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Abstract

Background & Aims: Inpatients with cirrhosis have high rates of acute on chronic failure 

(ACLF) development and high mortality within 30 days of admission to the hospital. Better 

biomarkers are needed to predict these outcomes. We performed metabolomic analyses of serum 

samples from patients with cirrhosis at multiple centers to determine whether metabolite profiles 

might identify patients at high risk for ACLF and death.
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Methods: We performed metabolomic analyses, using liquid chromatography, of serum samples 

collected at time of admission to 12 North American tertiary hepatology centers from 602 patients 

in the NACSELD consortium sites from 2015 through 2017 (mean age, 56 years; 61% men; mean 

model for end-stage liver disease score, 19.5). We performed analysis of covariance, adjusted for 

model for end-stage liver disease at time of hospital admission, serum levels of albumin and 

sodium, and white blood cell count, to identify metabolites that differed between patients who did 

vs did not develop ACLF and patients who did vs did not die during hospitalization and within 30 

days. We performed random forest analysis to identify specific metabolite(s) that were associated 

with outcomes and area under the curve (AUC) analyses to analyze them in context of clinical 

parameters. We analyzed microbiomes of stool samples collected from 133 patients collected at 

the same time and examined associations with serum metabolites.

Results: Of the 602 patients analyzed, 88 developed ACLF (15%), 43 died in the hospital (7%), 

and 72 died within 30 days (12%). Increased levels of compounds of microbial origin (aromatic 

compounds, secondary or sulfated bile acids, and benzoate) and estrogen metabolites, as well as 

decreased levels of phospholipids, were associated with development of ACLF, inpatient, and 30-

day mortality and were also associated with fecal microbiomes. Random forest analysis and 

logistic regression showed that levels of specific microbially produced metabolites identified 

patients who developed ACLF with an AUC of 0.84 (95% CI, 0.78–0.88; P=.001), patients who 

died while in the hospital with an AUC of 0.81 (95% CI, 0.74–0.85, P=.002), and patients who 

died within 30 days with an AUC of 0.77 (95% CI, 0.73–0.81; P=.02). The metabolites were 

significantly additive to clinical parameters for predicting these outcomes. Metabolites associated 

with outcomes were also correlated with microbiomes of stool samples.

Conclusions: In an analysis of serum metabolites and fecal microbiomes of patients 

hospitalized with cirrhosis at multiple centers, we associated metabolites of microbial origin and 

lipid moieties with development of ACLF and death as an inpatient or within 30 days, after 

controlling for clinical features.

Graphical Abstract
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Hospitalized patients with cirrhosis often develop poor outcomes. We found that gut microbes and 

their circulating products collected on admission can predict death and acute-on-chronic liver 

failure.

Keywords

tryptophan; estrone; sepsis

INTRODUCTION:

Cirrhosis is the end stage of any chronic liver disease and is a leading cause of death 

worldwide1, 2. Mortality from cirrhosis is linked with hospitalizations and the development 

of organ failures3, that define Acute-on-Chronic Liver Failure (ACLF), an entity with a high 

30-day mortality that can occur in 20–45% of hospitalized patients with cirrhosis4. ACLF 

poses a major healthcare burden and its prevalence is steadily increasing5. However, current 

definitions of ACLF rely on the identification of organ failures and its severity is dependent 

on the number of organ failures6, 7. These definitions have been bolstered using systemic 

inflammatory markers and metabolomics, which demonstrate energy failure and distinguish 

ACLF from decompensated cirrhosis8, 9. However, there are no recognized parameters that 

will predict the development of ACLF in hospitalized patients.

Promising biomarkers in this regard are microbiota and their functional alterations tested 

through untargeted and targeted metabolomics10, 11. Single and multiple-center studies have 

demonstrated that alterations of stool microbiota on admission, can independently predict 

ACLF development and mortality12–14. These microbial changes were more advanced on 

admission in those who ultimately had negative outcomes and were much more altered in 

patients with renal injury12, 15. However, the relative numbers are limited and functional 

aspects of microbiota analysis, through which their impact is exerted, need to be explored. 

Metabolomics has been used in prior studies to predict outcomes and provide insights into 

pathophysiology of disease processes in patients with cirrhosis and can have a human, 

microbial or a shared human-microbial source16–21. Prominent metabolites in tryptophan 

and phenylalanine metabolism, bile acid metabolism, lyso-phospholipid, benzoate, and 

choline metabolism have a predominant microbial origin22. Therefore, a multi-center 

approach to determining the role of metabolomics, with a focus on microbial metabolism, in 

predicting organ failures, ACLF and in-hospital mortality is required.

Our aim was to evaluate admission serum metabolomics in the multi-center NACSELD 

(North American Consortium for the Study of End-Stage Liver Disease) cohort of 

hospitalized patients with cirrhosis in order to determine whether they can predict inpatient 

outcomes independent of clinical variables.

METHODS

The NACSELD consortium consists of 14 North American tertiary hepatology centers that 

have collected prospective data from patients with cirrhosis hospitalized non-electively, 

without HIV infection or prior organ transplants. Data was collected after informed consent 
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and entered in a REDCAP database. The study was approved by institutional review boards 

at all sites and all participants gave informed consent. For this study, we only included the 

subset that was (a) admitted without organ failures and (b) who consented to providing 

serum samples within 12 hours of admission. Patients with pre-existing ACLF on admission 

or those who were unable or unwilling to provide samples were excluded from this sub-

study. All sites were instructed on uniform sample collection practices before study initiation 

and samples were stored in −80 degrees centigrade freezers until the time for analysis.

Data pertaining to demographics, cirrhosis details, medications, reasons for admission and 

hospital course were recorded. Organ failures were defined according to the NACSELD-

ACLF criteria23, 24. These criteria are 2 of the following: brain failure [grade III/IV hepatic 

encephalopathy (HE)], renal failure (patients on renal replacement therapy), circulatory 

failure (shock and requirement for vasopressors) and respiratory failure (BiPAP/mechanical 

ventilation). Outcomes determined were the development of ACLF, in-hospital mortality and 

30-day mortality.

Analyses were performed at Metabolon Inc. using validated Ultrahigh Performance Liquid 

Chromatography-Tandem Mass Spectroscopy. Data analyzed pertains to all metabolites 

including amino acids, carbohydrates, lipids, nucleotides, microbiota metabolism, energy, 

cofactors & vitamins, xenobiotics, and novel metabolites (supplementary data). To account 

for variability related to patient-level variables, ANCOVA analyses were performed 

adjusting for age, gender, alcohol-related etiology, admission values of MELD, WBC, serum 

sodium and serum albumin using false discovery rate (FDR) adjustment, represented by the 

q-value generated by the method of Storey and Tibshirani. Following log transformation and 

imputation of missing values, if any, with the minimum observed value for each compound, 

ANOVA contrasts and Welch’s two-sample t-test were used to identify biochemicals that 

differed significantly between groups. Finally, ANCOVA was performed. An estimate of the 

FDR was calculated to consider the multiple comparisons that normally occur in 

metabolomic-based studies11. Instrument variability was determined by calculating the 

median relative standard deviation (RSD) for the internal standards that were added to each 

sample prior to injection into the mass spectrometers. Overall process variability was 

determined by calculating the median RSD for all endogenous metabolites (i.e., non-

instrument standards) present in 100% of the Client Matrix samples, which are technical 

replicates of pooled client samples. Overall process variability was determined by 

calculating the median RSD for all endogenous metabolites (i.e., non-instrument standards) 

present in the technical replicates.

Metabolites that were independently associated with the outcomes of interest (ACLF, 

inpatient mortality and 30-day mortality) and infected patients on ANCOVA were 

considered predictive of such outcomes. The ANCOVA tables were ranked according to p-

values, false discovery rates and pathways found to be consistently involved in protection 

from or associated with the outcomes were then explored deeper for each outcome.

Then a random forest analysis (RFA) was performed, which is a supervised classification 

technique based on an ensemble of decision trees25. For a given decision tree, a random 

subset of the data with identifying true class information is selected to build the tree without 
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replacement and sample the same number from each group. The in-bag samples are different 

for each tree. Then after the forest is constructed, the predictions are made for the out-of-bag 

(OOB) samples for each tree. For each tree, only a subset of variables is considered as 

determined by the mtry parameter (“bootstrap sample” or “training set”). The final 

classification of each sample is determined by computing the class prediction frequency 

(“votes”) for the OOB samples over the whole forest. This method is unbiased since the 

prediction for each sample is based on trees built from a subset of samples that do not 

include that sample. To determine which metabolites, make the largest contribution to the 

classification, a “variable importance” measure called the “Mean Decrease Accuracy” 

(MDA) was computed. The MDA is determined by randomly permuting a variable, running 

the observed values through the trees, and then reassessing the prediction accuracy. If a 

variable is not important, then this procedure will have little change in the accuracy of the 

class prediction (permuting random noise will give random noise). By contrast, if a variable 

is important to the classification, the prediction accuracy will drop after such a permutation, 

which we record as the MDA. Thus, the random forest analysis provides an “importance” 

rank ordering of metabolites and the first 30 for each outcome are displayed. AUCs were 

calculated for the ANCOVA-adjusted models for each category.

Then, in order to determine the specific metabolites that were relevant, we performed a 

backwards elimination binary logistic regression analysis was performed to develop a 

baseline model for each of the three outcomes (ACLF, in-patient and 30-day mortality). The 

base model variables considered were: admission Albumin, MELD, Na, and WBC and 

patient age, gender, and alcohol-related etiology, which have affected these outcomes in 

prior NACSELD studies24. The predictive ability of the final base model was assessed using 

the area under the curve (AUC) for the receiver operator characteristic curve. Next, for each 

of the outcomes, a Lasso regression (penalized) was utilized on thirty-six metabolites that 

were found to be significant on the ANCOVA-adjusted analyses to find those that were most 

predictive of the outcome. Then, microbially-derived metabolites identified as having 

significant association with the outcome were added to the base model and then a backwards 

elimination procedure was again performed focusing on the metabolite variables until all 

metabolites were significant at the p = 0.05 level of significance when assessed by the 

likelihood ratio Chi-Square test. The predictive ability of the base model + metabolites was 

assessed using the AUC and the difference between the AUC of the Base Model and the 

Base+Metabolite model was assessed using the DeLong test26 for comparing the AUCs 

under two correlated ROC curves.

Finally, we correlated the serum metabolites that were significant on ANCOVA with stool 

microbiota analyzed using 16srRNA sequencing collected in the subset of patients who gave 

both samples on admission using published techniques in R27. Microbial taxa linked with 

metabolites that were significant at r=>0.7/−0.7 and p<0.001 were visualized in Cytoscape 

between patients who developed outcomes versus those who did not. Microbiota collection, 

processing and composition findings have already been published28.

Bajaj et al. Page 5

Gastroenterology. Author manuscript; available in PMC 2021 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RESULTS:

Study participants:

We enrolled 602 participants with cirrhosis from 12 sites (Table S1). The mean age was 

56.0±9.6 years, with 367 (61%) men. The MELD on admission was 19.5±7.5, serum sodium 

133.8±6.0 mEq/L, admission WBC count 7.9±4.9 /ml and admission albumin was 2.8±0.7 

g/dl. The major etiology was alcohol-related (n=178) followed by HCV only (n=155), 

NASH (n=105), HCV+alcohol (n=94) and others (n=69). Of the 178 patients with alcohol-

related cirrhosis, only 15 were actively drinking among whom 10 had alcohol associated 

hepatitis. 54 patients were on SBP prophylaxis with ciprofloxacin and 265 patients were on 

rifaximin for HE on admission. None were on urso-deoxycholic acid (UDCA). On 

admission, infections were found in 237 (39%), of which SBP was the most common 

(n=83), followed by UTI (n=73), spontaneous bacteremia (n=38), skin/soft-tissue (n=31) and 

others. Of the remaining 365 patients, 89 were admitted for HE, 65 for GI bleeding, 61 for 

renal dysfunction, 57 for anasarca, 21 for electrolyte-related and 72 had liver-unrelated 

admissions. 133 subjects had also provided stool.

Clinical Outcomes: 144 patients (24%) required intensive care unit (ICU) transfer related 

to organ failures. Brain failure was the most common (n=137), then renal (n=81), respiratory 

(n=74) and circulatory failure (n=71). Eighty-eight patients developed ACLF, 43 patients 

died during the hospitalization while a total of 72 patients died within 30 days. A 

significantly higher number of patients with ACLF died during the inpatient (79% vs 10%, 

p<0.0001) and 30-day (60% vs 8%, p<0.0001) period. Most patients who died as an 

inpatient (35 vs 8, p<0.0001 had ACLF; the 8 who died as inpatients without ACLF died as 

an inpatient due to cirrhosis-unrelated reasons or procedural complications. Rifaximin or 

SBP prophylaxis on admission did not significantly impact outcomes.

Metabolomics:

Metabolite overview: 1464 metabolites were identified, of which 268 were unknown. 

Most of the named metabolites belonged to lipids (n=459) followed by xenobiotics (n=329) 

and amino acids (n=223). Remaining were nucleotides (n=43), peptides (n=40), cofactors 

and vitamins (n=36), partially characterized metabolites (n=27) and carbohydrates (n=26).

1060 metabolites correlated with MELD score with p-values and q-values (FDR rate) <0.05. 

The 30 most positive and negative correlations with MELD score are shown in Table S2. 

The majority positively linked to MELD score were related to bilirubin and aromatic amino 

acid metabolites while those negatively linked to MELD score were related to lipid 

metabolism. Table 2 shows microbially-derived metabolites and their ANCOVA-adjusted 

direction of change for all outcomes and infected patients. Tables S3–6 show all ANCOVA 

adjusted metabolites that are p<0.05 and q<0.05, while Table S10 shows these grouped 

according to metabolic pathways with significance indicated by red (higher) and blue 

(lower) in those who developed the three outcomes.
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ACLF development:

Clinical variables:  Patients who developed ACLF were younger, more likely with alcohol-

related and more advanced cirrhosis and admitted with infection compared to the rest. 

Patients with ACLF had a longer LOS and experienced higher rates of ICU transfer, 

inpatient and 30-day mortality.

ANCOVA and FDR-adjusted analysis:  The 117 metabolites associated with ACLF 

development with the lowest p- and significant q-values were selected. Of these 47 were 

lipids, 19 were amino acids and xenobiotics respectively, while 32 were not characterized. 

The top 30 named metabolites are shown in table 2, which demonstrate relatively higher 

aromatic amino acids, and lower phospholipids in those who developed ACLF compared to 

those who did not. Several microbially-related metabolites were also involved shown in 

figure 1 and supplementary figure 1. Prominent among these were metabolites related to 

tryptophan, bile acid and benzoate metabolism. Other metabolites of amino acids, such as 

arginine metabolites including asymmetric and symmetric dimethylarginine (ADMA and 

SDMA) were higher in those who developed ACLF. Some lipid moieties were largely lower 

in those who developed ACLF: specifically, lower choline, plasmalogens, phospholipids and 

glyceryl moieties and their degradation products hexosylceramides. Choline products 

betaine and TMAO were also lower in those who developed ACLF. No changes in long or 

medium chain saturated/unsaturated fatty acids were identified. In contrast, dicarboxylic 

fatty acids, and sex steroids that were glucuronidated and sulfated in the liver and their 

estrogenic metabolite, estrone-3-sulfate were higher in patients who developed ACLF. The 

uremic toxin 3-carboxy-4-methyl-5-propyl-2-furanpropanoate was also higher in patients 

who developed ACLF. In patients with infection on admission, there was also a lower 

TMAO but higher spermidine and again lower phospholipids. Importantly estrone-3-sulfate 

levels did not differentiate between groups with/without infection.

Random forest analysis:  ANCOVA adjusted metabolites were used to determine outcomes 

with the OOB rate 0.30, meaning that the ANCOVA model predicted the development at 

0.70 level (Range 0–1). The top 30 metabolites in order of decreasing MDA are shown in 

figure 4A, the majority of which belonged to phospholipids, xenobiotics, estrone-3-sulfate 

and bacterial metabolites of aromatic amino acid metabolism.

In-hospital mortality:

Clinical variables:  Age, gender, and etiology of cirrhosis were similar between patients 

who died during hospitalization (n=43) compared to those who survived hospitalization 

(N=559). However, cirrhosis severity on admission (MELD, WBC, albumin and Na) was 

worse in those who died during the hospitalization. Patients who died during hospitalization 

were also more likely to be infected, have higher LOS, have higher likelihood of ICU 

transfer and to develop ACLF during the admission.

ANCOVA and FDR-adjusted analysis:  119 metabolites were significantly associated with 

inpatient mortality after FDR adjustment. Of these 65 were lipids, 18 were amino acids and 

14 were xenobiotics. These again demonstrated that aromatic amino acid metabolites were 

higher while lipids were lower in those who died compared to survivors. Again, tryptophan, 
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bile acid, ADMA/SDMA and lipid moieties including estrone-3-sulfate were different 

between groups.

Random forest analysis:  OOB rates were 0.27. Figure 4B shows the 30 metabolites with 

highest MDA. These were also related to the microbial products of amino acids, bile acids, 

lipid metabolites with cortisone and estrone sulfate and markers of energy failure such as 

lactate.

30-day mortality:

Clinical variables:  Patients who died within 30 days had similar demographics and 

etiology distribution but had a higher MELD, lower serum albumin and Na and higher 

admission WBC count compared to those who survived. These patients were more likely to 

have had infections on admission, ICU transfer, longer LOS and ACLF development.

ANCOVA and FDR-adjusted analysis:  427 metabolites were significant after FDR 

adjustment, of which 178 were lipids, 106 were amino acids, 57 were xenobiotics and 86 

were uncharacterized. As found in other outcomes, metabolites related to aromatic amino 

acids, ADMA/SDMA, bile acids and steroids were associated with 30-day mortality.

Random forest analysis:  OOB rates were 0.26. The top 30 metabolites ranked by MDA are 

found in Figure 4C which were related to lipid metabolism, cortisone hormones, amino acids 

including their products like dimethylarginine, bilirubin and lipid metabolites.

Logistic regression: The baseline clinical model for ACLF showed AUC of 0.78 (0.72–

0.83) which significantly increased to 0.84 (0.78–0.88, p=0.001) with 3-pheynlpropinoate,4-

hydroxybenzoate, 5-hydroxyindoleacetate, Choline, Glycohyocholate, o-cresol sulfate and 

Trimethylamine N-oxide (Table S7). The clinical model for inpatient mortality showed an 

AUC of 0.73 (0.66–0.80), which was significantly enhanced to 0.81 (0.74–0.85, p=0.002) 

with 3-methoxycatechol sulfate, 4-hydroxybenzoate, Choline, Glycohyocholate and o-cresol 

sulate (Table S8). For 30-day mortality, the AUC for the clinical model was 0.73 (0.69–

0.78), which increased to AUC 0.77(0.73–0.81, p=0.02) with Daidzein sulfate, Methyl-4-

hydroxybenzoate sulfate, N-acetyltryptophan, p-cresol glucuronide and phenol sulfate being 

independently contributory (Table S9).

Microbiota correlation network changes: We only found significant correlations in 

groups with outcomes at the cut-off. As shown in figure 5, Clostridium cluster XI, 

Enterococcaceae and Fusobacteriaceae were linked with compounds and higher in those 

who developed these outcomes while autochthonous taxa such as Lachnospiraceae and 

Ruminococcaceae were the reverse.

DISCUSSION:

Patients with cirrhosis are prone to poor inpatient outcomes such as the development of 

ACLF or mortality. Prediction of these outcomes in hospitalized patients with cirrhosis is not 

only critical for adequate prognostication and, to judge futility but, importantly, to determine 

a pathogenic link that would identify possible prevention strategies. In addition, since most 
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accepted definitions of ACLF require the presence of major organ failures, novel means of 

identifying patients who will develop ACLF before organ failure development are urgently 

needed. The current multi-center metabolomic experience demonstrates a serum signature 

on the day of hospital admission in patients with cirrhosis who will subsequently develop 

ACLF or mortality centered on microbially-derived metabolites and xenobiotics.

ACLF marks a sentinel event in the natural history of cirrhosis and can lead to high mortality 

unless liver transplant can be performed. The definitions of ACLF vary worldwide but by 

and large focus on organ failures late in the disease process, especially the NACSELD 

definition29. Prediction of ACLF development, which could potentially identify a high-risk 

subgroup before advanced organ failure has set in, is important to test and later implement 

potential preventative strategies. Prior studies have focused on using specialized markers, 

including metabolomics, systemic inflammation and kyunerine to differentiate ACLF from 

acute decompensation8, 30, 31. These results clearly demonstrate that there is a bio-energetics 

failure coupled with systemic inflammatory response in ACLF patients compared to those 

with decompensated cirrhosis. However, the prediction of who will develop ACLF is an 

open question with markedly important consequences.

Single center studies from USA and China have shown that stool microbial composition on 

admission can predict inpatient death and organ failures13, 14. These results demonstrated 

higher gram-negative taxa and lower autochthonous beneficial taxa belonging to 

Lachnospiraceae, Ruminococcaceaeae, and Clostridia. This was further extended by a multi-

center study with stool microbiota collected on admission28. The results demonstrated the 

admission stool microbiota composition can independently predict the development of 

ACLF, organ failures and mortality. Stool microbiota composition in those who developed 

ACLF and individual organ failures was characterized by higher relative abundance of gram-

negative bacteria belonging to Proteobacteria. When 30-day mortality was considered, there 

were also higher Enterococcaceae in addition to Proteobacteria. Correlation networks found 

that metabolites associated with negative outcomes were more likely linked with pathobionts 

such as Clostridium Cluster XI, which includes C.difficile, Enterococcaceae, 

Fusobacteriaceae and Commanomadaceae, while the reverse was found with autochthonous, 

beneficial taxa such as Lachnospiraceae and Ruminococcaceae32. While we were able to 

determine the linkage with composition in a subset, these metabolites represent a major 

means of human-microbial interactions10, 33, 34.

These microbially-derived metabolites can influence several important metabolic pathways 

that are critical for cell homeostasis, optimal organ function and circulation and are related 

to bile acid, xenobiotic and aromatic amino acid metabolism35. Overall, we found that serum 

metabolites related to microbial metabolism such as bile acids (lower conjugated, secondary, 

and sulfated bile acids), aromatic amino acid metabolites (lower indoxyl-sulfate and indole 

propionate and higher indoleacetate), xenobiotics (higher o-cresol and phenol and lower p-

cresol sulfates and glucuronides), choline metabolism (lower betaine and TMAO) and those 

linked with lipid metabolism (lower phospholipids and higher estrogenic metabolites) were 

associated with ACLF and death.
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We found a consistent increase in serum tauro and glyco-cholenate in their sulfated form in 

patients who developed ACLF or died. Cholenate is formed as a result of the acidic or non-

traditional pathway of bile acid synthesis from cholesterol in the liver36. Usually it is a 

minor part of the bile acid profile, but serum levels increase in patients with cholestasis37. 

Glycine and taurine conjugation and finally sulfation are performed to make these moieties 

more hydrophilic and able to be excreted38. Microbiota are involved in deconjugation of the 

glycine and taurine conjugates and desulfation39. Therefore, the relative increase in these 

moieties reflect cholestasis along with a potential reduction in the activity of gut microbiota 

belonging to Clostridium, Lactobacillus, Bacteroides and Fusobacterium that can de-sulfate 

and deconjugate these bile acids38, 39. This is interesting because these were significant 

despite adjusting for serum bilirubin levels in MELD score. UDCA, which was lower in 

those with outcomes, is produced by bacterial epimerization of the primary bile acid 

chenodeoxycholic acid and signifies the presence of specific beneficial Clostridium and 

Ruminococcus species40; none of the patients were on UDCA treatment. Similar beneficial 

species also can form 7-ketodeoxycholate or 7-oxo-deoxycholate and secondary bile acids 

and their relative reduction likely represents a bacterial functional alteration that predisposes 

patients to mortality, and ACLF41.

In addition to bile acids, several metabolites that are part of the aromatic amino acid, 

arginine and benzoate metabolism were significantly associated with the development of 

ACLF and death. The arginine metabolites ADMA and SDMA, which adversely impact 

vascular reactivity and brain function, were higher in patients who developed poor outcomes 

compared to those who did not42, 43. Tryptophan metabolites have the potential to engage 

the aryl-hydrocarbon (AhR) receptor and can cause several downstream positive effects on 

the systemic circulation, brain and liver34, 44. Indoxyl-sulfate and indole propionate were 

lower in those who developed ACLF. Indolepropionic acid is associated with stabilization of 

the intestinal barrier and its relative absence could potentially predispose to increased 

intestinal permeability, bacterial translocation and disease progression33. Indoxyl-sulfate and 

p-cresol sulfate and glucuronides are microbial-mammalian co-metabolites, which require 

conversion of aromatic amino acids by microbiota followed by sulfation in the liver45, 46. 

While some of these metabolites were higher in patients with chronic kidney disease, they 

also require intact liver function to be synthesized46. Therefore, their reduction in those who 

develop ACLF could reflect a combination of impaired liver sulfation and microbial 

dysbiosis. Other microbial metabolites of phenylalanine and tyrosine that engage the AhR 

receptor and promote IL-22 secretion and promote local immune efficacy were lower in 

those who developed ACLF, showing a relative immunodeficiency47, 48. We also extended 

prior studies of increased kyunerine and kyunerate, and quinolinate, which are endogenous 

metabolites of tryptophan that can be induced by systemic inflammation and macrophage 

activation, into this North American cohort in the context of other aromatic acid 

metabolites30, 49. 5-hydroxy indoleacetate was higher in those who developed ACLF and 

death. This is a stable breakdown product of the relatively unstable serotonin that can 

modulate microbial growth and intestinal motility, which is often impaired in cirrhosis47 and 

may be related to the dysbiosis and small intestinal bacterial overgrowth known to be more 

frequent in patients with more advanced liver disease.
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In addition, to the microbial metabolites, lipids and hormonal biochemical entities were 

important prognosticators. Daidzein and genistein are isoflavones found in food that are 

modified by specific microbiota and sulfated in the liver. They have estrogenic properties 

and are linked with estrone and estrone-3-sulfate. In addition, the estrogenic activity of the 

other xenobiotic intermediate, 4-hydroxybenzoate, could be contributory50. The estrone-3-

sulfate increase was accompanied by an increase in androgenic steroid precursors. Estrogen 

increase and conversion of androgens into estrogenic compounds are known to occur to a 

greater extent as liver disease progresses and could be harbingers of ACLF and death 

regardless of MELD score and other clinical variables adjusted for on ANCOVA. Therefore, 

the concomitant contribution of gut microbiota-associated generation of metabolites with 

estrogenic activity could also contribute towards the prediction of negative outcomes in 

patients with cirrhosis.

Another group of metabolites associated with a reduction in development of negative 

outcomes was related to phosphatidylethanolamines, phosphatidylserines, 

phosphatidylcholines and their lyso- conjugated biochemicals. These are associated with 

numerous bacterial and human metabolic pathways. Choline deficiency was associated with 

increased gram-negative taxa in prior studies51–53. Choline is metabolized by microbiota 

into methylamines that are oxidized by the liver to trimethylamine oxide, a product that 

indicates healthy liver function. In patients who develop ACLF, choline, betaine and TMAO 

were lower. Phosphatidylethanolamine, phosphatidylinositol and phosphatidycholine were 

lower in patients who developed all negative outcomes, including in infected patients. These 

findings extend prior single-center studies into this multi-center experience and in the 

context of ACLF in the Western world11, 44, 53. These molecules are essential components of 

the cell membrane, with PE being more focused on the inner leaflet and the mitochondrial 

membranes. Phosphatidylethanolamine and phosphatidycholine have been associated with 

protection in human liver disease in prior single center studies and our study extends that 

into a multi-center context54. We found that some changes were more likely in infected 

patients; lower spermidine, a polyamine that is utilized by intestinal microbiota, lower bile 

acid moieties and similar estrone-3-sulfate levels unlike other outcomes55. It is likely that 

lower bile acid and estrone-3-sulfate are associated with underlying liver disease rather than 

infection. As found in other studies of infected patients regardless of cirrhosis. There 

continued to be lower phospholipids in infected patients56.

We did not find significant changes in bioenergetics or long/medium-chain fatty acids in our 

study. Fatty acid changes and some features of altered bioenergetics are found in 

metabolomic studies of stable patients with cirrhosis before/after therapy and could have 

been obscured by the phospholipid release through cell membrane stress in inpatients in our 

study21, 57. Regarding bio-energetics, a recent study showed significant energy failure using 

blood metabolomics, however those patients had already developed ACLF, while ours were 

taken before that occurrence9. In addition, since several of the energy metabolites can be 

collinear with disease severity, our adjustment for clinical and demographic factors may 

have also reduced their relative significance in our cohort. While we determined the change 

in microbial functional metabolites, these were linked to microbial composition only in the 

subset of subjects who provided stool. However, the functional changes are more relevant in 

affecting changes in the host and indeed several metabolites that affected prognosis were 
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related to the microbial taxa that are changed during admission in patients with cirrhosis58. 

ACLF can often lead to death, therefore, there was an overlap between the metabolites were 

found in all outcomes.

These results need validation in independent samples. A small minority had alcoholic 

hepatitis or were actively drinking so that group could not be tested separately. Potential 

translation of these findings could be creation of serum panels focused on these specific 

metabolites that could be drawn on admission to prognosticate patients and analyzed in 

hospital laboratories if validated. These findings can also form the basis of future clinical 

trials focused on favorably altering gut microbiota such as the use of prebiotics, probiotics 

and even potentially microbiota transplantation in hospitalized patients with cirrhosis.

We conclude that in this multi-center, prospective study of inpatients with cirrhosis, serum 

metabolomic profiles focused on gut microbial metabolites, hormonal and phospholipid 

moieties can predict the development of ACLF, inpatient and 30-day death. These 

predictions remain significant despite controlling for clinically significant variables and 

likely reflect the alteration in systemic milieu and hepatic functional capacity that is not 

fully captured by current clinical prognostic scales. In a subset of patients who also provided 

stool, these were linked to gut microbial composition. Specific microbially-derived 

metabolites are associated with a significantly higher AUC for ACLF, inpatient and 30-day 

mortality compared to purely clinical factors. Serum panels focused on metabolomics on 

admission in addition to our current clinical parameters have the potential to refine 

prognostication of inpatients with cirrhosis in order to develop pro-active rather than reactive 

strategies to prevent ACLF.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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MDA Mean decrease accuracy

OOB out of bag

RSD relative standard deviation

ICU intensive care unit

ADMA asymmetric dimethyl arginine

SDMA symmetric dimethyl arginine

UDCA ursodeoxycholic acid

AUC area under the curve
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WHAT YOU NEED TO KNOW

• Background and Context: Inpatients with cirrhosis have high rates of acute 

on chronic failure (ACLF) development and death within 30 days of 

admission to the hospital. Better biomarkers are needed to predict these 

outcomes

• New Findings: In an analysis of serum metabolites and fecal microbiomes of 

patients hospitalized with cirrhosis at multiple centers, we associated 

metabolites of microbial origin and lipid moieties with development of ACLF 

and death as an inpatient or within 30 days, after controlling for clinical 

features

• Limitations: Studies are needed to validate these findings.

• Impact: Serum metabolite and fecal microbiome analyses might be used to 

determine prognoses of patients with cirrhosis and to identify mechanism of 

disease progression.
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Figure 1: ACLF-Related Serum Metabolites
Least square means of ANCOVA-corrected microbial-origin metabolites presented as mean 

and 95% CI between patients who did (marked as 1) and did not develop ACLF (marked as 

0). A: Bile acids and Choline moieties, B: Aromatic compounds and C: Xenobiotics. Y axis: 

scaled intensity. FDR-corrected p values are shown for each metabolite.
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Figure 2: Inpatient Mortality-Related Serum Metabolites
Least square means of ANCOVA-corrected microbial-origin metabolites presented as mean 

and 95% CI between patients who did (marked as 1) and did not develop inpatient mortality 

(marked as 0). Y axis: scaled intensity. A: Bile acids moieties, B: Aromatic compounds and 

C: Xenobiotics FDR-corrected p values are shown for each metabolite.
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Figure 3: 30-day Mortality-Related Serum Metabolites
Least square means of ANCOVA-corrected microbial-origin metabolites presented as mean 

and 95% CI between patients who did (marked as 1) and did not develop 30-day mortality 

(marked as 0). Y axis: scaled intensity. A: Bile acids moieties, B: Aromatic compounds and 

C: Xenobiotics. FDR-corrected p values are shown for each metabolite.
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Figure 4: Mean Decrease Accuracy on Random Forest Analysis
Mean Decrease Accuracy of Top 30 Metabolites in the Random Forest Analysis. Metabolites 

that caused the greatest change in the random forest analysis are positioned from top to 

bottom with percentage change in the X axis.

4A: Mean decrease accuracy in those who developed ACLF

4B: Mean decrease accuracy in those who developed inpatient death

4C: Mean decrease accuracy in those who died within 30 days
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Figure 5: Correlation networks between metabolites and stool mtcrobiota
Correlation networks in patients reaching outcomes filtered at r>0.7/r<−0.7 and p<0.001 

between microbiota (red nodes) and metabolites (green nodes). Red edges indicate negative 

while blue indicate positive correlation.

5A-C: Sub-networks of important taxa in those who developed ACLF

5A: Fusobacteriaceae and Enterococcaceae showed positive linkages with CMPF and 

negative with phospholipids, while the reverse was seen with Lachnospiraceae

5B: Clostridium cluster XI showed positive linkages with aromatic compounds

5C. Veillonellaceae, Porphyromonadaceae linked to compounds protective against ACLF

5D-E: Sub-networks of important taxa in those who died as an inpatient.

5D: Enterococcaceae associated with sex steroids and benzoate compounds associated with 

death, while Ruminococcaceae and Lachnospiraceaeae are positively linked with 

glycoursodeoxycholate, which is protective.

5E: Clostridiaceae and Peptostreptococcaceae are negatively linked with CMPF/hydoxy-

CMPF, which in turn are negatively linked with protective glycoursodeoxycholate

5F: 30-day death sub-network showed Clostridium cluster XI linked positively with 

phenylacetylglutamine, which is associated with death and negatively with commensal 

Bacteroidaceae, which in turn are negatively correlated with pathobionts. Pasteurellaceae are 

negatively linked with phospholipids and Commamondaceae negatively with protective 

ursodeoxycholate.
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Table 1:

Clinical comparisons between patients who developed ACLF, inpatient death and 30-day mortality

Variable Developed ACLF Died in the hospital Died within 30-days

No (n=514) Yes (n=88) P value No (n=559) Yes 
(n=43)

P value No (n=530) Yes (n=72) P value

Age (years) 56.4±9.4 53.2±10.0 0.008 56.2±9.6 53.6±9.6 0.11 56.2±9.5 54.7±10.2 0.26

Men 317 (62%) 45 (51%) 0.18 337 (60%) 24 (56%) 0.95 319 (60%) 46 (64%) 0.37

Etiology 
(see below)

136/146/82/93/52 18/32/9/13/17 0.03 143/167/85/98/59 9/11/6/9/8 0.58 139/154/84/95/5 16/25/7/12/12 0.33

MELD 
score

18.3±7.3 25.8±7.4 <0.0001 18.9±7.5 26.0±7.6 <0.0001 18.6±7.4 25.9±7.3 <0.0001

Serum Na 
(meq/L)

134.2±5.7 130.9±7.0 <0.0001 134.0±5.9 130.9±6.7 0.007 13.42±5.8 130.8±6.8 <0.0001

Serum 
Albumin 
(g/dl)

2.83±0.65 2.73±0.76 0.25 2.84±0.66 2.57±0.66 0.01 2.85±0.66 2.62±0.67 0.01

WBC 
count 
(X103/ml

7.5±4.7 10.1±5.6 <0.0001 7.8±4.8 10.4±5.6 0.005 7.6±4.8 10.1 ±5.6 0.001

Admission 
infection

175 (34%) 59 (67%) <0.0001 205 (37%) 30 (70%) <0.0001 193 (36%) 44 (61%) <0.0001

Admission 
rifaximin 
(N=265)

39 (44%) 226 (44%) 0.92 251 (44%) 14 (49%) 0.12 237 (45%) 28 (39%) 0.34

Admission 
SBP 
prophylaxis

44 (9%) 10 (12%) 0.38 51 (9%) 3 (7%22) 0.79 49 (9%) 5 (7%) 0.52

ICU 
transfer

74 (14%) 70 (80%) <0.0001 107 (19%) 34 (79%) <0.0001 99 (19%) 45 (62%) <0.0001

LOS 10.2±35.9 26.9±27.8 <0.0001 11.7±35.6 26.1 
±31.0

0.01 11.4±36.1 22.3±35.8 0.003

Data is presented as mean ± SD or in raw numbers (%). Comparisons were performed using unpaired t-tests or Mann-Whitney tests as appropriate. 
All laboratory values are on admission to hospital. Etiology categories are Hepatitis C/Alcohol/Both hepatitis C and alcohol/non-alcoholic fatty 
liver or cryptogenic/Other, ACLF: acute on chronic liver failure, ICU: intensive care unit.
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Table 2:

Microbially derived metabolites that were significantly different between patients who developed outcomes

ACLF vs no-ACLF Infection or no In-patient death vs. no 30-day death vs no

Choline 
metabolism

Choline↓
Betaine↓
Tri-methyl amine oxide↓

Tri-methyl amine 
oxide↓

- -

Bile acid glycocholenate sulfate↑
taurocholenate sulfate↑
ursodeoxycholate↓
7-ketodeoxycholate↓

Isoursodeoxycholic 
acid↓
ursodeoxycholate↓
deoxycholic acid 
glucuronide↑

glycochenodeoxycholate 
glucuronide↓
glycochenodeoxycholate 3-
sulfate↓
7-ketodeoxycholate↓
glycoursodeoxycholate↓
glycohyocholate↓
taurohyocholate↓
hyocholate↓
glycocholenate sulfate↑
taurocholenate sulfate↑

glycocholenate sulfate↑
taurocholenate sulfate↑
7-ketodeoxycholate↓

Aromatic 
amino acid 
metabolism

3-indoxyl sulfate↓
3-(3-hydroxyphenyl) 
propionate↓
3-(4-hydroxyphenyl) 
propionate↓
5-hydroxy indoleacetate↑
indolepropionate↓
phenylacetylglutamine↓
3-methoxycatechol sulfate↓
N-acetyltryptophan↑
Tyramine sulfate↓

3-indoxyl sulfate↓
indolepropionate↓
serotonin↓

3-methoxycatechol sulfate↓
4-hydroxy phenylacetate↑
phenol sulfate↑
phenol glucuronide↑

3-methoxycatechol sulfate↓
5-hydroxy indoleacetate↑
phenyllactate↑
hydroxyphenylacetate↑
4-hydroxy phenylacetate↑
phenylacetylglutamine↑
phenol sulfate↑
indolelactatet phenol 
glucuronide↑

Xenobiotic 3-phenylpropionate ↓
3-(4-hydroxyphenyl) 
propionate↓
p-cresol sulfate↓
p-cresol glucuronide↓
o-cresol sulfate↑
methyl-4-hydroxybenzoate↑

3-phenylpropionate ↓
3-(4-hydroxy 
phenyl)propionate↓
p-cresol sulfate↓
p-cresol glucuronide↓
methyl-4-
hydroxybenzoate↑

daidzein sulfate ↑
methyl-4-hydroxybenzoate↑
4-hydroxyhippurate↑
4-hydroxybenzoate↑
genistein sulfate↑

3-phenylpropionate ↓
3-(4-hydroxyphenyl) 
propionate↓
4-hydroxyhippurate↑
4-hydroxybenzoate↑
daidzein sulfate ↑
genistein sulfate↑
methyl-4-hydroxy benzoate↑
hippurate↑

Polyamines Spermidine↓

Lipid 
metabolism

Lyso-Phosphocholine↓
Lyso-Phospho ethanolamine↓

Lyso-Phosphocholine↓
Lyso-Phospho 
ethanolamine↓

Lyso-Phosphocholine↓
Lyso-Phospho ethanolamine↓

Lyso-Phosphocholine↓
Lyso-Phospho ethanolamine↓

Fold-change compared to no-outcomes are presented with arrows: ↓: Lower in those who developed outcome vs those who did not, ↑: Higher in 
those who developed outcome vs not. All data are ANCOVA adjusted for age, gender, alcohol etiology, admission MELD, albumin and sodium. 
Details of all other metabolites are in supplementary table 4. ACLF: acute on chronic liver failure
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