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The Perception-Action Loop in a Predictive Agent
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University of Memphis, Memphis, TN 38152, USA
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Institute for Intelligent Systems, and Department of Electrical and Computer Engineering,

University of Memphis, Memphis, TN 38152, USA

Abstract
We propose an agent model consisting of perceptual and pro-
prioceptive pathways. It actively samples a sequence of per-
cepts from its environment using the perception-action loop.
The model predicts to complete the partial percept and propri-
ocept sequences observed till each sampling instant, and learns
where and what to sample from the prediction error, without
supervision or reinforcement. The model is exposed to two
kinds of stimuli: images of fully-formed handwritten numer-
als/alphabets, and videos of gradual formation of numerals.
For each object class, the model learns a set of salient locations
to attend to in images and a policy consisting of a sequence of
eye fixations in videos. Behaviorally, the same model gives
rise to saccades while observing images and tracking while
observing videos. The proposed agent is the first of its kind
to interact with and learn end-to-end from static and dynamic
environments to generate realistic handwriting with state-of-
the-art performance.
Keywords: Agent; Multimodal; Proprioception; Perception;
Attention; Saccade; Tracking.

Introduction
An important property of human visual system that fosters
efficiency is that one does not tend to process a whole spa-
tiotemporal observation in its entirety at once. Instead hu-
mans focus attention selectively, in space and time, on parts
of the observation to acquire information when and where it
is needed, and combine information from different fixations
over time to build up an internal representation of the obser-
vation (Rensink, 2000), guiding future eye movements and
decision making.

Recently, the problem of handwriting generation has
gained interest. Machine learning models for handwriting
generation have been reported that incorporate visual atten-
tion (e.g., (Gregor et al., 2015)) and ones that do not (e.g.,
(Gregor et al., 2015; Murray & Salakhutdinov, 2009; Gregor
et al., 2013; Salimans et al., 2015; Raiko et al., 2014)), with
the former reporting better performance than the latter. In this
paper, we propose an agent in the predictive coding frame-
work which observes its visual environment via a sequence of
glimpses. The agent is implemented in software; its actions
are limited to sampling the visual environment. The predic-
tive coding framework entails that the agent actively makes
inferences (predictive and causal), acts and learns by mini-
mizing sensory prediction errors in a perception-action loop
(Friston, 2010). Our agent does not require reinforcement or
utilities/values of states to learn policies, consistent with pre-
dictive coding (Friston et al., 2009).

The novelty of our agent is threefold: (1) the same agent
model can interact with static images and dynamic videos;
(2) taking into account the past observations and its learned
knowledge, the agent completes the perceptual and proprio-
ceptive patterns after each glimpse; and (3) the pattern com-
pletion component in our agent is a multimodal generative
model where the prediction error in a perceptual modality
provides the observation for the proprioceptive modality. To
the best of our knowledge, the proposed agent is the first of
its kind to interact with and learn end-to-end from static (im-
age) and dynamic (video) environments, with state-of-the-art
performance in handwriting generation.

Preliminaries
Definition 1. Agent. An agent is anything that can be viewed
as perceiving its environment through sensors and acting
upon that environment through actuators (Russell & Norvig,
2002). Such agents, implemented in software, have been re-
ported in our prior work (Banerjee, 2007; Banerjee & Chan-
drasekaran, 2010a, 2010b; Najnin & Banerjee, 2017; Kapour-
chali & Banerjee, 2019, 2020; Baruah & Banerjee, 2020) as
well as in others’.

Definition 2. Perception. Perception is the mechanism that
allows an agent to interpret sensory signals from the external
environment (Han et al., 2016).

Definition 3. Proprioception. Proprioception is perception
where the environment is the agent’s own body. Propriocep-
tion allows an agent to internally perceive the location, move-
ment and action of parts of its body (Han et al., 2016).

Definition 4. Generative model. A generative model,
pmodel , maximizes the log-likelihood L(x;θ) of the generated
data, where θ is a set of parameters and x is a set of data points
(Goodfellow, 2016).

Definition 5. Evidence lower bound (ELBO). If z is a latent
continuous random variable generating the data x, computing
log-likelihood requires computing the integral of the marginal
likelihood,

∫
pmodel(x,z)dz, which is intractable (Kingma &

Welling, 2013). Variational inference involves optimization
of an approximation of the intractable posterior by defining
an evidence lower bound (ELBO) on the log-likelihood,

L(x;θ)≤ log pmodel(x;θ) (1)
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Definition 6. Variational autoencoder (VAE). VAE is a
deep generative model that assumes the data consists of in-
dependent and identically distributed samples, and the prior,
pθ(z), is an isotropic Gaussian. VAE maximizes the ELBO
given by (Kingma & Welling, 2013):

L(x;θ)≤ Eqφz|x[log pθ(x|z)]−KL[qφ(z|x), pθ(z)] (2)

where qφ(z|x) is a recognition model, pθ(x|z) is a genera-
tive model, E denotes expectation, and KL denotes Kullback-
Leibler divergence.

Definition 7. Saliency. Saliency is a property of each loca-
tion in a predictive agent’s environment. The attention mech-
anism is a function of the agent’s prediction error (Spratling,
2012; Banerjee & Dutta, 2014; Najnin & Banerjee, 2017;
Kapourchali & Banerjee, 2019, 2020). Other definitions of
saliency (e.g., (Dutta & Banerjee, 2015; Dutta, Banerjee, &
Reddy, 2016)) are not relevant to this paper.

Problem Statement
Let X = {X(1),X(2), . . . ,X(n)} be a set of observable vari-
ables representing an environment in n modalities. The vari-
able representing the i-th modality is a sequence: X(i) =

〈X (i)
1 ,X (i)

2 , . . . ,X (i)
T 〉, where T is the sequence length. Let

x≤t = {x(1),x(2), . . . ,x(n)} be a partial observation of X such
that x(i) = 〈x(i)1 , . . . ,x(i)t 〉, 1 ≤ t ≤ T . We define pattern com-
pletion as the problem of generating X as accurately as pos-
sible from its partial observation x≤t .

Given x≤t and a generative model pθ with parameters θ

and latent variables z≤t (see Def. 4, 5), the generative process
of X is given as:

pθ(X|x≤t) =
∫

pθ(X|x≤t ,z≤t ;θ)pθ(z≤t)dz (3)

At any time t, the objective for pattern comple-
tion is to maximize the log-likelihood of X, i.e.

argmax
θ

∫
log(pθ(X|x≤t ,z≤t ;θ)pθ(z≤t))dz.

Agent Architecture
The proposed predictive agent architecture comprises of five
components: environment, observation, pattern completion,
action selection, and learning. See block diagram in Fig. 1(a).

1. Environment. The environment is the source of sensory
data. Two kinds of environment are considered: static (im-
ages) and dynamic (videos).

2. Observation. The agent interacts with the environment
via a sequence of glimpses. The observations, sampled
from the sensory data, are in two modalities: perception
and proprioception.

Perceptual sensory observation. Perceptual sensory re-
ports the visual observation at a location generated by the
proprioception, as in (Friston et al., 2012). Mathematically,

x(1) = 〈x(1)1 , . . . ,x(1)T 〉, where x(1)t ∈ {0,1}n×n is a patch. If
an image is of size M×M pixels, n≤M.

Proprioceptive sensory observation. Proprioceptive sen-
sory reports the activations of oculomotor muscles due to
fixation. In this paper, it is represented by the 2D coordi-
nates of the fixation location in the environment. Mathe-
matically, x(2) = 〈x(2)1 , . . . ,x(2)T 〉, x(2)t ∈ [0,1]2.

3. Pattern completion. The pattern is completed for both
perceptual and proprioceptive modalities from all their past
observations.

Perceptual pattern completion. The completed percep-
tual pattern, X(1), at any time t is the fully generated hand-
written numeral or alphabet expected to be observed from
t = 1 through t = T . We represent the perceptual modality
as: X(1) = 〈X (1)

1 , . . . ,X (1)
T 〉, where X (1)

t ∈ {0,1}M×M .

Proprioceptive pattern completion. The completed pro-
prioceptive pattern, X(2), at any time t is the expected se-
quence of actions for sampling the observations from t = 1
through t = T . We represent the proprioceptive modality
as: X(2) = 〈X (2)

1 , . . . ,X(2)
T 〉, where X (2)

t ∈ [0,1]2×T .

A multimodal variational recurrent neural network (RNN)
(Fig. 1(b)) is used for completing the pattern for the two
modalities. Recognition and generation are the two pro-
cesses involved in a variational RNN (Chung et al., 2015).

Recognition (Encoder). The recognition model,
qφ(zt |x≤t), is a probabilistic encoder (Kingma & Welling,
2013). Given the observations x≤t , it produces a Gaus-
sian distribution over the possible values of the code zt
from which the observations x≤t could have been gener-
ated. The recognition model consists of two RNNs, each
with one layer of long short-term memory (LSTM) units.
Each RNN generates the parameters for the approximate
posterior distribution for each modality. The parameters
from each modality are combined using product of experts
(PoE), as in (Wu & Goodman, 2018), to generate the joint
distribution parameters (see Fig. 1(b)) for the approximate
posterior qφ(zt |x

(1)
≤t ,x

(2)
≤t ). The prior is sampled from a stan-

dard normal distribution pθ(zt)∼N (0,1), as in (Gregor et
al., 2015).

Generation (Decoder). The generative model,
pθ(Xt |x≤t ,z≤t), generates the data from the latent
variables, zt , at each time step. The generative model has
two RNNs with one layer of hidden LSTM units. Each
RNN generates the parameters of the distribution of the
sensory data for a modality. The sensory data is sampled
from this distribution which can be multivariate Gaussian
or Bernoulli. In our model, X (1)

t |x
(1)
≤t ,z≤t is sampled from

a Bernoulli distribution (as the perceptual observation
is binary) with means generated by the first RNN, and
X (2)

t |x
(2)
≤t ,z≤t is sampled from a Gaussian distribution (as

the proprioceptive observation is real) with means and
variances as output of the second RNN (see Fig. 1(b)).
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(a) Predictive agent architecture. (b) Pattern completion model.

Figure 1: Different components of the proposed agent. In (a), the dashed arrows indicate direction of signal flow for learning
while firm arrows indicate direction of signal flow for inference.

For time-varying data, such as videos, X (1)
1 ,X (1)

2 represent
two adjacent frames; for static data, such as images, they
represent the same image.

4. Action selection. In the proposed agent model, action se-
lection is to decide which location in the environment to
sample from. If the environment is an image of size M×M
pixels, there are M2 possible locations in that image.

An action at time t is generated as a function of the saliency
map. We denote the saliency map at time t as St ∈ RM×M

and the value of the saliency map at location ` as St,`. The
saliency map is a function of the prediction error computed
as St = N (.,σ) ∗ [X (1)

t − X̂ (1)
t ]+, where X̂ (1)

t is the gener-
ated data, N (.,σ) is a Gaussian filter with standard de-
viation σ, ∗ is the convolution operator, [.]+ ≡ max(0, .).
In our experiments, σ = 2. The salient location `∗ is
the location with the highest value in the saliency map;
`∗ = argmax

`∈{1,2,...,M2}
St,`.

The salient location ` at any time t is the proprioceptive
observation x(2)t+1 for time t +1. Therefore, the salient loca-
tions at t = 0,1,2, . . . ,T −1 constitutes the proprioceptive
pattern X(2). Hence, prediction error (saliency) guides the
sampling of the observations in our model. Unlike typi-
cal multimodal models, the two modalities in our model
interact at the observation level as the perceptual predic-
tion error provides the observation for the proprioceptive
modality.

The agent learns a policy to generate the proprioceptive

pattern or the sequence of expected salient locations by
minimizing the proprioceptive prediction error (first term
in Eq. 4 for i = 2). This error, at any time, is a function of
the difference between predicted fixation location from the
learned policy and the most salient location in the scene.

The most salient location is the most informative location
in the environment. These are the locations where the
agent’s prediction error is the highest given all the past ob-
servations. The agent attends to these locations to update
its internal model.

5. Learning. The recognition and generative model param-
eters are jointly learned by maximizing the ELBO (see
Def. 5) for the multimodal variational RNN. This objec-
tive function, obtained by modifying the objective for mul-
timodal VAE (Eq. 2 in (Wu & Goodman, 2018)) with vari-
ational RNN (Eq. 1 in (Chung et al., 2015)), is as follows:

Eqφ(zt |x≤t )

[ T

∑
t=1

[ 2

∑
i=1

λi log pθ(X
(i)
t |x

(i)
≤t ,z≤t)

−βKL[qφ(zt |x
(1)
≤t ,x

(2)
≤t ), pθ(zt)]

]]
(4)

where the first term for i = 1,2 is the expected negative
prediction error for the two modalities. The KL-divergence
is a regularizer to prevent overfitting during training.

The negative of the ELBO is also referred to as negative
log-likelihood (NLL). In this paper, we refer to the negative
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of the first term in Eq. 4 for i = 1 and 2 as perceptual NLL
and proprioceptive NLL respectively.

Experimental Evaluations
Datasets. The proposed model is evaluated on three datasets:
(1) MNIST (LeCun et al., 1998): It consists of 60,000 train-
ing and 10,000 test images (28× 28 pixels) of handwritten
numerals {0,1, . . .9}.
(2) EMNIST (Cohen et al., 2017): It consists of 124,800
training and 20,800 test images (28×28 pixels) of handwrit-
ten English alphabets in uppercase and lowercase, forming a
balanced set.
(3) MNIST stroke sequence dataset (SMNIST) (de Jong,
2016): It was created for sequence learning from the origi-
nal MNIST dataset. It consists of the MNIST images and a
sequence of locations of how the numeral might be formed
for each image. We select an equal number of equidistant lo-
cations and create a video for each image such that it shows
the gradual formation of the numeral. Each video frame is
28×28 pixels.

Experimental setup. The number of hidden units for
recognition and generative models are 256 and 512 respec-
tively for each modality. The number of latent variables is
20, minibatch size is 100, and maximum number of glimpses
T = 12. The parameters β, λ1, λ2 are all fixed at 1. The model
is trained end-to-end using backpropagation and Adam opti-
mization (Kingma & Ba, 2014) with a learning rate of 0.001.

The initial observation is always sampled from the origin
of the image for each dataset. The origin for each image in the
MNIST and SMNIST datasets is the starting pixel of the nu-
meral, which is obtained from (de Jong, 2016) and the center
pixel of the image for EMNIST. Fixing the origin as the start-
ing pixel of the numeral allows to learn a position-invariant
representation of the numerals. In our experiments, n = 5.

Generative models reported in the literature are evaluated
using NLL (− log p) involving the perceptual modality only.
In order to compare the performance of the proposed agent
with reported models, we define two variants of our model,
Prop1 and Prop2, that generate only the perceptual modality.
The proposed model is abbreviated as Prop.
Prop: Observation and generation consist of both perceptual
and proprioceptive modalities, as in the objective in Eq. 4.
Prop1: Observation and generation consist of perceptual
modality only; i = 1 in the objective in Eq. 4.
Prop2: Observation consists of perceptual and propriocep-
tive modalities. Generation consists of perceptual modality
only; i = 1 in the objective in Eq. 4.

Evaluation results. Figs. 2a–e show that the agent can
complete the visual observation very close to the true pat-
tern within a few glimpses. In the initial few time steps, the
completed perceptual patterns (third row of Figs. 2a–e) are
blurred images as the agent samples from the latent distri-
bution of multiple classes. In the completed proprioceptive
patterns (bottom row of Figs. 2a–e), during the initial steps,
the locations are concentrated at a small region. This differ-

ence between the perceptual and proprioceptive modalities is
due to the difference in their dimensions and assumptions in
their distributions.

The agent can infer an object class within a few glimpses,
as can be seen from the class distribution of the completed
patterns at each time step (Figs. 2f–j). It, however, requires
more observations to refine the style within a class. From the
example in Fig. 2, inferring a class takes less time in images
(Fig. 2b) than in videos (Fig. 2d). The agent figures out that it
is a ‘5’ from the first three observations from the image in Fig.
2b, but takes eight observations to do the same from the video
in Fig. 2d. This is because, in our model, the entire image is
given which is being observed via a sequence of glimpses,
but the entire video is not given. Hence, the salient locations
can occur anywhere in an image which allows these locations
to be more discriminative towards object classes. In contrast,
the salient locations in a video follow the trajectories of the
formation of a numeral; thus our model has to wait for the
discriminative locations to present themselves before a class
can be inferred.

Table 1: Negative log-likelihood (NLL) at the final time step,
perceptual (Percep.) NLL, proprioceptive (Proprio.) NLL,
and average (Avg.) NLL comparison of the proposed model
(Prop) and its variants (Prop1, Prop2) for all datasets. Avg.
NLL is mean over all glimpses. Best results are highlighted.

Dataset Model NLL Percep. Proprio. Avg.
(T) NLL NLL NLL
(≤) ≤

Prop 1107.6 -631.8 44.01
MNIST Prop1 156.5 1988.7 167.5

Prop2 79.20 1407.2 120
Prop 1119.5 -628.7 46.2

EMNIST Prop1 184.8 2318 196.7
Prop2 65.7 1468.8 125.9
Prop 1183.4 -711.8 43.7

SMNIST Prop1 153.6 1999.7 168.4
Prop2 63.0 1242.3 106.4

The salient locations occur somewhat randomly for the
static case (image) but follows a sequence for the dynamic
case (video). Consequently, the agent saccades while ob-
serving images and tracks while observing videos. For each
object class, the actual and predicted proprioceptive pattern
distributions, obtained by averaging the actual and predicted
salient locations from the test set, are very similar (Fig. 3a–d)
for both static and dynamic cases. Thus, our agent can learn
the distribution of salient locations from its own behavior in
both cases.

For all datasets, the perceptual NLL is lowest for our
model, followed by its variants Prop1 and Prop2 (ref. Ta-
ble 1). This is because the pattern completion model learns a
richer representation of the environment by maximizing per-
ceptual and proprioceptive log-likelihood (proposed model)
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(a) MNIST (b) MNIST (c) SMNIST (d) SMNIST (e) EMNIST

(f) MNIST (g) MNIST (h) SMNIST (i) SMNIST (j) EMNIST

Figure 2: Pattern completion for two randomly chosen images from MNIST test set (a, b), the same examples from SMNIST
(c, d), and a random example from EMNIST (e). Rows 1, 2 show the perceptual and proprioceptive observation till the
current glimpse in M×M space. Rows 3, 4 show the perceptual and proprioceptive pattern completion after each glimpse.
Each column in subfigures a–j corresponds to time or glimpse number, increasing from left to right. For each case a–e, the
probability distribution over the class of the generated image is shown below in subfigures f–j. The vertical axis denotes the
class labels in f–j. The probability distribution is generated by training a multilayer perceptron classifier with a softmax output
layer.

Table 2: Performance comparison of the proposed model
for MNIST. Best results from our model are highlighted.
The other results are from [1] (Salakhutdinov & Hinton,
2009), [2] (Murray & Salakhutdinov, 2009), [3] (Uria et al.,
2014), [4] (Raiko et al., 2014), [5] (Rezende et al., 2014), [6]
(Salimans et al., 2015), [7] (Gregor et al., 2013), [8] (Gregor
et al., 2013), [9] (Gregor et al., 2015), [10] (Oord et al., 2016).

Model NLL
DBM 2hl [1] ≈ 84.62
DBN 2hl [2] ≈ 84.55
NADE [3] 88.33
EoNADE 2hl (128 orderings) [3] 85.10
EoNADE-5 2hl (128 orderings) [4] 84.68
DLGM [5] ≈ 86.60
DLGM 8 leapfrog steps [6] ≈ 85.51
DARN 1hl [7] ≈ 84.13
MADE 2hl (32 masks) [8] 86.64
DRAW [9] ≤ 80.97
DRAW without attention [9] ≤ 87.4
PixelCNN [10] 81.30
Row LSTM [10] 80.54
Diagonal BiLSTM (1 layer, h=32) [10] 80.75
Diagonal BiLSTM (7 layers, h=16) [10] 79.20
Prop1 ≤ 156.5
Prop2 ≤ 79.20

than by maximizing perceptual log-likelihood alone (Prop1,
Prop2). In the proposed model and Prop2, the posterior is ap-
proximated from perceptual and proprioceptive observations.
In the proposed model, the proprioceptive NLL (ref. Table
1) is lower for SMNIST than for MNIST or EMNIST dataset
because salient locations occur in a sequence in SMNIST but
somewhat randomly in the others, thereby making it easier to
learn from SMINST.

The NLL (reported at the final time step) for MNIST from
Prop2 is better than all models and comparable to the state-
of-the-art (ref. Table 2). As the nature of the EMNIST data is
similar to MNIST, the NLL from EMNIST is comparable to
that from MNIST using our model. We are the first to report
NLL on the EMNIST dataset.

As expected, the NLL drops significantly with increase in
glimpses (ref. Fig. 4). The NLL at the final time step is much
less than the average NLL for our model and its variants (ref.
Table 1). Thus, by sampling the observations greedily based
on saliency, the proposed agent improves its generations as
it sees more, resulting in very realistic generations after the
final glimpse.

Conclusions
A predictive agent with perceptual and proprioceptive path-
ways is proposed. It completes the observed pattern for
perceptual and proprioceptive modalities after each glimpse.
The perceptual prediction error provides the observation for
the proprioceptive modality. Experimental results using our
agent for handwriting generation are comparable to the state-
of-the-art. Behaviorally, the agent saccades while observ-
ing images and tracks while observing videos. This is the
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(a) MNIST (Actual) (b) MNIST (Predicted) (c) SMNIST (Actual) (d) SMNIST (Predicted)

Figure 3: Distribution of salient locations for MNIST and SMNIST datasets, averaged over all examples of a class in the test
set. The actual distribution is obtained from the salient locations in the saliency map while the predicted distribution is obtained
from the salient locations predicted by the model. Actual locations are from glimpse 1–11 and predicted locations from glimpse
2–12. Each row represents a class. Each column corresponds to time or glimpse number, increasing from left to right.

Figure 4: In our model, ELBO decreases steadily with
glimpses for all datasets. Best viewed in color.

first work on an attention-based agent for handwriting gener-
ation that actively samples its environment, static or dynamic,
guided by prediction error.
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