⟩ ∼ ⟨exp

(∑
x̃∈A

iπn̂(x̃)

)
⟩

= ⟨exp
(
iπ(ϕ̂0,0 − ϕ̂x,0 − ϕ̂0,y + ϕ̂x,y)

)
⟩

∼ exp
(
π2(⟨ϕ̂0,0ϕ̂x,0⟩+ ⟨ϕ̂0,0ϕ̂0,y⟩+ ⟨ϕ̂x,yϕ̂x,0⟩+ ⟨ϕ̂x,yϕ̂0,y⟩ − ⟨ϕ̂0,0ϕ̂x,y⟩ − ⟨ϕ̂0,yϕ̂x,0⟩)

)
∼ exp

(
−cπ2

√
t

U
log |x| log |y|

)
. (5.31)

This is a faster decay compared with the corner law in the gapped topologically ordered

phaseK ≫ J in Eq. 5.17. In the same gapless phase, the expectation value of Õsub
x,y defined
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Figure 5.2: The cubic lattice and the dual lattice for models considered in section 5.1.3.

in Eq. 5.21 decays in a similar way as Eq. 5.31, rather than a long range expectation

value as the phase K ≪ J . Hence this gapless phase described by Eq. 5.24, Eq. 5.26,

Eq. 5.30 can be viewed as a symmetric phase for both Z
(1)
2 and Z̃sub

2 symmetries.

The special double logarithmic scaling in Eq. 5.31 arises from the subsystem symme-

tries Eq. 5.25 of the parent U(1) theory. More technically, in order to evaluate O
(1)
C , we

need to compute the equal-time correlation function ⟨ϕ̂0,0ϕ̂x,y⟩, which in the momentum

space is [499] Gkx,ky ∼
∫
dω ωt/(ω2 + tUk2xk

2
y) ∼ 1/|kxky|. The double linear divergence

at kx → 0 and ky → 0 leads to the special double logarithmic scaling in real space. The

results of this subsection is summarized in the table below.

Special 2d Z2 Gauge theory Eq. 5.17 K ≫ J K ≪ J Gapless Phase

O
(1)
C Corner law Area law exp

(
−cπ2

√
t/U log |x| log |y|

)
for rect. C

Õsub
x,y Area law Long range exp

(
−c̃π2

√
U/t log |x| log |y|

)
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3d Example

We now consider a 3d Z2 lattice gauge theory defined on the cubic lattice, which has

both the 1-form symmetry, and subsystem symmetries:

H =
∑
x,µ̂,ν̂

−Kσ3
x,µ̂σ

3
x,ν̂σ

3
x+µ̂,ν̂σ

3
x+ν̂,µ̂ − Jσ1

x,µ̂σ
1
x+µ̂,µ̂

↔ Hd =
∑
x̃,µ̂,ν̂

−Kτ 1x̃,µ̂ −
∑
ρ̂⊥µ̂,ν̂

JB̂x̃,µ̂ν̂B̂x̃+ρ̂,µ̂ν̂ . (5.32)

where B̂x̃,µ̂ν̂ = τ 3x̃,µ̂τ
3
x̃,ν̂τ

3
x̃+µ̂,ν̂τ

3
x̃+ν̂,µ̂. The theory H has an ordinary Z

(1)
2 symmetry like

Eq. 5.15, plus subsystem symmetries with conserved quantities:

Σx̂;(y,z) =
∏

y,z=Const

σ3
x,x̂, Σŷ;(x,z) =

∏
x,z=Const

σ3
x,ŷ, Σẑ;(x,y) =

∏
x,y=Const

σ3
x,ẑ. (5.33)

x, y, z are the three coordinates of x. The ODO of the Z
(1)
2 1-form symmetry is the

same as Eq. 5.15: O
(1)
C =

∏
l∈C σ

3
l . Due to the extra subsystem conserved quantities in

Eq. 5.33, and since O
(1)
C is a product of segments of these extra conserved quantities, the

expectation value of O
(1)
C in the phase K ≫ J also decays with a corner law, i.e. the

expectation value of O
(1)
C decays only when C takes a turn; in the phase K ≪ J , there

is a SSB of the subsystem symmetry, and the expectation value of O
(1)
C decays with an

area law.

The dual Hamiltonian Hd has the same Z̃
(1)
2 symmetry as the dual of the ordinary Z2

quantum lattice gauge theory, with extra subsystem symmetries as well. The ODO we

will consider for Hd is

Õ
(1)
C,C′ =

∏
l̃∈C

τ 3
l̃

∏
l̃∈C′

τ 3
l̃
. (5.34)
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There are still subsystem symmetries in Hd of Eq. 5.32, with conserved subsystem sym-

metry charges such as

Σ̃ẑ;(ỹ,z̃) =
∏

ỹ,z̃=Const

τ 1x̃,ẑ, Σ̃ẑ;(x̃,z̃) =
∏

x̃,z̃=Const

τ 1x̃,ẑ, · · · (5.35)

These conserved subsystem charges are not entirely independent from each other due to

the Gauss-law gauge constraint imposed on τ 1. Due to these subsystem symmetries in the

dual model, we restrict our discussions to the cases when C and C ′ in Õ
(1)
C,C′ are completely

parallel with each other, and separated along the direction orthogonal to both loops, (for

example, C and C ′ can be identical squares in two XY planes, but separated along the

ẑ direction), because only then would the ODO commute with all the conserved 1-form

charges of the dual model Eq. 5.15, and also commute with the subsystem conserved

charges Σ̃. When C and C ′ are identical loops in XY planes separated along the ẑ

direction, Õ
(1)
C,C′ is also a product of Jσ1

x,ẑσ
1
x+ẑ,ẑ in H of Eq. 5.32 within the 3d region

sandwiched between C and C ′; while O
(1)
C is still a product of the K term enclosed by C.

In the phase K ≪ J , the expectation value of Õ
(1)
C,C′ can again be computed through

a perturbation of K/J : it decays as a perimeter law of C (or equivalently C ′), but it does

not decay with the distance between C and C ′. In the phase K ≫ J , the expectation

value of Õ
(1)
C,C′ would decay exponentially with the distance between C and C ′, and also

exponentially with the area of C (or C ′).

It is unknown whether model Eq. 5.32 has a second order transition between the two

phases mentioned above or not. But again we can embed the models into a parent model

with U(1)(1) and Ũ(1)(1) symmetries. For instance, the Hd in Eq. 5.32 can be embedded

into

Hd =

∫
d3x̃

∑
µ

U

2
ˆ⃗e2x̃,µ̂ − t cos(∇z(∇x

ˆ⃗ay −∇y
ˆ⃗ax)) + (permute x, y, z)− g cos(2ˆ⃗aµ). (5.36)
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ˆ⃗e and ˆ⃗a are defined on the dual lattice links (x̃, µ̂), which are also the plaquettes of

the original cubic lattice (Fig. 5.2). This model admits a gapless phase described by the

following action:

Sd =
∫
d3x̃dτ

1

2U
(∂τ a⃗)

2 +
t

2
(∇z(∇xay −∇yax))

2 + (permute x, y, z). (5.37)

In this gapless phase, the ODO Eq. 5.34 becomes

Õ
(1)
C,C′ =

∏
l̃∈C

τ 3
l̃

∏
l̃∈C′

τ 3
l̃
∼ exp

(
i

∮
C

ˆ⃗aµdx
µ

)
exp

(
−i

∮
C′

ˆ⃗aνdx
ν

)
. (5.38)

The expectation value of Õ
(1)
C,C′ can be evaluated with the continuum limit action Eq. 5.37.

Our goal is to show that, the behavior of Õ
(1)
C,C′ is different from the gapped phases.

This effect can be readily shown by considering the simple case when both C and C ′ are

unit plaquettes in the XY planes, separated in the z direction by distance Z. Then

Õ
(1)
C,C′(Z) ∼ exp

(
⟨(∇x

ˆ⃗ay −∇y
ˆ⃗ax)z=0(∇x

ˆ⃗ay −∇y
ˆ⃗ax)z=Z⟩

)
∼ exp

(
−c1

√
U

t
logZ

)
∼ 1

|Z|2∆C,C′
, ∆C,C′ ∼

√
U

t
. (5.39)

This power-law decay along the z direction originates from the fact that the correlation

function ⟨(∇x
ˆ⃗ay −∇y

ˆ⃗ax)z=0(∇x
ˆ⃗ay −∇y

ˆ⃗ax)z=Z⟩ has a singularity 1/kz in the momentum

space near kz = 0. This power-law scaling along z is already very different from the

expectation value of Õ
(1)
C,C′(Z) in the gapped phases of the models in Eq. 5.32. We also

made efforts to compute Õ
(1)
C,C′ for C, C ′ with more general shapes, this calculation is

presented in Appendix. B.4.1.

To evaluate O
(1)
C , again it is more convenient to use a third dual description of the
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theory:

Hd2 =

∫
d3x

U

2

(
∇x∇y(ϕ̂x(x)− ϕ̂y(x))

)2
− t cos

(
N̂z(x)

)
+ (permute x, y, z) (5.40)

The operators in Eq. 5.40 are related to the operators in Eq. 5.36 through the mapping

(the duality between Hd and Hd2 was first discussed in Ref. 500)

ˆ⃗ex̃,ẑ = ∇x∇y(ϕ̂x(x)− ϕ̂y(x)), and permutation of x, y, z;

∇z(∇x
ˆ⃗ax̃,ŷ −∇y

ˆ⃗ax̃,x̂) = −N̂z(x), and permutation of x, y, z. (5.41)

The gapless phase is described by the following action:

Sd2 =
∫
d3xdτ

U

2
(∇x∇y(ϕx − ϕy))

2 +
1

2t
(∂τϕz)

2 + (permute x, y, z) (5.42)

ϕ̂i(x) and N̂i(x) are three pairs of conjugate variables defined on the sites of the original

cubic lattice x. Let us assume that the loop C in O
(1)
C is a rectangle in the XY plane,

then

O
(1)
C =

∏
l∈C

σ3
l =

∏
(x̃,ẑ)∈A

τ 1x̃,ẑ =
∏

(x̃,ẑ)∈A

exp(iπˆ⃗ex̃,ẑ)

=
∏
x∈A

exp
(
iπ∇x∇y(ϕ̂x(x)− ϕ̂y(x))

)
= exp

(
iπ
∑
x∈A

∇x∇y(ϕ̂x(x)− ϕ̂y(x))

)

= exp

 iπ(ϕ̂x(0, 0)− ϕ̂x(x, 0)− ϕ̂x(0, y) + ϕ̂x(x, y))

−iπ(ϕ̂y(0, 0)− ϕ̂y(x, 0)− ϕ̂y(0, y) + ϕ̂y(x, y))

 . (5.43)

Again since our goal is to show that O
(1)
C has different behavior from the two gapped

phases K ≫ J and K ≪ J , it is sufficient to consider a special “narrow rectangular”

shape of C, i.e. y = 1, but x ≫ 1. ⟨O(1)
C ⟩ in this case is evaluated as exp(π2⟨∇y(ϕx −
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ϕy)0,0∇y(ϕx − ϕy)x,0⟩). The key correlation function ⟨∇y(ϕx − ϕy)0,0∇y(ϕx − ϕy)x,0⟩ has

an infrared singularity as 1/|kx| near kx = 0. O
(1)
C with a narrow rectangular C scales as

⟨O(1)
C ⟩ ∼ 1

|x|∆C
, ∆C ∼

√
t

U
. (5.44)

The power law decay of O
(1)
C is very different from the two gapped phases of Eq. 5.32.

The results of this subsection are summarized in the table below.

Special 3d Z2 Gauge theory Eq. 5.32 K ≫ J K ≪ J Gapless Phase

O
(1)
C with rect. C in XY Corner law Area law 1

|x|∆C
, with y = 1 and x≫ 1.

Õ
(1)
C,C′ parallel C, C′ in XY; Area law of C, C′; Perimeter law of C; 1

|Z|
2∆C,C′ , for unit square

separated along ẑ exponential decay with Z long range with Z C, C′ separated along z

5.1.4 Summary

In this manuscript we analyzed the behavior of order diagnosis operators (ODO), at

fine-tuned critical points or gapless phases of lattice systems with microscopic discrete

categorical symmetries. The symmetries on both sides of the duality of the lattice models

are constituents of the entire categorical symmetry of the system. We demonstrate that

at these selected criticalities, the behavior of ODOs of categorical symmetries can be

evaluated analytically, and they could have rather different scalings from the gapped

phases of these models, where the ODO can be computed using the perturbation theory.

The existence of subsystem symmetries of some of the systems intrinsically modify the

behavior of ODOs at both the gapped phases, and the criticalities. And in examples with

subsystem symmetries, we found that at these criticalities the scaling of ODOs defined on
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both sides of the duality of the lattice models is substantially different from the gapped

phases.

While preparing for our manuscript, we became aware of a work that numerically

computed the behavior of ODO of Z̃
(1)
2 at the 3D Ising critical point, combined with

theoretical comparison with free field theories [501]. The conclusion in this work is that,

the Z̃
(1)
2 symmetry is still spontaneously broken at the 3D Ising critical point. The

conclusion is similar to ours at the fine-tuned Lifshitz criticality of 2d lattice quantum

Ising systems.

5.2 Universal Features of Higher-Form Symmetries

at Phase Transitions

5.2.1 Introduction

The concept of symmetry is the most fundamental concept in physics, and has pro-

found implications and constraints on physical phenomena. In recent years various gener-

alizations of the concept of symmetry have been explored. For example, ordinary symme-

tries in a d−dimensional system are associated with the global conservation of the symme-

try charges, and the symmetry charges localized within a d−dimensional subsystem of the

space can only change through the Noether current flowing across the surface of the sub-

system. In recent years the concept of 1-form symmetry (more generally higher form sym-

metry) was proposed (see for example Ref. 502, 482, 483, 484, 485, 486, 117, 487, 488, 489),

and the concept of 1-form symmetry is associated with conserved “flux” through a

(d − 1)−dimensional subsystem; and the flux can only change through the flowing of

a 2-form symmetry current across the edge of the (d− 1)−dimensional subsystem. The

concept of 1-form symmetry was proven highly useful when analyzing gauge fields. Using
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this new concept of symmetry and its ’t Hooft anomaly, it was proven that gauge fields

with certain topological term cannot be trivially gapped [503], which is an analogue of

the Lieb-Shultz-Mattis theorem in condensed matter systems [20, 22].

Lagrangians are often used to describe a physical system, and the form of the La-

grangian depends on one’s choice of “local degrees of freedom” of the system, and other

degrees of freedom may become nonlocal topological defects in the Lagrangian. When

we select another set of local degrees of freedom of the same system to construct the

Lagrangian, it will take a new form, and the new form of Lagrangian is related to the

original Lagrangian through a “duality transformation”. It was realized in recent years

that, in some examples, duality transformation of the Lagrangian, along with the explicit

symmetry of the Lagrangian, could be embedded into a larger symmetry group [504, 505],

which may only emerge in the infrared limit, and is not explicit unless one takes into

account of all the dual forms of the Lagrangian.

Most recently a new generalization of symmetry was developed which also involves

the dual description of a system. It is well-known that certain models of theoretical

physics have a dual description, and the dual model has symmetries that are inexplicit

in the original model. A concept called “categorical symmetry” was developed which

unifies the explicit symmetry of a system and the inexplicit symmetry of its dual model,

and treat them on an equal footing [118]. To diagnose the behavior of the categorical

symmetries, and most importantly to diagnose the explicit symmetry and the inexplicit

dual symmetry on an equal footing, a concept of “order diagnosis operator” (ODO)

was introduced, whose expectation value reduces to the correlation function between

order parameters for an explicit 0-form symmetry, and reduces to a Wilson loop for an

explicit 1-form symmetry [506]. The ODO was also referred to as the patch operator in

Ref. 118. For example, the ODO for the Z2 symmetry of the 2d quantum Ising model

is Oij = σzi σ
z
j , while the ODO for the dual Z̃

(1)
2 1-form symmetry is ÕC =

∏
j∈A,∂A=C σ

x
j ,
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where σz transforms under the explicit Z2 symmetry. ÕC creates a domain wall of σz

along a closed loop C by flipping the sign of σz on a patch A, which is the interior of

C. ODOs for systems with special symmetries such as subsystem symmetries may have

special forms and behaviors, and examples with these special symmetries were discussed

in Ref. 506.

The expectation value of Oij and ÕC in the 2d quantum Ising system characterizes

different phases of the system. In the two gapped phases, i.e. the ordered and disordered

phase of σz, the behavior of ⟨Oij⟩ and ⟨ÕC⟩ are relatively easy to evaluate, since they can

be computed through perturbation [490], which is protected by the gap of the phases.

In the ordered phase of σz, ⟨Oij⟩ saturates to a constant when |i − j| → ∞, and ⟨ÕC⟩

decays with an area law; in the disordered phase of σz, ⟨Oij⟩ decays exponentially with

|i− j|, while ⟨ÕC⟩ decays with a perimeter law. But at the critical point of the system,

i.e. the (2 + 1)d quantum Ising phase transition, the behavior of the ODO ÕC is more

difficult to evaluate. Ref. 501 evaluated ⟨ÕC⟩ numerically, and the result indicates that

in addition to a leading term linear with the perimeter of C, a subleading term which

is logarithmic of the perimeter arises for a rectangular shaped loop C. The logarithmic

subleading contribution may be a universal feature of ODO at a critical point, and the

Z2 ODO can be mapped to the 2nd Renyi entanglement entropy of a free boson/fermion

system [501]. Tt is known that there is a corner induced logarithmic contribution for

the Renyi entropy in a general conformal field theory [507, 508, 509, 510]. However, for

interacting systems the exact relation between entanglement entropy and ODO is not

clear yet.

In this work we demonstrate that, for a 2d quantum system with either an explicit 1-

form symmetry Z
(1)
N , or an inexplicit symmetry Z̃

(1)
N (which is dual to a 0-form ordinary

ZN symmetry), the following quantity ⟨(logOC)
2⟩ or ⟨(log ÕC)

2⟩ take a universal form

−A
ϵ
P + b logP at many quantum critical points. Here P is the perimeter of the loop C. b
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is a universal number which arises from a sharp angle of the loop C; b is proportional to

the universal conductivity of the 2d quantum critical point, and it is a universal function

of the angle θ. We demonstrate this result for various examples of quantum critical

points. We also comment on the connection between ODO and entanglement entropy in

the end of the manuscript.

We also compute a quantity called the “strange correlator” of the 1-form ODO OC.

The strange correlator was introduced as a tool to diagnose the symmetry protected

topological (SPT) states based on the bulk wave function instead of the edge states [511],

and it was shown to be effective in many examples [512, 513, 514, 515, 516, 517, 518,

519, 520]. In the current work we study the strange correlator for one example of 1-form

SPT state, but we expect similar studies are worth pursuing for more general cases.

5.2.2 Systems with Dual Z̃
(1)
N Symmetry

Example 1: ZN order-disorder transition

We first consider cases when the system has an explicit ZN (0-form) symmetry, and

it has an inexplicit dual Z̃
(1)
N 1-form symmetry. The simplest example of quantum phase

transition, is the order-disorder transition of the ZN symmetry. The lattice model with

ZN symmetry, can be embedded into an ordinary U(1) rotor model:

H =
∑
⟨i,j⟩

−t cos(θ̂i − θ̂j) + V (n̂i)− 2u cos(Nθ̂i), (5.45)

where [n̂i, θ̂j] = iδij, and θ̂j prefers to take values θ̂j = 2πk/N with k = 0, · · ·N − 1

due to the u-term. The potential V (n̂) has a minimum at n̂ = 0. The order-disorder
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transition of the ZN symmetry is described by the Landau-Ginzburg action

S =

∫
d2xdτ |∂Φ|2 + r|Φ|2 + g|Φ|4 + u(ΦN + h.c.) ↔

Sd =
∫
d2xdτ |(∂ − ia)ϕ|2 + r̃|ϕ|2 + g̃|ϕ|4 + u(MN + h.c.). (5.46)

Φ is the complex order parameter. The second line of the equation is the well-known

boson-vortex dual description of the phase transition [340, 18, 341], and r ∼ −r̃ is the

tuning parameter of the transition: r > 0 (r < 0) corresponds to the gapped (condensed)

phase of Φ and condensed (gapped) phase of ϕ. The ΦN term is the ZN anisotropy

on Φ which breaks the U(1) symmetry of Φ to ZN . The ΦN is dual to the N−fold

monopole operator (MN) in the dual theory. It is known that when N ≥ 4, the u term

(ZN anisotropy) is an irrelevant perturbation at the (2 + 1)d XY transition, and there

will be an emergent U(1) symmetry at the quantum phase transition.

As was discussed before, a system with ZN symmetry has an inexplicit dual Z̃N 1-form

symmetry, the ZN and Z̃
(1)
N symmetry together constitute the “categorical symmetry”

of the system [118]. In order to describe the behavior of the Z̃
(1)
N symmetry, Ref. 506

introduced the “order diagnosis operator” ÕC. Represented in terms of lattice operators,

the ODO for the dual Z
(1)
N symmetry reads

ÕC = exp

(
i
2π

N

∑
j∈A

n̂j

)
, (5.47)

where ∂A = C is a patch of the 2d lattice enclosed by contractible loop C, and the ODO

was also called patch operator in Ref. 118. ÕC creates a ZN domain wall. In the ordered

and disordered phase of the ZN symmetry, the expectation value of ÕC decays with an

area law and perimeter law respectively.

At the order-disorder phase transition, to extract the universal feature of the ODO
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ÕC, we evaluate ⟨(log ÕC)
2⟩ 3, which in the dual theory reduces to

⟨(log ÕC)
2⟩ = − 1

N2

∫
C
dlµ
∫
C′
dl′ν⟨aµ(x)aν(x′)⟩. (5.48)

The relation between aµ and the original Landau-Ginzburg theory is J = i
2π

∗ da, where

J is the current of the emergent U(1) symmetry at the ZN order-disorder transition. The

correlation of aµ is dictated by the correlation of J whose scaling dimension does not

renormalize at a general conformal field theory. The correlation between currents J is

proportional to the universal conductivity at a (2 + 1)d conformal field theory:

⟨Jµ(0)Jν(x)⟩ = σ
Iµν(x)

|x|4
, (5.49)

where the matrix Iµν(x) is given by Iµν(x) = δµν − 2xµxν/ |x|2, and σ is CJ in (for

example) Ref. 521. The universal conductivity at a (2+1)d XY transition was predicted

in Ref. 329, and it can be computed using various theoretical and numerical methods,

and also measured experimentally (see for example Ref 326, 330, 331, 333, 335, 336, 337,

the universal conductivity in some of the references was computed/measured with strong

disorder).

It is straightforward to verify that the gauge field propagator can be written as

⟨aµ(0)aν(x)⟩ = σπ2 δµν − ζIµν(x)

|x|2
, (5.50)

3log is a multivalued function. Since ÕC =
∏
j Õj∈A,∂A=C , where Õj = ei2πn̂j/N , we define log ÕC =∑

j∈A log Õj , and demand Arg[Õj ] = log Õj ∈ (−π, π] ∼ 2πn̂j/N , the V (n̂i) term in the Hamiltonian
Eq. 5.45 restricts n̂j to largely fluctuate around its minimum n̂j ∼ 0.
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The parameter ζ is introduced by a nonlocal gauge fixing term

1

8π6σ

1

1− ζ

∫
d3xd3y

∂µa
µ(x)∂νa

ν(y)

|x− y|2
, (5.51)

which contributes to a total derivative Iµν(x)/ |x|2 = 1
2
∂µ∂ν log |x|2 in the gauge field

propagator.

In the explicit calculation of Eq. 5.48, one should be very careful about how to set

the UV cut-off. A hard cut-off on the integration interval |x− x′| along C will spoil the

gauge invariance. To guarantee that C and C ′ are both complete loops in the integral

(hence gauge invariance is preserved), a good method is to set a small distance between

C and C ′ along the temporal direction by distance τ = ϵ > 0, and this small splitting

serves as a small real-space UV cut-off. The integral is then performed along the closed

loop C (and its duplicate C ′) in the x-y plane. For a smooth loop C with perimeter P ,

the evaluation of ⟨(logOC)
2⟩ simply yields a perimeter law, i.e. proportional to P with a

UV-dependent coefficient. For example, when C is a circle with radius R, the integral in

Eq. 5.48 gives

−⟨(log ÕC)
2⟩ = σπ2

N2

(
2π2R

ϵ
− 2π2 +

3π2ϵ

4R

)
+O(ϵ2). (5.52)

There are two observations. First, the final result is independent of the gauge choice

ζ. Second, the large-R scaling is only given by a linear term which depends on the UV

cut-off.

However, if the loop C has sharp corners, the situation is very different, and some

universal feature that does not depend on the UV cut-off emerges. Let us first consider

C being a spatial square with four corners (0, 0) , (L, 0) , (L,L) , (0, L). There are three

types of integrals that are involved. The linear contribution is from the correlation along
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the same edge of C

∫ L

0

dx

∫ L

0

dx′
(1 + ζ)(x− x′)2 + (1− ζ)ϵ2

((x− x′)2 + ϵ2)2
=
πL

ϵ
− 2(1 + ζ) log(L/ϵ) +O(1). (5.53)

It is important to notice that there is a log(L/ϵ) term, which also shows up in the integral

for two neighboring edges that are perpendicular to each other

∫ L

0

dx

∫ L

0

dy′
2ζxy′

(x2 + y′2 + ϵ2)2
= ζ log(L/ϵ). (5.54)

The integral from two parallel edges is a finite number which does not grow with L

∫ L

0

dx

∫ L

0

dx′
(ζ + 1)(x− x′)2 + (1− ζ)(L2 + ϵ2)

−(L2 + (x− x′)2 + ϵ2)2
= O(1) (5.55)

Combining all contributions together, we find the gauge invariant result

−⟨(log ÕC)
2⟩ = σπ2

N2

(
π4L

ϵ
− 8 log(L/ϵ)

)
+O(1). (5.56)

The ζ-independence of the O(1) term has also been verified. This result is similar to the

evaluation of a square Wilson loop for free QED in (3 + 1) dimensions. In both the two

cases above, we find that the linear term in −⟨(log ÕC)
2⟩ is σπ2

N2
πP
ϵ

where P = 2πR for

the circle and P = 4L for the square.

Let us now generalize Eq. 5.54 to the case of two straight lines with an arbitrary

angle θ with 0 < θ < π. For convenience, we choose the gauge ζ = 0 in the follow-

ing calculations. We could parametrize the two straight lines by t(cos(θ/2),− sin(θ/2))

and s(cos(θ/2), sin(θ/2)) where 0 < s, t < L. To extract the angle-dependence of the
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Figure 5.3: The shape of C with only one angle 0 < θ < π. As a concrete example, we
consider a circle with two tangent lines that intersect at a point. Each tangent line
has the length L, the radius of the circle is therefore L tan(θ/2) and the perimeter of
C is given by P = (2 + (π + θ) tan(θ/2))L.

logarithmic divergence, we use the trick in Ref. 522, 523

∫ L

0

ds

∫ L

0

dt
− cos θ

s2 + t2 − 2st cos θ + ϵ2
=

∫ L

0

dℓ

∫ 1

0

dλ[
ℓ

ℓ2 + ϵ2
− cos θ

λ2 + (1− λ)2 − 2λ(1− λ) cos θ
+O(ϵ2/ℓ3)

]
, (5.57)

where we have changed the integration variables to s = ℓλ, t = ℓ(1−λ), and the O(ϵ2/ℓ3)

part does not contribute to any logarithmic divergence. The λ-integral can be evaluated

exactly, which gives −(π − θ) cot θ. The log(L/ϵ) divergence then arises from the ℓ-

integral. There is another logarithmic contribution from correlation within the same

line. Combining all the contributions together, eventually we obtain

−⟨(log ÕC)
2⟩ = σπ2

N2

(
πP

ϵ
− f(θ) logP

)
+O(1) (5.58)

f(θ) = 2(1 + (π − θ) cot(θ)) (5.59)

for any shape of C with a single corner, where P is the perimeter of C. We observe that

the universal logarithmic term vanishes when θ = π, and only the linear term remains,
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as expected. To double check the analytical expression Eq. 5.58, we consider the shape

of C as shown in FIG. 5.3, and the numerical evaluation for −⟨(log ÕC)
2⟩ for different

angles are shown in FIG. 5.4. For fixed values of L, ϵ, the angle dependence for both the

linear and the logarithmic terms agree with Eq. 5.58 and Eq. 5.59.

We computed −⟨(log ÕC)
2⟩, which is the second order expansion of 2⟨ÕC⟩. We have

not proven whether higher order expansion in ⟨ÕC⟩ leads to different corner contribution

from ⟨(log ÕC)
2⟩ or not. We would also like to mention that the entanglement entropy of

a patch A with corners in a (2+1)d CFT is related to another universal quantity CT from

the correlation of the stress-energy tensor Tµν . As discussed in Ref. 507, 508, 509, 510,

the entanglement entropy takes the form S = B
ϵ
P−a(θ) logP+O(1), where B/ϵ depends

on the UV details, and the universal coefficient a(θ) is proportional to CT . The function

a(θ) proposed for entanglement entropy [507, 508] is also proportional to f(θ) in our

result.

Example 2: ZN SPT-trivial transition

Now let us still assume the system has a ZN symmetry, but the system undergoes

a transition between a 2d ZN symmetry protected topological (SPT) state and a trivial

state. Both states are disordered states of the ZN symmetry, hence in both states the

ODO ÕC should obey a perimeter law. Our main interest focuses on the trivial-SPT

phase transition, especially the universal features of ÕC at this transition. This example,

and the next few examples will be described by a class of similar theories:

S =

∫
d2xdτ

Nf∑
α=1

ψ̄αγ · (∂ − iNa)ψα +mψ̄ψ +
ik

4π
ada+ · · · (5.60)

with integer Nf and N , and in general these theories will be labelled as QED(Nf ,N,k). The

trivial-SPT transition corresponds to QED(2,1,0), i.e. Nf = 2, N = 1 and k = 0 [404, 403],
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Figure 5.4: The numerical results of −⟨(log ÕC)
2⟩ (in the unit of σπ2/N2) for the

shape in FIG. 5.3 with different angles. The UV cut-off is set to be ϵ = 1. The large-L
scaling is fitted by the function −⟨(log ÕC)

2⟩ = aL/ϵ+b logL+c/L+d, and the fitting
parameters a, b agree with the analytical expressions Eq. 5.58 and Eq. 5.59.
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plus Chern-Simons terms of background gauge fields which are not written explicitly in

Eq. 5.60. The trivial-SPT transition needs certain fine-tuning to reach the critical point

described by this field theory, hence this field theory is a multi-critical point between

the two states. This multi-critical point is self-dual [168, 524, 169] and also dual to the

easy-plane deconfined quantum critical point [171, 504, 525, 505]. The Dirac fermion

mass term m in Eq. 5.60 is the tuning parameter between the trivial and SPT phases.

In the theory QED(2,1,0), the current of the U(1) symmetry in which the microscopic

ZN symmetry is embedded, is J = i
2π

∗ da, and the ODO of the system is given by

Eq. 5.47. The angle dependence of the ODO is still give by Eq. 5.59, with σ replaced

by the counterpart at the trivial-SPT (multi-)critical point QED(2,1,0). The universal

conductivity can be computed using various methods such as 1/Nf expansion.

5.2.3 Systems with Explicit Z
(1)
N Symmetry

Topological transition at the boundary of a 3d SPT with Z
(1)
N ×U(1)(0) symmetry

Here we consider an example with an explicit Z
(1)
N 1-form symmetry. The infrared

of this example is described by QED(1,2N,0) of Eq. 5.60, i.e. it is a single massless Dirac

fermion ψ with charge−2N coupled with a U(1) gauge field. In our construction of theory

QED(1,2N,0) we also need a charge−N fermion ψ′ in the background, hence the system

only has a Z
(1)
N 1-form symmetry, i.e. the electric flux of the gauge field through any closed

surface is conserved mod ZN . We also demand that the magnetic flux of the QED(1,2N,0)

is conserved, which corresponds to another U(1)(0) symmetry. There is a mixed anomaly

between the Z
(1)
N and U(1)(0) symmetries. Hence the field theory QED(1,2N,0) can be

realized at the boundary of a 3d SPT state with Z
(1)
N and U(1)(0) symmetry [526]. In the

following paragraphs we spell out this construction of the 3d bulk SPT state. 4

4This is one possible construction of the 3d bulk, the field theory QED(1,2N,0) maybe realized as the
boundary theory of other 3d 1-form SPT states too.
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To construct the boundary theory QED(1,2N,0), we first consider a 3d bulk with an

ordinary photon phase of gauge field aµ, and only charge−N and charge−2N fermionic

matter field is dynamical, although all the integer-charge Wilson loops are allowed in the

theory. Hence the system has a Z
(1)
N 1-form symmetry. All the fermionic matters are in

a topologically trivial band structure in 3d. Then we bind the Dirac monopole of a⃗ with

another gauge neutral boson with global U(1)(0) conservation, and condense the bound

state. The 3d bulk is a SPT state with Z
(1)
N × U(1)(0) symmetry [526]. The natural 2d

boundary of the system is a (2 + 1)d photon phase. To create a gauge flux at the 2d

boundary, one needs to move a Dirac monopole from outside of the system, into the 3d

bulk; since in the 3d bulk the bound state between the Dirac monopole and the U(1)(0)

boson is condensed, the 2π magnetic flux at the boundary must also carry the U(1)(0)

boson. Hence the photons at the 2d boundary is the dual of the Goldstone modes of the

U(1)(0) symmetry. Notice that the bulk is fully gapped and has no spontaneous breaking

of the U(1)(0) symmetry, because the condensed bound state in the bulk is coupled to the

dual gauge field while carrying the U(1)(0) charge. The condensate is still gapped due to

the Higgs mechanism.

At the 2d boundary, the charge−2N fermion ψ is tuned close to the transition between

a trivial insulator and a Chern insulator with Chern number +1. Due to the fermi-

doubling in 2d, there must be another massive Dirac cone of ψ in the band structure that

affects the dynamics of aµ. Hence we need to design a background band structure of the

charge−N fermion ψ′ with Chern number −2. The Chern-Simons term of aµ generated

from ψ′ will cancel the Chern-Simons term generated by the band structure of fermion

ψ.

Now we have arrived at the theory QED(1,2N,0). The QED(1,2N,0) is a transition be-

tween two different topological states tuned by the mass of the Dirac fermion ψ, these

two topological orders are described by the CS term for aµ with level k = ±2N2, which is
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free of Z
(1)
N 1-form symmetry anomaly. The ODO for the Z

(1)
N symmetry is the charge-1

Wilson loop OC = exp(i
∫
d⃗l · a⃗). In this case the quantity ⟨(logOC)

2⟩ at the critical

point m = 0 can be evaluated exactly, based on the fermion-vortex duality developed

recently [527, 528, 529, 216, 530]:

QED(1,2N,0) ↔ χ̄γ · ∂χ coupled to ZN gauge theory + · · · (5.61)

The detailed and exact form of the duality can be found in Ref. 530. The right hand side

of the duality is a Dirac fermion coupled with a ZN gauge field. The duality relation we

will exploit is

Jχ = i
2N

4π
∗ da, (5.62)

where Jχ is the current carried by χ. Although χ is coupled with a ZN gauge field, since

the ZN gauge field is gapped, in the infrared the correlation of Jχ is identical to that of

the free Dirac fermion, and can be computed exactly:

⟨Jχ,µ(0)Jχ,ν(x)⟩ =
1

8π2

Iµν(x)

|x|4
. (5.63)

One can determine the propagator of the dual gauge field accordingly. Considering again

the C in FIG. 5.3, we find

−⟨(logOC)
2⟩ = 1

8N2

(
πP

ϵ
− f(θ) logP

)
+O(1), (5.64)

where f(θ) is given in Eq. 5.59.

292



Characterizations of Symmetries and Anomalies Chapter 5

QED(Nf ,N,k) with explicit Z
(1)
N symmetry and Chern-Simons term

We consider the theory QEDNf ,N,k with large−Nf and level k = qN2, where q is an

integer at the order of Nf . QED(Nf ,N,k) with even integer Nf , and a CS term with level

k being integer multiple of N2 can be constructed in 2d with Z
(1)
N 1-form symmetry 5.

At low energy, the dynamics of gauge field is significantly modified by the one-loop

polarization diagram of fermion ψ. In the momentum space, the loop diagram integral

gives

|aµ(p⃗)|2
NfN

2

16

|p|2 δµν − pµpν
|p|

(5.65)

which gives an order Nf contribution to the gauge field self-energy. To the leading order

in 1/Nf , the gauge field propagator in the momentum space is given by

16

NfN2

1

|p|

(
cos K̂

|K|

(
δµν − ζ

pµpν

|p|2

)
+

sin K̂

|K|
εµνσpσ
|p|

)
, (5.66)

where |K| , K̂ denote the magnitude and the angle of the two-dimensional vector K =

(1, −16k
2πNfN2 ). The Fourier transformation to real space gives

⟨aµ(0)aν(x)⟩ =
8

NfN2

1

π2 |x|2
×

(
cos K̂

|K|
δµν − ζIµν(x)

|x|2
+

sin K̂

|K|
iπ

2

εµνσxσ
|x|

)
, (5.67)

5We can verify that the absence of the anomaly associated to the ZN 1-form symmetry in this QED
theory by considering the its massive phases. For example, when a positive mass of the Dirac fermion is
turned on, one obtains a U(1) CS theory of level (q +Nf/2)N

2. In this massive phase, the ZN 1-form
symmetry is generated by the anyon line operator carrying U(1) charge (q + Nf/2)N . When N is
odd, we should in fact view the U(1) gauge field a as a spinc gauge field. Consequently, this charge-
(q+Nf/2)N anyon always has bosonic self-statistics, which indicates the absence of anomaly associated
with the ZN 1-form symmetry. When N is even, the QED (and its massive phases) intrinsically resides
in a fermionic Hilbert space. The gauge field a is now a regular U(1) gauge field. In this case, the
charge-(q + Nf/2)N anyon can have either bosonic or fermionic self-statistics depending on the value
of (q + Nf/2)N . However, neither case leads to any anomaly associated to the ZN 1-form symmetry
because the self-statistics of the charge-(q + Nf/2)N anyon can be made bosonic by attaching extra
neutral fermions in the Hilbert space.
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which has an imaginary part due to the Chern-Simons term. The parameter ζ is intro-

duced by gauge fixing.

The ODO for the Z
(1)
N symmetry is still the charge-1 Wilson loop OC = exp(i

∫
d⃗l · a⃗).

As for the shape of C with a sharp corner in FIG. 5.3, our calculation leads to the gauge

invariant result

−⟨(logOC)
2⟩ = 8N2Nf

64k2 + π2N4N2
f

(
πP

ϵ
− f(θ) logP

)
+O(1), (5.68)

where f(θ) is given in Eq. 5.59. The imaginary antisymmetric part of ⟨aµaν⟩ does not

contribute, and the final result has the similar form as before. In the large−Nf limit the

universal conductivity of the current J = 1
2π

∗ da can be computed exactly.

5.2.4 The “Strange Correlator” of ODO

Following the argument from Ref. 531, if a state |Ω⟩ is the ground state described by

a Lagrangian L(Φ(x)), the matrix elements between |Ω⟩ and two different field configu-

rations |Φ(x)⟩ and |Φ′(x)⟩ is given by the path integral:

⟨Φ(x)|Ω⟩⟨Ω|Φ′(x)⟩ ∼
∫ Φ(x,τ=+∞)=Φ(x)

Φ(x,τ=−∞)=Φ′(x)
DΦ(x, τ) exp

(
−
∫ +∞

−∞
dτddx L(Φ(x, τ))

)
, (5.69)

knowing the matrix element, Ref. 531 was able to derive the ground state wave function

based on the Lagrangian description of various SPT states.

Based on the information of the ground state wave function of SPT state derived

from its Lagrangian, the quantity “strange correlator” was introduced and designed to

diagnose a SPT state based on its bulk wave function [511]. Let us assume that |0⟩

and |1⟩ are the trivial state and SPT state defined within the same bosonic Hilbert

space in a two dimensional real space, and both systems have the same symmetry. The
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strange correlator is the quantity S(x,x′) = ⟨0|Φ(x)Φ(x′)|1⟩/⟨0|1⟩, where Φ(x) is the

order parameter of the symmetry that defines the systems.

For a class of Langrangians L, using the derived wave functions for both the SPT

state |1⟩ and trivial state |0⟩, one would see that the strange correlator S(x,x′) cannot

have a trivial short range correlation at least for d = 2. Another picture to see this

is that, if the Lagrangian L has an emergent Lorentz invariant description, after the

space-time rotation, the strange correlator which was purely defined in space, becomes a

space-time correlation function at the one dimensional spatial interface between |0⟩ and

|1⟩. This picture is similar to the construction of fractional quantum Hall wave function

using conformal blocks [532]. Because the spatial interface between |0⟩ and |1⟩ cannot

be trivially gapped, the strange correlator S(x,x′) must be either long ranged, or have

a power-law. Hence the strange correlator can be viewed as a tool to diagnose a SPT

state based on its bulk wave function, and it has been shown to be effective for many

examples [512, 513, 514, 515, 516, 517, 518, 519, 520].

ODO is the generalization of correlation functions of 0-form symmetries. Here we

generalize the strange correlator to the ODO of 1-form symmetry i.e. we evaluate the

following quantity

S(C) = ⟨0|OC|1⟩/⟨0|1⟩, (5.70)

where |0⟩ and |1⟩ are trivial state and SPT state with 1-form symmetry respectively.

SPT states protected by 1-form symmetries have attracted great interests in the last

few years [368, 117, 533, 534, 489, 535, 536, 537, 538, 539, 540, 541, 526], we expect

this general question of evaluating strange correlator of ODO to be a new direction that

is worth a deep exploration. In the current work we consider a typical 3d SPT state

protected by the Z
(1)
N 1-form symmetry as an example. This SPT state can be described
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by the following Lagrangian [542]

L =
1

2g
tr[F ∧ ∗F ] + iΘ

8π2
tr[F ∧ F ]. (5.71)

F is the curvature tensor of the SU(N) gauge field. To guarantee there is a Z
(1)
N 1-form

symmetry, we only allow dynamical (but massive) matter fields of the SU(N) gauge field

which carries an adjoint representation of the gauge field, while closed Wilson loops with

other representations of the gauge field are still allowed. The SPT state corresponds to

Θ = 2π, while the trivial state corresponds to Θ = 0 in the Lagrangian. The interface

between Θ = 0 and Θ = 2π is a 2d topological order described by SU(N)1 Chern-Simons

theory with topological degeneracy. For both Θ = 0 or 2π, the coupling constant g in

the Lagrangian is expected to flow to infinity under renormalization group, hence the

Θ−term is what remains in the infrared limit. The Θ−term is a total derivative, hence

⟨A(x)|1⟩⟨1|A′(x)⟩ ∼
∫ A(x,τ=+∞)=A(x)

A(x,τ=−∞)=A′(x)
DA(x, τ) exp

(
−
∫ +∞

−∞
dτd3xL(A)g→+∞

)
∼ exp

(∫
d3x

i

4π
CS[A]− i

4π
CS[A′]

)
, (5.72)

Hence the wave function of the SPT state |1⟩, and the trivial state |0⟩ (corresponds to

Θ = 0) in the limit g → +∞ are schematically

|0⟩ ∼
∫
DA|A⟩, (5.73)

|1⟩ ∼
∫
DA exp

(∫
d3x

i

4π
CS[A]

)
|A⟩. (5.74)

Now the evaluation of the strange correlator of ODO, which is a purely 3d spatial quantity,

is mathematically equivalent to evaluating world lines of anyons in (2 + 1)d SU(N)1 CS
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field theory:

S(C) ∼
∫
DA tr[ei

∫
C d⃗l·A⃗] exp

(∫
d3x

i

4π
CS[A]

)
. (5.75)

Then if the ODO is a Wilson loop with the fundamental representation of the gauge

group, and C contains two loops with a link, then this evaluation is identical to the

braiding process of two anyons of the SU(N)1 topological order, and it yields phase

exp(i2π/N2) for S(C).

5.2.5 Discussion

In this work we studied the behavior of the “order diagnosis operator” of 1-form

symmetries (for either explicit 1-form symmetry, or inexplicit 1-form symmetry as a dual

of a 0-form symmetry) at various (2 + 1)d quantum phase transitions. We demonstrate

that for a class of transitions there is a universal logarithmic contribution to the ODO

arising from the corners of the loop upon which the ODO is defined. For this class of

transitions, the universal logarithmic contribution is related to the universal conductivity

at the critical points, and in some cases can be computed exactly using the duality

between conformal field theories.

This logarithmic contribution is similar to the corner contribution to the entanglement

entropy, in fact this relation can be made exact for free boson/fermion systems [501]. For

general systems, the ODO associated with certain 1-form symmetry and the entanglement

entropy can be studied in a unified framework. To study the Renyi entropy, one needs

to use the replica trick, and duplicate n−copies of the system. Then the system is

granted an extra “swapping symmetry” between replica indices. The Renyi entropy

reduces to evaluating the ODO of the 1-form dual of the swapping symmetry [543, 544].

Hence we can start with the duplicated system, and just study the ODO of all the
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symmetries of the duplicated system, to extract the information of both the intrinsic

symmetries, and the entanglement entropy simultaneously. One remark worth making

is that, when computing Renyi entropy for ordinary systems with a Hamiltonian and

translation invariance, there is no interaction between different duplicated systems, hence

each duplicated copy has its own conservation laws.

In this work we also computed the strange correlator of the 1-form ODO for a par-

ticular example. SPT states protected by 1-form symmetries have attracted great efforts

and interests in the last few years, and we believe the strange correlator of the 1-form

ODO can be applied to many related systems. We will leave the more general discussion

of this topic to future studies.

5.3 SPT Phases Involving Higher-Form Symmetries

and LSM Theorems

5.3.1 Introduction

The symmetry protected topological (SPT) phases [157, 158] have greatly enriched

our understanding of quantum states of matter. With certain symmetries, the boundary

of these SPT states cannot be trivially gapped without degeneracy. Especially, many

exotic states of matter can be realized at the 2d boundary of 3d bosonic SPT states.

For example, exotic quantum critical points (QCP) in 2d with spatial symmetries (both

on the square or triangular lattice) can be realized at the boundary of certain 3d SPT

states [161, 173], and the conjectured emergent symmetry of the deconfined QCP matches

well with the bulk symmetry of the SPT state, sometimes these emergent symmetries

are only revealed through certain dualities [504, 505] between (2 + 1)d quantum field

theories. The analysis of the SPT state in the (d + 1)-dimensional bulk can also be

298



Characterizations of Symmetries and Anomalies Chapter 5

used as a diagnose of the “Lieb-Schultz-Mattis theorem” in d-dimensional systems with

spatial symmetries, i.e. whether or not the d-dimensional system can be gapped without

degeneracy [91, 92, 93, 95, 90, 94] is related to the nature of the corresponding bulk state

in one higher dimension.

In recent years it was realized that the very concept of symmetry can be generalized to

higher dimensional objects rather than just point like operators [482, 483, 484, 485, 486,

117, 487, 488, 489]. Examples of SPT states that involve these generalized symmetries

were discussed in previous literatures [368, 117, 533, 534, 489, 535, 536, 537, 538, 539, 540].

For example a classification of SPT states based on generalized cobordism theory was

given in Ref. 537, 538, exactly soluble lattice models for a class of SPT states were con-

structed in Ref. 539, 540. In the current manuscript we focus on physical construction

and boundary properties of a series of SPT states with generalized concepts of symme-

tries, from (1 + 1)-dimension to (4 + 1)-dimension. We do not seek for exactly soluble

models, instead we will focus on general physical pictures of these states. For example,

the prototype 4d (or (4+1)d) SPT state we will discuss can be constructed by “decorated

Dirac monopole loop” picture, which is analogous to the flux attachment construction

in 2d SPT state. And the prototype 3d boundary state of the 4d SPT state is a photon

phase with various constraints of dynamics, quantum numbers, and statistics on the elec-

tric and magnetic charges. We assume that the gauge invariant objects/excitations, i.e.

objects that do not couple to dynamical gauge field, are always bosonic. These include

point particles and higher dimensional excitations such as loops.

The 1-form symmetry transformation acts on loop-like operators such as the Wilson

loop or ’t Hooft loop of a dynamical gauge field. The existence of an electric 1-form

symmetry demands that the electric charge of the gauge field is infinitely heavy. In

condensed matter systems the quantum dimer model [493] naturally fits this criterion. It

is well-known that the quantum dimer model can be mapped to a lattice gauge field [545].
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In a quantum dimer model, every site of the lattice is connected to a fixed number of

dimers, which implies that there is a background electric charge distribution, but no

dynamical charge in the system. Hence the quantum dimer model naturally has a 1-form

symmetry. The quantum dimer model on certain d-dimensional lattice may be mapped

to the boundary of a (d + 1)-dimensional SPT state with 1-form symmetry in certain

limit, and the spatial symmetries of the quantum dimer model is mapped to the onsite

symmetry of the bulk SPT state. The analysis of the SPT state in the bulk has strong

indications on the allowed phenomena of the quantum dimer model at d-dimension.

Due to the inevitable complexity of notations used in this manuscript, we will keep

a self-consistent conventions of notations (1-6): (1) The N−form symmetry G will be

labelled as G(N), such as U(1)(1), Z
(1)
n , etc. Ordinary 0-form symmetry will be labelled

without superscript. (2) Gauge symmetries associated with dynamical gauge field will be

labelled as u(1)(1), z
(2)
n , etc. depending on the nature of the gauge fields. A topological

order which corresponds to a dynamical discrete gauge field will also be labelled as,

for example, a zn topological order. (3) Gauge symmetries associated with background

gauge fields will be labelled as U(1)(1), Z(2)
n , etc. (4) Classifications of SPT states will be

labelled as Z, Zn, etc. (5) For space and space-time dimensions, for example, 3d space

refers to three spatial dimensions; (3 + 1)d refers to the space-time dimension, which is

the same as 4D Euclidean space-time. Also, QED4 refers to quantum electrodynamics in

(3+ 1)d or 4D space-time dimension. (6) For a QED4, there are point like particles such

as electric charge, and Dirac monopole. We label bosonic (fermionic) electric charges

as eb (ef ), and bosonic (fermionic) Dirac monopoles as mb (mf ). Some of these point

excitations have no dynamics (infinitely heavy) due to the 1-form symmetries, we will

label these immobile point particles as e0b, e0f , etc. A QED4 with bosonic electric charge

and fermionic Dirac monopole is labelled as “QED4{eb,mf}”.
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5.3.2 Building Bricks–1d SPT State with 1-Form Symmetries

The simplest SPT state that involves a 1-form symmetry exists in 1d space or (1+1)d

space-time. 1d SPT state with a 1-form symmetry is analogous to an ordinary SPT state

in 0d space. For a U(1)(1) 1-form symmetry, a SPT state in 1d simply corresponds to a

state with integer electric flux through the system. Let us take a 1d chain with electric

field operators defined on the links. Due to the Gauss law constraint, ∇xê(x) = 0, the

electric field ê(x) takes a uniform integer eigenvalue on the entire chain (in a compact u(1)

lattice gauge theory, the electric field operator ê(x) takes discrete integer value, while its

conjugate operator â(x) is periodically defined), hence for a U(1)(1) 1-form symmetry,

the classification of 1d SPT states is Z, which corresponds to different integer eigenvalues

of ê(x). It is analogous to the Z classification of a zero dimensional ordinary SPT state

with U(1) symmetry [157, 158].

The Hamiltonian of a 1d lattice U(1) gauge field is also very simple, for example:

H =
∑
x

g (ê(x)− k)2 . (5.76)

Due to the Gauss law constraint, a Hamiltonian must be invariant under gauge transfor-

mation â→ â+∇xf(x), where â is the conjugate operator of ê. A local 1d Hamiltonian

that involves â cannot be gauge invariant, hence a local gauge invariant Hamiltonian is

only a function of ê. In Eq. 5.76 k can take continuous values. When k is half integer,

the system is at the transition between two SPT states, and the ground state of the

Hamiltonian is two-fold degenerate with ê(x) = k ± 1/2, namely the transition is a level

crossing between two eigenvalues of ê(x). This transition should be viewed as a first

order transition.
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One can also couple the electric field to a background 2-form U(1)(2) gauge field:

S =

∫
dτdx ifµνBµν (5.77)

In (1+1)d the stress tensor of the u(1) gauge field is just the electric field: f10−f01 = e(x),

and B01 = −B10 is a Lagrange multiplier. Hence the (1+1)d topological response theory

for the SPT state is

S1d−topo =

∫
(1+1)d

ikB, (5.78)

which is a (1+1)d Chern-Simons action of the 2-form gauge field B, and its level k takes

only integer values. For each integer level−k, the electric field (the 1-form symmetry

charge)

e(x) =
δS1d−topo

iδB(x)
= k. (5.79)

The 1d SPT state with 1-form symmetries will be the building bricks for SPT states in

higher dimensions. Suppose we break the U(1)(1) down to Z
(1)
n symmetry, the topological

response theory Eq. 5.78 still applies, but B is now a 2-form Z(2)
n background gauge field.

The classification of the SPT state will reduce to Zn, which means that in Eq. 5.78 the

integer k + n = k.

5.3.3 4d SPT States with G
(1)
1 ×G

(1)
2 Symmetry

Parent 4d SPT state with U(1)(1) × U(1)(1) symmetry

We now discuss SPT states in 4d space that involves 1-form symmetries. This dis-

cussion is useful for diagnosing anomalies of 3d states of matter, namely some 3d states
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of matter can only be realized at the boundary of a 4d SPT state. The parent SPT state

that we will start with is the (4 + 1)d state with the U(1)(1) ×U(1)(1) 1-form symmetry.

With two U(1)(1) 1-form symmetries, the system can couple to two background U(1)(2)

2-form gauge fields B1 and B2, and the response theory in (4 + 1)d reads

S4d−topo =

∫
(4+1)d

ik

4π
ϵIJB

I ∧ dBJ , (5.80)

where ϵIJ = iσy. For each integer k, Eq. 5.80 is a different Chern-Simons theory, and the

system should correspond to a different SPT state, hence these SPT states described by

Eq. 5.80 have a Z classification. The (3 + 1)d boundary of this state is a QED4 without

dynamical electric or magnetic charge (Dirac monopole). This QED4 has a U(1)(1) ×

U(1)(1) mixed ’t Hooft anomaly as was derived in previous literatures [368, 117, 489].

To construct this 4d SPT state, we can start with two (4 + 1)d u(1) gauge fields a⃗1

and a⃗2. These two gauge fields both have electric 1-form U(1)(1) symmetry, namely both

gauge fields have no dynamical electric charges, i.e. the Gauss law constraint on the

electric field is strictly enforced. This is equivalent to tuning the electric charges in the

4d bulk to be infinitely heavy. Both u(1) gauge fields allow dynamical Dirac monopole

loop/line defects in the 4d space. We will first discuss the cases where the charges of

a⃗1 and a⃗2 are both bosons, otherwise a⃗1 and a⃗2 would be SpinC connections. Situations

with fermionic gauge charges of a⃗1 and a⃗2 will be discussed later.

We use the analogue of the “flux attachment” (or “decorated defect”) construction

of the SPT state which was used to construct 2d bosonic SPT state [546]. In 2d space, a

U(1)×U(1) SPT state (the parent state of many 2d SPT states) can be constructed by

binding the vortex defect of one U(1) symmetry with the charge of the other U(1) sym-

metry, and condense the bound state, which drives the system into a gapped SPT phase.

In 4d space, the analogue of the vortex defect of an ordinary U(1) 0-form symmetry, is
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Figure 5.5: The decorated Dirac monopole loop construction of the parent SPT state
in 4d space. The Dirac monopole loop of gauge field a⃗1 is decorated with the 1d
SPT state of the U(1)(1) 1-form symmetry associated with gauge field a⃗2. After the
condensation of the decorated Dirac monopole loops, the 4d system is driven into a
SPT state described by response theory Eq. 5.80.

the Dirac monopole loop/line of a u(1) gauge field. We decorate the Dirac monopole loop

of a⃗1 with the 1d SPT state defined with the 1-form symmetry associated with a⃗2 with

level (+k) in Eq. 5.78, and condense/proliferate the decorated loops (Fig. 5.5). Once

the bound state between the monopole loop of a⃗1 and the (+k) unit of electric flux of

a⃗2 is condensed, the monopole loop of a⃗2 will be automatically bound with (−k) unit of

electric flux of a⃗1.

Condensation of Dirac monopole loops would normally drive a (4+1)d u(1) gauge field

to the gapped confined phase (the loop excitation is coupled to a dual dynamical 2-form

gauge field, and the condensate is gapped due to the Higgs mechanism). But because

the Dirac monopole loop is decorated with another SPT state with 1−form symmetry

in our case, after the condensation of the decorated monopole loops, the phase in the 4d

bulk is not an ordinary confined phase, it is actually a SPT phase described by Eq. 5.80.

In fact, Eq. 5.80 directly implies that the 1-form symmetry charge (electric field) e⃗2(x),

which is the variation δS4d−topo/(iδB
2
01), equals to the flux of B1, which is attached to

the monopole of a⃗1.

The 3d boundary of the 4d SPT state is most naturally a (3 + 1)d QED4 with both
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magnetic and electric 1-form symmetries. The electric 1-form symmetry of the boundary

QED4 is inherited from the 1-form symmetry of a⃗1 in the bulk, while the magnetic 1-

form symmetry of the QED4 corresponds to the electric 1-form symmetry of a⃗2 in the

bulk, because the Dirac monopole line of a⃗1 in the 4d bulk is bound/decorated with the

electric 1-form symmetry charge of a⃗2. As we mentioned previously, we will first discuss

the situation with bosonic point particles, hence in this QED4 the infinitely heavy electric

charge and Dirac monopoles are both bosons. We label this QED4 as QED4{e0b,m0b}.

Even though these point particles have infinite mass, their statistics still matter, because

their Wilson loops (or ’t Hooft loops) still exist. If these point particles are fermions, the

Wilson loop will need a framing structure, and the Wilson loop or ’t Hooft loop with a

twist will acquire a minus sign.

Descendant 4d SPT state with U(1)(1) × Z
(1)
n symmetry

Now we break one of the U(1)(1) 1-form symmetry down to the Z
(1)
n symmetry. The

topological response theory remains unchanged from Eq. 5.80, although one of the back-

ground 2-form gauge fields will become a Z(2)
n background 2-form gauge field. The deco-

rated monopole line construction discussed in the previous section still applies here. One

key difference is that, because the 1d SPT phase with Z
(1)
n 1-form symmetry has a Zn

classification itself, the flux attachment or decorated defect construction mentioned in

the previous subsection will naturally lead to a Zn classification of the 4d SPT state also.

Namely, when k = n in Eq. 5.80, this bulk SPT state will be trivialized, because the 1d

SPT state decorated on the Dirac monopole line is trivial.

We can always start with the QED4 as a candidate boundary state. Now since

the magnetic 1-form symmetry is only Z
(1)
n , it means that there are dynamical Dirac

monopoles with n−magnetic charges (Dirac monopole with 2πn flux quantum). As we

mentioned before we first focus on the cases where the point excitations are bosons,
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then we can condense the n−magnetic charge at the 3d boundary without breaking any

symmetry. The condensate of the 2πn Dirac monopole will drive the boundary into a 3d

zn topological order.

An ordinary 3d zn topological order is the deconfined phase of a dynamical z
(1)
n gauge

field. In an ordinary 3d zn topological order, normally there are two types of excitations: a

point particle which is the remnant of the 2π Dirac monopole; and also another line/loop

excitation which is coupled to a z
(2)
n 2-form gauge field. If the loop excitation is condensed

(proliferated in 4D Euclidean space), the zn topological order is trivialized, and the

system becomes gapped and nondegenerate.

The dynamics of the loop excitation can be schematically described by the following

Hamiltonian

Hloop =
∑
C

−tC cos

∑
l⃗∈C

ĉl⃗ −
∑
p⃗∈AC

b̂p⃗

+ · · · (5.81)

In this equation, C represents certain loop configuration; l⃗ is a link which is part of this

loop, and AC is a membrane whose boundary is the loop C (∂AC = C); p⃗ is a plaquette

that belongs to AC. Ψ
†
l⃗
∼ exp(iĉl⃗) is the creation operator of the loop segment on link l⃗,

and b̂p⃗ is a 2-form gauge field defined on plaquette p⃗. The direction of the link and the

unit plaquette can be absorbed into the definition of ĉ and b̂ and render them a 1-form

and 2-form fields.

For an ordinary zn topological order, both ĉl⃗ and b̂p⃗ take eigenvalues 2πN/n with

integer N . Hence the “condensation” of the loop excitation will not lead to degeneracy

because of the existence of the z
(2)
n 2-form gauge field b̂. Or in other words, the con-

densation of the loop excitation will be fully “Higgsed” due to the coupling to the z
(2)
n

dynamical gauge field b̂, and this Higgs phase is the confined phase of the z
(1)
n gauge

theory.
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However, if the loop excitation carries a U(1)(1) 1-form charge, the situation would be

very different. Now ĉl⃗ can take continuous values between 0 and 2π. Condensing the loop

would just drive the system back into a gapless photon phase. Physically because the

loop excitation carries a U(1)(1) 1-form charge, condensing the loop excitations would lead

to spontaneous U(1)(1) 1-form symmetry breaking, whose “Goldstone mode” is precisely

the photon.

With the bulk response action Eq. 5.80, the loop excitation of 3d boundary carries

charge quantum k/n of the U(1)(1) 1-form symmetry. However, when k = n, the quantum

number of the loop excitation can be screened by binding with unfractionalized integer 1-

form symmetry charge, hence the loop excitations become completely neutralized. Then

when k = n the neutralized loop excitation can proliferate and drive the boundary to a

fully gapped and nondegenerate state, just like the case of an ordinary z
(1)
n gauge theory.

This argument again leads to a Zn classification.

Descendant 4d SPT state with Z
(1)
q × Z

(1)
n symmetry

We can further break the left U(1)(1) 1-form symmetry down to Z
(1)
q from the previous

example. Now in the condensate of the 2πn Dirac monopole, the loop excitation will carry

k/n unit of the Z
(1)
q 1-form symmetry charge, and the loop excitation is coupled to a

dual z
(2)
n gauge field. Our interest is to ask when this 3d boundary can be fully gapped

without degeneracy.

Let us start with the simple example with k = 1, q = 3, and n = 2. Following the dis-

cussion in the previous subsection, we consider the z2 topological order after condensing

the 4π Dirac monopole at the boundary QED4 (The 2πn monopole has dynamics and

can condense). There is a loop excitation of this z2 topological order, which couples to a

dual z
(2)
2 gauge field, and carries half charge of the Z

(1)
3 1-form symmetry. Now consider
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a loop excitation whose creation operator is P †
C :

P †
C ∼

∏
l⃗∈C

Ψ†
l⃗
∼ exp(i

∑
l⃗∈C

ĉl⃗). (5.82)

P †
C carries half charge under Z

(1)
3 , and it also couples to a dual z

(2)
2 gauge field. Under

both the Z
(1)
3 symmetry and the z

(2)
2 gauge symmetry, C transforms as

Z
(1)
3 : P †

C → ei
1
2

2πN
3 P †

C , z
(2)
2 -gauge : P †

C → −P †
C , (5.83)

with integer N . One can check that by combining the loop operator PC with unfrac-

tionalized integer 1-form charges, the Z
(1)
3 transformation can be completely cancelled

by a z
(2)
2 gauge transformation. In other words the fractional Z

(1)
3 charge carried by the

P †
C can be “neutralized” by binding a gauge invariant Z

(1)
3 charge, and the 3d boundary

system can be driven into a trivial gapped phase by condensing this Z
(1)
3 neutral loop

excitation.

The discussions above can be generalized to other q and n. With k = 1 in Eq. 5.80,

after condensing the 2πnmonopole, the 3d boundary system is driven into a zn topological

order whose loop excitation carries 1/n fractional Z
(1)
q 1-form symmetry charge. Our

interest is to check, when this fractional 1-form symmetry charge can be “neutralized”

by integer 1-form symmetry charge, namely by binding integer 1-form symmetry charge

the Z
(1)
q transformation can be completely absorbed/cancelled by the dual z

(2)
n gauge

transformation.

Under a Z
(1)
q transformation, the loop creation operator PC acquires phase angle

2π/(nq); after binding with Q units of integer Z
(1)
q charge, the loop would acquire phase

angle 2π/(nq) + 2πQ/q. Now we seek for a pair of integer (Q,N) which suffices the
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following equation:

1

nq
+
Q

q
=
N

n
. (5.84)

This would mean that the Z
(1)
q transformation can be totally absorbed/cancelled by a

gauge transformation. For (q, n) = (3, 2) one can choose (Q,N) = (1, 1). In general the

question is equivalent to finding a pair of integers (Q,N) that satisfies Nq − Qn = 1,

which is only possible when q and n are coprime. When q and n are not coprime, the loop

quantum number can be fully neutralized when k = gcd(q, n). This implies a Zgcd(q,n)

classification.

— More States

All the SPT states discussed so far have bosonic electric charge and Dirac monopoles

at its boundary QED4, namely the boundary of all the SPT states are QED4{e0b,m0b}

states. Let us revisit the starting point of our bulk construction of Eq. 5.80. The two u(1)

gauge fields a⃗1 and a⃗2 can have either bosonic or fermionic electric charges with infinite

mass in the bulk, which become the static electric charges and Dirac monopoles of the

boundary QED4. Hence logically there will also be QED4{e0b,m0f}, QED4{e0f ,m0b},

QED4{e0f ,m0f} states that we need to discuss. As we pointed out before, the statistics

of static particles still affect the Wilson/’t Hooft loops. We defer discussions of these

states to section 5.3.5.

5.3.4 4d SPT State with U(1)(1) ×G Symmetry

Here we consider 4d SPT states with both a U(1)(1) symmetry and an ordinary 0-

form symmetry G. The decorated defect construction in the previous section can be

generalized here: we start with one (4 + 1)d u(1) gauge field a⃗ with a 1-form electric

symmetry, and decorate its Dirac monopole line with the 1d SPT state with symmetry
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G, then condense the monopole line in the bulk. A prototype 4d SPT state with such

construction was discussed previously, whose G symmetry is SO(3), and its topological

response theory is [547]

S4d−topo = iπ

∫
(4+1)d

w2[A
SO(3)] ∪ dB

2π
, (5.85)

where ASO(3) is the external 1-form SO(3) gauge field.

Generally speaking the discussion of 4d SPT state with 1-form symmetry has im-

plications on properties of 3d systems with loop-like excitations. If in certain limit a

3d system with spatial symmetries can be mapped to the boundary of a 4d state with

onsite symmetries, then whether or not the 4d bulk is a nontrivial SPT state has strong

implication on whether the 3d system can be trivially gapped or not, i.e. the nature

of the 4d bulk helps us prove a Lieb-Schultz-Mattis (LSM) theorem [20, 22] of the 3d

system. In recent years much progress has been made in understanding the LSM theo-

rems for quantum spin systems using the anomaly analysis of its corresponding higher

dimensional bulk states [548, 91, 92, 93, 95, 90, 94]. In condensed matter theories the

quantum dimer model is an example of systems with loop like excitations. Dimers are

defined on the links of the lattice, and each site of the lattice is connected to a fixed

number of dimers. Previous literature has shown that, the 3d quantum dimer model can

be mapped to a QED4 without dynamical electric charge [549], but its monopole can

carry nontrivial quantum number under spatial group due to the Berry phase, and in

particular, for the quantum dimer model on the cubic lattice, the monopole of the QED4

carries a “spin-1/2” representation (projective representation) of an emergent SO(3) sym-

metry [550, 551]. Hence this quantum dimer model is analogous to the boundary of a 4d

SPT state with symmetry U(1)(1) × SO(3), and there should be a LSM theorem for this

quantum dimer model.
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This LSM theorem for the quantum dimer model is consistent with the LSM theorem

for spin-1/2 systems on the cubic lattice. In Ref. 91, various quantum spin systems

on the cubic lattice were considered. For example, a SU(N) spin system on the cubic

lattice with fundamental and antifundamental representations on the two sublattices of

the cubic lattice has a LSM theorem for even integer N , but there is no LSM theorem

for odd integer N , i.e. the quantum spin system described above with odd integer N

can have a featureless gapped ground state on the cubic lattice. However, a quantum

dimer model on the cubic lattice could be the low energy effective description of all these

systems, since two nearest neighbor AB sites can always form a dimer (spin singlet),

regardless of even or odd integer N .

One simple extension of Eq. 5.85 is that, when we break SO(3) down to its subgroup

U(1)⋊ Z2, Eq. 5.85 reduces to

S4d−topo = i
Θ

(2π)2

∫
(4+1)d

dB ∧ dA, (5.86)

where A is the background U(1) gauge field. The integral in Eq. 5.86 is quantized, hence

Θ is periodically defined: Θ = Θ+2π. Under the Z2 subgroup of SO(3), A changes sign,

hence a symmetric response theory demands Θ = kπ with integer k. Eq. 5.86 with k = 1

corresponds to the nontrivial 4d SPT phase.

Eq. 5.86 also describes the corresponding 4d bulk state if instead we consider a quan-

tum dimer model defined on a 3d tetragonal lattice, here the U(1) symmetry is further

reduced to a Z4 symmetry, and the Z4 corresponds to the rotation of the square lattice

in each layer. In this case in the topological response theory Eq. 5.86, A is a background

Z4 gauge field. Eq. 5.86 still describes a nontrivial 4d SPT state with 1-form symmetry.

The situation will be very different if we consider a quantum dimer model on a 3d

bipartite lattice with an effective Z3 ⋊ Z2 = S3 symmetry. The Z3 should correspond to
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a three fold rotation C3 in the XY plane, and Z2 is a π-rotation about the x-axis. Such

quantum dimer models can potentially be mapped to the boundary of a 4d system with

U(1)(1)×S3 symmetry. But there is no 1d SPT state with the S3 symmetry, hence the 4d

bulk with the U(1)(1)×S3 symmetry is also trivial as a descendant state of the SPT state

described by Eq. 5.86. Hence there should be no LSM theorem for these quantum dimer

models, i.e. these quantum dimer models can in general have a gapped ground state

without degeneracy, unless this model has higher symmetries than the lattice itself.

5.3.5 Other 4d SPT States

With just a U(1)(1) symmetry, there is already a nontrivial 4d SPT phase, whose

boundary is a QED4 with a 1-form electric symmetry, and the Dirac monopole is a

fermion (labelled as mf ). The unit electric charge (labelled as e0b) is infinitely heavy at

the boundary QED4 due to the U(1)(1) symmetry. We label this boundary QED4 as state

QED4{e0b,mf}. The bulk is a nontrivial SPT state, namely its boundary QED4 cannot

be trivially gapped. One can condense a Cooper pair of the fermionic Dirac monopole

mf , and drive the QED4 to a “monopole superconductor”, which is also a z2 topological

order. The loop excitation of the z2 topological order will carry a fractional half charge

of the U(1)(1) 1-form symmetry, and hence cannot lead to a fully gapped and nondegen-

erate state after condensation for the reasons explained previously in this manuscript.

Although the electric charges are infinitely heavy due to the 1-form symmetry, its statis-

tics still matters to physical observables such as the Wilson loops of the QED4. And in

this QED4 the infinitely heavy electric charge is a boson.

This state remains a nontrivial SPT after breaking the U(1)(1) down to Z
(1)
n with even

integer n, the cases with n = 2, 4 were discussed in Ref. 537, 538. But this state will

be trivialized if n is an odd integer. For odd integer n, in the monopole superconductor
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constructed above, the loop excitation carries half charge of the Z
(1)
n 1-form symmetry,

and it can be “neutralized” by binding unfractionalized 1-form symmetry charge, i.e. the

Z
(1)
n transformation on the loop excitation can be completely cancelled by the z

(2)
2 gauge

transformation on the loop excitation, then the condensation of the neutralized loop can

lead to a trivially gapped phase.

There is even a nontrivial bosonic SPT state in 4d space without any symmetry; its

boundary is a QED4 whose both electric charge and Dirac monopole (including their

bound state dyon) are fermions [552, 553]. We label this QED as QED4{e′f ,m′
f} state.

We view the QED4{e0b,mf} and QED4{e′f ,m′
f} as two root states, and by “gluing” these

two QED4 states together, another new state can be constructed. One can condense the

bound state of the Dirac monopoles (labelled as (mf ,m
′
f )) of both QED4 systems, then

the gauge fields from both QED4 will be identified due to the Higgs mechanism, and e0b

and ef are both confined since they both have nontrivial statistics with the condensed

bound state of monopoles. Although e0b is infinitely heavy, its confinement can still

be defined by the behavior of Wilson loop of its gauge field. In the condensed phase

of bound state (mf ,m
′
f ), the Wilson loop of each individual gauge field obeys the area

law. But the bound state (e0b,−e′f ), which has trivial mutual statistics with (mf ,m
′
f ),

remains deconfined, though it is still infinitely heavy. This new QED state has infinitely

heavy fermionic electric charge, and dynamical fermionic Dirac monopole. This new state

is labelled as QED4{e0f ,mf}. One can also exchange e and m, and label the state as

QED4{ef ,m0f}, i.e. a state with dynamical fermionic gauge charge, but infinitely heavy

fermionic Dirac monopole.

Summary of 4d SPT states with 1-form symmetries:

Let us reinvestigate the states discussed in the end of section 5.3.3. As we briefly dis-

cussed there, besides the states QED4{e0b,m0b}, logically there should also be QED4{e0b,m0f},
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QED4{e0f ,m0b}, QED4{e0f ,m0f}, which can all be boundary states of (4+1)d SPT bulk.

It turns out that these states can be constructed by gluing states in section 5.3.3 and

5.3.5. For example, starting with the state QED4{e0b,m0b} discussed in section 5.3.3

(we label its gauge field as a⃗), one can combine it with the state QED4{e′0b,m′
f} (with

gauge field a⃗′) discussed in section 5.3.5, and consider the charge bound state (e0b,−e′0b).

This bound state carries zero total gauge charge of a⃗ and a⃗′. We assume that there

is only one U(1)(1) 1-form symmetry, hence the charge bound state (e0b,−e′0b), which

carries zero total gauge charge, is no longer necessarily infinitely heavy and can acquire

dynamics and condense. Its condensate would render a⃗ = a⃗′ through the Higgs mech-

anism, and in the condensate the monopole bound state (m0b,m
′
f ) remains deconfined,

as it has trivial mutual statistics with (e0b,−e′0b). The final state is identical to state

QED4{e0b,m0f} discussed in section 5.3.3. Following the same argument, through gluing

QED4{e0b,m0f} and state QED4{e′f ,m′
0f} discussed in section 5.3.5 (by condensing the

bound state (m0f ,−m′
0f )), one can obtain another state QED4{e0f ,m0f} discussed in

section 5.3.3.

The construction of all these states discussed so far can be summarized mathemati-

cally in a single unified topological response theory in the (4 + 1)d bulk:

S4d−topo =

∫
(4+1)d

ik0
2π
B1 ∧ dB2 +

ik1
2
dB1 ∪ w2 +

ik2
2
dB2 ∪ w2 + iπk3w2 ∪ w3. (5.87)

w2 and w3 are the second and third Stiefel-Whitney class of the space-time manifold.

k0 takes arbitrary integer values, while k1, k2 and k3 only take value 0 and 1, since the

Stiefel-Whitney class is defined mod 2. This topological response theory is equivalent to

the discussion based on the cobordism theory in Ref. 537, 538.
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The classification of 4d SPT states discussed so far is summarized as follows:

U(1)(1) : Z2 ⊗ Z2;

Z(1)
n : Z2 ⊗ Zgcd(2,n);

U(1)(1) × U(1)(1) : Z⊗ Z3
2;

U(1)(1) × Z(1)
n : Zn ⊗ Z2

2 ⊗ Zgcd(2,n);

Z(1)
q × Z(1)

n : Zgcd(q,n) ⊗ Zgcd(2,q) ⊗ Zgcd(2,n) ⊗ Z2. (5.88)

5.3.6 3d SPT State with G
(1)
1 ×G2 Symmetry

Parent 3d SPT state with U(1)(1) × U(1) symmetry

The parent 3d SPT state we will consider, is a state with U(1)(1) × U(1) symmetry.

We can couple its symmetry currents to a background 2-form gauge field B, and a 1-form

gauge field A. The response theory for this SPT state is

S3d−topo =

∫
ik

2π
B ∧ dA =

∫
ik

2π
A ∧ dB. (5.89)

To construct such state, again one can rely on the decorated defect picture. We can

start with a photon phase with an electric U(1)(1) 1-form symmetry, namely there is

no dynamical electric charge, or equivalently the electric charge is infinitely heavy, but

there are dynamical Dirac monopoles. Then we decorate the Dirac monopole with a

zero dimensional bosonic SPT state with U(1) symmetry, which is a bosonic charge with

U(1) symmetry. This zero dimensional bosonic SPT state has Z classification, which

correspond to states with integer charges of a boson with U(1) symmetry. These states

can also be equivalently constructed by decorating the vortex line of the U(1) order

parameter with a 1d SPT state with U(1)(1) 1-form symmetry, i.e. the building bricks
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discussed in section 5.3.2.

After condensing the decorated Dirac monopole, the 3d bulk of the system is driven

into a fully gapped state without degeneracy. The 2d boundary of the system would

most naturally be a QED3 whose dynamical u(1) gauge field a⃗ has no dynamical gauge

charge, but its magnetic flux carries conserved U(1) quantum number that couples to

A. The QED3 is a dual of the superfluid phase with spontaneous breaking of the U(1)

symmetry. And the assumption that there is no dynamical electric charge of gauge field

a⃗ is equivalent to the statement that there is no dynamical vortex of the dual superfluid,

hence the superfluid cannot be disordered by condensing the vortices.

Descendant 3d SPT state with U(1)(1) × Zn symmetry

We can break the U(1) 0-form symmetry coupled to A in Eq. 5.89 down to a Zn sym-

metry, now the entire symmetry becomes U(1)(1) × Zn. The topological response theory

Eq. 5.89 still applies, but now A becomes a Z(1)
n background gauge field. The decorated

defect construction in the previous case would lead to a Zn classification, because the

zero dimensional SPT state with Zn symmetry decorated at the Dirac monopole has a

Zn classification.

This classification can be understood at the boundary as well. The (2+1)d boundary

is a QED3 whose flux carries k units of the Zn quantum number, where k is given in

Eq. 5.89. With k = n, the flux of the QED3 basically carries trivial quantum number,

and the QED3 can be driven into a trivial confined phase. This boundary state is similar

to the quantum dimer model on a 2d bipartite lattice, such as the square lattice. The

quantum dimer model can be mapped to a compact QED3 with no electric charge (the

quantum dimer constraint, i.e. every site is connected to precisely one dimer, is strictly

enforced), but the flux of the compact QED3 carries nontrivial lattice quantum number.

The description of the quantum dimer model in terms of QED3 is analogous to the
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boundary of the 3d SPT state with U(1)(1)×Z4 symmetry at k = 1. It is well-known that

the confined phase of the quantum dimer model on the square lattice cannot be a trivial

gapped phase, instead it must have ground degeneracy due to spontaneous breaking of

lattice symmetry. But in the quantum dimer model because the Z4 symmetry is a non-

onsite lattice symmetry, the quantum dimer model exists as a well defined system in

2d.

This effect is inherited from the LSM theorem for spin-1/2 systems on the square

lattice. There is no LSM theorem for a spin-2 system on the square lattice, and a spin-2

system can be viewed as four copies of spin-1/2 systems glued together, or a system

with four spin-1/2s in each unit cell. All these observations are consistent with the Z4

classification of the 3d SPT state with U(1)(1) × Z4 symmetry discussed in this section.

Descendant 3d SPT state with Z
(1)
q × U(1) symmetry

Next we consider the 3d SPT states as descendant states of Eq. 5.89 with Z
(1)
q ×

U(1) symmetry. Again we will first consider the cases where all the point particles

in the bulk are bosons. When we break the U(1)(1) symmetry down to Z
(1)
q , the 2d

boundary is a QED3 whose flux carries U(1) quantum number, and there are dynamical

q−fold electric charges. The boundary can only be driven to a zq topological order by

condensing the q−fold electric charge. One of the point like anyons of this topological

order is the remnant of the 2π/q flux of the QED3, which carries k/q charges of the U(1)

symmetry quantum number. When k = q this anyon carries unfractionalized quantum

number, hence can be neutralized by binding with gauge invariant integer charge of the

U(1) symmetry. This neutralized anyon is a self-boson, and after condensation it drives

the boundary into a trivial gapped state. Hence this 3d SPT state should have a Zq

classification.

To facilitate further discussions let us also consider a different 3d bulk state with
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U(1) global symmetry only. This is a QED4 whose electric charge is fermion, and

Dirac monopole is a boson (using the notations introduced before, this bulk state is

QED4{ef ,mb}). Again one can bind the Dirac monopole with another boson that carries

U(1) quantum number, and condense the bound state in the 3d bulk. Then the bulk is

gapped and nondegenerate, while the 2d boundary is a QED3 whose electric charge is a

fermion, while the gauge flux carries U(1) quantum number. However, this 3d bulk is

not a SPT state, since one can put the electric charge at the boundary in a 2d Chern

insulator with Hall conductivity 1, then the 2d boundary is gapped without breaking

any symmetry. This is consistent with the classification of ordinary SPT states without

higher form symmetries. With only U(1) symmetry, there is no nontrivial SPT state

in 3d. One needs another time-reversal symmetry to construct a 3d bosonic SPT state,

since the boundary Chern insulator of the fermionic gauge charge as we constructed above

necessarily breaks the time-reversal.

One can again glue the 2d boundary states in the previous two paragraphs together.

Let us recall that the boundary of a nontrivial 3d SPT state with Z
(1)
q ×U(1) symmetry

is a QED3 whose flux carries U(1) quantum number, and its bosonic electric charges are

infinitely heavy; the boundary of the trivial state discussed in the last paragraph is a

QED3 whose flux also carries U(1) quantum number, and its electric charge is a fermion

with nonzero dynamics. Once we couple the two 2d systems together, the tunnelling

between the gauge fluxes between the two QED3 will be turned on, which identifies the

two gauge fields. Now the 2d boundary state is a QED3 whose gauge flux still carries

U(1) quantum number, but its static electric charge is a fermion. This state is not a new

SPT state since it can be constructed by gluing the 2d boundaries of the two systems

discussed above.
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Descendant 3d SPT state with Z
(1)
q × Zn symmetry

Finally we can break the U(1)(1) 1-form symmetry in Eq. 5.89 to Z
(1)
q . Again we can

start with the QED3 state at the (2 + 1)d boundary. In this case there are dynamical

q-fold electric charge of the u(1) gauge field, and the magnetic flux of the u(1) gauge field

still carries Zn quantum number. One can condense the charge−q bound state, and drive

the 2d boundary into a 2d zq topological order. In an ordinary 2d zq topological order,

there are two sets of anyons. The e anyon is a remnant of the unit charge excitation of

the QED3 before the condensation of the q-fold electric charge, and the m anyon is a

2π/q flux quantum of the u(1) gauge flux. Both e and m anyons are self-bosons, but have

a mutual 2π/q statistical angle. In our current case, due to the Z
(1)
q 1-form symmetry,

the e anyons are not dynamical, and a m anyon carries a fractional quantum number 1/q

of the Zn symmetry (assuming k = 1 in Eq. 5.89). Both e and m anyons are coupled

to zq gauge fields. Following the arguments in section 5.3.3, we can demonstrate that

when q and n are coprime, the fractional quantum number of the m anyon can always

be “neutralized” by binding with integer charges of the Zn symmetry, in the sense that

the Zn transformation on the decorated m anyon can always be cancelled by a zq gauge

transformation. When q and n are not coprime, the quantum number of the m anyon can

be neutralized when k = gcd(q, n). The neutralized m anyon can condense and drive the

2d boundary to a trivial gapped state without degeneracy. Hence as a descendant state

of Eq. 5.89, the classification of the 3d SPT state with Z
(1)
q × Zn symmetry is Zgcd(q,n).

Summary of 3d SPT states with 1-form symmetries:

Here we summarize the classification of 3d SPT states that are descendants of Eq. 5.89.

If there are special SPT states that cannot be described by Eq. 5.89, such as some of the
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states discussed in Ref. 539, 540, they are not included in this list.

U(1)(1) × U(1) : Z;

Z(1)
q × U(1) : Zq;

U(1)(1) × Zn : Zn;

Z(1)
q × Zn : Zgcd(q,n). (5.90)

5.3.7 2d SPT State with G
(1)
1 × ZT

2 Symmetry

Several different (2+1)d SPT states that involve 1-form symmetries can be described

by the following topological response term:

S2d−topo =

∫
(2+1)d

iΘ

2π
dB (5.91)

In principle Θ can take arbitrary value, because dB is gauge invariant. But some extra

symmetry can pin Θ to a specific value, like the Θ term of the ordinary topological

insulator [554] and bosonic SPT state [161].

As an example of such states, we assume that the 2-form background gauge field B

is unchanged under time-reversal transformation, this means that the 1-form symmetry

charge will change sign under time-reversal. This implies that the total symmetry of

the system is a direct product between the 1-form symmetry and time-reversal. Θ is

clearly defined periodically, namely Θ+ 2π = Θ, hence the time-reversal invariant states

correspond to Θ = πk with arbitrary integer k.

For even integer k, the (2 + 1)d topological response theory Eq. 5.91 reduces to a

boundary topological term that is identical to the topological response theory with 1d
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SPT state with a 1-form symmetry (section 5.3.2). This means that, for even integer

k, the boundary corresponds to a well-defined 1d state, hence an even integer k would

correspond to a trivial state in (2 + 1)d. On the other hand, for odd integer k, the

boundary is a “half” 1d SPT state with 1-form symmetry G(1). Then the (2 + 1)d bulk

could be a SPT state.

As we mentioned before, due to the strict constraint ∇xê(x) = 0 for 1-form charge

in one dimension, a 1d system with 1-form symmetry is analogous to a 0d system with

ordinary 0-form symmetry. Then whether there is a (2 + 1)d SPT state with G(1) × ZT
2

symmetry can also be determined by the existence of projective representation of G×ZT
2 .

And there is a 2-dimensional projective representation of U(1)×ZT
2 , but not for U(1)⋊ZT

2 .

Indeed, if the symmetry of the system is G(1)⋊ZT
2 , namely B is odd under time-reversal,

the Θ coefficient is unchanged under time-reversal, hence time-reversal will not pin Θ to

any specific value.

To summarize our result in two spatial dimensions, there is a nontrivial 2d SPT state

with U(1)(1) × ZT
2 symmetry, and this state remains nontrivial when U(1)(1) is broken

down to Z
(1)
q with even integer q.

The decorated defect construction also applies in this scenario, which is analogous

to what was discussed in Ref. 555 for ordinary SPT states. We can construct the SPT

state with k = 1 in Eq. 5.91, by first creating a domain wall of time-reversal symmetry,

then embed each domain wall with a 1d SPT state described by Eq. 5.78, and finally

proliferate the domain walls. Besides construction from 1d SPT state, we can also obtain

this 2d SPT state by reduction from higher dimensions. For example, starting with the 3d

SPT state with U(1)(1) ×U(1) symmetry described by the response theory Eq. 5.89, one

can compactify one of the three spatial dimensions (the 3d space R3 becomes R2 ⊗ S1),

and insert a π−flux of the 1-form gauge field A through S1. Then the response theory

Eq. 5.89 reduces to Eq. 5.91 with k = 1. This is the same procedure of dimensional
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reduction introduced in Ref. 554.

5.3.8 Discussion

In this work we discussed the classification, construction, and boundary properties

of SPT states involving higher symmetries, from one to four spatial dimensions. Our

discussion is mostly based on physical arguments. As an application of our discussion,

we make connection between the SPT states with 1-form symmetry to quantum dimer

model at one lower dimension. Quantum dimer model with spatial symmetries can be

mapped to the boundary of a bulk state with onsite symmetries. Some of the universal

features of the quantum dimer model is dictated by the nature of the corresponding bulk

state.

In this work we only discussed quantum dimer models on bipartite lattices, which

can be mapped to a QED with U(1)(1) 1-form symmetry. It is well known that some

other dimer models can be naturally mapped to a z2 gauge field, such as quantum dimer

model on the triangular lattice [556]. Then these models would be examples of systems

with Z
(1)
2 1-form symmetry, and they can also be potentially mapped to the boundary of

one higher dimensions. Insights for these systems gained from higher dimensions will be

studied in later works.
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Summary and Discussion

The main body of this dissertation presents our series of works on quantum matter beyond

the two cornerstones 1. There are diverse research projects, including understanding

experimentally motivated questions, constructing exotic quantum matter, and exploring

novel theoretical concepts. Finally, I would like to finish this dissertation by commenting

on related topics that may deserve better understanding in future studies. Below is just

an incomplete list that I personally found interesting.

In Sec. 2.3, we have found novel 2+1D fixed points involving non-local interactions.

The non-locality associated with boundaries and defects is due to the coupling to a gapless

bulk in 3+1D. Similar nonlocal terms could arise from the coupling between bosonic order

parameters and fermi-surface hot spots in 2+1D systems. It opens the possibilities of

constructing exotic quantum phase transitions in metals.

In all the examples we have considered in Chap. 2, the critical bulk only involves

bosonic degrees of freedom. So far, we do not have a good understanding of boundary

theories of fermi-surface states. For example, it would be nice to work out the boundary

theory of the Halperin-Lee-Read theory [88] for the half-filled Landau level. It should

1Landau’s Fermi liquid theory and symmetry-breaking theory of conventional phase transitions
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lead to experimentally relevant predictions.

The analysis of emergent symmetries and anomalies could shed new light on old prob-

lems. For example, the Luttinger theorem has recently been rationalized in Ref. [58] using

the ’t Hooft anomaly of an emergent loop-group symmetry. (The emergent symmetry

can be intuitively understood as the charge conservation associated with each patch of

the fermi surface.) Since controlled calculations are hard to achieve in strongly corre-

lated metals, it would be nice to have more theoretical constraints on their kinematic

properties from emergent symmetries and anomalies.

The non-linear bosonization of fermi liquids has been recently developed in Ref. [59],

which states that the emergent anomaly in Ref. [58] is from the linear approximation of

a non-linearly realized symmetry preserved under fermi-surface evolution. It would be

interesting to see whether this new formulation can help develop a controlled framework

for non-fermi liquids under certain assumptions.

In Sec. 5.1, we have seen the ODOs for subsystem symmetries can have exotic scaling

behaviors (involving logarithmic factor) other than perimeter law and power law. A

similar feature shows up in fermi-surface states, where the ODO (which is related to

the bipartite charge fluctuations in literature) scales as L log(L) with the linear system

size L in 2+1D. Both fermi-surface states and states with subsystem symmetries have

a large number of conserved quantities, and they both involve UV-IR mixing in certain

scenarios. It is tantalizing to explore a deep relationship between the two.

As for material realizations of exotic quantum phases, experimentalists are actively

building “quantum LEGO” using Moiré heterostructures, and highly entangled synthetic

matter using Rydberg atoms. There will be a lot more systems to study for theorists.

I would like to continue these lines of research in the future.
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Appendix A

Appendix to Chapter 1

(Introduction)

A.1 Conformal Perturbation Theory

Conformal perturbation theory is a standard method in the literature. This section

serves as a short introduction.

A.1.1 Conformal Fixed Points

Let’s briefly summarize some properties of a conformal RG fixed point. Due to

emergent scale invariance, the two-point correlation function of any physical observable

O(x) should obey the power law

⟨O(x)O(y)⟩ = const.

|x− y|2∆O
, (A.1)
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where ∆O is the scaling dimension of O. In this section, all the correlation functions

should be understood as time-ordered 1.

The scale invariance at a RG fixed point is often enlarged to conformal invariance

(see e.g. [100]), and quasi-primary fields O(x) transform irreducibly as

Oj(x) →
∣∣∣∣det∂x′∂x

∣∣∣∣∆j/DOj(x
′), (A.2)

where D = d + 1 is the total spacetime dimensions. The conformal symmetry further

restricts the form of two-point functions

⟨O1(x1)O2(x2)⟩ =


C12

|x1−x2|∆1+∆2
∆1 = ∆2

0 ∆1 ̸= ∆2

, (A.3)

where the coefficient C12 can be set to 1 by redefining the operators O’s. It resembles

an orthogonal relation for quasi-primary fields with different scaling dimensions. The

three-point functions are restricted to be

⟨O1(x1)O2(x2)O3(x3)⟩ =
C123

|x12|∆12 |x23|∆23 |x31|∆31
, (A.4)

where xij = xi − xj and ∆ij = ∆i +∆j −∆k with i, j, k = 1, 2, 3. The coefficient C123 is

a universal number that characterizes the fixed point.

Operator product expansion (OPE) is a statement about the product of two nearby

local operators Oi,Oj is equivalent to a suitable linear combination of the operators {Ok}

lim
xi→xj

Oi(xi)Oj(xj) = lim
xi→xj

∑
k

C̃ijk

|xi − xj|∆i+∆j−∆k
Ok (xk) , (A.5)

1In CFT, the “time” is defined with respect to certain spacetime foliation.
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where xk = λxi + (1− λ)xj with 0 ≤ λ ≤ 1 can be any point between xi and xj. Any

OPE equation left = right should be understood as the equivalence of operators inside

correlation functions ⟨left (. . .)⟩ = ⟨right (. . .)⟩, where . . . can be any other operators

that are far away from xi and xj. This is basically saying that they produce the same UV

singularity under xi → xj, and hence the OPE method is useful in extracting logarithmic

UV-divergence in practical RG calculations.

One can show that the OPE coefficients C̃ijk are the same as the coefficients Cijk of

the three-point functions. Let’s consider ⟨Oi(xi)Oj(xj)Ol(xl)⟩ and use the OPE of OiOj

lim
xi→xj

⟨Oi(xi)Oj(xj)Ol(xl)⟩ = lim
xi→xj

∑
k

C̃ijk

|x− y|∆i+∆j−∆k
⟨Ok(xk)Ol(xl)⟩

= lim
xi→xj

C̃ijl

|xij|∆i+∆j−∆l

1

|xkl|2∆l
= lim

xi→xj

C̃ijl

|xij|∆i+∆j−∆l

1

|xil|∆l+∆i−∆j

1

|xjl|∆l+∆j−∆i
, (A.6)

where the convention Ckl = δkl is assumed, and we have used xkl = xil = xjl under the

limit xi → xj. It is clear that we can identify C̃ijk = Cijk for normalized operators with

Cij = δij. Formally, we can regard an OPE as a fusion algebra of operators approaching

each other, which has the conventional notation

[Oi]× [Oj] =
∑
k

Cijk [Ok] . (A.7)

A.1.2 Real-Space RG & OPEs

The OPE provides a natural way to calculate RG flow at any given conformal fixed

point [30]. Let SCFT be a fixed-point action in D Euclidean dimensions. We turn on a

set of general perturbations parametrized by a complete set of quasi-primary fields {Oj}

S = SCFT + δS = SCFT +

∫
dDx

∑
j

uja
∆j−DOj(x), (A.8)
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where {uj} is the set of dimensionless coupling constants, a = 1/Λ is the UV regulator

in real space (i.e., Λ is the UV cut-off in momentum space), and ∆j denotes the scaling

dimension of each field Oj. The partition function can be formally evaluated as

Z = Tre−SCFT−δS = ZCFT

〈
e−δS

〉
, (A.9)

where ZCFT = Tre−SCFT is the CFT partition function, and ⟨. . .⟩ = Z−1
CFTTr(e

−SCFT(. . .))

denotes the expectation value of (. . .) evaluated at the fixed point. We could perform a

Taylor expansion of the partition function

Z
ZCFT

=
〈
e−δS

〉
=

∞∑
n=0

(−1)n

n!
⟨(δS)n⟩

= 1 +
∞∑
n=1

(−1)n

n!

∑
j1,...,jn

(
n∏
r=1

∫
dDxjr
aD−∆jr

ujr

)
⟨Oj1(xj1) . . .Ojn(xjn)⟩

= 1−
∑
j

∫
dDx

aD−∆j
uj ⟨Oj(x)⟩+

1

2!

∑
i,j

∫
dDxid

Dxj
a2D−∆i−∆j

uiuj ⟨Oi(xi)Oj(xj)⟩

− 1

3!

∑
i,j,k

∫
dDxid

Dxjd
Dxk

a3D−∆i−∆j−∆k
uiujuk ⟨Oi(xi)Oj(xj)Ok(xk)⟩+O(u4). (A.10)

In all the integrals, we should assume ∆x = |xi − xj| > a for any pair of coordinates,

which is equivalent to imposing a momentum cut-off Λ = 1/a. We implement the real-

space RG transformations by rescaling the real-space cut-off a → aeδℓ where δℓ ≪ 1.

The original integral can be split as

∫
a<∆x

=

∫
aeδℓ<∆x

+

∫
a<∆x<aeδℓ

, (A.11)
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In the first term, the leading-order RG flow of uj from pure rescaling can be obtained via

uja
∆j−D invariant: a∆j−D → a∆j−Deδℓ(∆j−D)

=⇒ uj → uje
−δℓ(∆j−D) = uj − uj(∆j −D)δℓ. (A.12)

In addition, the integral over the thin shell a < ∆x < aeδℓ may also contribute. In this

case, any two points are fairly close to each other, and hence OPEs can be applied.

Two-point RG The first order term is going to be generated by two-point OPEs

1

2!

∑
i,j

∫
shell

dDxid
Dxj

a2D−∆i−∆j
uiuj ⟨Oi(xi)Oj(xj)⟩

=
1

2!

∑
i,j

∫
shell

dDxid
Dxj

a2D−∆i−∆j
uiuj

∑
k

Cijk
a∆i+∆j−∆k

⟨Ok(xi)⟩

=
1

2!

∑
i,j,k

CijkuiujSD−1δℓ

∫
dDx

aD−∆k
⟨Ok(x)⟩ , (A.13)

where the surface area SD−1 = 2πD/2/Γ(D/2) of (D − 1)-sphere is introduced. Conse-

quently, we have the beta function of uj to order O(u2)

duj
dℓ

= (D −∆j)uj −
SD−1

2

∑
i,k

Cikjuiuk +O(u3)

SD−1
2

u→u
=====⇒

rescale u

duj
dℓ

= (D −∆j)uj −
∑
i,k

Cikjuiuk +O(u3). (A.14)

Notice that Cikj = Ckij and the contributions where i ̸= k are counted twice in the sum-

mation. The perturbative RG flow is determined by the universal data of CFT (including

scaling dimensions and OPE coefficients). For Landau-Ginzburg-Wilson-Fisher (LGWF)

theory, the “ two-point RG” identifies the “one-loop RG” in standard terminology, since

the OPE [ϕ4]× [ϕ4] ∼ [ϕ4]+ . . . only involves one-loop Feynman diagram. Although some
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two-point OPEs may involve higher loop diagrams, the final result is only valid to the

first order O(ϵ) in ϵ-expansion.

New fixed point The relevant perturbations may drive the system flow to a new fixed

point {u∗j} that satisfies duj/dℓ = 0 for all operators Oj. At the new fixed point, the

scaling dimension ∆∗
j of Oj can be obtained via


(u∗j + δuj)Oje

δℓ(∆∗
j−D) = u∗jOj

δuj = duj/dℓ|u=u∗ δℓ
=⇒

∆∗
j = D − 1

uj

duj
dℓ

∣∣∣∣
u=u∗

= ∆j +
∑
i,k

Cikj
u∗iu

∗
k

u∗j
+O(u2). (A.15)

A.1.3 Wilson-Fisher Fixed Points

In this section, we use conformal perturbation theory to reproduce some standard

results that can be found in textbooks (also see [30]).

Ising model Let’s apply the conformal perturbation theory to the LGWF theory. We

first analyze the simplest case, the Ising model

S =

∫
dDx

1

2
(∂ϕ)2 + a−1−D/2hϕ+ a−2rϕ2 + aD−4uϕ4 + . . . , (A.16)

where the bare scaling dimension of the free field is ∆ϕ = D/2 − 1. The composite

operator Φn =: ϕn : with the scaling dimension ∆n = n∆ϕ satisfies

⟨Φn(x)Φn(y)⟩ = ⟨: ϕn(x) :: ϕn(y) :⟩ = const.

|x− y|2n∆ϕ
, (A.17)
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which can be easily understood through the Wick contractions of n pairs of ϕ fields.

Furthermore, the expression of Φn can be obtained directly from the Wick theorem

Φ1 =: ϕ := ϕ− ⟨ϕ⟩ = ϕ,

Φ2 =: ϕ2 := ϕ2 − ⟨ϕ2⟩,

Φ4 =: ϕ4 := ϕ4 − 6⟨ϕ2⟩ϕ2. (A.18)

Their OPEs can be obtained by counting the symmetry factors of Feynman diagrams

[Φ1]× [Φ1] = [1] + [Φ2] , [Φ1]× [Φ2] = 2 [Φ1] + [Φ3] ,

[Φ2]× [Φ2] = 2 [1] + 4 [Φ2] + [Φ4] , [Φ2]× [Φ4] = 12 [Φ2] + 8 [Φ4] ,

[Φ4]× [Φ4] = 24 [1] + 96 [Φ2] + 72 [Φ4] , [Φ1]× [Φ4] = 4 [Φ3] , (A.19)

where we only keep the UV-divergent terms with potentially relevant operators. Using

Eq. A.14, we could write down the one-loop beta functions of h, r, u directly

dh

dl
= (D/2 + 1)h− 4hr + . . .

dr

dl
= 2r − h2 − 4r2 − 24ru− 96u2 + . . .

du

dl
= (4−D)u− r2 − 16ru− 72u2 + . . . (A.20)

To leading order in ϵ = 4−D, the Wilson-Fisher fixed point is found to be h∗ = 0, r∗ =

0, u∗ = ϵ/72. We can see the scaling dimension of r is 2− 24u∗ = 2− ϵ/3, which implies

∆[Φ2] = 2 + ϵ/3 at the WF fixed point.
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O(N) model Let us generalize the discussions to O(N) model with N -component real

vector ϕ. We can focus on Φ2 and Φ4 which have the expressions

Φ2 =: ϕ2 := ϕ2 −N⟨ϕ2⟩, Φ4 =: (ϕ2)2 := (ϕ2)2 − 2(N + 2)⟨ϕ2⟩ϕ2, (A.21)

where ϕ2 =
∑N

a=1 ϕ
2
a. Their OPEs are evaluated as

[Φ2]× [Φ2] = 2 [1] + 4 [Φ2] + [Φ4] , [Φ2]× [Φ4] = 4(N + 2) [Φ2] + 8 [Φ4] ,

[Φ4]× [Φ4] = 8(N2 + 2) [1] + 32(N + 2) [Φ2] + 8(N + 8) [Φ4] , (A.22)

where we still only keep the UV-divergent terms with potentially relevant operators.

Using Eq. A.14, we can directly write down the RG flow of O(N) model

dr

dl
= 2r − 4r2 − 8(N + 2)ru− 32(N + 2)u2 + . . .

du

dl
= (4−D)u− r2 − 16ru− 8(N + 8)u2 + . . . (A.23)

To leading order in ϵ = 4−D, the WF fixed point is at r∗ = O(ϵ2), u∗ = ϵ
8(N+8)

+O(ϵ2).

The scaling dimension of r is now 2−8(N +2)u∗ = 2− N+2
N+8

ϵ, and accordingly the scaling

dimension of Φ2 is ∆[Φ2] = 2 + N+2
N+8

ϵ.

U(N) model For the U(N) model with N -component complex vectors ϕ† and ϕ, we

are interested in the operators

Φ2 =: ϕ†ϕ := ϕ†ϕ−N⟨ϕ†ϕ⟩, Ψ2 =: ϕ2 := ϕ2,

Φ4 =: (ϕ†ϕ)2 := (ϕ†ϕ)2 − 2(N + 1)⟨ϕ2⟩ϕ†ϕ, (A.24)
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where ϕ†ϕ =
∑N

a=1 ϕ
†
aϕa and ϕ2 =

∑N
a=1 ϕ

2
a. In addition to the charge operator Φ2, we

also turned on paring operator Ψ2. They satisfy the following OPEs

[Φ2]× [Φ2] = [1] + 2 [Φ2] + [Φ4] , [Φ2]× [Φ4] = 2(N + 1) [Φ2] + 4 [Φ4] ,

[Φ4]× [Φ4] = 2(N2 + 1) [1] + 8(N + 1) [Φ2] + 4(N + 4) [Φ4] ,

[Ψ2]× [Φ4] = 2 [Ψ2] + . . . (A.25)

Let us still assume the coupling constants of Φ2,Φ4 are r, u, and introduce the coupling

w for Ψ2. Based on Eq. A.14, their beta functions are obtained as

dr

dl
= 2r − 2r2 − 4(N + 1)ru− 8(N + 1)u2 + . . .

du

dl
= (4−D)u− r2 − 8ru− 4(N + 4)u2 + . . .

dw

dl
= 2w − 4uw + . . . (A.26)

To leading order in ϵ = 4 −D, the U(N) WF fixed point is located at r∗ = O(ϵ2), u∗ =

ϵ
4(N+4)

+ O(ϵ2) and w∗ = O(ϵ2). Using Eq. A.15, we have the scaling dimensions of the

charge operator Φ2 and the pairing operator Ψ2

∆[Φ2] = (D − 2) + 4(N + 1)u∗ = (2− ϵ) +
N + 1

N + 4
ϵ,

∆[Ψ2] = (D − 2) + 4u∗ = (2− ϵ) +
ϵ

N + 4
. (A.27)

The result about Φ2 here is indeed consistent with the analog in O(2N) model.

A.1.4 Bulk-Boundary OPEs

For a critical system with boundaries, Eq. A.14 can not be applied directly, since

two-point functions are no longer as simple as Eq. A.1. But we still can define the OPE
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for any two operators close to each other

lim
xi→xj

Oi(xi)Oj(xj) = lim
xi→xj

∑
k

Cijk(xi;xj)Ok(xk), (A.28)

where xk = λxi + (1− λ)xj with 0 ≤ λ ≤ 1 is any point between xi and xj, and Oj

can be boundary operators or bulk operators. The OPE coefficient Cijk may depend

on the details of the boundary (analyzed by the method of images for certain cases).

But the Taylor expansion Eq. A.10 is always valid. Thus we could obtain one-loop RG

flow (through the same logic as in Eq. A.13) by considering how the first-order term

is generated by the second order term via OPEs between all operators (including bulk-

bulk and bulk-boundary OPEs). In the calculations below, we consider a D = d + 1

dimensional system parametrized by the coordinate x = (x, y) where x ∈ Rd, y > 0.

The bulk OPEs often reduce back to the standard form, i.e.,

Cijk(xi, xj) = Cijk/ |xi − xj|∆i+∆j−∆k (A.29)

and Eq. A.13 can be directly applied. But the bulk-boundary OPEs need to be calculated

case by case, i.e.,

1

2!

∑
i,j

∫
half-shell

ddxidyd
dxj

a2d+1−∆i−∆j
uiuj ⟨Oi(xi, y)Oj(xj, 0)⟩

=
1

2!

∑
i,j

∫
half-shell

ddxidyd
dxj

a2d+1−∆i−∆j
uiuj

∑
k

Cijk(xi, y; xj, 0) ⟨Ok(xj, 0)⟩ (A.30)

where
∫
ddxidyOi(xi, y) is a bulk operator,

∫
ddxidyOj(xj, 0) is boundary operator, and

the integral is over the real-space half-shell a < ((xi − xj)
2 + y2)1/2 < aeδℓ, y > 0 near

the boundary. We proceed with the integral of Cijk(xi, y; xj, 0) over xi and y. The

result should be a constant independent of xj, owing to the translational invariance
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along x-directions. In addition, the result should be proportional to ad+1−∆i−∆j+∆kδℓ by

dimensional analysis. Thus, we could introduce a dimensionless number Υijk (determined

by bulk-boundary correlation functions) such that

∫
shell

ddxidyCijk(xi, y; xj, 0) = CijkΥijkSda
d+1−∆i−∆j+∆kδℓ, (A.31)

where Cijk is the standard OPE coefficient (determined by Wick contractions), and Sd =

2π
d+1
2 /Γ(d+1

2
) is the surface area of d-sphere. Schematically, we can write down how the

boundary operators are generated under RG

1

2!

∑
i,j

∫
shell

ddxidyd
dxj

a2d+1−∆i−∆j
uiuj ⟨Oi(xi, y)Oj(xj, 0)⟩

=
Sd
2

∑
i,j,k

ΥijkCijkuiujδℓ

∫
ddx

ad−∆k
⟨Ok(x, 0)⟩ . (A.32)

If we define Υijk = 1 for all bulk OPEs, then the one-loop beta functions of all coupling

constants (for both bulk and boundary operators) can be written compactly as

duj
dℓ

= (D −∆j)uj −
∑
i,k

ΥikjCikjuiuk +O(u3), (A.33)

where we have rescaled the coupling constant uSd/2 → u as in Eq. A.14. Notice that

Cikj = Ckij and the contributions where i ̸= k are counted twice in the summation.
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A.2 Ricci Flow & RG of NLSM

This appendix introduces some well-known standard results relevant to Sec. 1.1. In

two dimensions, a generic bosonic non-linear sigma model (NLSM) reads

S[φ] = 1

2

∫
gab(φ)dφ

a ∧ ⋆dφb + hab(φ)dφ
a ∧ dφb, (A.34)

where where φa ∈ R and gab ∈ R are the coordinate and the metric on the target manifold,

and hab = −hba gives Wess-Zumino-Witten (WZW) term. The RG of NLSM+WZW

actually has a very elegant geometric interpretation. The RG flow corresponds to the

Ricci flow [557, 558] in the target manifold which has torsion induced by WZW term

[559] (also see Ref. [560] and references therein).

Riemann geometry The Christoffel symbol is obtained from gab via (∂a =
∂
∂φa

)

Γabc =
1

2
gae (−∂egbc + ∂cgbe + ∂bgce) . (A.35)

It gives the Riemann curvature without torsion

Ra
b = dΓab + Γac ∧ Γcb ⇐⇒ Ra

bcd = ∂cΓ
a
db − ∂dΓ

a
cb + ΓaceΓ

e
db − ΓadeΓ

e
cb, (A.36)

where Γab = Γacbdx
c is the connection and Ra

b =
1
2
Ra

bcddx
c∧dxd is the Riemann curvature.

In addition, the WZW form h = 1
2
habdφ

a ∧ dφb gives us a contorsion Kabc

K = dh ⇐⇒ Kabc =
1

2
(∂ahbc + ∂bhca + ∂chab). (A.37)
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Now, we can define the generalized affine connection with torsion

Γ̂abc = Γabc +Ka
bc. (A.38)

The generalized Riemann curvature with torsion R̂a
b =

1
2
R̂a

bcddx
c ∧ dxd can be still cal-

culated from its standard relation to the connection Γ̂ab = Γ̂acbdx
c:

R̂a
b = dΓ̂ab + Γ̂ac ∧ Γ̂cb ⇐⇒ R̂a

bcd = ∂cΓ̂
a
db − ∂dΓ̂

a
cb + Γ̂aceΓ̂

e
db − Γ̂adeΓ̂

e
cb. (A.39)

The Ricci tensor is defined as the contraction of Riemann curvature, and the Ricci scalar

is its full contraction, i.e.,

Rab = R̂c
acb, R = gabRab. (A.40)

RG of NLSM + WZW The one-loop bata functions for gab and hab are

dgab
dℓ

= − 1

2π
R(ab) + . . . ,

dhab
dℓ

= − 1

2π
R[ab] + . . . , (A.41)

where R(ab) = 1
2
(Rab + Rba) and R[ab] =

1
2
(Rab − Rba). The proof of Ricci flow using

covariant background field method, as well as higher-loop results can be found in Ref.

[560]. In addition to the geometric interpretation of RG flow, the fixed points are shown

to correspond to the metrics satisfying generalized Einstein equation [557, 558]. Here is

remark about the Einstein manifold. This is when the Ricci tensor is proportional to the

metric Rab ∝ gab. In this case, the RG flow of coupling constant is easy to read from the

Ricci flow. There are many manifolds are within this category, like anti-de Sitter space,

de Sitter space, complex projective space, etc.
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RG of O(N) NLSM Using the powerful method of Ricci flow, we can in principle

calculate the RG flow of any NLSM with constrain
∑N

i=1(n
i)2 = 1. (Namely, one could

consider O(N) NLSM with anisotropies. One example with applications to twisted bilayer

graphene Moiré superlattice has been considered in Ref. [561].) To use the machinery, we

need to first get rid of the constrain by introducing constraint-free variables φ (Goldstone

modes), then consider the NLSM of φ, and get the beta function from Ricci flow. In

D = 2 + ϵ expansion, the flow of the target-space metric reads

S[n] = 1

2

∫
d2+ϵxρij∂µn

i∂µn
j = S[φ] = 1

2

∫
d2+ϵxgab(φ)∂µφ

a∂µφ
b,

dgab
dℓ

= ϵgab −
1

2π
Rab + . . . . (A.42)

Without the WZW term, the manifold is torsion free, and the Ricci tensor Rab = R(ab)

is symmetric. There are many non-linear transformations to reparametrize the theory.

For example, one can introduce the coordinates

n1 = φ1, . . . . . . nN−1 = φN−1, nN =

√√√√1−
N−1∑
a=1

(φa)2. (A.43)

For the standard symmetric O(N) NLSM with ρij = ρδij, things are much easier. We

obtain the metric on target manifold gab = ρĝab (and g
ab = ĝab/ρ) where

ĝab = δab +
φaφb

1− |φ|2
, ĝab = δab − φaφb, det ĝab =

1

1− |φ|2
, (A.44)

which leads to the affine connection Γabc = φaĝbc, and the Riemann curvature Rabcd =

ĝacĝbd − ĝadĝbc, as well as the Ricci curvature Rab = (dim[φ] − 1)ĝab = (N − 2)ĝab. We

find the Ricci flow method indeed reproduces the standard results for O(N) NLSM (see
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Polyakov [562], or Fradkin [13] or Kardar [563])

d(ρĝab)

dℓ
= ϵ(ρĝab)−

(N − 2)ĝab
2π

=⇒

dρ

dℓ
= ϵρ− N − 2

2π
⇐⇒ dρ−1

dℓ
= −ϵρ−1 +

N − 2

2π
ρ−2. (A.45)

For N > 2 and D > 2 (such that ϵ > 0), there is a new fixed point at

ρ−1
∗ =

2πϵ

N − 2
. (A.46)

For N > 2 in two dimensions (such that ϵ = 0), ρ−1 has a positive beta function and

will flow strong. The ρ−1 → +∞ phase is the disordered phase. Therefore we find

there is no spontaneous O(N) symmetry breaking (with N > 2) in two dimensions. For

O(2) = U(1), the one-loop beta function is zero, but one could realize the Kosterlitz-

Thouless transition, which is beyond the conventional symmetry-breaking paradigm.

A.3 Non-Fermi Liquids in QCD3

In this appendix, we discuss the non-fermi liquid (NFL) fixed-point (or fixed-hyperplane

in general) for the fermi-surface (FS) state in non-abelian gauge theory. It serves as a

generalization of the NFL fixed point introduced in Sec. 1.3.2 and used in Sec. 4.1. A

shorter version of the discussion (in slightly different notations) can be found in Sec. 4.2.
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A.3.1 Single-Patch Theory

The expansion of the fermion energy dispersion ϵk+kF ≈ vFk⊥ + κk2
∥ at the fermi

wave vector kF ∈ FS leads to the low-energy theory on each patch

SF =

∫
dτdx⊥d

d−1x∥

Nf∑
I=1

ψ†
I(η∂τ − ivF∇⊥ − κ∇2

∥)ψI , (A.47)

where x⊥ denotes the normal direction of the FS and x∥ is a (d− 1)-dimensional vector

in the tangent space of the FS manifold. To be general, we have introduced a fermion

flavor number Nf , which may come from certain global symmetry of the system (e.g.,

SU(Nf ) global symmetry). We have also introduced a temporal coefficient η for generic

scenarios. For FLs we simply set η = 1, and we will allow η to renormalize for NFLs. At

the free-fermion UV fixed point, we have anisotropic scalings of spacetime coordinates

τ ′ = τe−ℓ, x′⊥ = x⊥e
−ℓ, x′

∥ = x∥e
−ℓ/2, (A.48)

and accordingly the fermion operator has the scaling dimension

ψ′(τ ′, x′⊥,x
′
∥) = eℓ(d+1)/4ψ(τ, x⊥,x∥) =⇒ ∆[ψ] =

d+ 1

4
. (A.49)

Then we couple the FS state to a non-abelian gauge theory with a gauge group G

S[ψ†, ψ, a, λ, c†, c] =

∫
dτdx⊥d

d−1x∥

Nf∑
I=1

ψ†
I(ηDτ − ivFD⊥ − κD2

∥)ψI

+
1

x
Tr

∫
Nf

2g2
f ∧ ⋆f + ikCS[a] +

ζ

2
λ ∧ ⋆λ+∇λ ∧ ⋆a+∇c† ∧ ⋆Dc, (A.50)
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where we have included a Chern-Simons term at level-k when d = 2

CS[a] =
1

4π
Tr(a ∧ da− a ∧ a ∧ a). (A.51)

Given a set of group generators {ta} under certain representation, the 1-form gauge

field connection is defined by a = aµdx
µ = aaµtadx

µ, the 2-form curvature is then f =

da− ia∧ a, and the gauge covariant derivative reads D = d− ia. The bosonic auxiliary

fields λ = λata are introduced to implement the gauge fixing (e.g., the Coulomb gauge

∇ · a = 0), and the Faddeev-Popov determinant is taken care of by the fermionic ghost

fields c = cata. As for the gauge group generators {ta}, we denote the Lie algebra and

the normalization convention by

[ta, tb] = ifcabtc, Tr(tatb) = xδab, a, b = 1, 2, . . . , dimG, (A.52)

where fcab is the the structure constant, and x is the Dynkin index of the representation

(e.g., one often choose x = 1/2 for the fundamental representation of SU(N)). We

assume each fermion flavor I = 1, . . . , Nf carries a representation of the gauge group G.

For convenience, we have rescaled the gauge coupling constant g2 → g2/Nf . There are

many terms in Eq. A.52 that are actually irrelevant in the patch theory. We present

some diagrammatic calculations and scaling analyses in general dimensions here, and we

will focus on 2 + 1 dimensions eventually.
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Boson self-energy and Landau damping of chromo-magnetic field Considering

the Yukawa-type coupling vFψ
†a⊥ψ, we have the one-loop boson self-energy Σ⊥

Σab
⊥ (iω,p) = g`L�`g = v2F

∫
dνddk

(2π)d+1
Tr[Gψ,0(iν,k)taGψ,0(iν + iω,k + p)tb]

= Nfv
2
FTr(tatb)

∫
dνdk⊥d

d−1k∥

(2π)d+1

1

iην − vFk⊥ − κk2
∥

1

iη(ν + ω)− vF (k⊥ + p⊥)− κ(k∥ + p∥)
2

= Nfδabxv
2
F

∫
dνdd−1k∥

(2π)d
i(sgn(ω + ν)− sgn(ν))

2vF (iηω − vF p⊥ − κp2
∥ − 2κp∥ · k∥)

= Nfδabx
|ω|vF
2π

∫
dd−1k∥

(2π)d−1

i

iηω − vF p⊥ − κp2
∥ − 2κp∥ · k∥

= Nfδabx
|ω|
|p∥|

vF
8πκ

∫
dd−2k∥

(2π)d−2
= Nfδabx

|ω|
|p∥|

vF
8πκ

Sd−3

(2π)d−2
Λd−2, (A.53)

where Sd = 2π
d+1
2 /Γ(d+1

2
) is the spherical surface area. When d = 2, the one-loop

integral is universal and independent of the UV cut off Λ. An important lesson from

the above calculation is that the low-energy fermion modes only couple strongly to the

boson modes a⊥ with momenta p∥ tangent to the fermi surface. Another feature worth

our attention is that the one-loop Σ⊥ does not depend on the temporal coefficient η.

Debye screening of chromo-electric field Due to the finite density of fermions ψ,

the temporal gauge fields aaτ are screened and therefore gapped. Consequently, the Chern-

Simons term is irrelevant under RG, which is similar to the situation in the Halperin-

Lee-Read story [88] for the half-filled Landau level problem.

Scaling analysis in patch theory Including the Landau damping term, the action

of the transverse gauge boson a⊥ can be written as

S⊥ =
Nf

2g2

∫
dωdp⊥d

d−1p∥

(2π)d+1

(
γ
|ω|
|p∥|

+ |p∥|z⊥−1 + . . .

)
|a⊥(ω,p)|2 + . . . (A.54)
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where z⊥ = 3 is the dynamic critical exponent of a⊥, and the coefficient γ ∼ g2Λd−2vF/κ

has been introduced. We did not write down p⊥-dependence, since p⊥ is not as relevant

as p∥. By power counting, we find the UV scaling dimensions

∆[a⊥/g] = 1 +
d− z⊥

4
, ∆[a∥/g] =

3

2
+
d− z⊥

4
, ∆[c] =

d+ 1

4
, (A.55)

where the scaling dimension of a∥ is fixed by the Coulomb gauge ∇⊥a⊥+∇∥ ·a∥ = 0, and

∆[c] is determined by the most relevant kinetic term c†∇2
∥c of ghost fields. Considering

the Yukawa-type boson-fermion interaction ψ†a⊥ψ = gψ†(a⊥/g)ψ, we obtain the bare

scaling dimension of the coupling g

∆[g] = 1 + 1 +
d− 1

2
− 2∆[ψ]−∆[a⊥/g] =

z⊥ − d

4
=
ϵ

4
, (A.56)

which is weakly relevant when ϵ = z⊥−d > 0 is small, and a perturbative RG calculation

looks desirable. (In d = 2, ϵ = 1 is not really a small number, and we may lose the

analytical control.) We can easily check the scaling dimensions of gluon self-interactions

and gluon-ghost interactions, e.g.,

∆[∇∥a⊥a⊥a∥/g
2] = 4 +

ϵ

2
, ∆[a⊥a∥a⊥a∥/g

2] = 5 +
ϵ

2
, ∆[c†∇ · ac] = d+ 5

2
. (A.57)

All of them are larger than ∆[dτdx⊥d
d−1x∥] = (d + 3)/2 when d ≤ 5, and therefore

are irrelevant. In addition, one can check that the fermion-gluon interactions other than

ψ†a⊥ψ are all irrelevant, e.g.,

∆[ψ†∇ · aψ] = ∆[ψ†a⊥a⊥ψ] =
d+ 5

2
,

∆[ψ†a∥ψ] =
d+ 4

2
, ∆[ψ†a∥a∥ψ] =

d+ 7

2
. (A.58)
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Thus, we can safely ignore all of them in the perturbative RG calculation, and the total

action is significantly simplified in d = 2

S[ψ†, ψ, a⊥] =

∫
dτdx⊥d

d−1x∥

Nf∑
I=1

ψ†
I

(
η∂τ − ivF∇⊥ − κ∇2

∥ + vF

dimG∑
a=1

aa⊥ta

)
ψI

+
Nf

2g2

∫
dωdp⊥d

d−1p∥

(2π)d+1

(
γ
|ω|
|p∥|

+ |p∥|z⊥−1

)
dimG∑
a=1

|aa⊥(ω,p)|
2 , (A.59)

where only Landau-damped transverse modes of chromo-magnetic field remain in the

low-energy theory. The non-abelian gauge structure is effectively quasi-abelianized.

Fermion self-energy and logarithmic UV-divergence Before going to the ϵ-expansion

in 2 + 1 dimensions, let’s evaluate the one-loop fermion self-energy with a generic value

of z⊥ in d+ 1 dimensions and see how the logarithmic UV-divergence shows up

Σψ(iω,p) =FfayfF
= − tatav

2
F

∫
dνdq⊥d

d−1q∥

(2π)d+1

g2/Nf

γ|ν|/|q∥|+ |q∥|z⊥−1

1

iη(ω + ν)− vF (p⊥ + q⊥)− κ(p∥ − q∥)
2

= tatav
2
F

g2

Nf

1

i2vF

∫
dνdd−1q∥

(2π)d
sgn(ω + ν)

γ|ν|/|q∥|+ |q∥|z⊥−1

= tatav
2
F

g2

Nf

sgn(ω)

i2πvFγ

∫
dd−1q∥

(2π)d−1
|q∥| log(1 + γ|ω|/|q∥|z⊥)

= c21
Sd−2

(2π)d−1

g2

Nf

vF sgn(ω)

i2πγ

∫ +∞

0
dqqd−1 log(1 + γ|ω|/qz⊥)

d<z⊥=⇒ c21
Sd−2

(2π)d−1

g2

Nf

−ivF sgn(ω) |ω|d/z⊥

2γ1−d/z⊥d sin(πd/z⊥)
(A.60)

where the quadratic Casimir operator tata is proportional to the group identity 1 with the

coefficient c2 (e.g., c2 =
N2−1
2N

for the fundamental representation of SU(N)). Therefore,

the fermion self-energy Σψ is diagonal in both color space and flavor space. Notice that

the denominator vanishes sin(πd/z⊥) → 0 under the limit z⊥ → d, and the result becomes

divergent. If we define an expansion parameter ϵ > 0 by z⊥ = d + ϵ, the leading order
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result of fermion self-energy can be written as

Σψ(iω,p) = −i
1

Nf

g2

ϵ

vF
γϵ/d

Sd−2c21

(2π)d
sgn(ω)|ω|1−ϵ/d. (A.61)

For a finite Nf and a small but finite ϵ, g is weakly relevant and we expect the system

will flow to a perturbative NFL fixed point. The perturbation in terms of g2 is justified

by g2 ∼ ϵNf being small. Another observation is that the ϵ−1-divergence in dimensional

regularization corresponds to the logarithmic UV-divergence, which means the dynamical

exponent of fermions will be renormalized and receive an ϵ-order correction. Everything

seems self-consistent so far, and we are ready to consider the perturbative RG treatment.

A.3.2 Perturbative NFLs

In this section, we will closely follow Ref. [85, 354]

Wilson RG approach The single-patch theory is highly anisotropic in space, and we

introduce two momentum cut-offs for the width Λ∥ and the thickness Λ⊥ respectively,

such that

Λ∥ ≪ kF and Λ⊥ ∼ Λ2
∥/kF ≪ Λ∥ ≪ kF . (A.62)

In the Wilson RG approach, we should integrate out the bosonic modes within Λ∥e
−ℓ/2 <

|q∥| < Λ∥ and the fermionic modes within Λ⊥e
−ℓ < |q⊥| < Λ⊥, followed by the rescaling

q⊥ → q⊥e
ℓ and q∥ → q∥e

ℓ/2. Notice that integrating out fermionic modes on the FS is

illegal, and the meaning of Λ∥ → Λ∥b
−1/2 for the fermion part is only a repartition of the

FS into smaller patches. (In this section, we ignore the pairing instability of fermions,

and we only need to worry about integrating out bosonic modes.) We also want to
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mention there are at least two conventions for the RG procedure: (1) one can fix vF and

let η flow as in Ref. [85]; (2) one can also fix η = 1 and let vF flow as in Ref. [354].

They are physically equivalent in renormalizing the fermion dynamical exponent. But

the final effective Lagrangians may look different, i.e., L ∼ isgn(ω)|ω|1/zψ − p⊥ and

L ∼ iω − sgn(p⊥)|p⊥|zψ . In this note, we choose the first RG convention.

Emergent rotational symmetry One can show the non-renormalization of the FS

curvature κ (or more precisely κ/vF , if one allows vF to flow in another RG convention).

Let’s consider two base points kF ,k
′
F ∈ FS for the same patch theory, where |kF −k′

F | <

Λ∥. The physical momentum K of fermions has two different expansions

K = kF + p (= kF + p⊥v̂F + p∥) = k′
F + p′ (= k′

F + p′⊥v̂
′
F + p′

∥). (A.63)

Within the same patch, we can take the approximations kF ≈ k′F (vF ≈ v′F ) and κ ≈ κ′.

Then the two coordinates (p′⊥,p
′
∥) and (p⊥,p∥) are related by a shift of δkF = k′

F − kF ,

followed by a rotation by the angle between k̂
′
F and k̂F (i.e., the angle between v̂′

F and

v̂F ). To leading order in δkF , one has

p′⊥ = p⊥ − δk⊥ +
2κ

vF
δk∥ · (p∥ − δk∥), p′

∥ = p∥ − δk∥, (A.64)

where the coordinate (δk⊥, δk∥) of δkF is defined with respect to the coordinate system at

kF (i.e., δkF = v̂F δk⊥+δk∥). Since k
′
F is on the FS, one must have vF (δk⊥)+κ(δk∥)

2 = 0.

Then one can directly verify the invariant vF (p
′
⊥)+κ(p

′
∥)

2 = vF (p⊥)+κ(p∥)
2. We expect

physical quantities are independent of which base point we choose on the FS. It leads to

the noncompact rotational symmetry introduced by Ref. [50]

ψ(x⊥,x∥) → e−i(κ/vF )(2θ·x∥+θ2x⊥)ψ(x⊥,x∥ + θ), (A.65)
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where θ ∈ Rd−1 has the same scaling dimension as p∥. If one believe the rotational

symmetry is preserved under RG, then the FS curvature κ/vF can not be renormalized.

Wave-function renormalization In d = 2, the one-loop fermion self-energy is

Σψ(iω,p) = FfayfF
= c2

Ωd−2

(2π)d−1

g2

Nf

vF sgn(ω)

i2πγ

∫ Λ∥

Λ∥e
−ℓ/2

dqqd−1 log(1 + γ|ω|/qd+ϵ)

= − iω
g2

Nf

vFc2
4π2

ℓ+ Λ∥-dependent terms +O(ϵ2), (A.66)

where c2 denotes the quadratic Casimir in the gauge theory. We have only kept the

leading order terms in small-ϵ expansion, and we checked that Λ∥-dependent terms vanish

under the limit Λ∥ → +∞. Notice that the result of Σψ is consistent with Eq. A.61 under

the limit d→ 2, ϵ→ 0+, where 1/ϵ in the dimensional regularization scheme corresponds

to ℓ/2 in the momentum cut-off scheme. To significantly simplify the notation in the

scaling analysis, we introduce a constant Υ by

Σψ(iω,p) = −iωg2Υℓ+ . . . , where Υ =
vFc2
4π2Nf

. (A.67)

Vertex correction In addition, one can show the vertex correction vanishes [85]

FFyFF
``}

= 0. (A.68)

RG flow of gauge coupling Due to the logarithmically divergent fermion self-energy,

the ω-dependence in the fermion propagator changes to ω′ = ωb1+g
2Υ. In other word, the
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spacetime scalings are modified as

τ ′ = τb−zψ = τb−(1+g2Υ), x′⊥ = x⊥b
−1, x′

∥ = x∥b
−1/2, (A.69)

where zψ = 1+g2Υ is the fermion dynamical exponent. At the potential new fixed point,

we have the scaling dimensions of fermions and bosons in d = 2

∆[ψ] =
d− 1 + 2zψ

4
=
d+ 1 + 2g2Υ

4
,

∆[a⊥/g] =
d+ 2 + 2zψ − z⊥

4
=
d+ 4 + 2g2Υ− z⊥

4
. (A.70)

To be consistent with the gauge covariant derivative reads D⊥ = ∂⊥ − ia⊥, the scaling

dimension ∆[a⊥] = ∆[x⊥] = 1 is fixed. The scaling dimension of g is therefore ∆[g] =

(z⊥ − d− 2g2Υ)/4 = (ϵ− 2g2Υ)/4, which gives the beta function of g2

dg2

dℓ
=
ϵ

2
g2 −Υg4 =

ϵ

2
g2 − vFc2

4π2Nf

g4. (A.71)

Thus, we indeed self-consistently find a new fixed point at weak coupling

g2∗ =
ϵ

2Υ
=

2π2Nfϵ

vFc2
. (A.72)

NFL fixed-point propagators Notice that η also need to rescale under RG, which

gives dη
dℓ

= ηg2Υ. Combining the two beta functions, we have d(ηg2)
dℓ

= ϵ
2
ηg2. Thus we

arrive at a simple rescaling relation η(ℓ)g2(ℓ) = η(0)g2(0)eℓϵ/2, that can be used to find

the fixed point value of η, where g2(0) and η(0) are bare values in the UV. As in Ref.
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[85], if we set eℓ ∼ Λ2/ω for the perturbative fixed point, we ought to have the IR value

η∗ =
g2(0)

g2∗

Λϵ

|ω|ϵ/2
=

2Υg2(0)

ϵ
|ω|−ϵ/2

=⇒ −iη∗ω = −i
1

Nf

g2(0)

ϵ

vFc2
2π2

sgn(ω)|ω|1−ϵ/2, (A.73)

where the factor Λϵ = 1 + ϵ log Λ + . . . is only kept to leading order. We can see −iη∗ω

indeed reproduces the result of fermion self-energy Eq. A.61 under d → 2 and γϵ/d → 1

(to leading order). Replacing the bare coupling constant g2(0) by the fixed-point value

g2∗, we have the boson and fermion propagators at the NFL fixed point

G⊥(iω,p) =
g2∗
Nf

1

γ∗|ω|/|p∥|+ |p∥|1+ϵ
,

Gψ(iω,p) =
1

isgn(ω)|ω|1−ϵ/2 − vFp⊥ − κp2∥
, (A.74)

where g2∗ ∼ Nfϵ/vF and γ∗ ∼ g2∗vF/κ ∼ Nfϵ/κ.

Remark on spacetime scaling Let us summarize some technical details. The fermion

dynamical exponent is renormalized by logarithmic UV-divergence, while the boson dy-

namical exponent is not renormalized (which is common for nonlocal/singular propaga-

tors). The spacetime scaling in the patch theory is determined by the fermion part.

Generalization to multiple gauge coupling constants So far, the calculation

applies to the G = SU(N) gauge group. The generalization for other gauge groups should

be straightforward. Namely, one could consider G = SU(N)×SU(M) or G = U(N) which

has a U(1) part and a SU(N) part. In general, we assume the total gauge group is

G =
⊗
A

GA (A.75)
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and the coupling constant for GA-gauge field is gA. Each gauge field has a contribution

in the wave-function renormalization of the fermion dynamical exponent zψ. In total, we

have

zψ = 1 +
∑
A

 fayfE D

A

= 1 +
∑
A

g2AΥ
A, ΥA =

vFc2(GA)

4π2Nf

, (A.76)

where c2(GA) denotes the quadratic Casimir in the representation of GA. Suppose all

the gauge fields share the same dynamical exponent z⊥, then they also have the same

scaling dimension at the potential new fixed point

∆[gA] =
(z⊥ − d)− 2(zψ − 1)

4
=
ϵ− 2

∑
B ΥBg2B
4

, (A.77)

which leads to the coupled RG flow of all gauge coupling constants g2A

dg2A
d log b

=
ϵ

2
g2A −

∑
B

ΥBg2Bg
2
A. (A.78)

We self-consistently find a nontrivial IR fixed-hyperplane at weak coupling

∑
A

ΥAg2A =
∑
A

vFc2(GA)

4π2Nf

g2A =
ϵ

2
. (A.79)

The ratio between any two gauge couplings gA and gB is RG invariant, which is simply

due to ∆[gA] = ∆[gB]. The particular examples of G = U(1)× U(1) and G = U(2) have

been discussed in Ref. [89].
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A.4 Explicit and Inexplicit Symmetries

The purpose of this appendix 2 is to clarify the rudimentary concepts used in this

dissertation. The standard definition of a global symmetry of a quantum system is

associated with a global conserved quantity Ĝ that commutes with the entire Hamiltonian

of the system. Normally when we say a system has a global symmetry, it implies the

following two qualities of the system:

(1) the dynamics allowed by the symmetry, for example the evolution generated by

the Hamiltonian of the system does not change the quantum number of quantity Ĝ;

(2) states with different quantum numbers of Ĝ are all present in the Hilbert space.

To exemplify these two qualities, let us still start with the basic example of transverse-

field Ising chain: H =
∑

j −Kσzjσzj+1 − hσxj . Here the conserved quantity of the Z2 Ising

spin symmetry is Ĝ =
∏

j σ
x
j , and any physical process allowed by the symmetry does

not change the quantum number of Ĝ (only processes that flip even number of spins σxj

are allowed); but states with Ĝ = ±1 all exist in the Hilbert space. Hence both qualities

(1) and (2) mentioned above are perfectly satisfied by the Z2 spin symmetry.

It is often stated that the transverse-field Ising chain is “self-dual” under the Kramers-

Wannier duality, namely if we introduce dual operators τ z,x
j̄

as σzjσ
z
j+1 = τxj̄ , σ

x
j = τ zj̄−1τ

z
j̄ ,

the Hamiltonian of the dual model formally takes the form H =
∑

j̄ −Kτxj̄ − hτ zj̄ τ
z
j̄+1.

Physically τx is the kink of the original operator σz. There appears to be another dual Z̃2

symmetry, whose conserved quantity
˜̂
G is formally

∏
j̄ τ

x
j̄ . However, if we take a periodic

boundary condition of the original quantum Ising model,
˜̂
G is a trivial quantity in the

original Ising spin Hilbert space, because
˜̂
G always equals to +1, or in other words within

the original Ising spin Hilbert space, only states with even number of kinks are allowed.

Hence although the “Z̃2 symmetry” satisfies quality (1) above, it does NOT meet (2).

2The appendix has previously published (on 18 August 2021) in SciPost Phys. 11, 033 (2021).
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The dual “Z̃2 symmetry”, though does not meet quality (2), still leads to nontrivial

conservation law of kinks of σz: the kink number is unchanged under any physical process

for the Ising model with periodic boundary condition. As was pointed out by previous

references such as Ref. 118, both the Z2 and Z̃2 can be made real symmetries (meaning

they both satisfy qualities (1) and (2)) if we embed the 1d quantum Ising model as

the boundary of a 2d toric code model (of course, there were other previously known

ways such as introducing different boundary conditions to interpret the Z̃2 symmetry,

but introducing the bulk as Ref. 118 has the most natural generalizations to higher

dimensions and higher form dimensions). The Ising spin excitation corresponds to the

e anyon of the toric code, and the kink corresponds to the m anyon. The two sets of

conservation laws (quality (1)) of the Ising spins and kinks arise from the fusion rules

of the anyons: e × e = 1, m ×m = 1; now both the Z2 and Z̃2 symmetries also satisfy

quality (2): both the Ising spin number and the kink number can be either even or odd

at the 1d boundary, because one can create a pair of e (or m) anyons, and move only one

anyon of the pair to the 1d boundary.

Since the original quantum Ising model has conservation laws for dynamics of both

the Ising spins and the kinks, in our main text we call the original Z2 spin symmetry of

the quantum Ising model as an explicit symmetry (meaning quality (1) and (2) are both

satisfied), while the Z̃2 symmetry is called an “inexplicit symmetry”, as only quality (1)

is satisfied. As we mentioned in the last paragraph, both Z2 and Z̃2 symmetries can be

made explicit by embedding the system to the boundary of a 2d toric code model.

These definitions and notions can be generalized to higher dimensions with higher

form discrete symmetries. As a practice let us also consider the 2d quantum Z2 gauge

theory, which is often stated to be dual to a 2d quantum Ising model, though these

two models have different symmetries. To clarify what this duality means exactly, we

consider the standard Hamiltonian for the 2d quantum Z2 gauge theory on a 2d torus:
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H =
∑

□ −K
∏

⟨ij⟩∈□ σ
z
ij −

∑
⟨ij⟩ hσ

x
ij, where ⟨ij⟩ is a link of a square lattice; σz,xij is a

qubit defined on the link.
∏

⟨ij⟩∈□ σ
z
ij is a product of σzij on the four links around each

square plaquette. The Hilbert space of the quantum Z2 gauge theory is subject to a local

constraint
∏

⟨ij⟩∈v σ
x
ij = +1, where ⟨ij⟩ ∈ v represent four links around a vertex/site of

the square lattice. This model has a Z(1)
2 1-form symmetry, which corresponds to the Z2

conservation of Z2 electric field penetrating any contractible loop C: ĜC =
∏

⟨ij⟩⊥C σ
x
ij

(⟨ij⟩ ⊥ C corresponds to all the links on loop C and orthogonal to C locally). But if

the system is a torus, then ĜC for a noncontractible loop C can take values ±1, which

can be interpreted as either the topological sector, or the ground state degeneracy of

spontaneous breaking of the Z(1)
2 1-form symmetry. Hence the Z(1)

2 1-form symmetry is

an explicit symmetry that satisfies both (1) and (2) mentioned previously.

The dual 2d quantum Ising model can be formally derived by introducing the dual

operators on the dual lattice sites ī and j̄, which are located on the center of the plaquette

squares of the original square lattice: τxī =
∏

⟨ij⟩around ī σ
z
ij, τ

z
ī τ

z
j̄ = σxij for ⟨̄ij̄⟩ ⊥ ⟨ij⟩. The

dual Hamiltonian reads H =
∑

ī−Kτxī −
∑

⟨̄ij̄⟩ hτ
z
ī τ

z
j̄ . However, the conserved quantity

of the dual Ising model
˜̂
G =

∏
ī τ

x
ī is always +1 in the original Hilbert space of the

Z2 gauge theory, although a physical process can only create even number of τxī (which

corresponds to the m anyon of the original quantum Z2 gauge theory) hence there is a

Z2 conservation of τx. Therefore the dual Ising model has a Z̃2 symmetry that satisfies

quality (1) but not (2), hence according to our convention it is an inexplicit symmetry.

Let us also discuss the converse example, and start with a real 2d quantum Ising spin

model on a square lattice: H =
∑

⟨i,j⟩ −Kσzi σzj −
∑

j hσ
x
j , which is formally dual to a

2d quantum Z2 gauge theory, with the electric field defined on the dual link ⟨̄ij̄⟩ ⊥ ⟨ij⟩

as τxīj̄ = σzi σ
z
j . The 2d quantum Ising model also has two sets of conservation laws: the

conservation of the original Ising spin, and the conservation law of the Ising domain walls.

The latter corresponds to a Z̃(1)
2 1-form “inexplicit symmetry”: there is a conservation
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law of the dynamics of Ising domain wall, namely the Ising domain walls always penetrate

any closed contractible loop even times (quality (1)); but within the Ising spin Hilbert

space the product of τxīj̄ = σzi σ
z
j with ⟨ij⟩ ⊥ ⟨̄ij̄⟩ is always +1 along a noncontractible

cycle C orthogonal to the dual lattice link ⟨̄ij̄⟩. But for a real 2d Z2 gauge theory, as

we discussed above, the corresponding product of electric field can take value ±1, which

can be either interpreted as different topological sectors, or as ground state degeneracy

caused by spontaneous breaking of the Z(1)
2 1-form symmetry. Hence in the Ising spin

Hilbert space, only the Z2 symmetry satisfies qualities (1) and (2) together, while Z̃(1)
2

satisfies (1) only. But both Z2 and Z̃(1)
2 can be made explicit symmetries, i.e. they can

satisfy both (1) and (2) when the quantum Ising model is embedded as the boundary of

a 3d topological order.

The quantity order diagnosis operator (ODO) was introduced in Ref. 121 to char-

acterize the behavior of the explicit and inexplicit symmetries, especially the notion of

spontaneous symmetry breaking of both the explicit and the inexplicit symmetries de-

fined above. The ODO reduces to previously introduced concepts in specific cases. For

example, for the Ising models, the ODO of the dual inexplicit symmetry is the disorder

operator discussed in Ref. 564. But the phrase “disorder operator” implies that when

it condenses, the original symmetry would be restored or the system should enter a

disordered phase of the original symmetry. This is indeed true for the Ising spin mod-

els. But in some cases that involve higher form symmetries both the symmetry and the

dual symmetry can be spontaneously broken simultaneously, namely both the explicit

symmetry and its dual inexplicit symmetry can enter the ordered phase simultaneously

under proper generalizations. For example, a 3d system with Z(1)
2 1-form symmetry can

enter a gapless photon phase where the Wilson loop and the corresponding “disorder

operator” of the Z(1)
2 1-form symmetry both have perimeter laws, which is the criterion

of spontaneous symmetry breaking of 1-form symmetries. Hence we feel a generalized
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notion is necessary. In fact, a notion of “patch operator” was introduced in Ref. 118 as

a generalization of the the disorder operator to higher form symmetries. The notion of

order diagnosis operator used in this manuscript also reduces to the “patch operator”

in Ref. 118 for systems without subsystem symmetries. But for systems with a more

exotic subsystem symmetries [121] the proper form of the ODO is not always defined on

a simple patch of the lattice.
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Appendix B

Appendix to Chapter 3,4,5 (Main

Text)

B.1 Appendix to Sec. 3.1

B.1.1 Exchange Energy of Two-Particle Wave Functions

Let us evaluate the exchange energy of two-particle wave functions in more detail

in this appendix. The wave function ΨA(x1,x2) considered in the main tex has the

interaction energy

Eint ∼
∫
dx1dx2Ψ

∗
A(x1,x2)Vx1,x2ΨA(x1,x2) = E0 + Eex, (B.1)

where Vx1,x2 is the (screened) Coulomb interaction. Both integrals
∫
dx1,

∫
dx2 are

performed in the 2d space.

E0 =

∫
dx1dx2|φL,1(x1)|2|φR,2(x2)|2Vx1,x2 + · · · (B.2)
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Eex is the exchange energy, and it involves six integrals

Iex,1 ∼ −
∫
dx1dx2φ

∗
L,1(x1)φL,2(x1)Vx1,x2φ

∗
R,2(x2)φR,1(x2) + c.c,

Iex,2 ∼ +

∫
dx1dx2φ

∗
L,1(x1)φR,1(x1)Vx1,x2φ

∗
R,2(x2)φL,2(x2) + c.c,

Iex,3 ∼ −
∫
dx1dx2φ

∗
L,1(x1)φR,2(x1)Vx1,x2φ

∗
R,2(x2)φL,1(x2) + c.c,

Iex,4 ∼ −
∫
dx1dx2φ

∗
L,2(x1)φR,1(x1)Vx1,x2φ

∗
R,1(x2)φL,2(x2) + c.c,

Iex,5 ∼ +

∫
dx1dx2φ

∗
L,2(x1)φR,2(x1)Vx1,x2φ

∗
R,1(x2)φL,1(x2) + c.c,

Iex,6 ∼ −
∫
dx1dx2φ

∗
R,1(x1)φR,2(x1)Vx1,x2φ

∗
L,2(x2)φL,1(x2 + c.c,

Eex =
6∑
i=1

Iex,i. (B.3)

The single-particle wave functions are roughly (for example) φL,1(x) ∼ exp(iK1x)FL,1(y),

etc. where FL,1(y) is an envelop function of the coordinate y orthogonal to the wire, and

localized at the wire. FL,1(y) should carry an approximately conserved large momentum,

which inherits from the crystal momentum of one of the two valleys, assuming the domain

wall is smooth enough compared with the lattice scale. In all these exchange energy

integrals, Iex,2−5 are expected to be considerably smaller than Iex,1 and Iex,6, because

they involve large momentum transfer, i.e. integrals like
∫
dx1φ

∗
L,1(x1)φR,1(x1), These

integrals are highly suppressed because φL,1(x1) and φR,1(x1) come from two valleys in

the original honeycomb lattice, the two valleys have very large momentum difference.

Iex,1 + Iex,6 is the main exchange energy gained by ΨA, both integrals do not involve

large momentum transfer, and they both conserve the total momentum along the wire

(time-reversal symmetry guarantees that K1 = −K ′
2, K2 = −K ′

1), assuming we focus on

a single wire without junction. With the Coulomb interaction, or the standard form of

screened Coulomb interaction, Iex,1+Iex,6 is negative. The exchange energy of ΨB is very
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Figure B.1: Schematic dispersion of the 1d domain wall states after doping. K1 and
K2 come from the same valley Q in the 2d Brillouin zone. Time-reversal symmetry
guarantees that K1 = −K ′

2, K2 = −K ′
1.

similar, and both wave functions are “channel” singlet states.

One can also run the same test on other two-particle wave functions which are sym-

metric in the channel space, such as

ΨC(x1,x2) ∼ φL,1(x1)φR,2(x2) + φL,2(x1)φR,1(x2)− φR,1(x1)φL,2(x2)− φR,2(x1)φL,1(x2),

ΨD(x1,x2) ∼ φL,1(x1)φR,1(x2)− φL,2(x1)φR,2(x2) + φR,1(x1)φL,1(x2)− φR,2(x1)φL,2(x2),

. . . . . . (B.4)

None of these wave functions gain as much exchange energy compared with ΨA and

ΨB, because their exchange energy integrals either involve large momentum transfer, or

violate total momentum conservation along the wire. For example, for ΨD(x1,x2), its

exchange energy contains terms like

−
∫
dx1dx2φ

∗
L,1(x1)φL,2(x1)Vx1,x2φ

∗
R,1(x2)φR,2(x2), (B.5)

this integral represents the physical process of moving two particles at momenta K2 and

358



Appendix to Chapter 3,4,5 (Main Text) Chapter B

K ′
2 to momenta K1 and K

′
1 (Fig. B.1), which is suppressed because in general it violates

total momentum conservation along the wire. This total momentum conservation can be

viewed as a U(1) symmetry in the channel space, i.e. NL,1 +NR,1 −NL,2 −NR,2 must be

a conserved quantity, where (for example) NL,1 is the number of left moving particles at

channel 1.

B.1.2 Fermion Bilinears as CFT Fields

In the main text, we obtain the CFT field expressions of the fermion mass opera-

tor Eq. 5 using the non-Abelian bosonization of U(4)1 and the decomposition U(4)1 ∼

U(1)4⊗SU(2)s2⊗SU(2)c2. For the Cooper pair operator Eq. 6, we first define a new basis

of fermions such that the Cooper pair operator acts as a fermion mass operator in the

new basis. Then, we conduct a similar non-Abelian bosonization and the decomposition

of U(4)1 to obtain its CFT field expression. In this section, we study a different method

to obtain the CFT field expressions of the fermion mass operator and the Cooper pair

operator while treating them in equal footing.

We first rewrite the left/right-moving complex fermions ψL,c,α, ψ
†
L,c,α, ψR,c,α, and

ψ†
R,c,α in a Majorana fermion basis χL/R where each of χL and χR is an 8-component

Majorana spinor. The Majorana fermion basis is chosen such that the generators of the

symmetries U(1)e, SU(2)s and SU(2)c are given by

U(1)e : σy00,

SU(2)s : σ0xy, σ0zy, σ0y0,

SU(2)c : σ0yx, σ0yz, σ00y, (B.6)

where σx,y,z are the Pauli matrices and σ0 is the 2×2 identity matrix. Here, we’ve adopted
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the notation σabc... ≡ σa ⊗ σb ⊗ σc ⊗ .... The left and right-moving Majorana fermions

can be described by the O(8)1 CFT. More precisely, we can bosonize these Majorana

femions and describe them using a non-linear sigma model with the group O(8) and

with a Wess-Zumino-Witten term at level 1. Following the non-Abelian bosonization

procedure given by Ref. 565, we can identify the fermion bilinears χLχ
T
R with the field

h ∈ O(8) of the non-linear sigma model. The fermion mass operator in Eq. 5 and the

Cooper pair operator Eq. 6 are included in χLχ
T
R and hence can be expressed in terms

of h ∈ O(8) when bosonized. In the following, we will study the specific form of field

h ∈ O(8) which represents the fermion mass and the Cooper pair operators.

First of all, both of the fermion mass and the Cooper pair operators are SU(2)c

singlets. Hence, we focus only on the field h ∈ O(8) such that h commutes with the

SU(2)c generators given in Eq. B.6. The field h that satisfy this condition takes the

general form

h = W (h̃⊗ σ0)W † (B.7)

where W = 1√
2
(1 + iσ0yy) and h̃ is a 4 × 4 matrix. Since h ∈ O(8), h has to be a real

matrix, which implies

σ0yh̃σ0y = h̃∗. (B.8)

This condition implies that h̃ decompose into a linear superposition of the following basis
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matrices with real coefficients:

σ00, iσ0x, iσ0y, iσ0z

iσy0, σyx, σyy, σyz

σx0, iσxx, iσxy, iσxz

σz0, iσzx, iσzy, iσzz. (B.9)

Both the fermion mass and the Cooper pair operators transform non-trivially under the

left and right U(1)e and SU(2)s actions. For the field h, the left and right U(1)e and

SU(2)s actions are given by the left and right multiplication of U(1)e and SU(2)s matrices

generated the generators given in Eq. B.6. Hence, we should organize the basis of h̃ such

that h transforms properly under the left and right U(1)e and SU(2)s actions:

h̃ = α(cosϕ+ i sinϕσy)⊗ g + β(cos θσx + sin θσz)⊗ g′, (B.10)

where α, β are real number, ϕ and θ are two angular variables, and g, g′ ∈ SU(2) are

2× 2 SU(2) matrices. Note that h̃ contains two terms. Their transformations under the

left and right U(1)e symmetries allow us to identify them as the fermion mass operator

and the Cooper pair operators respectively. The angular variables ϕ and θ are then

naturally identify with the ϕ and θ fields of the U(1)e4 CFT fields discussed in the main

text. Finally, we need to consider the constrain of hTh = 1 on h̃:

α2 + β2 = 1, gg′ = g′g. (B.11)

To treat the fermion mass operator and the Cooper pair operator in equal footing, we

should choose α = β = 1√
2
. The second equation is naturally satisfy by setting g = g′ ∈
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SU(2). Now, we can conclude that the most generic form of h̃ that captures the fermion

mass operators and Cooper pair operators in equal footing is given by

h̃ =
1√
2
(cosϕ+ i sinϕσy)⊗ g +

1√
2
(cos θσx + sin θσz)⊗ g. (B.12)

Using this form of h̃, we can obtain the expression of h. We can furthermore transform

the basis from χL/R back to the complex fermions ψL,c,α, ψ
†
L,c,α, ψR,c,α. After the basis

transformation, we see that the two terms in h (that comes from the two terms in h̃)

agree respectively with the CFT field expressions of the fermion mass operator Eq. 5 and

of the Cooper pair operator Eq. 6 in the main text.

B.2 Appendix to Sec. 3.2

B.2.1 Field Theories for N = 6 and N = 12 of Scenario (1)

In the next section we will derive the projective symmetry group transformation

for the low energy vortex modes of scenario (1). For N = 6, with symmetries R2π/3,

translation, PxT , and Py, the PSG-invariant interactions between the vortex fields ψa

beyond Eq. 3.19 take the following form:

L(1)′[ψa] = u1

2∑
a=0

(|ψ2a|2 + |ψ2a+1|2)2 + u2

(
5∑

a=0

|ψa|2
)2

+ v1

(
5∑

a=0

ψ2
a

)(
5∑

a=0

(ψ∗
a)

2

)
+ v2

2∑
a=0

(ψ2
2a + ψ2

2a+1)((ψ
∗
2a)

2 + (ψ∗
2a+1)

2)

+ w1

2∑
a=0

(|ψ2a|2 − |ψ2a+1|2)(ψ2a+2ψ
∗
2a+3 + ψ∗

2a+2ψ2a+3)

+ w2

(
2∑

a=0

(ψ2
2a − ψ2

2a+1)ψ
∗
2a+2ψ

∗
2a+3 + c.c.

)
+ . . . (B.13)
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Here the dots stand for terms higher than the quartic order. The parameters {u1, u2, v1, v2, w1, w2}

in (B.13) are all real, and the index a for ψa is regarded as cyclic modulo 6.

In addition to the quartic terms, the gauge invariant density wave order parameter

can couple to the Fermi surface of the fermionic partons, and quartic terms of ψa with

singularity in the frequency space can be generated as was pointed out by Ref. 351, such

as |ω||Sω,q|2, where Sω,q is a bilinear of ψa. This coupling only arises for scenario (1). For

scenario (2) discussed in the main text, the 3D XY∗ fixed point should be stable against

symmetry allowed perturbations; the field theory Eq. 3.29 is also stable against coupling

to the fermionic parton Fermi surface.

Although we do not aim to give a full discussion of the fate of the infrared limit of

scenario (1), in the current work we establish the formalism for this problem that one can

use in the future. As we explained in the previous paragraph, after integrating out the

fermion that is connected by the finite momentum of the density wave order parameter,

a term is generated ∼ |ω||Sω,q|2, where S = ψ†Tψ and T is an N × N matrix. One

can introduce a new field Φ through the Hubbard-Stratonovich transformation, and ψa

will interact with the Φ field [566]. We start with the first line of Eq. B.13. The field

theory Eq. 3.19 with u1 and u2 in Eq. B.13 can be reformulated by introducing multiple

Lagrange multipliers λi:

L(1) =
N−1∑
a=0

|(∂ − iA)ψa|2 + i

N1∑
i=1

λi

(
N2∑
τ=1

|ψτ,i|2
)

+ iΦψ†Tψ; (B.14)

⟨λi(q⃗)λi′(−q⃗)⟩ =
8

N2

|q|δi,i′ , (B.15)

⟨Aµ(q⃗)Aν(−q⃗)⟩ =
16

N

(
δµν − qµqν/q

2

|q|

)
, (B.16)

⟨Φ(q⃗)Φ(−q⃗)⟩ = g|ω|. (B.17)

Here N = N1N2, and for the real system with N = 6, N1 = 3 and N2 = 2. Introducing
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λi for each index i physically means that we are investigating the theory near the point

with a SU(N2) symmetry for each index i, rather than the original CPN−1 theory with

a large SU(N) flavor symmetry. This is analogous to the “easy-plane bosonic QED3”

considered in Ref. 567. The actions of λi and the transverse component of gauge field

A are generated by integrating out the fields ψa. One possible way to proceed with

the calculation is that, we can fix N1, and take 1/N2 as a small parameter. When g

is the same order of 1/N2, the interaction between ψa and the Φ field will lead to the

contribution comparable with that arising from coupling to λi and A. The calculation

would be analogous to the one formulated in Ref. 353, where the nonlocal interaction on

top of a bosonic QED flows to a new fixed point. One can evaluate the scaling behaviors

(such as relevance/irrelevance in the IR) of the v and w terms in the second and third

lines in Eq. B.17 at this new fixed point. By exploring the parameter space of g, 1/N2,

and different choice of matrix T , it is possible to identify a finite region where Eq. B.17

corresponds to a stable fixed point where the v and w terms in Eq. B.13 are irrelevant.

The same strategy can be applied to the situation with N = 12. With long moiré

lattice constants, the 6-fold rotation Rπ/3 also becomes a good approximate symmetry.

Together with Rπ/3, the quartic terms in the field theory for N = 12 (please refer to the

phase diagram in Fig. 3.3) are:

L(1)′[ψσ,τ,i] = u1
∑
σ,i

(∑
τ

|ψσ,τ,i|2
)2

+ u2

(∑
στi

|ψστi|2
)2

+ v1
∑
σ,i̸=i′

(∑
τ

|ψσ,τ,i|2
)(∑

τ ′

|ψσ,τ ′,i′ |2
)

+ v2
∑
i

(∑
τ

|ψ+,τ,i|2
)(∑

τ ′

|ψ−,τ ′,i|2
)

+ w1

∣∣∣∣∣∣
∑
i,τ

ψ+,τ,iψ−,τ,i

∣∣∣∣∣∣
2

+ iw2

∑
i,τ,τ ′

ψ∗
+,τ,i+1ψ

∗
−,τ,i+1ψ+,τ ′,iψ−,τ ′,i − h.c.

 (B.18)

Here the 12 modes are labelled by ψσ,τ,i in which τ = ± labels two degenerate modes

at the same momentum, σ = ± labels two sets of momenta that are each connected by
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R2π/3, and i = 0, 1, 2 mod 3 labels these three momenta within each set.

We can again start with the first line of Eq. B.18, and introduce Lagrange multiplier

λσ,i which couples to the ψa fields as
∑N2

τ=1 λσ,i|ψσ,τ,i|2. Notice that we have generalized

τ to 1 · · ·N2. Then the Hubbard-Stratonovich transformation can introduce new fields

that couple to ψa to account for the singular terms generated through interacting with

the Fermi surface. A combined perturbation theory of 1/N2 and g can again determine

the relevance/irrelevance of the second and third lines of Eq. B.18. In particular, the two

terms in the second line of Eq. B.18 are indeed irrelevant with large-N2, as the scaling

dimension of
∑

τ |ψσ,τ,i|2 is 2 with large-N2.

B.2.2 The PSG Transformation for N = 6 in Scenario (1)

Under the boson-vortex duality, the dual vortex theory on the hexagonal lattice takes

the form

H =
∑
⟨ij⟩

−tijϕ∗
iϕj +H ′

ϕ + Vϕ + . . . , tij = te−iAij (B.19)

Here H ′
ϕ describes hopping terms between further neighbors. The potential Vϕ includes

a quadratic term
∑

i r|ϕi|2 which tunes through the phase transition.

When tij is nonzero only for nearest neighbor links on the dual honeycomb lattice,

and it takes positive sign on the solid links and negative sign on the dashed links in

Fig. 3.2 due to the π flux of Aµ through each hexagon, there are four minima of the

vortex band structure in the Brillouin zone (Fig. 3.3). We label the four minimum modes

from 0 to 3, each have momentum (kx, ky)

Q0,1 = K =

(
2π

3
√
3
, 0

)
, Q2,3 = K′ =

(
π

3
√
3
,
π

3

)
. (B.20)

With further neighbor vortex hopping (please refer to the phase diagram in Fig. 3.3),
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Figure B.2: Crystal symmetry of the triangular lattice, the nearest neighbor hopping
amplitudes of the vortices, and the unit cell after taking into account of the sign of
tij .

the minima of the vortex band structure can shift to the M points, similar to Ref. 345.

When the degenerate minima are shifted to theM points (Fig. 3.3), the six corresponding

momenta are

Q0,1 =

(
π

2
√
3
,−π

6

)
, Q2,3 =

(
π

2
√
3
,
π

6

)
, Q4,5 =

(
0,
π

3

)
. (B.21)

Similar to the four minima case, the vortex field can be expanded using these six modes

as

ϕn,r ∼
5∑

a=0

ψava,ne
iQa·r. (B.22)

The coefficients va,n are solved from the band structure.

The symmetries of the theory for one single valley must include translation T1, T2,

three-fold rotation R2π/3, PxT . These transformations do not mix the two valleys. In

the following we derive the PSG matrices of these symmetries. We first need the form of
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the transformations when acting on the 8 sites in each unit cell:

T1,2(ϕn,k) =
∑
m

(t1,2)nmϕm,k, (B.23)

t1 =



0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 −1 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 −1 0 0 0

−1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0



, t2 =



0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0

−1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 0 0 0 0 −1 0 0



(B.24)

and

R2π/3(ϕn,k) = (rπ/3)nmϕm,R2π/3k
, r2π/3 =



1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1



, (B.25)

PxT (ϕn,k) = (pxt)nmϕm,−Pxk, (pxt)ab =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −1



. (B.26)

Besides these symmetries, here we argue that, if the system does have an effective

Hubbard model description with two local Wannier orbitals per unit cell (one for each

valley), Py is also a good symmetry of the Hubbard model, as long as the valley mix-

ing is negligible, which is a justified assumption with long wavelength moiré potential
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modulation. Let us first assume there is no valley mixing, then for each valley the band

structure of the moiré mini band is described by a tight binding model with one orbital

per site on the moiré triangular lattice. The hopping amplitude t(θ) along angle θ must

satisfy the following relations based on the explicit PxT and translation symmetry:

t(θ) = t∗(π − θ), t∗(θ) = t(π + θ), (B.27)

we can easily show that t(θ) = t(−θ), namely the system should have a Py symmetry.

However, when there is valley mixing, t becomes a 2 × 2 matrix with off-diagonal

terms that mix two valleys. A 2×2 hopping matrix t should satisfy four symmetries, Px,

T , translation, and R2π/3 rotation. A natural choice of Px and T on t is

Px : t(θ) → σxt(π − θ)σx; T : t(θ) → (iσy)t∗(−iσy); (B.28)

and the translation symmetry plus hermicity demands t†(θ) = t(π + θ). Py does not

change the valley indices; if Py takes t(θ) to t(−θ), there exists a valley mixing term

t(θ) ∼ iσx sin(3θ) that preserves all the symmetries mentioned above, but breaks Py;

while if Py takes t(θ) to σzt(−θ)σz this term becomes t(θ) ∼ iσy cos(3θ).

Py acts on the ϕ bosons as

Py(ϕn,k) = (py)nmϕ
∗
m,−Pyk, (py)ab =



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0



. (B.29)

Furthermore, in the case with long moiré lattice constant, we additionally have the

368



Appendix to Chapter 3,4,5 (Main Text) Chapter B

six-fold rotation Rπ/3

Rπ/3(ϕn,k) = (rπ/3)nmϕm,Rπ/3k, (rπ/3)ab =



0 0 0 0 0 0 0 −1

0 0 −1 0 0 0 0 0

0 0 0 0 1 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 −1 0 0 0 0

0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0



. (B.30)

In the position space, the transformation rules can be summarized as

G(ϕn,r) =
8∑

m=1

gn,mϕm,r′m (B.31)

in which r′m is the center of the unit cell of field ϕm which is obtained by certain site in the

original unit cell (centered at r) after transformation under symmetry operation G. For

example, under T1, r
′
7 = r′8 = r+2a2, because sites 1 and 2 at unit cell r are transformed

into sites 7 and 8 in the nearby enlarged unit cell which is centered at r+2a2. In general,

we can write the transformation as r′m = Gr + ∆⃗G,m, in which ∆⃗G,m is a constant that

does not depend on r, and Gr is the coordinate of the center of the unit cell after spacial

symmetry G.

Now we plug in the low energy expansions of ϕnk
around the minima into the equation,

which yields
N−1∑
a=0

G(ψa)va,ne
iQa·r =

N−1∑
a=0

8∑
m=1

ψagnmvm,ae
iQa·r′m . (B.32)

The relation can be viewed as a vector identity with n being the vector index on both

sides. Because all the vectors va,n(a = 0, . . . , N −1) are orthogonal to each other, we can
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multiply the conjugated vector v∗b,n on both sides and sum over n:

G(ψb)e
iQb·r =

N−1∑
a=0

8∑
m,n=1

ψav
∗
b,ngn,mva,me

iQa·r′m . (B.33)

For this equation to hold for all r, the RHS needs to have the same momentum. This

requires Qb = G−1Qa, which can only be satisfied by two possible choices of a (recall

that in the convention of eight-site unit cell, each momentum Qa always has two fold

degeneracy for all N), denoted by a1 and a2. Thus we eventually have

G(ψb) =
8∑

m,n=1

v†b,ngnmva1,me
iQa1 ·∆⃗G,m × ψa1 +

8∑
m,n=1

v†b,ngnmva2,me
iQa2 ·∆⃗G,m × ψa2 (B.34)

The final results can be organized into N ×N matrices. For N = 6, the transformations

read

T1,2(ψa) = (t1,2)abψb, (t1)ab =



−1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0


, (t2)ab =



0 1 0 0 0 0

−1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0


, (B.35)

R2π/3(ψa) = (R2π/3)abψb, PxT (ψa) = (PxT)abψb, (B.36)

(R2π/3)ab =



0 0 0 0 1 0

0 0 0 0 0 1

−1 0 0 0 0 0

0 −1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0


, (PxT)ab =

1
√
2



0 0 1 −1 0 0

0 0 −1 −1 0 0

1 −1 0 0 0 0

−1 −1 0 0 0 0

0 0 0 0 1 −1

0 0 0 0 −1 −1


. (B.37)
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Figure B.3: Some possible density wave patterns of the original boson that correspond
to different condensate of ψa with a = 0, · · · 5. The left and right patterns correspond
to Ψ⃗ ∼ (1, 0, 0, 0, 0, 0) and Ψ⃗ ∼ (0, 1/

√
2, 1/2,−1/2, 0, 0) respectively.

and

Py(ψa) = (Py)abψ
∗
b , Rπ/3(ψa) = (Rπ/3)abψb, (B.38)

(Py)ab =
1
√
2



0 0 1 1 0 0

0 0 1 −1 0 0

1 1 0 0 0 0

1 −1 0 0 0 0

0 0 0 0 1 1

0 0 0 0 1 −1


, (Rπ/3)ab =



0 0 0 −1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 1 0 0 0 0

−1 0 0 0 0 0


. (B.39)

Deep inside the vortex condensate phase with r ≪ 0 in equation Eq. 3.19, the vector

Ψ⃗ = (ψ0, ψ1, ψ2, ψ3, ψ4, ψ5) can have different condensates depending on the parameters

in Eq. B.13. Without loss of generality we set
∑5

a=0 |ψa|2 = 1. The two figures in Eq. B.3

illustrate the density waves of the bosonic parton centered at the bonds and the sites

on the moiré triangular lattice that correspond to two different possible condensates of

Ψ⃗. The density on the bond l is inferred from tij⟨ϕ∗
iϕj⟩, with ij being the link on the

dual honeycomb lattice that is dual to l, and tij takes the sign according to the gauge

convention of Fig. 3.2. The operator tij⟨ϕ∗
iϕj⟩ is the energy density in terms of vortex

fields, and the modulation of this operator should correspond to the valence bond solid of

the original bosonic parton. We also consider an operator centered on site p of the original
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lattice (plaquette of the dual lattice):
∑

⟨ij⟩∈p tij⟨ϕ∗
iϕj⟩, with the summation over the links

that surround the plaquette p on the dual honeycomb lattice, whose center hosts the site

p of the original moiré triangular lattice. In both cases, ⟨ϕ∗
iϕj⟩ is evaluated using Eq. B.22

and the value of Ψ⃗ which minimizes the quartic energy. The left pattern in Eq. B.3 is

a rather common valence bond solid configuration for either spin-1/2 system or hard

core boson on the triangular lattice. If one started with the construction-I of the parton

construction, the discussion in this section corresponds to the original electron system

with an average 1/2 electron per unit cell (the filling considered in Ref. 321); while for

construction-II, the discussion here applies to one electron per unit cell, and the analysis

in this section corresponds to one of the two spin/valley flavors of the system.

B.2.3 Dual of the Vortex Theory

Here we derive the Lagrangian written in terms of the fractionally charged bosonic

partons for scenario (1). We start with Eq. 3.19 in our paper:

L(1) =
N−1∑
j=0

|(∂µ − iAµ)ψj|2 + r|ψj|2 +
i

2π
A ∧ d(a+ eAext) + · · · (B.40)

To facilitate the calculation of the DC resistivity which will be discussed in the next

subsection, we need to “dual back” to the charge-carriers, which requires deforming

Eq. B.40 with an easy-plane anisotropy
∑

j |ψj|4. The bosonic fractional charge carriers

φj are the vortices of the vortex fields ψj. We first take the standard duality for ψj, and

Eq. B.40 becomes:

L(1) =
N−1∑
j=0

|(∂ − iÃj)φj|2 + r̃|φj|2 +
i

2π
Ãj ∧ dA+

i

2π
A ∧ d(a+ eAext) + · · · (B.41)
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The basic duality relation is that the current of ψj, i.e. Jψj ∼ dÃj. Now integrating out

A would lead to the following constraint for the rest of the gauge fields:

∑
j

Ãj − a− eAext = 0. (B.42)

From this constraint we can take Ãj as

Ãj = ãj +
1

N
a+

e

N
Aext,

∑
j

ãj = 0. (B.43)

Hence the dual of the dual theory becomes

L(1) =
N−1∑
j=0

|(∂ − iãj − i
1

N
a− i

e

N
Aext)φj|2 + r̃|φj|2 + · · · . (B.44)

The gauge fields ãj are still subject to the constraint
∑

j ãj = 0. φj carries e/N charge

of external EM gauge field; it also carries charge 1/N of gauge field a which is shared

with the fermionic parton fα.

For scenario (2) the theory in terms of fractional parton φ is much simpler: there

is only one flavor of φ for each valley, and there is no extra continuous gauge fields ã

besides gauge field a: Following the calculation in Ref. 111, one can generalize this one

flavor of φ in each valley to an N component of bosons:

L(2) =
N∑
l=1

|(∂ − i
1

N
a− i

e

N
Aext)φ

l|2 + iλ|φl|2 + · · · (B.45)

and the bosons will scatter with both gauge field a and field λ which is introduced as

a Lagrange multiplier. The fact that φl carries charge 1/N of gauge field a does not

change the scattering rate through the large-N calculation, as the gauge charge cancels

out in the calculation of scattering rate through the large-N approach. Compared with
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scenario (2), in scenario (1) the parton φj is also coupled to extra gauge fields ãj, which

will lead to extra scattering to the charge carriers.

When computing the resistivity, especially the DC resistivity of scenario (1), we also

rely on a large−N generalization, namely we need to introduce an extra l = 1 · · ·N index

for each component of fractional charge field: φlj.

B.2.4 DC Resistivity Jump in Scenario (1)

In this section we present a detailed computation of the DC resistivity jump in the

scenario (1) of MIT, i.e. the scenario when the insulator has a density wave. We start

with Eq. B.44. The resistivity jump at the MIT is given by the universal resistivity of

the bosonic sector of the system ρb at the MIT. First of all, one can prove a generalized

Ioffe-Larkin rule, which combines the resistivity of each parton φj into ρb:

ρb =
ℏ
e2

(
N−1∑
j=0

ρb,j

)
, (B.46)

where ρb,j is the resistivity of each parton φj, when the charge of φj is taken to be 1.

This generalized Ioffe-Larkin rule can be proven by formally integrating out φj, gauge

fields ãj and a from Eq. B.44, and eventually arriving at a response function of Aext. At

each level of the path integral, we keep a quadratic form of the action, i.e. the random

phase approximation. This Ioffe-Larkin rule is independent of the assignment of electric

charges on each parton.

To compute ρb, we formulate the quantum Boltzmann equation (QBE) for the φj

fields of a given valley. The computation follows that for ρb at the MIT without charge

fractionalization [111], where the gauge field dynamics needs to be modified due to the

charge fractionalization, which we explain in detail below for comparison. Note that ρb

can be finite without momentum relaxation due to the emergent particle-hole symmetry.
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Furthermore, the two-in two-out scatterings among the φj fields are enough to relax

the current and generate finite DC resistivity. For simplicity, we consider the scattering

between the φj and emergent gauge fields in Eq. (B.44), where the gauge fields are in

thermal equilibrium and their dynamics is acquired due to the coupling with the matter

fields φj and f . Here, we argue that treating the gauge fields as in thermal equilibrium is

a legitimate approximation. First, the gauge field a couples to the spinon field f , which is

sensitive to impurities and relaxes momentum fast. Second, diagrammatically, the two-in

two-out scatterings between the φj fields that give finite DC resistivity can be captured

by the φj scattering with the emergent gauge fields.

To simplify the computation of the gauge field dynamics, it is convenient to express

Eq. B.44 in terms of the gauge field Ãj (Eq. B.42), together with the effective action for

the spinon field, the dual theory reads

L(1) =
N−1∑
j=0

|(∂ − iÃj)φj|2 + r̃|φj|2

+ f̄

(
∂τ − µ− i

N−1∑
j=0

Ãj,0 + ieAext,0 +
1

2m
(∇− i

N−1∑
j=0

Ãj + ieAext)
2

)
f + · · · . (B.47)

Integrating out φj and f fields, the gauge field propagators read

D
(Ã)
ij = −i⟨TtÃiÃj⟩ =


ΠJb+(N−1)ΠJf
(ΠJb )

2+NΠJbΠ
J
f

if i = j

−ΠJf
(ΠJb )

2+NΠJbΠf
if i ̸= j

, (B.48)

where ΠJ
b ,Π

J
f is the current-current correlation function for φj and f fields, respectively.

For a controlled systematic calculation of transport, we introduce a large number of

(complex) rotor and spinon flavors N with the constraint
∑N

l=1 |φlj|2 = 1 for all j =

0, 1, ..., N − 1, and only the l = 1 component couples to Aext. The N = 1 limit will be
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taken at the end. The effective action for the extended model becomes

L =

N−1∑
j=0

(
N∑
l=1

|(∂ − iÃj)φ
l
j |2 + iλj(

N∑
l=1

|φlj |2 − 1) +
1

2g2
(ϵµνλ∂νÃj,λ)

2

)
(B.49)

+

N∑
l=1

f̄l

∂τ − µ− i

N−1∑
j=0

Ãj,0 + ieAext,0δl,1 +
1

2m
(∇− i

N−1∑
j=0

Ãj + ieAextδl,1)
2

 fl + · · · .

Using the Fourier expansion for the electrically charged rotor φl=1
j in terms of the holons

(+) and doublons (-),

φl=1
j =

∫
k

α+,j(t,k)e
ik·x + α−,j(t,k)e

−ik·x, (B.50)

the conductivity σb,j = ρ−1
b,j can be obtained as

σb,j = ⟨Jx,j⟩/Ex, ⟨Jx,j⟩ =
∫
k

∑
s=±

s
k

ϵk
fs,j(t,k), (B.51)

where we define the distribution for holon (s = +) and doublon (s = −) as fs,j =

⟨α†
s,j(t,k)αs,j(t,k)⟩, and they satisfy the QBE as

(∂t + sE · ∂k)fs,j(t,k) =
1

2N
(Iλj [f±,j] + IÃj [f±,j]). (B.52)

Note that the gauge choice in Eq. B.47 ensures that fs,j are decoupled and equal for

different j within the approximation that Ãj is in thermal equilibrium, so the subindex

j will be dropped unless there is ambiguity. The RHS of Eq. B.52 reads

RHS =
1

2N

∫ ∞

0

dΩ

π

∫
d2q

(2π)2
{τλ ImD(λ)(Ω,q) + τÃ ImD

(Ã)
ii (Ω,q)} (B.53)

× {2πδ(ϵk − ϵk+q +Ω)

4ϵkϵk+q
[fs(t,k)(1 + fs(t,k+ q))nq(Ω)− (1 + fs(t,k))fs(t,k+ q)(1 + nq(Ω))]

+
2πδ(ϵk − ϵk+q − Ω)

4ϵkϵk+q
[fs(t,k)(1 + fs(t,k+ q))(1 + nq(Ω))− (1 + fs(t,k))fs(t,k+ q)nq(Ω)]

+
2πδ(−ϵk − ϵk+q +Ω)

4ϵkϵk+q
[fs(t,k)fs(t,k+ q)(1 + nq(Ω))− (1 + fs(t,k))(1 + fs(t,k+ q))nq(Ω)]},
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where τλ = −1 and τÃ = (2k× q̂)2 come from the bare vertex functions.

N 1 2 3 4 5 6 ... ∞
σb,j(e

2/ℏ) 0.021 0.029 0.034 0.036 0.038 0.039 0.047
ρb(h/e

2) 3.72 5.41 7.09 8.76 10.44 12.11 (3.62 + 1.68(N − 1))

Table B.1: Rotor conductivity (σb,j) and resistivity jump ρb at the MIT with frac-
tionally charged bosonic parton e∗ = e/N .

ImD(λ), ImD(Ã) physically denote the density of states of the emergent fields that

scatter with φ, which are broad in the (Ω,q) space due to the couplings with the φ fields.

Below, we ignore the bare dynamics. D(λ),(Ã) in the large-N limit reads

D(λ)(Ω,q) =
1

Πb

,

D
(Ã)
ii (Ω,q) =

ΠJ
b + (N − 1)ΠJ

f

(ΠJ
b )

2 +NΠJ
bΠ

J
f

=
N − 1

N

1

ΠJ
b

+
1

N

1

ΠJ
b +NΠJ

f

, (B.54)

where D
(Ã)
ii reduces to the MIT without charge fractionalization as discussed in Ref. 111

when N = 1. For N > 1, as only the linear combination of Ãj, i.e.
∑N−1

j=0 Ãj couples to

the spinon field f and is Landau damped, there is a factor 1
N

for the Landau damped

component of the gauge field propagator D
(Ã)
ii , which may also be understood as the a

component of gauge field in Eq. (B.44). The rest part is not Landau damped, and is

determined solely by ΠJ
b . Note that as ImΠJ

f ≫ ImΠJ
b in the limit µ ≫ T , the Landau

damped component can be approximated as 1
N

1
ΠJb+NΠJf

≈ 1
N

1
ΠJb (Ω=0,q)+NΠJf (Ω,q)

, and be

treated in the same way as Ref. 111 for the gauge field a. On the other hand, the first

term in D
(Ã)
ii should be determined for generic Ω,q. Using the standard expression for
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polarizations Π,

Πb(Ω,q) =
T

2

∑
m

∫
k

τλ
1

(νm + Ωn)2 + ϵ2k+q

1

ν2m + ϵ2k
|iΩn→Ω+iδ

ΠJ
b (Ω,q) =

T

2

∑
m

∫
k

τÃ
1

(νm + Ωn)2 + ϵ2k+q

1

ν2m + ϵ2k
|iΩn→Ω+iδ

ΠJ
f (Ω,q) = −T

2

∑
m

∫
k

(2k× q̂)2

(2m)2
1

i(ωm + Ωn)− ξk+q

1

iωm − ξk
|iΩn→Ω+iδ, (B.55)

Eq. (B.52) can be solved self-consistently. In Tab. B.1, we show σb,j and the final resistiv-

ity ρb = (Nσ−1
b,j )/2 at different N , again the factor of 1/2 arises from the two spin/valley

flavors. ρb increases roughly linearly with N , and the fit of the data points at different

N gives

ρb =
(
R(0) +R(1)(N − 1)

) h
e2

= (3.62 + 1.68(N − 1))
h

e2
. (B.56)

B.3 Appendix to Sec. 4.4

B.3.1 More Details about Self Energies

Model A Using the S-D equations, the fermion self-energies ΣA
ψ/χ in imaginary time

reads

Σ̃Aψ (τ) = −2g2CψC
2
χ

√
M2

M1

(cos (2π∆ψ) + cos (2θχ)) Γ (1− 2∆ψ) sin (π∆ψ + sgn (τ) θψ)

π2 sin (2π∆ψ)

sgn (τ)

|τ |2−2∆ψ
,

Σ̃Aχ (τ) = −2g2CχC
2
ψ

√
M1

M2

(cos (2π∆χ) + cos (2θψ)) Γ (1− 2∆χ) sin (π∆χ + sgn (τ) θχ)

π2 sin (2π∆χ)

sgn (τ)

|τ |2−2∆χ
.

(B.57)
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After Fourier transformation, the self-energy at complex frequency z, Im (z) > 0 reads

Σ̃A
ψ (z) = −2g2CψC

2
χ

√
M2

M1

cos (2π∆ψ) + cos (2θχ)

π (1− 2∆ψ) sin (2π∆ψ)
ei(π∆ψ+θψ)z1−2∆ψ ,

Σ̃A
χ (z) = −2g2CχC

2
ψ

√
M1

M2

cos (2π∆χ) + cos (2θψ)

π (1− 2∆χ) sin (2π∆χ)
ei(π∆χ+θχ)z1−2∆χ . (B.58)

We can see that the self-energy for model A automatically takes the form ΣA (z) ∝

ei(π∆+θ)z1−2∆ with a real factor.

Model B We then consider model B. Using the S-D equations, the self-energies ΣB
ψ/χ

in imaginary time are

Σ̃Bψ (τ) = −4g2CψC
2
χ

√
M2

M1

cos2 (π∆ψ − sgn (τ) θχ) sin (π∆ψ − sgn (τ) θψ) Γ (1− 2∆ψ)

π2 sin (2π∆ψ)

sgn (τ)

|τ |2−2∆ψ
,

Σ̃Bχ (τ) = −4g2CχC
2
ψ

√
M1

M2

cos2 (π∆χ − sgn (τ) θψ) sin (π∆χ − sgn (τ) θχ) Γ (1− 2∆χ)

π2 sin (2π∆χ)

sgn (τ)

|τ |2−2∆χ
. (B.59)

Again, after Fourier transformation, the self-energy with imaginary frequency reads:

Σ̃Bψ (z) = −g2CψC2
χ

√
M2

M1

e−i2(π∆ψ+θχ+θψ)
((

−1 + e4iθχ
)
e2i(π∆ψ+θψ) + 2e2i(π∆ψ+θχ) + e4iπ∆ψ + 1

)
π
(
1− 2∆ψ

)
sin

(
2π∆ψ

) ei(π∆ψ+θψ)z1−2∆ψ ,

Σ̃Bχ (z) = −g2CχC2
ψ

√
M1

M2

e−i2(π∆χ+θχ+θψ)
((

−1 + e4iθψ
)
e2i(π∆χ+θχ) + 2e2i(π∆χ+θψ) + e4iπ∆χ + 1

)
π (1− 2∆χ) sin (2π∆χ)

ei(π∆χ+θχ)z1−2∆χ .

(B.60)

The self-consistency of the S-D equation demands the self-energy take the form ΣB (z) =

−C−1ei(π∆+θ)z1−2∆ with a real pre-factor C. Demanding the imaginary part of C vanish

leads to

cos (θχ + θψ)
(
sin2 (π∆ψ) sin (θχ) cos (θψ)− cos2 (π∆ψ) cos (θχ) sin (θψ)

)
= 0, (B.61)

cos (θχ + θψ)
(
sin2 (π∆χ) sin (θψ) cos (θχ)− cos2 (π∆χ) cos (θψ) sin (θχ)

)
= 0. (B.62)
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These equations can be simplified as

tan (θψ)

tan (π∆ψ)
=

tan (θχ)

tan (π∆χ)
, (B.63)

where we have used ∆ψ + ∆χ = 1/2 to simplify the equations. In fact, we can rewrite

Eq. B.63 as

sin (π∆ψ + θψ)

sin (π∆ψ − θψ)
=

sin (π∆χ + θχ)

sin (π∆χ − θχ)
, (B.64)

which implies that the two types of fermions have the same spectral asymmetry.

The S-D equation also requires

C−2
ψ C−2

χ = 2g2
√
M2

M1

cos (2π∆ψ) cos (2 (θχ + θψ)) + cos (2θψ)

π (1− 2∆ψ) sin (2π∆ψ)
, (B.65)

C−2
χ C−2

ψ = 2g2
√
M1

M2

cos (2π∆χ) cos (2 (θχ + θψ)) + cos (2θχ)

π (1− 2∆χ) sin (2π∆χ)
. (B.66)

Imposing the constraints Eq. 4.122 or Eq. B.64, we recover exactly the same self-consistent

equations Eq. 4.102 and Eq. 4.103 as the model A.

B.3.2 Luttinger-Ward Calculation

Let us generalize the discussion by Georges-Parcollet-Sachdev [468] to our model, and

the goal is to establish the relation between the filling factors (particle density) Qψ,Qχ

of model A, and Q of model B to the most relevant quantities such as ∆ψ/χ and θψ/χ.

In the real-time formalism, at zero temperature, the filling factor can be evaluated

by computing the following integral [468]

iP
∫ +∞

−∞

dω

2π
eiω0

+
(
∂ω logG (ω)−G (ω) ∂ωΣ̃ (ω)

)
, (B.67)

where G (ω) = GR (ω)Θ (ω) + GA (ω)Θ (−ω) is the time-ordered Green function with
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Θ (ω) being the Heaviside step function, and GR/A (ω) = G (ω ± i0+) is the real-time re-

tarded/advanced Green’s function obtained by replacing iωn by ω±i0+ in the imaginary-

time Green’s function. We use P to denote the the principal value of the integral

P
∫ +∞
−∞ =

∫ −δ
−∞ +

∫ +∞
+δ

with a small positive cut off δ > 0 [468].

Through the same line of arguments in Appendix A of Ref. 468 (also see Appendix

D of Ref. 465), the filling factors for both fermions ψ and χ are

Qψ =
1

2
− θψ

π
− iP

∫ +∞

−∞

dω

2π
eiω0

+

Gψ (ω) ∂ωΣ̃ψ (ω) , (B.68)

Qχ =
1

2
− θχ

π
− iP

∫ +∞

−∞

dω

2π
eiω0

+

Gχ (ω) ∂ωΣ̃χ (ω) . (B.69)

We are going to calculate the integral

IA/Bψ/χ = iP
∫ +∞

−∞

dω

2π
eiω0

+

Gψ/χ (ω) ∂ωΣ̃
A/B
ψ/χ (ω) (B.70)

for two fermions ψ, χ in both model A and model B. To do so, we will use the properties

of the spectral functions

Aψ (ω) =
Cψ
π

Sψ,±

|ω|1−2∆ψ
, Aχ (ω) =

Cχ
π

Sχ,±

|ω|1−2∆χ
, (B.71)

where the notation S± stands for S± = sin (π∆± θ), and ± depends on the sign of ω.

Our convention here is

A (ω) = ∓ 1

π
ImGR/A (ω) , G (z) =

∫ +∞

−∞
dω

A (ω)

z − ω
. (B.72)
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Model A Using the melonic S-D equation, we obtain the Fourier transformation of

Σ̃A
ψ (τ)

Σ̃Aψ (ω) =− 4g2
√
M2

M1

∫ +∞

−∞

dν1
2π

dν2
2π

dν3
2π

Gψ (ν1)Gχ (ν2)Gχ (ν3) 2πδ (ν1 + ν2 − ν3 − ω)

=− 4g2
√
M2

M1

∫
{ω+

1 ,ω
+
2 ,ω

−
3 }∪{ω−

1 ,ω
−
2 ,ω

+
3 }

dω1dω2dω3
Aψ (ω1)Aχ (ω2)Aχ (ω3)

ω1 + ω2 − ω − ω3 + i0+sgn (ω3)
, (B.73)

where the notation
{
ω+
1 , ω

+
2 , ω

−
3

}
means the integration domain {ω1 > 0, ω2 > 0, ω3 < 0}.

Accordingly, the integral Eq. B.70 for ψ reads

IAψ = iP
∫ +∞

−∞

dωdω0

2π

Aψ (ω0) e
iω0+

ω − ω0 + i0+sgn (ω0)
∂ωΣ̃

A
ψ (ω) (B.74)

=
4g2

2πi

√
M2

M1

∫
Γ

dω0dω1dω2dω3Aψ (ω0)Aψ (ω1)Aχ (ω2)Aχ (ω3)Φδ
(
ω1 + ω2 − ω3 − i0+sgnω1, ω0 − i0+sgnω0

)
.

The integration domain of IAψ is Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 where

Γ1 =
{
ω+
0 , ω

+
1 , ω

+
2 , ω

−
3

}
, Γ2 =

{
ω−
0 , ω

+
1 , ω

+
2 , ω

−
3

}
,

Γ3 =
{
ω+
0 , ω

−
1 , ω

−
2 , ω

+
3

}
, Γ4 =

{
ω−
0 , ω

−
1 , ω

−
2 , ω

+
3

}
. (B.75)

We have also used the function

Φδ (a+ iϵa, b+ iϵb) = P
∫ +∞

−∞
dz

eiω0
+

(z − a− iϵa)
2 (z − b− iϵb)

(B.76)

where a, b ∈ R and ϵa, ϵb → 0. The expression of Φδ is explicitly calculated as Eq. A8

in Ref. 468. In the following, we will only use its property Φδ (−a− iϵa,−b− iϵb) =
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−Φδ (a+ iϵa, b+ iϵb). By changing of variables, we could write the integral as

IAψ =
4g2

2πi

√
M2

M1

∫
xi>0

3∏
i=0

dxi



 Aψ (x1)Aχ (x2)Aχ (−x3)Aψ (−x0)

−Aψ (−x1)Aχ (−x2)Aχ (x3)Aψ (x0)


×Φδ (x1 + x2 + x3 − iϵ1,−x0 + iϵ0)+ Aψ (x1)Aχ (x2)Aχ (−x3)Aψ (x0)

−Aψ (−x1)Aχ (−x2)Aχ (x3)Aψ (−x0)


×Φδ (x1 + x2 + x3 − iϵ1, x0 − iϵ0)


. (B.77)

Using the expressions Eq. B.71, we have

Aψ (x1)Aχ (x2)Aχ (−x3)Aψ (−x0)− Aψ (−x1)Aχ (−x2)Aχ (x3)Aψ (x0)

=
C2
ψC

2
χ

π4

Sψ,+Sχ,+Sχ,−Sψ,− − Sψ,−Sχ,−Sχ,+Sψ,+

|x0|1−2∆ψ |x1|1−2∆ψ |x2|1−2∆χ |x3|1−2∆χ
= 0. (B.78)

Thus, the first term vanishes, and we only need to calculate the second term

IAψ =
4g2

2πi

√
M2

M1

C2
ψC

2
χ

π4

∫
ui>0

3∏
i=0

dui
S2
ψ,+Sχ,+Sχ,− − S2

ψ,−Sχ,−Sχ,+

|u0u1|1−2∆ψ |u2u3|1−2∆χ
Φδ=1 (u1 + u2 + u3 − iϵ1, u0 − iϵ0) ,

(B.79)

where we have introduced new variables xi = uiδ to take the limit δ → 0+.

Before calculating the integral, we want to show IAψ does not depend on M1,M2. On

one hand, the straightforward calculation gives

S2
ψ,+Sχ,+Sχ,− − S2

ψ,−Sχ,−Sχ,+ =
1

2
sin (2π∆ψ) sin (2θψ) (cos (2θχ)− cos (2π∆χ)) . (B.80)

On the other hand, we read from the S-D equation

C2
ψC

2
χ =

1

2g2

√
M1

M2

π (1− 2∆ψ) sin (2π∆ψ)

cos (2π∆ψ) + cos (2θχ)
. (B.81)
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They together give us

IAψ =
1

iπ4
FA (∆ψ)

(
1

2
−∆ψ

)
sin2 (2π∆ψ) sin (2θψ) , (B.82)

where

FA (∆ψ) =

∫
ui>0

3∏
i=0

dui
Φδ=1 (u1 + u2 + u3 − iϵ1, u0 − iϵ0)

|u0u1|1−2∆ψ |u2u3|2∆ψ
. (B.83)

Then we define x = u0, y = u1 + u2 + u3, and integrate over u2, u3. The result is

F (∆ψ) =
π

(1− 2∆ψ) sin (2π∆ψ)

∫ ∞

0

dxdy
(y
x

)1−2∆ψ
Φδ=1 (y − iϵ1, x− iϵ0) . (B.84)

We proceed to calculate the integral in the following way

∫ ∞

0

dxdy
(y
x

)1−2∆ψ
Φδ=1 (y − iϵ1, x− iϵ0)

=

∫ ∞

0

dxdy
(y
x

)1−2∆ψ
Pδ=1

∫ +∞

−∞
dz

eiω0
+

(z − y + iϵ1)
2 (z − x+ iϵ0)

= π2 (1− 2∆ψ)

sin2 (2π∆ψ)
Pδ=1

∫ +∞

−∞
dz
eiz0

+

z
= iπ3 (1− 2∆ψ)

sin2 (2π∆ψ)
. (B.85)

Thus, we have

F (∆ψ) =
iπ4

sin3 (2π∆ψ)
=⇒ Iψ =

(
1

2
−∆ψ

)
sin (2θψ)

sin (2π∆ψ)
. (B.86)

In conclusion, we arrive at the result Eq. 4.105, which is consistent with the expression

Q (θ,∆) in Ref 465 for the complex SYKq model with the conformal dimension ∆ = 1/q.

Through similar calculations based on

IAχ =
4g2

2πi

√
M1

M2

C2
ψC

2
χ

π4

∫
ui>0

3∏
i=0

dui
S2
χ,+Sψ,+Sψ,− − S2

χ,−Sψ,−Sψ,+

|u0u1|1−2∆ψ |u2u3|1−2∆χ
Φδ=1 (u1 + u2 + u3 − iϵ1, u0 − iϵ0) ,

(B.87)
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we obtain the identical expression Eq. 4.106 for χ fermion. In model A, θψ, θχ are two

independent variables, and U (1) charges for ψ, χ are conserved separately.

Model B The expression of Σ̃B is a bit different from Σ̃A

Σ̃Bψ (ω) =− 4g2
√
M2

M1

∫ +∞

−∞

dν1
2π

dν2
2π

dν3
2π

Gχ (ν1)Gχ (ν2)Gψ (ν3) 2πδ (ν1 + ν2 − ν3 − ω)

=− 4g2
√
M2

M1

∫
{ω+

1 ,ω
+
2 ,ω

−
3 }∪{ω−

1 ,ω
−
2 ,ω

+
3 }

dω1dω2dω3
Aχ (ω1)Aχ (ω2)Aψ (ω3)

ω1 + ω2 − ω − ω3 + i0+sgn (ω3)
. (B.88)

Now the integral Eq. B.70 for ψ reads

IBψ =
4g2

2πi

√
M2

M1

∫
Γ

dω0dω1dω2dω3Aψ (ω0)Aχ (ω1)Aχ (ω2)Aψ (ω3)Φδ
(
ω1 + ω2 − ω3 − i0+sgnω1, ω0 − i0+sgnω0

)
(B.89)

with the same integration domain as IAψ . By changing of variables, we could write the

integral as

IBψ =
4g2

2πi

√
M2

M1

∫
xi>0

3∏
i=0

dxi



 Aχ (x1)Aχ (x2)Aψ (−x3)Aψ (−x0)

−Aχ (−x1)Aχ (−x2)Aψ (x3)Aψ (x0)


×Φδ (x1 + x2 + x3 − iϵ1,−x0 + iϵ0)+ Aχ (x1)Aχ (x2)Aψ (−x3)Aψ (x0)

−Aχ (−x1)Aχ (−x2)Aψ (x3)Aψ (−x0)


×Φδ (x1 + x2 + x3 − iϵ1, x0 − iϵ0)


. (B.90)

Using the expressions Eq. B.71, we have

Aχ (x1)Aχ (x2)Aψ (−x3)Aψ (−x0)− Aχ (−x1)Aχ (−x2)Aψ (x3)Aψ (x0)

=
C2
ψC

2
χ

π4

Sχ,+Sχ,+Sψ,−Sψ,− − Sχ,−Sχ,−Sψ,+Sψ,+

|x0|1−2∆ψ |x1|1−2∆χ |x2|1−2∆χ |x3|1−2∆ψ
, (B.91)
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which seems nonzero at first glance. But it indeed vanishes due to the constraint

Eq. 4.122, and we only need to calculate the second term

IBψ =
4g2

2πi

√
M2

M1

C2
ψC

2
χ

π4

∫
ui>0

3∏
i=0

dui
S2
χ,+Sψ,−Sψ,+ − S2

χ,−Sψ,+Sψ,−

|u0u3|1−2∆ψ |u1u2|1−2∆χ
Φδ=1 (u1 + u2 + u3 − iϵ1, u0 − iϵ0) ,

(B.92)

where we have again used new variables xi = uiδ. We proceed to analyze the coefficient.

The straightforward calculation gives

S2
χ,+Sψ,+Sψ,− − S2

χ,−Sψ,−Sψ,+ =
1

2
sin (2π∆χ) sin (2θχ) (cos (2θψ)− cos (2π∆ψ)) . (B.93)

By using the expression Eq. B.81 of C2
ψC

2
χ and the constraint Eq. 4.122, we are able to

obtain a similar form comparing to Eq. B.82

IBψ =
1

iπ4
FB (∆ψ)

(
1

2
−∆ψ

)
sin2 (2π∆ψ) sin (2θψ) , (B.94)

where

FB (∆ψ) =

∫
ui>0

3∏
i=0

dui
Φδ=1 (u1 + u2 + u3 − iϵ1, u0 − iϵ0)

|u0u3|1−2∆ψ |u1u2|2∆ψ
. (B.95)

The definition of FB (∆) here differs from FA (∆) by exchanging u1 ↔ u3. Notice

that ϵ1 = −ϵ3 which makes the definition looks nonequivalent. However, after defining

x = u0, y = u1+u2+u3, and integrating over u2, u3, we still have the expression Eq. B.84.

Thus, we have exactly the same result Eq. 4.105 for ⟨QB
ψ ⟩.

Through similar calculations for χ fermion

IBχ =
4g2

2πi

√
M1

M2

C2
ψC

2
χ

π4

∫
ui>0

3∏
i=0

dui
S2
ψ,+Sχ,−Sχ,+ − S2

ψ,−Sχ,+Sχ,−

|u0u3|1−2∆ψ |u1u2|1−2∆χ
Φδ=1 (u1 + u2 + u3 − iϵ1, u0 − iϵ0) ,

(B.96)

we again obtain exactly the same expression Eq. 4.106 for QB
χ . Despite the similarity in

expressions, only the total U (1) charge filling factor Eq. 4.119 is a conserved quantity in
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model B.

B.4 Appendix to Sec. 5.1

B.4.1 More Calculations for Õ
(1)
C,C′

Let’s first analyze the expectation value of Õ
(1)
C,C′ defined in Eq. 5.34, which can be

calculated using the continuous gauge theory Eq. 5.37 via

⟨Õ(1)
C,C′⟩ ∼ exp

[(∮
C

∮
C′
−1

2

∮
C

∮
C
−1

2

∮
C′

∮
C′

)
⟨aµ(x)aν(x′)⟩ dxµdx′ν

]
. (B.97)

With a Faddeev-Popov type gauge fixing ζ term, the gauge field propagator Dµν(ω,k) is

given by

D−1
µν (ω,k) =


ω2/U + 2tk2yk

2
z −tkxkyk2z −tkxkzk2y

−tkxkyk2z ω2/U + 2tk2zk
2
x −tkykzk2x

−tkxkzk2y −tkykzk2x ω2/U + 2tk2xk
2
y

− ζ−1kµkν . (B.98)

Our gauge choice is ζ → 0. Since we are interested in the expectation value of ODO of

a static state, we will use the equal time Green’s function. Directly using the full form

of Dµν would be tedious, but we observe that Dxx has linear singularity at ky → 0, and

kz → 0, which will dominate IR behavior of the Green’s function. We can extract the

most singular part of the Green’s function, then Dxx at τ = 0 reads

Dxx(τ = 0,k) =

∫
dω

2π
Dxx(ω,k) =

√
U

t

1√
6

(
k2y(

k2x + k2y
)
3/2

1

|kz|
+

k2z
(k2x + k2z)

3/2

1

|ky|

)
+ · · · (B.99)

This approximate form of Green’s function captures the singularity at ky → 0 and kz → 0

separately. There is an extra singularity when multiple momenta approach zero simul-

taneously. But since this extra singularity occurs at a much smaller measure of the
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momentum space compared with the singularities captured by Eq. B.99, we take the

approximate form of Green’s function Eq. B.99. Further analysis may be demanded to

address all singularities in the Green’s function.

Similarly, we approximate the off-diagonal term Dxy around its singularity kz = 0

Dxy(τ = 0,k) =

√
U

t

−kxky√
6
(
k2x + k2y

)
3/2

1

|kz|
+ · · · . (B.100)

Other components of Dµν can be obtained by the permutations of kx, ky, kz. The real-

space expression of the Green’s function is then obtained through Fourier transformation:

Dµν(τ = 0,x) =

√
U

t

−1

2
√
6π2


x2 log|zδ|

(x2+y2)3/2
+

x2 log|yδ|
(x2+z2)3/2

xy log|zδ|
(x2+y2)3/2

xz log|yδ|
(x2+z2)3/2

xy log|zδ|
(x2+y2)3/2

y2 log|xδ|
(y2+z2)3/2

+
y2 log|zδ|

(y2+x2)3/2
yz log|xδ|

(y2+z2)3/2

xz log|yδ|
(x2+z2)3/2

yz log|xδ|
(y2+z2)3/2

z2 log|yδ|
(z2+x2)3/2

+
z2 log|xδ|

(z2+y2)3/2

 ,

(B.101)

where δ > 0 is a small IR cut-off, which is needed in the Fourier transformation of 1/ |k|.

This is the effective real-space Green function that can be used to calculate the scaling

behaviors of ⟨Õ(1)
C,C′⟩.

Let’s consider two identical squares C, C ′ that are completely parallel to each other.

We assume C has four corners (0, 0, 0) , (L, 0, 0) , (L,L, 0) , (0, L, 0), and C ′ has four cor-

ners (0, 0, Z) , (L, 0, Z) , (L,L, Z) , (0, L, Z). Based on the real-space Green function Eq.

B.101, an integral over C, C ′ leads to

− log⟨Õ(1)
C,C′ ⟩ =

√
U

t

4L
√
6π2


(
2(
√
L2 + Z2 − Z)/L+ log(

√
L2 + Z2 − L)

)
log(L/ϵ) + logL (logL− 3 log ϵ)

− log(LZ) +
(√

2− sinh−1(1)
)
log(Z/ϵ) + 2 log ϵ(log ϵ+ 1)

 . (B.102)

where ϵ > 0 is a small UV cut-off. It is important to notice that, although the real

space Green’s function has a dependence on the IR cut-off δ, the final result of Õ
(1)
C,C′ is

free from any IR-divergence. We are most interested in the behaviors of ⟨Õ(1)
C,C′⟩ under
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the large-L and large-Z limits:

⟨Õ(1)
C,C′⟩ ∼


e
−
√

U
t

4√
6π2 L(log(L/ϵ)+

√
2−1−sinh−1(1)) logZ = e−c1

√
U
t logZ L < +∞, Z → +∞

e
−
√

U
t

4√
6π2 (2 log(Z/ϵ)+1−log 2)L logL

= e−c2
√

U
t L logL Z < +∞, L→ +∞

, (B.103)

where c1 and c2 are two numerical coefficients which depend on the UV cut-off ϵ.
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lattices. Physical Review Letters, 122:016401, Jan 2019.

[306] M. Serlin, C. L. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K. Watanabe,
T. Taniguchi, L. Balents, and A. F. Young. Intrinsic quantized anomalous Hall
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mann, Laurens W. Molenkamp, Xiao-Liang Qi, and Shou-Cheng Zhang. Quantum
spin Hall insulator state in HgTe quantum wells. Science, 318(5851):766–770, Nov
2007.

[373] Patrick A. Lee and Naoto Nagaosa. Gauge theory of the normal state of high-tc
superconductors. Physical Review B, 46:5621–5639, Sep 1992.

[374] Sean A. Hartnoll, Andrew Lucas, and Subir Sachdev. Holographic Quantum Matter.
The MIT Press, 2018.

[375] Cody P. Nave and Patrick A. Lee. Transport properties of a spinon fermi surface
coupled to a U(1) gauge field. Physical Review B, 76:235124, Dec 2007.

[376] Gang Chen, Hae-Young Kee, and Yong Baek Kim. Fractionalized charge excitations
in a spin liquid on partially filled pyrochlore lattices. Physical Review Letters,
113:197202, Nov 2014.

[377] Pavel Kovtun. Lectures on hydrodynamic fluctuations in relativistic theories. Jour-
nal of Physics A Mathematical General, 45(47):473001, November 2012.

[378] Luca V. Delacretaz. Heavy operators and hydrodynamic tails. SciPost Phys., 9:34,
2020.

419



[379] Yoni Schattner, Samuel Lederer, Steven A. Kivelson, and Erez Berg. Ising nematic
quantum critical point in a metal: A monte carlo study. Phys. Rev. X, 6:031028,
Aug 2016.

[380] Xiao Yan Xu, Kai Sun, Yoni Schattner, Erez Berg, and Zi Yang Meng. Non-fermi
liquid at (2 + 1)d ferromagnetic quantum critical point. Phys. Rev. X, 7:031058,
Sep 2017.

[381] Hong-Chen Jiang and Thomas P. Devereaux. Superconductivity in the doped Hub-
bard model and its interplay with next-nearest hopping t’. Science, 365(6460):1424–
1428, sep 2019.

[382] Aaron Szasz, Johannes Motruk, Michael P. Zaletel, and Joel E. Moore. Chiral spin
liquid phase of the triangular lattice Hubbard model: A density matrix renormal-
ization group study. Phys. Rev. X, 10:021042, May 2020.

[383] X. G. WEN. Topological orders in rigid states. International Journal of Modern
Physics B, 04(02):239–271, 1990.

[384] Xiao-Gang Wen. Choreographed entanglement dances: Topological states of quan-
tum matter. Science, 363(6429), 2019.

[385] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A. E. Rucken-
stein. Phenomenology of the normal state of cu-o high-temperature superconduc-
tors. Physical Review Letters, 63:1996–1999, Oct 1989.

[386] Yuan Cao, Debanjan Chowdhury, Daniel Rodan-Legrain, Oriol Rubies-Bigord̈ı¿œ,
Kenji Watanabe, Takashi Taniguchi, T. Senthil, and Pablo Jarillo-Herrero. Strange
metal in magic-angle graphene with near planckian dissipation. arXiv:1901.03710,
124:076801, Feb 2019.

[387] Chetan Nayak and Frank Wilczek. Non-fermi liquid fixed point in 2+1 dimensions.
Nuclear Physics B, 417(3):359–373, 1994.

[388] Chetan Nayak and Frank Wilczek. Renormalization group approach to low tem-
perature properties of a non-fermi liquid metal. Nuclear Physics B, 430(3):534–562,
1994.

[389] David F. Mross, John McGreevy, Hong Liu, and T. Senthil. Controlled expansion
for certain non-fermi-liquid metals. Physical Review B, 82:045121, Jul 2010.

[390] J. Maldacena and D. Stanford. Remarks on the Sachdev-Ye-Kitaev model. Physical
Review D, 94(10):106002, November 2016.

[391] Edward Witten. An syk-like model without disorder. Journal of Physics A: Math-
ematical and Theoretical, 52(47):474002, October 2019.

420



[392] Igor R. Klebanov and Grigory Tarnopolsky. Uncolored random tensors, melon
diagrams, and the Sachdev-Ye-Kitaev models. Physical Review D, 95:046004, Feb
2017.

[393] Xue-Yang Song, Chao-Ming Jian, and Leon Balents. Strongly correlated metal
built from Sachdev-Ye-Kitaev models. Physical Review Letters, 119:216601, Nov
2017.

[394] Aavishkar A. Patel, John McGreevy, Daniel P. Arovas, and Subir Sachdev. Mag-
netotransport in a model of a disordered strange metal. Phys. Rev. X, 8:021049,
May 2018.

[395] Aavishkar A. Patel and Subir Sachdev. Critical strange metal from fluctuating
gauge fields in a solvable random model. Physical Review B, 98:125134, Sep 2018.

[396] Debanjan Chowdhury, Yochai Werman, Erez Berg, and T. Senthil. Translation-
ally invariant non-fermi-liquid metals with critical fermi surfaces: Solvable models.
Phys. Rev. X, 8:031024, Jul 2018.

[397] Xiaochuan Wu, Xiao Chen, Chao-Ming Jian, Yi-Zhuang You, and Cenke Xu. Can-
didate theory for the strange metal phase at a finite-energy window. Physical
Review B, 98:165117, Oct 2018.

[398] Xiao-Chuan Wu, Chao-Ming Jian, and Cenke Xu. Lattice models for non-fermi
liquids with tunable transport scalings. Physical Review B, 100:075101, Aug 2019.

[399] Sung-Sik Lee. Low-energy effective theory of fermi surface coupled with U(1) gauge
field in 2 + 1 dimensions. Physical Review B, 80:165102, Oct 2009.

[400] Rhine Samajdar, Mathias S Scheurer, Shubhayu Chatterjee, Haoyu Guo, Cenke
Xu, and Subir Sachdev. Enhanced thermal Hall effect in the square-lattice Néel
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